hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
66ba11fc58f19a33a60dc774166d38bd6293182a6f2da12ee0d8aea652a6ef4f | """Simple Harmonic Oscillator 1-Dimension"""
from sympy.core.numbers import (I, Integer)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum.operator import Operator
from sympy.physics.quantum.state import Bra, Ket, State
from sympy.physics.quantum.qexpr import QExpr
from sympy.physics.quantum.cartesian import X, Px
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.matrixutils import matrix_zeros
#------------------------------------------------------------------------------
class SHOOp(Operator):
"""A base class for the SHO Operators.
We are limiting the number of arguments to be 1.
"""
@classmethod
def _eval_args(cls, args):
args = QExpr._eval_args(args)
if len(args) == 1:
return args
else:
raise ValueError("Too many arguments")
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(S.Infinity)
class RaisingOp(SHOOp):
"""The Raising Operator or a^dagger.
When a^dagger acts on a state it raises the state up by one. Taking
the adjoint of a^dagger returns 'a', the Lowering Operator. a^dagger
can be rewritten in terms of position and momentum. We can represent
a^dagger as a matrix, which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Raising Operator and rewrite it in terms of position and
momentum, and show that taking its adjoint returns 'a':
>>> from sympy.physics.quantum.sho1d import RaisingOp
>>> from sympy.physics.quantum import Dagger
>>> ad = RaisingOp('a')
>>> ad.rewrite('xp').doit()
sqrt(2)*(m*omega*X - I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
>>> Dagger(ad)
a
Taking the commutator of a^dagger with other Operators:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> ad = RaisingOp('a')
>>> a = LoweringOp('a')
>>> N = NumberOp('N')
>>> Commutator(ad, a).doit()
-1
>>> Commutator(ad, N).doit()
-RaisingOp(a)
Apply a^dagger to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import RaisingOp, SHOKet
>>> ad = RaisingOp('a')
>>> k = SHOKet('k')
>>> qapply(ad*k)
sqrt(k + 1)*|k + 1>
Matrix Representation
>>> from sympy.physics.quantum.sho1d import RaisingOp
>>> from sympy.physics.quantum.represent import represent
>>> ad = RaisingOp('a')
>>> represent(ad, basis=N, ndim=4, format='sympy')
Matrix([
[0, 0, 0, 0],
[1, 0, 0, 0],
[0, sqrt(2), 0, 0],
[0, 0, sqrt(3), 0]])
"""
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
S.NegativeOne*I*Px + m*omega*X)
def _eval_adjoint(self):
return LoweringOp(*self.args)
def _eval_commutator_LoweringOp(self, other):
return S.NegativeOne
def _eval_commutator_NumberOp(self, other):
return S.NegativeOne*self
def _apply_operator_SHOKet(self, ket, **options):
temp = ket.n + S.One
return sqrt(temp)*SHOKet(temp)
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format','sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info - 1):
value = sqrt(i + 1)
if format == 'scipy.sparse':
value = float(value)
matrix[i + 1, i] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return matrix
#--------------------------------------------------------------------------
# Printing Methods
#--------------------------------------------------------------------------
def _print_contents(self, printer, *args):
arg0 = printer._print(self.args[0], *args)
return '%s(%s)' % (self.__class__.__name__, arg0)
def _print_contents_pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
pform = pform**prettyForm('\N{DAGGER}')
return pform
def _print_contents_latex(self, printer, *args):
arg = printer._print(self.args[0])
return '%s^{\\dagger}' % arg
class LoweringOp(SHOOp):
"""The Lowering Operator or 'a'.
When 'a' acts on a state it lowers the state up by one. Taking
the adjoint of 'a' returns a^dagger, the Raising Operator. 'a'
can be rewritten in terms of position and momentum. We can
represent 'a' as a matrix, which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Lowering Operator and rewrite it in terms of position and
momentum, and show that taking its adjoint returns a^dagger:
>>> from sympy.physics.quantum.sho1d import LoweringOp
>>> from sympy.physics.quantum import Dagger
>>> a = LoweringOp('a')
>>> a.rewrite('xp').doit()
sqrt(2)*(m*omega*X + I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
>>> Dagger(a)
RaisingOp(a)
Taking the commutator of 'a' with other Operators:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import LoweringOp, RaisingOp
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> a = LoweringOp('a')
>>> ad = RaisingOp('a')
>>> N = NumberOp('N')
>>> Commutator(a, ad).doit()
1
>>> Commutator(a, N).doit()
a
Apply 'a' to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
>>> a = LoweringOp('a')
>>> k = SHOKet('k')
>>> qapply(a*k)
sqrt(k)*|k - 1>
Taking 'a' of the lowest state will return 0:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
>>> a = LoweringOp('a')
>>> k = SHOKet(0)
>>> qapply(a*k)
0
Matrix Representation
>>> from sympy.physics.quantum.sho1d import LoweringOp
>>> from sympy.physics.quantum.represent import represent
>>> a = LoweringOp('a')
>>> represent(a, basis=N, ndim=4, format='sympy')
Matrix([
[0, 1, 0, 0],
[0, 0, sqrt(2), 0],
[0, 0, 0, sqrt(3)],
[0, 0, 0, 0]])
"""
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
I*Px + m*omega*X)
def _eval_adjoint(self):
return RaisingOp(*self.args)
def _eval_commutator_RaisingOp(self, other):
return S.One
def _eval_commutator_NumberOp(self, other):
return self
def _apply_operator_SHOKet(self, ket, **options):
temp = ket.n - Integer(1)
if ket.n is S.Zero:
return S.Zero
else:
return sqrt(ket.n)*SHOKet(temp)
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info - 1):
value = sqrt(i + 1)
if format == 'scipy.sparse':
value = float(value)
matrix[i,i + 1] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return matrix
class NumberOp(SHOOp):
"""The Number Operator is simply a^dagger*a
It is often useful to write a^dagger*a as simply the Number Operator
because the Number Operator commutes with the Hamiltonian. And can be
expressed using the Number Operator. Also the Number Operator can be
applied to states. We can represent the Number Operator as a matrix,
which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Number Operator and rewrite it in terms of the ladder
operators, position and momentum operators, and Hamiltonian:
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> N = NumberOp('N')
>>> N.rewrite('a').doit()
RaisingOp(a)*a
>>> N.rewrite('xp').doit()
-1/2 + (m**2*omega**2*X**2 + Px**2)/(2*hbar*m*omega)
>>> N.rewrite('H').doit()
-1/2 + H/(hbar*omega)
Take the Commutator of the Number Operator with other Operators:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import NumberOp, Hamiltonian
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
>>> N = NumberOp('N')
>>> H = Hamiltonian('H')
>>> ad = RaisingOp('a')
>>> a = LoweringOp('a')
>>> Commutator(N,H).doit()
0
>>> Commutator(N,ad).doit()
RaisingOp(a)
>>> Commutator(N,a).doit()
-a
Apply the Number Operator to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import NumberOp, SHOKet
>>> N = NumberOp('N')
>>> k = SHOKet('k')
>>> qapply(N*k)
k*|k>
Matrix Representation
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> from sympy.physics.quantum.represent import represent
>>> N = NumberOp('N')
>>> represent(N, basis=N, ndim=4, format='sympy')
Matrix([
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 2, 0],
[0, 0, 0, 3]])
"""
def _eval_rewrite_as_a(self, *args, **kwargs):
return ad*a
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/(Integer(2)*m*hbar*omega))*(Px**2 + (
m*omega*X)**2) - S.Half
def _eval_rewrite_as_H(self, *args, **kwargs):
return H/(hbar*omega) - S.Half
def _apply_operator_SHOKet(self, ket, **options):
return ket.n*ket
def _eval_commutator_Hamiltonian(self, other):
return S.Zero
def _eval_commutator_RaisingOp(self, other):
return other
def _eval_commutator_LoweringOp(self, other):
return S.NegativeOne*other
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info):
value = i
if format == 'scipy.sparse':
value = float(value)
matrix[i,i] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return matrix
class Hamiltonian(SHOOp):
"""The Hamiltonian Operator.
The Hamiltonian is used to solve the time-independent Schrodinger
equation. The Hamiltonian can be expressed using the ladder operators,
as well as by position and momentum. We can represent the Hamiltonian
Operator as a matrix, which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Hamiltonian Operator and rewrite it in terms of the ladder
operators, position and momentum, and the Number Operator:
>>> from sympy.physics.quantum.sho1d import Hamiltonian
>>> H = Hamiltonian('H')
>>> H.rewrite('a').doit()
hbar*omega*(1/2 + RaisingOp(a)*a)
>>> H.rewrite('xp').doit()
(m**2*omega**2*X**2 + Px**2)/(2*m)
>>> H.rewrite('N').doit()
hbar*omega*(1/2 + N)
Take the Commutator of the Hamiltonian and the Number Operator:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import Hamiltonian, NumberOp
>>> H = Hamiltonian('H')
>>> N = NumberOp('N')
>>> Commutator(H,N).doit()
0
Apply the Hamiltonian Operator to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import Hamiltonian, SHOKet
>>> H = Hamiltonian('H')
>>> k = SHOKet('k')
>>> qapply(H*k)
hbar*k*omega*|k> + hbar*omega*|k>/2
Matrix Representation
>>> from sympy.physics.quantum.sho1d import Hamiltonian
>>> from sympy.physics.quantum.represent import represent
>>> H = Hamiltonian('H')
>>> represent(H, basis=N, ndim=4, format='sympy')
Matrix([
[hbar*omega/2, 0, 0, 0],
[ 0, 3*hbar*omega/2, 0, 0],
[ 0, 0, 5*hbar*omega/2, 0],
[ 0, 0, 0, 7*hbar*omega/2]])
"""
def _eval_rewrite_as_a(self, *args, **kwargs):
return hbar*omega*(ad*a + S.Half)
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
def _eval_rewrite_as_N(self, *args, **kwargs):
return hbar*omega*(N + S.Half)
def _apply_operator_SHOKet(self, ket, **options):
return (hbar*omega*(ket.n + S.Half))*ket
def _eval_commutator_NumberOp(self, other):
return S.Zero
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info):
value = i + S.Half
if format == 'scipy.sparse':
value = float(value)
matrix[i,i] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return hbar*omega*matrix
#------------------------------------------------------------------------------
class SHOState(State):
"""State class for SHO states"""
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(S.Infinity)
@property
def n(self):
return self.args[0]
class SHOKet(SHOState, Ket):
"""1D eigenket.
Inherits from SHOState and Ket.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket
This is usually its quantum numbers or its symbol.
Examples
========
Ket's know about their associated bra:
>>> from sympy.physics.quantum.sho1d import SHOKet
>>> k = SHOKet('k')
>>> k.dual
<k|
>>> k.dual_class()
<class 'sympy.physics.quantum.sho1d.SHOBra'>
Take the Inner Product with a bra:
>>> from sympy.physics.quantum import InnerProduct
>>> from sympy.physics.quantum.sho1d import SHOKet, SHOBra
>>> k = SHOKet('k')
>>> b = SHOBra('b')
>>> InnerProduct(b,k).doit()
KroneckerDelta(b, k)
Vector representation of a numerical state ket:
>>> from sympy.physics.quantum.sho1d import SHOKet, NumberOp
>>> from sympy.physics.quantum.represent import represent
>>> k = SHOKet(3)
>>> N = NumberOp('N')
>>> represent(k, basis=N, ndim=4)
Matrix([
[0],
[0],
[0],
[1]])
"""
@classmethod
def dual_class(self):
return SHOBra
def _eval_innerproduct_SHOBra(self, bra, **hints):
result = KroneckerDelta(self.n, bra.n)
return result
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
options['spmatrix'] = 'lil'
vector = matrix_zeros(ndim_info, 1, **options)
if isinstance(self.n, Integer):
if self.n >= ndim_info:
return ValueError("N-Dimension too small")
if format == 'scipy.sparse':
vector[int(self.n), 0] = 1.0
vector = vector.tocsr()
elif format == 'numpy':
vector[int(self.n), 0] = 1.0
else:
vector[self.n, 0] = S.One
return vector
else:
return ValueError("Not Numerical State")
class SHOBra(SHOState, Bra):
"""A time-independent Bra in SHO.
Inherits from SHOState and Bra.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket
This is usually its quantum numbers or its symbol.
Examples
========
Bra's know about their associated ket:
>>> from sympy.physics.quantum.sho1d import SHOBra
>>> b = SHOBra('b')
>>> b.dual
|b>
>>> b.dual_class()
<class 'sympy.physics.quantum.sho1d.SHOKet'>
Vector representation of a numerical state bra:
>>> from sympy.physics.quantum.sho1d import SHOBra, NumberOp
>>> from sympy.physics.quantum.represent import represent
>>> b = SHOBra(3)
>>> N = NumberOp('N')
>>> represent(b, basis=N, ndim=4)
Matrix([[0, 0, 0, 1]])
"""
@classmethod
def dual_class(self):
return SHOKet
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
options['spmatrix'] = 'lil'
vector = matrix_zeros(1, ndim_info, **options)
if isinstance(self.n, Integer):
if self.n >= ndim_info:
return ValueError("N-Dimension too small")
if format == 'scipy.sparse':
vector[0, int(self.n)] = 1.0
vector = vector.tocsr()
elif format == 'numpy':
vector[0, int(self.n)] = 1.0
else:
vector[0, self.n] = S.One
return vector
else:
return ValueError("Not Numerical State")
ad = RaisingOp('a')
a = LoweringOp('a')
H = Hamiltonian('H')
N = NumberOp('N')
omega = Symbol('omega')
m = Symbol('m')
|
51715c990a08f0797cf6fe22c447e1df983ffe8e808103f382f2c98422c816d0 | """
Unit system for physical quantities; include definition of constants.
"""
from typing import Dict as tDict, Set as tSet
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.physics.units.dimensions import _QuantityMapper
from sympy.physics.units.quantities import Quantity
from .dimensions import Dimension
class UnitSystem(_QuantityMapper):
"""
UnitSystem represents a coherent set of units.
A unit system is basically a dimension system with notions of scales. Many
of the methods are defined in the same way.
It is much better if all base units have a symbol.
"""
_unit_systems = {} # type: tDict[str, UnitSystem]
def __init__(self, base_units, units=(), name="", descr="", dimension_system=None, derived_units: tDict[Dimension, Quantity]={}):
UnitSystem._unit_systems[name] = self
self.name = name
self.descr = descr
self._base_units = base_units
self._dimension_system = dimension_system
self._units = tuple(set(base_units) | set(units))
self._base_units = tuple(base_units)
self._derived_units = derived_units
super().__init__()
def __str__(self):
"""
Return the name of the system.
If it does not exist, then it makes a list of symbols (or names) of
the base dimensions.
"""
if self.name != "":
return self.name
else:
return "UnitSystem((%s))" % ", ".join(
str(d) for d in self._base_units)
def __repr__(self):
return '<UnitSystem: %s>' % repr(self._base_units)
def extend(self, base, units=(), name="", description="", dimension_system=None, derived_units: tDict[Dimension, Quantity]={}):
"""Extend the current system into a new one.
Take the base and normal units of the current system to merge
them to the base and normal units given in argument.
If not provided, name and description are overridden by empty strings.
"""
base = self._base_units + tuple(base)
units = self._units + tuple(units)
return UnitSystem(base, units, name, description, dimension_system, {**self._derived_units, **derived_units})
def get_dimension_system(self):
return self._dimension_system
def get_quantity_dimension(self, unit):
qdm = self.get_dimension_system()._quantity_dimension_map
if unit in qdm:
return qdm[unit]
return super().get_quantity_dimension(unit)
def get_quantity_scale_factor(self, unit):
qsfm = self.get_dimension_system()._quantity_scale_factors
if unit in qsfm:
return qsfm[unit]
return super().get_quantity_scale_factor(unit)
@staticmethod
def get_unit_system(unit_system):
if isinstance(unit_system, UnitSystem):
return unit_system
if unit_system not in UnitSystem._unit_systems:
raise ValueError(
"Unit system is not supported. Currently"
"supported unit systems are {}".format(
", ".join(sorted(UnitSystem._unit_systems))
)
)
return UnitSystem._unit_systems[unit_system]
@staticmethod
def get_default_unit_system():
return UnitSystem._unit_systems["SI"]
@property
def dim(self):
"""
Give the dimension of the system.
That is return the number of units forming the basis.
"""
return len(self._base_units)
@property
def is_consistent(self):
"""
Check if the underlying dimension system is consistent.
"""
# test is performed in DimensionSystem
return self.get_dimension_system().is_consistent
@property
def derived_units(self) -> tDict[Dimension, Quantity]:
return self._derived_units
def get_dimensional_expr(self, expr):
from sympy.physics.units import Quantity
if isinstance(expr, Mul):
return Mul(*[self.get_dimensional_expr(i) for i in expr.args])
elif isinstance(expr, Pow):
return self.get_dimensional_expr(expr.base) ** expr.exp
elif isinstance(expr, Add):
return self.get_dimensional_expr(expr.args[0])
elif isinstance(expr, Derivative):
dim = self.get_dimensional_expr(expr.expr)
for independent, count in expr.variable_count:
dim /= self.get_dimensional_expr(independent)**count
return dim
elif isinstance(expr, Function):
args = [self.get_dimensional_expr(arg) for arg in expr.args]
if all(i == 1 for i in args):
return S.One
return expr.func(*args)
elif isinstance(expr, Quantity):
return self.get_quantity_dimension(expr).name
return S.One
def _collect_factor_and_dimension(self, expr):
"""
Return tuple with scale factor expression and dimension expression.
"""
from sympy.physics.units import Quantity
if isinstance(expr, Quantity):
return expr.scale_factor, expr.dimension
elif isinstance(expr, Mul):
factor = 1
dimension = Dimension(1)
for arg in expr.args:
arg_factor, arg_dim = self._collect_factor_and_dimension(arg)
factor *= arg_factor
dimension *= arg_dim
return factor, dimension
elif isinstance(expr, Pow):
factor, dim = self._collect_factor_and_dimension(expr.base)
exp_factor, exp_dim = self._collect_factor_and_dimension(expr.exp)
if self.get_dimension_system().is_dimensionless(exp_dim):
exp_dim = 1
return factor ** exp_factor, dim ** (exp_factor * exp_dim)
elif isinstance(expr, Add):
factor, dim = self._collect_factor_and_dimension(expr.args[0])
for addend in expr.args[1:]:
addend_factor, addend_dim = \
self._collect_factor_and_dimension(addend)
if not self.get_dimension_system().equivalent_dims(dim, addend_dim):
raise ValueError(
'Dimension of "{}" is {}, '
'but it should be {}'.format(
addend, addend_dim, dim))
factor += addend_factor
return factor, dim
elif isinstance(expr, Derivative):
factor, dim = self._collect_factor_and_dimension(expr.args[0])
for independent, count in expr.variable_count:
ifactor, idim = self._collect_factor_and_dimension(independent)
factor /= ifactor**count
dim /= idim**count
return factor, dim
elif isinstance(expr, Function):
fds = [self._collect_factor_and_dimension(arg) for arg in expr.args]
dims = [Dimension(1) if self.get_dimension_system().is_dimensionless(d[1]) else d[1] for d in fds]
return (expr.func(*(f[0] for f in fds)), *dims)
elif isinstance(expr, Dimension):
return S.One, expr
else:
return expr, Dimension(1)
def get_units_non_prefixed(self) -> tSet[Quantity]:
"""
Return the units of the system that do not have a prefix.
"""
return set(filter(lambda u: not u.is_prefixed and not u.is_physical_constant, self._units))
|
6be5bfbd8d9f59ac2d5c260011120321fc7fb227227aaf542619ff0af4ce4b1a | """
Definition of physical dimensions.
Unit systems will be constructed on top of these dimensions.
Most of the examples in the doc use MKS system and are presented from the
computer point of view: from a human point, adding length to time is not legal
in MKS but it is in natural system; for a computer in natural system there is
no time dimension (but a velocity dimension instead) - in the basis - so the
question of adding time to length has no meaning.
"""
from __future__ import annotations
import collections
from functools import reduce
from sympy.core.basic import Basic
from sympy.core.containers import (Dict, Tuple)
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.matrices.dense import Matrix
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.core.expr import Expr
from sympy.core.power import Pow
class _QuantityMapper:
_quantity_scale_factors_global: dict[Expr, Expr] = {}
_quantity_dimensional_equivalence_map_global: dict[Expr, Expr] = {}
_quantity_dimension_global: dict[Expr, Expr] = {}
def __init__(self, *args, **kwargs):
self._quantity_dimension_map = {}
self._quantity_scale_factors = {}
def set_quantity_dimension(self, unit, dimension):
from sympy.physics.units import Quantity
dimension = sympify(dimension)
if not isinstance(dimension, Dimension):
if dimension == 1:
dimension = Dimension(1)
else:
raise ValueError("expected dimension or 1")
elif isinstance(dimension, Quantity):
dimension = self.get_quantity_dimension(dimension)
self._quantity_dimension_map[unit] = dimension
def set_quantity_scale_factor(self, unit, scale_factor):
from sympy.physics.units import Quantity
from sympy.physics.units.prefixes import Prefix
scale_factor = sympify(scale_factor)
# replace all prefixes by their ratio to canonical units:
scale_factor = scale_factor.replace(
lambda x: isinstance(x, Prefix),
lambda x: x.scale_factor
)
# replace all quantities by their ratio to canonical units:
scale_factor = scale_factor.replace(
lambda x: isinstance(x, Quantity),
lambda x: self.get_quantity_scale_factor(x)
)
self._quantity_scale_factors[unit] = scale_factor
def get_quantity_dimension(self, unit):
from sympy.physics.units import Quantity
# First look-up the local dimension map, then the global one:
if unit in self._quantity_dimension_map:
return self._quantity_dimension_map[unit]
if unit in self._quantity_dimension_global:
return self._quantity_dimension_global[unit]
if unit in self._quantity_dimensional_equivalence_map_global:
dep_unit = self._quantity_dimensional_equivalence_map_global[unit]
if isinstance(dep_unit, Quantity):
return self.get_quantity_dimension(dep_unit)
else:
return Dimension(self.get_dimensional_expr(dep_unit))
if isinstance(unit, Quantity):
return Dimension(unit.name)
else:
return Dimension(1)
def get_quantity_scale_factor(self, unit):
if unit in self._quantity_scale_factors:
return self._quantity_scale_factors[unit]
if unit in self._quantity_scale_factors_global:
mul_factor, other_unit = self._quantity_scale_factors_global[unit]
return mul_factor*self.get_quantity_scale_factor(other_unit)
return S.One
class Dimension(Expr):
"""
This class represent the dimension of a physical quantities.
The ``Dimension`` constructor takes as parameters a name and an optional
symbol.
For example, in classical mechanics we know that time is different from
temperature and dimensions make this difference (but they do not provide
any measure of these quantites.
>>> from sympy.physics.units import Dimension
>>> length = Dimension('length')
>>> length
Dimension(length)
>>> time = Dimension('time')
>>> time
Dimension(time)
Dimensions can be composed using multiplication, division and
exponentiation (by a number) to give new dimensions. Addition and
subtraction is defined only when the two objects are the same dimension.
>>> velocity = length / time
>>> velocity
Dimension(length/time)
It is possible to use a dimension system object to get the dimensionsal
dependencies of a dimension, for example the dimension system used by the
SI units convention can be used:
>>> from sympy.physics.units.systems.si import dimsys_SI
>>> dimsys_SI.get_dimensional_dependencies(velocity)
{Dimension(length, L): 1, Dimension(time, T): -1}
>>> length + length
Dimension(length)
>>> l2 = length**2
>>> l2
Dimension(length**2)
>>> dimsys_SI.get_dimensional_dependencies(l2)
{Dimension(length, L): 2}
"""
_op_priority = 13.0
# XXX: This doesn't seem to be used anywhere...
_dimensional_dependencies = {} # type: ignore
is_commutative = True
is_number = False
# make sqrt(M**2) --> M
is_positive = True
is_real = True
def __new__(cls, name, symbol=None):
if isinstance(name, str):
name = Symbol(name)
else:
name = sympify(name)
if not isinstance(name, Expr):
raise TypeError("Dimension name needs to be a valid math expression")
if isinstance(symbol, str):
symbol = Symbol(symbol)
elif symbol is not None:
assert isinstance(symbol, Symbol)
obj = Expr.__new__(cls, name)
obj._name = name
obj._symbol = symbol
return obj
@property
def name(self):
return self._name
@property
def symbol(self):
return self._symbol
def __str__(self):
"""
Display the string representation of the dimension.
"""
if self.symbol is None:
return "Dimension(%s)" % (self.name)
else:
return "Dimension(%s, %s)" % (self.name, self.symbol)
def __repr__(self):
return self.__str__()
def __neg__(self):
return self
def __add__(self, other):
from sympy.physics.units.quantities import Quantity
other = sympify(other)
if isinstance(other, Basic):
if other.has(Quantity):
raise TypeError("cannot sum dimension and quantity")
if isinstance(other, Dimension) and self == other:
return self
return super().__add__(other)
return self
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
# there is no notion of ordering (or magnitude) among dimension,
# subtraction is equivalent to addition when the operation is legal
return self + other
def __rsub__(self, other):
# there is no notion of ordering (or magnitude) among dimension,
# subtraction is equivalent to addition when the operation is legal
return self + other
def __pow__(self, other):
return self._eval_power(other)
def _eval_power(self, other):
other = sympify(other)
return Dimension(self.name**other)
def __mul__(self, other):
from sympy.physics.units.quantities import Quantity
if isinstance(other, Basic):
if other.has(Quantity):
raise TypeError("cannot sum dimension and quantity")
if isinstance(other, Dimension):
return Dimension(self.name*other.name)
if not other.free_symbols: # other.is_number cannot be used
return self
return super().__mul__(other)
return self
def __rmul__(self, other):
return self.__mul__(other)
def __truediv__(self, other):
return self*Pow(other, -1)
def __rtruediv__(self, other):
return other * pow(self, -1)
@classmethod
def _from_dimensional_dependencies(cls, dependencies):
return reduce(lambda x, y: x * y, (
d**e for d, e in dependencies.items()
), 1)
def has_integer_powers(self, dim_sys):
"""
Check if the dimension object has only integer powers.
All the dimension powers should be integers, but rational powers may
appear in intermediate steps. This method may be used to check that the
final result is well-defined.
"""
return all(dpow.is_Integer for dpow in dim_sys.get_dimensional_dependencies(self).values())
# Create dimensions according to the base units in MKSA.
# For other unit systems, they can be derived by transforming the base
# dimensional dependency dictionary.
class DimensionSystem(Basic, _QuantityMapper):
r"""
DimensionSystem represents a coherent set of dimensions.
The constructor takes three parameters:
- base dimensions;
- derived dimensions: these are defined in terms of the base dimensions
(for example velocity is defined from the division of length by time);
- dependency of dimensions: how the derived dimensions depend
on the base dimensions.
Optionally either the ``derived_dims`` or the ``dimensional_dependencies``
may be omitted.
"""
def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}):
dimensional_dependencies = dict(dimensional_dependencies)
def parse_dim(dim):
if isinstance(dim, str):
dim = Dimension(Symbol(dim))
elif isinstance(dim, Dimension):
pass
elif isinstance(dim, Symbol):
dim = Dimension(dim)
else:
raise TypeError("%s wrong type" % dim)
return dim
base_dims = [parse_dim(i) for i in base_dims]
derived_dims = [parse_dim(i) for i in derived_dims]
for dim in base_dims:
if (dim in dimensional_dependencies
and (len(dimensional_dependencies[dim]) != 1 or
dimensional_dependencies[dim].get(dim, None) != 1)):
raise IndexError("Repeated value in base dimensions")
dimensional_dependencies[dim] = Dict({dim: 1})
def parse_dim_name(dim):
if isinstance(dim, Dimension):
return dim
elif isinstance(dim, str):
return Dimension(Symbol(dim))
elif isinstance(dim, Symbol):
return Dimension(dim)
else:
raise TypeError("unrecognized type %s for %s" % (type(dim), dim))
for dim in dimensional_dependencies.keys():
dim = parse_dim(dim)
if (dim not in derived_dims) and (dim not in base_dims):
derived_dims.append(dim)
def parse_dict(d):
return Dict({parse_dim_name(i): j for i, j in d.items()})
# Make sure everything is a SymPy type:
dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in
dimensional_dependencies.items()}
for dim in derived_dims:
if dim in base_dims:
raise ValueError("Dimension %s both in base and derived" % dim)
if dim not in dimensional_dependencies:
# TODO: should this raise a warning?
dimensional_dependencies[dim] = Dict({dim: 1})
base_dims.sort(key=default_sort_key)
derived_dims.sort(key=default_sort_key)
base_dims = Tuple(*base_dims)
derived_dims = Tuple(*derived_dims)
dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()})
obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies)
return obj
@property
def base_dims(self):
return self.args[0]
@property
def derived_dims(self):
return self.args[1]
@property
def dimensional_dependencies(self):
return self.args[2]
def _get_dimensional_dependencies_for_name(self, dimension):
if isinstance(dimension, str):
dimension = Dimension(Symbol(dimension))
elif not isinstance(dimension, Dimension):
dimension = Dimension(dimension)
if dimension.name.is_Symbol:
# Dimensions not included in the dependencies are considered
# as base dimensions:
return dict(self.dimensional_dependencies.get(dimension, {dimension: 1}))
if dimension.name.is_number or dimension.name.is_NumberSymbol:
return {}
get_for_name = self._get_dimensional_dependencies_for_name
if dimension.name.is_Mul:
ret = collections.defaultdict(int)
dicts = [get_for_name(i) for i in dimension.name.args]
for d in dicts:
for k, v in d.items():
ret[k] += v
return {k: v for (k, v) in ret.items() if v != 0}
if dimension.name.is_Add:
dicts = [get_for_name(i) for i in dimension.name.args]
if all(d == dicts[0] for d in dicts[1:]):
return dicts[0]
raise TypeError("Only equivalent dimensions can be added or subtracted.")
if dimension.name.is_Pow:
dim_base = get_for_name(dimension.name.base)
dim_exp = get_for_name(dimension.name.exp)
if dim_exp == {} or dimension.name.exp.is_Symbol:
return {k: v * dimension.name.exp for (k, v) in dim_base.items()}
else:
raise TypeError("The exponent for the power operator must be a Symbol or dimensionless.")
if dimension.name.is_Function:
args = (Dimension._from_dimensional_dependencies(
get_for_name(arg)) for arg in dimension.name.args)
result = dimension.name.func(*args)
dicts = [get_for_name(i) for i in dimension.name.args]
if isinstance(result, Dimension):
return self.get_dimensional_dependencies(result)
elif result.func == dimension.name.func:
if isinstance(dimension.name, TrigonometricFunction):
if dicts[0] in ({}, {Dimension('angle'): 1}):
return {}
else:
raise TypeError("The input argument for the function {} must be dimensionless or have dimensions of angle.".format(dimension.func))
else:
if all(item == {} for item in dicts):
return {}
else:
raise TypeError("The input arguments for the function {} must be dimensionless.".format(dimension.func))
else:
return get_for_name(result)
raise TypeError("Type {} not implemented for get_dimensional_dependencies".format(type(dimension.name)))
def get_dimensional_dependencies(self, name, mark_dimensionless=False):
dimdep = self._get_dimensional_dependencies_for_name(name)
if mark_dimensionless and dimdep == {}:
return {Dimension(1): 1}
return {k: v for k, v in dimdep.items()}
def equivalent_dims(self, dim1, dim2):
deps1 = self.get_dimensional_dependencies(dim1)
deps2 = self.get_dimensional_dependencies(dim2)
return deps1 == deps2
def extend(self, new_base_dims, new_derived_dims=(), new_dim_deps=None):
deps = dict(self.dimensional_dependencies)
if new_dim_deps:
deps.update(new_dim_deps)
new_dim_sys = DimensionSystem(
tuple(self.base_dims) + tuple(new_base_dims),
tuple(self.derived_dims) + tuple(new_derived_dims),
deps
)
new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map)
new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors)
return new_dim_sys
def is_dimensionless(self, dimension):
"""
Check if the dimension object really has a dimension.
A dimension should have at least one component with non-zero power.
"""
if dimension.name == 1:
return True
return self.get_dimensional_dependencies(dimension) == {}
@property
def list_can_dims(self):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
List all canonical dimension names.
"""
dimset = set()
for i in self.base_dims:
dimset.update(set(self.get_dimensional_dependencies(i).keys()))
return tuple(sorted(dimset, key=str))
@property
def inv_can_transf_matrix(self):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Compute the inverse transformation matrix from the base to the
canonical dimension basis.
It corresponds to the matrix where columns are the vector of base
dimensions in canonical basis.
This matrix will almost never be used because dimensions are always
defined with respect to the canonical basis, so no work has to be done
to get them in this basis. Nonetheless if this matrix is not square
(or not invertible) it means that we have chosen a bad basis.
"""
matrix = reduce(lambda x, y: x.row_join(y),
[self.dim_can_vector(d) for d in self.base_dims])
return matrix
@property
def can_transf_matrix(self):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Return the canonical transformation matrix from the canonical to the
base dimension basis.
It is the inverse of the matrix computed with inv_can_transf_matrix().
"""
#TODO: the inversion will fail if the system is inconsistent, for
# example if the matrix is not a square
return reduce(lambda x, y: x.row_join(y),
[self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)]
).inv()
def dim_can_vector(self, dim):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Dimensional representation in terms of the canonical base dimensions.
"""
vec = []
for d in self.list_can_dims:
vec.append(self.get_dimensional_dependencies(dim).get(d, 0))
return Matrix(vec)
def dim_vector(self, dim):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Vector representation in terms of the base dimensions.
"""
return self.can_transf_matrix * Matrix(self.dim_can_vector(dim))
def print_dim_base(self, dim):
"""
Give the string expression of a dimension in term of the basis symbols.
"""
dims = self.dim_vector(dim)
symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims]
res = S.One
for (s, p) in zip(symbols, dims):
res *= s**p
return res
@property
def dim(self):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Give the dimension of the system.
That is return the number of dimensions forming the basis.
"""
return len(self.base_dims)
@property
def is_consistent(self):
"""
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Check if the system is well defined.
"""
# not enough or too many base dimensions compared to independent
# dimensions
# in vector language: the set of vectors do not form a basis
return self.inv_can_transf_matrix.is_square
|
5c002cddfae4997bc14b31ec36a0517924f7a5b66c0c29db1504dc11563902cd | """
This module can be used to solve 2D beam bending problems with
singularity functions in mechanics.
"""
from sympy.core import S, Symbol, diff, symbols
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.relational import Eq
from sympy.core.sympify import sympify
from sympy.solvers import linsolve
from sympy.solvers.ode.ode import dsolve
from sympy.solvers.solvers import solve
from sympy.printing import sstr
from sympy.functions import SingularityFunction, Piecewise, factorial
from sympy.integrals import integrate
from sympy.series import limit
from sympy.plotting import plot, PlotGrid
from sympy.geometry.entity import GeometryEntity
from sympy.external import import_module
from sympy.sets.sets import Interval
from sympy.utilities.lambdify import lambdify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import iterable
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
class Beam:
"""
A Beam is a structural element that is capable of withstanding load
primarily by resisting against bending. Beams are characterized by
their cross sectional profile(Second moment of area), their length
and their material.
.. note::
A consistent sign convention must be used while solving a beam
bending problem; the results will
automatically follow the chosen sign convention. However, the
chosen sign convention must respect the rule that, on the positive
side of beam's axis (in respect to current section), a loading force
giving positive shear yields a negative moment, as below (the
curved arrow shows the positive moment and rotation):
.. image:: allowed-sign-conventions.png
Examples
========
There is a beam of length 4 meters. A constant distributed load of 6 N/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. The deflection of the beam at the end is restricted.
Using the sign convention of downwards forces being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(4, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)
>>> b.bc_deflection = [(0, 0), (4, 0)]
>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}
>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
>>> b.shear_force()
3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0)
>>> b.bending_moment()
3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1)
>>> b.slope()
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
>>> b.deflection()
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
>>> b.deflection().rewrite(Piecewise)
(7*x - Piecewise((x**3, x > 0), (0, True))/2
- 3*Piecewise(((x - 4)**3, x > 4), (0, True))/2
+ Piecewise(((x - 2)**4, x > 2), (0, True))/4)/(E*I)
Calculate the support reactions for a fully symbolic beam of length L.
There are two simple supports below the beam, one at the starting point
and another at the ending point of the beam. The deflection of the beam
at the end is restricted. The beam is loaded with:
* a downward point load P1 applied at L/4
* an upward point load P2 applied at L/8
* a counterclockwise moment M1 applied at L/2
* a clockwise moment M2 applied at 3*L/4
* a distributed constant load q1, applied downward, starting from L/2
up to 3*L/4
* a distributed constant load q2, applied upward, starting from 3*L/4
up to L
No assumptions are needed for symbolic loads. However, defining a positive
length will help the algorithm to compute the solution.
>>> E, I = symbols('E, I')
>>> L = symbols("L", positive=True)
>>> P1, P2, M1, M2, q1, q2 = symbols("P1, P2, M1, M2, q1, q2")
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(L, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, L, -1)
>>> b.apply_load(P1, L/4, -1)
>>> b.apply_load(-P2, L/8, -1)
>>> b.apply_load(M1, L/2, -2)
>>> b.apply_load(-M2, 3*L/4, -2)
>>> b.apply_load(q1, L/2, 0, 3*L/4)
>>> b.apply_load(-q2, 3*L/4, 0, L)
>>> b.bc_deflection = [(0, 0), (L, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> print(b.reaction_loads[R1])
(-3*L**2*q1 + L**2*q2 - 24*L*P1 + 28*L*P2 - 32*M1 + 32*M2)/(32*L)
>>> print(b.reaction_loads[R2])
(-5*L**2*q1 + 7*L**2*q2 - 8*L*P1 + 4*L*P2 + 32*M1 - 32*M2)/(32*L)
"""
def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material. It can
also be a continuous function of position along the beam.
second_moment : Sympifyable or Geometry object
Describes the cross-section of the beam via a SymPy expression
representing the Beam's second moment of area. It is a geometrical
property of an area which reflects how its points are distributed
with respect to its neutral axis. It can also be a continuous
function of position along the beam. Alternatively ``second_moment``
can be a shape object such as a ``Polygon`` from the geometry module
representing the shape of the cross-section of the beam. In such cases,
it is assumed that the x-axis of the shape object is aligned with the
bending axis of the beam. The second moment of area will be computed
from the shape object internally.
area : Symbol/float
Represents the cross-section area of beam
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
base_char : String, optional
A String that will be used as base character to generate sequential
symbols for integration constants in cases where boundary conditions
are not sufficient to solve them.
"""
self.length = length
self.elastic_modulus = elastic_modulus
if isinstance(second_moment, GeometryEntity):
self.cross_section = second_moment
else:
self.cross_section = None
self.second_moment = second_moment
self.variable = variable
self._base_char = base_char
self._boundary_conditions = {'deflection': [], 'slope': []}
self._load = 0
self.area = area
self._applied_supports = []
self._support_as_loads = []
self._applied_loads = []
self._reaction_loads = {}
self._ild_reactions = {}
self._ild_shear = 0
self._ild_moment = 0
# _original_load is a copy of _load equations with unsubstituted reaction
# forces. It is used for calculating reaction forces in case of I.L.D.
self._original_load = 0
self._composite_type = None
self._hinge_position = None
def __str__(self):
shape_description = self._cross_section if self._cross_section else self._second_moment
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description))
return str_sol
@property
def reaction_loads(self):
""" Returns the reaction forces in a dictionary."""
return self._reaction_loads
@property
def ild_shear(self):
""" Returns the I.L.D. shear equation."""
return self._ild_shear
@property
def ild_reactions(self):
""" Returns the I.L.D. reaction forces in a dictionary."""
return self._ild_reactions
@property
def ild_moment(self):
""" Returns the I.L.D. moment equation."""
return self._ild_moment
@property
def length(self):
"""Length of the Beam."""
return self._length
@length.setter
def length(self, l):
self._length = sympify(l)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def variable(self):
"""
A symbol that can be used as a variable along the length of the beam
while representing load distribution, shear force curve, bending
moment, slope curve and the deflection curve. By default, it is set
to ``Symbol('x')``, but this property is mutable.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I, A = symbols('E, I, A')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable
x
>>> b.variable = y
>>> b.variable
y
>>> b = Beam(4, E, I, A, z)
>>> b.variable
z
"""
return self._variable
@variable.setter
def variable(self, v):
if isinstance(v, Symbol):
self._variable = v
else:
raise TypeError("""The variable should be a Symbol object.""")
@property
def elastic_modulus(self):
"""Young's Modulus of the Beam. """
return self._elastic_modulus
@elastic_modulus.setter
def elastic_modulus(self, e):
self._elastic_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
self._cross_section = None
if isinstance(i, GeometryEntity):
raise ValueError("To update cross-section geometry use `cross_section` attribute")
else:
self._second_moment = sympify(i)
@property
def cross_section(self):
"""Cross-section of the beam"""
return self._cross_section
@cross_section.setter
def cross_section(self, s):
if s:
self._second_moment = s.second_moment_of_area()[0]
self._cross_section = s
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has three keywords namely moment, slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value).
Examples
========
There is a beam of length 4 meters. The bending moment at 0 should be 4
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
deflection should be 2 at 0.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
Here the deflection of the beam should be ``2`` at ``0``.
Similarly, the slope of the beam should be ``1`` at ``0``.
"""
return self._boundary_conditions
@property
def bc_slope(self):
return self._boundary_conditions['slope']
@bc_slope.setter
def bc_slope(self, s_bcs):
self._boundary_conditions['slope'] = s_bcs
@property
def bc_deflection(self):
return self._boundary_conditions['deflection']
@bc_deflection.setter
def bc_deflection(self, d_bcs):
self._boundary_conditions['deflection'] = d_bcs
def join(self, beam, via="fixed"):
"""
This method joins two beams to make a new composite beam system.
Passed Beam class instance is attached to the right end of calling
object. This method can be used to form beams having Discontinuous
values of Elastic modulus or Second moment.
Parameters
==========
beam : Beam class object
The Beam object which would be connected to the right of calling
object.
via : String
States the way two Beam object would get connected
- For axially fixed Beams, via="fixed"
- For Beams connected via hinge, via="hinge"
Examples
========
There is a cantilever beam of length 4 meters. For first 2 meters
its moment of inertia is `1.5*I` and `I` for the other end.
A pointload of magnitude 4 N is applied from the top at its free end.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
>>> b.slope()
(-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
- 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
+ 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
new_length = self.length + beam.length
if self.second_moment != beam.second_moment:
new_second_moment = Piecewise((self.second_moment, x<=self.length),
(beam.second_moment, x<=new_length))
else:
new_second_moment = self.second_moment
if via == "fixed":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "fixed"
return new_beam
if via == "hinge":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "hinge"
new_beam._hinge_position = self.length
return new_beam
def apply_support(self, loc, type="fixed"):
"""
This method applies support to a particular beam object.
Parameters
==========
loc : Sympifyable
Location of point at which support is applied.
type : String
Determines type of Beam support applied. To apply support structure
with
- zero degree of freedom, type = "fixed"
- one degree of freedom, type = "pin"
- two degrees of freedom, type = "roller"
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_support(30, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
loc = sympify(loc)
self._applied_supports.append((loc, type))
if type in ("pin", "roller"):
reaction_load = Symbol('R_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.bc_deflection.append((loc, 0))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.apply_load(reaction_moment, loc, -2)
self.bc_deflection.append((loc, 0))
self.bc_slope.append((loc, 0))
self._support_as_loads.append((reaction_moment, loc, -2, None))
self._support_as_loads.append((reaction_load, loc, -1, None))
def apply_load(self, value, start, order, end=None):
"""
This method adds up the loads given to a particular beam object.
Parameters
==========
value : Sympifyable
The value inserted should have the units [Force/(Distance**(n+1)]
where n is the order of applied load.
Units for applied loads:
- For moments, unit = kN*m
- For point loads, unit = kN
- For constant distributed load, unit = kN/m
- For ramp loads, unit = kN/m/m
- For parabolic ramp loads, unit = kN/m/m/m
- ... so on.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order = -2
- For point loads, order =-1
- For constant distributed load, order = 0
- For ramp loads, order = 1
- For parabolic ramp loads, order = 2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
self._applied_loads.append((value, start, order, end))
self._load += value*SingularityFunction(x, start, order)
self._original_load += value*SingularityFunction(x, start, order)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="apply")
def remove_load(self, value, start, order, end=None):
"""
This method removes a particular load present on the beam object.
Returns a ValueError if the load passed as an argument is not
present on the beam.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order= -2
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
>>> b.remove_load(-2, 2, 2, end = 3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if (value, start, order, end) in self._applied_loads:
self._load -= value*SingularityFunction(x, start, order)
self._original_load -= value*SingularityFunction(x, start, order)
self._applied_loads.remove((value, start, order, end))
else:
msg = "No such load distribution exists on the beam object."
raise ValueError(msg)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="remove")
def _handle_end(self, x, value, start, order, end, type):
"""
This functions handles the optional `end` value in the
`apply_load` and `remove_load` functions. When the value
of end is not NULL, this function will be executed.
"""
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value*x**order
if type == "apply":
# iterating for "apply_load" method
for i in range(0, order + 1):
self._load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
elif type == "remove":
# iterating for "remove_load" method
for i in range(0, order + 1):
self._load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
@property
def load(self):
"""
Returns a Singularity Function expression which represents
the load distribution curve of the Beam object.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 3 meters away from the
starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
"""
return self._load
@property
def applied_loads(self):
"""
Returns a list of all loads applied on the beam object.
Each load in the list is a tuple of form (value, start, order, end).
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point. Another pointload of magnitude 5 N
is applied at same position.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
"""
return self._applied_loads
def _solve_hinge_beams(self, *reactions):
"""Method to find integration constants and reactional variables in a
composite beam connected via hinge.
This method resolves the composite Beam into its sub-beams and then
equations of shear force, bending moment, slope and deflection are
evaluated for both of them separately. These equations are then solved
for unknown reactions and integration constants using the boundary
conditions applied on the Beam. Equal deflection of both sub-beams
at the hinge joint gives us another equation to solve the system.
Examples
========
A combined beam, with constant fkexural rigidity E*I, is formed by joining
a Beam of length 2*l to the right of another Beam of length l. The whole beam
is fixed at both of its both end. A point load of magnitude P is also applied
from the top at a distance of 2*l from starting point.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l=symbols('l', positive=True)
>>> b1=Beam(l, E, I)
>>> b2=Beam(2*l, E, I)
>>> b=b1.join(b2,"hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1,0,-1)
>>> b.apply_load(M1,0,-2)
>>> b.apply_load(P,2*l,-1)
>>> b.apply_load(A2,3*l,-1)
>>> b.apply_load(M2,3*l,-2)
>>> b.bc_slope=[(0,0), (3*l, 0)]
>>> b.bc_deflection=[(0,0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.slope()
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
>>> b.deflection()
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
"""
x = self.variable
l = self._hinge_position
E = self._elastic_modulus
I = self._second_moment
if isinstance(I, Piecewise):
I1 = I.args[0][0]
I2 = I.args[1][0]
else:
I1 = I2 = I
load_1 = 0 # Load equation on first segment of composite beam
load_2 = 0 # Load equation on second segment of composite beam
# Distributing load on both segments
for load in self.applied_loads:
if load[1] < l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
if load[2] == 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
elif load[2] > 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
elif load[1] == l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
elif load[1] > l:
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
if load[2] == 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
elif load[2] > 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
h = Symbol('h') # Force due to hinge
load_1 += h*SingularityFunction(x, l, -1)
load_2 -= h*SingularityFunction(x, 0, -1)
eq = []
shear_1 = integrate(load_1, x)
shear_curve_1 = limit(shear_1, x, l)
eq.append(shear_curve_1)
bending_1 = integrate(shear_1, x)
moment_curve_1 = limit(bending_1, x, l)
eq.append(moment_curve_1)
shear_2 = integrate(load_2, x)
shear_curve_2 = limit(shear_2, x, self.length - l)
eq.append(shear_curve_2)
bending_2 = integrate(shear_2, x)
moment_curve_2 = limit(bending_2, x, self.length - l)
eq.append(moment_curve_2)
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1)
def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
for position, value in self.bc_slope:
if position<l:
eq.append(slope_1.subs(x, position) - value)
else:
eq.append(slope_2.subs(x, position - l) - value)
for position, value in self.bc_deflection:
if position<l:
eq.append(def_1.subs(x, position) - value)
else:
eq.append(def_2.subs(x, position - l) - value)
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
reaction_values = list(constants[0])[5:]
self._reaction_loads = dict(zip(reactions, reaction_values))
self._load = self._load.subs(self._reaction_loads)
# Substituting constants and reactional load and moments with their corresponding values
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
def solve_for_reaction_loads(self, *reactions):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
"""
if self._composite_type == "hinge":
return self._solve_hinge_beams(*reactions)
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(self.shear_force(), x, l)
moment_curve = limit(self.bending_moment(), x, l)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(self.bending_moment(), x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
self._reaction_loads = dict(zip(reactions, solution))
self._load = self._load.subs(self._reaction_loads)
def shear_force(self):
"""
Returns a Singularity Function expression which represents
the shear force curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
"""
x = self.variable
return -integrate(self.load, x)
def max_shear_force(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
shear_curve = self.shear_force()
x = self.variable
terms = shear_curve.args
singularity = [] # Points at which shear function changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of shear force
shear_values = [] # List of values of shear force in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(shear_slope, x)
val = []
for point in points:
val.append(abs(shear_curve.subs(x, point)))
points.extend([singularity[i-1], s])
val += [abs(limit(shear_curve, x, singularity[i-1], '+')), abs(limit(shear_curve, x, s, '-'))]
max_shear = max(val)
shear_values.append(max_shear)
intervals.append(points[val.index(max_shear)])
# If shear force in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as
# solve can't represent Interval solutions.
except NotImplementedError:
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
final_shear = limit(shear_curve, x, s, '-')
# If shear_curve has a constant slope(it is a line).
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
shear_values.extend([initial_shear, final_shear])
intervals.extend([singularity[i-1], s])
else: # shear_curve has same value in whole Interval
shear_values.append(final_shear)
intervals.append(Interval(singularity[i-1], s))
shear_values = list(map(abs, shear_values))
maximum_shear = max(shear_values)
point = intervals[shear_values.index(maximum_shear)]
return (point, maximum_shear)
def bending_moment(self):
"""
Returns a Singularity Function expression which represents
the bending moment curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.bending_moment()
8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
"""
x = self.variable
return integrate(self.shear_force(), x)
def max_bmoment(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
bending_curve = self.bending_moment()
x = self.variable
terms = bending_curve.args
singularity = [] # Points at which bending moment changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of bending moment
moment_values = [] # List of values of bending moment in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(moment_slope, x)
val = []
for point in points:
val.append(abs(bending_curve.subs(x, point)))
points.extend([singularity[i-1], s])
val += [abs(limit(bending_curve, x, singularity[i-1], '+')), abs(limit(bending_curve, x, s, '-'))]
max_moment = max(val)
moment_values.append(max_moment)
intervals.append(points[val.index(max_moment)])
# If bending moment in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as solve
# can't represent Interval solutions.
except NotImplementedError:
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
final_moment = limit(bending_curve, x, s, '-')
# If bending_curve has a constant slope(it is a line).
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
moment_values.extend([initial_moment, final_moment])
intervals.extend([singularity[i-1], s])
else: # bending_curve has same value in whole Interval
moment_values.append(final_moment)
intervals.append(Interval(singularity[i-1], s))
moment_values = list(map(abs, moment_values))
maximum_moment = max(moment_values)
point = intervals[moment_values.index(maximum_moment)]
return (point, maximum_moment)
def point_cflexure(self):
"""
Returns a Set of point(s) with zero bending moment and
where bending moment curve of the beam object changes
its sign from negative to positive or vice versa.
Examples
========
There is is 10 meter long overhanging beam. There are
two simple supports below the beam. One at the start
and another one at a distance of 6 meters from the start.
Point loads of magnitude 10KN and 20KN are applied at
2 meters and 4 meters from start respectively. A Uniformly
distribute load of magnitude of magnitude 3KN/m is also
applied on top starting from 6 meters away from starting
point till end.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]
"""
# To restrict the range within length of the Beam
moment_curve = Piecewise((float("nan"), self.variable<=0),
(self.bending_moment(), self.variable<self.length),
(float("nan"), True))
points = solve(moment_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
return points
def slope(self):
"""
Returns a Singularity Function expression which represents
the slope the elastic curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_slope
if not self._boundary_conditions['slope']:
return diff(self.deflection(), x)
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
slope = 0
prev_slope = 0
prev_end = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
if i != len(args) - 1:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
return slope
C3 = Symbol('C3')
slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3
bc_eqs = []
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C3))
slope_curve = slope_curve.subs({C3: constants[0][0]})
return slope_curve
def deflection(self):
"""
Returns a Singularity Function expression which represents
the elastic curve or deflection of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.deflection()
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_deflection
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
constants = symbols(base_char + '3:5')
return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
elif not self._boundary_conditions['deflection']:
base_char = self._base_char
constant = symbols(base_char + '4')
return integrate(self.slope(), x) + constant
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
C3, C4 = symbols(base_char + '3:5') # Integration constants
slope_curve = -integrate(self.bending_moment(), x) + C3
deflection_curve = integrate(slope_curve, x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, (C3, C4)))
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
return S.One/(E*I)*deflection_curve
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
C4 = Symbol('C4')
deflection_curve = integrate(self.slope(), x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C4))
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
return deflection_curve
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
in a Beam object.
"""
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope(), self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
deflection_curve = self.deflection()
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
if len(deflections) != 0:
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
else:
return None
def shear_stress(self):
"""
Returns an expression representing the Shear Stress
curve of the Beam object.
"""
return self.shear_force()/self._area
def plot_shear_stress(self, subs=None):
"""
Returns a plot of shear stress present in the beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters and area of cross section 2 square
meters. A constant distributed load of 10 KN/m is applied from half of
the beam till the end. There are two simple supports below the beam,
one at the starting point and another at the ending point of the beam.
A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6), 2)
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_stress()
Plot object containing:
[0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0)
- 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0)
+ 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_stress = self.shear_stress()
x = self.variable
length = self.length
if subs is None:
subs = {}
for sym in shear_stress.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
# Returns Plot of Shear Stress
return plot (shear_stress.subs(subs), (x, 0, length),
title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$',
line_color='r')
def plot_shear_force(self, subs=None):
"""
Returns a plot for Shear force present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0)
- 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0)
+ 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_force = self.shear_force()
if subs is None:
subs = {}
for sym in shear_force.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
def plot_bending_moment(self, subs=None):
"""
Returns a plot for Bending moment present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_bending_moment()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1)
- 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1)
+ 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
"""
bending_moment = self.bending_moment()
if subs is None:
subs = {}
for sym in bending_moment.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
def plot_slope(self, subs=None):
"""
Returns a plot for slope of deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
"""
slope = self.slope()
if subs is None:
subs = {}
for sym in slope.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
def plot_deflection(self, subs=None):
"""
Returns a plot for deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
Plot object containing:
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
for x over (0.0, 8.0)
"""
deflection = self.deflection()
if subs is None:
subs = {}
for sym in deflection.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection.subs(subs), (self.variable, 0, length),
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r')
def plot_loading_results(self, subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
"""
length = self.length
variable = self.variable
if subs is None:
subs = {}
for sym in self.deflection().atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
line_color='g', show=False)
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
line_color='b', show=False)
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
line_color='m', show=False)
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r', show=False)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _solve_for_ild_equations(self):
"""
Helper function for I.L.D. It takes the unsubstituted
copy of the load equation and uses it to calculate shear force and bending
moment equations.
"""
x = self.variable
shear_force = -integrate(self._original_load, x)
bending_moment = integrate(shear_force, x)
return shear_force, bending_moment
def solve_for_ild_reactions(self, value, *reactions):
"""
Determines the Influence Line Diagram equations for reaction
forces under the effect of a moving load.
Parameters
==========
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 10 meters. There are two simple supports
below the beam, one at the starting point and another at the ending
point of the beam. Calculate the I.L.D. equations for reaction forces
under the effect of a moving load of magnitude 1kN.
.. image:: ildreaction.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_10 = symbols('R_0, R_10')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(10, 'roller')
>>> b.solve_for_ild_reactions(1,R_0,R_10)
>>> b.ild_reactions
{R_0: x/10 - 1, R_10: -x/10}
"""
shear_force, bending_moment = self._solve_for_ild_equations()
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(shear_force, x, l) - value
moment_curve = limit(bending_moment, x, l) - value*(l-x)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(bending_moment, x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
# Determining the equations and solving them.
self._ild_reactions = dict(zip(reactions, solution))
def plot_ild_reactions(self, subs=None):
"""
Plots the Influence Line Diagram of Reaction Forces
under the effect of a moving load. This function
should be called after calling solve_for_ild_reactions().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 10 meters. A point load of magnitude 5KN
is also applied from top of the beam, at a distance of 4 meters
from the starting point. There are two simple supports below the
beam, located at the starting point and at a distance of 7 meters
from the starting point. Plot the I.L.D. equations for reactions
at both support points under the effect of a moving load
of magnitude 1kN.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_7 = symbols('R_0, R_7')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(7, 'roller')
>>> b.apply_load(5,4,-1)
>>> b.solve_for_ild_reactions(1,R_0,R_7)
>>> b.ild_reactions
{R_0: x/7 - 22/7, R_7: -x/7 - 20/7}
>>> b.plot_ild_reactions()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0)
"""
if not self._ild_reactions:
raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.")
x = self.variable
ildplots = []
if subs is None:
subs = {}
for reaction in self._ild_reactions:
for sym in self._ild_reactions[reaction].atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for reaction in self._ild_reactions:
ildplots.append(plot(self._ild_reactions[reaction].subs(subs),
(x, 0, self._length.subs(subs)), title='I.L.D. for Reactions',
xlabel=x, ylabel=reaction, line_color='blue', show=False))
return PlotGrid(len(ildplots), 1, *ildplots)
def solve_for_ild_shear(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for shear at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
"""
x = self.variable
l = self.length
shear_force, _ = self._solve_for_ild_equations()
shear_curve1 = value - limit(shear_force, x, distance)
shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value
for reaction in reactions:
shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction])
shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction])
shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance))
self._ild_shear = shear_eq
def plot_ild_shear(self,subs=None):
"""
Plots the Influence Line Diagram for Shear under the effect
of a moving load. This function should be called after
calling solve_for_ild_shear().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
>>> b.plot_ild_shear()
Plot object containing:
[0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_shear:
raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.")
x = self.variable
l = self._length
if subs is None:
subs = {}
for sym in self._ild_shear.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True)
def solve_for_ild_moment(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for moment at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
"""
x = self.variable
l = self.length
_, moment = self._solve_for_ild_equations()
moment_curve1 = value*(distance-x) - limit(moment, x, distance)
moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x)
for reaction in reactions:
moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction])
moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction])
moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance))
self._ild_moment = moment_eq
def plot_ild_moment(self,subs=None):
"""
Plots the Influence Line Diagram for Moment under the effect
of a moving load. This function should be called after
calling solve_for_ild_moment().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
>>> b.plot_ild_moment()
Plot object containing:
[0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_moment:
raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.")
x = self.variable
if subs is None:
subs = {}
for sym in self._ild_moment.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True)
@doctest_depends_on(modules=('numpy',))
def draw(self, pictorial=True):
"""
Returns a plot object representing the beam diagram of the beam.
.. note::
The user must be careful while entering load values.
The draw function assumes a sign convention which is used
for plotting loads.
Given a right handed coordinate system with XYZ coordinates,
the beam's length is assumed to be along the positive X axis.
The draw function recognizes positive loads(with n>-2) as loads
acting along negative Y direction and positive moments acting
along positive Z direction.
Parameters
==========
pictorial: Boolean (default=True)
Setting ``pictorial=True`` would simply create a pictorial (scaled) view
of the beam diagram not with the exact dimensions.
Although setting ``pictorial=False`` would create a beam diagram with
the exact dimensions on the plot
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> E, I = symbols('E, I')
>>> b = Beam(50, 20, 30)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(90, 5, 0, 23)
>>> b.apply_load(10, 30, 1, 50)
>>> b.apply_support(50, "pin")
>>> b.apply_support(0, "fixed")
>>> b.apply_support(20, "roller")
>>> p = b.draw()
>>> p
Plot object containing:
[0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0)
+ SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0)
- SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0)
[1]: cartesian line: 5 for x over (0.0, 50.0)
>>> p.show()
"""
if not numpy:
raise ImportError("To use this function numpy module is required")
x = self.variable
# checking whether length is an expression in terms of any Symbol.
if isinstance(self.length, Expr):
l = list(self.length.atoms(Symbol))
# assigning every Symbol a default value of 10
l = {i:10 for i in l}
length = self.length.subs(l)
else:
l = {}
length = self.length
height = length/10
rectangles = []
rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"})
annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l)
support_markers, support_rectangles = self._draw_supports(length, l)
rectangles += support_rectangles
markers += support_markers
sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length),
xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations,
markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False)
return sing_plot
def _draw_load(self, pictorial, length, l):
loads = list(set(self.applied_loads) - set(self._support_as_loads))
height = length/10
x = self.variable
annotations = []
markers = []
load_args = []
scaled_load = 0
load_args1 = []
scaled_load1 = 0
load_eq = 0 # For positive valued higher order loads
load_eq1 = 0 # For negative valued higher order loads
fill = None
plus = 0 # For positive valued higher order loads
minus = 0 # For negative valued higher order loads
for load in loads:
# check if the position of load is in terms of the beam length.
if l:
pos = load[1].subs(l)
else:
pos = load[1]
# point loads
if load[2] == -1:
if isinstance(load[0], Symbol) or load[0].is_negative:
annotations.append({'text':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')})
else:
annotations.append({'text':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')})
# moment loads
elif load[2] == -2:
if load[0].is_negative:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15})
else:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15})
# higher order loads
elif load[2] >= 0:
# `fill` will be assigned only when higher order loads are present
value, start, order, end = load
# Positive loads have their separate equations
if(value>0):
plus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load, Add):
load_args = scaled_load.args
else:
# when the load equation consists of only a single term
load_args = (scaled_load,)
load_eq = [i.subs(l) for i in load_args]
else:
if isinstance(self.load, Add):
load_args = self.load.args
else:
load_args = (self.load,)
load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq = Add(*load_eq)
# filling higher order loads with colour
expr = height + load_eq.rewrite(Piecewise)
y1 = lambdify(x, expr, 'numpy')
# For loads with negative value
else:
minus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load1 += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load1 -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load1, Add):
load_args1 = scaled_load1.args
else:
# when the load equation consists of only a single term
load_args1 = (scaled_load1,)
load_eq1 = [i.subs(l) for i in load_args1]
else:
if isinstance(self.load, Add):
load_args1 = self.load.args1
else:
load_args1 = (self.load,)
load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq1 = -Add(*load_eq1)-height
# filling higher order loads with colour
expr = height + load_eq1.rewrite(Piecewise)
y1_ = lambdify(x, expr, 'numpy')
y = numpy.arange(0, float(length), 0.001)
y2 = float(height)
if(plus == 1 and minus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'}
elif(plus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'}
else:
fill = {'x': y, 'y1': y1_(y), 'y2': y2, 'color':'darkkhaki'}
return annotations, markers, load_eq, load_eq1, fill
def _draw_supports(self, length, l):
height = float(length/10)
support_markers = []
support_rectangles = []
for support in self._applied_supports:
if l:
pos = support[0].subs(l)
else:
pos = support[0]
if support[1] == "pin":
support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"})
elif support[1] == "roller":
support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"})
elif support[1] == "fixed":
if pos == 0:
support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'})
else:
support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'})
return support_markers, support_rectangles
class Beam3D(Beam):
"""
This class handles loads applied in any direction of a 3D space along
with unequal values of Second moment along different axes.
.. note::
A consistent sign convention must be used while solving a beam
bending problem; the results will
automatically follow the chosen sign convention.
This class assumes that any kind of distributed load/moment is
applied through out the span of a beam.
Examples
========
There is a beam of l meters long. A constant distributed load of magnitude q
is applied along y-axis from start till the end of beam. A constant distributed
moment of magnitude m is also applied along z-axis from start till the end of beam.
Beam is fixed at both of its end. So, deflection of the beam at the both ends
is restricted.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect, factor
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> factor(b.slope())
[0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q
- 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))]
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q)
... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q))
... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2)
... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
True
References
==========
.. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
"""
def __init__(self, length, elastic_modulus, shear_modulus, second_moment,
area, variable=Symbol('x')):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material.
shear_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of rigidity.
It is a measure of rigidity of the Beam material.
second_moment : Sympifyable or list
A list of two elements having SymPy expression representing the
Beam's Second moment of area. First value represent Second moment
across y-axis and second across z-axis.
Single SymPy expression can be passed if both values are same
area : Sympifyable
A SymPy expression representing the Beam's cross-sectional area
in a plane prependicular to length of the Beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
"""
super().__init__(length, elastic_modulus, second_moment, variable)
self.shear_modulus = shear_modulus
self.area = area
self._load_vector = [0, 0, 0]
self._moment_load_vector = [0, 0, 0]
self._torsion_moment = {}
self._load_Singularity = [0, 0, 0]
self._slope = [0, 0, 0]
self._deflection = [0, 0, 0]
self._angular_deflection = 0
@property
def shear_modulus(self):
"""Young's Modulus of the Beam. """
return self._shear_modulus
@shear_modulus.setter
def shear_modulus(self, e):
self._shear_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
if isinstance(i, list):
i = [sympify(x) for x in i]
self._second_moment = i
else:
self._second_moment = sympify(i)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def load_vector(self):
"""
Returns a three element list representing the load vector.
"""
return self._load_vector
@property
def moment_load_vector(self):
"""
Returns a three element list representing moment loads on Beam.
"""
return self._moment_load_vector
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has two keywords namely slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value). Further each value is a list corresponding to
slope or deflection(s) values along three axes at that location.
Examples
========
There is a beam of length 4 meters. The slope at 0 should be 4 along
the x-axis and 0 along others. At the other end of beam, deflection
along all the three axes should be zero.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
along y and z axis at ``0``.
"""
return self._boundary_conditions
def polar_moment(self):
"""
Returns the polar moment of area of the beam
about the X axis with respect to the centroid.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> b.polar_moment()
2*I
>>> I1 = [9, 15]
>>> b = Beam3D(l, E, G, I1, A)
>>> b.polar_moment()
24
"""
if not iterable(self.second_moment):
return 2*self.second_moment
return sum(self.second_moment)
def apply_load(self, value, start, order, dir="y"):
"""
This method adds up the force load to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
dir : String
Axis along which load is applied.
order : Integer
The order of the applied load.
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -1:
self._load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -1:
self._load_vector[1] += value
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
else:
if not order == -1:
self._load_vector[2] += value
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
def apply_moment_load(self, value, start, order, dir="y"):
"""
This method adds up the moment loads to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied moment.
dir : String
Axis along which moment is applied.
order : Integer
The order of the applied load.
- For point moments, order=-2
- For constant distributed moment, order=-1
- For ramp moments, order=0
- For parabolic ramp moments, order=1
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -2:
self._moment_load_vector[0] += value
else:
if start in list(self._torsion_moment):
self._torsion_moment[start] += value
else:
self._torsion_moment[start] = value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -2:
self._moment_load_vector[1] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
else:
if not order == -2:
self._moment_load_vector[2] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
def apply_support(self, loc, type="fixed"):
if type in ("pin", "roller"):
reaction_load = Symbol('R_'+str(loc))
self._reaction_loads[reaction_load] = reaction_load
self.bc_deflection.append((loc, [0, 0, 0]))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
self.bc_deflection.append((loc, [0, 0, 0]))
self.bc_slope.append((loc, [0, 0, 0]))
def solve_for_reaction_loads(self, *reaction):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. It it supported by rollers at
of its end. A constant distributed load of magnitude 8 N is applied
from start till its end along y-axis. Another linear load having
slope equal to 9 is applied along z-axis.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}
"""
x = self.variable
l = self.length
q = self._load_Singularity
shear_curves = [integrate(load, x) for load in q]
moment_curves = [integrate(shear, x) for shear in shear_curves]
for i in range(3):
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
if len(react) == 0:
continue
shear_curve = limit(shear_curves[i], x, l)
moment_curve = limit(moment_curves[i], x, l)
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
sol_dict = dict(zip(react, sol))
reaction_loads = self._reaction_loads
# Check if any of the evaluated rection exists in another direction
# and if it exists then it should have same value.
for key in sol_dict:
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
raise ValueError("Ambiguous solution for %s in different directions." % key)
self._reaction_loads.update(sol_dict)
def shear_force(self):
"""
Returns a list of three expressions which represents the shear force
curve of the Beam object along all three axes.
"""
x = self.variable
q = self._load_vector
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
def axial_force(self):
"""
Returns expression of Axial shear force present inside the Beam object.
"""
return self.shear_force()[0]
def shear_stress(self):
"""
Returns a list of three expressions which represents the shear stress
curve of the Beam object along all three axes.
"""
return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area]
def axial_stress(self):
"""
Returns expression of Axial stress present inside the Beam object.
"""
return self.axial_force()/self._area
def bending_moment(self):
"""
Returns a list of three expressions which represents the bending moment
curve of the Beam object along all three axes.
"""
x = self.variable
m = self._moment_load_vector
shear = self.shear_force()
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
integrate(-m[2] - shear[1], x) ]
def torsional_moment(self):
"""
Returns expression of Torsional moment present inside the Beam object.
"""
return self.bending_moment()[0]
def solve_for_torsion(self):
"""
Solves for the angular deflection due to the torsional effects of
moments being applied in the x-direction i.e. out of or into the beam.
Here, a positive torque means the direction of the torque is positive
i.e. out of the beam along the beam-axis. Likewise, a negative torque
signifies a torque into the beam cross-section.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_moment_load(4, 4, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.solve_for_torsion()
>>> b.angular_deflection().subs(x, 3)
18/(G*I)
"""
x = self.variable
sum_moments = 0
for point in list(self._torsion_moment):
sum_moments += self._torsion_moment[point]
list(self._torsion_moment).sort()
pointsList = list(self._torsion_moment)
torque_diagram = Piecewise((sum_moments, x<=pointsList[0]), (0, x>=pointsList[0]))
for i in range(len(pointsList))[1:]:
sum_moments -= self._torsion_moment[pointsList[i-1]]
torque_diagram += Piecewise((0, x<=pointsList[i-1]), (sum_moments, x<=pointsList[i]), (0, x>=pointsList[i]))
integrated_torque_diagram = integrate(torque_diagram)
self._angular_deflection = integrated_torque_diagram/(self.shear_modulus*self.polar_moment())
def solve_slope_deflection(self):
x = self.variable
l = self.length
E = self.elastic_modulus
G = self.shear_modulus
I = self.second_moment
if isinstance(I, list):
I_y, I_z = I[0], I[1]
else:
I_y = I_z = I
A = self._area
load = self._load_vector
moment = self._moment_load_vector
defl = Function('defl')
theta = Function('theta')
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
# Solving constants originated from dsolve
C1 = Symbol('C1')
C2 = Symbol('C2')
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
slope_x = def_x.diff(x)
self._deflection[0] = def_x
self._slope[0] = slope_x
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
C_i = Symbol('C_i')
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
slope_z = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
self._slope[2] = slope_z.subs(C_i, constants[1])
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
slope_y = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
def_z = dsolve(Eq(eq2,0)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
self._slope[1] = slope_y.subs(C_i, constants[1])
def slope(self):
"""
Returns a three element list representing slope of deflection curve
along all the three axes.
"""
return self._slope
def deflection(self):
"""
Returns a three element list representing deflection curve along all
the three axes.
"""
return self._deflection
def angular_deflection(self):
"""
Returns a function in x depicting how the angular deflection, due to moments
in the x-axis on the beam, varies with x.
"""
return self._angular_deflection
def _plot_shear_force(self, dir, subs=None):
shear_force = self.shear_force()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_force[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color)
def plot_shear_force(self, dir="all", subs=None):
"""
Returns a plot for Shear force along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear force plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_force()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear force along x direction
if dir == "x":
Px = self._plot_shear_force('x', subs)
return Px.show()
# For shear force along y direction
elif dir == "y":
Py = self._plot_shear_force('y', subs)
return Py.show()
# For shear force along z direction
elif dir == "z":
Pz = self._plot_shear_force('z', subs)
return Pz.show()
# For shear force along all direction
else:
Px = self._plot_shear_force('x', subs)
Py = self._plot_shear_force('y', subs)
Pz = self._plot_shear_force('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_bending_moment(self, dir, subs=None):
bending_moment = self.bending_moment()
if dir == 'x':
dir_num = 0
color = 'g'
elif dir == 'y':
dir_num = 1
color = 'c'
elif dir == 'z':
dir_num = 2
color = 'm'
if subs is None:
subs = {}
for sym in bending_moment[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color)
def plot_bending_moment(self, dir="all", subs=None):
"""
Returns a plot for bending moment along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which bending moment plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_bending_moment()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: 2*x**3 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For bending moment along x direction
if dir == "x":
Px = self._plot_bending_moment('x', subs)
return Px.show()
# For bending moment along y direction
elif dir == "y":
Py = self._plot_bending_moment('y', subs)
return Py.show()
# For bending moment along z direction
elif dir == "z":
Pz = self._plot_bending_moment('z', subs)
return Pz.show()
# For bending moment along all direction
else:
Px = self._plot_bending_moment('x', subs)
Py = self._plot_bending_moment('y', subs)
Pz = self._plot_bending_moment('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_slope(self, dir, subs=None):
slope = self.slope()
if dir == 'x':
dir_num = 0
color = 'b'
elif dir == 'y':
dir_num = 1
color = 'm'
elif dir == 'z':
dir_num = 2
color = 'g'
if subs is None:
subs = {}
for sym in slope[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color)
def plot_slope(self, dir="all", subs=None):
"""
Returns a plot for Slope along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which Slope plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_slope()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For Slope along x direction
if dir == "x":
Px = self._plot_slope('x', subs)
return Px.show()
# For Slope along y direction
elif dir == "y":
Py = self._plot_slope('y', subs)
return Py.show()
# For Slope along z direction
elif dir == "z":
Pz = self._plot_slope('z', subs)
return Pz.show()
# For Slope along all direction
else:
Px = self._plot_slope('x', subs)
Py = self._plot_slope('y', subs)
Pz = self._plot_slope('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_deflection(self, dir, subs=None):
deflection = self.deflection()
if dir == 'x':
dir_num = 0
color = 'm'
elif dir == 'y':
dir_num = 1
color = 'r'
elif dir == 'z':
dir_num = 2
color = 'c'
if subs is None:
subs = {}
for sym in deflection[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color)
def plot_deflection(self, dir="all", subs=None):
"""
Returns a plot for Deflection along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which deflection plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_deflection()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For deflection along x direction
if dir == "x":
Px = self._plot_deflection('x', subs)
return Px.show()
# For deflection along y direction
elif dir == "y":
Py = self._plot_deflection('y', subs)
return Py.show()
# For deflection along z direction
elif dir == "z":
Pz = self._plot_deflection('z', subs)
return Pz.show()
# For deflection along all direction
else:
Px = self._plot_deflection('x', subs)
Py = self._plot_deflection('y', subs)
Pz = self._plot_deflection('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def plot_loading_results(self, dir='x', subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object along the direction specified.
Parameters
==========
dir : string (default : "x")
Direction along which plots are required.
If no direction is specified, plots along x-axis are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> subs = {E:40, G:21, I:100, A:25}
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_loading_results('y',subs)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[3]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
"""
dir = dir.lower()
if subs is None:
subs = {}
ax1 = self._plot_shear_force(dir, subs)
ax2 = self._plot_bending_moment(dir, subs)
ax3 = self._plot_slope(dir, subs)
ax4 = self._plot_deflection(dir, subs)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _plot_shear_stress(self, dir, subs=None):
shear_stress = self.shear_stress()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_stress[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color)
def plot_shear_stress(self, dir="all", subs=None):
"""
Returns a plot for Shear Stress along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear stress plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters and area of cross section 2 square
meters. It it supported by rollers at of its end. A linear load having
slope equal to 12 is applied along y-axis. A constant distributed load
of magnitude 15 N is applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, 2, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_stress()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -3*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x/2 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear stress along x direction
if dir == "x":
Px = self._plot_shear_stress('x', subs)
return Px.show()
# For shear stress along y direction
elif dir == "y":
Py = self._plot_shear_stress('y', subs)
return Py.show()
# For shear stress along z direction
elif dir == "z":
Pz = self._plot_shear_stress('z', subs)
return Pz.show()
# For shear stress along all direction
else:
Px = self._plot_shear_stress('x', subs)
Py = self._plot_shear_stress('y', subs)
Pz = self._plot_shear_stress('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _max_shear_force(self, dir):
"""
Helper function for max_shear_force().
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.shear_force()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
load_curve = Piecewise((float("nan"), self.variable<=0),
(self._load_vector[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(load_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self.length)
shear_curve = self.shear_force()[dir_num]
shear_values = [shear_curve.subs(self.variable, x) for x in points]
shear_values = list(map(abs, shear_values))
max_shear = max(shear_values)
return (points[shear_values.index(max_shear)], max_shear)
def max_shear_force(self):
"""
Returns point of max shear force and its corresponding shear value
along all directions in a Beam object as a list.
solve_for_reaction_loads() must be called before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_shear_force()
[(0, 0), (20, 2400), (20, 300)]
"""
max_shear = []
max_shear.append(self._max_shear_force('x'))
max_shear.append(self._max_shear_force('y'))
max_shear.append(self._max_shear_force('z'))
return max_shear
def _max_bending_moment(self, dir):
"""
Helper function for max_bending_moment().
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.bending_moment()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
shear_curve = Piecewise((float("nan"), self.variable<=0),
(self.shear_force()[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(shear_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self.length)
bending_moment_curve = self.bending_moment()[dir_num]
bending_moments = [bending_moment_curve.subs(self.variable, x) for x in points]
bending_moments = list(map(abs, bending_moments))
max_bending_moment = max(bending_moments)
return (points[bending_moments.index(max_bending_moment)], max_bending_moment)
def max_bending_moment(self):
"""
Returns point of max bending moment and its corresponding bending moment value
along all directions in a Beam object as a list.
solve_for_reaction_loads() must be called before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_bending_moment()
[(0, 0), (20, 3000), (20, 16000)]
"""
max_bmoment = []
max_bmoment.append(self._max_bending_moment('x'))
max_bmoment.append(self._max_bending_moment('y'))
max_bmoment.append(self._max_bending_moment('z'))
return max_bmoment
max_bmoment = max_bending_moment
def _max_deflection(self, dir):
"""
Helper function for max_Deflection()
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.deflection()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope()[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self._length)
deflection_curve = self.deflection()[dir_num]
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
along all directions in a Beam object as a list.
solve_for_reaction_loads() and solve_slope_deflection() must be called
before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.max_deflection()
[(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)]
"""
max_def = []
max_def.append(self._max_deflection('x'))
max_def.append(self._max_deflection('y'))
max_def.append(self._max_deflection('z'))
return max_def
|
5b0340f9be1ad358905d562fb49ed777558c58e19d5f85b564b3200c50fa7c39 | from sympy.core.add import Add
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational, oo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import eye
from sympy.polys.polytools import factor
from sympy.polys.rootoftools import CRootOf
from sympy.simplify.simplify import simplify
from sympy.core.containers import Tuple
from sympy.matrices import ImmutableMatrix, Matrix
from sympy.physics.control import (TransferFunction, Series, Parallel,
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback)
from sympy.testing.pytest import raises
a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn = symbols('a, x, b, s, g, d, p, k,\
a0:3, b0:3, tau, zeta, wn')
TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
TF2 = TransferFunction(k, 1, s)
TF3 = TransferFunction(a2*p - s, a2*s + p, s)
def test_TransferFunction_construction():
tf = TransferFunction(s + 1, s**2 + s + 1, s)
assert tf.num == (s + 1)
assert tf.den == (s**2 + s + 1)
assert tf.args == (s + 1, s**2 + s + 1, s)
tf1 = TransferFunction(s + 4, s - 5, s)
assert tf1.num == (s + 4)
assert tf1.den == (s - 5)
assert tf1.args == (s + 4, s - 5, s)
# using different polynomial variables.
tf2 = TransferFunction(p + 3, p**2 - 9, p)
assert tf2.num == (p + 3)
assert tf2.den == (p**2 - 9)
assert tf2.args == (p + 3, p**2 - 9, p)
tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
# no pole-zero cancellation on its own.
tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)
assert tf4.den == (s - 1)*(s + 5)
assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s)
tf4_ = TransferFunction(p + 2, p + 2, p)
assert tf4_.args == (p + 2, p + 2, p)
tf5 = TransferFunction(s - 1, 4 - p, s)
assert tf5.args == (s - 1, 4 - p, s)
tf5_ = TransferFunction(s - 1, s - 1, s)
assert tf5_.args == (s - 1, s - 1, s)
tf6 = TransferFunction(5, 6, s)
assert tf6.num == 5
assert tf6.den == 6
assert tf6.args == (5, 6, s)
tf6_ = TransferFunction(1/2, 4, s)
assert tf6_.num == 0.5
assert tf6_.den == 4
assert tf6_.args == (0.500000000000000, 4, s)
tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s)
tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p)
assert not tf7 == tf8
tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
assert tf7_ == tf8_
assert -(-tf7_) == tf7_ == -(-(-(-tf7_)))
tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s)
assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s)
tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
assert tf10.args == (d + p**3, a + d*s + g*s**2, p)
assert tf10_ == tf10
tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s)
assert tf11.num == (a0 + a1*s)
assert tf11.den == (b0 + b1*s + b2*s**2)
assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s)
# when just the numerator is 0, leave the denominator alone.
tf12 = TransferFunction(0, p**2 - p + 1, p)
assert tf12.args == (0, p**2 - p + 1, p)
tf13 = TransferFunction(0, 1, s)
assert tf13.args == (0, 1, s)
# float exponents
tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s)
assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s)
tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p)
assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p)
omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i')
tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s)
assert tf18.num == k_i/s + k_o*s + k_p
assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s)
# ValueError when denominator is zero.
raises(ValueError, lambda: TransferFunction(4, 0, s))
raises(ValueError, lambda: TransferFunction(s, 0, s))
raises(ValueError, lambda: TransferFunction(0, 0, s))
raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s))
raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3))
raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4))
raises(TypeError, lambda: TransferFunction(3, 4, 8))
def test_TransferFunction_functions():
# classmethod from_rational_expression
expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False)
expr_2 = s/0
expr_3 = (p*s**2 + 5*s)/(s + 1)**3
expr_4 = 6
expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2))
expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9))
tf = TransferFunction(s + 1, s**2 + 2, s)
delay = exp(-s/tau)
expr_7 = delay*tf.to_expr()
H1 = TransferFunction.from_rational_expression(expr_7, s)
H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s)
expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False)
assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s)
raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2))
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3))
assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s)
assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p)
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4))
assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s)
assert TransferFunction.from_rational_expression(expr_5, s) == \
TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s)
assert TransferFunction.from_rational_expression(expr_6, s) == \
TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s)
assert H1 == H2
assert TransferFunction.from_rational_expression(expr_8, s) == \
TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s)
# explicitly cancel poles and zeros.
tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s)
a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s)
assert tf0.simplify() == simplify(tf0) == a
tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
b = TransferFunction(p + 3, p + 5, p)
assert tf1.simplify() == simplify(tf1) == b
# expand the numerator and the denominator.
G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
G2 = TransferFunction(1, -3, p)
c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p)
d = (b0*s**s + b1*p**s)*(b2*s*p + p**p)
e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p)
f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s
g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s
G3 = TransferFunction(c, d, s)
G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p)
assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s)
assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p)
assert G2.expand() == G2
assert G3.expand() == TransferFunction(e, f, s)
assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p)
# purely symbolic polynomials.
p1 = a1*s + a0
p2 = b2*s**2 + b1*s + b0
SP1 = TransferFunction(p1, p2, s)
expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s)
expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s)
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1
assert expect1_.evalf() == expect1
c1, d0, d1, d2 = symbols('c1, d0:3')
p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0
SP2 = TransferFunction(p3, p4, p)
expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p)
expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p)
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2
assert expect2_.evalf() == expect2
SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s)
expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s)
expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s)
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3
assert expect3_.evalf() == expect3
SP4 = TransferFunction(s - a1*p**3, a0*s + p, p)
expect4 = TransferFunction(7.0*p**3 + s, p - s, p)
expect4_ = TransferFunction(7*p**3 + s, p - s, p)
assert SP4.subs({a0: -1, a1: -7}) == expect4_
assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4
assert expect4_.evalf() == expect4
# Low-frequency (or DC) gain.
assert tf0.dc_gain() == 1
assert tf1.dc_gain() == Rational(3, 5)
assert SP2.dc_gain() == 0
assert expect4.dc_gain() == -1
assert expect2_.dc_gain() == 0
assert TransferFunction(1, s, s).dc_gain() == oo
# Poles of a transfer function.
tf_ = TransferFunction(x**3 - k, k, x)
_tf = TransferFunction(k, x**4 - k, x)
TF_ = TransferFunction(x**2, x**10 + x + x**2, x)
_TF = TransferFunction(x**10 + x + x**2, x**2, x)
assert G1.poles() == [I, I, -I, -I]
assert G2.poles() == []
assert tf1.poles() == [-5, 1]
assert expect4_.poles() == [s]
assert SP4.poles() == [-a0*s]
assert expect3.poles() == [-0.25*p]
assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I])
assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I])
assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))]
assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles())
# Stability of a transfer function.
q, r = symbols('q, r', negative=True)
t = symbols('t', positive=True)
TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s)
stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s)
stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s)
assert G1.is_stable() is False
assert G2.is_stable() is True
assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve.
assert expect2.is_stable() is False
assert expect1.is_stable() is True
assert stable_tf.is_stable() is True
assert stable_tf_.is_stable() is True
assert TF_.is_stable() is False
assert expect4_.is_stable() is None # no assumption provided for the only pole 's'.
assert SP4.is_stable() is None
# Zeros of a transfer function.
assert G1.zeros() == [1, 1]
assert G2.zeros() == []
assert tf1.zeros() == [-3, 1]
assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 -
sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14]
assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2,
-(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2]
assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0),
1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125])
assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2,
-k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2]
assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros())
# negation of TF.
tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s)
tf3 = TransferFunction(-3*p + 3, 1 - p, p)
assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s)
assert -tf3 == TransferFunction(3*p - 3, 1 - p, p)
# taking power of a TF.
tf4 = TransferFunction(p + 4, p - 3, p)
tf5 = TransferFunction(s**2 + 1, 1 - s, s)
expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s)
expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p)
assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1
assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2
assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s)
assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p)
assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
raises(ValueError, lambda: tf4**(s**2 + s - 1))
raises(ValueError, lambda: tf5**s)
raises(ValueError, lambda: tf4**tf5)
# SymPy's own functions.
tf = TransferFunction(s - 1, s**2 - 2*s + 1, s)
tf6 = TransferFunction(s + p, p**2 - 5, s)
assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s)
assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1
# subs & xreplace
assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s)
assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s)
assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s)
raises(TypeError, lambda: tf3.xreplace({p: exp(2)}))
assert tf3.subs(p, exp(2)) == tf3
tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k)
assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
# Conversion to Expr with to_expr()
tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s)
tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s)
tf10 = TransferFunction(0, 1, s)
tf11 = TransferFunction(1, 1, s)
assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False)
assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False)
assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False)
assert tf11.to_expr() == Pow(1, -1, evaluate=False)
def test_TransferFunction_addition_and_subtraction():
tf1 = TransferFunction(s + 6, s - 5, s)
tf2 = TransferFunction(s + 3, s + 1, s)
tf3 = TransferFunction(s + 1, s**2 + s + 1, s)
tf4 = TransferFunction(p, 2 - p, p)
# addition
assert tf1 + tf2 == Parallel(tf1, tf2)
assert tf3 + tf1 == Parallel(tf3, tf1)
assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3)
assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3)
c = symbols("c", commutative=False)
raises(ValueError, lambda: tf1 + Matrix([1, 2, 3]))
raises(ValueError, lambda: tf2 + c)
raises(ValueError, lambda: tf3 + tf4)
raises(ValueError, lambda: tf1 + (s - 1))
raises(ValueError, lambda: tf1 + 8)
raises(ValueError, lambda: (1 - p**3) + tf1)
# subtraction
assert tf1 - tf2 == Parallel(tf1, -tf2)
assert tf3 - tf2 == Parallel(tf3, -tf2)
assert -tf1 - tf3 == Parallel(-tf1, -tf3)
assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3)
raises(ValueError, lambda: tf1 - Matrix([1, 2, 3]))
raises(ValueError, lambda: tf3 - tf4)
raises(ValueError, lambda: tf1 - (s - 1))
raises(ValueError, lambda: tf1 - 8)
raises(ValueError, lambda: (s + 5) - tf2)
raises(ValueError, lambda: (1 + p**4) - tf1)
def test_TransferFunction_multiplication_and_division():
G1 = TransferFunction(s + 3, -s**3 + 9, s)
G2 = TransferFunction(s + 1, s - 5, s)
G3 = TransferFunction(p, p**4 - 6, p)
G4 = TransferFunction(p + 4, p - 5, p)
G5 = TransferFunction(s + 6, s - 5, s)
G6 = TransferFunction(s + 3, s + 1, s)
G7 = TransferFunction(1, 1, s)
# multiplication
assert G1*G2 == Series(G1, G2)
assert -G1*G5 == Series(-G1, G5)
assert -G2*G5*-G6 == Series(-G2, G5, -G6)
assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6)
assert G3*G4 == Series(G3, G4)
assert (G1*G2)*-(G5*G6) == \
Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6))
assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6))
c = symbols("c", commutative=False)
raises(ValueError, lambda: G3 * Matrix([1, 2, 3]))
raises(ValueError, lambda: G1 * c)
raises(ValueError, lambda: G3 * G5)
raises(ValueError, lambda: G5 * (s - 1))
raises(ValueError, lambda: 9 * G5)
raises(ValueError, lambda: G3 / Matrix([1, 2, 3]))
raises(ValueError, lambda: G6 / 0)
raises(ValueError, lambda: G3 / G5)
raises(ValueError, lambda: G5 / 2)
raises(ValueError, lambda: G5 / s**2)
raises(ValueError, lambda: (s - 4*s**2) / G2)
raises(ValueError, lambda: 0 / G4)
raises(ValueError, lambda: G5 / G6)
raises(ValueError, lambda: -G3 /G4)
raises(ValueError, lambda: G7 / (1 + G6))
raises(ValueError, lambda: G7 / (G5 * G6))
raises(ValueError, lambda: G7 / (G7 + (G5 + G6)))
def test_TransferFunction_is_proper():
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
G2 = TransferFunction(tau - s**3, tau + p**4, tau)
G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
assert G1.is_proper
assert G2.is_proper
assert G3.is_proper
assert not G4.is_proper
def test_TransferFunction_is_strictly_proper():
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
assert not tf1.is_strictly_proper
assert not tf2.is_strictly_proper
assert tf3.is_strictly_proper
assert not tf4.is_strictly_proper
def test_TransferFunction_is_biproper():
tau, omega_o, zeta = symbols('tau, omega_o, zeta')
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
assert tf1.is_biproper
assert tf2.is_biproper
assert not tf3.is_biproper
assert not tf4.is_biproper
def test_Series_construction():
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
inp = Function('X_d')(s)
out = Function('X')(s)
s0 = Series(tf, tf2)
assert s0.args == (tf, tf2)
assert s0.var == s
s1 = Series(Parallel(tf, -tf2), tf2)
assert s1.args == (Parallel(tf, -tf2), tf2)
assert s1.var == s
tf3_ = TransferFunction(inp, 1, s)
tf4_ = TransferFunction(-out, 1, s)
s2 = Series(tf, Parallel(tf3_, tf4_), tf2)
assert s2.args == (tf, Parallel(tf3_, tf4_), tf2)
s3 = Series(tf, tf2, tf4)
assert s3.args == (tf, tf2, tf4)
s4 = Series(tf3_, tf4_)
assert s4.args == (tf3_, tf4_)
assert s4.var == s
s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4)
assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4)
s7 = Series(tf, tf2)
assert s0 == s7
assert not s0 == s2
raises(ValueError, lambda: Series(tf, tf3))
raises(ValueError, lambda: Series(tf, tf2, tf3, tf4))
raises(ValueError, lambda: Series(-tf3, tf2))
raises(TypeError, lambda: Series(2, tf, tf4))
raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2))
raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4])))
def test_MIMOSeries_construction():
tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
tf_2 = TransferFunction(a2*p - s, a2*s + p, s)
tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]])
tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]])
tfm_3 = TransferFunctionMatrix([[-tf_3]])
tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]])
tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p)
s8 = MIMOSeries(tfm_2, tfm_1)
assert s8.args == (tfm_2, tfm_1)
assert s8.var == s
assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1)
s9 = MIMOSeries(tfm_3, tfm_2, tfm_1)
assert s9.args == (tfm_3, tfm_2, tfm_1)
assert s9.var == s
assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1)
s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1)
# arg cannot be empty tuple.
raises(ValueError, lambda: MIMOSeries())
# arg cannot contain SISO as well as MIMO systems.
raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1))
# for all the adjacent transfer function matrices:
# no. of inputs of first TFM must be equal to the no. of outputs of the second TFM.
raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1))
# all the TFMs must use the same complex variable.
raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5))
# Number or expression not allowed in the arguments.
raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3))
raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3))
raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3))
def test_Series_functions():
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \
== Series(tf1, Series(tf2, tf3))
assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3))
assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5)
assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5)
assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5)
assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5)
assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5)
assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5))
assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5)))
assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3)
assert -tf1*tf2 == Series(-tf1, tf2)
assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2))
raises(ValueError, lambda: tf1*tf2*tf4)
raises(ValueError, lambda: tf1*(tf2 - tf4))
raises(ValueError, lambda: tf3*Matrix([1, 2, 3]))
# evaluate=True -> doit()
assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \
TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \
TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s)
assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit()
assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \
TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Series(-tf1, -tf2, -tf3).doit() == \
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert -Series(tf1, tf2, tf3).doit() == \
TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \
TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3))
assert S1.is_proper
assert not S1.is_strictly_proper
assert S1.is_biproper
S2 = Series(tf1, tf2, tf3)
assert S2.is_proper
assert S2.is_strictly_proper
assert not S2.is_biproper
S3 = Series(tf1, -tf2, Parallel(tf1, -tf3))
assert S3.is_proper
assert S3.is_strictly_proper
assert not S3.is_biproper
def test_MIMOSeries_functions():
tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]])
tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]])
tfm3 = TransferFunctionMatrix([[-TF1]])
tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]])
tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]])
tfm6 = TransferFunctionMatrix([[-TF3], [TF1]])
tfm7 = TransferFunctionMatrix([[TF1], [-TF2]])
assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6)
assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6)
assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7)
assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5)
assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4))
raises(ValueError, lambda: tfm1*tfm2 + TF1)
raises(TypeError, lambda: tfm1*tfm2 + a0)
raises(TypeError, lambda: tfm4*tfm6 - (s - 1))
raises(TypeError, lambda: tfm4*-tfm6 - 8)
raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2)
# Shape criteria.
raises(TypeError, lambda: -tfm1*tfm2 + tfm4)
raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5)
raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5)
assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1)
assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1)
# Multiplication of a Series object with a SISO TF not allowed.
raises(ValueError, lambda: tfm4*tfm5*TF1)
raises(TypeError, lambda: tfm4*tfm5*a1)
raises(TypeError, lambda: tfm4*-tfm5*(s - 2))
raises(TypeError, lambda: tfm5*tfm4*9)
raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4)
# Transfer function matrix in the arguments.
assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit()
== TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2,
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),),
(TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),))))
# doit() should not cancel poles and zeros.
mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]])
mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]])
tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s)
assert (MIMOSeries(tm_2, tm_1).doit()
== TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),)))
assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),))
# calling doit() will expand the internal Series and Parallel objects.
assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True)
== MIMOSeries(-tfm3, -tfm2, tfm1).doit()
== TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2,
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),),
(TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),))))
assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True)
== MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit()
== TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \
k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \
TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix))
def test_Parallel_construction():
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
inp = Function('X_d')(s)
out = Function('X')(s)
p0 = Parallel(tf, tf2)
assert p0.args == (tf, tf2)
assert p0.var == s
p1 = Parallel(Series(tf, -tf2), tf2)
assert p1.args == (Series(tf, -tf2), tf2)
assert p1.var == s
tf3_ = TransferFunction(inp, 1, s)
tf4_ = TransferFunction(-out, 1, s)
p2 = Parallel(tf, Series(tf3_, -tf4_), tf2)
assert p2.args == (tf, Series(tf3_, -tf4_), tf2)
p3 = Parallel(tf, tf2, tf4)
assert p3.args == (tf, tf2, tf4)
p4 = Parallel(tf3_, tf4_)
assert p4.args == (tf3_, tf4_)
assert p4.var == s
p5 = Parallel(tf, tf2)
assert p0 == p5
assert not p0 == p1
p6 = Parallel(tf2, tf4, Series(tf2, -tf4))
assert p6.args == (tf2, tf4, Series(tf2, -tf4))
p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4)
assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4)
raises(ValueError, lambda: Parallel(tf, tf3))
raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4))
raises(ValueError, lambda: Parallel(-tf3, tf4))
raises(TypeError, lambda: Parallel(2, tf, tf4))
raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2))
raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4])))
def test_MIMOParallel_construction():
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]])
tfm3 = TransferFunctionMatrix([[TF1]])
tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]])
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]])
tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]])
tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p)
p8 = MIMOParallel(tfm1, tfm2)
assert p8.args == (tfm1, tfm2)
assert p8.var == s
assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1)
p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2)
assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2)
assert p9.var == s
assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1)
p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2)
assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2)
assert p10.var == s
assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1)
p11 = MIMOParallel(tfm2, tfm1, tfm4)
assert p11.args == (tfm2, tfm1, tfm4)
assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1)
p12 = MIMOParallel(tfm6, tfm5)
assert p12.args == (tfm6, tfm5)
assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2)
p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1)
# arg cannot be empty tuple.
raises(TypeError, lambda: MIMOParallel(()))
# arg cannot contain SISO as well as MIMO systems.
raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1))
# all TFMs must have same shapes.
raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4))
# all TFMs must be using the same complex variable.
raises(ValueError, lambda: MIMOParallel(tfm3, tfm7))
# Number or expression not allowed in the arguments.
raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4))
raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2))
def test_Parallel_functions():
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3)
assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5)
assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5)
assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3))
assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3))
assert -tf1 - tf2 == Parallel(-tf1, -tf2)
assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2))
assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1)
assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5)
assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5)
assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5)
assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3)
assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5))
raises(ValueError, lambda: tf1 + tf2 + tf4)
raises(ValueError, lambda: tf1 - tf2*tf4)
raises(ValueError, lambda: tf3 + Matrix([1, 2, 3]))
# evaluate=True -> doit()
assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \
Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \
(-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \
2*s*wn*zeta + wn**2)**2, s)
assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \
, (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit()
assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \
TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(-tf1, -tf2, -tf3).doit() == \
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert -Parallel(tf1, tf2, tf3).doit() == \
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \
TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(tf1, tf2).rewrite(TransferFunction) == \
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \
wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3)
P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
assert P1.is_proper
assert not P1.is_strictly_proper
assert P1.is_biproper
P2 = Parallel(tf1, -tf2, -tf3)
assert P2.is_proper
assert not P2.is_strictly_proper
assert P2.is_biproper
P3 = Parallel(tf1, -tf2, Series(tf1, tf3))
assert P3.is_proper
assert not P3.is_strictly_proper
assert P3.is_biproper
def test_MIMOParallel_functions():
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]])
tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]])
tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]])
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]])
tfm6 = TransferFunctionMatrix([[-TF2]])
tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]])
assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3)
assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3)
assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1))
assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1))
assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2)
assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1)
raises(ValueError, lambda: tfm1 + tfm2 + TF2)
raises(TypeError, lambda: tfm1 - tfm2 - a1)
raises(TypeError, lambda: tfm2 - tfm3 - (s - 1))
raises(TypeError, lambda: -tfm3 - tfm2 - 9)
raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2)
# All TFMs must use the same complex var. tfm7 uses 'p'.
raises(ValueError, lambda: tfm3 - tfm2 - tfm7)
raises(ValueError, lambda: tfm2 - tfm1 + tfm7)
# (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape.
raises(TypeError, lambda: tfm1 + tfm2 + tfm4)
raises(TypeError, lambda: (tfm1 - tfm2) - tfm4)
assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2))
assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3))
assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3))
raises(ValueError, lambda: (tfm4 + tfm5)*TF1)
raises(TypeError, lambda: (tfm2 - tfm3)*a2)
raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6))
raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0)
raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3))
# (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape.
raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5)
# (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape.
raises(ValueError, lambda: (tfm1 - tfm2)*tfm5)
# TFM in the arguments.
assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit()
== MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix)
== TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \
(TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \
(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),))))
def test_Feedback_construction():
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tf6 = TransferFunction(s - p, p + s, p)
f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3)
assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1)
assert f1.sys1 == TransferFunction(1, 1, s)
assert f1.sys2 == Series(tf1, tf2, tf3)
assert f1.var == s
f2 = Feedback(tf1, tf2*tf3)
assert f2.args == (tf1, Series(tf2, tf3), -1)
assert f2.sys1 == tf1
assert f2.sys2 == Series(tf2, tf3)
assert f2.var == s
f3 = Feedback(tf1*tf2, tf5)
assert f3.args == (Series(tf1, tf2), tf5, -1)
assert f3.sys1 == Series(tf1, tf2)
f4 = Feedback(tf4, tf6)
assert f4.args == (tf4, tf6, -1)
assert f4.sys1 == tf4
assert f4.var == p
f5 = Feedback(tf5, TransferFunction(1, 1, s))
assert f5.args == (tf5, TransferFunction(1, 1, s), -1)
assert f5.var == s
assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf.
f6 = Feedback(TransferFunction(1, 1, p), tf4)
assert f6.args == (TransferFunction(1, 1, p), tf4, -1)
assert f6.var == p
f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p))
assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1)
assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6))
# denominator can't be a Parallel instance
raises(TypeError, lambda: Feedback(tf1, tf2 + tf3))
raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3])))
raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1))
raises(TypeError, lambda: Feedback(1, 1))
# raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s)))
raises(ValueError, lambda: Feedback(tf2, tf4*tf5))
raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1
raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero
raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var`
def test_Feedback_functions():
tf = TransferFunction(1, 1, s)
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
tf2 = TransferFunction(k, 1, s)
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tf6 = TransferFunction(s - p, p + s, p)
assert tf / (tf + tf1) == Feedback(tf, tf1)
assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3)
assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3)
assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf)
assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5)
assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5))
assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6)
assert tf5 / (tf + tf5) == Feedback(tf5, tf)
raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3))
raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5)
raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4))
assert Feedback(tf, tf1*tf2*tf3).doit() == \
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(tf, tf1*tf2*tf3).sensitivity == \
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
assert Feedback(tf1, tf2*tf3).doit() == \
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(tf1, tf2*tf3).sensitivity == \
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
assert Feedback(tf1*tf2, tf5).doit() == \
TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(tf1*tf2, tf5, 1).sensitivity == \
1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
assert Feedback(tf4, tf6).doit() == \
TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \
TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s)
assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \
TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \
TransferFunction(p, a0*p + p + p**a1 - s, p)
def test_MIMOFeedback_construction():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s**3 - 1, s)
tf3 = TransferFunction(s, s + 1, s)
tf4 = TransferFunction(s, s**2 + 1, s)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]])
f1 = MIMOFeedback(tfm_1, tfm_2)
assert f1.args == (tfm_1, tfm_2, -1)
assert f1.sys1 == tfm_1
assert f1.sys2 == tfm_2
assert f1.var == s
assert f1.sign == -1
assert -(-f1) == f1
f2 = MIMOFeedback(tfm_2, tfm_1, 1)
assert f2.args == (tfm_2, tfm_1, 1)
assert f2.sys1 == tfm_2
assert f2.sys2 == tfm_1
assert f2.var == s
assert f2.sign == 1
f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2))
assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1)
assert f3.sys1 == tfm_1
assert f3.sys2 == MIMOSeries(tfm_3, tfm_2)
assert f3.var == s
assert f3.sign == -1
mat = Matrix([[1, 1/s], [0, 1]])
sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s)
f4 = MIMOFeedback(sys1, controller)
assert f4.args == (sys1, controller, -1)
assert f4.sys1 == f4.sys2 == sys1
def test_MIMOFeedback_errors():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s**3 - 1, s)
tf3 = TransferFunction(s, s - 1, s)
tf4 = TransferFunction(s, s**2 + 1, s)
tf5 = TransferFunction(1, 1, s)
tf6 = TransferFunction(-1, s - 1, s)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]])
tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]])
# tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I
tfm_6 = TransferFunctionMatrix([[-tf3]])
tfm_7 = TransferFunctionMatrix([[tf3, tf4]])
# Unsupported Types
raises(TypeError, lambda: MIMOFeedback(tf1, tf2))
raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3))
# Shape Errors
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1))
raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7))
# sign not 1/-1
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2))
# Non-Invertible Systems
raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1))
raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5))
raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1))
# Variable not same in both the systems
tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p)
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1))
def test_MIMOFeedback_functions():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s - 1, s)
tf3 = TransferFunction(1, 1, s)
tf4 = TransferFunction(-1, s - 1, s)
tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]])
tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]])
tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]])
# sensitivity, doit(), rewrite()
F_1 = MIMOFeedback(tfm_2, tfm_3)
F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1)
assert F_1.sensitivity == Matrix([[1/2, 0], [0, 1/2]])
assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1),
(2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]])
assert F_1.doit() == \
TransferFunctionMatrix(((TransferFunction(1, 2*s, s),
TransferFunction(1, 2, s)), (TransferFunction(1, 2, s),
TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix)
assert F_2.doit(cancel=False, expand=True) == \
TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s),
TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
assert F_2.doit(cancel=False) == \
TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \
(-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
assert F_2.doit() == \
TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s),
TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s))))
assert F_2.doit(expand=True) == \
TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating.
def test_TransferFunctionMatrix_construction():
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
tfm3_ = TransferFunctionMatrix([[-TF3]])
assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1)
assert tfm3_.args == Tuple(Tuple(Tuple(-TF3)))
assert tfm3_.var == s
tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]])
assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2)
assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5)))
assert tfm5.var == s
tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]])
assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2)
assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2)))
assert tfm7.var == s
# all transfer functions will use the same complex variable. tf4 uses 'p'.
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]]))
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]]))
# length of all the lists in the TFM should be equal.
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]]))
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]]))
# lists should only support transfer functions in them.
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]]))
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]]))
# `arg` should strictly be nested list of TransferFunction
raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5]))
raises(ValueError, lambda: TransferFunctionMatrix([TF1]))
def test_TransferFunctionMatrix_functions():
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
# Classmethod (from_matrix)
mat_1 = ImmutableMatrix([
[s*(s + 1)*(s - 3)/(s**4 + 1), 2],
[p, p*(s + 1)/(s*(s**1 + 1))]
])
mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]])
mat_3 = ImmutableMatrix([[1, 2], [3, 4]])
assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \
TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)],
[TransferFunction(p, 1, s), TransferFunction(p, s, s)]])
assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \
TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]])
assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \
TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)],
[TransferFunction(3, 1, p), TransferFunction(4, 1, p)]])
# Negating a TFM
tfm1 = TransferFunctionMatrix([[TF1], [TF2]])
assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]])
tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]])
assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]])
# subs()
H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s)
H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]])
assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var`
assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]])
assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]])
assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]])
assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]])
# transpose()
assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]])
assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]])
assert H_1.transpose().transpose() == H_1
assert H_2.transpose().transpose() == H_2
# elem_poles()
assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []],
[[], [0]]]
assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]]
assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]],
[[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]]
# elem_zeros()
assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]]
assert H_2.elem_zeros() == [[[0], [0]]]
assert tfm2.elem_zeros() == [[[], [], [a2*p]],
[[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]]
# doit()
H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]])
H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]])
assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]])
assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]])
# _flat()
assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)]
assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)]
assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]
assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]
# evalf()
assert H_1.evalf() == \
TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s))))
assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \
TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s),
TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),))
# simplify()
H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s),
TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]])
assert H_5.simplify() == simplify(H_5) == \
TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),))
# expand()
assert (H_1.expand()
== TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)),
(TransferFunction(p, 1, s), TransferFunction(p, s, s)))))
assert H_5.expand() == \
TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
|
b87c370abb792efd2de9357d8f198dc0f55b8961b314c68b67c4c965f075f8c8 | from sympy.core.mul import Mul
from sympy.core.numbers import (I, Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.gate import H, XGate, IdentityGate
from sympy.physics.quantum.operator import Operator, IdentityOperator
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.spin import Jx, Jy, Jz, Jplus, Jminus, J2, JzKet
from sympy.physics.quantum.tensorproduct import TensorProduct
from sympy.physics.quantum.state import Ket
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.qubit import Qubit, QubitBra
from sympy.physics.quantum.boson import BosonOp, BosonFockKet, BosonFockBra
j, jp, m, mp = symbols("j j' m m'")
z = JzKet(1, 0)
po = JzKet(1, 1)
mo = JzKet(1, -1)
A = Operator('A')
class Foo(Operator):
def _apply_operator_JzKet(self, ket, **options):
return ket
def test_basic():
assert qapply(Jz*po) == hbar*po
assert qapply(Jx*z) == hbar*po/sqrt(2) + hbar*mo/sqrt(2)
assert qapply((Jplus + Jminus)*z/sqrt(2)) == hbar*po + hbar*mo
assert qapply(Jz*(po + mo)) == hbar*po - hbar*mo
assert qapply(Jz*po + Jz*mo) == hbar*po - hbar*mo
assert qapply(Jminus*Jminus*po) == 2*hbar**2*mo
assert qapply(Jplus**2*mo) == 2*hbar**2*po
assert qapply(Jplus**2*Jminus**2*po) == 4*hbar**4*po
def test_extra():
extra = z.dual*A*z
assert qapply(Jz*po*extra) == hbar*po*extra
assert qapply(Jx*z*extra) == (hbar*po/sqrt(2) + hbar*mo/sqrt(2))*extra
assert qapply(
(Jplus + Jminus)*z/sqrt(2)*extra) == hbar*po*extra + hbar*mo*extra
assert qapply(Jz*(po + mo)*extra) == hbar*po*extra - hbar*mo*extra
assert qapply(Jz*po*extra + Jz*mo*extra) == hbar*po*extra - hbar*mo*extra
assert qapply(Jminus*Jminus*po*extra) == 2*hbar**2*mo*extra
assert qapply(Jplus**2*mo*extra) == 2*hbar**2*po*extra
assert qapply(Jplus**2*Jminus**2*po*extra) == 4*hbar**4*po*extra
def test_innerproduct():
assert qapply(po.dual*Jz*po, ip_doit=False) == hbar*(po.dual*po)
assert qapply(po.dual*Jz*po) == hbar
def test_zero():
assert qapply(0) == 0
assert qapply(Integer(0)) == 0
def test_commutator():
assert qapply(Commutator(Jx, Jy)*Jz*po) == I*hbar**3*po
assert qapply(Commutator(J2, Jz)*Jz*po) == 0
assert qapply(Commutator(Jz, Foo('F'))*po) == 0
assert qapply(Commutator(Foo('F'), Jz)*po) == 0
def test_anticommutator():
assert qapply(AntiCommutator(Jz, Foo('F'))*po) == 2*hbar*po
assert qapply(AntiCommutator(Foo('F'), Jz)*po) == 2*hbar*po
def test_outerproduct():
e = Jz*(mo*po.dual)*Jz*po
assert qapply(e) == -hbar**2*mo
assert qapply(e, ip_doit=False) == -hbar**2*(po.dual*po)*mo
assert qapply(e).doit() == -hbar**2*mo
def test_tensorproduct():
a = BosonOp("a")
b = BosonOp("b")
ket1 = TensorProduct(BosonFockKet(1), BosonFockKet(2))
ket2 = TensorProduct(BosonFockKet(0), BosonFockKet(0))
ket3 = TensorProduct(BosonFockKet(0), BosonFockKet(2))
bra1 = TensorProduct(BosonFockBra(0), BosonFockBra(0))
bra2 = TensorProduct(BosonFockBra(1), BosonFockBra(2))
assert qapply(TensorProduct(a, b ** 2) * ket1) == sqrt(2) * ket2
assert qapply(TensorProduct(a, Dagger(b) * b) * ket1) == 2 * ket3
assert qapply(bra1 * TensorProduct(a, b * b),
dagger=True) == sqrt(2) * bra2
assert qapply(bra2 * ket1).doit() == TensorProduct(1, 1)
assert qapply(TensorProduct(a, b * b) * ket1) == sqrt(2) * ket2
assert qapply(Dagger(TensorProduct(a, b * b) * ket1),
dagger=True) == sqrt(2) * Dagger(ket2)
def test_dagger():
lhs = Dagger(Qubit(0))*Dagger(H(0))
rhs = Dagger(Qubit(1))/sqrt(2) + Dagger(Qubit(0))/sqrt(2)
assert qapply(lhs, dagger=True) == rhs
def test_issue_6073():
x, y = symbols('x y', commutative=False)
A = Ket(x, y)
B = Operator('B')
assert qapply(A) == A
assert qapply(A.dual*B) == A.dual*B
def test_density():
d = Density([Jz*mo, 0.5], [Jz*po, 0.5])
assert qapply(d) == Density([-hbar*mo, 0.5], [hbar*po, 0.5])
def test_issue3044():
expr1 = TensorProduct(Jz*JzKet(S(2),S.NegativeOne)/sqrt(2), Jz*JzKet(S.Half,S.Half))
result = Mul(S.NegativeOne, Rational(1, 4), 2**S.Half, hbar**2)
result *= TensorProduct(JzKet(2,-1), JzKet(S.Half,S.Half))
assert qapply(expr1) == result
# Issue 24158: Tests whether qapply incorrectly evaluates some ket*op as op*ket
def test_issue24158_ket_times_op():
P = BosonFockKet(0) * BosonOp("a") # undefined term
# Does lhs._apply_operator_BosonOp(rhs) still evaluate ket*op as op*ket?
assert qapply(P) == P # qapply(P) -> BosonOp("a")*BosonFockKet(0) = 0 before fix
P = Qubit(1) * XGate(0) # undefined term
# Does rhs._apply_operator_Qubit(lhs) still evaluate ket*op as op*ket?
assert qapply(P) == P # qapply(P) -> Qubit(0) before fix
P1 = Mul(QubitBra(0), Mul(QubitBra(0), Qubit(0)), XGate(0)) # legal expr <0| * (<1|*|1>) * X
assert qapply(P1) == QubitBra(0) * XGate(0) # qapply(P1) -> 0 before fix
P1 = qapply(P1, dagger = True) # unsatisfactorily -> <0|*X(0), expect <1| since dagger=True
assert qapply(P1, dagger = True) == QubitBra(1) # qapply(P1, dagger=True) -> 0 before fix
P2 = QubitBra(0) * QubitBra(0) * Qubit(0) * XGate(0) # 'forgot' to set brackets
P2 = qapply(P2, dagger = True) # unsatisfactorily -> <0|*X(0), expect <1| since dagger=True
assert qapply(P2, dagger = True) == QubitBra(1) # qapply(P1) -> 0 before fix
# Pull Request 24237: IdentityOperator from the right without dagger=True option
assert qapply(QubitBra(1)*IdentityOperator()) == QubitBra(1)
assert qapply(IdentityGate(0)*(Qubit(0) + Qubit(1))) == Qubit(0) + Qubit(1)
|
c11e3934c036c36e36faa9c094c8f238f8f6cafc036c22ae04387f576b1e92bf | # -*- encoding: utf-8 -*-
"""
TODO:
* Address Issue 2251, printing of spin states
"""
from __future__ import annotations
from typing import Any
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.gate import CGate, CNotGate, IdentityGate, UGate, XGate
from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace, HilbertSpace, L2
from sympy.physics.quantum.innerproduct import InnerProduct
from sympy.physics.quantum.operator import Operator, OuterProduct, DifferentialOperator
from sympy.physics.quantum.qexpr import QExpr
from sympy.physics.quantum.qubit import Qubit, IntQubit
from sympy.physics.quantum.spin import Jz, J2, JzBra, JzBraCoupled, JzKet, JzKetCoupled, Rotation, WignerD
from sympy.physics.quantum.state import Bra, Ket, TimeDepBra, TimeDepKet
from sympy.physics.quantum.tensorproduct import TensorProduct
from sympy.physics.quantum.sho1d import RaisingOp
from sympy.core.function import (Derivative, Function)
from sympy.core.numbers import oo
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.matrices.dense import Matrix
from sympy.sets.sets import Interval
from sympy.testing.pytest import XFAIL
# Imports used in srepr strings
from sympy.physics.quantum.spin import JzOp
from sympy.printing import srepr
from sympy.printing.pretty import pretty as xpretty
from sympy.printing.latex import latex
MutableDenseMatrix = Matrix
ENV: dict[str, Any] = {}
exec('from sympy import *', ENV)
exec('from sympy.physics.quantum import *', ENV)
exec('from sympy.physics.quantum.cg import *', ENV)
exec('from sympy.physics.quantum.spin import *', ENV)
exec('from sympy.physics.quantum.hilbert import *', ENV)
exec('from sympy.physics.quantum.qubit import *', ENV)
exec('from sympy.physics.quantum.qexpr import *', ENV)
exec('from sympy.physics.quantum.gate import *', ENV)
exec('from sympy.physics.quantum.constants import *', ENV)
def sT(expr, string):
"""
sT := sreprTest
from sympy/printing/tests/test_repr.py
"""
assert srepr(expr) == string
assert eval(string, ENV) == expr
def pretty(expr):
"""ASCII pretty-printing"""
return xpretty(expr, use_unicode=False, wrap_line=False)
def upretty(expr):
"""Unicode pretty-printing"""
return xpretty(expr, use_unicode=True, wrap_line=False)
def test_anticommutator():
A = Operator('A')
B = Operator('B')
ac = AntiCommutator(A, B)
ac_tall = AntiCommutator(A**2, B)
assert str(ac) == '{A,B}'
assert pretty(ac) == '{A,B}'
assert upretty(ac) == '{A,B}'
assert latex(ac) == r'\left\{A,B\right\}'
sT(ac, "AntiCommutator(Operator(Symbol('A')),Operator(Symbol('B')))")
assert str(ac_tall) == '{A**2,B}'
ascii_str = \
"""\
/ 2 \\\n\
<A ,B>\n\
\\ /\
"""
ucode_str = \
"""\
⎧ 2 ⎫\n\
⎨A ,B⎬\n\
⎩ ⎭\
"""
assert pretty(ac_tall) == ascii_str
assert upretty(ac_tall) == ucode_str
assert latex(ac_tall) == r'\left\{A^{2},B\right\}'
sT(ac_tall, "AntiCommutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))")
def test_cg():
cg = CG(1, 2, 3, 4, 5, 6)
wigner3j = Wigner3j(1, 2, 3, 4, 5, 6)
wigner6j = Wigner6j(1, 2, 3, 4, 5, 6)
wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)
assert str(cg) == 'CG(1, 2, 3, 4, 5, 6)'
ascii_str = \
"""\
5,6 \n\
C \n\
1,2,3,4\
"""
ucode_str = \
"""\
5,6 \n\
C \n\
1,2,3,4\
"""
assert pretty(cg) == ascii_str
assert upretty(cg) == ucode_str
assert latex(cg) == 'C^{5,6}_{1,2,3,4}'
assert latex(cg ** 2) == R'\left(C^{5,6}_{1,2,3,4}\right)^{2}'
sT(cg, "CG(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
assert str(wigner3j) == 'Wigner3j(1, 2, 3, 4, 5, 6)'
ascii_str = \
"""\
/1 3 5\\\n\
| |\n\
\\2 4 6/\
"""
ucode_str = \
"""\
⎛1 3 5⎞\n\
⎜ ⎟\n\
⎝2 4 6⎠\
"""
assert pretty(wigner3j) == ascii_str
assert upretty(wigner3j) == ucode_str
assert latex(wigner3j) == \
r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right)'
sT(wigner3j, "Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
assert str(wigner6j) == 'Wigner6j(1, 2, 3, 4, 5, 6)'
ascii_str = \
"""\
/1 2 3\\\n\
< >\n\
\\4 5 6/\
"""
ucode_str = \
"""\
⎧1 2 3⎫\n\
⎨ ⎬\n\
⎩4 5 6⎭\
"""
assert pretty(wigner6j) == ascii_str
assert upretty(wigner6j) == ucode_str
assert latex(wigner6j) == \
r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right\}'
sT(wigner6j, "Wigner6j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
assert str(wigner9j) == 'Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)'
ascii_str = \
"""\
/1 2 3\\\n\
| |\n\
<4 5 6>\n\
| |\n\
\\7 8 9/\
"""
ucode_str = \
"""\
⎧1 2 3⎫\n\
⎪ ⎪\n\
⎨4 5 6⎬\n\
⎪ ⎪\n\
⎩7 8 9⎭\
"""
assert pretty(wigner9j) == ascii_str
assert upretty(wigner9j) == ucode_str
assert latex(wigner9j) == \
r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right\}'
sT(wigner9j, "Wigner9j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8), Integer(9))")
def test_commutator():
A = Operator('A')
B = Operator('B')
c = Commutator(A, B)
c_tall = Commutator(A**2, B)
assert str(c) == '[A,B]'
assert pretty(c) == '[A,B]'
assert upretty(c) == '[A,B]'
assert latex(c) == r'\left[A,B\right]'
sT(c, "Commutator(Operator(Symbol('A')),Operator(Symbol('B')))")
assert str(c_tall) == '[A**2,B]'
ascii_str = \
"""\
[ 2 ]\n\
[A ,B]\
"""
ucode_str = \
"""\
⎡ 2 ⎤\n\
⎣A ,B⎦\
"""
assert pretty(c_tall) == ascii_str
assert upretty(c_tall) == ucode_str
assert latex(c_tall) == r'\left[A^{2},B\right]'
sT(c_tall, "Commutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))")
def test_constants():
assert str(hbar) == 'hbar'
assert pretty(hbar) == 'hbar'
assert upretty(hbar) == 'ℏ'
assert latex(hbar) == r'\hbar'
sT(hbar, "HBar()")
def test_dagger():
x = symbols('x')
expr = Dagger(x)
assert str(expr) == 'Dagger(x)'
ascii_str = \
"""\
+\n\
x \
"""
ucode_str = \
"""\
†\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert latex(expr) == r'x^{\dagger}'
sT(expr, "Dagger(Symbol('x'))")
@XFAIL
def test_gate_failing():
a, b, c, d = symbols('a,b,c,d')
uMat = Matrix([[a, b], [c, d]])
g = UGate((0,), uMat)
assert str(g) == 'U(0)'
def test_gate():
a, b, c, d = symbols('a,b,c,d')
uMat = Matrix([[a, b], [c, d]])
q = Qubit(1, 0, 1, 0, 1)
g1 = IdentityGate(2)
g2 = CGate((3, 0), XGate(1))
g3 = CNotGate(1, 0)
g4 = UGate((0,), uMat)
assert str(g1) == '1(2)'
assert pretty(g1) == '1 \n 2'
assert upretty(g1) == '1 \n 2'
assert latex(g1) == r'1_{2}'
sT(g1, "IdentityGate(Integer(2))")
assert str(g1*q) == '1(2)*|10101>'
ascii_str = \
"""\
1 *|10101>\n\
2 \
"""
ucode_str = \
"""\
1 ⋅❘10101⟩\n\
2 \
"""
assert pretty(g1*q) == ascii_str
assert upretty(g1*q) == ucode_str
assert latex(g1*q) == r'1_{2} {\left|10101\right\rangle }'
sT(g1*q, "Mul(IdentityGate(Integer(2)), Qubit(Integer(1),Integer(0),Integer(1),Integer(0),Integer(1)))")
assert str(g2) == 'C((3,0),X(1))'
ascii_str = \
"""\
C /X \\\n\
3,0\\ 1/\
"""
ucode_str = \
"""\
C ⎛X ⎞\n\
3,0⎝ 1⎠\
"""
assert pretty(g2) == ascii_str
assert upretty(g2) == ucode_str
assert latex(g2) == r'C_{3,0}{\left(X_{1}\right)}'
sT(g2, "CGate(Tuple(Integer(3), Integer(0)),XGate(Integer(1)))")
assert str(g3) == 'CNOT(1,0)'
ascii_str = \
"""\
CNOT \n\
1,0\
"""
ucode_str = \
"""\
CNOT \n\
1,0\
"""
assert pretty(g3) == ascii_str
assert upretty(g3) == ucode_str
assert latex(g3) == r'\text{CNOT}_{1,0}'
sT(g3, "CNotGate(Integer(1),Integer(0))")
ascii_str = \
"""\
U \n\
0\
"""
ucode_str = \
"""\
U \n\
0\
"""
assert str(g4) == \
"""\
U((0,),Matrix([\n\
[a, b],\n\
[c, d]]))\
"""
assert pretty(g4) == ascii_str
assert upretty(g4) == ucode_str
assert latex(g4) == r'U_{0}'
sT(g4, "UGate(Tuple(Integer(0)),ImmutableDenseMatrix([[Symbol('a'), Symbol('b')], [Symbol('c'), Symbol('d')]]))")
def test_hilbert():
h1 = HilbertSpace()
h2 = ComplexSpace(2)
h3 = FockSpace()
h4 = L2(Interval(0, oo))
assert str(h1) == 'H'
assert pretty(h1) == 'H'
assert upretty(h1) == 'H'
assert latex(h1) == r'\mathcal{H}'
sT(h1, "HilbertSpace()")
assert str(h2) == 'C(2)'
ascii_str = \
"""\
2\n\
C \
"""
ucode_str = \
"""\
2\n\
C \
"""
assert pretty(h2) == ascii_str
assert upretty(h2) == ucode_str
assert latex(h2) == r'\mathcal{C}^{2}'
sT(h2, "ComplexSpace(Integer(2))")
assert str(h3) == 'F'
assert pretty(h3) == 'F'
assert upretty(h3) == 'F'
assert latex(h3) == r'\mathcal{F}'
sT(h3, "FockSpace()")
assert str(h4) == 'L2(Interval(0, oo))'
ascii_str = \
"""\
2\n\
L \
"""
ucode_str = \
"""\
2\n\
L \
"""
assert pretty(h4) == ascii_str
assert upretty(h4) == ucode_str
assert latex(h4) == r'{\mathcal{L}^2}\left( \left[0, \infty\right) \right)'
sT(h4, "L2(Interval(Integer(0), oo, false, true))")
assert str(h1 + h2) == 'H+C(2)'
ascii_str = \
"""\
2\n\
H + C \
"""
ucode_str = \
"""\
2\n\
H ⊕ C \
"""
assert pretty(h1 + h2) == ascii_str
assert upretty(h1 + h2) == ucode_str
assert latex(h1 + h2)
sT(h1 + h2, "DirectSumHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))")
assert str(h1*h2) == "H*C(2)"
ascii_str = \
"""\
2\n\
H x C \
"""
ucode_str = \
"""\
2\n\
H ⨂ C \
"""
assert pretty(h1*h2) == ascii_str
assert upretty(h1*h2) == ucode_str
assert latex(h1*h2)
sT(h1*h2,
"TensorProductHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))")
assert str(h1**2) == 'H**2'
ascii_str = \
"""\
x2\n\
H \
"""
ucode_str = \
"""\
⨂2\n\
H \
"""
assert pretty(h1**2) == ascii_str
assert upretty(h1**2) == ucode_str
assert latex(h1**2) == r'{\mathcal{H}}^{\otimes 2}'
sT(h1**2, "TensorPowerHilbertSpace(HilbertSpace(),Integer(2))")
def test_innerproduct():
x = symbols('x')
ip1 = InnerProduct(Bra(), Ket())
ip2 = InnerProduct(TimeDepBra(), TimeDepKet())
ip3 = InnerProduct(JzBra(1, 1), JzKet(1, 1))
ip4 = InnerProduct(JzBraCoupled(1, 1, (1, 1)), JzKetCoupled(1, 1, (1, 1)))
ip_tall1 = InnerProduct(Bra(x/2), Ket(x/2))
ip_tall2 = InnerProduct(Bra(x), Ket(x/2))
ip_tall3 = InnerProduct(Bra(x/2), Ket(x))
assert str(ip1) == '<psi|psi>'
assert pretty(ip1) == '<psi|psi>'
assert upretty(ip1) == '⟨ψ❘ψ⟩'
assert latex(
ip1) == r'\left\langle \psi \right. {\left|\psi\right\rangle }'
sT(ip1, "InnerProduct(Bra(Symbol('psi')),Ket(Symbol('psi')))")
assert str(ip2) == '<psi;t|psi;t>'
assert pretty(ip2) == '<psi;t|psi;t>'
assert upretty(ip2) == '⟨ψ;t❘ψ;t⟩'
assert latex(ip2) == \
r'\left\langle \psi;t \right. {\left|\psi;t\right\rangle }'
sT(ip2, "InnerProduct(TimeDepBra(Symbol('psi'),Symbol('t')),TimeDepKet(Symbol('psi'),Symbol('t')))")
assert str(ip3) == "<1,1|1,1>"
assert pretty(ip3) == '<1,1|1,1>'
assert upretty(ip3) == '⟨1,1❘1,1⟩'
assert latex(ip3) == r'\left\langle 1,1 \right. {\left|1,1\right\rangle }'
sT(ip3, "InnerProduct(JzBra(Integer(1),Integer(1)),JzKet(Integer(1),Integer(1)))")
assert str(ip4) == "<1,1,j1=1,j2=1|1,1,j1=1,j2=1>"
assert pretty(ip4) == '<1,1,j1=1,j2=1|1,1,j1=1,j2=1>'
assert upretty(ip4) == '⟨1,1,j₁=1,j₂=1❘1,1,j₁=1,j₂=1⟩'
assert latex(ip4) == \
r'\left\langle 1,1,j_{1}=1,j_{2}=1 \right. {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }'
sT(ip4, "InnerProduct(JzBraCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))),JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))))")
assert str(ip_tall1) == '<x/2|x/2>'
ascii_str = \
"""\
/ | \\ \n\
/ x|x \\\n\
\\ -|- /\n\
\\2|2/ \
"""
ucode_str = \
"""\
╱ │ ╲ \n\
╱ x│x ╲\n\
╲ ─│─ ╱\n\
╲2│2╱ \
"""
assert pretty(ip_tall1) == ascii_str
assert upretty(ip_tall1) == ucode_str
assert latex(ip_tall1) == \
r'\left\langle \frac{x}{2} \right. {\left|\frac{x}{2}\right\rangle }'
sT(ip_tall1, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Mul(Rational(1, 2), Symbol('x'))))")
assert str(ip_tall2) == '<x|x/2>'
ascii_str = \
"""\
/ | \\ \n\
/ |x \\\n\
\\ x|- /\n\
\\ |2/ \
"""
ucode_str = \
"""\
╱ │ ╲ \n\
╱ │x ╲\n\
╲ x│─ ╱\n\
╲ │2╱ \
"""
assert pretty(ip_tall2) == ascii_str
assert upretty(ip_tall2) == ucode_str
assert latex(ip_tall2) == \
r'\left\langle x \right. {\left|\frac{x}{2}\right\rangle }'
sT(ip_tall2,
"InnerProduct(Bra(Symbol('x')),Ket(Mul(Rational(1, 2), Symbol('x'))))")
assert str(ip_tall3) == '<x/2|x>'
ascii_str = \
"""\
/ | \\ \n\
/ x| \\\n\
\\ -|x /\n\
\\2| / \
"""
ucode_str = \
"""\
╱ │ ╲ \n\
╱ x│ ╲\n\
╲ ─│x ╱\n\
╲2│ ╱ \
"""
assert pretty(ip_tall3) == ascii_str
assert upretty(ip_tall3) == ucode_str
assert latex(ip_tall3) == \
r'\left\langle \frac{x}{2} \right. {\left|x\right\rangle }'
sT(ip_tall3,
"InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Symbol('x')))")
def test_operator():
a = Operator('A')
b = Operator('B', Symbol('t'), S.Half)
inv = a.inv()
f = Function('f')
x = symbols('x')
d = DifferentialOperator(Derivative(f(x), x), f(x))
op = OuterProduct(Ket(), Bra())
assert str(a) == 'A'
assert pretty(a) == 'A'
assert upretty(a) == 'A'
assert latex(a) == 'A'
sT(a, "Operator(Symbol('A'))")
assert str(inv) == 'A**(-1)'
ascii_str = \
"""\
-1\n\
A \
"""
ucode_str = \
"""\
-1\n\
A \
"""
assert pretty(inv) == ascii_str
assert upretty(inv) == ucode_str
assert latex(inv) == r'A^{-1}'
sT(inv, "Pow(Operator(Symbol('A')), Integer(-1))")
assert str(d) == 'DifferentialOperator(Derivative(f(x), x),f(x))'
ascii_str = \
"""\
/d \\\n\
DifferentialOperator|--(f(x)),f(x)|\n\
\\dx /\
"""
ucode_str = \
"""\
⎛d ⎞\n\
DifferentialOperator⎜──(f(x)),f(x)⎟\n\
⎝dx ⎠\
"""
assert pretty(d) == ascii_str
assert upretty(d) == ucode_str
assert latex(d) == \
r'DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)'
sT(d, "DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))")
assert str(b) == 'Operator(B,t,1/2)'
assert pretty(b) == 'Operator(B,t,1/2)'
assert upretty(b) == 'Operator(B,t,1/2)'
assert latex(b) == r'Operator\left(B,t,\frac{1}{2}\right)'
sT(b, "Operator(Symbol('B'),Symbol('t'),Rational(1, 2))")
assert str(op) == '|psi><psi|'
assert pretty(op) == '|psi><psi|'
assert upretty(op) == '❘ψ⟩⟨ψ❘'
assert latex(op) == r'{\left|\psi\right\rangle }{\left\langle \psi\right|}'
sT(op, "OuterProduct(Ket(Symbol('psi')),Bra(Symbol('psi')))")
def test_qexpr():
q = QExpr('q')
assert str(q) == 'q'
assert pretty(q) == 'q'
assert upretty(q) == 'q'
assert latex(q) == r'q'
sT(q, "QExpr(Symbol('q'))")
def test_qubit():
q1 = Qubit('0101')
q2 = IntQubit(8)
assert str(q1) == '|0101>'
assert pretty(q1) == '|0101>'
assert upretty(q1) == '❘0101⟩'
assert latex(q1) == r'{\left|0101\right\rangle }'
sT(q1, "Qubit(Integer(0),Integer(1),Integer(0),Integer(1))")
assert str(q2) == '|8>'
assert pretty(q2) == '|8>'
assert upretty(q2) == '❘8⟩'
assert latex(q2) == r'{\left|8\right\rangle }'
sT(q2, "IntQubit(8)")
def test_spin():
lz = JzOp('L')
ket = JzKet(1, 0)
bra = JzBra(1, 0)
cket = JzKetCoupled(1, 0, (1, 2))
cbra = JzBraCoupled(1, 0, (1, 2))
cket_big = JzKetCoupled(1, 0, (1, 2, 3))
cbra_big = JzBraCoupled(1, 0, (1, 2, 3))
rot = Rotation(1, 2, 3)
bigd = WignerD(1, 2, 3, 4, 5, 6)
smalld = WignerD(1, 2, 3, 0, 4, 0)
assert str(lz) == 'Lz'
ascii_str = \
"""\
L \n\
z\
"""
ucode_str = \
"""\
L \n\
z\
"""
assert pretty(lz) == ascii_str
assert upretty(lz) == ucode_str
assert latex(lz) == 'L_z'
sT(lz, "JzOp(Symbol('L'))")
assert str(J2) == 'J2'
ascii_str = \
"""\
2\n\
J \
"""
ucode_str = \
"""\
2\n\
J \
"""
assert pretty(J2) == ascii_str
assert upretty(J2) == ucode_str
assert latex(J2) == r'J^2'
sT(J2, "J2Op(Symbol('J'))")
assert str(Jz) == 'Jz'
ascii_str = \
"""\
J \n\
z\
"""
ucode_str = \
"""\
J \n\
z\
"""
assert pretty(Jz) == ascii_str
assert upretty(Jz) == ucode_str
assert latex(Jz) == 'J_z'
sT(Jz, "JzOp(Symbol('J'))")
assert str(ket) == '|1,0>'
assert pretty(ket) == '|1,0>'
assert upretty(ket) == '❘1,0⟩'
assert latex(ket) == r'{\left|1,0\right\rangle }'
sT(ket, "JzKet(Integer(1),Integer(0))")
assert str(bra) == '<1,0|'
assert pretty(bra) == '<1,0|'
assert upretty(bra) == '⟨1,0❘'
assert latex(bra) == r'{\left\langle 1,0\right|}'
sT(bra, "JzBra(Integer(1),Integer(0))")
assert str(cket) == '|1,0,j1=1,j2=2>'
assert pretty(cket) == '|1,0,j1=1,j2=2>'
assert upretty(cket) == '❘1,0,j₁=1,j₂=2⟩'
assert latex(cket) == r'{\left|1,0,j_{1}=1,j_{2}=2\right\rangle }'
sT(cket, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))")
assert str(cbra) == '<1,0,j1=1,j2=2|'
assert pretty(cbra) == '<1,0,j1=1,j2=2|'
assert upretty(cbra) == '⟨1,0,j₁=1,j₂=2❘'
assert latex(cbra) == r'{\left\langle 1,0,j_{1}=1,j_{2}=2\right|}'
sT(cbra, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))")
assert str(cket_big) == '|1,0,j1=1,j2=2,j3=3,j(1,2)=3>'
# TODO: Fix non-unicode pretty printing
# i.e. j1,2 -> j(1,2)
assert pretty(cket_big) == '|1,0,j1=1,j2=2,j3=3,j1,2=3>'
assert upretty(cket_big) == '❘1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3⟩'
assert latex(cket_big) == \
r'{\left|1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right\rangle }'
sT(cket_big, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))")
assert str(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j(1,2)=3|'
assert pretty(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j1,2=3|'
assert upretty(cbra_big) == '⟨1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3❘'
assert latex(cbra_big) == \
r'{\left\langle 1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right|}'
sT(cbra_big, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))")
assert str(rot) == 'R(1,2,3)'
assert pretty(rot) == 'R (1,2,3)'
assert upretty(rot) == 'ℛ (1,2,3)'
assert latex(rot) == r'\mathcal{R}\left(1,2,3\right)'
sT(rot, "Rotation(Integer(1),Integer(2),Integer(3))")
assert str(bigd) == 'WignerD(1, 2, 3, 4, 5, 6)'
ascii_str = \
"""\
1 \n\
D (4,5,6)\n\
2,3 \
"""
ucode_str = \
"""\
1 \n\
D (4,5,6)\n\
2,3 \
"""
assert pretty(bigd) == ascii_str
assert upretty(bigd) == ucode_str
assert latex(bigd) == r'D^{1}_{2,3}\left(4,5,6\right)'
sT(bigd, "WignerD(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))")
assert str(smalld) == 'WignerD(1, 2, 3, 0, 4, 0)'
ascii_str = \
"""\
1 \n\
d (4)\n\
2,3 \
"""
ucode_str = \
"""\
1 \n\
d (4)\n\
2,3 \
"""
assert pretty(smalld) == ascii_str
assert upretty(smalld) == ucode_str
assert latex(smalld) == r'd^{1}_{2,3}\left(4\right)'
sT(smalld, "WignerD(Integer(1), Integer(2), Integer(3), Integer(0), Integer(4), Integer(0))")
def test_state():
x = symbols('x')
bra = Bra()
ket = Ket()
bra_tall = Bra(x/2)
ket_tall = Ket(x/2)
tbra = TimeDepBra()
tket = TimeDepKet()
assert str(bra) == '<psi|'
assert pretty(bra) == '<psi|'
assert upretty(bra) == '⟨ψ❘'
assert latex(bra) == r'{\left\langle \psi\right|}'
sT(bra, "Bra(Symbol('psi'))")
assert str(ket) == '|psi>'
assert pretty(ket) == '|psi>'
assert upretty(ket) == '❘ψ⟩'
assert latex(ket) == r'{\left|\psi\right\rangle }'
sT(ket, "Ket(Symbol('psi'))")
assert str(bra_tall) == '<x/2|'
ascii_str = \
"""\
/ |\n\
/ x|\n\
\\ -|\n\
\\2|\
"""
ucode_str = \
"""\
╱ │\n\
╱ x│\n\
╲ ─│\n\
╲2│\
"""
assert pretty(bra_tall) == ascii_str
assert upretty(bra_tall) == ucode_str
assert latex(bra_tall) == r'{\left\langle \frac{x}{2}\right|}'
sT(bra_tall, "Bra(Mul(Rational(1, 2), Symbol('x')))")
assert str(ket_tall) == '|x/2>'
ascii_str = \
"""\
| \\ \n\
|x \\\n\
|- /\n\
|2/ \
"""
ucode_str = \
"""\
│ ╲ \n\
│x ╲\n\
│─ ╱\n\
│2╱ \
"""
assert pretty(ket_tall) == ascii_str
assert upretty(ket_tall) == ucode_str
assert latex(ket_tall) == r'{\left|\frac{x}{2}\right\rangle }'
sT(ket_tall, "Ket(Mul(Rational(1, 2), Symbol('x')))")
assert str(tbra) == '<psi;t|'
assert pretty(tbra) == '<psi;t|'
assert upretty(tbra) == '⟨ψ;t❘'
assert latex(tbra) == r'{\left\langle \psi;t\right|}'
sT(tbra, "TimeDepBra(Symbol('psi'),Symbol('t'))")
assert str(tket) == '|psi;t>'
assert pretty(tket) == '|psi;t>'
assert upretty(tket) == '❘ψ;t⟩'
assert latex(tket) == r'{\left|\psi;t\right\rangle }'
sT(tket, "TimeDepKet(Symbol('psi'),Symbol('t'))")
def test_tensorproduct():
tp = TensorProduct(JzKet(1, 1), JzKet(1, 0))
assert str(tp) == '|1,1>x|1,0>'
assert pretty(tp) == '|1,1>x |1,0>'
assert upretty(tp) == '❘1,1⟩⨂ ❘1,0⟩'
assert latex(tp) == \
r'{{\left|1,1\right\rangle }}\otimes {{\left|1,0\right\rangle }}'
sT(tp, "TensorProduct(JzKet(Integer(1),Integer(1)), JzKet(Integer(1),Integer(0)))")
def test_big_expr():
f = Function('f')
x = symbols('x')
e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1))
e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2))
e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1)))
e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval(
0, oo)) + HilbertSpace())
assert str(e1) == '(Jz**2)x(Dagger(A) + Dagger(B))*{Dagger(DifferentialOperator(Derivative(f(x), x),f(x)))**3,Dagger(A) + Dagger(B)}*(<1,0| + <1,1|)*(|0,0> + |1,-1>)'
ascii_str = \
"""\
/ 3 \\ \n\
|/ +\\ | \n\
2 / + +\\ <| /d \\ | + +> \n\
/J \\ x \\A + B /*||DifferentialOperator|--(f(x)),f(x)| | ,A + B |*(<1,0| + <1,1|)*(|0,0> + |1,-1>)\n\
\\ z/ \\\\ \\dx / / / \
"""
ucode_str = \
"""\
⎧ 3 ⎫ \n\
⎪⎛ †⎞ ⎪ \n\
2 ⎛ † †⎞ ⎨⎜ ⎛d ⎞ ⎟ † †⎬ \n\
⎛J ⎞ ⨂ ⎝A + B ⎠⋅⎪⎜DifferentialOperator⎜──(f(x)),f(x)⎟ ⎟ ,A + B ⎪⋅(⟨1,0❘ + ⟨1,1❘)⋅(❘0,0⟩ + ❘1,-1⟩)\n\
⎝ z⎠ ⎩⎝ ⎝dx ⎠ ⎠ ⎭ \
"""
assert pretty(e1) == ascii_str
assert upretty(e1) == ucode_str
assert latex(e1) == \
r'{J_z^{2}}\otimes \left({A^{\dagger} + B^{\dagger}}\right) \left\{\left(DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)^{\dagger}\right)^{3},A^{\dagger} + B^{\dagger}\right\} \left({\left\langle 1,0\right|} + {\left\langle 1,1\right|}\right) \left({\left|0,0\right\rangle } + {\left|1,-1\right\rangle }\right)'
sT(e1, "Mul(TensorProduct(Pow(JzOp(Symbol('J')), Integer(2)), Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), AntiCommutator(Pow(Dagger(DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))), Integer(3)),Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), Add(JzBra(Integer(1),Integer(0)), JzBra(Integer(1),Integer(1))), Add(JzKet(Integer(0),Integer(0)), JzKet(Integer(1),Integer(-1))))")
assert str(e2) == '[Jz**2,A + B]*{E**(-2),Dagger(D)*Dagger(C)}*[J2,Jz]'
ascii_str = \
"""\
[ 2 ] / -2 + +\\ [ 2 ]\n\
[/J \\ ,A + B]*<E ,D *C >*[J ,J ]\n\
[\\ z/ ] \\ / [ z]\
"""
ucode_str = \
"""\
⎡ 2 ⎤ ⎧ -2 † †⎫ ⎡ 2 ⎤\n\
⎢⎛J ⎞ ,A + B⎥⋅⎨E ,D ⋅C ⎬⋅⎢J ,J ⎥\n\
⎣⎝ z⎠ ⎦ ⎩ ⎭ ⎣ z⎦\
"""
assert pretty(e2) == ascii_str
assert upretty(e2) == ucode_str
assert latex(e2) == \
r'\left[J_z^{2},A + B\right] \left\{E^{-2},D^{\dagger} C^{\dagger}\right\} \left[J^2,J_z\right]'
sT(e2, "Mul(Commutator(Pow(JzOp(Symbol('J')), Integer(2)),Add(Operator(Symbol('A')), Operator(Symbol('B')))), AntiCommutator(Pow(Operator(Symbol('E')), Integer(-2)),Mul(Dagger(Operator(Symbol('D'))), Dagger(Operator(Symbol('C'))))), Commutator(J2Op(Symbol('J')),JzOp(Symbol('J'))))")
assert str(e3) == \
"Wigner3j(1, 2, 3, 4, 5, 6)*[Dagger(B) + A,C + D]x(-J2 + Jz)*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x|1,-1,j1=1,j2=1>"
ascii_str = \
"""\
[ + ] / 2 \\ \n\
/1 3 5\\*[B + A,C + D]x |- J + J |*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x |1,-1,j1=1,j2=1>\n\
| | \\ z/ \n\
\\2 4 6/ \
"""
ucode_str = \
"""\
⎡ † ⎤ ⎛ 2 ⎞ \n\
⎛1 3 5⎞⋅⎣B + A,C + D⎦⨂ ⎜- J + J ⎟⋅❘1,0⟩⟨1,1❘⋅(❘1,0,j₁=1,j₂=1⟩ + ❘1,1,j₁=1,j₂=1⟩)⨂ ❘1,-1,j₁=1,j₂=1⟩\n\
⎜ ⎟ ⎝ z⎠ \n\
⎝2 4 6⎠ \
"""
assert pretty(e3) == ascii_str
assert upretty(e3) == ucode_str
assert latex(e3) == \
r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) {\left[B^{\dagger} + A,C + D\right]}\otimes \left({- J^2 + J_z}\right) {\left|1,0\right\rangle }{\left\langle 1,1\right|} \left({{\left|1,0,j_{1}=1,j_{2}=1\right\rangle } + {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }}\right)\otimes {{\left|1,-1,j_{1}=1,j_{2}=1\right\rangle }}'
sT(e3, "Mul(Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)), TensorProduct(Commutator(Add(Dagger(Operator(Symbol('B'))), Operator(Symbol('A'))),Add(Operator(Symbol('C')), Operator(Symbol('D')))), Add(Mul(Integer(-1), J2Op(Symbol('J'))), JzOp(Symbol('J')))), OuterProduct(JzKet(Integer(1),Integer(0)),JzBra(Integer(1),Integer(1))), TensorProduct(Add(JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))), JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))), JzKetCoupled(Integer(1),Integer(-1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))))")
assert str(e4) == '(C(1)*C(2)+F**2)*(L2(Interval(0, oo))+H)'
ascii_str = \
"""\
// 1 2\\ x2\\ / 2 \\\n\
\\\\C x C / + F / x \\L + H/\
"""
ucode_str = \
"""\
⎛⎛ 1 2⎞ ⨂2⎞ ⎛ 2 ⎞\n\
⎝⎝C ⨂ C ⎠ ⊕ F ⎠ ⨂ ⎝L ⊕ H⎠\
"""
assert pretty(e4) == ascii_str
assert upretty(e4) == ucode_str
assert latex(e4) == \
r'\left(\left(\mathcal{C}^{1}\otimes \mathcal{C}^{2}\right)\oplus {\mathcal{F}}^{\otimes 2}\right)\otimes \left({\mathcal{L}^2}\left( \left[0, \infty\right) \right)\oplus \mathcal{H}\right)'
sT(e4, "TensorProductHilbertSpace((DirectSumHilbertSpace(TensorProductHilbertSpace(ComplexSpace(Integer(1)),ComplexSpace(Integer(2))),TensorPowerHilbertSpace(FockSpace(),Integer(2)))),(DirectSumHilbertSpace(L2(Interval(Integer(0), oo, false, true)),HilbertSpace())))")
def _test_sho1d():
ad = RaisingOp('a')
assert pretty(ad) == ' \N{DAGGER}\na '
assert latex(ad) == 'a^{\\dagger}'
|
adce01c251f7546576d541ffb3a23dcb50b01c1c2f772df1be41034b79402474 | from sympy.core.evalf import evalf
from sympy.core.numbers import pi
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import acos, sin, cos
from sympy.matrices.dense import Matrix
from sympy.physics.mechanics import (ReferenceFrame, dynamicsymbols,
KanesMethod, inertia, msubs, Point, RigidBody, dot)
from sympy.testing.pytest import slow, ON_CI, skip
@slow
def test_bicycle():
if ON_CI:
skip("Too slow for CI.")
# Code to get equations of motion for a bicycle modeled as in:
# J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized
# dynamics equations for the balance and steer of a bicycle: a benchmark
# and review. Proceedings of The Royal Society (2007) 463, 1955-1982
# doi: 10.1098/rspa.2007.1857
# Note that this code has been crudely ported from Autolev, which is the
# reason for some of the unusual naming conventions. It was purposefully as
# similar as possible in order to aide debugging.
# Declare Coordinates & Speeds
# Simple definitions for qdots - qd = u
# Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame
# ang. rate (spinning motion), frame ang. rate (pitching motion), steering
# frame ang. rate, and front wheel ang. rate (spinning motion).
# Wheel positions are ignorable coordinates, so they are not introduced.
q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5')
q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1)
u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6')
u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1)
# Declare System's Parameters
WFrad, WRrad, htangle, forkoffset = symbols('WFrad WRrad htangle forkoffset')
forklength, framelength, forkcg1 = symbols('forklength framelength forkcg1')
forkcg3, framecg1, framecg3, Iwr11 = symbols('forkcg3 framecg1 framecg3 Iwr11')
Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11')
Iframe22, Iframe33, Iframe31, Ifork11 = symbols('Iframe22 Iframe33 Iframe31 Ifork11')
Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g')
mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr')
# Set up reference frames for the system
# N - inertial
# Y - yaw
# R - roll
# WR - rear wheel, rotation angle is ignorable coordinate so not oriented
# Frame - bicycle frame
# TempFrame - statically rotated frame for easier reference inertia definition
# Fork - bicycle fork
# TempFork - statically rotated frame for easier reference inertia definition
# WF - front wheel, again posses a ignorable coordinate
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
R = Y.orientnew('R', 'Axis', [q2, Y.x])
Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y])
WR = ReferenceFrame('WR')
TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y])
Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x])
TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y])
WF = ReferenceFrame('WF')
# Kinematics of the Bicycle First block of code is forming the positions of
# the relevant points
# rear wheel contact -> rear wheel mass center -> frame mass center +
# frame/fork connection -> fork mass center + front wheel mass center ->
# front wheel contact point
WR_cont = Point('WR_cont')
WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z)
Steer = WR_mc.locatenew('Steer', framelength * Frame.z)
Frame_mc = WR_mc.locatenew('Frame_mc', - framecg1 * Frame.x
+ framecg3 * Frame.z)
Fork_mc = Steer.locatenew('Fork_mc', - forkcg1 * Fork.x
+ forkcg3 * Fork.z)
WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z)
WF_cont = WF_mc.locatenew('WF_cont', WFrad * (dot(Fork.y, Y.z) * Fork.y -
Y.z).normalize())
# Set the angular velocity of each frame.
# Angular accelerations end up being calculated automatically by
# differentiating the angular velocities when first needed.
# u1 is yaw rate
# u2 is roll rate
# u3 is rear wheel rate
# u4 is frame pitch rate
# u5 is fork steer rate
# u6 is front wheel rate
Y.set_ang_vel(N, u1 * Y.z)
R.set_ang_vel(Y, u2 * R.x)
WR.set_ang_vel(Frame, u3 * Frame.y)
Frame.set_ang_vel(R, u4 * Frame.y)
Fork.set_ang_vel(Frame, u5 * Fork.x)
WF.set_ang_vel(Fork, u6 * Fork.y)
# Form the velocities of the previously defined points, using the 2 - point
# theorem (written out by hand here). Accelerations again are calculated
# automatically when first needed.
WR_cont.set_vel(N, 0)
WR_mc.v2pt_theory(WR_cont, N, WR)
Steer.v2pt_theory(WR_mc, N, Frame)
Frame_mc.v2pt_theory(WR_mc, N, Frame)
Fork_mc.v2pt_theory(Steer, N, Fork)
WF_mc.v2pt_theory(Steer, N, Fork)
WF_cont.v2pt_theory(WF_mc, N, WF)
# Sets the inertias of each body. Uses the inertia frame to construct the
# inertia dyadics. Wheel inertias are only defined by principle moments of
# inertia, and are in fact constant in the frame and fork reference frames;
# it is for this reason that the orientations of the wheels does not need
# to be defined. The frame and fork inertias are defined in the 'Temp'
# frames which are fixed to the appropriate body frames; this is to allow
# easier input of the reference values of the benchmark paper. Note that
# due to slightly different orientations, the products of inertia need to
# have their signs flipped; this is done later when entering the numerical
# value.
Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0, Iframe31), Frame_mc)
Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0, Ifork31), Fork_mc)
WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc)
WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc)
# Declaration of the RigidBody containers. ::
BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I)
BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I)
BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I)
BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I)
# The kinematic differential equations; they are defined quite simply. Each
# entry in this list is equal to zero.
kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5]
# The nonholonomic constraints are the velocity of the front wheel contact
# point dotted into the X, Y, and Z directions; the yaw frame is used as it
# is "closer" to the front wheel (1 less DCM connecting them). These
# constraints force the velocity of the front wheel contact point to be 0
# in the inertial frame; the X and Y direction constraints enforce a
# "no-slip" condition, and the Z direction constraint forces the front
# wheel contact point to not move away from the ground frame, essentially
# replicating the holonomic constraint which does not allow the frame pitch
# to change in an invalid fashion.
conlist_speed = [WF_cont.vel(N) & Y.x, WF_cont.vel(N) & Y.y, WF_cont.vel(N) & Y.z]
# The holonomic constraint is that the position from the rear wheel contact
# point to the front wheel contact point when dotted into the
# normal-to-ground plane direction must be zero; effectively that the front
# and rear wheel contact points are always touching the ground plane. This
# is actually not part of the dynamic equations, but instead is necessary
# for the lineraization process.
conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z]
# The force list; each body has the appropriate gravitational force applied
# at its mass center.
FL = [(Frame_mc, -mframe * g * Y.z),
(Fork_mc, -mfork * g * Y.z),
(WF_mc, -mwf * g * Y.z),
(WR_mc, -mwr * g * Y.z)]
BL = [BodyFrame, BodyFork, BodyWR, BodyWF]
# The N frame is the inertial frame, coordinates are supplied in the order
# of independent, dependent coordinates, as are the speeds. The kinematic
# differential equation are also entered here. Here the dependent speeds
# are specified, in the same order they were provided in earlier, along
# with the non-holonomic constraints. The dependent coordinate is also
# provided, with the holonomic constraint. Again, this is only provided
# for the linearization process.
KM = KanesMethod(N, q_ind=[q1, q2, q5],
q_dependent=[q4], configuration_constraints=conlist_coord,
u_ind=[u2, u3, u5],
u_dependent=[u1, u4, u6], velocity_constraints=conlist_speed,
kd_eqs=kd)
(fr, frstar) = KM.kanes_equations(BL, FL)
# This is the start of entering in the numerical values from the benchmark
# paper to validate the eigen values of the linearized equations from this
# model to the reference eigen values. Look at the aforementioned paper for
# more information. Some of these are intermediate values, used to
# transform values from the paper into the coordinate systems used in this
# model.
PaperRadRear = 0.3
PaperRadFront = 0.35
HTA = evalf.N(pi / 2 - pi / 10)
TrailPaper = 0.08
rake = evalf.N(-(TrailPaper*sin(HTA)-(PaperRadFront*cos(HTA))))
PaperWb = 1.02
PaperFrameCgX = 0.3
PaperFrameCgZ = 0.9
PaperForkCgX = 0.9
PaperForkCgZ = 0.7
FrameLength = evalf.N(PaperWb*sin(HTA)-(rake-(PaperRadFront-PaperRadRear)*cos(HTA)))
FrameCGNorm = evalf.N((PaperFrameCgZ - PaperRadRear-(PaperFrameCgX/sin(HTA))*cos(HTA))*sin(HTA))
FrameCGPar = evalf.N(PaperFrameCgX / sin(HTA) + (PaperFrameCgZ - PaperRadRear - PaperFrameCgX / sin(HTA) * cos(HTA)) * cos(HTA))
tempa = evalf.N(PaperForkCgZ - PaperRadFront)
tempb = evalf.N(PaperWb-PaperForkCgX)
tempc = evalf.N(sqrt(tempa**2+tempb**2))
PaperForkL = evalf.N(PaperWb*cos(HTA)-(PaperRadFront-PaperRadRear)*sin(HTA))
ForkCGNorm = evalf.N(rake+(tempc * sin(pi/2-HTA-acos(tempa/tempc))))
ForkCGPar = evalf.N(tempc * cos((pi/2-HTA)-acos(tempa/tempc))-PaperForkL)
# Here is the final assembly of the numerical values. The symbol 'v' is the
# forward speed of the bicycle (a concept which only makes sense in the
# upright, static equilibrium case?). These are in a dictionary which will
# later be substituted in. Again the sign on the *product* of inertia
# values is flipped here, due to different orientations of coordinate
# systems.
v = symbols('v')
val_dict = {WFrad: PaperRadFront,
WRrad: PaperRadRear,
htangle: HTA,
forkoffset: rake,
forklength: PaperForkL,
framelength: FrameLength,
forkcg1: ForkCGPar,
forkcg3: ForkCGNorm,
framecg1: FrameCGNorm,
framecg3: FrameCGPar,
Iwr11: 0.0603,
Iwr22: 0.12,
Iwf11: 0.1405,
Iwf22: 0.28,
Ifork11: 0.05892,
Ifork22: 0.06,
Ifork33: 0.00708,
Ifork31: 0.00756,
Iframe11: 9.2,
Iframe22: 11,
Iframe33: 2.8,
Iframe31: -2.4,
mfork: 4,
mframe: 85,
mwf: 3,
mwr: 2,
g: 9.81,
q1: 0,
q2: 0,
q4: 0,
q5: 0,
u1: 0,
u2: 0,
u3: v / PaperRadRear,
u4: 0,
u5: 0,
u6: v / PaperRadFront}
# Linearizes the forcing vector; the equations are set up as MM udot =
# forcing, where MM is the mass matrix, udot is the vector representing the
# time derivatives of the generalized speeds, and forcing is a vector which
# contains both external forcing terms and internal forcing terms, such as
# centripital or coriolis forces. This actually returns a matrix with as
# many rows as *total* coordinates and speeds, but only as many columns as
# independent coordinates and speeds.
forcing_lin = KM.linearize()[0]
# As mentioned above, the size of the linearized forcing terms is expanded
# to include both q's and u's, so the mass matrix must have this done as
# well. This will likely be changed to be part of the linearized process,
# for future reference.
MM_full = KM.mass_matrix_full
MM_full_s = msubs(MM_full, val_dict)
forcing_lin_s = msubs(forcing_lin, KM.kindiffdict(), val_dict)
MM_full_s = MM_full_s.evalf()
forcing_lin_s = forcing_lin_s.evalf()
# Finally, we construct an "A" matrix for the form xdot = A x (x being the
# state vector, although in this case, the sizes are a little off). The
# following line extracts only the minimum entries required for eigenvalue
# analysis, which correspond to rows and columns for lean, steer, lean
# rate, and steer rate.
Amat = MM_full_s.inv() * forcing_lin_s
A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5])
# Precomputed for comparison
Res = Matrix([[ 0, 0, 1.0, 0],
[ 0, 0, 0, 1.0],
[9.48977444677355, -0.891197738059089*v**2 - 0.571523173729245, -0.105522449805691*v, -0.330515398992311*v],
[11.7194768719633, -1.97171508499972*v**2 + 30.9087533932407, 3.67680523332152*v, -3.08486552743311*v]])
# Actual eigenvalue comparison
eps = 1.e-12
for i in range(6):
error = Res.subs(v, i) - A.subs(v, i)
assert all(abs(x) < eps for x in error)
|
1be6fc18e4d7ab226e66dbe0b056f2156519b6d7356a3e79fd5c847465a14d94 | """
MKS unit system.
MKS stands for "meter, kilogram, second, ampere".
"""
from __future__ import annotations
from sympy.physics.units.definitions import Z0, ampere, coulomb, farad, henry, siemens, tesla, volt, weber, ohm
from sympy.physics.units.definitions.dimension_definitions import (
capacitance, charge, conductance, current, impedance, inductance,
magnetic_density, magnetic_flux, voltage)
from sympy.physics.units.prefixes import PREFIXES, prefix_unit
from sympy.physics.units.systems.mks import MKS, dimsys_length_weight_time
from sympy.physics.units.quantities import Quantity
dims = (voltage, impedance, conductance, current, capacitance, inductance, charge,
magnetic_density, magnetic_flux)
units = [ampere, volt, ohm, siemens, farad, henry, coulomb, tesla, weber]
all_units: list[Quantity] = []
for u in units:
all_units.extend(prefix_unit(u, PREFIXES))
all_units.extend(units)
all_units.append(Z0)
dimsys_MKSA = dimsys_length_weight_time.extend([
# Dimensional dependencies for base dimensions (MKSA not in MKS)
current,
], new_dim_deps=dict(
# Dimensional dependencies for derived dimensions
voltage=dict(mass=1, length=2, current=-1, time=-3),
impedance=dict(mass=1, length=2, current=-2, time=-3),
conductance=dict(mass=-1, length=-2, current=2, time=3),
capacitance=dict(mass=-1, length=-2, current=2, time=4),
inductance=dict(mass=1, length=2, current=-2, time=-2),
charge=dict(current=1, time=1),
magnetic_density=dict(mass=1, current=-1, time=-2),
magnetic_flux=dict(length=2, mass=1, current=-1, time=-2),
))
MKSA = MKS.extend(base=(ampere,), units=all_units, name='MKSA', dimension_system=dimsys_MKSA, derived_units={
magnetic_flux: weber,
impedance: ohm,
current: ampere,
voltage: volt,
inductance: henry,
conductance: siemens,
magnetic_density: tesla,
charge: coulomb,
capacitance: farad,
})
|
af64cbfa7e55d6e89cd79b3cece3de3cfef790c71e17bfa6ce4015e52a5ed05c | from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.units import UnitSystem, centimeter, gram, second, coulomb, charge, speed_of_light, current, mass, \
length, voltage, magnetic_density, magnetic_flux
from sympy.physics.units.definitions import coulombs_constant
from sympy.physics.units.definitions.unit_definitions import statcoulomb, statampere, statvolt, volt, tesla, gauss, \
weber, maxwell, debye, oersted, ohm, farad, henry, erg, ampere, coulomb_constant
from sympy.physics.units.systems.mks import dimsys_length_weight_time
One = S.One
dimsys_cgs = dimsys_length_weight_time.extend(
[],
new_dim_deps=dict(
# Dimensional dependencies for derived dimensions
impedance=dict(time=1, length=-1),
conductance=dict(time=-1, length=1),
capacitance=dict(length=1),
inductance=dict(time=2, length=-1),
charge=dict(mass=S.Half, length=S(3)/2, time=-1),
current=dict(mass=One/2, length=3*One/2, time=-2),
voltage=dict(length=-One/2, mass=One/2, time=-1),
magnetic_density=dict(length=-One/2, mass=One/2, time=-1),
magnetic_flux=dict(length=3*One/2, mass=One/2, time=-1),
)
)
cgs_gauss = UnitSystem(
base_units=[centimeter, gram, second],
units=[],
name="cgs_gauss",
dimension_system=dimsys_cgs)
cgs_gauss.set_quantity_scale_factor(coulombs_constant, 1)
cgs_gauss.set_quantity_dimension(statcoulomb, charge)
cgs_gauss.set_quantity_scale_factor(statcoulomb, centimeter**(S(3)/2)*gram**(S.Half)/second)
cgs_gauss.set_quantity_dimension(coulomb, charge)
cgs_gauss.set_quantity_dimension(statampere, current)
cgs_gauss.set_quantity_scale_factor(statampere, statcoulomb/second)
cgs_gauss.set_quantity_dimension(statvolt, voltage)
cgs_gauss.set_quantity_scale_factor(statvolt, erg/statcoulomb)
cgs_gauss.set_quantity_dimension(volt, voltage)
cgs_gauss.set_quantity_dimension(gauss, magnetic_density)
cgs_gauss.set_quantity_scale_factor(gauss, sqrt(gram/centimeter)/second)
cgs_gauss.set_quantity_dimension(tesla, magnetic_density)
cgs_gauss.set_quantity_dimension(maxwell, magnetic_flux)
cgs_gauss.set_quantity_scale_factor(maxwell, sqrt(centimeter**3*gram)/second)
# SI units expressed in CGS-gaussian units:
cgs_gauss.set_quantity_scale_factor(coulomb, 10*speed_of_light*statcoulomb)
cgs_gauss.set_quantity_scale_factor(ampere, 10*speed_of_light*statcoulomb/second)
cgs_gauss.set_quantity_scale_factor(volt, 10**6/speed_of_light*statvolt)
cgs_gauss.set_quantity_scale_factor(weber, 10**8*maxwell)
cgs_gauss.set_quantity_scale_factor(tesla, 10**4*gauss)
cgs_gauss.set_quantity_scale_factor(debye, One/10**18*statcoulomb*centimeter)
cgs_gauss.set_quantity_scale_factor(oersted, sqrt(gram/centimeter)/second)
cgs_gauss.set_quantity_scale_factor(ohm, 10**5/speed_of_light**2*second/centimeter)
cgs_gauss.set_quantity_scale_factor(farad, One/10**5*speed_of_light**2*centimeter)
cgs_gauss.set_quantity_scale_factor(henry, 10**5/speed_of_light**2/centimeter*second**2)
# Coulomb's constant:
cgs_gauss.set_quantity_dimension(coulomb_constant, 1)
cgs_gauss.set_quantity_scale_factor(coulomb_constant, 1)
__all__ = [
'ohm', 'tesla', 'maxwell', 'speed_of_light', 'volt', 'second', 'voltage',
'debye', 'dimsys_length_weight_time', 'centimeter', 'coulomb_constant',
'farad', 'sqrt', 'UnitSystem', 'current', 'charge', 'weber', 'gram',
'statcoulomb', 'gauss', 'S', 'statvolt', 'oersted', 'statampere',
'dimsys_cgs', 'coulomb', 'magnetic_density', 'magnetic_flux', 'One',
'length', 'erg', 'mass', 'coulombs_constant', 'henry', 'ampere',
'cgs_gauss',
]
|
245558f85248a8191d1125a1bab9fb1576f1916e836e3fe9494b58c73c926a66 | """
SI unit system.
Based on MKSA, which stands for "meter, kilogram, second, ampere".
Added kelvin, candela and mole.
"""
from __future__ import annotations
from sympy.physics.units import DimensionSystem, Dimension, dHg0
from sympy.physics.units.quantities import Quantity
from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.units.definitions.dimension_definitions import (
acceleration, action, current, impedance, length, mass, time, velocity,
amount_of_substance, temperature, information, frequency, force, pressure,
energy, power, charge, voltage, capacitance, conductance, magnetic_flux,
magnetic_density, inductance, luminous_intensity
)
from sympy.physics.units.definitions import (
kilogram, newton, second, meter, gram, cd, K, joule, watt, pascal, hertz,
coulomb, volt, ohm, siemens, farad, henry, tesla, weber, dioptre, lux,
katal, gray, becquerel, inch, liter, julian_year, gravitational_constant,
speed_of_light, elementary_charge, planck, hbar, electronvolt,
avogadro_number, avogadro_constant, boltzmann_constant,
stefan_boltzmann_constant, Da, atomic_mass_constant, molar_gas_constant,
faraday_constant, josephson_constant, von_klitzing_constant,
acceleration_due_to_gravity, magnetic_constant, vacuum_permittivity,
vacuum_impedance, coulomb_constant, atmosphere, bar, pound, psi, mmHg,
milli_mass_unit, quart, lightyear, astronomical_unit, planck_mass,
planck_time, planck_temperature, planck_length, planck_charge, planck_area,
planck_volume, planck_momentum, planck_energy, planck_force, planck_power,
planck_density, planck_energy_density, planck_intensity,
planck_angular_frequency, planck_pressure, planck_current, planck_voltage,
planck_impedance, planck_acceleration, bit, byte, kibibyte, mebibyte,
gibibyte, tebibyte, pebibyte, exbibyte, curie, rutherford, radian, degree,
steradian, angular_mil, atomic_mass_unit, gee, kPa, ampere, u0, c, kelvin,
mol, mole, candela, m, kg, s, electric_constant, G, boltzmann
)
from sympy.physics.units.prefixes import PREFIXES, prefix_unit
from sympy.physics.units.systems.mksa import MKSA, dimsys_MKSA
derived_dims = (frequency, force, pressure, energy, power, charge, voltage,
capacitance, conductance, magnetic_flux,
magnetic_density, inductance, luminous_intensity)
base_dims = (amount_of_substance, luminous_intensity, temperature)
units = [mol, cd, K, lux, hertz, newton, pascal, joule, watt, coulomb, volt,
farad, ohm, siemens, weber, tesla, henry, candela, lux, becquerel,
gray, katal]
all_units: list[Quantity] = []
for u in units:
all_units.extend(prefix_unit(u, PREFIXES))
all_units.extend(units)
all_units.extend([mol, cd, K, lux])
dimsys_SI = dimsys_MKSA.extend(
[
# Dimensional dependencies for other base dimensions:
temperature,
amount_of_substance,
luminous_intensity,
])
dimsys_default = dimsys_SI.extend(
[information],
)
SI = MKSA.extend(base=(mol, cd, K), units=all_units, name='SI', dimension_system=dimsys_SI, derived_units={
power: watt,
magnetic_flux: weber,
time: second,
impedance: ohm,
pressure: pascal,
current: ampere,
voltage: volt,
length: meter,
frequency: hertz,
inductance: henry,
temperature: kelvin,
amount_of_substance: mole,
luminous_intensity: candela,
conductance: siemens,
mass: kilogram,
magnetic_density: tesla,
charge: coulomb,
force: newton,
capacitance: farad,
energy: joule,
velocity: meter/second,
})
One = S.One
SI.set_quantity_dimension(radian, One)
SI.set_quantity_scale_factor(ampere, One)
SI.set_quantity_scale_factor(kelvin, One)
SI.set_quantity_scale_factor(mole, One)
SI.set_quantity_scale_factor(candela, One)
# MKSA extension to MKS: derived units
SI.set_quantity_scale_factor(coulomb, One)
SI.set_quantity_scale_factor(volt, joule/coulomb)
SI.set_quantity_scale_factor(ohm, volt/ampere)
SI.set_quantity_scale_factor(siemens, ampere/volt)
SI.set_quantity_scale_factor(farad, coulomb/volt)
SI.set_quantity_scale_factor(henry, volt*second/ampere)
SI.set_quantity_scale_factor(tesla, volt*second/meter**2)
SI.set_quantity_scale_factor(weber, joule/ampere)
SI.set_quantity_dimension(lux, luminous_intensity / length ** 2)
SI.set_quantity_scale_factor(lux, steradian*candela/meter**2)
# katal is the SI unit of catalytic activity
SI.set_quantity_dimension(katal, amount_of_substance / time)
SI.set_quantity_scale_factor(katal, mol/second)
# gray is the SI unit of absorbed dose
SI.set_quantity_dimension(gray, energy / mass)
SI.set_quantity_scale_factor(gray, meter**2/second**2)
# becquerel is the SI unit of radioactivity
SI.set_quantity_dimension(becquerel, 1 / time)
SI.set_quantity_scale_factor(becquerel, 1/second)
#### CONSTANTS ####
# elementary charge
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(elementary_charge, charge)
SI.set_quantity_scale_factor(elementary_charge, 1.602176634e-19*coulomb)
# Electronvolt
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(electronvolt, energy)
SI.set_quantity_scale_factor(electronvolt, 1.602176634e-19*joule)
# Avogadro number
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(avogadro_number, One)
SI.set_quantity_scale_factor(avogadro_number, 6.02214076e23)
# Avogadro constant
SI.set_quantity_dimension(avogadro_constant, amount_of_substance ** -1)
SI.set_quantity_scale_factor(avogadro_constant, avogadro_number / mol)
# Boltzmann constant
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(boltzmann_constant, energy / temperature)
SI.set_quantity_scale_factor(boltzmann_constant, 1.380649e-23*joule/kelvin)
# Stefan-Boltzmann constant
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(stefan_boltzmann_constant, energy * time ** -1 * length ** -2 * temperature ** -4)
SI.set_quantity_scale_factor(stefan_boltzmann_constant, pi**2 * boltzmann_constant**4 / (60 * hbar**3 * speed_of_light ** 2))
# Atomic mass
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(atomic_mass_constant, mass)
SI.set_quantity_scale_factor(atomic_mass_constant, 1.66053906660e-24*gram)
# Molar gas constant
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(molar_gas_constant, energy / (temperature * amount_of_substance))
SI.set_quantity_scale_factor(molar_gas_constant, boltzmann_constant * avogadro_constant)
# Faraday constant
SI.set_quantity_dimension(faraday_constant, charge / amount_of_substance)
SI.set_quantity_scale_factor(faraday_constant, elementary_charge * avogadro_constant)
# Josephson constant
SI.set_quantity_dimension(josephson_constant, frequency / voltage)
SI.set_quantity_scale_factor(josephson_constant, 0.5 * planck / elementary_charge)
# Von Klitzing constant
SI.set_quantity_dimension(von_klitzing_constant, voltage / current)
SI.set_quantity_scale_factor(von_klitzing_constant, hbar / elementary_charge ** 2)
# Acceleration due to gravity (on the Earth surface)
SI.set_quantity_dimension(acceleration_due_to_gravity, acceleration)
SI.set_quantity_scale_factor(acceleration_due_to_gravity, 9.80665*meter/second**2)
# magnetic constant:
SI.set_quantity_dimension(magnetic_constant, force / current ** 2)
SI.set_quantity_scale_factor(magnetic_constant, 4*pi/10**7 * newton/ampere**2)
# electric constant:
SI.set_quantity_dimension(vacuum_permittivity, capacitance / length)
SI.set_quantity_scale_factor(vacuum_permittivity, 1/(u0 * c**2))
# vacuum impedance:
SI.set_quantity_dimension(vacuum_impedance, impedance)
SI.set_quantity_scale_factor(vacuum_impedance, u0 * c)
# Coulomb's constant:
SI.set_quantity_dimension(coulomb_constant, force * length ** 2 / charge ** 2)
SI.set_quantity_scale_factor(coulomb_constant, 1/(4*pi*vacuum_permittivity))
SI.set_quantity_dimension(psi, pressure)
SI.set_quantity_scale_factor(psi, pound * gee / inch ** 2)
SI.set_quantity_dimension(mmHg, pressure)
SI.set_quantity_scale_factor(mmHg, dHg0 * acceleration_due_to_gravity * kilogram / meter**2)
SI.set_quantity_dimension(milli_mass_unit, mass)
SI.set_quantity_scale_factor(milli_mass_unit, atomic_mass_unit/1000)
SI.set_quantity_dimension(quart, length ** 3)
SI.set_quantity_scale_factor(quart, Rational(231, 4) * inch**3)
# Other convenient units and magnitudes
SI.set_quantity_dimension(lightyear, length)
SI.set_quantity_scale_factor(lightyear, speed_of_light*julian_year)
SI.set_quantity_dimension(astronomical_unit, length)
SI.set_quantity_scale_factor(astronomical_unit, 149597870691*meter)
# Fundamental Planck units:
SI.set_quantity_dimension(planck_mass, mass)
SI.set_quantity_scale_factor(planck_mass, sqrt(hbar*speed_of_light/G))
SI.set_quantity_dimension(planck_time, time)
SI.set_quantity_scale_factor(planck_time, sqrt(hbar*G/speed_of_light**5))
SI.set_quantity_dimension(planck_temperature, temperature)
SI.set_quantity_scale_factor(planck_temperature, sqrt(hbar*speed_of_light**5/G/boltzmann**2))
SI.set_quantity_dimension(planck_length, length)
SI.set_quantity_scale_factor(planck_length, sqrt(hbar*G/speed_of_light**3))
SI.set_quantity_dimension(planck_charge, charge)
SI.set_quantity_scale_factor(planck_charge, sqrt(4*pi*electric_constant*hbar*speed_of_light))
# Derived Planck units:
SI.set_quantity_dimension(planck_area, length ** 2)
SI.set_quantity_scale_factor(planck_area, planck_length**2)
SI.set_quantity_dimension(planck_volume, length ** 3)
SI.set_quantity_scale_factor(planck_volume, planck_length**3)
SI.set_quantity_dimension(planck_momentum, mass * velocity)
SI.set_quantity_scale_factor(planck_momentum, planck_mass * speed_of_light)
SI.set_quantity_dimension(planck_energy, energy)
SI.set_quantity_scale_factor(planck_energy, planck_mass * speed_of_light**2)
SI.set_quantity_dimension(planck_force, force)
SI.set_quantity_scale_factor(planck_force, planck_energy / planck_length)
SI.set_quantity_dimension(planck_power, power)
SI.set_quantity_scale_factor(planck_power, planck_energy / planck_time)
SI.set_quantity_dimension(planck_density, mass / length ** 3)
SI.set_quantity_scale_factor(planck_density, planck_mass / planck_length**3)
SI.set_quantity_dimension(planck_energy_density, energy / length ** 3)
SI.set_quantity_scale_factor(planck_energy_density, planck_energy / planck_length**3)
SI.set_quantity_dimension(planck_intensity, mass * time ** (-3))
SI.set_quantity_scale_factor(planck_intensity, planck_energy_density * speed_of_light)
SI.set_quantity_dimension(planck_angular_frequency, 1 / time)
SI.set_quantity_scale_factor(planck_angular_frequency, 1 / planck_time)
SI.set_quantity_dimension(planck_pressure, pressure)
SI.set_quantity_scale_factor(planck_pressure, planck_force / planck_length**2)
SI.set_quantity_dimension(planck_current, current)
SI.set_quantity_scale_factor(planck_current, planck_charge / planck_time)
SI.set_quantity_dimension(planck_voltage, voltage)
SI.set_quantity_scale_factor(planck_voltage, planck_energy / planck_charge)
SI.set_quantity_dimension(planck_impedance, impedance)
SI.set_quantity_scale_factor(planck_impedance, planck_voltage / planck_current)
SI.set_quantity_dimension(planck_acceleration, acceleration)
SI.set_quantity_scale_factor(planck_acceleration, speed_of_light / planck_time)
# Older units for radioactivity
SI.set_quantity_dimension(curie, 1 / time)
SI.set_quantity_scale_factor(curie, 37000000000*becquerel)
SI.set_quantity_dimension(rutherford, 1 / time)
SI.set_quantity_scale_factor(rutherford, 1000000*becquerel)
# check that scale factors are the right SI dimensions:
for _scale_factor, _dimension in zip(
SI._quantity_scale_factors.values(),
SI._quantity_dimension_map.values()
):
dimex = SI.get_dimensional_expr(_scale_factor)
if dimex != 1:
# XXX: equivalent_dims is an instance method taking two arguments in
# addition to self so this can not work:
if not DimensionSystem.equivalent_dims(_dimension, Dimension(dimex)): # type: ignore
raise ValueError("quantity value and dimension mismatch")
del _scale_factor, _dimension
__all__ = [
'mmHg', 'atmosphere', 'inductance', 'newton', 'meter',
'vacuum_permittivity', 'pascal', 'magnetic_constant', 'voltage',
'angular_mil', 'luminous_intensity', 'all_units',
'julian_year', 'weber', 'exbibyte', 'liter',
'molar_gas_constant', 'faraday_constant', 'avogadro_constant',
'lightyear', 'planck_density', 'gee', 'mol', 'bit', 'gray',
'planck_momentum', 'bar', 'magnetic_density', 'prefix_unit', 'PREFIXES',
'planck_time', 'dimex', 'gram', 'candela', 'force', 'planck_intensity',
'energy', 'becquerel', 'planck_acceleration', 'speed_of_light',
'conductance', 'frequency', 'coulomb_constant', 'degree', 'lux', 'planck',
'current', 'planck_current', 'tebibyte', 'planck_power', 'MKSA', 'power',
'K', 'planck_volume', 'quart', 'pressure', 'amount_of_substance',
'joule', 'boltzmann_constant', 'Dimension', 'c', 'planck_force', 'length',
'watt', 'action', 'hbar', 'gibibyte', 'DimensionSystem', 'cd', 'volt',
'planck_charge', 'dioptre', 'vacuum_impedance', 'dimsys_default', 'farad',
'charge', 'gravitational_constant', 'temperature', 'u0', 'hertz',
'capacitance', 'tesla', 'steradian', 'planck_mass', 'josephson_constant',
'planck_area', 'stefan_boltzmann_constant', 'base_dims',
'astronomical_unit', 'radian', 'planck_voltage', 'impedance',
'planck_energy', 'Da', 'atomic_mass_constant', 'rutherford', 'second', 'inch',
'elementary_charge', 'SI', 'electronvolt', 'dimsys_SI', 'henry',
'planck_angular_frequency', 'ohm', 'pound', 'planck_pressure', 'G', 'psi',
'dHg0', 'von_klitzing_constant', 'planck_length', 'avogadro_number',
'mole', 'acceleration', 'information', 'planck_energy_density',
'mebibyte', 's', 'acceleration_due_to_gravity',
'planck_temperature', 'units', 'mass', 'dimsys_MKSA', 'kelvin', 'kPa',
'boltzmann', 'milli_mass_unit', 'planck_impedance', 'electric_constant',
'derived_dims', 'kg', 'coulomb', 'siemens', 'byte', 'magnetic_flux',
'atomic_mass_unit', 'm', 'kibibyte', 'kilogram', 'One', 'curie', 'u',
'time', 'pebibyte', 'velocity', 'ampere', 'katal',
]
|
6cd2a2fb129ccc02a7f78101ad9140b45938f7ba9613d18d677f896178f8e70f | import warnings
from sympy.core.add import Add
from sympy.core.function import (Function, diff)
from sympy.core.numbers import (Number, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.integrals.integrals import integrate
from sympy.physics.units import (amount_of_substance, area, convert_to, find_unit,
volume, kilometer, joule, molar_gas_constant,
vacuum_permittivity, elementary_charge, volt,
ohm)
from sympy.physics.units.definitions import (amu, au, centimeter, coulomb,
day, foot, grams, hour, inch, kg, km, m, meter, millimeter,
minute, quart, s, second, speed_of_light, bit,
byte, kibibyte, mebibyte, gibibyte, tebibyte, pebibyte, exbibyte,
kilogram, gravitational_constant)
from sympy.physics.units.definitions.dimension_definitions import (
Dimension, charge, length, time, temperature, pressure,
energy, mass
)
from sympy.physics.units.prefixes import PREFIXES, kilo
from sympy.physics.units.quantities import PhysicalConstant, Quantity
from sympy.physics.units.systems import SI
from sympy.testing.pytest import XFAIL, raises, warns_deprecated_sympy
k = PREFIXES["k"]
def test_str_repr():
assert str(kg) == "kilogram"
def test_eq():
# simple test
assert 10*m == 10*m
assert 10*m != 10*s
def test_convert_to():
q = Quantity("q1")
q.set_global_relative_scale_factor(S(5000), meter)
assert q.convert_to(m) == 5000*m
assert speed_of_light.convert_to(m / s) == 299792458 * m / s
# TODO: eventually support this kind of conversion:
# assert (2*speed_of_light).convert_to(m / s) == 2 * 299792458 * m / s
assert day.convert_to(s) == 86400*s
# Wrong dimension to convert:
assert q.convert_to(s) == q
assert speed_of_light.convert_to(m) == speed_of_light
expr = joule*second
conv = convert_to(expr, joule)
assert conv == joule*second
def test_Quantity_definition():
q = Quantity("s10", abbrev="sabbr")
q.set_global_relative_scale_factor(10, second)
u = Quantity("u", abbrev="dam")
u.set_global_relative_scale_factor(10, meter)
km = Quantity("km")
km.set_global_relative_scale_factor(kilo, meter)
v = Quantity("u")
v.set_global_relative_scale_factor(5*kilo, meter)
assert q.scale_factor == 10
assert q.dimension == time
assert q.abbrev == Symbol("sabbr")
assert u.dimension == length
assert u.scale_factor == 10
assert u.abbrev == Symbol("dam")
assert km.scale_factor == 1000
assert km.func(*km.args) == km
assert km.func(*km.args).args == km.args
assert v.dimension == length
assert v.scale_factor == 5000
with warns_deprecated_sympy():
Quantity('invalid', 'dimension', 1)
with warns_deprecated_sympy():
Quantity('mismatch', dimension=length, scale_factor=kg)
def test_abbrev():
u = Quantity("u")
u.set_global_relative_scale_factor(S.One, meter)
assert u.name == Symbol("u")
assert u.abbrev == Symbol("u")
u = Quantity("u", abbrev="om")
u.set_global_relative_scale_factor(S(2), meter)
assert u.name == Symbol("u")
assert u.abbrev == Symbol("om")
assert u.scale_factor == 2
assert isinstance(u.scale_factor, Number)
u = Quantity("u", abbrev="ikm")
u.set_global_relative_scale_factor(3*kilo, meter)
assert u.abbrev == Symbol("ikm")
assert u.scale_factor == 3000
def test_print():
u = Quantity("unitname", abbrev="dam")
assert repr(u) == "unitname"
assert str(u) == "unitname"
def test_Quantity_eq():
u = Quantity("u", abbrev="dam")
v = Quantity("v1")
assert u != v
v = Quantity("v2", abbrev="ds")
assert u != v
v = Quantity("v3", abbrev="dm")
assert u != v
def test_add_sub():
u = Quantity("u")
v = Quantity("v")
w = Quantity("w")
u.set_global_relative_scale_factor(S(10), meter)
v.set_global_relative_scale_factor(S(5), meter)
w.set_global_relative_scale_factor(S(2), second)
assert isinstance(u + v, Add)
assert (u + v.convert_to(u)) == (1 + S.Half)*u
# TODO: eventually add this:
# assert (u + v).convert_to(u) == (1 + S.Half)*u
assert isinstance(u - v, Add)
assert (u - v.convert_to(u)) == S.Half*u
# TODO: eventually add this:
# assert (u - v).convert_to(u) == S.Half*u
def test_quantity_abs():
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w3 = Quantity('v_w3')
v_w1.set_global_relative_scale_factor(1, meter/second)
v_w2.set_global_relative_scale_factor(1, meter/second)
v_w3.set_global_relative_scale_factor(1, meter/second)
expr = v_w3 - Abs(v_w1 - v_w2)
assert SI.get_dimensional_expr(v_w1) == (length/time).name
Dq = Dimension(SI.get_dimensional_expr(expr))
with warns_deprecated_sympy():
Dq1 = Dimension(Quantity.get_dimensional_expr(expr))
assert Dq == Dq1
assert SI.get_dimension_system().get_dimensional_dependencies(Dq) == {
length: 1,
time: -1,
}
assert meter == sqrt(meter**2)
def test_check_unit_consistency():
u = Quantity("u")
v = Quantity("v")
w = Quantity("w")
u.set_global_relative_scale_factor(S(10), meter)
v.set_global_relative_scale_factor(S(5), meter)
w.set_global_relative_scale_factor(S(2), second)
def check_unit_consistency(expr):
SI._collect_factor_and_dimension(expr)
raises(ValueError, lambda: check_unit_consistency(u + w))
raises(ValueError, lambda: check_unit_consistency(u - w))
raises(ValueError, lambda: check_unit_consistency(u + 1))
raises(ValueError, lambda: check_unit_consistency(u - 1))
raises(ValueError, lambda: check_unit_consistency(1 - exp(u / w)))
def test_mul_div():
u = Quantity("u")
v = Quantity("v")
t = Quantity("t")
ut = Quantity("ut")
v2 = Quantity("v")
u.set_global_relative_scale_factor(S(10), meter)
v.set_global_relative_scale_factor(S(5), meter)
t.set_global_relative_scale_factor(S(2), second)
ut.set_global_relative_scale_factor(S(20), meter*second)
v2.set_global_relative_scale_factor(S(5), meter/second)
assert 1 / u == u**(-1)
assert u / 1 == u
v1 = u / t
v2 = v
# Pow only supports structural equality:
assert v1 != v2
assert v1 == v2.convert_to(v1)
# TODO: decide whether to allow such expression in the future
# (requires somehow manipulating the core).
# assert u / Quantity('l2', dimension=length, scale_factor=2) == 5
assert u * 1 == u
ut1 = u * t
ut2 = ut
# Mul only supports structural equality:
assert ut1 != ut2
assert ut1 == ut2.convert_to(ut1)
# Mul only supports structural equality:
lp1 = Quantity("lp1")
lp1.set_global_relative_scale_factor(S(2), 1/meter)
assert u * lp1 != 20
assert u**0 == 1
assert u**1 == u
# TODO: Pow only support structural equality:
u2 = Quantity("u2")
u3 = Quantity("u3")
u2.set_global_relative_scale_factor(S(100), meter**2)
u3.set_global_relative_scale_factor(Rational(1, 10), 1/meter)
assert u ** 2 != u2
assert u ** -1 != u3
assert u ** 2 == u2.convert_to(u)
assert u ** -1 == u3.convert_to(u)
def test_units():
assert convert_to((5*m/s * day) / km, 1) == 432
assert convert_to(foot / meter, meter) == Rational(3048, 10000)
# amu is a pure mass so mass/mass gives a number, not an amount (mol)
# TODO: need better simplification routine:
assert str(convert_to(grams/amu, grams).n(2)) == '6.0e+23'
# Light from the sun needs about 8.3 minutes to reach earth
t = (1*au / speed_of_light) / minute
# TODO: need a better way to simplify expressions containing units:
t = convert_to(convert_to(t, meter / minute), meter)
assert t.simplify() == Rational(49865956897, 5995849160)
# TODO: fix this, it should give `m` without `Abs`
assert sqrt(m**2) == m
assert (sqrt(m))**2 == m
t = Symbol('t')
assert integrate(t*m/s, (t, 1*s, 5*s)) == 12*m*s
assert (t * m/s).integrate((t, 1*s, 5*s)) == 12*m*s
def test_issue_quart():
assert convert_to(4 * quart / inch ** 3, meter) == 231
assert convert_to(4 * quart / inch ** 3, millimeter) == 231
def test_issue_5565():
assert (m < s).is_Relational
def test_find_unit():
assert find_unit('coulomb') == ['coulomb', 'coulombs', 'coulomb_constant']
assert find_unit(coulomb) == ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
assert find_unit(charge) == ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
assert find_unit(inch) == [
'm', 'au', 'cm', 'dm', 'ft', 'km', 'ly', 'mi', 'mm', 'nm', 'pm', 'um',
'yd', 'nmi', 'feet', 'foot', 'inch', 'mile', 'yard', 'meter', 'miles',
'yards', 'inches', 'meters', 'micron', 'microns', 'decimeter',
'kilometer', 'lightyear', 'nanometer', 'picometer', 'centimeter',
'decimeters', 'kilometers', 'lightyears', 'micrometer', 'millimeter',
'nanometers', 'picometers', 'centimeters', 'micrometers',
'millimeters', 'nautical_mile', 'planck_length', 'nautical_miles', 'astronomical_unit',
'astronomical_units']
assert find_unit(inch**-1) == ['D', 'dioptre', 'optical_power']
assert find_unit(length**-1) == ['D', 'dioptre', 'optical_power']
assert find_unit(inch ** 2) == ['ha', 'hectare', 'planck_area']
assert find_unit(inch ** 3) == [
'L', 'l', 'cL', 'cl', 'dL', 'dl', 'mL', 'ml', 'liter', 'quart', 'liters', 'quarts',
'deciliter', 'centiliter', 'deciliters', 'milliliter',
'centiliters', 'milliliters', 'planck_volume']
assert find_unit('voltage') == ['V', 'v', 'volt', 'volts', 'planck_voltage']
assert find_unit(grams) == ['g', 't', 'Da', 'kg', 'mg', 'ug', 'amu', 'mmu', 'amus',
'gram', 'mmus', 'grams', 'pound', 'tonne', 'dalton',
'pounds', 'kilogram', 'kilograms', 'microgram', 'milligram',
'metric_ton', 'micrograms', 'milligrams', 'planck_mass',
'milli_mass_unit', 'atomic_mass_unit', 'atomic_mass_constant']
def test_Quantity_derivative():
x = symbols("x")
assert diff(x*meter, x) == meter
assert diff(x**3*meter**2, x) == 3*x**2*meter**2
assert diff(meter, meter) == 1
assert diff(meter**2, meter) == 2*meter
def test_quantity_postprocessing():
q1 = Quantity('q1')
q2 = Quantity('q2')
SI.set_quantity_dimension(q1, length*pressure**2*temperature/time)
SI.set_quantity_dimension(q2, energy*pressure*temperature/(length**2*time))
assert q1 + q2
q = q1 + q2
Dq = Dimension(SI.get_dimensional_expr(q))
assert SI.get_dimension_system().get_dimensional_dependencies(Dq) == {
length: -1,
mass: 2,
temperature: 1,
time: -5,
}
def test_factor_and_dimension():
assert (3000, Dimension(1)) == SI._collect_factor_and_dimension(3000)
assert (1001, length) == SI._collect_factor_and_dimension(meter + km)
assert (2, length/time) == SI._collect_factor_and_dimension(
meter/second + 36*km/(10*hour))
x, y = symbols('x y')
assert (x + y/100, length) == SI._collect_factor_and_dimension(
x*m + y*centimeter)
cH = Quantity('cH')
SI.set_quantity_dimension(cH, amount_of_substance/volume)
pH = -log(cH)
assert (1, volume/amount_of_substance) == SI._collect_factor_and_dimension(
exp(pH))
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w1.set_global_relative_scale_factor(Rational(3, 2), meter/second)
v_w2.set_global_relative_scale_factor(2, meter/second)
expr = Abs(v_w1/2 - v_w2)
assert (Rational(5, 4), length/time) == \
SI._collect_factor_and_dimension(expr)
expr = Rational(5, 2)*second/meter*v_w1 - 3000
assert (-(2996 + Rational(1, 4)), Dimension(1)) == \
SI._collect_factor_and_dimension(expr)
expr = v_w1**(v_w2/v_w1)
assert ((Rational(3, 2))**Rational(4, 3), (length/time)**Rational(4, 3)) == \
SI._collect_factor_and_dimension(expr)
with warns_deprecated_sympy():
assert (3000, Dimension(1)) == Quantity._collect_factor_and_dimension(3000)
@XFAIL
def test_factor_and_dimension_with_Abs():
with warns_deprecated_sympy():
v_w1 = Quantity('v_w1', length/time, Rational(3, 2)*meter/second)
v_w1.set_global_relative_scale_factor(Rational(3, 2), meter/second)
expr = v_w1 - Abs(v_w1)
with warns_deprecated_sympy():
assert (0, length/time) == Quantity._collect_factor_and_dimension(expr)
def test_dimensional_expr_of_derivative():
l = Quantity('l')
t = Quantity('t')
t1 = Quantity('t1')
l.set_global_relative_scale_factor(36, km)
t.set_global_relative_scale_factor(1, hour)
t1.set_global_relative_scale_factor(1, second)
x = Symbol('x')
y = Symbol('y')
f = Function('f')
dfdx = f(x, y).diff(x, y)
dl_dt = dfdx.subs({f(x, y): l, x: t, y: t1})
assert SI.get_dimensional_expr(dl_dt) ==\
SI.get_dimensional_expr(l / t / t1) ==\
Symbol("length")/Symbol("time")**2
assert SI._collect_factor_and_dimension(dl_dt) ==\
SI._collect_factor_and_dimension(l / t / t1) ==\
(10, length/time**2)
def test_get_dimensional_expr_with_function():
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w1.set_global_relative_scale_factor(1, meter/second)
v_w2.set_global_relative_scale_factor(1, meter/second)
assert SI.get_dimensional_expr(sin(v_w1)) == \
sin(SI.get_dimensional_expr(v_w1))
assert SI.get_dimensional_expr(sin(v_w1/v_w2)) == 1
def test_binary_information():
assert convert_to(kibibyte, byte) == 1024*byte
assert convert_to(mebibyte, byte) == 1024**2*byte
assert convert_to(gibibyte, byte) == 1024**3*byte
assert convert_to(tebibyte, byte) == 1024**4*byte
assert convert_to(pebibyte, byte) == 1024**5*byte
assert convert_to(exbibyte, byte) == 1024**6*byte
assert kibibyte.convert_to(bit) == 8*1024*bit
assert byte.convert_to(bit) == 8*bit
a = 10*kibibyte*hour
assert convert_to(a, byte) == 10240*byte*hour
assert convert_to(a, minute) == 600*kibibyte*minute
assert convert_to(a, [byte, minute]) == 614400*byte*minute
def test_conversion_with_2_nonstandard_dimensions():
good_grade = Quantity("good_grade")
kilo_good_grade = Quantity("kilo_good_grade")
centi_good_grade = Quantity("centi_good_grade")
kilo_good_grade.set_global_relative_scale_factor(1000, good_grade)
centi_good_grade.set_global_relative_scale_factor(S.One/10**5, kilo_good_grade)
charity_points = Quantity("charity_points")
milli_charity_points = Quantity("milli_charity_points")
missions = Quantity("missions")
milli_charity_points.set_global_relative_scale_factor(S.One/1000, charity_points)
missions.set_global_relative_scale_factor(251, charity_points)
assert convert_to(
kilo_good_grade*milli_charity_points*millimeter,
[centi_good_grade, missions, centimeter]
) == S.One * 10**5 / (251*1000) / 10 * centi_good_grade*missions*centimeter
def test_eval_subs():
energy, mass, force = symbols('energy mass force')
expr1 = energy/mass
units = {energy: kilogram*meter**2/second**2, mass: kilogram}
assert expr1.subs(units) == meter**2/second**2
expr2 = force/mass
units = {force:gravitational_constant*kilogram**2/meter**2, mass:kilogram}
assert expr2.subs(units) == gravitational_constant*kilogram/meter**2
def test_issue_14932():
assert (log(inch) - log(2)).simplify() == log(inch/2)
assert (log(inch) - log(foot)).simplify() == -log(12)
p = symbols('p', positive=True)
assert (log(inch) - log(p)).simplify() == log(inch/p)
def test_issue_14547():
# the root issue is that an argument with dimensions should
# not raise an error when the `arg - 1` calculation is
# performed in the assumptions system
from sympy.physics.units import foot, inch
from sympy.core.relational import Eq
assert log(foot).is_zero is None
assert log(foot).is_positive is None
assert log(foot).is_nonnegative is None
assert log(foot).is_negative is None
assert log(foot).is_algebraic is None
assert log(foot).is_rational is None
# doesn't raise error
assert Eq(log(foot), log(inch)) is not None # might be False or unevaluated
x = Symbol('x')
e = foot + x
assert e.is_Add and set(e.args) == {foot, x}
e = foot + 1
assert e.is_Add and set(e.args) == {foot, 1}
def test_deprecated_quantity_methods():
step = Quantity("step")
with warns_deprecated_sympy():
step.set_dimension(length)
step.set_scale_factor(2*meter)
assert convert_to(step, centimeter) == 200*centimeter
assert convert_to(1000*step/second, kilometer/second) == 2*kilometer/second
def test_issue_22164():
warnings.simplefilter("error")
dm = Quantity("dm")
SI.set_quantity_dimension(dm, length)
SI.set_quantity_scale_factor(dm, 1)
bad_exp = Quantity("bad_exp")
SI.set_quantity_dimension(bad_exp, length)
SI.set_quantity_scale_factor(bad_exp, 1)
expr = dm ** bad_exp
# deprecation warning is not expected here
SI._collect_factor_and_dimension(expr)
def test_issue_22819():
from sympy.physics.units import tonne, gram, Da
from sympy.physics.units.systems.si import dimsys_SI
assert tonne.convert_to(gram) == 1000000*gram
assert dimsys_SI.get_dimensional_dependencies(area) == {length: 2}
assert Da.scale_factor == 1.66053906660000e-24
def test_issue_20288():
from sympy.core.numbers import E
from sympy.physics.units import energy
u = Quantity('u')
v = Quantity('v')
SI.set_quantity_dimension(u, energy)
SI.set_quantity_dimension(v, energy)
u.set_global_relative_scale_factor(1, joule)
v.set_global_relative_scale_factor(1, joule)
expr = 1 + exp(u**2/v**2)
assert SI._collect_factor_and_dimension(expr) == (1 + E, Dimension(1))
def test_issue_24062():
from sympy.core.numbers import E
from sympy.physics.units import impedance, capacitance, time, ohm, farad, second
R = Quantity('R')
C = Quantity('C')
T = Quantity('T')
SI.set_quantity_dimension(R, impedance)
SI.set_quantity_dimension(C, capacitance)
SI.set_quantity_dimension(T, time)
R.set_global_relative_scale_factor(1, ohm)
C.set_global_relative_scale_factor(1, farad)
T.set_global_relative_scale_factor(1, second)
expr = T / (R * C)
dim = SI._collect_factor_and_dimension(expr)[1]
assert SI.get_dimension_system().is_dimensionless(dim)
exp_expr = 1 + exp(expr)
assert SI._collect_factor_and_dimension(exp_expr) == (1 + E, Dimension(1))
def test_issue_24211():
from sympy.physics.units import time, velocity, acceleration, second, meter
V1 = Quantity('V1')
SI.set_quantity_dimension(V1, velocity)
SI.set_quantity_scale_factor(V1, 1 * meter / second)
A1 = Quantity('A1')
SI.set_quantity_dimension(A1, acceleration)
SI.set_quantity_scale_factor(A1, 1 * meter / second**2)
T1 = Quantity('T1')
SI.set_quantity_dimension(T1, time)
SI.set_quantity_scale_factor(T1, 1 * second)
expr = A1*T1 + V1
# should not throw ValueError here
SI._collect_factor_and_dimension(expr)
def test_prefixed_property():
assert not meter.is_prefixed
assert not joule.is_prefixed
assert not day.is_prefixed
assert not second.is_prefixed
assert not volt.is_prefixed
assert not ohm.is_prefixed
assert centimeter.is_prefixed
assert kilometer.is_prefixed
assert kilogram.is_prefixed
assert pebibyte.is_prefixed
def test_physics_constant():
from sympy.physics.units import definitions
for name in dir(definitions):
quantity = getattr(definitions, name)
if not isinstance(quantity, Quantity):
continue
if name.endswith('_constant'):
assert isinstance(quantity, PhysicalConstant), f"{quantity} must be PhysicalConstant, but is {type(quantity)}"
assert quantity.is_physical_constant, f"{name} is not marked as physics constant when it should be"
for const in [gravitational_constant, molar_gas_constant, vacuum_permittivity, speed_of_light, elementary_charge]:
assert isinstance(const, PhysicalConstant), f"{const} must be PhysicalConstant, but is {type(const)}"
assert const.is_physical_constant, f"{const} is not marked as physics constant when it should be"
assert not meter.is_physical_constant
assert not joule.is_physical_constant
|
bce4685979d490c2a6cb0ad279c1fad9147d8767ece8c067da8fd33521816572 | from sympy.concrete.tests.test_sums_products import NS
from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.units import convert_to, coulomb_constant, elementary_charge, gravitational_constant, planck
from sympy.physics.units.definitions.unit_definitions import statcoulomb, coulomb, second, gram, centimeter, erg, \
newton, joule, dyne, speed_of_light, meter, farad, henry, statvolt, volt, ohm
from sympy.physics.units.systems import SI
from sympy.physics.units.systems.cgs import cgs_gauss
def test_conversion_to_from_si():
assert convert_to(statcoulomb, coulomb, cgs_gauss) == coulomb/2997924580
assert convert_to(coulomb, statcoulomb, cgs_gauss) == 2997924580*statcoulomb
assert convert_to(statcoulomb, sqrt(gram*centimeter**3)/second, cgs_gauss) == centimeter**(S(3)/2)*sqrt(gram)/second
assert convert_to(coulomb, sqrt(gram*centimeter**3)/second, cgs_gauss) == 2997924580*centimeter**(S(3)/2)*sqrt(gram)/second
# SI units have an additional base unit, no conversion in case of electromagnetism:
assert convert_to(coulomb, statcoulomb, SI) == coulomb
assert convert_to(statcoulomb, coulomb, SI) == statcoulomb
# SI without electromagnetism:
assert convert_to(erg, joule, SI) == joule/10**7
assert convert_to(erg, joule, cgs_gauss) == joule/10**7
assert convert_to(joule, erg, SI) == 10**7*erg
assert convert_to(joule, erg, cgs_gauss) == 10**7*erg
assert convert_to(dyne, newton, SI) == newton/10**5
assert convert_to(dyne, newton, cgs_gauss) == newton/10**5
assert convert_to(newton, dyne, SI) == 10**5*dyne
assert convert_to(newton, dyne, cgs_gauss) == 10**5*dyne
def test_cgs_gauss_convert_constants():
assert convert_to(speed_of_light, centimeter/second, cgs_gauss) == 29979245800*centimeter/second
assert convert_to(coulomb_constant, 1, cgs_gauss) == 1
assert convert_to(coulomb_constant, newton*meter**2/coulomb**2, cgs_gauss) == 22468879468420441*meter**2*newton/(2500000*coulomb**2)
assert convert_to(coulomb_constant, newton*meter**2/coulomb**2, SI) == 22468879468420441*meter**2*newton/(2500000*coulomb**2)
assert convert_to(coulomb_constant, dyne*centimeter**2/statcoulomb**2, cgs_gauss) == centimeter**2*dyne/statcoulomb**2
assert convert_to(coulomb_constant, 1, SI) == coulomb_constant
assert NS(convert_to(coulomb_constant, newton*meter**2/coulomb**2, SI)) == '8987551787.36818*meter**2*newton/coulomb**2'
assert convert_to(elementary_charge, statcoulomb, cgs_gauss)
assert convert_to(gravitational_constant, dyne*centimeter**2/gram**2, cgs_gauss)
assert NS(convert_to(planck, erg*second, cgs_gauss)) == '6.62607015e-27*erg*second'
spc = 25000*second/(22468879468420441*centimeter)
assert convert_to(ohm, second/centimeter, cgs_gauss) == spc
assert convert_to(henry, second**2/centimeter, cgs_gauss) == spc*second
assert convert_to(volt, statvolt, cgs_gauss) == 10**6*statvolt/299792458
assert convert_to(farad, centimeter, cgs_gauss) == 299792458**2*centimeter/10**5
|
056402e378765a27aa260682aa12d5dfd057376d866facdccbf0577ab7558b10 | from __future__ import annotations
from sympy.core.expr import Expr
from sympy.core.function import Derivative
from sympy.core.numbers import Integer
from sympy.matrices.common import MatrixCommon
from .ndim_array import NDimArray
from .arrayop import derive_by_array
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.special import ZeroMatrix
from sympy.matrices.expressions.matexpr import _matrix_derivative
class ArrayDerivative(Derivative):
is_scalar = False
def __new__(cls, expr, *variables, **kwargs):
obj = super().__new__(cls, expr, *variables, **kwargs)
if isinstance(obj, ArrayDerivative):
obj._shape = obj._get_shape()
return obj
def _get_shape(self):
shape = ()
for v, count in self.variable_count:
if hasattr(v, "shape"):
for i in range(count):
shape += v.shape
if hasattr(self.expr, "shape"):
shape += self.expr.shape
return shape
@property
def shape(self):
return self._shape
@classmethod
def _get_zero_with_shape_like(cls, expr):
if isinstance(expr, (MatrixCommon, NDimArray)):
return expr.zeros(*expr.shape)
elif isinstance(expr, MatrixExpr):
return ZeroMatrix(*expr.shape)
else:
raise RuntimeError("Unable to determine shape of array-derivative.")
@staticmethod
def _call_derive_scalar_by_matrix(expr: Expr, v: MatrixCommon) -> Expr:
return v.applyfunc(lambda x: expr.diff(x))
@staticmethod
def _call_derive_scalar_by_matexpr(expr: Expr, v: MatrixExpr) -> Expr:
if expr.has(v):
return _matrix_derivative(expr, v)
else:
return ZeroMatrix(*v.shape)
@staticmethod
def _call_derive_scalar_by_array(expr: Expr, v: NDimArray) -> Expr:
return v.applyfunc(lambda x: expr.diff(x))
@staticmethod
def _call_derive_matrix_by_scalar(expr: MatrixCommon, v: Expr) -> Expr:
return _matrix_derivative(expr, v)
@staticmethod
def _call_derive_matexpr_by_scalar(expr: MatrixExpr, v: Expr) -> Expr:
return expr._eval_derivative(v)
@staticmethod
def _call_derive_array_by_scalar(expr: NDimArray, v: Expr) -> Expr:
return expr.applyfunc(lambda x: x.diff(v))
@staticmethod
def _call_derive_default(expr: Expr, v: Expr) -> Expr | None:
if expr.has(v):
return _matrix_derivative(expr, v)
else:
return None
@classmethod
def _dispatch_eval_derivative_n_times(cls, expr, v, count):
# Evaluate the derivative `n` times. If
# `_eval_derivative_n_times` is not overridden by the current
# object, the default in `Basic` will call a loop over
# `_eval_derivative`:
if not isinstance(count, (int, Integer)) or ((count <= 0) == True):
return None
# TODO: this could be done with multiple-dispatching:
if expr.is_scalar:
if isinstance(v, MatrixCommon):
result = cls._call_derive_scalar_by_matrix(expr, v)
elif isinstance(v, MatrixExpr):
result = cls._call_derive_scalar_by_matexpr(expr, v)
elif isinstance(v, NDimArray):
result = cls._call_derive_scalar_by_array(expr, v)
elif v.is_scalar:
# scalar by scalar has a special
return super()._dispatch_eval_derivative_n_times(expr, v, count)
else:
return None
elif v.is_scalar:
if isinstance(expr, MatrixCommon):
result = cls._call_derive_matrix_by_scalar(expr, v)
elif isinstance(expr, MatrixExpr):
result = cls._call_derive_matexpr_by_scalar(expr, v)
elif isinstance(expr, NDimArray):
result = cls._call_derive_array_by_scalar(expr, v)
else:
return None
else:
# Both `expr` and `v` are some array/matrix type:
if isinstance(expr, MatrixCommon) or isinstance(expr, MatrixCommon):
result = derive_by_array(expr, v)
elif isinstance(expr, MatrixExpr) and isinstance(v, MatrixExpr):
result = cls._call_derive_default(expr, v)
elif isinstance(expr, MatrixExpr) or isinstance(v, MatrixExpr):
# if one expression is a symbolic matrix expression while the other isn't, don't evaluate:
return None
else:
result = derive_by_array(expr, v)
if result is None:
return None
if count == 1:
return result
else:
return cls._dispatch_eval_derivative_n_times(result, v, count - 1)
|
79f91ae4df3cd79aba04631686633d55f66728ae3ecfbd5a8cbd57687fb90cc0 | import collections.abc
import operator
from collections import defaultdict, Counter
from functools import reduce
import itertools
from itertools import accumulate
from typing import Optional, List, Tuple as tTuple
import typing
from sympy.core.numbers import Integer
from sympy.core.relational import Equality
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import (Function, Lambda)
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import (Dummy, Symbol)
from sympy.matrices.common import MatrixCommon
from sympy.matrices.expressions.diagonal import diagonalize_vector
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.special import ZeroMatrix
from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensordiagonal, tensorproduct)
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
from sympy.tensor.array.ndim_array import NDimArray
from sympy.tensor.indexed import (Indexed, IndexedBase)
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \
_get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \
_build_push_indices_down_func_transformation
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import _af_invert
from sympy.core.sympify import _sympify
class _ArrayExpr(Expr):
shape: tTuple[Expr, ...]
def __getitem__(self, item):
if not isinstance(item, collections.abc.Iterable):
item = (item,)
ArrayElement._check_shape(self, item)
return self._get(item)
def _get(self, item):
return _get_array_element_or_slice(self, item)
class ArraySymbol(_ArrayExpr):
"""
Symbol representing an array expression
"""
def __new__(cls, symbol, shape: typing.Iterable) -> "ArraySymbol":
if isinstance(symbol, str):
symbol = Symbol(symbol)
# symbol = _sympify(symbol)
shape = Tuple(*map(_sympify, shape))
obj = Expr.__new__(cls, symbol, shape)
return obj
@property
def name(self):
return self._args[0]
@property
def shape(self):
return self._args[1]
def as_explicit(self):
if not all(i.is_Integer for i in self.shape):
raise ValueError("cannot express explicit array with symbolic shape")
data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])]
return ImmutableDenseNDimArray(data).reshape(*self.shape)
class ArrayElement(Expr):
"""
An element of an array.
"""
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, indices):
if isinstance(name, str):
name = Symbol(name)
name = _sympify(name)
if not isinstance(indices, collections.abc.Iterable):
indices = (indices,)
indices = _sympify(tuple(indices))
cls._check_shape(name, indices)
obj = Expr.__new__(cls, name, indices)
return obj
@classmethod
def _check_shape(cls, name, indices):
indices = tuple(indices)
if hasattr(name, "shape"):
index_error = IndexError("number of indices does not match shape of the array")
if len(indices) != len(name.shape):
raise index_error
if any((i >= s) == True for i, s in zip(indices, name.shape)):
raise ValueError("shape is out of bounds")
if any((i < 0) == True for i in indices):
raise ValueError("shape contains negative values")
@property
def name(self):
return self._args[0]
@property
def indices(self):
return self._args[1]
def _eval_derivative(self, s):
if not isinstance(s, ArrayElement):
return S.Zero
if s == self:
return S.One
if s.name != self.name:
return S.Zero
return Mul.fromiter(KroneckerDelta(i, j) for i, j in zip(self.indices, s.indices))
class ZeroArray(_ArrayExpr):
"""
Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices.
"""
def __new__(cls, *shape):
if len(shape) == 0:
return S.Zero
shape = map(_sympify, shape)
obj = Expr.__new__(cls, *shape)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
if not all(i.is_Integer for i in self.shape):
raise ValueError("Cannot return explicit form for symbolic shape.")
return ImmutableDenseNDimArray.zeros(*self.shape)
def _get(self, item):
return S.Zero
class OneArray(_ArrayExpr):
"""
Symbolic array of ones.
"""
def __new__(cls, *shape):
if len(shape) == 0:
return S.One
shape = map(_sympify, shape)
obj = Expr.__new__(cls, *shape)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
if not all(i.is_Integer for i in self.shape):
raise ValueError("Cannot return explicit form for symbolic shape.")
return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape)
def _get(self, item):
return S.One
class _CodegenArrayAbstract(Basic):
@property
def subranks(self):
"""
Returns the ranks of the objects in the uppermost tensor product inside
the current object. In case no tensor products are contained, return
the atomic ranks.
Examples
========
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
>>> P = MatrixSymbol("P", 3, 3)
Important: do not confuse the rank of the matrix with the rank of an array.
>>> tp = tensorproduct(M, N, P)
>>> tp.subranks
[2, 2, 2]
>>> co = tensorcontraction(tp, (1, 2), (3, 4))
>>> co.subranks
[2, 2, 2]
"""
return self._subranks[:]
def subrank(self):
"""
The sum of ``subranks``.
"""
return sum(self.subranks)
@property
def shape(self):
return self._shape
def doit(self, **hints):
deep = hints.get("deep", True)
if deep:
return self.func(*[arg.doit(**hints) for arg in self.args])._canonicalize()
else:
return self._canonicalize()
class ArrayTensorProduct(_CodegenArrayAbstract):
r"""
Class to represent the tensor product of array-like objects.
"""
def __new__(cls, *args, **kwargs):
args = [_sympify(arg) for arg in args]
canonicalize = kwargs.pop("canonicalize", False)
ranks = [get_rank(arg) for arg in args]
obj = Basic.__new__(cls, *args)
obj._subranks = ranks
shapes = [get_shape(i) for i in args]
if any(i is None for i in shapes):
obj._shape = None
else:
obj._shape = tuple(j for i in shapes for j in i)
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
args = self.args
args = self._flatten(args)
ranks = [get_rank(arg) for arg in args]
# Check if there are nested permutation and lift them up:
permutation_cycles = []
for i, arg in enumerate(args):
if not isinstance(arg, PermuteDims):
continue
permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form])
args[i] = arg.expr
if permutation_cycles:
return _permute_dims(_array_tensor_product(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles))
if len(args) == 1:
return args[0]
# If any object is a ZeroArray, return a ZeroArray:
if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args):
shapes = reduce(operator.add, [get_shape(i) for i in args], ())
return ZeroArray(*shapes)
# If there are contraction objects inside, transform the whole
# expression into `ArrayContraction`:
contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)}
if contractions:
ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args]
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args])
contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices]
return _array_contraction(tp, *contraction_indices)
diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)}
if diagonals:
inverse_permutation = []
last_perm = []
ranks = [get_rank(arg) for arg in args]
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
for i, arg in enumerate(args):
if isinstance(arg, ArrayDiagonal):
i1 = get_rank(arg) - len(arg.diagonal_indices)
i2 = len(arg.diagonal_indices)
inverse_permutation.extend([cumulative_ranks[i] + j for j in range(i1)])
last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)])
else:
inverse_permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))])
inverse_permutation.extend(last_perm)
tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args])
ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args]
cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1]
diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices]
return _permute_dims(_array_diagonal(tp, *diagonal_indices), _af_invert(inverse_permutation))
return self.func(*args, canonicalize=False)
@classmethod
def _flatten(cls, args):
args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])]
return args
def as_explicit(self):
return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
class ArrayAdd(_CodegenArrayAbstract):
r"""
Class for elementwise array additions.
"""
def __new__(cls, *args, **kwargs):
args = [_sympify(arg) for arg in args]
ranks = [get_rank(arg) for arg in args]
ranks = list(set(ranks))
if len(ranks) != 1:
raise ValueError("summing arrays of different ranks")
shapes = [arg.shape for arg in args]
if len({i for i in shapes if i is not None}) > 1:
raise ValueError("mismatching shapes in addition")
canonicalize = kwargs.pop("canonicalize", False)
obj = Basic.__new__(cls, *args)
obj._subranks = ranks
if any(i is None for i in shapes):
obj._shape = None
else:
obj._shape = shapes[0]
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
args = self.args
# Flatten:
args = self._flatten_args(args)
shapes = [get_shape(arg) for arg in args]
args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))]
if len(args) == 0:
if any(i for i in shapes if i is None):
raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object")
return ZeroArray(*shapes[0])
elif len(args) == 1:
return args[0]
return self.func(*args, canonicalize=False)
@classmethod
def _flatten_args(cls, args):
new_args = []
for arg in args:
if isinstance(arg, ArrayAdd):
new_args.extend(arg.args)
else:
new_args.append(arg)
return new_args
def as_explicit(self):
return reduce(
operator.add,
[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
class PermuteDims(_CodegenArrayAbstract):
r"""
Class to represent permutation of axes of arrays.
Examples
========
>>> from sympy.tensor.array import permutedims
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> cg = permutedims(M, [1, 0])
The object ``cg`` represents the transposition of ``M``, as the permutation
``[1, 0]`` will act on its indices by switching them:
`M_{ij} \Rightarrow M_{ji}`
This is evident when transforming back to matrix form:
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
>>> convert_array_to_matrix(cg)
M.T
>>> N = MatrixSymbol("N", 3, 2)
>>> cg = permutedims(N, [1, 0])
>>> cg.shape
(2, 3)
There are optional parameters that can be used as alternative to the permutation:
>>> from sympy.tensor.array.expressions import ArraySymbol, PermuteDims
>>> M = ArraySymbol("M", (1, 2, 3, 4, 5))
>>> expr = PermuteDims(M, index_order_old="ijklm", index_order_new="kijml")
>>> expr
PermuteDims(M, (0 2 1)(3 4))
>>> expr.shape
(3, 1, 2, 5, 4)
Permutations of tensor products are simplified in order to achieve a
standard form:
>>> from sympy.tensor.array import tensorproduct
>>> M = MatrixSymbol("M", 4, 5)
>>> tp = tensorproduct(M, N)
>>> tp.shape
(4, 5, 3, 2)
>>> perm1 = permutedims(tp, [2, 3, 1, 0])
The args ``(M, N)`` have been sorted and the permutation has been
simplified, the expression is equivalent:
>>> perm1.expr.args
(N, M)
>>> perm1.shape
(3, 2, 5, 4)
>>> perm1.permutation
(2 3)
The permutation in its array form has been simplified from
``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor
product `M` and `N` have been switched:
>>> perm1.permutation.array_form
[0, 1, 3, 2]
We can nest a second permutation:
>>> perm2 = permutedims(perm1, [1, 0, 2, 3])
>>> perm2.shape
(2, 3, 5, 4)
>>> perm2.permutation.array_form
[1, 0, 3, 2]
"""
def __new__(cls, expr, permutation=None, index_order_old=None, index_order_new=None, **kwargs):
from sympy.combinatorics import Permutation
expr = _sympify(expr)
expr_rank = get_rank(expr)
permutation = cls._get_permutation_from_arguments(permutation, index_order_old, index_order_new, expr_rank)
permutation = Permutation(permutation)
permutation_size = permutation.size
if permutation_size != expr_rank:
raise ValueError("Permutation size must be the length of the shape of expr")
canonicalize = kwargs.pop("canonicalize", False)
obj = Basic.__new__(cls, expr, permutation)
obj._subranks = [get_rank(expr)]
shape = get_shape(expr)
if shape is None:
obj._shape = None
else:
obj._shape = tuple(shape[permutation(i)] for i in range(len(shape)))
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
expr = self.expr
permutation = self.permutation
if isinstance(expr, PermuteDims):
subexpr = expr.expr
subperm = expr.permutation
permutation = permutation * subperm
expr = subexpr
if isinstance(expr, ArrayContraction):
expr, permutation = self._PermuteDims_denestarg_ArrayContraction(expr, permutation)
if isinstance(expr, ArrayTensorProduct):
expr, permutation = self._PermuteDims_denestarg_ArrayTensorProduct(expr, permutation)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
return ZeroArray(*[expr.shape[i] for i in permutation.array_form])
plist = permutation.array_form
if plist == sorted(plist):
return expr
return self.func(expr, permutation, canonicalize=False)
@property
def expr(self):
return self.args[0]
@property
def permutation(self):
return self.args[1]
@classmethod
def _PermuteDims_denestarg_ArrayTensorProduct(cls, expr, permutation):
# Get the permutation in its image-form:
perm_image_form = _af_invert(permutation.array_form)
args = list(expr.args)
# Starting index global position for every arg:
cumul = list(accumulate([0] + expr.subranks))
# Split `perm_image_form` into a list of list corresponding to the indices
# of every argument:
perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))]
# Create an index, target-position-key array:
ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)]
# Sort the array according to the target-position-key:
# In this way, we define a canonical way to sort the arguments according
# to the permutation.
ps.sort(key=lambda x: x[1])
# Read the inverse-permutation (i.e. image-form) of the args:
perm_args_image_form = [i[0] for i in ps]
# Apply the args-permutation to the `args`:
args_sorted = [args[i] for i in perm_args_image_form]
# Apply the args-permutation to the array-form of the permutation of the axes (of `expr`):
perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form]
new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i]))
return _array_tensor_product(*args_sorted), new_permutation
@classmethod
def _PermuteDims_denestarg_ArrayContraction(cls, expr, permutation):
if not isinstance(expr, ArrayContraction):
return expr, permutation
if not isinstance(expr.expr, ArrayTensorProduct):
return expr, permutation
args = expr.expr.args
subranks = [get_rank(arg) for arg in expr.expr.args]
contraction_indices = expr.contraction_indices
contraction_indices_flat = [j for i in contraction_indices for j in i]
cumul = list(accumulate([0] + subranks))
# Spread the permutation in its array form across the args in the corresponding
# tensor-product arguments with free indices:
permutation_array_blocks_up = []
image_form = _af_invert(permutation.array_form)
counter = 0
for i, e in enumerate(subranks):
current = []
for j in range(cumul[i], cumul[i+1]):
if j in contraction_indices_flat:
continue
current.append(image_form[counter])
counter += 1
permutation_array_blocks_up.append(current)
# Get the map of axis repositioning for every argument of tensor-product:
index_blocks = [[j for j in range(cumul[i], cumul[i+1])] for i, e in enumerate(expr.subranks)]
index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks)
inverse_permutation = permutation**(-1)
index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up]
# Sorting key is a list of tuple, first element is the index of `args`, second element of
# the tuple is the sorting key to sort `args` of the tensor product:
sorting_keys = list(enumerate(index_blocks_up_permuted))
sorting_keys.sort(key=lambda x: x[1])
# Now we can get the permutation acting on the args in its image-form:
new_perm_image_form = [i[0] for i in sorting_keys]
# Apply the args-level permutation to various elements:
new_index_blocks = [index_blocks[i] for i in new_perm_image_form]
new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i])
new_args = [args[i] for i in new_perm_image_form]
new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices]
new_expr = _array_contraction(_array_tensor_product(*new_args), *new_contraction_indices)
new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i]))
return new_expr, new_permutation
@classmethod
def _check_permutation_mapping(cls, expr, permutation):
subranks = expr.subranks
index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])]
permuted_indices = [permutation(i) for i in range(expr.subrank())]
new_args = list(expr.args)
arg_candidate_index = index2arg[permuted_indices[0]]
current_indices = []
new_permutation = []
inserted_arg_cand_indices = set([])
for i, idx in enumerate(permuted_indices):
if index2arg[idx] != arg_candidate_index:
new_permutation.extend(current_indices)
current_indices = []
arg_candidate_index = index2arg[idx]
current_indices.append(idx)
arg_candidate_rank = subranks[arg_candidate_index]
if len(current_indices) == arg_candidate_rank:
new_permutation.extend(sorted(current_indices))
local_current_indices = [j - min(current_indices) for j in current_indices]
i1 = index2arg[i]
new_args[i1] = _permute_dims(new_args[i1], Permutation(local_current_indices))
inserted_arg_cand_indices.add(arg_candidate_index)
current_indices = []
new_permutation.extend(current_indices)
# TODO: swap args positions in order to simplify the expression:
# TODO: this should be in a function
args_positions = list(range(len(new_args)))
# Get possible shifts:
maps = {}
cumulative_subranks = [0] + list(accumulate(subranks))
for i in range(len(subranks)):
s = set([index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])])
if len(s) != 1:
continue
elem = next(iter(s))
if i != elem:
maps[i] = elem
# Find cycles in the map:
lines = []
current_line = []
while maps:
if len(current_line) == 0:
k, v = maps.popitem()
current_line.append(k)
else:
k = current_line[-1]
if k not in maps:
current_line = []
continue
v = maps.pop(k)
if v in current_line:
lines.append(current_line)
current_line = []
continue
current_line.append(v)
for line in lines:
for i, e in enumerate(line):
args_positions[line[(i + 1) % len(line)]] = e
# TODO: function in order to permute the args:
permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)]
new_args = [new_args[i] for i in args_positions]
new_permutation_blocks = [permutation_blocks[i] for i in args_positions]
new_permutation2 = [j for i in new_permutation_blocks for j in i]
return _array_tensor_product(*new_args), Permutation(new_permutation2) # **(-1)
@classmethod
def _check_if_there_are_closed_cycles(cls, expr, permutation):
args = list(expr.args)
subranks = expr.subranks
cyclic_form = permutation.cyclic_form
cumulative_subranks = [0] + list(accumulate(subranks))
cyclic_min = [min(i) for i in cyclic_form]
cyclic_max = [max(i) for i in cyclic_form]
cyclic_keep = []
for i, cycle in enumerate(cyclic_form):
flag = True
for j in range(len(cumulative_subranks) - 1):
if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]:
# Found a sinkable cycle.
args[j] = _permute_dims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]]))
flag = False
break
if flag:
cyclic_keep.append(cyclic_form[i])
return _array_tensor_product(*args), Permutation(cyclic_keep, size=permutation.size)
def nest_permutation(self):
r"""
DEPRECATED.
"""
ret = self._nest_permutation(self.expr, self.permutation)
if ret is None:
return self
return ret
@classmethod
def _nest_permutation(cls, expr, permutation):
if isinstance(expr, ArrayTensorProduct):
return _permute_dims(*cls._check_if_there_are_closed_cycles(expr, permutation))
elif isinstance(expr, ArrayContraction):
# Invert tree hierarchy: put the contraction above.
cycles = permutation.cyclic_form
newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles)
newpermutation = Permutation(newcycles)
new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices]
return _array_contraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices)
elif isinstance(expr, ArrayAdd):
return _array_add(*[PermuteDims(arg, permutation) for arg in expr.args])
return None
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return permutedims(expr, self.permutation)
@classmethod
def _get_permutation_from_arguments(cls, permutation, index_order_old, index_order_new, dim):
if permutation is None:
if index_order_new is None or index_order_old is None:
raise ValueError("Permutation not defined")
return PermuteDims._get_permutation_from_index_orders(index_order_old, index_order_new, dim)
else:
if index_order_new is not None:
raise ValueError("index_order_new cannot be defined with permutation")
if index_order_old is not None:
raise ValueError("index_order_old cannot be defined with permutation")
return permutation
@classmethod
def _get_permutation_from_index_orders(cls, index_order_old, index_order_new, dim):
if len(set(index_order_new)) != dim:
raise ValueError("wrong number of indices in index_order_new")
if len(set(index_order_old)) != dim:
raise ValueError("wrong number of indices in index_order_old")
if len(set.symmetric_difference(set(index_order_new), set(index_order_old))) > 0:
raise ValueError("index_order_new and index_order_old must have the same indices")
permutation = [index_order_old.index(i) for i in index_order_new]
return permutation
class ArrayDiagonal(_CodegenArrayAbstract):
r"""
Class to represent the diagonal operator.
Explanation
===========
In a 2-dimensional array it returns the diagonal, this looks like the
operation:
`A_{ij} \rightarrow A_{ii}`
The diagonal over axes 1 and 2 (the second and third) of the tensor product
of two 2-dimensional arrays `A \otimes B` is
`\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}`
In this last example the array expression has been reduced from
4-dimensional to 3-dimensional. Notice that no contraction has occurred,
rather there is a new index `i` for the diagonal, contraction would have
reduced the array to 2 dimensions.
Notice that the diagonalized out dimensions are added as new dimensions at
the end of the indices.
"""
def __new__(cls, expr, *diagonal_indices, **kwargs):
expr = _sympify(expr)
diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices]
canonicalize = kwargs.get("canonicalize", False)
shape = get_shape(expr)
if shape is not None:
cls._validate(expr, *diagonal_indices, **kwargs)
# Get new shape:
positions, shape = cls._get_positions_shape(shape, diagonal_indices)
else:
positions = None
if len(diagonal_indices) == 0:
return expr
obj = Basic.__new__(cls, expr, *diagonal_indices)
obj._positions = positions
obj._subranks = _get_subranks(expr)
obj._shape = shape
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
expr = self.expr
diagonal_indices = self.diagonal_indices
trivial_diags = [i for i in diagonal_indices if len(i) == 1]
if len(trivial_diags) > 0:
trivial_pos = {e[0]: i for i, e in enumerate(diagonal_indices) if len(e) == 1}
diag_pos = {e: i for i, e in enumerate(diagonal_indices) if len(e) > 1}
diagonal_indices_short = [i for i in diagonal_indices if len(i) > 1]
rank1 = get_rank(self)
rank2 = len(diagonal_indices)
rank3 = rank1 - rank2
inv_permutation = []
counter1 = 0
indices_down = ArrayDiagonal._push_indices_down(diagonal_indices_short, list(range(rank1)), get_rank(expr))
for i in indices_down:
if i in trivial_pos:
inv_permutation.append(rank3 + trivial_pos[i])
elif isinstance(i, (Integer, int)):
inv_permutation.append(counter1)
counter1 += 1
else:
inv_permutation.append(rank3 + diag_pos[i])
permutation = _af_invert(inv_permutation)
if len(diagonal_indices_short) > 0:
return _permute_dims(_array_diagonal(expr, *diagonal_indices_short), permutation)
else:
return _permute_dims(expr, permutation)
if isinstance(expr, ArrayAdd):
return self._ArrayDiagonal_denest_ArrayAdd(expr, *diagonal_indices)
if isinstance(expr, ArrayDiagonal):
return self._ArrayDiagonal_denest_ArrayDiagonal(expr, *diagonal_indices)
if isinstance(expr, PermuteDims):
return self._ArrayDiagonal_denest_PermuteDims(expr, *diagonal_indices)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
positions, shape = self._get_positions_shape(expr.shape, diagonal_indices)
return ZeroArray(*shape)
return self.func(expr, *diagonal_indices, canonicalize=False)
@staticmethod
def _validate(expr, *diagonal_indices, **kwargs):
# Check that no diagonalization happens on indices with mismatched
# dimensions:
shape = get_shape(expr)
for i in diagonal_indices:
if any(j >= len(shape) for j in i):
raise ValueError("index is larger than expression shape")
if len({shape[j] for j in i}) != 1:
raise ValueError("diagonalizing indices of different dimensions")
if not kwargs.get("allow_trivial_diags", False) and len(i) <= 1:
raise ValueError("need at least two axes to diagonalize")
if len(set(i)) != len(i):
raise ValueError("axis index cannot be repeated")
@staticmethod
def _remove_trivial_dimensions(shape, *diagonal_indices):
return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1]
@property
def expr(self):
return self.args[0]
@property
def diagonal_indices(self):
return self.args[1:]
@staticmethod
def _flatten(expr, *outer_diagonal_indices):
inner_diagonal_indices = expr.diagonal_indices
all_inner = [j for i in inner_diagonal_indices for j in i]
all_inner.sort()
# TODO: add API for total rank and cumulative rank:
total_rank = _get_subrank(expr)
inner_rank = len(all_inner)
outer_rank = total_rank - inner_rank
shifts = [0 for i in range(outer_rank)]
counter = 0
pointer = 0
for i in range(outer_rank):
while pointer < inner_rank and counter >= all_inner[pointer]:
counter += 1
pointer += 1
shifts[i] += pointer
counter += 1
outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices)
diagonal_indices = inner_diagonal_indices + outer_diagonal_indices
return _array_diagonal(expr.expr, *diagonal_indices)
@classmethod
def _ArrayDiagonal_denest_ArrayAdd(cls, expr, *diagonal_indices):
return _array_add(*[_array_diagonal(arg, *diagonal_indices) for arg in expr.args])
@classmethod
def _ArrayDiagonal_denest_ArrayDiagonal(cls, expr, *diagonal_indices):
return cls._flatten(expr, *diagonal_indices)
@classmethod
def _ArrayDiagonal_denest_PermuteDims(cls, expr: PermuteDims, *diagonal_indices):
back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices]
nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)]
back_nondiag = [expr.permutation(i) for i in nondiag]
remap = {e: i for i, e in enumerate(sorted(back_nondiag))}
new_permutation1 = [remap[i] for i in back_nondiag]
shift = len(new_permutation1)
diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))]
new_permutation = new_permutation1 + diag_block_perm
return _permute_dims(
_array_diagonal(
expr.expr,
*back_diagonal_indices
),
new_permutation
)
def _push_indices_down_nonstatic(self, indices):
transform = lambda x: self._positions[x] if x < len(self._positions) else None
return _apply_recursively_over_nested_lists(transform, indices)
def _push_indices_up_nonstatic(self, indices):
def transform(x):
for i, e in enumerate(self._positions):
if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e):
return i
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_down(cls, diagonal_indices, indices, rank):
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
transform = lambda x: positions[x] if x < len(positions) else None
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_up(cls, diagonal_indices, indices, rank):
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
def transform(x):
for i, e in enumerate(positions):
if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)):
return i
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _get_positions_shape(cls, shape, diagonal_indices):
data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices))
pos1, shp1 = zip(*data1) if data1 else ((), ())
data2 = tuple((i, shape[i[0]]) for i in diagonal_indices)
pos2, shp2 = zip(*data2) if data2 else ((), ())
positions = pos1 + pos2
shape = shp1 + shp2
return positions, shape
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return tensordiagonal(expr, *self.diagonal_indices)
class ArrayElementwiseApplyFunc(_CodegenArrayAbstract):
def __new__(cls, function, element):
if not isinstance(function, Lambda):
d = Dummy('d')
function = Lambda(d, function(d))
obj = _CodegenArrayAbstract.__new__(cls, function, element)
obj._subranks = _get_subranks(element)
return obj
@property
def function(self):
return self.args[0]
@property
def expr(self):
return self.args[1]
@property
def shape(self):
return self.expr.shape
def _get_function_fdiff(self):
d = Dummy("d")
function = self.function(d)
fdiff = function.diff(d)
if isinstance(fdiff, Function):
fdiff = type(fdiff)
else:
fdiff = Lambda(d, fdiff)
return fdiff
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return expr.applyfunc(self.function)
class ArrayContraction(_CodegenArrayAbstract):
r"""
This class is meant to represent contractions of arrays in a form easily
processable by the code printers.
"""
def __new__(cls, expr, *contraction_indices, **kwargs):
contraction_indices = _sort_contraction_indices(contraction_indices)
expr = _sympify(expr)
canonicalize = kwargs.get("canonicalize", False)
obj = Basic.__new__(cls, expr, *contraction_indices)
obj._subranks = _get_subranks(expr)
obj._mapping = _get_mapping_from_subranks(obj._subranks)
free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all(i not in cind for cind in contraction_indices)}
obj._free_indices_to_position = free_indices_to_position
shape = get_shape(expr)
cls._validate(expr, *contraction_indices)
if shape:
shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices))
obj._shape = shape
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
expr = self.expr
contraction_indices = self.contraction_indices
if len(contraction_indices) == 0:
return expr
if isinstance(expr, ArrayContraction):
return self._ArrayContraction_denest_ArrayContraction(expr, *contraction_indices)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
return self._ArrayContraction_denest_ZeroArray(expr, *contraction_indices)
if isinstance(expr, PermuteDims):
return self._ArrayContraction_denest_PermuteDims(expr, *contraction_indices)
if isinstance(expr, ArrayTensorProduct):
expr, contraction_indices = self._sort_fully_contracted_args(expr, contraction_indices)
expr, contraction_indices = self._lower_contraction_to_addends(expr, contraction_indices)
if len(contraction_indices) == 0:
return expr
if isinstance(expr, ArrayDiagonal):
return self._ArrayContraction_denest_ArrayDiagonal(expr, *contraction_indices)
if isinstance(expr, ArrayAdd):
return self._ArrayContraction_denest_ArrayAdd(expr, *contraction_indices)
# Check single index contractions on 1-dimensional axes:
contraction_indices = [i for i in contraction_indices if len(i) > 1 or get_shape(expr)[i[0]] != 1]
if len(contraction_indices) == 0:
return expr
return self.func(expr, *contraction_indices, canonicalize=False)
def __mul__(self, other):
if other == 1:
return self
else:
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
def __rmul__(self, other):
if other == 1:
return self
else:
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
@staticmethod
def _validate(expr, *contraction_indices):
shape = get_shape(expr)
if shape is None:
return
# Check that no contraction happens when the shape is mismatched:
for i in contraction_indices:
if len({shape[j] for j in i if shape[j] != -1}) != 1:
raise ValueError("contracting indices of different dimensions")
@classmethod
def _push_indices_down(cls, contraction_indices, indices):
flattened_contraction_indices = [j for i in contraction_indices for j in i]
flattened_contraction_indices.sort()
transform = _build_push_indices_down_func_transformation(flattened_contraction_indices)
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_up(cls, contraction_indices, indices):
flattened_contraction_indices = [j for i in contraction_indices for j in i]
flattened_contraction_indices.sort()
transform = _build_push_indices_up_func_transformation(flattened_contraction_indices)
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _lower_contraction_to_addends(cls, expr, contraction_indices):
if isinstance(expr, ArrayAdd):
raise NotImplementedError()
if not isinstance(expr, ArrayTensorProduct):
return expr, contraction_indices
subranks = expr.subranks
cumranks = list(accumulate([0] + subranks))
contraction_indices_remaining = []
contraction_indices_args = [[] for i in expr.args]
backshift = set([])
for i, contraction_group in enumerate(contraction_indices):
for j in range(len(expr.args)):
if not isinstance(expr.args[j], ArrayAdd):
continue
if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group):
contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group])
backshift.update(contraction_group)
break
else:
contraction_indices_remaining.append(contraction_group)
if len(contraction_indices_remaining) == len(contraction_indices):
return expr, contraction_indices
total_rank = get_rank(expr)
shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)]))
contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining]
ret = _array_tensor_product(*[
_array_contraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args)
])
return ret, contraction_indices_remaining
def split_multiple_contractions(self):
"""
Recognize multiple contractions and attempt at rewriting them as paired-contractions.
This allows some contractions involving more than two indices to be
rewritten as multiple contractions involving two indices, thus allowing
the expression to be rewritten as a matrix multiplication line.
Examples:
* `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C`
Care for:
- matrix being diagonalized (i.e. `A_ii`)
- vectors being diagonalized (i.e. `a_i0`)
Multiple contractions can be split into matrix multiplications if
not more than two arguments are non-diagonals or non-vectors.
Vectors get diagonalized while diagonal matrices remain diagonal.
The non-diagonal matrices can be at the beginning or at the end
of the final matrix multiplication line.
"""
editor = _EditArrayContraction(self)
contraction_indices = self.contraction_indices
onearray_insert = []
for indl, links in enumerate(contraction_indices):
if len(links) <= 2:
continue
# Check multiple contractions:
#
# Examples:
#
# * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C \otimes OneArray(1)` with permutation (1 2)
#
# Care for:
# - matrix being diagonalized (i.e. `A_ii`)
# - vectors being diagonalized (i.e. `a_i0`)
# Multiple contractions can be split into matrix multiplications if
# not more than three arguments are non-diagonals or non-vectors.
#
# Vectors get diagonalized while diagonal matrices remain diagonal.
# The non-diagonal matrices can be at the beginning or at the end
# of the final matrix multiplication line.
positions = editor.get_mapping_for_index(indl)
# Also consider the case of diagonal matrices being contracted:
current_dimension = self.expr.shape[links[0]]
not_vectors = []
vectors = []
for arg_ind, rel_ind in positions:
arg = editor.args_with_ind[arg_ind]
mat = arg.element
abs_arg_start, abs_arg_end = editor.get_absolute_range(arg)
other_arg_pos = 1-rel_ind
other_arg_abs = abs_arg_start + other_arg_pos
if ((1 not in mat.shape) or
((current_dimension == 1) is True and mat.shape != (1, 1)) or
any(other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl)
):
not_vectors.append((arg, rel_ind))
else:
vectors.append((arg, rel_ind))
if len(not_vectors) > 2:
# If more than two arguments in the multiple contraction are
# non-vectors and non-diagonal matrices, we cannot find a way
# to split this contraction into a matrix multiplication line:
continue
# Three cases to handle:
# - zero non-vectors
# - one non-vector
# - two non-vectors
for v, rel_ind in vectors:
v.element = diagonalize_vector(v.element)
vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:]
first_not_vector, rel_ind = vectors_to_loop[0]
new_index = first_not_vector.indices[rel_ind]
for v, rel_ind in vectors_to_loop[1:-1]:
v.indices[rel_ind] = new_index
new_index = editor.get_new_contraction_index()
assert v.indices.index(None) == 1 - rel_ind
v.indices[v.indices.index(None)] = new_index
onearray_insert.append(v)
last_vec, rel_ind = vectors_to_loop[-1]
last_vec.indices[rel_ind] = new_index
for v in onearray_insert:
editor.insert_after(v, _ArgE(OneArray(1), [None]))
return editor.to_array_contraction()
def flatten_contraction_of_diagonal(self):
if not isinstance(self.expr, ArrayDiagonal):
return self
contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices)
new_contraction_indices = []
diagonal_indices = self.expr.diagonal_indices[:]
for i in contraction_down:
contraction_group = list(i)
for j in i:
diagonal_with = [k for k in diagonal_indices if j in k]
contraction_group.extend([l for k in diagonal_with for l in k])
diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with]
new_contraction_indices.append(sorted(set(contraction_group)))
new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices)
return _array_contraction(
_array_diagonal(
self.expr.expr,
*diagonal_indices
),
*new_contraction_indices
)
@staticmethod
def _get_free_indices_to_position_map(free_indices, contraction_indices):
free_indices_to_position = {}
flattened_contraction_indices = [j for i in contraction_indices for j in i]
counter = 0
for ind in free_indices:
while counter in flattened_contraction_indices:
counter += 1
free_indices_to_position[ind] = counter
counter += 1
return free_indices_to_position
@staticmethod
def _get_index_shifts(expr):
"""
Get the mapping of indices at the positions before the contraction
occurs.
Examples
========
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
>>> cg = tensorcontraction(tensorproduct(M, N), [1, 2])
>>> cg._get_index_shifts(cg)
[0, 2]
Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They
need to be shifted by 0 and 2 to get the corresponding positions before
the contraction (that is, 0 and 3).
"""
inner_contraction_indices = expr.contraction_indices
all_inner = [j for i in inner_contraction_indices for j in i]
all_inner.sort()
# TODO: add API for total rank and cumulative rank:
total_rank = _get_subrank(expr)
inner_rank = len(all_inner)
outer_rank = total_rank - inner_rank
shifts = [0 for i in range(outer_rank)]
counter = 0
pointer = 0
for i in range(outer_rank):
while pointer < inner_rank and counter >= all_inner[pointer]:
counter += 1
pointer += 1
shifts[i] += pointer
counter += 1
return shifts
@staticmethod
def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices):
shifts = ArrayContraction._get_index_shifts(expr)
outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices)
return outer_contraction_indices
@staticmethod
def _flatten(expr, *outer_contraction_indices):
inner_contraction_indices = expr.contraction_indices
outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices)
contraction_indices = inner_contraction_indices + outer_contraction_indices
return _array_contraction(expr.expr, *contraction_indices)
@classmethod
def _ArrayContraction_denest_ArrayContraction(cls, expr, *contraction_indices):
return cls._flatten(expr, *contraction_indices)
@classmethod
def _ArrayContraction_denest_ZeroArray(cls, expr, *contraction_indices):
contraction_indices_flat = [j for i in contraction_indices for j in i]
shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat]
return ZeroArray(*shape)
@classmethod
def _ArrayContraction_denest_ArrayAdd(cls, expr, *contraction_indices):
return _array_add(*[_array_contraction(i, *contraction_indices) for i in expr.args])
@classmethod
def _ArrayContraction_denest_PermuteDims(cls, expr, *contraction_indices):
permutation = expr.permutation
plist = permutation.array_form
new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices]
new_plist = [i for i in plist if not any(i in j for j in new_contraction_indices)]
new_plist = cls._push_indices_up(new_contraction_indices, new_plist)
return _permute_dims(
_array_contraction(expr.expr, *new_contraction_indices),
Permutation(new_plist)
)
@classmethod
def _ArrayContraction_denest_ArrayDiagonal(cls, expr: 'ArrayDiagonal', *contraction_indices):
diagonal_indices = list(expr.diagonal_indices)
down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr))
# Flatten diagonally contracted indices:
down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices]
new_contraction_indices = []
for contr_indgrp in down_contraction_indices:
ind = contr_indgrp[:]
for j, diag_indgrp in enumerate(diagonal_indices):
if diag_indgrp is None:
continue
if any(i in diag_indgrp for i in contr_indgrp):
ind.extend(diag_indgrp)
diagonal_indices[j] = None
new_contraction_indices.append(sorted(set(ind)))
new_diagonal_indices_down = [i for i in diagonal_indices if i is not None]
new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down)
return _array_diagonal(
_array_contraction(expr.expr, *new_contraction_indices),
*new_diagonal_indices
)
@classmethod
def _sort_fully_contracted_args(cls, expr, contraction_indices):
if expr.shape is None:
return expr, contraction_indices
cumul = list(accumulate([0] + expr.subranks))
index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))]
contraction_indices_flat = {j for i in contraction_indices for j in i}
fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)]
new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,))
new_args = [expr.args[i] for i in new_pos]
new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]]
index_permutation_array_form = _af_invert(new_index_blocks_flat)
new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices]
new_contraction_indices = _sort_contraction_indices(new_contraction_indices)
return _array_tensor_product(*new_args), new_contraction_indices
def _get_contraction_tuples(self):
r"""
Return tuples containing the argument index and position within the
argument of the index position.
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> cg = tensorcontraction(tensorproduct(A, B), (1, 2))
>>> cg._get_contraction_tuples()
[[(0, 1), (1, 0)]]
Notes
=====
Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices
of the tensor product `A\otimes B` are contracted, has been transformed
into `(0, 1)` and `(1, 0)`, identifying the same indices in a different
notation. `(0, 1)` is the second index (1) of the first argument (i.e.
0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second
argument (i.e. 1 or `B`).
"""
mapping = self._mapping
return [[mapping[j] for j in i] for i in self.contraction_indices]
@staticmethod
def _contraction_tuples_to_contraction_indices(expr, contraction_tuples):
# TODO: check that `expr` has `.subranks`:
ranks = expr.subranks
cumulative_ranks = [0] + list(accumulate(ranks))
return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples]
@property
def free_indices(self):
return self._free_indices[:]
@property
def free_indices_to_position(self):
return dict(self._free_indices_to_position)
@property
def expr(self):
return self.args[0]
@property
def contraction_indices(self):
return self.args[1:]
def _contraction_indices_to_components(self):
expr = self.expr
if not isinstance(expr, ArrayTensorProduct):
raise NotImplementedError("only for contractions of tensor products")
ranks = expr.subranks
mapping = {}
counter = 0
for i, rank in enumerate(ranks):
for j in range(rank):
mapping[counter] = (i, j)
counter += 1
return mapping
def sort_args_by_name(self):
"""
Sort arguments in the tensor product so that their order is lexicographical.
Examples
========
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
>>> cg = convert_matrix_to_array(C*D*A*B)
>>> cg
ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5))
>>> cg.sort_args_by_name()
ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
"""
expr = self.expr
if not isinstance(expr, ArrayTensorProduct):
return self
args = expr.args
sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1]))
pos_sorted, args_sorted = zip(*sorted_data)
reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
contraction_tuples = self._get_contraction_tuples()
contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples]
c_tp = _array_tensor_product(*args_sorted)
new_contr_indices = self._contraction_tuples_to_contraction_indices(
c_tp,
contraction_tuples
)
return _array_contraction(c_tp, *new_contr_indices)
def _get_contraction_links(self):
r"""
Returns a dictionary of links between arguments in the tensor product
being contracted.
See the example for an explanation of the values.
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
Matrix multiplications are pairwise contractions between neighboring
matrices:
`A_{ij} B_{jk} C_{kl} D_{lm}`
>>> cg = convert_matrix_to_array(A*B*C*D)
>>> cg
ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6))
>>> cg._get_contraction_links()
{0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}}
This dictionary is interpreted as follows: argument in position 0 (i.e.
matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that
is argument in position 1 (matrix `B`) on the first index slot of `B`,
this is the contraction provided by the index `j` from `A`.
The argument in position 1 (that is, matrix `B`) has two contractions,
the ones provided by the indices `j` and `k`, respectively the first
and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and
`(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of
argument in position 0 (that is, `A_{\ldot j}`), and so on.
"""
args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices)
return dlinks
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return tensorcontraction(expr, *self.contraction_indices)
class Reshape(_CodegenArrayAbstract):
"""
Reshape the dimensions of an array expression.
Examples
========
>>> from sympy.tensor.array.expressions import ArraySymbol, Reshape
>>> A = ArraySymbol("A", (6,))
>>> A.shape
(6,)
>>> Reshape(A, (3, 2)).shape
(3, 2)
Check the component-explicit forms:
>>> A.as_explicit()
[A[0], A[1], A[2], A[3], A[4], A[5]]
>>> Reshape(A, (3, 2)).as_explicit()
[[A[0], A[1]], [A[2], A[3]], [A[4], A[5]]]
"""
def __new__(cls, expr, shape):
expr = _sympify(expr)
if not isinstance(shape, Tuple):
shape = Tuple(*shape)
if Equality(Mul.fromiter(expr.shape), Mul.fromiter(shape)) == False:
raise ValueError("shape mismatch")
obj = Expr.__new__(cls, expr, shape)
obj._shape = tuple(shape)
obj._expr = expr
return obj
@property
def shape(self):
return self._shape
@property
def expr(self):
return self._expr
def doit(self, *args, **kwargs):
if kwargs.get("deep", True):
expr = self.expr.doit(*args, **kwargs)
else:
expr = self.expr
if isinstance(expr, (MatrixCommon, NDimArray)):
return expr.reshape(*self.shape)
return Reshape(expr, self.shape)
def as_explicit(self):
ee = self.expr
if hasattr(ee, "as_explicit"):
ee = ee.as_explicit()
if isinstance(ee, MatrixCommon):
from sympy import Array
ee = Array(ee)
elif isinstance(ee, MatrixExpr):
return self
return ee.reshape(*self.shape)
class _ArgE:
"""
The ``_ArgE`` object contains references to the array expression
(``.element``) and a list containing the information about index
contractions (``.indices``).
Index contractions are numbered and contracted indices show the number of
the contraction. Uncontracted indices have ``None`` value.
For example:
``_ArgE(M, [None, 3])``
This object means that expression ``M`` is part of an array contraction
and has two indices, the first is not contracted (value ``None``),
the second index is contracted to the 4th (i.e. number ``3``) group of the
array contraction object.
"""
indices: List[Optional[int]]
def __init__(self, element, indices: Optional[List[Optional[int]]] = None):
self.element = element
if indices is None:
self.indices = [None for i in range(get_rank(element))]
else:
self.indices = indices
def __str__(self):
return "_ArgE(%s, %s)" % (self.element, self.indices)
__repr__ = __str__
class _IndPos:
"""
Index position, requiring two integers in the constructor:
- arg: the position of the argument in the tensor product,
- rel: the relative position of the index inside the argument.
"""
def __init__(self, arg: int, rel: int):
self.arg = arg
self.rel = rel
def __str__(self):
return "_IndPos(%i, %i)" % (self.arg, self.rel)
__repr__ = __str__
def __iter__(self):
yield from [self.arg, self.rel]
class _EditArrayContraction:
"""
Utility class to help manipulate array contraction objects.
This class takes as input an ``ArrayContraction`` object and turns it into
an editable object.
The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects
which can be used to easily edit the contraction structure of the
expression.
Once editing is finished, the ``ArrayContraction`` object may be recreated
by calling the ``.to_array_contraction()`` method.
"""
def __init__(self, base_array: typing.Union[ArrayContraction, ArrayDiagonal, ArrayTensorProduct]):
expr: Basic
diagonalized: tTuple[tTuple[int, ...], ...]
contraction_indices: List[tTuple[int]]
if isinstance(base_array, ArrayContraction):
mapping = _get_mapping_from_subranks(base_array.subranks)
expr = base_array.expr
contraction_indices = base_array.contraction_indices
diagonalized = ()
elif isinstance(base_array, ArrayDiagonal):
if isinstance(base_array.expr, ArrayContraction):
mapping = _get_mapping_from_subranks(base_array.expr.subranks)
expr = base_array.expr.expr
diagonalized = ArrayContraction._push_indices_down(base_array.expr.contraction_indices, base_array.diagonal_indices)
contraction_indices = base_array.expr.contraction_indices
elif isinstance(base_array.expr, ArrayTensorProduct):
mapping = {}
expr = base_array.expr
diagonalized = base_array.diagonal_indices
contraction_indices = []
else:
mapping = {}
expr = base_array.expr
diagonalized = base_array.diagonal_indices
contraction_indices = []
elif isinstance(base_array, ArrayTensorProduct):
expr = base_array
contraction_indices = []
diagonalized = ()
else:
raise NotImplementedError()
if isinstance(expr, ArrayTensorProduct):
args = list(expr.args)
else:
args = [expr]
args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args]
for i, contraction_tuple in enumerate(contraction_indices):
for j in contraction_tuple:
arg_pos, rel_pos = mapping[j]
args_with_ind[arg_pos].indices[rel_pos] = i
self.args_with_ind: List[_ArgE] = args_with_ind
self.number_of_contraction_indices: int = len(contraction_indices)
self._track_permutation: Optional[List[List[int]]] = None
mapping = _get_mapping_from_subranks(base_array.subranks)
# Trick: add diagonalized indices as negative indices into the editor object:
for i, e in enumerate(diagonalized):
for j in e:
arg_pos, rel_pos = mapping[j]
self.args_with_ind[arg_pos].indices[rel_pos] = -1 - i
def insert_after(self, arg: _ArgE, new_arg: _ArgE):
pos = self.args_with_ind.index(arg)
self.args_with_ind.insert(pos + 1, new_arg)
def get_new_contraction_index(self):
self.number_of_contraction_indices += 1
return self.number_of_contraction_indices - 1
def refresh_indices(self):
updates = {}
for arg_with_ind in self.args_with_ind:
updates.update({i: -1 for i in arg_with_ind.indices if i is not None})
for i, e in enumerate(sorted(updates)):
updates[e] = i
self.number_of_contraction_indices = len(updates)
for arg_with_ind in self.args_with_ind:
arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices]
def merge_scalars(self):
scalars = []
for arg_with_ind in self.args_with_ind:
if len(arg_with_ind.indices) == 0:
scalars.append(arg_with_ind)
for i in scalars:
self.args_with_ind.remove(i)
scalar = Mul.fromiter([i.element for i in scalars])
if len(self.args_with_ind) == 0:
self.args_with_ind.append(_ArgE(scalar))
else:
from sympy.tensor.array.expressions.from_array_to_matrix import _a2m_tensor_product
self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element)
def to_array_contraction(self):
# Count the ranks of the arguments:
counter = 0
# Create a collector for the new diagonal indices:
diag_indices = defaultdict(list)
count_index_freq = Counter()
for arg_with_ind in self.args_with_ind:
count_index_freq.update(Counter(arg_with_ind.indices))
free_index_count = count_index_freq[None]
# Construct the inverse permutation:
inv_perm1 = []
inv_perm2 = []
# Keep track of which diagonal indices have already been processed:
done = set([])
# Counter for the diagonal indices:
counter4 = 0
for arg_with_ind in self.args_with_ind:
# If some diagonalization axes have been removed, they should be
# permuted in order to keep the permutation.
# Add permutation here
counter2 = 0 # counter for the indices
for i in arg_with_ind.indices:
if i is None:
inv_perm1.append(counter4)
counter2 += 1
counter4 += 1
continue
if i >= 0:
continue
# Reconstruct the diagonal indices:
diag_indices[-1 - i].append(counter + counter2)
if count_index_freq[i] == 1 and i not in done:
inv_perm1.append(free_index_count - 1 - i)
done.add(i)
elif i not in done:
inv_perm2.append(free_index_count - 1 - i)
done.add(i)
counter2 += 1
# Remove negative indices to restore a proper editor object:
arg_with_ind.indices = [i if i is not None and i >= 0 else None for i in arg_with_ind.indices]
counter += len([i for i in arg_with_ind.indices if i is None or i < 0])
inverse_permutation = inv_perm1 + inv_perm2
permutation = _af_invert(inverse_permutation)
# Get the diagonal indices after the detection of HadamardProduct in the expression:
diag_indices_filtered = [tuple(v) for v in diag_indices.values() if len(v) > 1]
self.merge_scalars()
self.refresh_indices()
args = [arg.element for arg in self.args_with_ind]
contraction_indices = self.get_contraction_indices()
expr = _array_contraction(_array_tensor_product(*args), *contraction_indices)
expr2 = _array_diagonal(expr, *diag_indices_filtered)
if self._track_permutation is not None:
permutation2 = _af_invert([j for i in self._track_permutation for j in i])
expr2 = _permute_dims(expr2, permutation2)
expr3 = _permute_dims(expr2, permutation)
return expr3
def get_contraction_indices(self) -> List[List[int]]:
contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)]
current_position: int = 0
for i, arg_with_ind in enumerate(self.args_with_ind):
for j in arg_with_ind.indices:
if j is not None:
contraction_indices[j].append(current_position)
current_position += 1
return contraction_indices
def get_mapping_for_index(self, ind) -> List[_IndPos]:
if ind >= self.number_of_contraction_indices:
raise ValueError("index value exceeding the index range")
positions: List[_IndPos] = []
for i, arg_with_ind in enumerate(self.args_with_ind):
for j, arg_ind in enumerate(arg_with_ind.indices):
if ind == arg_ind:
positions.append(_IndPos(i, j))
return positions
def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]:
contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)]
for i, arg_with_ind in enumerate(self.args_with_ind):
for j, ind in enumerate(arg_with_ind.indices):
if ind is not None:
contraction_indices[ind].append(_IndPos(i, j))
return contraction_indices
def count_args_with_index(self, index: int) -> int:
"""
Count the number of arguments that have the given index.
"""
counter: int = 0
for arg_with_ind in self.args_with_ind:
if index in arg_with_ind.indices:
counter += 1
return counter
def get_args_with_index(self, index: int) -> List[_ArgE]:
"""
Get a list of arguments having the given index.
"""
ret: List[_ArgE] = [i for i in self.args_with_ind if index in i.indices]
return ret
@property
def number_of_diagonal_indices(self):
data = set([])
for arg in self.args_with_ind:
data.update({i for i in arg.indices if i is not None and i < 0})
return len(data)
def track_permutation_start(self):
permutation = []
perm_diag = []
counter = 0
counter2 = -1
for arg_with_ind in self.args_with_ind:
perm = []
for i in arg_with_ind.indices:
if i is not None:
if i < 0:
perm_diag.append(counter2)
counter2 -= 1
continue
perm.append(counter)
counter += 1
permutation.append(perm)
max_ind = max([max(i) if i else -1 for i in permutation]) if permutation else -1
perm_diag = [max_ind - i for i in perm_diag]
self._track_permutation = permutation + [perm_diag]
def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE):
index_destination = self.args_with_ind.index(destination)
index_element = self.args_with_ind.index(from_element)
self._track_permutation[index_destination].extend(self._track_permutation[index_element]) # type: ignore
self._track_permutation.pop(index_element) # type: ignore
def get_absolute_free_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
"""
Return the range of the free indices of the arg as absolute positions
among all free indices.
"""
counter = 0
for arg_with_ind in self.args_with_ind:
number_free_indices = len([i for i in arg_with_ind.indices if i is None])
if arg_with_ind == arg:
return counter, counter + number_free_indices
counter += number_free_indices
raise IndexError("argument not found")
def get_absolute_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
"""
Return the absolute range of indices for arg, disregarding dummy
indices.
"""
counter = 0
for arg_with_ind in self.args_with_ind:
number_indices = len(arg_with_ind.indices)
if arg_with_ind == arg:
return counter, counter + number_indices
counter += number_indices
raise IndexError("argument not found")
def get_rank(expr):
if isinstance(expr, (MatrixExpr, MatrixElement)):
return 2
if isinstance(expr, _CodegenArrayAbstract):
return len(expr.shape)
if isinstance(expr, NDimArray):
return expr.rank()
if isinstance(expr, Indexed):
return expr.rank
if isinstance(expr, IndexedBase):
shape = expr.shape
if shape is None:
return -1
else:
return len(shape)
if hasattr(expr, "shape"):
return len(expr.shape)
return 0
def _get_subrank(expr):
if isinstance(expr, _CodegenArrayAbstract):
return expr.subrank()
return get_rank(expr)
def _get_subranks(expr):
if isinstance(expr, _CodegenArrayAbstract):
return expr.subranks
else:
return [get_rank(expr)]
def get_shape(expr):
if hasattr(expr, "shape"):
return expr.shape
return ()
def nest_permutation(expr):
if isinstance(expr, PermuteDims):
return expr.nest_permutation()
else:
return expr
def _array_tensor_product(*args, **kwargs):
return ArrayTensorProduct(*args, canonicalize=True, **kwargs)
def _array_contraction(expr, *contraction_indices, **kwargs):
return ArrayContraction(expr, *contraction_indices, canonicalize=True, **kwargs)
def _array_diagonal(expr, *diagonal_indices, **kwargs):
return ArrayDiagonal(expr, *diagonal_indices, canonicalize=True, **kwargs)
def _permute_dims(expr, permutation, **kwargs):
return PermuteDims(expr, permutation, canonicalize=True, **kwargs)
def _array_add(*args, **kwargs):
return ArrayAdd(*args, canonicalize=True, **kwargs)
def _get_array_element_or_slice(expr, indices):
return ArrayElement(expr, indices)
|
dd821cb00cd6556411258412f74b8fbd297674ced9a8b57faadec4f7eb98536f | import collections.abc
import operator
from itertools import accumulate
from sympy import Mul, Sum, Dummy, Add
from sympy.tensor.array.expressions import PermuteDims, ArrayAdd, ArrayElementwiseApplyFunc, Reshape
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, get_rank, ArrayContraction, \
ArrayDiagonal, get_shape, _get_array_element_or_slice, _ArrayExpr
from sympy.tensor.array.expressions.utils import _apply_permutation_to_list
def convert_array_to_indexed(expr, indices):
return _ConvertArrayToIndexed().do_convert(expr, indices)
class _ConvertArrayToIndexed:
def __init__(self):
self.count_dummies = 0
def do_convert(self, expr, indices):
if isinstance(expr, ArrayTensorProduct):
cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
indices_grp = [indices[cumul[i]:cumul[i+1]] for i in range(len(expr.args))]
return Mul.fromiter(self.do_convert(arg, ind) for arg, ind in zip(expr.args, indices_grp))
if isinstance(expr, ArrayContraction):
new_indices = [None for i in range(get_rank(expr.expr))]
limits = []
bottom_shape = get_shape(expr.expr)
for contraction_index_grp in expr.contraction_indices:
d = Dummy(f"d{self.count_dummies}")
self.count_dummies += 1
dim = bottom_shape[contraction_index_grp[0]]
limits.append((d, 0, dim-1))
for i in contraction_index_grp:
new_indices[i] = d
j = 0
for i in range(len(new_indices)):
if new_indices[i] is None:
new_indices[i] = indices[j]
j += 1
newexpr = self.do_convert(expr.expr, new_indices)
return Sum(newexpr, *limits)
if isinstance(expr, ArrayDiagonal):
new_indices = [None for i in range(get_rank(expr.expr))]
ind_pos = expr._push_indices_down(expr.diagonal_indices, list(range(len(indices))), get_rank(expr))
for i, index in zip(ind_pos, indices):
if isinstance(i, collections.abc.Iterable):
for j in i:
new_indices[j] = index
else:
new_indices[i] = index
newexpr = self.do_convert(expr.expr, new_indices)
return newexpr
if isinstance(expr, PermuteDims):
permuted_indices = _apply_permutation_to_list(expr.permutation, indices)
return self.do_convert(expr.expr, permuted_indices)
if isinstance(expr, ArrayAdd):
return Add.fromiter(self.do_convert(arg, indices) for arg in expr.args)
if isinstance(expr, _ArrayExpr):
return expr.__getitem__(tuple(indices))
if isinstance(expr, ArrayElementwiseApplyFunc):
return expr.function(self.do_convert(expr.expr, indices))
if isinstance(expr, Reshape):
shape_up = expr.shape
shape_down = get_shape(expr.expr)
cumul = list(accumulate([1] + list(reversed(shape_up)), operator.mul))
one_index = Add.fromiter(i*s for i, s in zip(reversed(indices), cumul))
dest_indices = [None for _ in shape_down]
c = 1
for i, e in enumerate(reversed(shape_down)):
if c == 1:
if i == len(shape_down) - 1:
dest_indices[i] = one_index
else:
dest_indices[i] = one_index % e
elif i == len(shape_down) - 1:
dest_indices[i] = one_index // c
else:
dest_indices[i] = one_index // c % e
c *= e
dest_indices.reverse()
return self.do_convert(expr.expr, dest_indices)
return _get_array_element_or_slice(expr, indices)
|
5817bd549e15b60c528d410d67960f0b040f6765ae6823f5850cf51cf279cb35 | import itertools
from collections import defaultdict
from typing import Tuple as tTuple, Union as tUnion, FrozenSet, Dict as tDict, List, Optional
from functools import singledispatch
from itertools import accumulate
from sympy import MatMul, Basic, Wild, KroneckerProduct
from sympy.assumptions.ask import (Q, ask)
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions.hadamard import hadamard_product, HadamardPower
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.special import (Identity, ZeroMatrix, OneMatrix)
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.transpose import Transpose
from sympy.combinatorics.permutations import _af_invert, Permutation
from sympy.matrices.common import MatrixCommon
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \
ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \
ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE, \
ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims
from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks
def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> tTuple[Optional[_ArgE], bool, int]:
scan_indices_int: List[int] = [i for i in scan_indices if i is not None]
if len(scan_indices_int) == 0:
return None, False, -1
transpose: bool = False
candidate: Optional[_ArgE] = None
candidate_index: int = -1
for arg_with_ind2 in remaining_args:
if not isinstance(arg_with_ind2.element, MatrixExpr):
continue
for index in scan_indices_int:
if candidate_index != -1 and candidate_index != index:
# A candidate index has already been selected, check
# repetitions only for that index:
continue
if index in arg_with_ind2.indices:
if set(arg_with_ind2.indices) == {index}:
# Index repeated twice in arg_with_ind2
candidate = None
break
if candidate is None:
candidate = arg_with_ind2
candidate_index = index
transpose = (index == arg_with_ind2.indices[1])
else:
# Index repeated more than twice, break
candidate = None
break
return candidate, transpose, candidate_index
def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool):
other = candidate.element
other_index: Optional[int]
if transpose2:
other = Transpose(other)
other_index = candidate.indices[0]
else:
other_index = candidate.indices[1]
new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other
editor.args_with_ind.remove(candidate)
new_arge = _ArgE(new_element)
return new_arge, other_index
def _support_function_tp1_recognize(contraction_indices, args):
if len(contraction_indices) == 0:
return _a2m_tensor_product(*args)
ac = _array_contraction(_array_tensor_product(*args), *contraction_indices)
editor = _EditArrayContraction(ac)
editor.track_permutation_start()
while True:
flag_stop = True
for i, arg_with_ind in enumerate(editor.args_with_ind):
if not isinstance(arg_with_ind.element, MatrixExpr):
continue
first_index = arg_with_ind.indices[0]
second_index = arg_with_ind.indices[1]
first_frequency = editor.count_args_with_index(first_index)
second_frequency = editor.count_args_with_index(second_index)
if first_index is not None and first_frequency == 1 and first_index == second_index:
flag_stop = False
arg_with_ind.element = Trace(arg_with_ind.element)._normalize()
arg_with_ind.indices = []
break
scan_indices = []
if first_frequency == 2:
scan_indices.append(first_index)
if second_frequency == 2:
scan_indices.append(second_index)
candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:])
if candidate is not None:
flag_stop = False
editor.track_permutation_merge(arg_with_ind, candidate)
transpose1 = found_index == first_index
new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose)
if found_index == first_index:
new_arge.indices = [second_index, other_index]
else:
new_arge.indices = [first_index, other_index]
set_indices = set(new_arge.indices)
if len(set_indices) == 1 and set_indices != {None}:
# This is a trace:
new_arge.element = Trace(new_arge.element)._normalize()
new_arge.indices = []
editor.args_with_ind[i] = new_arge
# TODO: is this break necessary?
break
if flag_stop:
break
editor.refresh_indices()
return editor.to_array_contraction()
def _find_trivial_matrices_rewrite(expr: ArrayTensorProduct):
# If there are matrices of trivial shape in the tensor product (i.e. shape
# (1, 1)), try to check if there is a suitable non-trivial MatMul where the
# expression can be inserted.
# For example, if "a" has shape (1, 1) and "b" has shape (k, 1), the
# expressions "_array_tensor_product(a, b*b.T)" can be rewritten as
# "b*a*b.T"
trivial_matrices = []
pos: Optional[int] = None
first: Optional[MatrixExpr] = None
second: Optional[MatrixExpr] = None
removed: List[int] = []
counter: int = 0
args: List[Optional[Basic]] = [i for i in expr.args]
for i, arg in enumerate(expr.args):
if isinstance(arg, MatrixExpr):
if arg.shape == (1, 1):
trivial_matrices.append(arg)
args[i] = None
removed.extend([counter, counter+1])
elif pos is None and isinstance(arg, MatMul):
margs = arg.args
for j, e in enumerate(margs):
if isinstance(e, MatrixExpr) and e.shape[1] == 1:
pos = i
first = MatMul.fromiter(margs[:j+1])
second = MatMul.fromiter(margs[j+1:])
break
counter += get_rank(arg)
if pos is None:
return expr, []
args[pos] = (first*MatMul.fromiter(i for i in trivial_matrices)*second).doit()
return _array_tensor_product(*[i for i in args if i is not None]), removed
def _find_trivial_kronecker_products_broadcast(expr: ArrayTensorProduct):
newargs: List[Basic] = []
removed = []
count_dims = 0
for i, arg in enumerate(expr.args):
count_dims += get_rank(arg)
shape = get_shape(arg)
current_range = [count_dims-i for i in range(len(shape), 0, -1)]
if (shape == (1, 1) and len(newargs) > 0 and 1 not in get_shape(newargs[-1]) and
isinstance(newargs[-1], MatrixExpr) and isinstance(arg, MatrixExpr)):
# KroneckerProduct object allows the trick of broadcasting:
newargs[-1] = KroneckerProduct(newargs[-1], arg)
removed.extend(current_range)
elif 1 not in shape and len(newargs) > 0 and get_shape(newargs[-1]) == (1, 1):
# Broadcast:
newargs[-1] = KroneckerProduct(newargs[-1], arg)
prev_range = [i for i in range(min(current_range)) if i not in removed]
removed.extend(prev_range[-2:])
else:
newargs.append(arg)
return _array_tensor_product(*newargs), removed
@singledispatch
def _array2matrix(expr):
return expr
@_array2matrix.register(ZeroArray)
def _(expr: ZeroArray):
if get_rank(expr) == 2:
return ZeroMatrix(*expr.shape)
else:
return expr
@_array2matrix.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct):
return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args])
@_array2matrix.register(ArrayContraction)
def _(expr: ArrayContraction):
expr = expr.flatten_contraction_of_diagonal()
expr = identify_removable_identity_matrices(expr)
expr = expr.split_multiple_contractions()
expr = identify_hadamard_products(expr)
if not isinstance(expr, ArrayContraction):
return _array2matrix(expr)
subexpr = expr.expr
contraction_indices: tTuple[tTuple[int]] = expr.contraction_indices
if contraction_indices == ((0,), (1,)) or (
contraction_indices == ((0,),) and subexpr.shape[1] == 1
) or (
contraction_indices == ((1,),) and subexpr.shape[0] == 1
):
shape = subexpr.shape
subexpr = _array2matrix(subexpr)
if isinstance(subexpr, MatrixExpr):
return OneMatrix(1, shape[0])*subexpr*OneMatrix(shape[1], 1)
if isinstance(subexpr, ArrayTensorProduct):
newexpr = _array_contraction(_array2matrix(subexpr), *contraction_indices)
contraction_indices = newexpr.contraction_indices
if any(i > 2 for i in newexpr.subranks):
addends = _array_add(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i,
ArrayAdd) else [i] for i in expr.expr.args])])
newexpr = _array_contraction(addends, *contraction_indices)
if isinstance(newexpr, ArrayAdd):
ret = _array2matrix(newexpr)
return ret
assert isinstance(newexpr, ArrayContraction)
ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args))
return ret
elif not isinstance(subexpr, _CodegenArrayAbstract):
ret = _array2matrix(subexpr)
if isinstance(ret, MatrixExpr):
assert expr.contraction_indices == ((0, 1),)
return _a2m_trace(ret)
else:
return _array_contraction(ret, *expr.contraction_indices)
@_array2matrix.register(ArrayDiagonal)
def _(expr: ArrayDiagonal):
pexpr = _array_diagonal(_array2matrix(expr.expr), *expr.diagonal_indices)
pexpr = identify_hadamard_products(pexpr)
if isinstance(pexpr, ArrayDiagonal):
pexpr = _array_diag2contr_diagmatrix(pexpr)
if expr == pexpr:
return expr
return _array2matrix(pexpr)
@_array2matrix.register(PermuteDims)
def _(expr: PermuteDims):
if expr.permutation.array_form == [1, 0]:
return _a2m_transpose(_array2matrix(expr.expr))
elif isinstance(expr.expr, ArrayTensorProduct):
ranks = expr.expr.subranks
inv_permutation = expr.permutation**(-1)
newrange = [inv_permutation(i) for i in range(sum(ranks))]
newpos = []
counter = 0
for rank in ranks:
newpos.append(newrange[counter:counter+rank])
counter += rank
newargs = []
newperm = []
scalars = []
for pos, arg in zip(newpos, expr.expr.args):
if len(pos) == 0:
scalars.append(_array2matrix(arg))
elif pos == sorted(pos):
newargs.append((_array2matrix(arg), pos[0]))
newperm.extend(pos)
elif len(pos) == 2:
newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0]))
newperm.extend(reversed(pos))
else:
raise NotImplementedError()
newargs = [i[0] for i in newargs]
return _permute_dims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm))
elif isinstance(expr.expr, ArrayContraction):
mat_mul_lines = _array2matrix(expr.expr)
if not isinstance(mat_mul_lines, ArrayTensorProduct):
return _permute_dims(mat_mul_lines, expr.permutation)
# TODO: this assumes that all arguments are matrices, it may not be the case:
permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation
permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))]
args_array = [None for i in mat_mul_lines.args]
for i in range(len(mat_mul_lines.args)):
p1 = permuted[2*i]
p2 = permuted[2*i+1]
if p1 // 2 != p2 // 2:
return _permute_dims(mat_mul_lines, permutation)
if p1 > p2:
args_array[i] = _a2m_transpose(mat_mul_lines.args[p1 // 2])
else:
args_array[i] = mat_mul_lines.args[p1 // 2]
return _a2m_tensor_product(*args_array)
else:
return expr
@_array2matrix.register(ArrayAdd)
def _(expr: ArrayAdd):
addends = [_array2matrix(arg) for arg in expr.args]
return _a2m_add(*addends)
@_array2matrix.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc):
subexpr = _array2matrix(expr.expr)
if isinstance(subexpr, MatrixExpr):
if subexpr.shape != (1, 1):
d = expr.function.bound_symbols[0]
w = Wild("w", exclude=[d])
p = Wild("p", exclude=[d])
m = expr.function.expr.match(w*d**p)
if m is not None:
return m[w]*HadamardPower(subexpr, m[p])
return ElementwiseApplyFunction(expr.function, subexpr)
else:
return ArrayElementwiseApplyFunc(expr.function, subexpr)
@_array2matrix.register(ArrayElement)
def _(expr: ArrayElement):
ret = _array2matrix(expr.name)
if isinstance(ret, MatrixExpr):
return MatrixElement(ret, *expr.indices)
return ArrayElement(ret, expr.indices)
@singledispatch
def _remove_trivial_dims(expr):
return expr, []
@_remove_trivial_dims.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct):
# Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`.
# The matrix expression has to be equivalent to the tensor product of the
# matrices, with trivial dimensions (i.e. dim=1) dropped.
# That is, add contractions over trivial dimensions:
removed = []
newargs = []
cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
pending = None
prev_i = None
for i, arg in enumerate(expr.args):
current_range = list(range(cumul[i], cumul[i+1]))
if isinstance(arg, OneArray):
removed.extend(current_range)
continue
if not isinstance(arg, (MatrixExpr, MatrixCommon)):
rarg, rem = _remove_trivial_dims(arg)
removed.extend(rem)
newargs.append(rarg)
continue
elif getattr(arg, "is_Identity", False) and arg.shape == (1, 1):
if arg.shape == (1, 1):
# Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1.
removed.extend(current_range)
continue
elif arg.shape == (1, 1):
arg, _ = _remove_trivial_dims(arg)
# Matrix is equivalent to scalar:
if len(newargs) == 0:
newargs.append(arg)
elif 1 in get_shape(newargs[-1]):
if newargs[-1].shape[1] == 1:
newargs[-1] = newargs[-1]*arg
else:
newargs[-1] = arg*newargs[-1]
removed.extend(current_range)
else:
newargs.append(arg)
elif 1 in arg.shape:
k = [i for i in arg.shape if i != 1][0]
if pending is None:
pending = k
prev_i = i
newargs.append(arg)
elif pending == k:
prev = newargs[-1]
if prev.shape[0] == 1:
d1 = cumul[prev_i]
prev = _a2m_transpose(prev)
else:
d1 = cumul[prev_i] + 1
if arg.shape[1] == 1:
d2 = cumul[i] + 1
arg = _a2m_transpose(arg)
else:
d2 = cumul[i]
newargs[-1] = prev*arg
pending = None
removed.extend([d1, d2])
else:
newargs.append(arg)
pending = k
prev_i = i
else:
newargs.append(arg)
pending = None
newexpr, newremoved = _a2m_tensor_product(*newargs), sorted(removed)
if isinstance(newexpr, ArrayTensorProduct):
newexpr, newremoved2 = _find_trivial_matrices_rewrite(newexpr)
newremoved = _combine_removed(-1, newremoved, newremoved2)
if isinstance(newexpr, ArrayTensorProduct):
newexpr, newremoved2 = _find_trivial_kronecker_products_broadcast(newexpr)
newremoved = _combine_removed(-1, newremoved, newremoved2)
return newexpr, newremoved
@_remove_trivial_dims.register(ArrayAdd)
def _(expr: ArrayAdd):
rec = [_remove_trivial_dims(arg) for arg in expr.args]
newargs, removed = zip(*rec)
if len(set([get_shape(i) for i in newargs])) > 1:
return expr, []
if len(removed) == 0:
return expr, removed
removed1 = removed[0]
return _a2m_add(*newargs), removed1
@_remove_trivial_dims.register(PermuteDims)
def _(expr: PermuteDims):
subexpr, subremoved = _remove_trivial_dims(expr.expr)
p = expr.permutation.array_form
pinv = _af_invert(expr.permutation.array_form)
shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))]))
premoved = [pinv[i] for i in subremoved]
p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved]
# TODO: check if subremoved should be permuted as well...
newexpr = _permute_dims(subexpr, p2)
premoved = sorted(premoved)
if newexpr != expr:
newexpr, removed2 = _remove_trivial_dims(_array2matrix(newexpr))
premoved = _combine_removed(-1, premoved, removed2)
return newexpr, premoved
@_remove_trivial_dims.register(ArrayContraction)
def _(expr: ArrayContraction):
new_expr, removed0 = _array_contraction_to_diagonal_multiple_identity(expr)
if new_expr != expr:
new_expr2, removed1 = _remove_trivial_dims(_array2matrix(new_expr))
removed = _combine_removed(-1, removed0, removed1)
return new_expr2, removed
rank1 = get_rank(expr)
expr, removed1 = remove_identity_matrices(expr)
if not isinstance(expr, ArrayContraction):
expr2, removed2 = _remove_trivial_dims(expr)
return expr2, _combine_removed(rank1, removed1, removed2)
newexpr, removed2 = _remove_trivial_dims(expr.expr)
shifts = list(accumulate([1 if i in removed2 else 0 for i in range(get_rank(expr.expr))]))
new_contraction_indices = [tuple(j for j in i if j not in removed2) for i in expr.contraction_indices]
# Remove possible empty tuples "()":
new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0]
contraction_indices_flat = [j for i in expr.contraction_indices for j in i]
removed2 = [i for i in removed2 if i not in contraction_indices_flat]
new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices]
# Shift removed2:
removed2 = ArrayContraction._push_indices_up(expr.contraction_indices, removed2)
removed = _combine_removed(rank1, removed1, removed2)
return _array_contraction(newexpr, *new_contraction_indices), list(removed)
def _remove_diagonalized_identity_matrices(expr: ArrayDiagonal):
assert isinstance(expr, ArrayDiagonal)
editor = _EditArrayContraction(expr)
mapping = {i: {j for j in editor.args_with_ind if i in j.indices} for i in range(-1, -1-editor.number_of_diagonal_indices, -1)}
removed = []
counter: int = 0
for i, arg_with_ind in enumerate(editor.args_with_ind):
counter += len(arg_with_ind.indices)
if isinstance(arg_with_ind.element, Identity):
if None in arg_with_ind.indices and any(i is not None and (i < 0) == True for i in arg_with_ind.indices):
diag_ind = [j for j in arg_with_ind.indices if j is not None][0]
other = [j for j in mapping[diag_ind] if j != arg_with_ind][0]
if not isinstance(other.element, MatrixExpr):
continue
if 1 not in other.element.shape:
continue
if None not in other.indices:
continue
editor.args_with_ind[i].element = None
none_index = other.indices.index(None)
other.element = DiagMatrix(other.element)
other_range = editor.get_absolute_range(other)
removed.extend([other_range[0] + none_index])
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, get_rank(expr.expr))
return editor.to_array_contraction(), removed
@_remove_trivial_dims.register(ArrayDiagonal)
def _(expr: ArrayDiagonal):
newexpr, removed = _remove_trivial_dims(expr.expr)
shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))]))
new_diag_indices_map = {i: tuple(j for j in i if j not in removed) for i in expr.diagonal_indices}
for old_diag_tuple, new_diag_tuple in new_diag_indices_map.items():
if len(new_diag_tuple) == 1:
removed = [i for i in removed if i not in old_diag_tuple]
new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices_map.values()]
rank = get_rank(expr.expr)
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank)
removed = sorted({i for i in removed})
# If there are single axes to diagonalize remaining, it means that their
# corresponding dimension has been removed, they no longer need diagonalization:
new_diag_indices = [i for i in new_diag_indices if len(i) > 0]
if len(new_diag_indices) > 0:
newexpr2 = _array_diagonal(newexpr, *new_diag_indices, allow_trivial_diags=True)
else:
newexpr2 = newexpr
if isinstance(newexpr2, ArrayDiagonal):
newexpr3, removed2 = _remove_diagonalized_identity_matrices(newexpr2)
removed = _combine_removed(-1, removed, removed2)
return newexpr3, removed
else:
return newexpr2, removed
@_remove_trivial_dims.register(ElementwiseApplyFunction)
def _(expr: ElementwiseApplyFunction):
subexpr, removed = _remove_trivial_dims(expr.expr)
if subexpr.shape == (1, 1):
# TODO: move this to ElementwiseApplyFunction
return expr.function(subexpr), removed + [0, 1]
return ElementwiseApplyFunction(expr.function, subexpr), []
@_remove_trivial_dims.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc):
subexpr, removed = _remove_trivial_dims(expr.expr)
return ArrayElementwiseApplyFunc(expr.function, subexpr), removed
def convert_array_to_matrix(expr):
r"""
Recognize matrix expressions in codegen objects.
If more than one matrix multiplication line have been detected, return a
list with the matrix expressions.
Examples
========
>>> from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
>>> from sympy.tensor.array import tensorcontraction, tensorproduct
>>> from sympy import MatrixSymbol, Sum
>>> from sympy.abc import i, j, k, l, N
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
>>> convert_array_to_matrix(cg)
B.T*A.T
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A.T*B
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
>>> convert_array_to_matrix(cg)
B.T*A
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
Trace(A)
Recognize some more complex traces:
>>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
Trace(A*B)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B.T*A.T
Expressions constructed from matrix expressions do not contain literal
indices, the positions of free indices are returned instead:
>>> expr = A*B
>>> cg = convert_matrix_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B
If more than one line of matrix multiplications is detected, return
separate matrix multiplication factors embedded in a tensor product object:
>>> cg = tensorcontraction(tensorproduct(A, B, C, D), (1, 2), (5, 6))
>>> convert_array_to_matrix(cg)
ArrayTensorProduct(A*B, C*D)
The two lines have free indices at axes 0, 3 and 4, 7, respectively.
"""
rec = _array2matrix(expr)
rec, removed = _remove_trivial_dims(rec)
return rec
def _array_diag2contr_diagmatrix(expr: ArrayDiagonal):
if isinstance(expr.expr, ArrayTensorProduct):
args = list(expr.expr.args)
diag_indices = list(expr.diagonal_indices)
mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args])
tuple_links = [[mapping[j] for j in i] for i in diag_indices]
contr_indices = []
total_rank = get_rank(expr)
replaced = [False for arg in args]
for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)):
if len(abs_pos) != 2:
continue
(pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos
arg1 = args[pos1_outer]
arg2 = args[pos2_outer]
if get_rank(arg1) != 2 or get_rank(arg2) != 2:
if replaced[pos1_outer]:
diag_indices[i] = None
if replaced[pos2_outer]:
diag_indices[i] = None
continue
pos1_in2 = 1 - pos1_inner
pos2_in2 = 1 - pos2_inner
if arg1.shape[pos1_in2] == 1:
if arg1.shape[pos1_inner] != 1:
darg1 = DiagMatrix(arg1)
else:
darg1 = arg1
args.append(darg1)
contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner)))
total_rank += 1
diag_indices[i] = None
args[pos1_outer] = OneArray(arg1.shape[pos1_in2])
replaced[pos1_outer] = True
elif arg2.shape[pos2_in2] == 1:
if arg2.shape[pos2_inner] != 1:
darg2 = DiagMatrix(arg2)
else:
darg2 = arg2
args.append(darg2)
contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner)))
total_rank += 1
diag_indices[i] = None
args[pos2_outer] = OneArray(arg2.shape[pos2_in2])
replaced[pos2_outer] = True
diag_indices_new = [i for i in diag_indices if i is not None]
cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices]
tc = _array_contraction(
_array_tensor_product(*args), *contr_indices2
)
td = _array_diagonal(tc, *diag_indices_new)
return td
return expr
def _a2m_mul(*args):
if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
from sympy.matrices.expressions.matmul import MatMul
return MatMul(*args).doit()
else:
return _array_contraction(
_array_tensor_product(*args),
*[(2*i-1, 2*i) for i in range(1, len(args))]
)
def _a2m_tensor_product(*args):
scalars = []
arrays = []
for arg in args:
if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)):
arrays.append(arg)
else:
scalars.append(arg)
scalar = Mul.fromiter(scalars)
if len(arrays) == 0:
return scalar
if scalar != 1:
if isinstance(arrays[0], _CodegenArrayAbstract):
arrays = [scalar] + arrays
else:
arrays[0] *= scalar
return _array_tensor_product(*arrays)
def _a2m_add(*args):
if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
from sympy.matrices.expressions.matadd import MatAdd
return MatAdd(*args).doit()
else:
return _array_add(*args)
def _a2m_trace(arg):
if isinstance(arg, _CodegenArrayAbstract):
return _array_contraction(arg, (0, 1))
else:
from sympy.matrices.expressions.trace import Trace
return Trace(arg)
def _a2m_transpose(arg):
if isinstance(arg, _CodegenArrayAbstract):
return _permute_dims(arg, [1, 0])
else:
from sympy.matrices.expressions.transpose import Transpose
return Transpose(arg).doit()
def identify_hadamard_products(expr: tUnion[ArrayContraction, ArrayDiagonal]):
editor: _EditArrayContraction = _EditArrayContraction(expr)
map_contr_to_args: tDict[FrozenSet, List[_ArgE]] = defaultdict(list)
map_ind_to_inds: tDict[Optional[int], int] = defaultdict(int)
for arg_with_ind in editor.args_with_ind:
for ind in arg_with_ind.indices:
map_ind_to_inds[ind] += 1
if None in arg_with_ind.indices:
continue
map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind)
k: FrozenSet[int]
v: List[_ArgE]
for k, v in map_contr_to_args.items():
make_trace: bool = False
if len(k) == 1 and next(iter(k)) >= 0 and sum([next(iter(k)) in i for i in map_contr_to_args]) == 1:
# This is a trace: the arguments are fully contracted with only one
# index, and the index isn't used anywhere else:
make_trace = True
first_element = S.One
elif len(k) != 2:
# Hadamard product only defined for matrices:
continue
if len(v) == 1:
# Hadamard product with a single argument makes no sense:
continue
for ind in k:
if map_ind_to_inds[ind] <= 2:
# There is no other contraction, skip:
continue
def check_transpose(x):
x = [i if i >= 0 else -1-i for i in x]
return x == sorted(x)
# Check if expression is a trace:
if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]) and all([j >= 0 for j in k]):
# This is a trace
make_trace = True
first_element = v[0].element
if not check_transpose(v[0].indices):
first_element = first_element.T
hadamard_factors = v[1:]
else:
hadamard_factors = v
# This is a Hadamard product:
hp = hadamard_product(*[i.element if check_transpose(i.indices) else Transpose(i.element) for i in hadamard_factors])
hp_indices = v[0].indices
if not check_transpose(hadamard_factors[0].indices):
hp_indices = list(reversed(hp_indices))
if make_trace:
hp = Trace(first_element*hp.T)._normalize()
hp_indices = []
editor.insert_after(v[0], _ArgE(hp, hp_indices))
for i in v:
editor.args_with_ind.remove(i)
return editor.to_array_contraction()
def identify_removable_identity_matrices(expr):
editor = _EditArrayContraction(expr)
flag = True
while flag:
flag = False
for arg_with_ind in editor.args_with_ind:
if isinstance(arg_with_ind.element, Identity):
k = arg_with_ind.element.shape[0]
# Candidate for removal:
if arg_with_ind.indices == [None, None]:
# Free identity matrix, will be cleared by _remove_trivial_dims:
continue
elif None in arg_with_ind.indices:
ind = [j for j in arg_with_ind.indices if j is not None][0]
counted = editor.count_args_with_index(ind)
if counted == 1:
# Identity matrix contracted only on one index with itself,
# transform to a OneArray(k) element:
editor.insert_after(arg_with_ind, OneArray(k))
editor.args_with_ind.remove(arg_with_ind)
flag = True
break
elif counted > 2:
# Case counted = 2 is a matrix multiplication by identity matrix, skip it.
# Case counted > 2 is a multiple contraction,
# this is a case where the contraction becomes a diagonalization if the
# identity matrix is dropped.
continue
elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
ind = arg_with_ind.indices[0]
counted = editor.count_args_with_index(ind)
if counted > 1:
editor.args_with_ind.remove(arg_with_ind)
flag = True
break
else:
# This is a trace, skip it as it will be recognized somewhere else:
pass
elif ask(Q.diagonal(arg_with_ind.element)):
if arg_with_ind.indices == [None, None]:
continue
elif None in arg_with_ind.indices:
pass
elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
ind = arg_with_ind.indices[0]
counted = editor.count_args_with_index(ind)
if counted == 3:
# A_ai B_bi D_ii ==> A_ai D_ij B_bj
ind_new = editor.get_new_contraction_index()
other_args = [j for j in editor.args_with_ind if j != arg_with_ind]
other_args[1].indices = [ind_new if j == ind else j for j in other_args[1].indices]
arg_with_ind.indices = [ind, ind_new]
flag = True
break
return editor.to_array_contraction()
def remove_identity_matrices(expr: ArrayContraction):
editor = _EditArrayContraction(expr)
removed: List[int] = []
permutation_map = {}
free_indices = list(accumulate([0] + [sum([i is None for i in arg.indices]) for arg in editor.args_with_ind]))
free_map = {k: v for k, v in zip(editor.args_with_ind, free_indices[:-1])}
update_pairs = {}
for ind in range(editor.number_of_contraction_indices):
args = editor.get_args_with_index(ind)
identity_matrices = [i for i in args if isinstance(i.element, Identity)]
number_identity_matrices = len(identity_matrices)
# If the contraction involves a non-identity matrix and multiple identity matrices:
if number_identity_matrices != len(args) - 1 or number_identity_matrices == 0:
continue
# Get the non-identity element:
non_identity = [i for i in args if not isinstance(i.element, Identity)][0]
# Check that all identity matrices have at least one free index
# (otherwise they would be contractions to some other elements)
if any([None not in i.indices for i in identity_matrices]):
continue
# Mark the identity matrices for removal:
for i in identity_matrices:
i.element = None
removed.extend(range(free_map[i], free_map[i] + len([j for j in i.indices if j is None])))
last_removed = removed.pop(-1)
update_pairs[last_removed, ind] = non_identity.indices[:]
# Remove the indices from the non-identity matrix, as the contraction
# no longer exists:
non_identity.indices = [None if i == ind else i for i in non_identity.indices]
removed.sort()
shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr))]))
for (last_removed, ind), non_identity_indices in update_pairs.items():
pos = [free_map[non_identity] + i for i, e in enumerate(non_identity_indices) if e == ind]
assert len(pos) == 1
for j in pos:
permutation_map[j] = last_removed
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
ret_expr = editor.to_array_contraction()
permutation = []
counter = 0
counter2 = 0
for j in range(get_rank(expr)):
if j in removed:
continue
if counter2 in permutation_map:
target = permutation_map[counter2]
permutation.append(target - shifts[target])
counter2 += 1
else:
while counter in permutation_map.values():
counter += 1
permutation.append(counter)
counter += 1
counter2 += 1
ret_expr2 = _permute_dims(ret_expr, _af_invert(permutation))
return ret_expr2, removed
def _combine_removed(dim: int, removed1: List[int], removed2: List[int]) -> List[int]:
# Concatenate two axis removal operations as performed by
# _remove_trivial_dims,
removed1 = sorted(removed1)
removed2 = sorted(removed2)
i = 0
j = 0
removed = []
while True:
if j >= len(removed2):
while i < len(removed1):
removed.append(removed1[i])
i += 1
break
elif i < len(removed1) and removed1[i] <= i + removed2[j]:
removed.append(removed1[i])
i += 1
else:
removed.append(i + removed2[j])
j += 1
return removed
def _array_contraction_to_diagonal_multiple_identity(expr: ArrayContraction):
editor = _EditArrayContraction(expr)
editor.track_permutation_start()
removed: List[int] = []
diag_index_counter: int = 0
for i in range(editor.number_of_contraction_indices):
identities = []
args = []
for j, arg in enumerate(editor.args_with_ind):
if i not in arg.indices:
continue
if isinstance(arg.element, Identity):
identities.append(arg)
else:
args.append(arg)
if len(identities) == 0:
continue
if len(args) + len(identities) < 3:
continue
new_diag_ind = -1 - diag_index_counter
diag_index_counter += 1
# Variable "flag" to control whether to skip this contraction set:
flag: bool = True
for i1, id1 in enumerate(identities):
if None not in id1.indices:
flag = True
break
free_pos = list(range(*editor.get_absolute_free_range(id1)))[0]
editor._track_permutation[-1].append(free_pos) # type: ignore
id1.element = None
flag = False
break
if flag:
continue
for arg in identities[:i1] + identities[i1+1:]:
arg.element = None
removed.extend(range(*editor.get_absolute_free_range(arg)))
for arg in args:
arg.indices = [new_diag_ind if j == i else j for j in arg.indices]
for j, e in enumerate(editor.args_with_ind):
if e.element is None:
editor._track_permutation[j] = None # type: ignore
editor._track_permutation = [i for i in editor._track_permutation if i is not None] # type: ignore
# Renumber permutation array form in order to deal with deleted positions:
remap = {e: i for i, e in enumerate(sorted({k for j in editor._track_permutation for k in j}))}
editor._track_permutation = [[remap[j] for j in i] for i in editor._track_permutation]
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
new_expr = editor.to_array_contraction()
return new_expr, removed
|
a891b0bd56330bcc12465bdcccd576f89109f40166cfe62de04df0a43ef888d3 | from __future__ import annotations
from typing import Any
from sympy.multipledispatch import dispatch
from sympy.multipledispatch.conflict import AmbiguityWarning
from sympy.testing.pytest import raises, warns
from functools import partial
test_namespace: dict[str, Any] = dict()
orig_dispatch = dispatch
dispatch = partial(dispatch, namespace=test_namespace)
def test_singledispatch():
@dispatch(int)
def f(x): # noqa:F811
return x + 1
@dispatch(int)
def g(x): # noqa:F811
return x + 2
@dispatch(float) # noqa:F811
def f(x): # noqa:F811
return x - 1
assert f(1) == 2
assert g(1) == 3
assert f(1.0) == 0
assert raises(NotImplementedError, lambda: f('hello'))
def test_multipledispatch():
@dispatch(int, int)
def f(x, y): # noqa:F811
return x + y
@dispatch(float, float) # noqa:F811
def f(x, y): # noqa:F811
return x - y
assert f(1, 2) == 3
assert f(1.0, 2.0) == -1.0
class A: pass
class B: pass
class C(A): pass
class D(C): pass
class E(C): pass
def test_inheritance():
@dispatch(A)
def f(x): # noqa:F811
return 'a'
@dispatch(B) # noqa:F811
def f(x): # noqa:F811
return 'b'
assert f(A()) == 'a'
assert f(B()) == 'b'
assert f(C()) == 'a'
def test_inheritance_and_multiple_dispatch():
@dispatch(A, A)
def f(x, y): # noqa:F811
return type(x), type(y)
@dispatch(A, B) # noqa:F811
def f(x, y): # noqa:F811
return 0
assert f(A(), A()) == (A, A)
assert f(A(), C()) == (A, C)
assert f(A(), B()) == 0
assert f(C(), B()) == 0
assert raises(NotImplementedError, lambda: f(B(), B()))
def test_competing_solutions():
@dispatch(A)
def h(x): # noqa:F811
return 1
@dispatch(C) # noqa:F811
def h(x): # noqa:F811
return 2
assert h(D()) == 2
def test_competing_multiple():
@dispatch(A, B)
def h(x, y): # noqa:F811
return 1
@dispatch(C, B) # noqa:F811
def h(x, y): # noqa:F811
return 2
assert h(D(), B()) == 2
def test_competing_ambiguous():
test_namespace = dict()
dispatch = partial(orig_dispatch, namespace=test_namespace)
@dispatch(A, C)
def f(x, y): # noqa:F811
return 2
with warns(AmbiguityWarning, test_stacklevel=False):
@dispatch(C, A) # noqa:F811
def f(x, y): # noqa:F811
return 2
assert f(A(), C()) == f(C(), A()) == 2
# assert raises(Warning, lambda : f(C(), C()))
def test_caching_correct_behavior():
@dispatch(A)
def f(x): # noqa:F811
return 1
assert f(C()) == 1
@dispatch(C)
def f(x): # noqa:F811
return 2
assert f(C()) == 2
def test_union_types():
@dispatch((A, C))
def f(x): # noqa:F811
return 1
assert f(A()) == 1
assert f(C()) == 1
def test_namespaces():
ns1 = dict()
ns2 = dict()
def foo(x):
return 1
foo1 = orig_dispatch(int, namespace=ns1)(foo)
def foo(x):
return 2
foo2 = orig_dispatch(int, namespace=ns2)(foo)
assert foo1(0) == 1
assert foo2(0) == 2
"""
Fails
def test_dispatch_on_dispatch():
@dispatch(A)
@dispatch(C)
def q(x): # noqa:F811
return 1
assert q(A()) == 1
assert q(C()) == 1
"""
def test_methods():
class Foo:
@dispatch(float)
def f(self, x): # noqa:F811
return x - 1
@dispatch(int) # noqa:F811
def f(self, x): # noqa:F811
return x + 1
@dispatch(int)
def g(self, x): # noqa:F811
return x + 3
foo = Foo()
assert foo.f(1) == 2
assert foo.f(1.0) == 0.0
assert foo.g(1) == 4
def test_methods_multiple_dispatch():
class Foo:
@dispatch(A, A)
def f(x, y): # noqa:F811
return 1
@dispatch(A, C) # noqa:F811
def f(x, y): # noqa:F811
return 2
foo = Foo()
assert foo.f(A(), A()) == 1
assert foo.f(A(), C()) == 2
assert foo.f(C(), C()) == 2
|
5eb8237c7b8ce627b7c227b5d20d9376b1d694099dc0c4dc7b8b52411eb24b33 | from __future__ import annotations
from functools import wraps
from sympy.core import S, Integer, Basic, Mul, Add
from sympy.core.assumptions import check_assumptions
from sympy.core.decorators import call_highest_priority
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.logic import FuzzyBool
from sympy.core.symbol import Str, Dummy, symbols, Symbol
from sympy.core.sympify import SympifyError, _sympify
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions import conjugate, adjoint
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.common import NonSquareMatrixError
from sympy.matrices.matrices import MatrixKind, MatrixBase
from sympy.multipledispatch import dispatch
from sympy.utilities.misc import filldedent
def _sympifyit(arg, retval=None):
# This version of _sympifyit sympifies MutableMatrix objects
def deco(func):
@wraps(func)
def __sympifyit_wrapper(a, b):
try:
b = _sympify(b)
return func(a, b)
except SympifyError:
return retval
return __sympifyit_wrapper
return deco
class MatrixExpr(Expr):
"""Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented
within a particular basis.
Examples
========
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).I * A * y
See Also
========
MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
"""
__slots__: tuple[str, ...] = ()
# Should not be considered iterable by the
# sympy.utilities.iterables.iterable function. Subclass that actually are
# iterable (i.e., explicit matrices) should set this to True.
_iterable = False
_op_priority = 11.0
is_Matrix: bool = True
is_MatrixExpr: bool = True
is_Identity: FuzzyBool = None
is_Inverse = False
is_Transpose = False
is_ZeroMatrix = False
is_MatAdd = False
is_MatMul = False
is_commutative = False
is_number = False
is_symbol = False
is_scalar = False
kind: MatrixKind = MatrixKind()
def __new__(cls, *args, **kwargs):
args = map(_sympify, args)
return Basic.__new__(cls, *args, **kwargs)
# The following is adapted from the core Expr object
@property
def shape(self) -> tuple[Expr, Expr]:
raise NotImplementedError
@property
def _add_handler(self):
return MatAdd
@property
def _mul_handler(self):
return MatMul
def __neg__(self):
return MatMul(S.NegativeOne, self).doit()
def __abs__(self):
raise NotImplementedError
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return MatAdd(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return MatAdd(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return MatAdd(self, -other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return MatAdd(other, -self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __matmul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmatmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return MatPow(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
raise NotImplementedError("Matrix Power not defined")
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * other**S.NegativeOne
@_sympifyit('other', NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
raise NotImplementedError()
#return MatMul(other, Pow(self, S.NegativeOne))
@property
def rows(self):
return self.shape[0]
@property
def cols(self):
return self.shape[1]
@property
def is_square(self):
return self.rows == self.cols
def _eval_conjugate(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(Transpose(self))
def as_real_imag(self, deep=True, **hints):
return self._eval_as_real_imag()
def _eval_as_real_imag(self):
real = S.Half * (self + self._eval_conjugate())
im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit)
return (real, im)
def _eval_inverse(self):
return Inverse(self)
def _eval_determinant(self):
return Determinant(self)
def _eval_transpose(self):
return Transpose(self)
def _eval_power(self, exp):
"""
Override this in sub-classes to implement simplification of powers. The cases where the exponent
is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases.
"""
return MatPow(self, exp)
def _eval_simplify(self, **kwargs):
if self.is_Atom:
return self
else:
from sympy.simplify import simplify
return self.func(*[simplify(x, **kwargs) for x in self.args])
def _eval_adjoint(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(self)
def _eval_derivative_n_times(self, x, n):
return Basic._eval_derivative_n_times(self, x, n)
def _eval_derivative(self, x):
# `x` is a scalar:
if self.has(x):
# See if there are other methods using it:
return super()._eval_derivative(x)
else:
return ZeroMatrix(*self.shape)
@classmethod
def _check_dim(cls, dim):
"""Helper function to check invalid matrix dimensions"""
ok = check_assumptions(dim, integer=True, nonnegative=True)
if ok is False:
raise ValueError(
"The dimension specification {} should be "
"a nonnegative integer.".format(dim))
def _entry(self, i, j, **kwargs):
raise NotImplementedError(
"Indexing not implemented for %s" % self.__class__.__name__)
def adjoint(self):
return adjoint(self)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def conjugate(self):
return conjugate(self)
def transpose(self):
from sympy.matrices.expressions.transpose import transpose
return transpose(self)
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
def inverse(self):
if not self.is_square:
raise NonSquareMatrixError('Inverse of non-square matrix')
return self._eval_inverse()
def inv(self):
return self.inverse()
def det(self):
from sympy.matrices.expressions.determinant import det
return det(self)
@property
def I(self):
return self.inverse()
def valid_index(self, i, j):
def is_valid(idx):
return isinstance(idx, (int, Integer, Symbol, Expr))
return (is_valid(i) and is_valid(j) and
(self.rows is None or
(i >= -self.rows) != False and (i < self.rows) != False) and
(j >= -self.cols) != False and (j < self.cols) != False)
def __getitem__(self, key):
if not isinstance(key, tuple) and isinstance(key, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, key, (0, None, 1))
if isinstance(key, tuple) and len(key) == 2:
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, i, j)
i, j = _sympify(i), _sympify(j)
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid indices (%s, %s)" % (i, j))
elif isinstance(key, (SYMPY_INTS, Integer)):
# row-wise decomposition of matrix
rows, cols = self.shape
# allow single indexing if number of columns is known
if not isinstance(cols, Integer):
raise IndexError(filldedent('''
Single indexing is only supported when the number
of columns is known.'''))
key = _sympify(key)
i = key // cols
j = key % cols
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid index %s" % key)
elif isinstance(key, (Symbol, Expr)):
raise IndexError(filldedent('''
Only integers may be used when addressing the matrix
with a single index.'''))
raise IndexError("Invalid index, wanted %s[i,j]" % self)
def _is_shape_symbolic(self) -> bool:
return (not isinstance(self.rows, (SYMPY_INTS, Integer))
or not isinstance(self.cols, (SYMPY_INTS, Integer)))
def as_explicit(self):
"""
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.as_explicit()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_mutable: returns mutable Matrix type
"""
if self._is_shape_symbolic():
raise ValueError(
'Matrix with symbolic shape '
'cannot be represented explicitly.')
from sympy.matrices.immutable import ImmutableDenseMatrix
return ImmutableDenseMatrix([[self[i, j]
for j in range(self.cols)]
for i in range(self.rows)])
def as_mutable(self):
"""
Returns a dense, mutable matrix with elements represented explicitly
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.shape
(3, 3)
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_explicit: returns ImmutableDenseMatrix
"""
return self.as_explicit().as_mutable()
def __array__(self):
from numpy import empty
a = empty(self.shape, dtype=object)
for i in range(self.rows):
for j in range(self.cols):
a[i, j] = self[i, j]
return a
def equals(self, other):
"""
Test elementwise equality between matrices, potentially of different
types
>>> from sympy import Identity, eye
>>> Identity(3).equals(eye(3))
True
"""
return self.as_explicit().equals(other)
def canonicalize(self):
return self
def as_coeff_mmul(self):
return S.One, MatMul(self)
@staticmethod
def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
r"""
Parse expression of matrices with explicitly summed indices into a
matrix expression without indices, if possible.
This transformation expressed in mathematical notation:
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
Optional parameter ``first_index``: specify which free index to use as
the index starting the expression.
Examples
========
>>> from sympy import MatrixSymbol, MatrixExpr, Sum
>>> from sympy.abc import i, j, k, l, N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A.T*B
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
Trace(A)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B.T*A.T
"""
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
first_indices = []
if first_index is not None:
first_indices.append(first_index)
if last_index is not None:
first_indices.append(last_index)
arr = convert_indexed_to_array(expr, first_indices=first_indices)
return convert_array_to_matrix(arr)
def applyfunc(self, func):
from .applyfunc import ElementwiseApplyFunction
return ElementwiseApplyFunction(func, self)
@dispatch(MatrixExpr, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return False
@dispatch(MatrixExpr, MatrixExpr) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if lhs.shape != rhs.shape:
return False
if (lhs - rhs).is_ZeroMatrix:
return True
def get_postprocessor(cls):
def _postprocessor(expr):
# To avoid circular imports, we can't have MatMul/MatAdd on the top level
mat_class = {Mul: MatMul, Add: MatAdd}[cls]
nonmatrices = []
matrices = []
for term in expr.args:
if isinstance(term, MatrixExpr):
matrices.append(term)
else:
nonmatrices.append(term)
if not matrices:
return cls._from_args(nonmatrices)
if nonmatrices:
if cls == Mul:
for i in range(len(matrices)):
if not matrices[i].is_MatrixExpr:
# If one of the matrices explicit, absorb the scalar into it
# (doit will combine all explicit matrices into one, so it
# doesn't matter which)
matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
nonmatrices = []
break
else:
# Maintain the ability to create Add(scalar, matrix) without
# raising an exception. That way different algorithms can
# replace matrix expressions with non-commutative symbols to
# manipulate them like non-commutative scalars.
return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
if mat_class == MatAdd:
return mat_class(*matrices).doit(deep=False)
return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
return _postprocessor
Basic._constructor_postprocessor_mapping[MatrixExpr] = {
"Mul": [get_postprocessor(Mul)],
"Add": [get_postprocessor(Add)],
}
def _matrix_derivative(expr, x, old_algorithm=False):
if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase):
# Do not use array expressions for explicit matrices:
old_algorithm = True
if old_algorithm:
return _matrix_derivative_old_algorithm(expr, x)
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
array_expr = convert_matrix_to_array(expr)
diff_array_expr = array_derive(array_expr, x)
diff_matrix_expr = convert_array_to_matrix(diff_array_expr)
return diff_matrix_expr
def _matrix_derivative_old_algorithm(expr, x):
from sympy.tensor.array.array_derivatives import ArrayDerivative
lines = expr._eval_derivative_matrix_lines(x)
parts = [i.build() for i in lines]
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
parts = [[convert_array_to_matrix(j) for j in i] for i in parts]
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return 1, 1
def get_rank(parts):
return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
ranks = [get_rank(i) for i in parts]
rank = ranks[0]
def contract_one_dims(parts):
if len(parts) == 1:
return parts[0]
else:
p1, p2 = parts[:2]
if p2.is_Matrix:
p2 = p2.T
if p1 == Identity(1):
pbase = p2
elif p2 == Identity(1):
pbase = p1
else:
pbase = p1*p2
if len(parts) == 2:
return pbase
else: # len(parts) > 2
if pbase.is_Matrix:
raise ValueError("")
return pbase*Mul.fromiter(parts[2:])
if rank <= 2:
return Add.fromiter([contract_one_dims(i) for i in parts])
return ArrayDerivative(expr, x)
class MatrixElement(Expr):
parent = property(lambda self: self.args[0])
i = property(lambda self: self.args[1])
j = property(lambda self: self.args[2])
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, n, m):
n, m = map(_sympify, (n, m))
from sympy.matrices.matrices import MatrixBase
if isinstance(name, str):
name = Symbol(name)
else:
if isinstance(name, MatrixBase):
if n.is_Integer and m.is_Integer:
return name[n, m]
name = _sympify(name) # change mutable into immutable
else:
name = _sympify(name)
if not isinstance(name.kind, MatrixKind):
raise TypeError("First argument of MatrixElement should be a matrix")
if not getattr(name, 'valid_index', lambda n, m: True)(n, m):
raise IndexError('indices out of range')
obj = Expr.__new__(cls, name, n, m)
return obj
@property
def symbol(self):
return self.args[0]
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
return args[0][args[1], args[2]]
@property
def indices(self):
return self.args[1:]
def _eval_derivative(self, v):
if not isinstance(v, MatrixElement):
from sympy.matrices.matrices import MatrixBase
if isinstance(self.parent, MatrixBase):
return self.parent.diff(v)[self.i, self.j]
return S.Zero
M = self.args[0]
m, n = self.parent.shape
if M == v.args[0]:
return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \
KroneckerDelta(self.args[2], v.args[2], (0, n-1))
if isinstance(M, Inverse):
from sympy.concrete.summations import Sum
i, j = self.args[1:]
i1, i2 = symbols("z1, z2", cls=Dummy)
Y = M.args[0]
r1, r2 = Y.shape
return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
if self.has(v.args[0]):
return None
return S.Zero
class MatrixSymbol(MatrixExpr):
"""Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
can be included in Matrix Expressions
Examples
========
>>> from sympy import MatrixSymbol, Identity
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
"""
is_commutative = False
is_symbol = True
_diff_wrt = True
def __new__(cls, name, n, m):
n, m = _sympify(n), _sympify(m)
cls._check_dim(m)
cls._check_dim(n)
if isinstance(name, str):
name = Str(name)
obj = Basic.__new__(cls, name, n, m)
return obj
@property
def shape(self):
return self.args[1], self.args[2]
@property
def name(self):
return self.args[0].name
def _entry(self, i, j, **kwargs):
return MatrixElement(self, i, j)
@property
def free_symbols(self):
return {self}
def _eval_simplify(self, **kwargs):
return self
def _eval_derivative(self, x):
# x is a scalar:
return ZeroMatrix(self.shape[0], self.shape[1])
def _eval_derivative_matrix_lines(self, x):
if self != x:
first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
return [_LeftRightArgs(
[first, second],
)]
else:
first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
return [_LeftRightArgs(
[first, second],
)]
def matrix_symbols(expr):
return [sym for sym in expr.free_symbols if sym.is_Matrix]
class _LeftRightArgs:
r"""
Helper class to compute matrix derivatives.
The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
matrix multiplications are created: the one contracted to `m` (first line),
and the one contracted to `n` (second line).
Transposition flips the side by which new matrices are connected to the
lines.
The trace connects the end of the two lines.
"""
def __init__(self, lines, higher=S.One):
self._lines = [i for i in lines]
self._first_pointer_parent = self._lines
self._first_pointer_index = 0
self._first_line_index = 0
self._second_pointer_parent = self._lines
self._second_pointer_index = 1
self._second_line_index = 1
self.higher = higher
@property
def first_pointer(self):
return self._first_pointer_parent[self._first_pointer_index]
@first_pointer.setter
def first_pointer(self, value):
self._first_pointer_parent[self._first_pointer_index] = value
@property
def second_pointer(self):
return self._second_pointer_parent[self._second_pointer_index]
@second_pointer.setter
def second_pointer(self, value):
self._second_pointer_parent[self._second_pointer_index] = value
def __repr__(self):
built = [self._build(i) for i in self._lines]
return "_LeftRightArgs(lines=%s, higher=%s)" % (
built,
self.higher,
)
def transpose(self):
self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
return self
@staticmethod
def _build(expr):
if isinstance(expr, ExprBuilder):
return expr.build()
if isinstance(expr, list):
if len(expr) == 1:
return expr[0]
else:
return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
else:
return expr
def build(self):
data = [self._build(i) for i in self._lines]
if self.higher != 1:
data += [self._build(self.higher)]
data = [i for i in data]
return data
def matrix_form(self):
if self.first != 1 and self.higher != 1:
raise ValueError("higher dimensional array cannot be represented")
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return (None, None)
if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
# Remove one-dimensional identity matrices:
# (this is needed by `a.diff(a)` where `a` is a vector)
if _get_shape(self.second) == (1, 1):
return self.first*self.second[0, 0]
if _get_shape(self.first) == (1, 1):
return self.first[1, 1]*self.second.T
raise ValueError("incompatible shapes")
if self.first != 1:
return self.first*self.second.T
else:
return self.higher
def rank(self):
"""
Number of dimensions different from trivial (warning: not related to
matrix rank).
"""
rank = 0
if self.first != 1:
rank += sum([i != 1 for i in self.first.shape])
if self.second != 1:
rank += sum([i != 1 for i in self.second.shape])
if self.higher != 1:
rank += 2
return rank
def _multiply_pointer(self, pointer, other):
from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
from ...tensor.array.expressions.array_expressions import ArrayContraction
subexpr = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
pointer,
other
]
),
(1, 2)
],
validator=ArrayContraction._validate
)
return subexpr
def append_first(self, other):
self.first_pointer *= other
def append_second(self, other):
self.second_pointer *= other
def _make_matrix(x):
from sympy.matrices.immutable import ImmutableDenseMatrix
if isinstance(x, MatrixExpr):
return x
return ImmutableDenseMatrix([[x]])
from .matmul import MatMul
from .matadd import MatAdd
from .matpow import MatPow
from .transpose import Transpose
from .inverse import Inverse
from .special import ZeroMatrix, Identity
from .determinant import Determinant
|
9396d5c72d2303bc13959dd7eb09885b81e90893b76f4443496a8431132cd243 | from sympy.core.basic import Basic
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.common import NonSquareMatrixError
class Trace(Expr):
"""Matrix Trace
Represents the trace of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Trace, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
>>> Trace(eye(3))
Trace(Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]))
>>> Trace(eye(3)).simplify()
3
"""
is_Trace = True
is_commutative = True
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("input to Trace, %s, is not a matrix" % str(mat))
if not mat.is_square:
raise NonSquareMatrixError("Trace of a non-square matrix")
return Basic.__new__(cls, mat)
def _eval_transpose(self):
return self
def _eval_derivative(self, v):
from sympy.concrete.summations import Sum
from .matexpr import MatrixElement
if isinstance(v, MatrixElement):
return self.rewrite(Sum).diff(v)
expr = self.doit()
if isinstance(expr, Trace):
# Avoid looping infinitely:
raise NotImplementedError
return expr._eval_derivative(v)
def _eval_derivative_matrix_lines(self, x):
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction
r = self.args[0]._eval_derivative_matrix_lines(x)
for lr in r:
if lr.higher == 1:
lr.higher = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
]
),
(1, 3),
],
validator=ArrayContraction._validate
)
else:
# This is not a matrix line:
lr.higher = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
lr.higher,
]
),
(1, 3), (0, 2)
]
)
lr._lines = [S.One, S.One]
lr._first_pointer_parent = lr._lines
lr._second_pointer_parent = lr._lines
lr._first_pointer_index = 0
lr._second_pointer_index = 1
return r
@property
def arg(self):
return self.args[0]
def doit(self, **hints):
if hints.get('deep', True):
arg = self.arg.doit(**hints)
try:
return arg._eval_trace()
except (AttributeError, NotImplementedError):
return Trace(arg)
else:
# _eval_trace would go too deep here
if isinstance(self.arg, MatrixBase):
return trace(self.arg)
else:
return Trace(self.arg)
def as_explicit(self):
return Trace(self.arg.as_explicit()).doit()
def _normalize(self):
# Normalization of trace of matrix products. Use transposition and
# cyclic properties of traces to make sure the arguments of the matrix
# product are sorted and the first argument is not a transposition.
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.transpose import Transpose
trace_arg = self.arg
if isinstance(trace_arg, MatMul):
def get_arg_key(x):
a = trace_arg.args[x]
if isinstance(a, Transpose):
a = a.arg
return default_sort_key(a)
indmin = min(range(len(trace_arg.args)), key=get_arg_key)
if isinstance(trace_arg.args[indmin], Transpose):
trace_arg = Transpose(trace_arg).doit()
indmin = min(range(len(trace_arg.args)), key=lambda x: default_sort_key(trace_arg.args[x]))
trace_arg = MatMul.fromiter(trace_arg.args[indmin:] + trace_arg.args[:indmin])
return Trace(trace_arg)
return self
def _eval_rewrite_as_Sum(self, expr, **kwargs):
from sympy.concrete.summations import Sum
i = uniquely_named_symbol('i', expr)
s = Sum(self.arg[i, i], (i, 0, self.arg.rows - 1))
return s.doit()
def trace(expr):
"""Trace of a Matrix. Sum of the diagonal elements.
Examples
========
>>> from sympy import trace, Symbol, MatrixSymbol, eye
>>> n = Symbol('n')
>>> X = MatrixSymbol('X', n, n) # A square matrix
>>> trace(2*X)
2*Trace(X)
>>> trace(eye(3))
3
"""
return Trace(expr).doit()
|
b956686af05580a4962f509212f8880d854c6b8dab53205deaf4b0651354e8b9 | """
Some examples have been taken from:
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
"""
from sympy import KroneckerProduct
from sympy.combinatorics import Permutation
from sympy.concrete.summations import Sum
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import OneMatrix
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
from sympy.tensor.array.array_derivatives import ArrayDerivative
from sympy.matrices.expressions import hadamard_power
from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
i, j, k = symbols("i j k")
m, n = symbols("m n")
X = MatrixSymbol("X", k, k)
x = MatrixSymbol("x", k, 1)
y = MatrixSymbol("y", k, 1)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
# TODO: this is commented because it slows down the tests.
return
expr = expr.xreplace({k: dim})
x = x.xreplace({k: dim})
diffexpr = diffexpr.xreplace({k: dim})
expr = expr.as_explicit()
x = x.as_explicit()
diffexpr = diffexpr.as_explicit()
assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
def test_matrix_derivative_by_scalar():
assert A.diff(i) == ZeroMatrix(k, k)
assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
assert x.diff(i) == ZeroMatrix(k, 1)
assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
assert (x*x.T).diff(i) == ZeroMatrix(k, k)
assert (x + y).diff(i) == ZeroMatrix(k, 1)
assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
assert hadamard_power(x, i).diff(i).dummy_eq(
HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
assert (i*x).diff(i) == x
assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
mu = symbols("mu")
expr = (2*mu*x)
assert expr.diff(x) == 2*mu*Identity(k)
def test_matrix_derivative_non_matrix_result():
# This is a 4-dimensional array:
I = Identity(k)
AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
assert A.diff(A) == AdA
assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
assert (A + B).diff(A) == AdA
def test_matrix_derivative_trivial_cases():
# Cookbook example 33:
# TODO: find a way to represent a four-dimensional zero-array:
assert X.diff(A) == ArrayDerivative(X, A)
def test_matrix_derivative_with_inverse():
# Cookbook example 61:
expr = a.T*Inverse(X)*b
assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
# Cookbook example 62:
expr = Determinant(Inverse(X))
# Not implemented yet:
# assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
# Cookbook example 63:
expr = Trace(A*Inverse(X)*B)
assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
# Cookbook example 64:
expr = Trace(Inverse(X + A))
assert expr.diff(X) == -(Inverse(X + A)).T**2
def test_matrix_derivative_vectors_and_scalars():
assert x.diff(x) == Identity(k)
assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
assert x.T.diff(x) == Identity(k)
# Cookbook example 69:
expr = x.T*a
assert expr.diff(x) == a
assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
expr = a.T*x
assert expr.diff(x) == a
# Cookbook example 70:
expr = a.T*X*b
assert expr.diff(X) == a*b.T
# Cookbook example 71:
expr = a.T*X.T*b
assert expr.diff(X) == b*a.T
# Cookbook example 72:
expr = a.T*X*a
assert expr.diff(X) == a*a.T
expr = a.T*X.T*a
assert expr.diff(X) == a*a.T
# Cookbook example 77:
expr = b.T*X.T*X*c
assert expr.diff(X) == X*b*c.T + X*c*b.T
# Cookbook example 78:
expr = (B*x + b).T*C*(D*x + d)
assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
# Cookbook example 81:
expr = x.T*B*x
assert expr.diff(x) == B*x + B.T*x
# Cookbook example 82:
expr = b.T*X.T*D*X*c
assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
# Cookbook example 83:
expr = (X*b + c).T*D*(X*b + c)
assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
assert str(expr[0, 0].diff(X[m, n]).doit()) == \
'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
# See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
expr = x*x.T*x
I = Identity(k)
assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
def test_matrix_derivatives_of_traces():
expr = Trace(A)*A
I = Identity(k)
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
assert expr[i, j].diff(A[m, n]).doit() == (
KDelta(i, m)*KDelta(j, n)*Trace(A) +
KDelta(m, n)*A[i, j]
)
## First order:
# Cookbook example 99:
expr = Trace(X)
assert expr.diff(X) == Identity(k)
assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
# Cookbook example 100:
expr = Trace(X*A)
assert expr.diff(X) == A.T
assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
# Cookbook example 101:
expr = Trace(A*X*B)
assert expr.diff(X) == A.T*B.T
assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
# Cookbook example 102:
expr = Trace(A*X.T*B)
assert expr.diff(X) == B*A
# Cookbook example 103:
expr = Trace(X.T*A)
assert expr.diff(X) == A
# Cookbook example 104:
expr = Trace(A*X.T)
assert expr.diff(X) == A
# Cookbook example 105:
# TODO: TensorProduct is not supported
#expr = Trace(TensorProduct(A, X))
#assert expr.diff(X) == Trace(A)*Identity(k)
## Second order:
# Cookbook example 106:
expr = Trace(X**2)
assert expr.diff(X) == 2*X.T
# Cookbook example 107:
expr = Trace(X**2*B)
assert expr.diff(X) == (X*B + B*X).T
expr = Trace(MatMul(X, X, B))
assert expr.diff(X) == (X*B + B*X).T
# Cookbook example 108:
expr = Trace(X.T*B*X)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 109:
expr = Trace(B*X*X.T)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 110:
expr = Trace(X*X.T*B)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 111:
expr = Trace(X*B*X.T)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 112:
expr = Trace(B*X.T*X)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 113:
expr = Trace(X.T*X*B)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 114:
expr = Trace(A*X*B*X)
assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
# Cookbook example 115:
expr = Trace(X.T*X)
assert expr.diff(X) == 2*X
expr = Trace(X*X.T)
assert expr.diff(X) == 2*X
# Cookbook example 116:
expr = Trace(B.T*X.T*C*X*B)
assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
# Cookbook example 117:
expr = Trace(X.T*B*X*C)
assert expr.diff(X) == B*X*C + B.T*X*C.T
# Cookbook example 118:
expr = Trace(A*X*B*X.T*C)
assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
# Cookbook example 119:
expr = Trace((A*X*B + C)*(A*X*B + C).T)
assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
# Cookbook example 120:
# TODO: no support for TensorProduct.
# expr = Trace(TensorProduct(X, X))
# expr = Trace(X)*Trace(X)
# expr.diff(X) == 2*Trace(X)*Identity(k)
# Higher Order
# Cookbook example 121:
expr = Trace(X**k)
#assert expr.diff(X) == k*(X**(k-1)).T
# Cookbook example 122:
expr = Trace(A*X**k)
#assert expr.diff(X) == # Needs indices
# Cookbook example 123:
expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
# Other
# Cookbook example 124:
expr = Trace(A*X**(-1)*B)
assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
# Cookbook example 125:
expr = Trace(Inverse(X.T*C*X)*A)
# Warning: result in the cookbook is equivalent if B and C are symmetric:
assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
# Cookbook example 126:
expr = Trace((X.T*C*X).inv()*(X.T*B*X))
assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
# Cookbook example 127:
expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
# Warning: result in the cookbook is equivalent if B and C are symmetric:
assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
def test_derivatives_of_complicated_matrix_expr():
expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
assert expr.diff(X) == result
def test_mixed_deriv_mixed_expressions():
expr = 3*Trace(A)
assert expr.diff(A) == 3*Identity(k)
expr = k
deriv = expr.diff(A)
assert isinstance(deriv, ZeroMatrix)
assert deriv == ZeroMatrix(k, k)
expr = Trace(A)**2
assert expr.diff(A) == (2*Trace(A))*Identity(k)
expr = Trace(A)*A
I = Identity(k)
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
expr = Trace(Trace(A)*A)
assert expr.diff(A) == (2*Trace(A))*Identity(k)
expr = Trace(Trace(Trace(A)*A)*A)
assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
def test_derivatives_matrix_norms():
expr = x.T*y
assert expr.diff(x) == y
assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
expr = (x.T*y)**S.Half
assert expr.diff(x) == y/(2*sqrt(x.T*y))
expr = (x.T*x)**S.Half
assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
expr = (c.T*a*x.T*b)**S.Half
assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
expr = (c.T*a*x.T*b)**Rational(1, 3)
assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
expr = (a.T*X*b)**S.Half
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
def test_derivatives_elementwise_applyfunc():
expr = x.applyfunc(tan)
assert expr.diff(x).dummy_eq(
DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = (i**2*x).applyfunc(sin)
assert expr.diff(i).dummy_eq(
HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
expr = (log(i)*A*B).applyfunc(sin)
assert expr.diff(i).dummy_eq(
HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
expr = A*x.applyfunc(exp)
# TODO: restore this result (currently returning the transpose):
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = x.T*A*x + k*y.applyfunc(sin).T*x
assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = x.applyfunc(sin).T*y
# TODO: restore (currently returning the transpose):
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = (a.T * X * b).applyfunc(sin)
assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * X.applyfunc(sin) * b
assert expr.diff(X).dummy_eq(
DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * (A*X*B).applyfunc(sin) * b
assert expr.diff(X).dummy_eq(
A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * (A*X*b).applyfunc(sin) * b.T
# TODO: not implemented
#assert expr.diff(X) == ...
#_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T*A*X.applyfunc(sin)*B*b
assert expr.diff(X).dummy_eq(
HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
# TODO: wrong
# assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
# TODO: wrong
# assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
def test_derivatives_of_hadamard_expressions():
# Hadamard Product
expr = hadamard_product(a, x, b)
assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
expr = a.T*hadamard_product(A, X, B)*b
assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
# Hadamard Power
expr = hadamard_power(x, 2)
assert expr.diff(x).doit() == 2*DiagMatrix(x)
expr = hadamard_power(x.T, 2)
assert expr.diff(x).doit() == 2*DiagMatrix(x)
expr = hadamard_power(x, S.Half)
assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
expr = hadamard_power(a.T*X*b, 2)
assert expr.diff(X) == 2*a*a.T*X*b*b.T
expr = hadamard_power(a.T*X*b, S.Half)
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
|
13ef928d8573ae66aed046c3f20e0d4eaa7a68b0fca87cc8b88eec01fb96c696 | from sympy.sets.setexpr import SetExpr
from sympy.sets import Interval, FiniteSet, Intersection, ImageSet, Union
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.numbers import (I, Rational, oo)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.trigonometric import cos
from sympy.sets.sets import Set
a, x = symbols("a, x")
_d = Dummy("d")
def test_setexpr():
se = SetExpr(Interval(0, 1))
assert isinstance(se.set, Set)
assert isinstance(se, Expr)
def test_scalar_funcs():
assert SetExpr(Interval(0, 1)).set == Interval(0, 1)
a, b = Symbol('a', real=True), Symbol('b', real=True)
a, b = 1, 2
# TODO: add support for more functions in the future:
for f in [exp, log]:
input_se = f(SetExpr(Interval(a, b)))
output = input_se.set
expected = Interval(Min(f(a), f(b)), Max(f(a), f(b)))
assert output == expected
def test_Add_Mul():
assert (SetExpr(Interval(0, 1)) + 1).set == Interval(1, 2)
assert (SetExpr(Interval(0, 1))*2).set == Interval(0, 2)
def test_Pow():
assert (SetExpr(Interval(0, 2))**2).set == Interval(0, 4)
def test_compound():
assert (exp(SetExpr(Interval(0, 1))*2 + 1)).set == \
Interval(exp(1), exp(3))
def test_Interval_Interval():
assert (SetExpr(Interval(1, 2)) + SetExpr(Interval(10, 20))).set == \
Interval(11, 22)
assert (SetExpr(Interval(1, 2))*SetExpr(Interval(10, 20))).set == \
Interval(10, 40)
def test_FiniteSet_FiniteSet():
assert (SetExpr(FiniteSet(1, 2, 3)) + SetExpr(FiniteSet(1, 2))).set == \
FiniteSet(2, 3, 4, 5)
assert (SetExpr(FiniteSet(1, 2, 3))*SetExpr(FiniteSet(1, 2))).set == \
FiniteSet(1, 2, 3, 4, 6)
def test_Interval_FiniteSet():
assert (SetExpr(FiniteSet(1, 2)) + SetExpr(Interval(0, 10))).set == \
Interval(1, 12)
def test_Many_Sets():
assert (SetExpr(Interval(0, 1)) +
SetExpr(Interval(2, 3)) +
SetExpr(FiniteSet(10, 11, 12))).set == Interval(12, 16)
def test_same_setexprs_are_not_identical():
a = SetExpr(FiniteSet(0, 1))
b = SetExpr(FiniteSet(0, 1))
assert (a + b).set == FiniteSet(0, 1, 2)
# Cannot detect the set being the same:
# assert (a + a).set == FiniteSet(0, 2)
def test_Interval_arithmetic():
i12cc = SetExpr(Interval(1, 2))
i12lo = SetExpr(Interval.Lopen(1, 2))
i12ro = SetExpr(Interval.Ropen(1, 2))
i12o = SetExpr(Interval.open(1, 2))
n23cc = SetExpr(Interval(-2, 3))
n23lo = SetExpr(Interval.Lopen(-2, 3))
n23ro = SetExpr(Interval.Ropen(-2, 3))
n23o = SetExpr(Interval.open(-2, 3))
n3n2cc = SetExpr(Interval(-3, -2))
assert i12cc + i12cc == SetExpr(Interval(2, 4))
assert i12cc - i12cc == SetExpr(Interval(-1, 1))
assert i12cc*i12cc == SetExpr(Interval(1, 4))
assert i12cc/i12cc == SetExpr(Interval(S.Half, 2))
assert i12cc**2 == SetExpr(Interval(1, 4))
assert i12cc**3 == SetExpr(Interval(1, 8))
assert i12lo + i12ro == SetExpr(Interval.open(2, 4))
assert i12lo - i12ro == SetExpr(Interval.Lopen(-1, 1))
assert i12lo*i12ro == SetExpr(Interval.open(1, 4))
assert i12lo/i12ro == SetExpr(Interval.Lopen(S.Half, 2))
assert i12lo + i12lo == SetExpr(Interval.Lopen(2, 4))
assert i12lo - i12lo == SetExpr(Interval.open(-1, 1))
assert i12lo*i12lo == SetExpr(Interval.Lopen(1, 4))
assert i12lo/i12lo == SetExpr(Interval.open(S.Half, 2))
assert i12lo + i12cc == SetExpr(Interval.Lopen(2, 4))
assert i12lo - i12cc == SetExpr(Interval.Lopen(-1, 1))
assert i12lo*i12cc == SetExpr(Interval.Lopen(1, 4))
assert i12lo/i12cc == SetExpr(Interval.Lopen(S.Half, 2))
assert i12lo + i12o == SetExpr(Interval.open(2, 4))
assert i12lo - i12o == SetExpr(Interval.open(-1, 1))
assert i12lo*i12o == SetExpr(Interval.open(1, 4))
assert i12lo/i12o == SetExpr(Interval.open(S.Half, 2))
assert i12lo**2 == SetExpr(Interval.Lopen(1, 4))
assert i12lo**3 == SetExpr(Interval.Lopen(1, 8))
assert i12ro + i12ro == SetExpr(Interval.Ropen(2, 4))
assert i12ro - i12ro == SetExpr(Interval.open(-1, 1))
assert i12ro*i12ro == SetExpr(Interval.Ropen(1, 4))
assert i12ro/i12ro == SetExpr(Interval.open(S.Half, 2))
assert i12ro + i12cc == SetExpr(Interval.Ropen(2, 4))
assert i12ro - i12cc == SetExpr(Interval.Ropen(-1, 1))
assert i12ro*i12cc == SetExpr(Interval.Ropen(1, 4))
assert i12ro/i12cc == SetExpr(Interval.Ropen(S.Half, 2))
assert i12ro + i12o == SetExpr(Interval.open(2, 4))
assert i12ro - i12o == SetExpr(Interval.open(-1, 1))
assert i12ro*i12o == SetExpr(Interval.open(1, 4))
assert i12ro/i12o == SetExpr(Interval.open(S.Half, 2))
assert i12ro**2 == SetExpr(Interval.Ropen(1, 4))
assert i12ro**3 == SetExpr(Interval.Ropen(1, 8))
assert i12o + i12lo == SetExpr(Interval.open(2, 4))
assert i12o - i12lo == SetExpr(Interval.open(-1, 1))
assert i12o*i12lo == SetExpr(Interval.open(1, 4))
assert i12o/i12lo == SetExpr(Interval.open(S.Half, 2))
assert i12o + i12ro == SetExpr(Interval.open(2, 4))
assert i12o - i12ro == SetExpr(Interval.open(-1, 1))
assert i12o*i12ro == SetExpr(Interval.open(1, 4))
assert i12o/i12ro == SetExpr(Interval.open(S.Half, 2))
assert i12o + i12cc == SetExpr(Interval.open(2, 4))
assert i12o - i12cc == SetExpr(Interval.open(-1, 1))
assert i12o*i12cc == SetExpr(Interval.open(1, 4))
assert i12o/i12cc == SetExpr(Interval.open(S.Half, 2))
assert i12o**2 == SetExpr(Interval.open(1, 4))
assert i12o**3 == SetExpr(Interval.open(1, 8))
assert n23cc + n23cc == SetExpr(Interval(-4, 6))
assert n23cc - n23cc == SetExpr(Interval(-5, 5))
assert n23cc*n23cc == SetExpr(Interval(-6, 9))
assert n23cc/n23cc == SetExpr(Interval.open(-oo, oo))
assert n23cc + n23ro == SetExpr(Interval.Ropen(-4, 6))
assert n23cc - n23ro == SetExpr(Interval.Lopen(-5, 5))
assert n23cc*n23ro == SetExpr(Interval.Ropen(-6, 9))
assert n23cc/n23ro == SetExpr(Interval.Lopen(-oo, oo))
assert n23cc + n23lo == SetExpr(Interval.Lopen(-4, 6))
assert n23cc - n23lo == SetExpr(Interval.Ropen(-5, 5))
assert n23cc*n23lo == SetExpr(Interval(-6, 9))
assert n23cc/n23lo == SetExpr(Interval.open(-oo, oo))
assert n23cc + n23o == SetExpr(Interval.open(-4, 6))
assert n23cc - n23o == SetExpr(Interval.open(-5, 5))
assert n23cc*n23o == SetExpr(Interval.open(-6, 9))
assert n23cc/n23o == SetExpr(Interval.open(-oo, oo))
assert n23cc**2 == SetExpr(Interval(0, 9))
assert n23cc**3 == SetExpr(Interval(-8, 27))
n32cc = SetExpr(Interval(-3, 2))
n32lo = SetExpr(Interval.Lopen(-3, 2))
n32ro = SetExpr(Interval.Ropen(-3, 2))
assert n32cc*n32lo == SetExpr(Interval.Ropen(-6, 9))
assert n32cc*n32cc == SetExpr(Interval(-6, 9))
assert n32lo*n32cc == SetExpr(Interval.Ropen(-6, 9))
assert n32cc*n32ro == SetExpr(Interval(-6, 9))
assert n32lo*n32ro == SetExpr(Interval.Ropen(-6, 9))
assert n32cc/n32lo == SetExpr(Interval.Ropen(-oo, oo))
assert i12cc/n32lo == SetExpr(Interval.Ropen(-oo, oo))
assert n3n2cc**2 == SetExpr(Interval(4, 9))
assert n3n2cc**3 == SetExpr(Interval(-27, -8))
assert n23cc + i12cc == SetExpr(Interval(-1, 5))
assert n23cc - i12cc == SetExpr(Interval(-4, 2))
assert n23cc*i12cc == SetExpr(Interval(-4, 6))
assert n23cc/i12cc == SetExpr(Interval(-2, 3))
def test_SetExpr_Intersection():
x, y, z, w = symbols("x y z w")
set1 = Interval(x, y)
set2 = Interval(w, z)
inter = Intersection(set1, set2)
se = SetExpr(inter)
assert exp(se).set == Intersection(
ImageSet(Lambda(x, exp(x)), set1),
ImageSet(Lambda(x, exp(x)), set2))
assert cos(se).set == ImageSet(Lambda(x, cos(x)), inter)
def test_SetExpr_Interval_div():
# TODO: some expressions cannot be calculated due to bugs (currently
# commented):
assert SetExpr(Interval(-3, -2))/SetExpr(Interval(-2, 1)) == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(2, 3))/SetExpr(Interval(-2, 2)) == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-3, -2))/SetExpr(Interval(0, 4)) == SetExpr(Interval(-oo, Rational(-1, 2)))
assert SetExpr(Interval(2, 4))/SetExpr(Interval(-3, 0)) == SetExpr(Interval(-oo, Rational(-2, 3)))
assert SetExpr(Interval(2, 4))/SetExpr(Interval(0, 3)) == SetExpr(Interval(Rational(2, 3), oo))
# assert SetExpr(Interval(0, 1))/SetExpr(Interval(0, 1)) == SetExpr(Interval(0, oo))
# assert SetExpr(Interval(-1, 0))/SetExpr(Interval(0, 1)) == SetExpr(Interval(-oo, 0))
assert SetExpr(Interval(-1, 2))/SetExpr(Interval(-2, 2)) == SetExpr(Interval(-oo, oo))
assert 1/SetExpr(Interval(-1, 2)) == SetExpr(Union(Interval(-oo, -1), Interval(S.Half, oo)))
assert 1/SetExpr(Interval(0, 2)) == SetExpr(Interval(S.Half, oo))
assert (-1)/SetExpr(Interval(0, 2)) == SetExpr(Interval(-oo, Rational(-1, 2)))
assert 1/SetExpr(Interval(-oo, 0)) == SetExpr(Interval.open(-oo, 0))
assert 1/SetExpr(Interval(-1, 0)) == SetExpr(Interval(-oo, -1))
# assert (-2)/SetExpr(Interval(-oo, 0)) == SetExpr(Interval(0, oo))
# assert 1/SetExpr(Interval(-oo, -1)) == SetExpr(Interval(-1, 0))
# assert SetExpr(Interval(1, 2))/a == Mul(SetExpr(Interval(1, 2)), 1/a, evaluate=False)
# assert SetExpr(Interval(1, 2))/0 == SetExpr(Interval(1, 2))*zoo
# assert SetExpr(Interval(1, oo))/oo == SetExpr(Interval(0, oo))
# assert SetExpr(Interval(1, oo))/(-oo) == SetExpr(Interval(-oo, 0))
# assert SetExpr(Interval(-oo, -1))/oo == SetExpr(Interval(-oo, 0))
# assert SetExpr(Interval(-oo, -1))/(-oo) == SetExpr(Interval(0, oo))
# assert SetExpr(Interval(-oo, oo))/oo == SetExpr(Interval(-oo, oo))
# assert SetExpr(Interval(-oo, oo))/(-oo) == SetExpr(Interval(-oo, oo))
# assert SetExpr(Interval(-1, oo))/oo == SetExpr(Interval(0, oo))
# assert SetExpr(Interval(-1, oo))/(-oo) == SetExpr(Interval(-oo, 0))
# assert SetExpr(Interval(-oo, 1))/oo == SetExpr(Interval(-oo, 0))
# assert SetExpr(Interval(-oo, 1))/(-oo) == SetExpr(Interval(0, oo))
def test_SetExpr_Interval_pow():
assert SetExpr(Interval(0, 2))**2 == SetExpr(Interval(0, 4))
assert SetExpr(Interval(-1, 1))**2 == SetExpr(Interval(0, 1))
assert SetExpr(Interval(1, 2))**2 == SetExpr(Interval(1, 4))
assert SetExpr(Interval(-1, 2))**3 == SetExpr(Interval(-1, 8))
assert SetExpr(Interval(-1, 1))**0 == SetExpr(FiniteSet(1))
assert SetExpr(Interval(1, 2))**Rational(5, 2) == SetExpr(Interval(1, 4*sqrt(2)))
#assert SetExpr(Interval(-1, 2))**Rational(1, 3) == SetExpr(Interval(-1, 2**Rational(1, 3)))
#assert SetExpr(Interval(0, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
#assert SetExpr(Interval(-4, 2))**Rational(2, 3) == SetExpr(Interval(0, 2*2**Rational(1, 3)))
#assert SetExpr(Interval(-1, 5))**S.Half == SetExpr(Interval(0, sqrt(5)))
#assert SetExpr(Interval(-oo, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
#assert SetExpr(Interval(-2, 3))**(Rational(-1, 4)) == SetExpr(Interval(0, oo))
assert SetExpr(Interval(1, 5))**(-2) == SetExpr(Interval(Rational(1, 25), 1))
assert SetExpr(Interval(-1, 3))**(-2) == SetExpr(Interval(0, oo))
assert SetExpr(Interval(0, 2))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
assert SetExpr(Interval(-1, 2))**(-3) == SetExpr(Union(Interval(-oo, -1), Interval(Rational(1, 8), oo)))
assert SetExpr(Interval(-3, -2))**(-3) == SetExpr(Interval(Rational(-1, 8), Rational(-1, 27)))
assert SetExpr(Interval(-3, -2))**(-2) == SetExpr(Interval(Rational(1, 9), Rational(1, 4)))
#assert SetExpr(Interval(0, oo))**S.Half == SetExpr(Interval(0, oo))
#assert SetExpr(Interval(-oo, -1))**Rational(1, 3) == SetExpr(Interval(-oo, -1))
#assert SetExpr(Interval(-2, 3))**(Rational(-1, 3)) == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-oo, 0))**(-2) == SetExpr(Interval.open(0, oo))
assert SetExpr(Interval(-2, 0))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
assert SetExpr(Interval(Rational(1, 3), S.Half))**oo == SetExpr(FiniteSet(0))
assert SetExpr(Interval(0, S.Half))**oo == SetExpr(FiniteSet(0))
assert SetExpr(Interval(S.Half, 1))**oo == SetExpr(Interval(0, oo))
assert SetExpr(Interval(0, 1))**oo == SetExpr(Interval(0, oo))
assert SetExpr(Interval(2, 3))**oo == SetExpr(FiniteSet(oo))
assert SetExpr(Interval(1, 2))**oo == SetExpr(Interval(0, oo))
assert SetExpr(Interval(S.Half, 3))**oo == SetExpr(Interval(0, oo))
assert SetExpr(Interval(Rational(-1, 3), Rational(-1, 4)))**oo == SetExpr(FiniteSet(0))
assert SetExpr(Interval(-1, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-3, -2))**oo == SetExpr(FiniteSet(-oo, oo))
assert SetExpr(Interval(-2, -1))**oo == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-2, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(Rational(-1, 2), S.Half))**oo == SetExpr(FiniteSet(0))
assert SetExpr(Interval(Rational(-1, 2), 1))**oo == SetExpr(Interval(0, oo))
assert SetExpr(Interval(Rational(-2, 3), 2))**oo == SetExpr(Interval(0, oo))
assert SetExpr(Interval(-1, 1))**oo == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-1, S.Half))**oo == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-1, 2))**oo == SetExpr(Interval(-oo, oo))
assert SetExpr(Interval(-2, S.Half))**oo == SetExpr(Interval(-oo, oo))
assert (SetExpr(Interval(1, 2))**x).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**x), Interval(1, 2))))
assert SetExpr(Interval(2, 3))**(-oo) == SetExpr(FiniteSet(0))
assert SetExpr(Interval(0, 2))**(-oo) == SetExpr(Interval(0, oo))
assert (SetExpr(Interval(-1, 2))**(-oo)).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**(-oo)), Interval(-1, 2))))
def test_SetExpr_Integers():
assert SetExpr(S.Integers) + 1 == SetExpr(S.Integers)
assert (SetExpr(S.Integers) + I).dummy_eq(
SetExpr(ImageSet(Lambda(_d, _d + I), S.Integers)))
assert SetExpr(S.Integers)*(-1) == SetExpr(S.Integers)
assert (SetExpr(S.Integers)*2).dummy_eq(
SetExpr(ImageSet(Lambda(_d, 2*_d), S.Integers)))
assert (SetExpr(S.Integers)*I).dummy_eq(
SetExpr(ImageSet(Lambda(_d, I*_d), S.Integers)))
# issue #18050:
assert SetExpr(S.Integers)._eval_func(Lambda(x, I*x + 1)).dummy_eq(
SetExpr(ImageSet(Lambda(_d, I*_d + 1), S.Integers)))
# needs improvement:
assert (SetExpr(S.Integers)*I + 1).dummy_eq(
SetExpr(ImageSet(Lambda(x, x + 1),
ImageSet(Lambda(_d, _d*I), S.Integers))))
|
9c5bc31a58407f4c06fa96673e48098dfc031eb4f076ba373182229f0cb19fde | from sympy.core.expr import unchanged
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.sets.contains import Contains
from sympy.sets.fancysets import Interval
from sympy.sets.powerset import PowerSet
from sympy.sets.sets import FiniteSet
from sympy.testing.pytest import raises, XFAIL
def test_powerset_creation():
assert unchanged(PowerSet, FiniteSet(1, 2))
assert unchanged(PowerSet, S.EmptySet)
raises(ValueError, lambda: PowerSet(123))
assert unchanged(PowerSet, S.Reals)
assert unchanged(PowerSet, S.Integers)
def test_powerset_rewrite_FiniteSet():
assert PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet) == \
FiniteSet(S.EmptySet, FiniteSet(1), FiniteSet(2), FiniteSet(1, 2))
assert PowerSet(S.EmptySet).rewrite(FiniteSet) == FiniteSet(S.EmptySet)
assert PowerSet(S.Naturals).rewrite(FiniteSet) == PowerSet(S.Naturals)
def test_finiteset_rewrite_powerset():
assert FiniteSet(S.EmptySet).rewrite(PowerSet) == PowerSet(S.EmptySet)
assert FiniteSet(
S.EmptySet, FiniteSet(1),
FiniteSet(2), FiniteSet(1, 2)).rewrite(PowerSet) == \
PowerSet(FiniteSet(1, 2))
assert FiniteSet(1, 2, 3).rewrite(PowerSet) == FiniteSet(1, 2, 3)
def test_powerset__contains__():
subset_series = [
S.EmptySet,
FiniteSet(1, 2),
S.Naturals,
S.Naturals0,
S.Integers,
S.Rationals,
S.Reals,
S.Complexes]
l = len(subset_series)
for i in range(l):
for j in range(l):
if i <= j:
assert subset_series[i] in \
PowerSet(subset_series[j], evaluate=False)
else:
assert subset_series[i] not in \
PowerSet(subset_series[j], evaluate=False)
@XFAIL
def test_failing_powerset__contains__():
# XXX These are failing when evaluate=True,
# but using unevaluated PowerSet works fine.
assert FiniteSet(1, 2) not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Naturals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Naturals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
assert S.Naturals0 not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Naturals0 not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
assert S.Integers not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Integers not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
assert S.Rationals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Rationals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
assert S.Reals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Reals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
assert S.Complexes not in PowerSet(S.EmptySet).rewrite(FiniteSet)
assert S.Complexes not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
def test_powerset__len__():
A = PowerSet(S.EmptySet, evaluate=False)
assert len(A) == 1
A = PowerSet(A, evaluate=False)
assert len(A) == 2
A = PowerSet(A, evaluate=False)
assert len(A) == 4
A = PowerSet(A, evaluate=False)
assert len(A) == 16
def test_powerset__iter__():
a = PowerSet(FiniteSet(1, 2)).__iter__()
assert next(a) == S.EmptySet
assert next(a) == FiniteSet(1)
assert next(a) == FiniteSet(2)
assert next(a) == FiniteSet(1, 2)
a = PowerSet(S.Naturals).__iter__()
assert next(a) == S.EmptySet
assert next(a) == FiniteSet(1)
assert next(a) == FiniteSet(2)
assert next(a) == FiniteSet(1, 2)
assert next(a) == FiniteSet(3)
assert next(a) == FiniteSet(1, 3)
assert next(a) == FiniteSet(2, 3)
assert next(a) == FiniteSet(1, 2, 3)
def test_powerset_contains():
A = PowerSet(FiniteSet(1), evaluate=False)
assert A.contains(2) == Contains(2, A)
x = Symbol('x')
A = PowerSet(FiniteSet(x), evaluate=False)
assert A.contains(FiniteSet(1)) == Contains(FiniteSet(1), A)
def test_powerset_method():
# EmptySet
A = FiniteSet()
pset = A.powerset()
assert len(pset) == 1
assert pset == FiniteSet(S.EmptySet)
# FiniteSets
A = FiniteSet(1, 2)
pset = A.powerset()
assert len(pset) == 2**len(A)
assert pset == FiniteSet(FiniteSet(), FiniteSet(1),
FiniteSet(2), A)
# Not finite sets
A = Interval(0, 1)
assert A.powerset() == PowerSet(A)
def test_is_subset():
# covers line 101-102
# initialize powerset(1), which is a subset of powerset(1,2)
subset = PowerSet(FiniteSet(1))
pset = PowerSet(FiniteSet(1, 2))
bad_set = PowerSet(FiniteSet(2, 3))
# assert "subset" is subset of pset == True
assert subset.is_subset(pset)
# assert "bad_set" is subset of pset == False
assert not pset.is_subset(bad_set)
|
f54a64cac7a5f697b0527efb468c2fd02b7c8ca76e6605b696eb6918a067423e | from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.containers import TupleKind
from sympy.core.function import Lambda
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.logic.boolalg import (false, true)
from sympy.matrices.common import MatrixKind
from sympy.matrices.dense import Matrix
from sympy.polys.rootoftools import rootof
from sympy.sets.contains import Contains
from sympy.sets.fancysets import (ImageSet, Range)
from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind)
from mpmath import mpi
from sympy.core.expr import unchanged
from sympy.core.relational import Eq, Ne, Le, Lt, LessThan
from sympy.logic import And, Or, Xor
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
from sympy.abc import x, y, z, m, n
EmptySet = S.EmptySet
def test_imageset():
ints = S.Integers
assert imageset(x, x - 1, S.Naturals) is S.Naturals0
assert imageset(x, x + 1, S.Naturals0) is S.Naturals
assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
assert imageset(x, abs(x), S.Naturals) is S.Naturals
assert imageset(x, abs(x), S.Integers) is S.Naturals0
# issue 16878a
r = symbols('r', real=True)
assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None
assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False
assert (r, r) in imageset(x, (x, x), S.Reals)
assert 1 + I in imageset(x, x + I, S.Reals)
assert {1} not in imageset(x, (x,), S.Reals)
assert (1, 1) not in imageset(x, (x,), S.Reals)
raises(TypeError, lambda: imageset(x, ints))
raises(ValueError, lambda: imageset(x, y, z, ints))
raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints)
raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
def f(x):
return cos(x)
assert imageset(f, ints) == imageset(x, cos(x), ints)
f = lambda x: cos(x)
assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
assert imageset(x, 1, ints) == FiniteSet(1)
assert imageset(x, y, ints) == {y}
assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)}
clash = Symbol('x', integer=true)
assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
in ('x0 + x', 'x + x0'))
x1, x2 = symbols("x1, x2")
assert imageset(lambda x, y:
Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq(
ImageSet(Lambda((x1, x2), x1 + x2),
Interval(1, 2), Interval(2, 3)))
def test_is_empty():
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
S.UniversalSet]:
assert s.is_empty is False
assert S.EmptySet.is_empty is True
def test_is_finiteset():
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
S.UniversalSet]:
assert s.is_finite_set is False
assert S.EmptySet.is_finite_set is True
assert FiniteSet(1, 2).is_finite_set is True
assert Interval(1, 2).is_finite_set is False
assert Interval(x, y).is_finite_set is None
assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True
assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False
assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None
assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False
assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False
assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True
assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None
assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True
assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None
assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True
assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True
assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None
assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False
assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False
assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True
def test_deprecated_is_EmptySet():
with warns_deprecated_sympy():
S.EmptySet.is_EmptySet
with warns_deprecated_sympy():
FiniteSet(1).is_EmptySet
def test_interval_arguments():
assert Interval(0, oo) == Interval(0, oo, False, True)
assert Interval(0, oo).right_open is true
assert Interval(-oo, 0) == Interval(-oo, 0, True, False)
assert Interval(-oo, 0).left_open is true
assert Interval(oo, -oo) == S.EmptySet
assert Interval(oo, oo) == S.EmptySet
assert Interval(-oo, -oo) == S.EmptySet
assert Interval(oo, x) == S.EmptySet
assert Interval(oo, oo) == S.EmptySet
assert Interval(x, -oo) == S.EmptySet
assert Interval(x, x) == {x}
assert isinstance(Interval(1, 1), FiniteSet)
e = Sum(x, (x, 1, 3))
assert isinstance(Interval(e, e), FiniteSet)
assert Interval(1, 0) == S.EmptySet
assert Interval(1, 1).measure == 0
assert Interval(1, 1, False, True) == S.EmptySet
assert Interval(1, 1, True, False) == S.EmptySet
assert Interval(1, 1, True, True) == S.EmptySet
assert isinstance(Interval(0, Symbol('a')), Interval)
assert Interval(Symbol('a', positive=True), 0) == S.EmptySet
raises(ValueError, lambda: Interval(0, S.ImaginaryUnit))
raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False)))
raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit))
raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y)))
raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))
def test_interval_symbolic_end_points():
a = Symbol('a', real=True)
assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3)
assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a)
assert Interval(0, a).contains(1) == LessThan(1, a)
def test_interval_is_empty():
x, y = symbols('x, y')
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
nn = Symbol('nn', nonnegative=True)
assert Interval(1, 2).is_empty == False
assert Interval(3, 3).is_empty == False # FiniteSet
assert Interval(r, r).is_empty == False # FiniteSet
assert Interval(r, r + nn).is_empty == False
assert Interval(x, x).is_empty == False
assert Interval(1, oo).is_empty == False
assert Interval(-oo, oo).is_empty == False
assert Interval(-oo, 1).is_empty == False
assert Interval(x, y).is_empty == None
assert Interval(r, oo).is_empty == False # real implies finite
assert Interval(n, 0).is_empty == False
assert Interval(n, 0, left_open=True).is_empty == False
assert Interval(p, 0).is_empty == True # EmptySet
assert Interval(nn, 0).is_empty == None
assert Interval(n, p).is_empty == False
assert Interval(0, p, left_open=True).is_empty == False
assert Interval(0, p, right_open=True).is_empty == False
assert Interval(0, nn, left_open=True).is_empty == None
assert Interval(0, nn, right_open=True).is_empty == None
def test_union():
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
Interval(1, 3, False, True)
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
Interval(1, 3, True, True)
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
Interval(1, 3)
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
Interval(1, 3)
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
assert Union(S.EmptySet) == S.EmptySet
assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \
Interval(0, 1)
# issue #18241:
x = Symbol('x')
assert Union(Interval(0, 1), FiniteSet(1, x)) == Union(
Interval(0, 1), FiniteSet(x))
assert unchanged(Union, Interval(0, 1), FiniteSet(2, x))
assert Interval(1, 2).union(Interval(2, 3)) == \
Interval(1, 2) + Interval(2, 3)
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
assert Union(Set()) == Set()
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)
assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)
assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet
assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3)
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
FiniteSet(x, FiniteSet(y, z))
# Test that Intervals and FiniteSets play nicely
assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
assert Interval(1, 3, True, True) + FiniteSet(3) == \
Interval(1, 3, True, False)
X = Interval(1, 3) + FiniteSet(5)
Y = Interval(1, 2) + FiniteSet(3)
XandY = X.intersect(Y)
assert 2 in X and 3 in X and 3 in XandY
assert XandY.is_subset(X) and XandY.is_subset(Y)
raises(TypeError, lambda: Union(1, 2, 3))
assert X.is_iterable is False
# issue 7843
assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \
FiniteSet(-sqrt(-I), sqrt(-I))
assert Union(S.Reals, S.Integers) == S.Reals
def test_union_iter():
# Use Range because it is ordered
u = Union(Range(3), Range(5), Range(4), evaluate=False)
# Round robin
assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4]
def test_union_is_empty():
assert (Interval(x, y) + FiniteSet(1)).is_empty == False
assert (Interval(x, y) + Interval(-x, y)).is_empty == None
def test_difference():
assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True)
assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True)
assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True)
assert Interval(1, 3, True) - Interval(2, 3, True) == \
Interval(1, 2, True, False)
assert Interval(0, 2) - FiniteSet(1) == \
Union(Interval(0, 1, False, True), Interval(1, 2, True, False))
# issue #18119
assert S.Reals - FiniteSet(I) == S.Reals
assert S.Reals - FiniteSet(-I, I) == S.Reals
assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10)
assert Interval(0, 10) - FiniteSet(1, I) == Union(
Interval.Ropen(0, 1), Interval.Lopen(1, 10))
assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement(
Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2),
evaluate=False)
assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3)
assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham')
assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \
FiniteSet(1, 2)
assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4)
assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \
Union(Interval(0, 1, False, True), FiniteSet(4))
assert -1 in S.Reals - S.Naturals
def test_Complement():
A = FiniteSet(1, 3, 4)
B = FiniteSet(3, 4)
C = Interval(1, 3)
D = Interval(1, 2)
assert Complement(A, B, evaluate=False).is_iterable is True
assert Complement(A, C, evaluate=False).is_iterable is True
assert Complement(C, D, evaluate=False).is_iterable is None
assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1)
assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4)
raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False)))
assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True)
assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1)
assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)),
Interval(1, 3)) == \
Union(Interval(0, 1, False, True), FiniteSet(4))
assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False)
assert -1 in Complement(S.Reals, S.Naturals, evaluate=False)
assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False)
assert Complement(S.Integers, S.UniversalSet) == EmptySet
assert S.UniversalSet.complement(S.Integers) == EmptySet
assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0)))
assert S.EmptySet - S.Integers == S.EmptySet
assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1)
assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \
Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi))
# issue 12712
assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \
Complement(FiniteSet(x, y), Interval(-10, 10))
A = FiniteSet(*symbols('a:c'))
B = FiniteSet(*symbols('d:f'))
assert unchanged(Complement, ProductSet(A, A), B)
A2 = ProductSet(A, A)
B3 = ProductSet(B, B, B)
assert A2 - B3 == A2
assert B3 - A2 == B3
def test_set_operations_nonsets():
'''Tests that e.g. FiniteSet(1) * 2 raises TypeError'''
ops = [
lambda a, b: a + b,
lambda a, b: a - b,
lambda a, b: a * b,
lambda a, b: a / b,
lambda a, b: a // b,
lambda a, b: a | b,
lambda a, b: a & b,
lambda a, b: a ^ b,
# FiniteSet(1) ** 2 gives a ProductSet
#lambda a, b: a ** b,
]
Sx = FiniteSet(x)
Sy = FiniteSet(y)
sets = [
{1},
FiniteSet(1),
Interval(1, 2),
Union(Sx, Interval(1, 2)),
Intersection(Sx, Sy),
Complement(Sx, Sy),
ProductSet(Sx, Sy),
S.EmptySet,
]
nums = [0, 1, 2, S(0), S(1), S(2)]
for si in sets:
for ni in nums:
for op in ops:
raises(TypeError, lambda : op(si, ni))
raises(TypeError, lambda : op(ni, si))
raises(TypeError, lambda: si ** object())
raises(TypeError, lambda: si ** {1})
def test_complement():
assert Complement({1, 2}, {1}) == {2}
assert Interval(0, 1).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
assert Interval(0, 1, True, False).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
assert Interval(0, 1, False, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
assert Interval(0, 1, True, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
assert S.UniversalSet.complement(S.Reals) == S.EmptySet
assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet
assert S.EmptySet.complement(S.Reals) == S.Reals
assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
Interval(3, oo, True, True))
assert FiniteSet(0).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
assert (FiniteSet(5) + Interval(S.NegativeInfinity,
0)).complement(S.Reals) == \
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
assert FiniteSet(1, 2, 3).complement(S.Reals) == \
Interval(S.NegativeInfinity, 1, True, True) + \
Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
Interval(3, S.Infinity, True, True)
assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))
assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
Interval(0, oo, True, True)
, FiniteSet(x), evaluate=False)
square = Interval(0, 1) * Interval(0, 1)
notsquare = square.complement(S.Reals*S.Reals)
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
def test_intersect1():
assert all(S.Integers.intersection(i) is i for i in
(S.Naturals, S.Naturals0))
assert all(i.intersection(S.Integers) is i for i in
(S.Naturals, S.Naturals0))
s = S.Naturals0
assert S.Naturals.intersection(s) is S.Naturals
assert s.intersection(S.Naturals) is S.Naturals
x = Symbol('x')
assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2)
assert Interval(0, 2).intersect(Interval(1, 2, True)) == \
Interval(1, 2, True)
assert Interval(0, 2, True).intersect(Interval(1, 2)) == \
Interval(1, 2, False, False)
assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \
Interval(1, 2, False, True)
assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \
Union(Interval(0, 1), Interval(2, 2))
assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2)
assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x)
assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \
FiniteSet('ham')
assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet
assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3)
assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \
Union(Interval(1, 1), Interval(2, 2))
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \
Union(Interval(0, 1), Interval(2, 2))
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \
S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \
S.EmptySet
assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \
Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5)))
assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \
Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False)
assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \
Intersection({1, 2}, Interval(x, y), evaluate=False)
assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \
Intersection({1, 2}, Interval(x, y), evaluate=False)
# XXX: Is the real=True necessary here?
# https://github.com/sympy/sympy/issues/17532
m, n = symbols('m, n', real=True)
assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \
FiniteSet(m)
# issue 8217
assert Intersection(FiniteSet(x), FiniteSet(y)) == \
Intersection(FiniteSet(x), FiniteSet(y), evaluate=False)
assert FiniteSet(x).intersect(S.Reals) == \
Intersection(S.Reals, FiniteSet(x), evaluate=False)
# tests for the intersection alias
assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3)
assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \
Union(Interval(1, 1), Interval(2, 2))
def test_intersection():
# iterable
i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False)
assert i.is_iterable
assert set(i) == {S(2), S(3)}
# challenging intervals
x = Symbol('x', real=True)
i = Intersection(Interval(0, 3), Interval(x, 6))
assert (5 in i) is False
raises(TypeError, lambda: 2 in i)
# Singleton special cases
assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet
assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x)
# Products
line = Interval(0, 5)
i = Intersection(line**2, line**3, evaluate=False)
assert (2, 2) not in i
assert (2, 2, 2) not in i
raises(TypeError, lambda: list(i))
a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False)
assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals])
assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet
# issue 12178
assert Intersection() == S.UniversalSet
# issue 16987
assert Intersection({1}, {1}, {x}) == Intersection({1}, {x})
def test_issue_9623():
n = Symbol('n')
a = S.Reals
b = Interval(0, oo)
c = FiniteSet(n)
assert Intersection(a, b, c) == Intersection(b, c)
assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet
def test_is_disjoint():
assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False
assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True
def test_ProductSet__len__():
A = FiniteSet(1, 2)
B = FiniteSet(1, 2, 3)
assert ProductSet(A).__len__() == 2
assert ProductSet(A).__len__() is not S(2)
assert ProductSet(A, B).__len__() == 6
assert ProductSet(A, B).__len__() is not S(6)
def test_ProductSet():
# ProductSet is always a set of Tuples
assert ProductSet(S.Reals) == S.Reals ** 1
assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2
assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3
assert ProductSet(S.Reals) != S.Reals
assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals
assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals
assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten()
assert 1 not in ProductSet(S.Reals)
assert (1,) in ProductSet(S.Reals)
assert 1 not in ProductSet(S.Reals, S.Reals)
assert (1, 2) in ProductSet(S.Reals, S.Reals)
assert (1, I) not in ProductSet(S.Reals, S.Reals)
assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals)
assert (1, 2, 3) in S.Reals ** 3
assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals
assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals
assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals
assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals)
assert ProductSet() == FiniteSet(())
assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet
# See GH-17458
for ni in range(5):
Rn = ProductSet(*(S.Reals,) * ni)
assert (1,) * ni in Rn
assert 1 not in Rn
assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals)
S1 = S.Reals
S2 = S.Integers
x1 = pi
x2 = 3
assert x1 in S1
assert x2 in S2
assert (x1, x2) in S1 * S2
S3 = S1 * S2
x3 = (x1, x2)
assert x3 in S3
assert (x3, x3) in S3 * S3
assert x3 + x3 not in S3 * S3
raises(ValueError, lambda: S.Reals**-1)
with warns_deprecated_sympy():
ProductSet(FiniteSet(s) for s in range(2))
raises(TypeError, lambda: ProductSet(None))
S1 = FiniteSet(1, 2)
S2 = FiniteSet(3, 4)
S3 = ProductSet(S1, S2)
assert (S3.as_relational(x, y)
== And(S1.as_relational(x), S2.as_relational(y))
== And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4))))
raises(ValueError, lambda: S3.as_relational(x))
raises(ValueError, lambda: S3.as_relational(x, 1))
raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y))
Z2 = ProductSet(S.Integers, S.Integers)
assert Z2.contains((1, 2)) is S.true
assert Z2.contains((1,)) is S.false
assert Z2.contains(x) == Contains(x, Z2, evaluate=False)
assert Z2.contains(x).subs(x, 1) is S.false
assert Z2.contains((x, 1)).subs(x, 2) is S.true
assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False)
assert unchanged(Contains, (x, y), Z2)
assert Contains((1, 2), Z2) is S.true
def test_ProductSet_of_single_arg_is_not_arg():
assert unchanged(ProductSet, Interval(0, 1))
assert unchanged(ProductSet, ProductSet(Interval(0, 1)))
def test_ProductSet_is_empty():
assert ProductSet(S.Integers, S.Reals).is_empty == False
assert ProductSet(Interval(x, 1), S.Reals).is_empty == None
def test_interval_subs():
a = Symbol('a', real=True)
assert Interval(0, a).subs(a, 2) == Interval(0, 2)
assert Interval(a, 0).subs(a, 2) == S.EmptySet
def test_interval_to_mpi():
assert Interval(0, 1).to_mpi() == mpi(0, 1)
assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))
def test_set_evalf():
assert Interval(S(11)/64, S.Half).evalf() == Interval(
Float('0.171875'), Float('0.5'))
assert Interval(x, S.Half, right_open=True).evalf() == Interval(
x, Float('0.5'), right_open=True)
assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5'))
assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x)
def test_measure():
a = Symbol('a', real=True)
assert Interval(1, 3).measure == 2
assert Interval(0, a).measure == a
assert Interval(1, a).measure == a - 1
assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
== 2
assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0
assert S.EmptySet.measure == 0
square = Interval(0, 10) * Interval(0, 10)
offsetsquare = Interval(5, 15) * Interval(5, 15)
band = Interval(-oo, oo) * Interval(2, 4)
assert square.measure == offsetsquare.measure == 100
assert (square + offsetsquare).measure == 175 # there is some overlap
assert (square - offsetsquare).measure == 75
assert (square * FiniteSet(1, 2, 3)).measure == 0
assert (square.intersect(band)).measure == 20
assert (square + band).measure is oo
assert (band * FiniteSet(1, 2, 3)).measure is nan
def test_is_subset():
assert Interval(0, 1).is_subset(Interval(0, 2)) is True
assert Interval(0, 3).is_subset(Interval(0, 2)) is False
assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False
assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4))
assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False
assert FiniteSet(1).is_subset(Interval(0, 2))
assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False
assert (Interval(1, 2) + FiniteSet(3)).is_subset(
Interval(0, 2, False, True) + FiniteSet(2, 3))
assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True
assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False
assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True
assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True
assert Interval(0, 1).is_subset(S.EmptySet) is False
assert S.EmptySet.is_subset(S.EmptySet) is True
raises(ValueError, lambda: S.EmptySet.is_subset(1))
# tests for the issubset alias
assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True
assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True
assert S.Naturals.is_subset(S.Integers)
assert S.Naturals0.is_subset(S.Integers)
assert FiniteSet(x).is_subset(FiniteSet(y)) is None
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False
assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False
assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False
n = Symbol('n', integer=True)
assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False
assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False
assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True
assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False
assert Range(-oo, 1).is_subset(FiniteSet(1)) is False
assert Range(3).is_subset(FiniteSet(0, 1, n)) is None
assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True
assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False
#issue 19513
assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None
def test_is_proper_subset():
assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True
assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False
assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True
raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0))
def test_is_superset():
assert Interval(0, 1).is_superset(Interval(0, 2)) == False
assert Interval(0, 3).is_superset(Interval(0, 2))
assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False
assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False
assert FiniteSet(1).is_superset(Interval(0, 2)) == False
assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False
assert (Interval(1, 2) + FiniteSet(3)).is_superset(
Interval(0, 2, False, True) + FiniteSet(2, 3)) == False
assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False
assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False
assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False
assert Interval(0, 1).is_superset(S.EmptySet) == True
assert S.EmptySet.is_superset(S.EmptySet) == True
raises(ValueError, lambda: S.EmptySet.is_superset(1))
# tests for the issuperset alias
assert Interval(0, 1).issuperset(S.EmptySet) == True
assert S.EmptySet.issuperset(S.EmptySet) == True
def test_is_proper_superset():
assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False
assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True
assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True
raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0))
def test_contains():
assert Interval(0, 2).contains(1) is S.true
assert Interval(0, 2).contains(3) is S.false
assert Interval(0, 2, True, False).contains(0) is S.false
assert Interval(0, 2, True, False).contains(2) is S.true
assert Interval(0, 2, False, True).contains(0) is S.true
assert Interval(0, 2, False, True).contains(2) is S.false
assert Interval(0, 2, True, True).contains(0) is S.false
assert Interval(0, 2, True, True).contains(2) is S.false
assert (Interval(0, 2) in Interval(0, 2)) is False
assert FiniteSet(1, 2, 3).contains(2) is S.true
assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true
assert FiniteSet(y)._contains(x) is None
raises(TypeError, lambda: x in FiniteSet(y))
assert FiniteSet({x, y})._contains({x}) is None
assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True
assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False
# issue 8197
from sympy.abc import a, b
assert isinstance(FiniteSet(b).contains(-a), Contains)
assert isinstance(FiniteSet(b).contains(a), Contains)
assert isinstance(FiniteSet(a).contains(1), Contains)
raises(TypeError, lambda: 1 in FiniteSet(a))
# issue 8209
rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3))
rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3))
s1 = FiniteSet(rad1)
s2 = FiniteSet(rad2)
assert s1 - s2 == S.EmptySet
items = [1, 2, S.Infinity, S('ham'), -1.1]
fset = FiniteSet(*items)
assert all(item in fset for item in items)
assert all(fset.contains(item) is S.true for item in items)
assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false
assert S.EmptySet.contains(1) is S.false
assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false
assert rootof(x**5 + x**3 + 1, 0) in S.Reals
assert not rootof(x**5 + x**3 + 1, 1) in S.Reals
# non-bool results
assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4))
assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
And(y <= 3, y <= x, S.One <= y, S(2) <= y)
assert (S.Complexes).contains(S.ComplexInfinity) == S.false
def test_interval_symbolic():
x = Symbol('x')
e = Interval(0, 1)
assert e.contains(x) == And(S.Zero <= x, x <= 1)
raises(TypeError, lambda: x in e)
e = Interval(0, 1, True, True)
assert e.contains(x) == And(S.Zero < x, x < 1)
c = Symbol('c', real=False)
assert Interval(x, x + 1).contains(c) == False
e = Symbol('e', extended_real=True)
assert Interval(-oo, oo).contains(e) == And(
S.NegativeInfinity < e, e < S.Infinity)
def test_union_contains():
x = Symbol('x')
i1 = Interval(0, 1)
i2 = Interval(2, 3)
i3 = Union(i1, i2)
assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3))
raises(TypeError, lambda: x in i3)
e = i3.contains(x)
assert e == i3.as_relational(x)
assert e.subs(x, -0.5) is false
assert e.subs(x, 0.5) is true
assert e.subs(x, 1.5) is false
assert e.subs(x, 2.5) is true
assert e.subs(x, 3.5) is false
U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
assert all(el not in U for el in [0, 4, -oo])
assert all(el in U for el in [2, 5, 10])
def test_is_number():
assert Interval(0, 1).is_number is False
assert Set().is_number is False
def test_Interval_is_left_unbounded():
assert Interval(3, 4).is_left_unbounded is False
assert Interval(-oo, 3).is_left_unbounded is True
assert Interval(Float("-inf"), 3).is_left_unbounded is True
def test_Interval_is_right_unbounded():
assert Interval(3, 4).is_right_unbounded is False
assert Interval(3, oo).is_right_unbounded is True
assert Interval(3, Float("+inf")).is_right_unbounded is True
def test_Interval_as_relational():
x = Symbol('x')
assert Interval(-1, 2, False, False).as_relational(x) == \
And(Le(-1, x), Le(x, 2))
assert Interval(-1, 2, True, False).as_relational(x) == \
And(Lt(-1, x), Le(x, 2))
assert Interval(-1, 2, False, True).as_relational(x) == \
And(Le(-1, x), Lt(x, 2))
assert Interval(-1, 2, True, True).as_relational(x) == \
And(Lt(-1, x), Lt(x, 2))
assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2))
assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2))
assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo))
assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo))
assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo))
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert Interval(x, y).as_relational(x) == (x <= y)
assert Interval(y, x).as_relational(x) == (y <= x)
def test_Finite_as_relational():
x = Symbol('x')
y = Symbol('y')
assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2))
assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5))
def test_Union_as_relational():
x = Symbol('x')
assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \
Or(And(Le(0, x), Le(x, 1)), Eq(x, 2))
assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \
And(Lt(0, x), Le(x, 1))
assert Or(x < 0, x > 0).as_set().as_relational(x) == \
And((x > -oo), (x < oo), Ne(x, 0))
assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5)
).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5))
def test_Intersection_as_relational():
x = Symbol('x')
assert (Intersection(Interval(0, 1), FiniteSet(2),
evaluate=False).as_relational(x)
== And(And(Le(0, x), Le(x, 1)), Eq(x, 2)))
def test_Complement_as_relational():
x = Symbol('x')
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
assert expr.as_relational(x) == \
And(Le(0, x), Le(x, 1), Ne(x, 2))
@XFAIL
def test_Complement_as_relational_fail():
x = Symbol('x')
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
# XXX This example fails because 0 <= x changes to x >= 0
# during the evaluation.
assert expr.as_relational(x) == \
(0 <= x) & (x <= 1) & Ne(x, 2)
def test_SymmetricDifference_as_relational():
x = Symbol('x')
expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False)
assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1))
def test_EmptySet():
assert S.EmptySet.as_relational(Symbol('x')) is S.false
assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet
assert S.EmptySet.boundary == S.EmptySet
def test_finite_basic():
x = Symbol('x')
A = FiniteSet(1, 2, 3)
B = FiniteSet(3, 4, 5)
AorB = Union(A, B)
AandB = A.intersect(B)
assert A.is_subset(AorB) and B.is_subset(AorB)
assert AandB.is_subset(A)
assert AandB == FiniteSet(3)
assert A.inf == 1 and A.sup == 3
assert AorB.inf == 1 and AorB.sup == 5
assert FiniteSet(x, 1, 5).sup == Max(x, 5)
assert FiniteSet(x, 1, 5).inf == Min(x, 1)
# issue 7335
assert FiniteSet(S.EmptySet) != S.EmptySet
assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3)
assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3)
# Ensure a variety of types can exist in a FiniteSet
assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2)
assert (A > B) is False
assert (A >= B) is False
assert (A < B) is False
assert (A <= B) is False
assert AorB > A and AorB > B
assert AorB >= A and AorB >= B
assert A >= A and A <= A
assert A >= AandB and B >= AandB
assert A > AandB and B > AandB
def test_product_basic():
H, T = 'H', 'T'
unit_line = Interval(0, 1)
d6 = FiniteSet(1, 2, 3, 4, 5, 6)
d4 = FiniteSet(1, 2, 3, 4)
coin = FiniteSet(H, T)
square = unit_line * unit_line
assert (0, 0) in square
assert 0 not in square
assert (H, T) in coin ** 2
assert (.5, .5, .5) in (square * unit_line).flatten()
assert ((.5, .5), .5) in square * unit_line
assert (H, 3, 3) in (coin * d6 * d6).flatten()
assert ((H, 3), 3) in coin * d6 * d6
HH, TT = sympify(H), sympify(T)
assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)}
assert (d4*d4).is_subset(d6*d6)
assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union(
(Interval(-oo, 0, True, True) +
Interval(1, oo, True, True))*Interval(-oo, oo),
Interval(-oo, oo)*(Interval(-oo, 0, True, True) +
Interval(1, oo, True, True)))
assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3)
assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3)
assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3)
assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square
assert len(coin*coin*coin) == 8
assert len(S.EmptySet*S.EmptySet) == 0
assert len(S.EmptySet*coin) == 0
raises(TypeError, lambda: len(coin*Interval(0, 2)))
def test_real():
x = Symbol('x', real=True)
I = Interval(0, 5)
J = Interval(10, 20)
A = FiniteSet(1, 2, 30, x, S.Pi)
B = FiniteSet(-4, 0)
C = FiniteSet(100)
D = FiniteSet('Ham', 'Eggs')
assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C])
assert not D.is_subset(S.Reals)
assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C])
assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D])
assert not (I + A + D).is_subset(S.Reals)
def test_supinf():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert (Interval(0, 1) + FiniteSet(2)).sup == 2
assert (Interval(0, 1) + FiniteSet(2)).inf == 0
assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x)
assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x)
assert FiniteSet(5, 1, x).sup == Max(5, x)
assert FiniteSet(5, 1, x).inf == Min(1, x)
assert FiniteSet(5, 1, x, y).sup == Max(5, x, y)
assert FiniteSet(5, 1, x, y).inf == Min(1, x, y)
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \
S.Infinity
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \
S.NegativeInfinity
assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs')
def test_universalset():
U = S.UniversalSet
x = Symbol('x')
assert U.as_relational(x) is S.true
assert U.union(Interval(2, 4)) == U
assert U.intersect(Interval(2, 4)) == Interval(2, 4)
assert U.measure is S.Infinity
assert U.boundary == S.EmptySet
assert U.contains(0) is S.true
def test_Union_of_ProductSets_shares():
line = Interval(0, 2)
points = FiniteSet(0, 1, 2)
assert Union(line * line, line * points) == line * line
def test_Interval_free_symbols():
# issue 6211
assert Interval(0, 1).free_symbols == set()
x = Symbol('x', real=True)
assert Interval(0, x).free_symbols == {x}
def test_image_interval():
x = Symbol('x', real=True)
a = Symbol('a', real=True)
assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
Interval(-4, 2, True, False)
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
Interval(0, 4, False, True)
assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
Interval(0, 4, False, True)
assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
Interval(0, 4, False, True)
assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
Interval(-35, 0) # Multiple Maxima
assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
+ Interval(2, oo) # Single Infinite discontinuity
assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities
# Test for Python lambda
assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)
assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
ImageSet(Lambda(x, a*x), Interval(0, 1))
assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))
def test_image_piecewise():
f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo))
assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)
@XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826
def test_image_Intersection():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))
def test_image_FiniteSet():
x = Symbol('x', real=True)
assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)
def test_image_Union():
x = Symbol('x', real=True)
assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
(Interval(0, 4) + FiniteSet(9))
def test_image_EmptySet():
x = Symbol('x', real=True)
assert imageset(x, 2*x, S.EmptySet) == S.EmptySet
def test_issue_5724_7680():
assert I not in S.Reals # issue 7680
assert Interval(-oo, oo).contains(I) is S.false
def test_boundary():
assert FiniteSet(1).boundary == FiniteSet(1)
assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1)
for left_open in (true, false) for right_open in (true, false))
def test_boundary_Union():
assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3)
assert ((Interval(0, 1, False, True)
+ Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2))
assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2)
assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \
== FiniteSet(0, 15)
assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \
== FiniteSet(0, 10)
assert Union(Interval(0, 10, True, True),
Interval(10, 15, True, True), evaluate=False).boundary \
== FiniteSet(0, 10, 15)
@XFAIL
def test_union_boundary_of_joining_sets():
""" Testing the boundary of unions is a hard problem """
assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \
== FiniteSet(0, 15)
def test_boundary_ProductSet():
open_square = Interval(0, 1, True, True) ** 2
assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1)
+ Interval(0, 1) * FiniteSet(0, 1))
second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True)
assert (open_square + second_square).boundary == (
FiniteSet(0, 1) * Interval(0, 1)
+ FiniteSet(1, 2) * Interval(0, 1)
+ Interval(0, 1) * FiniteSet(0, 1)
+ Interval(1, 2) * FiniteSet(0, 1))
def test_boundary_ProductSet_line():
line_in_r2 = Interval(0, 1) * FiniteSet(0)
assert line_in_r2.boundary == line_in_r2
def test_is_open():
assert Interval(0, 1, False, False).is_open is False
assert Interval(0, 1, True, False).is_open is False
assert Interval(0, 1, True, True).is_open is True
assert FiniteSet(1, 2, 3).is_open is False
def test_is_closed():
assert Interval(0, 1, False, False).is_closed is True
assert Interval(0, 1, True, False).is_closed is False
assert FiniteSet(1, 2, 3).is_closed is True
def test_closure():
assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False)
def test_interior():
assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True)
def test_issue_7841():
raises(TypeError, lambda: x in S.Reals)
def test_Eq():
assert Eq(Interval(0, 1), Interval(0, 1))
assert Eq(Interval(0, 1), Interval(0, 2)) == False
s1 = FiniteSet(0, 1)
s2 = FiniteSet(1, 2)
assert Eq(s1, s1)
assert Eq(s1, s2) == False
assert Eq(s1*s2, s1*s2)
assert Eq(s1*s2, s2*s1) == False
assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x}))
assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true
assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false
assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false
assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false
assert Eq(FiniteSet(()), FiniteSet(1)) is S.false
assert Eq(ProductSet(), FiniteSet(1)) is S.false
i1 = Interval(0, 1)
i2 = Interval(x, y)
assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2))
def test_SymmetricDifference():
A = FiniteSet(0, 1, 2, 3, 4, 5)
B = FiniteSet(2, 4, 6, 8, 10)
C = Interval(8, 10)
assert SymmetricDifference(A, B, evaluate=False).is_iterable is True
assert SymmetricDifference(A, C, evaluate=False).is_iterable is None
assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \
FiniteSet(0, 1, 3, 5, 6, 8, 10)
raises(TypeError,
lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False)))
assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \
FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10)
assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \
== FiniteSet(5)
assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \
FiniteSet(3, 4, 6)
assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \
Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3)))
assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \
Interval(2, 5), Interval(2, 5) - Interval(0, 4))
def test_issue_9536():
from sympy.functions.elementary.exponential import log
a = Symbol('a', real=True)
assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a)))
def test_issue_9637():
n = Symbol('n')
a = FiniteSet(n)
b = FiniteSet(2, n)
assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False)
assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False)
assert Complement(Interval(1, 3), b) == \
Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a)
assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False)
assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False)
def test_issue_9808():
# See https://github.com/sympy/sympy/issues/16342
assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False)
assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \
Complement(FiniteSet(1), FiniteSet(y), evaluate=False)
def test_issue_9956():
assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo)
assert Interval(-oo, oo).contains(1) is S.true
def test_issue_Symbol_inter():
i = Interval(0, oo)
r = S.Reals
mat = Matrix([0, 0, 0])
assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \
Intersection(i, FiniteSet(m))
assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \
Intersection(i, FiniteSet(m, n))
assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \
Intersection(Intersection({m, z}, {m, n, x}), r)
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \
Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False)
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \
Intersection(FiniteSet(3, m, n), r)
assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \
Intersection(r, FiniteSet(n))
assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \
Intersection(r, FiniteSet(sin(x), cos(x)))
assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \
Intersection(r, FiniteSet(x**2, sin(x)))
def test_issue_11827():
assert S.Naturals0**4
def test_issue_10113():
f = x**2/(x**2 - 4)
assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo))
def test_issue_10248():
raises(
TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x)))
)
A = Symbol('A', real=True)
assert list(Intersection(S.Reals, FiniteSet(A))) == [A]
def test_issue_9447():
a = Interval(0, 1) + Interval(2, 3)
assert Complement(S.UniversalSet, a) == Complement(
S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
assert Complement(S.Naturals, a) == Complement(
S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
def test_issue_10337():
assert (FiniteSet(2) == 3) is False
assert (FiniteSet(2) != 3) is True
raises(TypeError, lambda: FiniteSet(2) < 3)
raises(TypeError, lambda: FiniteSet(2) <= 3)
raises(TypeError, lambda: FiniteSet(2) > 3)
raises(TypeError, lambda: FiniteSet(2) >= 3)
def test_issue_10326():
bad = [
EmptySet,
FiniteSet(1),
Interval(1, 2),
S.ComplexInfinity,
S.ImaginaryUnit,
S.Infinity,
S.NaN,
S.NegativeInfinity,
]
interval = Interval(0, 5)
for i in bad:
assert i not in interval
x = Symbol('x', real=True)
nr = Symbol('nr', extended_real=False)
assert x + 1 in Interval(x, x + 4)
assert nr not in Interval(x, x + 4)
assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2))
assert Interval(-oo, oo).contains(oo) is S.false
assert Interval(-oo, oo).contains(-oo) is S.false
def test_issue_2799():
U = S.UniversalSet
a = Symbol('a', real=True)
inf_interval = Interval(a, oo)
R = S.Reals
assert U + inf_interval == inf_interval + U
assert U + R == R + U
assert R + inf_interval == inf_interval + R
def test_issue_9706():
assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False)
assert Interval(0, oo).closure == Interval(0, oo, False, True)
assert Interval(-oo, oo).closure == Interval(-oo, oo)
def test_issue_8257():
reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo))
reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo))
assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity
assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity
assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity
assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity
def test_issue_10931():
assert S.Integers - S.Integers == EmptySet
assert S.Integers - S.Reals == EmptySet
def test_issue_11174():
soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False)
assert Intersection(FiniteSet(-x), S.Reals) == soln
soln = Intersection(S.Reals, FiniteSet(x), evaluate=False)
assert Intersection(FiniteSet(x), S.Reals) == soln
def test_issue_18505():
assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \
Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers))
def test_finite_set_intersection():
# The following should not produce recursion errors
# Note: some of these are not completely correct. See
# https://github.com/sympy/sympy/issues/16342.
assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \
Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \
Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \
Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y))
assert FiniteSet(1+x-y) & FiniteSet(1) == \
FiniteSet(1) & FiniteSet(1+x-y) == \
Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False)
assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \
Intersection(FiniteSet(1), FiniteSet(x), evaluate=False)
assert FiniteSet({x}) & FiniteSet({x, y}) == \
Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False)
def test_union_intersection_constructor():
# The actual exception does not matter here, so long as these fail
sets = [FiniteSet(1), FiniteSet(2)]
raises(Exception, lambda: Union(sets))
raises(Exception, lambda: Intersection(sets))
raises(Exception, lambda: Union(tuple(sets)))
raises(Exception, lambda: Intersection(tuple(sets)))
raises(Exception, lambda: Union(i for i in sets))
raises(Exception, lambda: Intersection(i for i in sets))
# Python sets are treated the same as FiniteSet
# The union of a single set (of sets) is the set (of sets) itself
assert Union(set(sets)) == FiniteSet(*sets)
assert Intersection(set(sets)) == FiniteSet(*sets)
assert Union({1}, {2}) == FiniteSet(1, 2)
assert Intersection({1, 2}, {2, 3}) == FiniteSet(2)
def test_Union_contains():
assert zoo not in Union(
Interval.open(-oo, 0), Interval.open(0, oo))
@XFAIL
def test_issue_16878b():
# in intersection_sets for (ImageSet, Set) there is no code
# that handles the base_set of S.Reals like there is
# for Integers
assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True
def test_DisjointUnion():
assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2))
assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1))
assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1))
assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1)
assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0)
assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet
assert DisjointUnion().rewrite(Union) == S.EmptySet
raises(TypeError, lambda: DisjointUnion(Symbol('n')))
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1))
def test_DisjointUnion_is_empty():
assert DisjointUnion(S.EmptySet).is_empty is True
assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True
assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False
def test_DisjointUnion_is_iterable():
assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True
assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False
assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True
assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False
def test_DisjointUnion_contains():
assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5))
assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2))
assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2))
assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
def test_DisjointUnion_iter():
D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))
it = iter(D)
L1 = [(x, 1), (y, 1), (z, 1)]
L2 = [(3, 0), (5, 0), (7, 0), (9, 0)]
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
nxt = next(it)
assert nxt in L1
L1.remove(nxt)
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
nxt = next(it)
assert nxt in L1
L1.remove(nxt)
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
nxt = next(it)
assert nxt in L1
L1.remove(nxt)
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
raises(StopIteration, lambda: next(it))
raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet)))
def test_DisjointUnion_len():
assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7
assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3
raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet)))
def test_SetKind_ProductSet():
p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2])))
mk = MatrixKind(NumberKind)
k = SetKind(TupleKind(mk, mk))
assert p.kind is k
assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk))
def test_SetKind_Interval():
assert Interval(1, 2).kind is SetKind(NumberKind)
def test_SetKind_EmptySet_UniversalSet():
assert S.UniversalSet.kind is SetKind(UndefinedKind)
assert EmptySet.kind is SetKind()
def test_SetKind_FiniteSet():
assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind)
assert FiniteSet(1, 2).kind is SetKind(NumberKind)
def test_SetKind_Unions():
assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind)
assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind)
def test_SetKind_DisjointUnion():
A = FiniteSet(1, 2, 3)
B = Interval(0, 5)
assert DisjointUnion(A, B).kind is SetKind(NumberKind)
def test_SetKind_evaluate_False():
U = lambda *args: Union(*args, evaluate=False)
assert U({1}, EmptySet).kind is SetKind(NumberKind)
assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind)
assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind)
assert U(Interval(1, 2), Interval(4, 5),
FiniteSet(1)).kind is SetKind(NumberKind)
I = lambda *args: Intersection(*args, evaluate=False)
assert I({1}, S.UniversalSet).kind is SetKind(NumberKind)
assert I({1}, EmptySet).kind is SetKind()
C = lambda *args: Complement(*args, evaluate=False)
assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind)
assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind)
assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind()
def test_SetKind_ImageSet_Special():
f = ImageSet(Lambda(n, n ** 2), Interval(1, 4))
assert (f - FiniteSet(3)).kind is SetKind(NumberKind)
assert (f + Interval(16, 17)).kind is SetKind(NumberKind)
assert (f + FiniteSet(17)).kind is SetKind(NumberKind)
def test_issue_20089():
B = FiniteSet(FiniteSet(1, 2), FiniteSet(1))
assert 1 not in B
assert 1.0 not in B
assert not Eq(1, FiniteSet(1, 2))
assert FiniteSet(1) in B
A = FiniteSet(1, 2)
assert A in B
assert B.issubset(B)
assert not A.issubset(B)
assert 1 in A
C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2)
assert A.issubset(C)
assert B.issubset(C)
def test_issue_19378():
a = FiniteSet(1, 2)
b = ProductSet(a, a)
c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2))
assert b.is_subset(c) is True
d = FiniteSet(1)
assert b.is_subset(d) is False
assert Eq(c, b).simplify() is S.true
assert Eq(a, c).simplify() is S.false
assert Eq({1}, {x}).simplify() == Eq({1}, {x})
def test_intersection_symbolic():
n = Symbol('n')
# These should not throw an error
assert isinstance(Intersection(Range(n), Range(100)), Intersection)
assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection)
assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection)
@XFAIL
def test_intersection_symbolic_failing():
n = Symbol('n', integer=True, positive=True)
assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection(
Range(14, n), Range(14, 500, 5))
assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection(
Interval(14, n), Range(14, 500, 5))
def test_issue_20379():
#https://github.com/sympy/sympy/issues/20379
x = pi - 3.14159265358979
assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2))
def test_finiteset_simplify():
S = FiniteSet(1, cos(1)**2 + sin(1)**2)
assert S.simplify() == {1}
|
800a076bb38cd32f46e4804eef03beb93a43f823e777ab1b9a327f186074cb38 | """
Python shell for SymPy.
This is just a normal Python shell (IPython shell if you have the
IPython package installed), that executes the following commands for
the user:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
>>> init_printing()
So starting 'isympy' is equivalent to starting Python (or IPython) and
executing the above commands by hand. It is intended for easy and quick
experimentation with SymPy. isympy is a good way to use SymPy as an
interactive calculator. If you have IPython and Matplotlib installed, then
interactive plotting is enabled by default.
COMMAND LINE OPTIONS
--------------------
-c CONSOLE, --console=CONSOLE
Use the specified shell (Python or IPython) shell as the console
backend instead of the default one (IPython if present, Python
otherwise), e.g.:
$isympy -c python
CONSOLE must be one of 'ipython' or 'python'
-p PRETTY, --pretty PRETTY
Setup pretty-printing in SymPy. When pretty-printing is enabled,
expressions can be printed with Unicode or ASCII. The default is
to use pretty-printing (with Unicode if the terminal supports it).
When this option is 'no', expressions will not be pretty-printed
and ASCII will be used:
$isympy -p no
PRETTY must be one of 'unicode', 'ascii', or 'no'
-t TYPES, --types=TYPES
Setup the ground types for the polys. By default, gmpy ground types
are used if gmpy2 or gmpy is installed, otherwise it falls back to python
ground types, which are a little bit slower. You can manually
choose python ground types even if gmpy is installed (e.g., for
testing purposes):
$isympy -t python
TYPES must be one of 'gmpy', 'gmpy1' or 'python'
Note that the ground type gmpy1 is primarily intended for testing; it
forces the use of gmpy version 1 even if gmpy2 is available.
This is the same as setting the environment variable
SYMPY_GROUND_TYPES to the given ground type (e.g.,
SYMPY_GROUND_TYPES='gmpy')
The ground types can be determined interactively from the variable
sympy.polys.domains.GROUND_TYPES.
-o ORDER, --order ORDER
Setup the ordering of terms for printing. The default is lex, which
orders terms lexicographically (e.g., x**2 + x + 1). You can choose
other orderings, such as rev-lex, which will use reverse
lexicographic ordering (e.g., 1 + x + x**2):
$isympy -o rev-lex
ORDER must be one of 'lex', 'rev-lex', 'grlex', 'rev-grlex',
'grevlex', 'rev-grevlex', 'old', or 'none'.
Note that for very large expressions, ORDER='none' may speed up
printing considerably but the terms will have no canonical order.
-q, --quiet
Print only Python's and SymPy's versions to stdout at startup.
-d, --doctest
Use the same format that should be used for doctests. This is
equivalent to -c python -p no.
-C, --no-cache
Disable the caching mechanism. Disabling the cache may slow certain
operations down considerably. This is useful for testing the cache,
or for benchmarking, as the cache can result in deceptive timings.
This is equivalent to setting the environment variable
SYMPY_USE_CACHE to 'no'.
-a, --auto-symbols (requires at least IPython 0.11)
Automatically create missing symbols. Normally, typing a name of a
Symbol that has not been instantiated first would raise NameError,
but with this option enabled, any undefined name will be
automatically created as a Symbol.
Note that this is intended only for interactive, calculator style
usage. In a script that uses SymPy, Symbols should be instantiated
at the top, so that it's clear what they are.
This will not override any names that are already defined, which
includes the single character letters represented by the mnemonic
QCOSINE (see the "Gotchas and Pitfalls" document in the
documentation). You can delete existing names by executing "del
name". If a name is defined, typing "'name' in dir()" will return True.
The Symbols that are created using this have default assumptions.
If you want to place assumptions on symbols, you should create them
using symbols() or var().
Finally, this only works in the top level namespace. So, for
example, if you define a function in isympy with an undefined
Symbol, it will not work.
See also the -i and -I options.
-i, --int-to-Integer (requires at least IPython 0.11)
Automatically wrap int literals with Integer. This makes it so that
things like 1/2 will come out as Rational(1, 2), rather than 0.5. This
works by preprocessing the source and wrapping all int literals with
Integer. Note that this will not change the behavior of int literals
assigned to variables, and it also won't change the behavior of functions
that return int literals.
If you want an int, you can wrap the literal in int(), e.g. int(3)/int(2)
gives 1.5 (with division imported from __future__).
-I, --interactive (requires at least IPython 0.11)
This is equivalent to --auto-symbols --int-to-Integer. Future options
designed for ease of interactive use may be added to this.
-D, --debug
Enable debugging output. This is the same as setting the
environment variable SYMPY_DEBUG to 'True'. The debug status is set
in the variable SYMPY_DEBUG within isympy.
-- IPython options
Additionally you can pass command line options directly to the IPython
interpreter (the standard Python shell is not supported). However you
need to add the '--' separator between two types of options, e.g the
startup banner option and the colors option. You need to enter the
options as required by the version of IPython that you are using, too:
in IPython 0.11,
$isympy -q -- --colors=NoColor
or older versions of IPython,
$isympy -q -- -colors NoColor
See also isympy --help.
"""
import os
import sys
# DO NOT IMPORT SYMPY HERE! Or the setting of the sympy environment variables
# by the command line will break.
def main() -> None:
from argparse import ArgumentParser, RawDescriptionHelpFormatter
VERSION = None
if '--version' in sys.argv:
# We cannot import sympy before this is run, because flags like -C and
# -t set environment variables that must be set before SymPy is
# imported. The only thing we need to import it for is to get the
# version, which only matters with the --version flag.
import sympy
VERSION = sympy.__version__
usage = 'isympy [options] -- [ipython options]'
parser = ArgumentParser(
usage=usage,
description=__doc__,
formatter_class=RawDescriptionHelpFormatter,
)
parser.add_argument('--version', action='version', version=VERSION)
parser.add_argument(
'-c', '--console',
dest='console',
action='store',
default=None,
choices=['ipython', 'python'],
metavar='CONSOLE',
help='select type of interactive session: ipython | python; defaults '
'to ipython if IPython is installed, otherwise python')
parser.add_argument(
'-p', '--pretty',
dest='pretty',
action='store',
default=None,
metavar='PRETTY',
choices=['unicode', 'ascii', 'no'],
help='setup pretty printing: unicode | ascii | no; defaults to '
'unicode printing if the terminal supports it, otherwise ascii')
parser.add_argument(
'-t', '--types',
dest='types',
action='store',
default=None,
metavar='TYPES',
choices=['gmpy', 'gmpy1', 'python'],
help='setup ground types: gmpy | gmpy1 | python; defaults to gmpy if gmpy2 '
'or gmpy is installed, otherwise python')
parser.add_argument(
'-o', '--order',
dest='order',
action='store',
default=None,
metavar='ORDER',
choices=['lex', 'grlex', 'grevlex', 'rev-lex', 'rev-grlex', 'rev-grevlex', 'old', 'none'],
help='setup ordering of terms: [rev-]lex | [rev-]grlex | [rev-]grevlex | old | none; defaults to lex')
parser.add_argument(
'-q', '--quiet',
dest='quiet',
action='store_true',
default=False,
help='print only version information at startup')
parser.add_argument(
'-d', '--doctest',
dest='doctest',
action='store_true',
default=False,
help='use the doctest format for output (you can just copy and paste it)')
parser.add_argument(
'-C', '--no-cache',
dest='cache',
action='store_false',
default=True,
help='disable caching mechanism')
parser.add_argument(
'-a', '--auto-symbols',
dest='auto_symbols',
action='store_true',
default=False,
help='automatically construct missing symbols')
parser.add_argument(
'-i', '--int-to-Integer',
dest='auto_int_to_Integer',
action='store_true',
default=False,
help="automatically wrap int literals with Integer")
parser.add_argument(
'-I', '--interactive',
dest='interactive',
action='store_true',
default=False,
help="equivalent to -a -i")
parser.add_argument(
'-D', '--debug',
dest='debug',
action='store_true',
default=False,
help='enable debugging output')
(options, ipy_args) = parser.parse_known_args()
if '--' in ipy_args:
ipy_args.remove('--')
if not options.cache:
os.environ['SYMPY_USE_CACHE'] = 'no'
if options.types:
os.environ['SYMPY_GROUND_TYPES'] = options.types
if options.debug:
os.environ['SYMPY_DEBUG'] = str(options.debug)
if options.doctest:
options.pretty = 'no'
options.console = 'python'
session = options.console
if session is not None:
ipython = session == 'ipython'
else:
try:
import IPython
ipython = True
except ImportError:
if not options.quiet:
from sympy.interactive.session import no_ipython
print(no_ipython)
ipython = False
args = {
'pretty_print': True,
'use_unicode': None,
'use_latex': None,
'order': None,
'argv': ipy_args,
}
if options.pretty == 'unicode':
args['use_unicode'] = True
elif options.pretty == 'ascii':
args['use_unicode'] = False
elif options.pretty == 'no':
args['pretty_print'] = False
if options.order is not None:
args['order'] = options.order
args['quiet'] = options.quiet
args['auto_symbols'] = options.auto_symbols or options.interactive
args['auto_int_to_Integer'] = options.auto_int_to_Integer or options.interactive
from sympy.interactive import init_session
init_session(ipython, **args)
if __name__ == "__main__":
main()
|
5810ca79f63af0e46a28156249cf460cd165c1f7f38b245b2f6df9c3a8c05a9d | """
SymPy is a Python library for symbolic mathematics. It aims to become a
full-featured computer algebra system (CAS) while keeping the code as simple
as possible in order to be comprehensible and easily extensible. SymPy is
written entirely in Python. It depends on mpmath, and other external libraries
may be optionally for things like plotting support.
See the webpage for more information and documentation:
https://sympy.org
"""
import sys
if sys.version_info < (3, 8):
raise ImportError("Python version 3.8 or above is required for SymPy.")
del sys
try:
import mpmath
except ImportError:
raise ImportError("SymPy now depends on mpmath as an external library. "
"See https://docs.sympy.org/latest/install.html#mpmath for more information.")
del mpmath
from sympy.release import __version__
from sympy.core.cache import lazy_function
if 'dev' in __version__:
def enable_warnings():
import warnings
warnings.filterwarnings('default', '.*', DeprecationWarning, module='sympy.*')
del warnings
enable_warnings()
del enable_warnings
def __sympy_debug():
# helper function so we don't import os globally
import os
debug_str = os.getenv('SYMPY_DEBUG', 'False')
if debug_str in ('True', 'False'):
return eval(debug_str)
else:
raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" %
debug_str)
SYMPY_DEBUG = __sympy_debug() # type: bool
from .core import (sympify, SympifyError, cacheit, Basic, Atom,
preorder_traversal, S, Expr, AtomicExpr, UnevaluatedExpr, Symbol,
Wild, Dummy, symbols, var, Number, Float, Rational, Integer,
NumberSymbol, RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo,
AlgebraicNumber, comp, mod_inverse, Pow, integer_nthroot, integer_log,
Mul, prod, Add, Mod, Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality,
GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan,
vectorize, Lambda, WildFunction, Derivative, diff, FunctionClass,
Function, Subs, expand, PoleError, count_ops, expand_mul, expand_log,
expand_func, expand_trig, expand_complex, expand_multinomial, nfloat,
expand_power_base, expand_power_exp, arity, PrecisionExhausted, N,
evalf, Tuple, Dict, gcd_terms, factor_terms, factor_nc, evaluate,
Catalan, EulerGamma, GoldenRatio, TribonacciConstant, bottom_up, use,
postorder_traversal, default_sort_key, ordered)
from .logic import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor,
Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map,
true, false, satisfiable)
from .assumptions import (AppliedPredicate, Predicate, AssumptionsContext,
assuming, Q, ask, register_handler, remove_handler, refine)
from .polys import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr,
degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo,
pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert,
subresultants, resultant, discriminant, cofactors, gcd_list, gcd,
lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose,
decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf,
factor_list, factor, intervals, refine_root, count_roots, real_roots,
nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner,
is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner,
interpolate, rational_interpolate, viete, together,
BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed,
OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed,
IsomorphismFailed, ExtraneousFactors, EvaluationFailed,
RefinementFailed, CoercionFailed, NotInvertible, NotReversible,
NotAlgebraic, DomainError, PolynomialError, UnificationFailed,
GeneratorsError, GeneratorsNeeded, ComputationFailed,
UnivariatePolynomialError, MultivariatePolynomialError,
PolificationFailed, OptionError, FlagError, minpoly,
minimal_polynomial, primitive_element, field_isomorphism,
to_number_field, isolate, round_two, prime_decomp, prime_valuation,
itermonomials, Monomial, lex, grlex,
grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf,
ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing,
RationalField, RealField, ComplexField, PythonFiniteField,
GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational,
GMPYRationalField, AlgebraicField, PolynomialRing, FractionField,
ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python,
QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW,
construct_domain, swinnerton_dyer_poly, cyclotomic_poly,
symmetric_poly, random_poly, interpolating_poly, jacobi_poly,
chebyshevt_poly, chebyshevu_poly, hermite_poly, hermite_prob_poly,
legendre_poly, laguerre_poly, apart, apart_list, assemble_partfrac_list,
Options, ring, xring, vring, sring, field, xfield, vfield, sfield)
from .series import (Order, O, limit, Limit, gruntz, series, approximants,
residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul,
fourier_series, fps, difference_delta, limit_seq)
from .functions import (factorial, factorial2, rf, ff, binomial,
RisingFactorial, FallingFactorial, subfactorial, carmichael,
fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler,
catalan, genocchi, andre, partition, sqrt, root, Min, Max, Id,
real_root, Rem, cbrt, re, im, sign, Abs, conjugate, arg, polar_lift,
periodic_argument, unbranched_argument, principal_branch, transpose,
adjoint, polarify, unpolarify, sin, cos, tan, sec, csc, cot, sinc,
asin, acos, atan, asec, acsc, acot, atan2, exp_polar, exp, ln, log,
LambertW, sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh,
acoth, asech, acsch, floor, ceiling, frac, Piecewise, piecewise_fold,
piecewise_exclusive, erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv,
Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc, gamma,
lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma,
multigamma, dirichlet_eta, zeta, lerchphi, polylog, stieltjes, Eijk,
LeviCivita, KroneckerDelta, SingularityFunction, DiracDelta, Heaviside,
bspline_basis, bspline_basis_set, interpolating_spline, besselj,
bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1,
hn2, airyai, airybi, airyaiprime, airybiprime, marcumq, hyper,
meijerg, appellf1, legendre, assoc_legendre, hermite, hermite_prob,
chebyshevt, chebyshevu, chebyshevu_root, chebyshevt_root, laguerre,
assoc_laguerre, gegenbauer, jacobi, jacobi_normalized, Ynm, Ynm_c,
Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus,
mathieuc, mathieusprime, mathieucprime, riemann_xi, betainc, betainc_regularized)
from .ntheory import (nextprime, prevprime, prime, primepi, primerange,
randprime, Sieve, sieve, primorial, cycle_length, composite,
compositepi, isprime, divisors, proper_divisors, factorint,
multiplicity, perfect_power, pollard_pm1, pollard_rho, primefactors,
totient, trailing, divisor_count, proper_divisor_count, divisor_sigma,
factorrat, reduced_totient, primenu, primeomega,
mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
is_deficient, is_amicable, abundance, npartitions, is_primitive_root,
is_quad_residue, legendre_symbol, jacobi_symbol, n_order, sqrt_mod,
quadratic_residues, primitive_root, nthroot_mod, is_nthpow_residue,
sqrt_mod_iter, mobius, discrete_log, quadratic_congruence,
binomial_coefficients, binomial_coefficients_list,
multinomial_coefficients, continued_fraction_periodic,
continued_fraction_iterator, continued_fraction_reduce,
continued_fraction_convergents, continued_fraction, egyptian_fraction)
from .concrete import product, Product, summation, Sum
from .discrete import (fft, ifft, ntt, intt, fwht, ifwht, mobius_transform,
inverse_mobius_transform, convolution, covering_product,
intersecting_product)
from .simplify import (simplify, hypersimp, hypersimilar, logcombine,
separatevars, posify, besselsimp, kroneckersimp, signsimp,
nsimplify, FU, fu, sqrtdenest, cse, epath, EPath, hyperexpand,
collect, rcollect, radsimp, collect_const, fraction, numer, denom,
trigsimp, exptrigsimp, powsimp, powdenest, combsimp, gammasimp,
ratsimp, ratsimpmodprime)
from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet,
Intersection, DisjointUnion, imageset, Complement, SymmetricDifference, ImageSet,
Range, ComplexRegion, Complexes, Reals, Contains, ConditionSet, Ordinal,
OmegaPower, ord0, PowerSet, Naturals, Naturals0, UniversalSet,
Integers, Rationals)
from .solvers import (solve, solve_linear_system, solve_linear_system_LU,
solve_undetermined_coeffs, nsolve, solve_linear, checksol, det_quick,
inv_quick, check_assumptions, failing_assumptions, diophantine,
rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper, checkodesol,
classify_ode, dsolve, homogeneous_order, solve_poly_system,
solve_triangulated, pde_separate, pde_separate_add, pde_separate_mul,
pdsolve, classify_pde, checkpdesol, ode_order, reduce_inequalities,
reduce_abs_inequality, reduce_abs_inequalities, solve_poly_inequality,
solve_rational_inequalities, solve_univariate_inequality, decompogen,
solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution)
from .matrices import (ShapeError, NonSquareMatrixError, GramSchmidt,
casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy,
matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2,
rot_axis3, symarray, wronskian, zeros, MutableDenseMatrix,
DeferredVector, MatrixBase, Matrix, MutableMatrix,
MutableSparseMatrix, banded, ImmutableDenseMatrix,
ImmutableSparseMatrix, ImmutableMatrix, SparseMatrix, MatrixSlice,
BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse,
MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose,
ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols,
Adjoint, hadamard_product, HadamardProduct, HadamardPower,
Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix,
DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct,
PermutationMatrix, MatrixPermute, Permanent, per, rot_ccw_axis1,
rot_ccw_axis2, rot_ccw_axis3)
from .geometry import (Point, Point2D, Point3D, Line, Ray, Segment, Line2D,
Segment2D, Ray2D, Line3D, Segment3D, Ray3D, Plane, Ellipse, Circle,
Polygon, RegularPolygon, Triangle, rad, deg, are_similar, centroid,
convex_hull, idiff, intersection, closest_points, farthest_points,
GeometryError, Curve, Parabola)
from .utilities import (flatten, group, take, subsets, variations,
numbered_symbols, cartes, capture, dict_merge, prefixes, postfixes,
sift, topological_sort, unflatten, has_dups, has_variety, reshape,
rotations, filldedent, lambdify,
threaded, xthreaded, public, memoize_property, timed)
from .integrals import (integrate, Integral, line_integrate, mellin_transform,
inverse_mellin_transform, MellinTransform, InverseMellinTransform,
laplace_transform, inverse_laplace_transform, LaplaceTransform,
InverseLaplaceTransform, fourier_transform, inverse_fourier_transform,
FourierTransform, InverseFourierTransform, sine_transform,
inverse_sine_transform, SineTransform, InverseSineTransform,
cosine_transform, inverse_cosine_transform, CosineTransform,
InverseCosineTransform, hankel_transform, inverse_hankel_transform,
HankelTransform, InverseHankelTransform, singularityintegrate)
from .tensor import (IndexedBase, Idx, Indexed, get_contraction_structure,
get_indices, shape, MutableDenseNDimArray, ImmutableDenseNDimArray,
MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray,
tensorproduct, tensorcontraction, tensordiagonal, derive_by_array,
permutedims, Array, DenseNDimArray, SparseNDimArray)
from .parsing import parse_expr
from .calculus import (euler_equations, singularities, is_increasing,
is_strictly_increasing, is_decreasing, is_strictly_decreasing,
is_monotonic, finite_diff_weights, apply_finite_diff,
differentiate_finite, periodicity, not_empty_in, AccumBounds,
is_convex, stationary_points, minimum, maximum)
from .algebras import Quaternion
from .printing import (pager_print, pretty, pretty_print, pprint,
pprint_use_unicode, pprint_try_use_unicode, latex, print_latex,
multiline_latex, mathml, print_mathml, python, print_python, pycode,
ccode, print_ccode, smtlib_code, glsl_code, print_glsl, cxxcode, fcode,
print_fcode, rcode, print_rcode, jscode, print_jscode, julia_code,
mathematica_code, octave_code, rust_code, print_gtk, preview, srepr,
print_tree, StrPrinter, sstr, sstrrepr, TableForm, dotprint,
maple_code, print_maple_code)
test = lazy_function('sympy.testing.runtests', 'test')
doctest = lazy_function('sympy.testing.runtests', 'doctest')
# This module causes conflicts with other modules:
# from .stats import *
# Adds about .04-.05 seconds of import time
# from combinatorics import *
# This module is slow to import:
#from physics import units
from .plotting import plot, textplot, plot_backends, plot_implicit, plot_parametric
from .interactive import init_session, init_printing, interactive_traversal
evalf._create_evalf_table()
__all__ = [
'__version__',
# sympy.core
'sympify', 'SympifyError', 'cacheit', 'Basic', 'Atom',
'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr',
'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float',
'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm',
'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp',
'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod',
'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality',
'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan',
'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative',
'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError',
'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig',
'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base',
'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', 'Tuple',
'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan',
'EulerGamma', 'GoldenRatio', 'TribonacciConstant', 'bottom_up', 'use',
'postorder_traversal', 'default_sort_key', 'ordered',
# sympy.logic
'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor',
'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic',
'bool_map', 'true', 'false', 'satisfiable',
# sympy.assumptions
'AppliedPredicate', 'Predicate', 'AssumptionsContext', 'assuming', 'Q',
'ask', 'register_handler', 'remove_handler', 'refine',
# sympy.polys
'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree',
'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo',
'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert',
'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list',
'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content',
'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff',
'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor',
'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots',
'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner',
'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner',
'interpolate', 'rational_interpolate', 'viete', 'together',
'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed',
'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed',
'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed',
'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible',
'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed',
'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed',
'UnivariatePolynomialError', 'MultivariatePolynomialError',
'PolificationFailed', 'OptionError', 'FlagError', 'minpoly',
'minimal_polynomial', 'primitive_element', 'field_isomorphism',
'to_number_field', 'isolate', 'round_two', 'prime_decomp',
'prime_valuation', 'itermonomials', 'Monomial', 'lex', 'grlex',
'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf',
'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField',
'IntegerRing', 'RationalField', 'RealField', 'ComplexField',
'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing',
'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField',
'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain',
'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy',
'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW',
'construct_domain', 'swinnerton_dyer_poly', 'cyclotomic_poly',
'symmetric_poly', 'random_poly', 'interpolating_poly', 'jacobi_poly',
'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly', 'hermite_prob_poly',
'legendre_poly', 'laguerre_poly', 'apart', 'apart_list', 'assemble_partfrac_list',
'Options', 'ring', 'xring', 'vring', 'sring', 'field', 'xfield', 'vfield',
'sfield',
# sympy.series
'Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants',
'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence', 'SeqAdd',
'SeqMul', 'fourier_series', 'fps', 'difference_delta', 'limit_seq',
# sympy.functions
'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial',
'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas',
'motzkin', 'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan',
'genocchi', 'andre', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root',
'Rem', 'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift',
'periodic_argument', 'unbranched_argument', 'principal_branch',
'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan',
'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc',
'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh',
'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh',
'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise',
'piecewise_fold', 'piecewise_exclusive', 'erf', 'erfc', 'erfi', 'erf2',
'erfinv', 'erfcinv', 'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si',
'Ci', 'Shi', 'Chi', 'fresnels', 'fresnelc', 'gamma', 'lowergamma',
'uppergamma', 'polygamma', 'loggamma', 'digamma', 'trigamma', 'multigamma',
'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita',
'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside',
'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj',
'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn',
'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime',
'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre',
'assoc_legendre', 'hermite', 'hermite_prob', 'chebyshevt', 'chebyshevu',
'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre',
'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm',
'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta',
'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime', 'riemann_xi','betainc',
'betainc_regularized',
# sympy.ntheory
'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime',
'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi',
'isprime', 'divisors', 'proper_divisors', 'factorint', 'multiplicity',
'perfect_power', 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient',
'trailing', 'divisor_count', 'proper_divisor_count', 'divisor_sigma',
'factorrat', 'reduced_totient', 'primenu', 'primeomega',
'mersenne_prime_exponent', 'is_perfect', 'is_mersenne_prime',
'is_abundant', 'is_deficient', 'is_amicable', 'abundance', 'npartitions',
'is_primitive_root', 'is_quad_residue', 'legendre_symbol',
'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues',
'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter',
'mobius', 'discrete_log', 'quadratic_congruence', 'binomial_coefficients',
'binomial_coefficients_list', 'multinomial_coefficients',
'continued_fraction_periodic', 'continued_fraction_iterator',
'continued_fraction_reduce', 'continued_fraction_convergents',
'continued_fraction', 'egyptian_fraction',
# sympy.concrete
'product', 'Product', 'summation', 'Sum',
# sympy.discrete
'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform',
'inverse_mobius_transform', 'convolution', 'covering_product',
'intersecting_product',
# sympy.simplify
'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars',
'posify', 'besselsimp', 'kroneckersimp', 'signsimp',
'nsimplify', 'FU', 'fu', 'sqrtdenest', 'cse', 'epath', 'EPath',
'hyperexpand', 'collect', 'rcollect', 'radsimp', 'collect_const',
'fraction', 'numer', 'denom', 'trigsimp', 'exptrigsimp', 'powsimp',
'powdenest', 'combsimp', 'gammasimp', 'ratsimp', 'ratsimpmodprime',
# sympy.sets
'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
'Intersection', 'imageset', 'DisjointUnion', 'Complement', 'SymmetricDifference',
'ImageSet', 'Range', 'ComplexRegion', 'Reals', 'Contains', 'ConditionSet',
'Ordinal', 'OmegaPower', 'ord0', 'PowerSet', 'Naturals',
'Naturals0', 'UniversalSet', 'Integers', 'Rationals', 'Complexes',
# sympy.solvers
'solve', 'solve_linear_system', 'solve_linear_system_LU',
'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol',
'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions',
'diophantine', 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper',
'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order',
'solve_poly_system', 'solve_triangulated', 'pde_separate',
'pde_separate_add', 'pde_separate_mul', 'pdsolve', 'classify_pde',
'checkpdesol', 'ode_order', 'reduce_inequalities',
'reduce_abs_inequality', 'reduce_abs_inequalities',
'solve_poly_inequality', 'solve_rational_inequalities',
'solve_univariate_inequality', 'decompogen', 'solveset', 'linsolve',
'linear_eq_to_matrix', 'nonlinsolve', 'substitution',
# sympy.matrices
'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag',
'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy',
'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1',
'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros',
'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix',
'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix',
'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice',
'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse',
'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace',
'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse',
'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct',
'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix',
'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct',
'kronecker_product', 'KroneckerProduct', 'PermutationMatrix',
'MatrixPermute', 'Permanent', 'per', 'rot_ccw_axis1', 'rot_ccw_axis2',
'rot_ccw_axis3',
# sympy.geometry
'Point', 'Point2D', 'Point3D', 'Line', 'Ray', 'Segment', 'Line2D',
'Segment2D', 'Ray2D', 'Line3D', 'Segment3D', 'Ray3D', 'Plane', 'Ellipse',
'Circle', 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
'closest_points', 'farthest_points', 'GeometryError', 'Curve', 'Parabola',
# sympy.utilities
'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols',
'cartes', 'capture', 'dict_merge', 'prefixes', 'postfixes', 'sift',
'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape',
'rotations', 'filldedent', 'lambdify', 'threaded', 'xthreaded',
'public', 'memoize_property', 'timed',
# sympy.integrals
'integrate', 'Integral', 'line_integrate', 'mellin_transform',
'inverse_mellin_transform', 'MellinTransform', 'InverseMellinTransform',
'laplace_transform', 'inverse_laplace_transform', 'LaplaceTransform',
'InverseLaplaceTransform', 'fourier_transform',
'inverse_fourier_transform', 'FourierTransform',
'InverseFourierTransform', 'sine_transform', 'inverse_sine_transform',
'SineTransform', 'InverseSineTransform', 'cosine_transform',
'inverse_cosine_transform', 'CosineTransform', 'InverseCosineTransform',
'hankel_transform', 'inverse_hankel_transform', 'HankelTransform',
'InverseHankelTransform', 'singularityintegrate',
# sympy.tensor
'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure',
'get_indices', 'shape', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray',
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray',
'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array',
'permutedims', 'Array', 'DenseNDimArray', 'SparseNDimArray',
# sympy.parsing
'parse_expr',
# sympy.calculus
'euler_equations', 'singularities', 'is_increasing',
'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing',
'is_monotonic', 'finite_diff_weights', 'apply_finite_diff',
'differentiate_finite', 'periodicity', 'not_empty_in',
'AccumBounds', 'is_convex', 'stationary_points', 'minimum', 'maximum',
# sympy.algebras
'Quaternion',
# sympy.printing
'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
'pprint_try_use_unicode', 'latex', 'print_latex', 'multiline_latex',
'mathml', 'print_mathml', 'python', 'print_python', 'pycode', 'ccode',
'print_ccode', 'smtlib_code', 'glsl_code', 'print_glsl', 'cxxcode', 'fcode',
'print_fcode', 'rcode', 'print_rcode', 'jscode', 'print_jscode',
'julia_code', 'mathematica_code', 'octave_code', 'rust_code', 'print_gtk',
'preview', 'srepr', 'print_tree', 'StrPrinter', 'sstr', 'sstrrepr',
'TableForm', 'dotprint', 'maple_code', 'print_maple_code',
# sympy.plotting
'plot', 'textplot', 'plot_backends', 'plot_implicit', 'plot_parametric',
# sympy.interactive
'init_session', 'init_printing', 'interactive_traversal',
# sympy.testing
'test', 'doctest',
]
#===========================================================================#
# #
# XXX: The names below were importable before SymPy 1.6 using #
# #
# from sympy import * #
# #
# This happened implicitly because there was no __all__ defined in this #
# __init__.py file. Not every package is imported. The list matches what #
# would have been imported before. It is possible that these packages will #
# not be imported by a star-import from sympy in future. #
# #
#===========================================================================#
__all__.extend((
'algebras',
'assumptions',
'calculus',
'concrete',
'discrete',
'external',
'functions',
'geometry',
'interactive',
'multipledispatch',
'ntheory',
'parsing',
'plotting',
'polys',
'printing',
'release',
'strategies',
'tensor',
'utilities',
))
|
e3bd72c5f762ff9db2d6cd9eab745306a29a53be4696992f5741d2bc46363fb5 | from math import factorial as _factorial, log, prod
from itertools import chain, islice, product
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
_af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
_distribute_gens_by_base, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr,
_strip, _strip_af)
from sympy.core import Basic
from sympy.core.random import _randrange, randrange, choice
from sympy.core.symbol import Symbol
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.ntheory import primefactors, sieve
from sympy.ntheory.factor_ import (factorint, multiplicity)
from sympy.ntheory.primetest import isprime
from sympy.utilities.iterables import has_variety, is_sequence, uniq
rmul = Permutation.rmul_with_af
_af_new = Permutation._af_new
class PermutationGroup(Basic):
r"""The class defining a Permutation group.
Explanation
===========
``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group
generated by the list of permutations. This group can be supplied
to Polyhedron if one desires to decorate the elements to which the
indices of the permutation refer.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import Polyhedron
The permutations corresponding to motion of the front, right and
bottom face of a $2 \times 2$ Rubik's cube are defined:
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
These are passed as permutations to PermutationGroup:
>>> G = PermutationGroup(F, R, D)
>>> G.order()
3674160
The group can be supplied to a Polyhedron in order to track the
objects being moved. An example involving the $2 \times 2$ Rubik's cube is
given there, but here is a simple demonstration:
>>> a = Permutation(2, 1)
>>> b = Permutation(1, 0)
>>> G = PermutationGroup(a, b)
>>> P = Polyhedron(list('ABC'), pgroup=G)
>>> P.corners
(A, B, C)
>>> P.rotate(0) # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
Or one can make a permutation as a product of selected permutations
and apply them to an iterable directly:
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
See Also
========
sympy.combinatorics.polyhedron.Polyhedron,
sympy.combinatorics.permutations.Permutation
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] Seress, A.
"Permutation Group Algorithms"
.. [3] https://en.wikipedia.org/wiki/Schreier_vector
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray,
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random
Elements of a Finite Group"
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
.. [7] http://www.algorithmist.com/index.php/Union_Find
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
.. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group
.. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
.. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf
"""
is_group = True
def __new__(cls, *args, dups=True, **kwargs):
"""The default constructor. Accepts Cycle and Permutation forms.
Removes duplicates unless ``dups`` keyword is ``False``.
"""
if not args:
args = [Permutation()]
else:
args = list(args[0] if is_sequence(args[0]) else args)
if not args:
args = [Permutation()]
if any(isinstance(a, Cycle) for a in args):
args = [Permutation(a) for a in args]
if has_variety(a.size for a in args):
degree = kwargs.pop('degree', None)
if degree is None:
degree = max(a.size for a in args)
for i in range(len(args)):
if args[i].size != degree:
args[i] = Permutation(args[i], size=degree)
if dups:
args = list(uniq([_af_new(list(a)) for a in args]))
if len(args) > 1:
args = [g for g in args if not g.is_identity]
return Basic.__new__(cls, *args, **kwargs)
def __init__(self, *args, **kwargs):
self._generators = list(self.args)
self._order = None
self._center = []
self._is_abelian = None
self._is_transitive = None
self._is_sym = None
self._is_alt = None
self._is_primitive = None
self._is_nilpotent = None
self._is_solvable = None
self._is_trivial = None
self._transitivity_degree = None
self._max_div = None
self._is_perfect = None
self._is_cyclic = None
self._is_dihedral = None
self._r = len(self._generators)
self._degree = self._generators[0].size
# these attributes are assigned after running schreier_sims
self._base = []
self._strong_gens = []
self._strong_gens_slp = []
self._basic_orbits = []
self._transversals = []
self._transversal_slp = []
# these attributes are assigned after running _random_pr_init
self._random_gens = []
# finite presentation of the group as an instance of `FpGroup`
self._fp_presentation = None
def __getitem__(self, i):
return self._generators[i]
def __contains__(self, i):
"""Return ``True`` if *i* is contained in PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
"""
if not isinstance(i, Permutation):
raise TypeError("A PermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return self.contains(i)
def __len__(self):
return len(self._generators)
def equals(self, other):
"""Return ``True`` if PermutationGroup generated by elements in the
group are same i.e they represent the same PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G.equals(H)
True
"""
if not isinstance(other, PermutationGroup):
return False
set_self_gens = set(self.generators)
set_other_gens = set(other.generators)
# before reaching the general case there are also certain
# optimisation and obvious cases requiring less or no actual
# computation.
if set_self_gens == set_other_gens:
return True
# in the most general case it will check that each generator of
# one group belongs to the other PermutationGroup and vice-versa
for gen1 in set_self_gens:
if not other.contains(gen1):
return False
for gen2 in set_other_gens:
if not self.contains(gen2):
return False
return True
def __mul__(self, other):
"""
Return the direct product of two permutation groups as a permutation
group.
Explanation
===========
This implementation realizes the direct product by shifting the index
set for the generators of the second group: so if we have ``G`` acting
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on
``n1 + n2`` points.
Examples
========
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(5)
>>> H = G*G
>>> H
PermutationGroup([
(9)(0 1 2 3 4),
(5 6 7 8 9)])
>>> H.order()
25
"""
if isinstance(other, Permutation):
return Coset(other, self, dir='+')
gens1 = [perm._array_form for perm in self.generators]
gens2 = [perm._array_form for perm in other.generators]
n1 = self._degree
n2 = other._degree
start = list(range(n1))
end = list(range(n1, n1 + n2))
for i in range(len(gens2)):
gens2[i] = [x + n1 for x in gens2[i]]
gens2 = [start + gen for gen in gens2]
gens1 = [gen + end for gen in gens1]
together = gens1 + gens2
gens = [_af_new(x) for x in together]
return PermutationGroup(gens)
def _random_pr_init(self, r, n, _random_prec_n=None):
r"""Initialize random generators for the product replacement algorithm.
Explanation
===========
The implementation uses a modification of the original product
replacement algorithm due to Leedham-Green, as described in [1],
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical
analysis of the original product replacement algorithm, and [4].
The product replacement algorithm is used for producing random,
uniformly distributed elements of a group `G` with a set of generators
`S`. For the initialization ``_random_pr_init``, a list ``R`` of
`\max\{r, |S|\}` group generators is created as the attribute
``G._random_gens``, repeating elements of `S` if necessary, and the
identity element of `G` is appended to ``R`` - we shall refer to this
last element as the accumulator. Then the function ``random_pr()``
is called ``n`` times, randomizing the list ``R`` while preserving
the generation of `G` by ``R``. The function ``random_pr()`` itself
takes two random elements ``g, h`` among all elements of ``R`` but
the accumulator and replaces ``g`` with a randomly chosen element
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied
by whatever ``g`` was replaced by. The new value of the accumulator is
then returned by ``random_pr()``.
The elements returned will eventually (for ``n`` large enough) become
uniformly distributed across `G` ([5]). For practical purposes however,
the values ``n = 50, r = 11`` are suggested in [1].
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute
self._random_gens
See Also
========
random_pr
"""
deg = self.degree
random_gens = [x._array_form for x in self.generators]
k = len(random_gens)
if k < r:
for i in range(k, r):
random_gens.append(random_gens[i - k])
acc = list(range(deg))
random_gens.append(acc)
self._random_gens = random_gens
# handle randomized input for testing purposes
if _random_prec_n is None:
for i in range(n):
self.random_pr()
else:
for i in range(n):
self.random_pr(_random_prec=_random_prec_n[i])
def _union_find_merge(self, first, second, ranks, parents, not_rep):
"""Merges two classes in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. The class merging process uses union by rank as an
optimization. ([7])
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, the list of class sizes, ``ranks``, and the list of
elements that are not representatives, ``not_rep``, are changed due to
class merging.
See Also
========
minimal_block, _union_find_rep
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep_first = self._union_find_rep(first, parents)
rep_second = self._union_find_rep(second, parents)
if rep_first != rep_second:
# union by rank
if ranks[rep_first] >= ranks[rep_second]:
new_1, new_2 = rep_first, rep_second
else:
new_1, new_2 = rep_second, rep_first
total_rank = ranks[new_1] + ranks[new_2]
if total_rank > self.max_div:
return -1
parents[new_2] = new_1
ranks[new_1] = total_rank
not_rep.append(new_2)
return 1
return 0
def _union_find_rep(self, num, parents):
"""Find representative of a class in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. After the representative of the class to which ``num``
belongs is found, path compression is performed as an optimization
([7]).
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, is altered due to path compression.
See Also
========
minimal_block, _union_find_merge
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep, parent = num, parents[num]
while parent != rep:
rep = parent
parent = parents[rep]
# path compression
temp, parent = num, parents[num]
while parent != rep:
parents[temp] = rep
temp = parent
parent = parents[temp]
return rep
@property
def base(self):
r"""Return a base from the Schreier-Sims algorithm.
Explanation
===========
For a permutation group `G`, a base is a sequence of points
`B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart
from the identity fixes all the points in `B`. The concepts of
a base and strong generating set and their applications are
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
An alternative way to think of `B` is that it gives the
indices of the stabilizer cosets that contain more than the
identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
>>> G.base
[0, 2]
See Also
========
strong_gens, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._base == []:
self.schreier_sims()
return self._base
def baseswap(self, base, strong_gens, pos, randomized=False,
transversals=None, basic_orbits=None, strong_gens_distr=None):
r"""Swap two consecutive base points in base and strong generating set.
Explanation
===========
If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this
function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`,
where `i` is given by ``pos``, and a strong generating set relative
to that base. The original base and strong generating set are not
modified.
The randomized version (default) is of Las Vegas type.
Parameters
==========
base, strong_gens
The base and strong generating set.
pos
The position at which swapping is performed.
randomized
A switch between randomized and deterministic version.
transversals
The transversals for the basic orbits, if known.
basic_orbits
The basic orbits, if known.
strong_gens_distr
The strong generators distributed by basic stabilizers, if known.
Returns
=======
(base, strong_gens)
``base`` is the new base, and ``strong_gens`` is a generating set
relative to it.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[(0 1 2 3), (3)(0 1), (1 3 2),
(2 3), (1 3)])
check that base, gens is a BSGS
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
See Also
========
schreier_sims
Notes
=====
The deterministic version of the algorithm is discussed in
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and
[2], p.98. It is of Las Vegas type.
Notice that [1] contains a mistake in the pseudocode and
discussion of BASESWAP: on line 3 of the pseudocode,
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the
discussion of the algorithm.
"""
# construct the basic orbits, generators for the stabilizer chain
# and transversal elements from whatever was provided
transversals, basic_orbits, strong_gens_distr = \
_handle_precomputed_bsgs(base, strong_gens, transversals,
basic_orbits, strong_gens_distr)
base_len = len(base)
degree = self.degree
# size of orbit of base[pos] under the stabilizer we seek to insert
# in the stabilizer chain at position pos + 1
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1]))
# initialize the wanted stabilizer by a subgroup
if pos + 2 > base_len - 1:
T = []
else:
T = strong_gens_distr[pos + 2][:]
# randomized version
if randomized is True:
stab_pos = PermutationGroup(strong_gens_distr[pos])
schreier_vector = stab_pos.schreier_vector(base[pos + 1])
# add random elements of the stabilizer until they generate it
while len(_orbit(degree, T, base[pos])) != size:
new = stab_pos.random_stab(base[pos + 1],
schreier_vector=schreier_vector)
T.append(new)
# deterministic version
else:
Gamma = set(basic_orbits[pos])
Gamma.remove(base[pos])
if base[pos + 1] in Gamma:
Gamma.remove(base[pos + 1])
# add elements of the stabilizer until they generate it by
# ruling out member of the basic orbit of base[pos] along the way
while len(_orbit(degree, T, base[pos])) != size:
gamma = next(iter(Gamma))
x = transversals[pos][gamma]
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1])
if temp not in basic_orbits[pos + 1]:
Gamma = Gamma - _orbit(degree, T, gamma)
else:
y = transversals[pos + 1][temp]
el = rmul(x, y)
if el(base[pos]) not in _orbit(degree, T, base[pos]):
T.append(el)
Gamma = Gamma - _orbit(degree, T, base[pos])
# build the new base and strong generating set
strong_gens_new_distr = strong_gens_distr[:]
strong_gens_new_distr[pos + 1] = T
base_new = base[:]
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos]
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr)
for gen in T:
if gen not in strong_gens_new:
strong_gens_new.append(gen)
return base_new, strong_gens_new
@property
def basic_orbits(self):
r"""
Return the basic orbits relative to a base and strong generating set.
Explanation
===========
If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and
`G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
See Also
========
base, strong_gens, basic_transversals, basic_stabilizers
"""
if self._basic_orbits == []:
self.schreier_sims()
return self._basic_orbits
@property
def basic_stabilizers(self):
r"""
Return a chain of stabilizers relative to a base and strong generating
set.
Explanation
===========
The ``i``-th basic stabilizer `G^{(i)}` relative to a base
`(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more
information, see [1], pp. 87-89.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
... print(g)
...
PermutationGroup([
(3)(0 1 2),
(1 2 3)])
PermutationGroup([
(1 2 3)])
See Also
========
base, strong_gens, basic_orbits, basic_transversals
"""
if self._transversals == []:
self.schreier_sims()
strong_gens = self._strong_gens
base = self._base
if not base: # e.g. if self is trivial
return []
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_stabilizers = []
for gens in strong_gens_distr:
basic_stabilizers.append(PermutationGroup(gens))
return basic_stabilizers
@property
def basic_transversals(self):
"""
Return basic transversals relative to a base and strong generating set.
Explanation
===========
The basic transversals are transversals of the basic orbits. They
are provided as a list of dictionaries, each dictionary having
keys - the elements of one of the basic orbits, and values - the
corresponding transversal elements. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.basic_transversals
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}]
See Also
========
strong_gens, base, basic_orbits, basic_stabilizers
"""
if self._transversals == []:
self.schreier_sims()
return self._transversals
def composition_series(self):
r"""
Return the composition series for a group as a list
of permutation groups.
Explanation
===========
The composition series for a group `G` is defined as a
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition
series is a subnormal series such that each factor group
`H(i+1) / H(i)` is simple.
A subnormal series is a composition series only if it is of
maximum length.
The algorithm works as follows:
Starting with the derived series the idea is to fill
the gap between `G = der[i]` and `H = der[i+1]` for each
`i` independently. Since, all subgroups of the abelian group
`G/H` are normal so, first step is to take the generators
`g` of `G` and add them to generators of `H` one by one.
The factor groups formed are not simple in general. Each
group is obtained from the previous one by adding one
generator `g`, if the previous group is denoted by `H`
then the next group `K` is generated by `g` and `H`.
The factor group `K/H` is cyclic and it's order is
`K.order()//G.order()`. The series is then extended between
`K` and `H` by groups generated by powers of `g` and `H`.
The series formed is then prepended to the already existing
series.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> S = SymmetricGroup(12)
>>> G = S.sylow_subgroup(2)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
>>> G = S.sylow_subgroup(3)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[243, 81, 27, 9, 3, 1]
>>> G = CyclicGroup(12)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[12, 6, 3, 1]
"""
der = self.derived_series()
if not all(g.is_identity for g in der[-1].generators):
raise NotImplementedError('Group should be solvable')
series = []
for i in range(len(der)-1):
H = der[i+1]
up_seg = []
for g in der[i].generators:
K = PermutationGroup([g] + H.generators)
order = K.order() // H.order()
down_seg = []
for p, e in factorint(order).items():
for _ in range(e):
down_seg.append(PermutationGroup([g] + H.generators))
g = g**p
up_seg = down_seg + up_seg
H = K
up_seg[0] = der[i]
series.extend(up_seg)
series.append(der[-1])
return series
def coset_transversal(self, H):
"""Return a transversal of the right cosets of self by its subgroup H
using the second method described in [1], Subsection 4.6.7
"""
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
if H.order() == 1:
return self._elements
self._schreier_sims(base=H.base) # make G.base an extension of H.base
base = self.base
base_ordering = _base_ordering(base, self.degree)
identity = Permutation(self.degree - 1)
transversals = self.basic_transversals[:]
# transversals is a list of dictionaries. Get rid of the keys
# so that it is a list of lists and sort each list in
# the increasing order of base[l]^x
for l, t in enumerate(transversals):
transversals[l] = sorted(t.values(),
key = lambda x: base_ordering[base[l]^x])
orbits = H.basic_orbits
h_stabs = H.basic_stabilizers
g_stabs = self.basic_stabilizers
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)]
# T^(l) should be a right transversal of H^(l) in G^(l) for
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l)
# contains all the elements of G^(l) so we might just as well
# start with l = len(h_stabs)-1
if len(g_stabs) > len(h_stabs):
T = g_stabs[len(h_stabs)]._elements
else:
T = [identity]
l = len(h_stabs)-1
t_len = len(T)
while l > -1:
T_next = []
for u in transversals[l]:
if u == identity:
continue
b = base_ordering[base[l]^u]
for t in T:
p = t*u
if all(base_ordering[h^p] >= b for h in orbits[l]):
T_next.append(p)
if t_len + len(T_next) == indices[l]:
break
if t_len + len(T_next) == indices[l]:
break
T += T_next
t_len += len(T_next)
l -= 1
T.remove(identity)
T = [identity] + T
return T
def _coset_representative(self, g, H):
"""Return the representative of Hg from the transversal that
would be computed by ``self.coset_transversal(H)``.
"""
if H.order() == 1:
return g
# The base of self must be an extension of H.base.
if not(self.base[:len(H.base)] == H.base):
self._schreier_sims(base=H.base)
orbits = H.basic_orbits[:]
h_transversals = [list(_.values()) for _ in H.basic_transversals]
transversals = [list(_.values()) for _ in self.basic_transversals]
base = self.base
base_ordering = _base_ordering(base, self.degree)
def step(l, x):
gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0]
i = [base[l]^h for h in h_transversals[l]].index(gamma)
x = h_transversals[l][i]*x
if l < len(orbits)-1:
for u in transversals[l]:
if base[l]^u == base[l]^x:
break
x = step(l+1, x*u**-1)*u
return x
return step(0, g)
def coset_table(self, H):
"""Return the standardised (right) coset table of self in H as
a list of lists.
"""
# Maybe this should be made to return an instance of CosetTable
# from fp_groups.py but the class would need to be changed first
# to be compatible with PermutationGroups
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
T = self.coset_transversal(H)
n = len(T)
A = list(chain.from_iterable((gen, gen**-1)
for gen in self.generators))
table = []
for i in range(n):
row = [self._coset_representative(T[i]*x, H) for x in A]
row = [T.index(r) for r in row]
table.append(row)
# standardize (this is the same as the algorithm used in coset_table)
# If CosetTable is made compatible with PermutationGroups, this
# should be replaced by table.standardize()
A = range(len(A))
gamma = 1
for alpha, a in product(range(n), A):
beta = table[alpha][a]
if beta >= gamma:
if beta > gamma:
for x in A:
z = table[gamma][x]
table[gamma][x] = table[beta][x]
table[beta][x] = z
for i in range(n):
if table[i][x] == beta:
table[i][x] = gamma
elif table[i][x] == gamma:
table[i][x] = beta
gamma += 1
if gamma >= n-1:
return table
def center(self):
r"""
Return the center of a permutation group.
Explanation
===========
The center for a group `G` is defined as
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`,
the set of elements of `G` that commute with all elements of `G`.
It is equal to the centralizer of `G` inside `G`, and is naturally a
subgroup of `G` ([9]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
See Also
========
centralizer
Notes
=====
This is a naive implementation that is a straightforward application
of ``.centralizer()``
"""
return self.centralizer(self)
def centralizer(self, other):
r"""
Return the centralizer of a group/set/element.
Explanation
===========
The centralizer of a set of permutations ``S`` inside
a group ``G`` is the set of elements of ``G`` that commute with all
elements of ``S``::
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10])
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of
the full symmetric group, we allow for ``S`` to have elements outside
``G``.
It is naturally a subgroup of ``G``; the centralizer of a permutation
group is equal to the centralizer of any set of generators for that
group, since any element commuting with the generators commutes with
any product of the generators.
Parameters
==========
other
a permutation group/list of permutations/single permutation
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is_subgroup(C)
True
See Also
========
subgroup_search
Notes
=====
The implementation is an application of ``.subgroup_search()`` with
tests using a specific base for the group ``G``.
"""
if hasattr(other, 'generators'):
if other.is_trivial or self.is_trivial:
return self
degree = self.degree
identity = _af_new(list(range(degree)))
orbits = other.orbits()
num_orbits = len(orbits)
orbits.sort(key=lambda x: -len(x))
long_base = []
orbit_reps = [None]*num_orbits
orbit_reps_indices = [None]*num_orbits
orbit_descr = [None]*degree
for i in range(num_orbits):
orbit = list(orbits[i])
orbit_reps[i] = orbit[0]
orbit_reps_indices[i] = len(long_base)
for point in orbit:
orbit_descr[point] = i
long_base = long_base + orbit
base, strong_gens = self.schreier_sims_incremental(base=long_base)
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
i = 0
for i in range(len(base)):
if strong_gens_distr[i] == [identity]:
break
base = base[:i]
base_len = i
for j in range(num_orbits):
if base[base_len - 1] in orbits[j]:
break
rel_orbits = orbits[: j + 1]
num_rel_orbits = len(rel_orbits)
transversals = [None]*num_rel_orbits
for j in range(num_rel_orbits):
rep = orbit_reps[j]
transversals[j] = dict(
other.orbit_transversal(rep, pairs=True))
trivial_test = lambda x: True
tests = [None]*base_len
for l in range(base_len):
if base[l] in orbit_reps:
tests[l] = trivial_test
else:
def test(computed_words, l=l):
g = computed_words[l]
rep_orb_index = orbit_descr[base[l]]
rep = orbit_reps[rep_orb_index]
im = g._array_form[base[l]]
im_rep = g._array_form[rep]
tr_el = transversals[rep_orb_index][base[l]]
# using the definition of transversal,
# base[l]^g = rep^(tr_el*g);
# if g belongs to the centralizer, then
# base[l]^g = (rep^g)^tr_el
return im == tr_el._array_form[im_rep]
tests[l] = test
def prop(g):
return [rmul(g, gen) for gen in other.generators] == \
[rmul(gen, g) for gen in other.generators]
return self.subgroup_search(prop, base=base,
strong_gens=strong_gens, tests=tests)
elif hasattr(other, '__getitem__'):
gens = list(other)
return self.centralizer(PermutationGroup(gens))
elif hasattr(other, 'array_form'):
return self.centralizer(PermutationGroup([other]))
def commutator(self, G, H):
"""
Return the commutator of two subgroups.
Explanation
===========
For a permutation group ``K`` and subgroups ``G``, ``H``, the
commutator of ``G`` and ``H`` is defined as the group generated
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
See Also
========
derived_subgroup
Notes
=====
The commutator of two subgroups `H, G` is equal to the normal closure
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h`
a generator of `H` and `g` a generator of `G` ([1], p.28)
"""
ggens = G.generators
hgens = H.generators
commutators = []
for ggen in ggens:
for hgen in hgens:
commutator = rmul(hgen, ggen, ~hgen, ~ggen)
if commutator not in commutators:
commutators.append(commutator)
res = self.normal_closure(commutators)
return res
def coset_factor(self, g, factor_index=False):
"""Return ``G``'s (self's) coset factorization of ``g``
Explanation
===========
If ``g`` is an element of ``G`` then it can be written as the product
of permutations drawn from the Schreier-Sims coset decomposition,
The permutations returned in ``f`` are those for which
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)``
and ``B = G.base``. f[i] is one of the permutations in
``self._basic_orbits[i]``.
If factor_index==True,
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]``
belongs to ``self._basic_orbits[i]``
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
Define g:
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
Confirm that it is an element of G:
>>> G.contains(g)
True
Thus, it can be written as a product of factors (up to
3) drawn from u. See below that a factor from u1 and u2
and the Identity permutation have been used:
>>> f = G.coset_factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True); f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
If g is not an element of G then [] is returned:
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
See Also
========
sympy.combinatorics.util._strip
"""
if isinstance(g, (Cycle, Permutation)):
g = g.list()
if len(g) != self._degree:
# this could either adjust the size or return [] immediately
# but we don't choose between the two and just signal a possible
# error
raise ValueError('g should be the same size as permutations of G')
I = list(range(self._degree))
basic_orbits = self.basic_orbits
transversals = self._transversals
factors = []
base = self.base
h = g
for i in range(len(base)):
beta = h[base[i]]
if beta == base[i]:
factors.append(beta)
continue
if beta not in basic_orbits[i]:
return []
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
factors.append(beta)
if h != I:
return []
if factor_index:
return factors
tr = self.basic_transversals
factors = [tr[i][factors[i]] for i in range(len(base))]
return factors
def generator_product(self, g, original=False):
r'''
Return a list of strong generators `[s1, \dots, sn]`
s.t `g = sn \times \dots \times s1`. If ``original=True``, make the
list contain only the original group generators
'''
product = []
if g.is_identity:
return []
if g in self.strong_gens:
if not original or g in self.generators:
return [g]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
return product
elif g**-1 in self.strong_gens:
g = g**-1
if not original or g in self.generators:
return [g**-1]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
l = len(product)
product = [product[l-i-1]**-1 for i in range(l)]
return product
f = self.coset_factor(g, True)
for i, j in enumerate(f):
slp = self._transversal_slp[i][j]
for s in slp:
if not original:
product.append(self.strong_gens[s])
else:
s = self.strong_gens[s]
product.extend(self.generator_product(s, original=True))
return product
def coset_rank(self, g):
"""rank using Schreier-Sims representation.
Explanation
===========
The coset rank of ``g`` is the ordering number in which
it appears in the lexicographic listing according to the
coset decomposition
The ordering is the same as in G.generate(method='coset').
If ``g`` does not belong to the group it returns None.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset_unrank(16)
(7)(2 4)(3 5)
See Also
========
coset_factor
"""
factors = self.coset_factor(g, True)
if not factors:
return None
rank = 0
b = 1
transversals = self._transversals
base = self._base
basic_orbits = self._basic_orbits
for i in range(len(base)):
k = factors[i]
j = basic_orbits[i].index(k)
rank += b*j
b = b*len(transversals[i])
return rank
def coset_unrank(self, rank, af=False):
"""unrank using Schreier-Sims representation
coset_unrank is the inverse operation of coset_rank
if 0 <= rank < order; otherwise it returns None.
"""
if rank < 0 or rank >= self.order():
return None
base = self.base
transversals = self.basic_transversals
basic_orbits = self.basic_orbits
m = len(base)
v = [0]*m
for i in range(m):
rank, c = divmod(rank, len(transversals[i]))
v[i] = basic_orbits[i][c]
a = [transversals[i][v[i]]._array_form for i in range(m)]
h = _af_rmuln(*a)
if af:
return h
else:
return _af_new(h)
@property
def degree(self):
"""Returns the size of the permutations in the group.
Explanation
===========
The number of permutations comprising the group is given by
``len(group)``; the number of permutations that can be generated
by the group is given by ``group.order()``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
See Also
========
order
"""
return self._degree
@property
def identity(self):
'''
Return the identity element of the permutation group.
'''
return _af_new(list(range(self.degree)))
@property
def elements(self):
"""Returns all the elements of the permutation group as a set
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p.elements
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
"""
return set(self._elements)
@property
def _elements(self):
"""Returns all the elements of the permutation group as a list
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p._elements
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
"""
return list(islice(self.generate(), None))
def derived_series(self):
r"""Return the derived series for the group.
Explanation
===========
The derived series for a group `G` is defined as
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`,
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some
`k\in\mathbb{N}`, the series terminates.
Returns
=======
A list of permutation groups containing the members of the derived
series in the order `G = G_0, G_1, G_2, \ldots`.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup, DihedralGroup)
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
See Also
========
derived_subgroup
"""
res = [self]
current = self
nxt = self.derived_subgroup()
while not current.is_subgroup(nxt):
res.append(nxt)
current = nxt
nxt = nxt.derived_subgroup()
return res
def derived_subgroup(self):
r"""Compute the derived subgroup.
Explanation
===========
The derived subgroup, or commutator subgroup is the subgroup generated
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is
equal to the normal closure of the set of commutators of the generators
([1], p.28, [11]).
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2, 4, 3])
>>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived_subgroup()
>>> list(C.generate(af=True))
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
See Also
========
derived_series
"""
r = self._r
gens = [p._array_form for p in self.generators]
set_commutators = set()
degree = self._degree
rng = list(range(degree))
for i in range(r):
for j in range(r):
p1 = gens[i]
p2 = gens[j]
c = list(range(degree))
for k in rng:
c[p2[p1[k]]] = p1[p2[k]]
ct = tuple(c)
if ct not in set_commutators:
set_commutators.add(ct)
cms = [_af_new(p) for p in set_commutators]
G2 = self.normal_closure(cms)
return G2
def generate(self, method="coset", af=False):
"""Return iterator to generate the elements of the group.
Explanation
===========
Iteration is done with one of these methods::
method='coset' using the Schreier-Sims coset representation
method='dimino' using the Dimino method
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import PermutationGroup
>>> from sympy.combinatorics.polyhedron import tetrahedron
The permutation group given in the tetrahedron object is also
true groups:
>>> G = tetrahedron.pgroup
>>> G.is_group
True
Also the group generated by the permutations in the tetrahedron
pgroup -- even the first two -- is a proper group:
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate())); J
PermutationGroup([
(0 1)(2 3),
(1 2 3),
(1 3 2),
(0 3 1),
(0 2 3),
(0 3)(1 2),
(0 1 3),
(3)(0 2 1),
(0 3 2),
(3)(0 1 2),
(0 2)(1 3)])
>>> _.is_group
True
"""
if method == "coset":
return self.generate_schreier_sims(af)
elif method == "dimino":
return self.generate_dimino(af)
else:
raise NotImplementedError('No generation defined for %s' % method)
def generate_dimino(self, af=False):
"""Yield group elements using Dimino's algorithm.
If ``af == True`` it yields the array form of the permutations.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
References
==========
.. [1] The Implementation of Various Algorithms for Permutation Groups in
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis
"""
idn = list(range(self.degree))
order = 0
element_list = [idn]
set_element_list = {tuple(idn)}
if af:
yield idn
else:
yield _af_new(idn)
gens = [p._array_form for p in self.generators]
for i in range(len(gens)):
# D elements of the subgroup G_i generated by gens[:i]
D = element_list[:]
N = [idn]
while N:
A = N
N = []
for a in A:
for g in gens[:i + 1]:
ag = _af_rmul(a, g)
if tuple(ag) not in set_element_list:
# produce G_i*g
for d in D:
order += 1
ap = _af_rmul(d, ag)
if af:
yield ap
else:
p = _af_new(ap)
yield p
element_list.append(ap)
set_element_list.add(tuple(ap))
N.append(ap)
self._order = len(element_list)
def generate_schreier_sims(self, af=False):
"""Yield group elements using the Schreier-Sims representation
in coset_rank order
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
"""
n = self._degree
u = self.basic_transversals
basic_orbits = self._basic_orbits
if len(u) == 0:
for x in self.generators:
if af:
yield x._array_form
else:
yield x
return
if len(u) == 1:
for i in basic_orbits[0]:
if af:
yield u[0][i]._array_form
else:
yield u[0][i]
return
u = list(reversed(u))
basic_orbits = basic_orbits[::-1]
# stg stack of group elements
stg = [list(range(n))]
posmax = [len(x) for x in u]
n1 = len(posmax) - 1
pos = [0]*n1
h = 0
while 1:
# backtrack when finished iterating over coset
if pos[h] >= posmax[h]:
if h == 0:
return
pos[h] = 0
h -= 1
stg.pop()
continue
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1])
pos[h] += 1
stg.append(p)
h += 1
if h == n1:
if af:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
yield p
else:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
p1 = _af_new(p)
yield p1
stg.pop()
h -= 1
@property
def generators(self):
"""Returns the generators of the group.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.generators
[(1 2), (2)(0 1)]
"""
return self._generators
def contains(self, g, strict=True):
"""Test if permutation ``g`` belong to self, ``G``.
Explanation
===========
If ``g`` is an element of ``G`` it can be written as a product
of factors drawn from the cosets of ``G``'s stabilizers. To see
if ``g`` is one of the actual generators defining the group use
``G.has(g)``.
If ``strict`` is not ``True``, ``g`` will be resized, if necessary,
to match the size of permutations in ``self``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0]) # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
If strict is False, a permutation will be resized, if
necessary:
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
To test if a given permutation is present in the group:
>>> elem in G.generators
False
>>> G.has(elem)
False
See Also
========
coset_factor, sympy.core.basic.Basic.has, __contains__
"""
if not isinstance(g, Permutation):
return False
if g.size != self.degree:
if strict:
return False
g = Permutation(g, size=self.degree)
if g in self.generators:
return True
return bool(self.coset_factor(g.array_form, True))
@property
def is_perfect(self):
"""Return ``True`` if the group is perfect.
A group is perfect if it equals to its derived subgroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)(4,5)
>>> b = Permutation(1,2,3,4,5)
>>> G = PermutationGroup([a, b])
>>> G.is_perfect
False
"""
if self._is_perfect is None:
self._is_perfect = self.equals(self.derived_subgroup())
return self._is_perfect
@property
def is_abelian(self):
"""Test if the group is Abelian.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_abelian
True
"""
if self._is_abelian is not None:
return self._is_abelian
self._is_abelian = True
gens = [p._array_form for p in self.generators]
for x in gens:
for y in gens:
if y <= x:
continue
if not _af_commutes_with(x, y):
self._is_abelian = False
return False
return True
def abelian_invariants(self):
"""
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
Explanation
===========
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
"""
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
def is_elementary(self, p):
"""Return ``True`` if the group is elementary abelian. An elementary
abelian group is a finite abelian group, where every nontrivial
element has order `p`, where `p` is a prime.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_elementary(2)
True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([3, 1, 2, 0])
>>> G = PermutationGroup([a, b])
>>> G.is_elementary(2)
True
>>> G.is_elementary(3)
False
"""
return self.is_abelian and all(g.order() == p for g in self.generators)
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False):
"""A naive test using the group order."""
if only_sym and only_alt:
raise ValueError(
"Both {} and {} cannot be set to True"
.format(only_sym, only_alt))
n = self.degree
sym_order = _factorial(n)
order = self.order()
if order == sym_order:
self._is_sym = True
self._is_alt = False
if only_alt:
return False
return True
elif 2*order == sym_order:
self._is_sym = False
self._is_alt = True
if only_sym:
return False
return True
return False
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None):
"""A test using monte-carlo algorithm.
Parameters
==========
eps : float, optional
The criterion for the incorrect ``False`` return.
perms : list[Permutation], optional
If explicitly given, it tests over the given candidates
for testing.
If ``None``, it randomly computes ``N_eps`` and chooses
``N_eps`` sample of the permutation from the group.
See Also
========
_check_cycles_alt_sym
"""
if perms is None:
n = self.degree
if n < 17:
c_n = 0.34
else:
c_n = 0.57
d_n = (c_n*log(2))/log(n)
N_eps = int(-log(eps)/d_n)
perms = (self.random_pr() for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
for perm in perms:
if _check_cycles_alt_sym(perm):
return True
return False
def is_alt_sym(self, eps=0.05, _random_prec=None):
r"""Monte Carlo test for the symmetric/alternating group for degrees
>= 8.
Explanation
===========
More specifically, it is one-sided Monte Carlo with the
answer True (i.e., G is symmetric/alternating) guaranteed to be
correct, and the answer False being incorrect with probability eps.
For degree < 8, the order of the group is checked so the test
is deterministic.
Notes
=====
The algorithm itself uses some nontrivial results from group theory and
number theory:
1) If a transitive group ``G`` of degree ``n`` contains an element
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the
symmetric or alternating group ([1], pp. 81-82)
2) The proportion of elements in the symmetric/alternating group having
the property described in 1) is approximately `\log(2)/\log(n)`
([1], p.82; [2], pp. 226-227).
The helper function ``_check_cycles_alt_sym`` is used to
go over the cycles in a permutation and look for ones satisfying 1).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
See Also
========
_check_cycles_alt_sym
"""
if _random_prec is not None:
N_eps = _random_prec['N_eps']
perms= (_random_prec[i] for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
if self._is_sym or self._is_alt:
return True
if self._is_sym is False and self._is_alt is False:
return False
n = self.degree
if n < 8:
return self._eval_is_alt_sym_naive()
elif self.is_transitive():
return self._eval_is_alt_sym_monte_carlo(eps=eps)
self._is_sym, self._is_alt = False, False
return False
@property
def is_nilpotent(self):
"""Test if the group is nilpotent.
Explanation
===========
A group `G` is nilpotent if it has a central series of finite length.
Alternatively, `G` is nilpotent if its lower central series terminates
with the trivial group. Every nilpotent group is also solvable
([1], p.29, [12]).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is_nilpotent
False
See Also
========
lower_central_series, is_solvable
"""
if self._is_nilpotent is None:
lcs = self.lower_central_series()
terminator = lcs[len(lcs) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
self._is_nilpotent = True
return True
else:
self._is_nilpotent = False
return False
else:
return self._is_nilpotent
def is_normal(self, gr, strict=True):
"""Test if ``G=self`` is a normal subgroup of ``gr``.
Explanation
===========
G is normal in gr if
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G
It is sufficient to check this for each g1 in gr.generators and
g2 in G.generators.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> G1.is_normal(G)
True
"""
if not self.is_subgroup(gr, strict=strict):
return False
d_self = self.degree
d_gr = gr.degree
if self.is_trivial and (d_self == d_gr or not strict):
return True
if self._is_abelian:
return True
new_self = self.copy()
if not strict and d_self != d_gr:
if d_self < d_gr:
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)])
else:
gr = PermGroup(gr.generators + [Permutation(d_self - 1)])
gens2 = [p._array_form for p in new_self.generators]
gens1 = [p._array_form for p in gr.generators]
for g1 in gens1:
for g2 in gens2:
p = _af_rmuln(g1, g2, _af_invert(g1))
if not new_self.coset_factor(p, True):
return False
return True
def is_primitive(self, randomized=True):
r"""Test if a group is primitive.
Explanation
===========
A permutation group ``G`` acting on a set ``S`` is called primitive if
``S`` contains no nontrivial block under the action of ``G``
(a block is nontrivial if its cardinality is more than ``1``).
Notes
=====
The algorithm is described in [1], p.83, and uses the function
minimal_block to search for blocks of the form `\{0, k\}` for ``k``
ranging over representatives for the orbits of `G_0`, the stabilizer of
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree
of the group, and will perform badly if `G_0` is small.
There are two implementations offered: one finds `G_0`
deterministically using the function ``stabilizer``, and the other
(default) produces random elements of `G_0` using ``random_stab``,
hoping that they generate a subgroup of `G_0` with not too many more
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed
by the ``randomized`` flag.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_primitive()
False
See Also
========
minimal_block, random_stab
"""
if self._is_primitive is not None:
return self._is_primitive
if self.is_transitive() is False:
return False
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for _ in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])):
self._is_primitive = False
return False
self._is_primitive = True
return True
def minimal_blocks(self, randomized=True):
'''
For a transitive group, return the list of all minimal
block systems. If a group is intransitive, return `False`.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> DihedralGroup(6).minimal_blocks()
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
>>> G = PermutationGroup(Permutation(1,2,5))
>>> G.minimal_blocks()
False
See Also
========
minimal_block, is_transitive, is_primitive
'''
def _number_blocks(blocks):
# number the blocks of a block system
# in order and return the number of
# blocks and the tuple with the
# reordering
n = len(blocks)
appeared = {}
m = 0
b = [None]*n
for i in range(n):
if blocks[i] not in appeared:
appeared[blocks[i]] = m
b[i] = m
m += 1
else:
b[i] = appeared[blocks[i]]
return tuple(b), m
if not self.is_transitive():
return False
blocks = []
num_blocks = []
rep_blocks = []
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0:
block = self.minimal_block([0, x])
num_block, _ = _number_blocks(block)
# a representative block (containing 0)
rep = {j for j in range(self.degree) if num_block[j] == 0}
# check if the system is minimal with
# respect to the already discovere ones
minimal = True
blocks_remove_mask = [False] * len(blocks)
for i, r in enumerate(rep_blocks):
if len(r) > len(rep) and rep.issubset(r):
# i-th block system is not minimal
blocks_remove_mask[i] = True
elif len(r) < len(rep) and r.issubset(rep):
# the system being checked is not minimal
minimal = False
break
# remove non-minimal representative blocks
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]]
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]]
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]]
if minimal and num_block not in num_blocks:
blocks.append(block)
num_blocks.append(num_block)
rep_blocks.append(rep)
return blocks
@property
def is_solvable(self):
"""Test if the group is solvable.
``G`` is solvable if its derived series terminates with the trivial
group ([1], p.29).
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
See Also
========
is_nilpotent, derived_series
"""
if self._is_solvable is None:
if self.order() % 2 != 0:
return True
ds = self.derived_series()
terminator = ds[len(ds) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
return True
else:
self._is_solvable = False
return False
else:
return self._is_solvable
def is_subgroup(self, G, strict=True):
"""Return ``True`` if all elements of ``self`` belong to ``G``.
If ``strict`` is ``False`` then if ``self``'s degree is smaller
than ``G``'s, the elements will be resized to have the same degree.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup
Testing is strict by default: the degree of each group must be the
same:
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
To ignore the size, set ``strict`` to ``False``:
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is_subgroup(G, 0)
False
"""
if isinstance(G, SymmetricPermutationGroup):
if self.degree != G.degree:
return False
return True
if not isinstance(G, PermutationGroup):
return False
if self == G or self.generators[0]==Permutation():
return True
if G.order() % self.order() != 0:
return False
if self.degree == G.degree or \
(self.degree < G.degree and not strict):
gens = self.generators
else:
return False
return all(G.contains(g, strict=strict) for g in gens)
@property
def is_polycyclic(self):
"""Return ``True`` if a group is polycyclic. A group is polycyclic if
it has a subnormal series with cyclic factors. For finite groups,
this is the same as if the group is solvable.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G = PermutationGroup([a, b])
>>> G.is_polycyclic
True
"""
return self.is_solvable
def is_transitive(self, strict=True):
"""Test if the group is transitive.
Explanation
===========
A group is transitive if it has a single orbit.
If ``strict`` is ``False`` the group is transitive if it has
a single orbit of length different from 1.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> G1.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
"""
if self._is_transitive: # strict or not, if True then True
return self._is_transitive
if strict:
if self._is_transitive is not None: # we only store strict=True
return self._is_transitive
ans = len(self.orbit(0)) == self.degree
self._is_transitive = ans
return ans
got_orb = False
for x in self.orbits():
if len(x) > 1:
if got_orb:
return False
got_orb = True
return got_orb
@property
def is_trivial(self):
"""Test if the group is the trivial group.
This is true if the group contains only the identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True
"""
if self._is_trivial is None:
self._is_trivial = len(self) == 1 and self[0].is_Identity
return self._is_trivial
def lower_central_series(self):
r"""Return the lower central series for the group.
The lower central series for a group `G` is the series
`G = G_0 > G_1 > G_2 > \ldots` where
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the
commutator of `G` and the previous term in `G1` ([1], p.29).
Returns
=======
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots`
Examples
========
>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
... DihedralGroup)
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True
See Also
========
commutator, derived_series
"""
res = [self]
current = self
nxt = self.commutator(self, current)
while not current.is_subgroup(nxt):
res.append(nxt)
current = nxt
nxt = self.commutator(self, current)
return res
@property
def max_div(self):
"""Maximum proper divisor of the degree of a permutation group.
Explanation
===========
Obviously, this is the degree divided by its minimal proper divisor
(larger than ``1``, if one exists). As it is guaranteed to be prime,
the ``sieve`` from ``sympy.ntheory`` is used.
This function is also used as an optimization tool for the functions
``minimal_block`` and ``_union_find_merge``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
See Also
========
minimal_block, _union_find_merge
"""
if self._max_div is not None:
return self._max_div
n = self.degree
if n == 1:
return 1
for x in sieve:
if n % x == 0:
d = n//x
self._max_div = d
return d
def minimal_block(self, points):
r"""For a transitive group, finds the block system generated by
``points``.
Explanation
===========
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S``
is called a block under the action of ``G`` if for all ``g`` in ``G``
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]).
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G``
partition the set ``S`` and this set of translates is known as a block
system. Moreover, we obviously have that all blocks in the partition
have the same size, hence the block size divides ``|S|`` ([1], p.23).
A ``G``-congruence is an equivalence relation ``~`` on the set ``S``
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``.
For a transitive group, the equivalence classes of a ``G``-congruence
and the blocks of a block system are the same thing ([1], p.23).
The algorithm below checks the group for transitivity, and then finds
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2),
..., (p_0,p_{k-1})`` which is the same as finding the maximal block
system (i.e., the one with minimum block size) such that
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83).
It is an implementation of Atkinson's algorithm, as suggested in [1],
and manipulates an equivalence relation on the set ``S`` using a
union-find data structure. The running time is just above
`O(|points||S|)`. ([1], pp. 83-87; [7]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
>>> D.minimal_block([0, 1])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
See Also
========
_union_find_rep, _union_find_merge, is_transitive, is_primitive
"""
if not self.is_transitive():
return False
n = self.degree
gens = self.generators
# initialize the list of equivalence class representatives
parents = list(range(n))
ranks = [1]*n
not_rep = []
k = len(points)
# the block size must divide the degree of the group
if k > self.max_div:
return [0]*n
for i in range(k - 1):
parents[points[i + 1]] = points[0]
not_rep.append(points[i + 1])
ranks[points[0]] = k
i = 0
len_not_rep = k - 1
while i < len_not_rep:
gamma = not_rep[i]
i += 1
for gen in gens:
# find has side effects: performs path compression on the list
# of representatives
delta = self._union_find_rep(gamma, parents)
# union has side effects: performs union by rank on the list
# of representatives
temp = self._union_find_merge(gen(gamma), gen(delta), ranks,
parents, not_rep)
if temp == -1:
return [0]*n
len_not_rep += temp
for i in range(n):
# force path compression to get the final state of the equivalence
# relation
self._union_find_rep(i, parents)
# rewrite result so that block representatives are minimal
new_reps = {}
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)]
def conjugacy_class(self, x):
r"""Return the conjugacy class of an element in the group.
Explanation
===========
The conjugacy class of an element ``g`` in a group ``G`` is the set of
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which
``g = xax^{-1}``
for some ``a`` in ``G``.
Note that conjugacy is an equivalence relation, and therefore that
conjugacy classes are partitions of ``G``. For a list of all the
conjugacy classes of the group, use the conjugacy_classes() method.
In a permutation group, each conjugacy class corresponds to a particular
`cycle structure': for example, in ``S_3``, the conjugacy classes are:
* the identity class, ``{()}``
* all transpositions, ``{(1 2), (1 3), (2 3)}``
* all 3-cycles, ``{(1 2 3), (1 3 2)}``
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> S3 = SymmetricGroup(3)
>>> S3.conjugacy_class(Permutation(0, 1, 2))
{(0 1 2), (0 2 1)}
Notes
=====
This procedure computes the conjugacy class directly by finding the
orbit of the element under conjugation in G. This algorithm is only
feasible for permutation groups of relatively small order, but is like
the orbit() function itself in that respect.
"""
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G.
# Groups '93 Galway/St Andrews; edited by Campbell, C. M.
new_class = {x}
last_iteration = new_class
while len(last_iteration) > 0:
this_iteration = set()
for y in last_iteration:
for s in self.generators:
conjugated = s * y * (~s)
if conjugated not in new_class:
this_iteration.add(conjugated)
new_class.update(last_iteration)
last_iteration = this_iteration
return new_class
def conjugacy_classes(self):
r"""Return the conjugacy classes of the group.
Explanation
===========
As described in the documentation for the .conjugacy_class() function,
conjugacy is an equivalence relation on a group G which partitions the
set of elements. This method returns a list of all these conjugacy
classes of G.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> SymmetricGroup(3).conjugacy_classes()
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}]
"""
identity = _af_new(list(range(self.degree)))
known_elements = {identity}
classes = [known_elements.copy()]
for x in self.generate():
if x not in known_elements:
new_class = self.conjugacy_class(x)
classes.append(new_class)
known_elements.update(new_class)
return classes
def normal_closure(self, other, k=10):
r"""Return the normal closure of a subgroup/set of permutations.
Explanation
===========
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G``
is defined as the intersection of all normal subgroups of ``G`` that
contain ``A`` ([1], p.14). Alternatively, it is the group generated by
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a
generator of the subgroup ``\left\langle S\right\rangle`` generated by
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``)
([1], p.73).
Parameters
==========
other
a subgroup/list of permutations/single permutation
k
an implementation-specific parameter that determines the number
of conjugates that are adjoined to ``other`` at once
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup, AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)
>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
See Also
========
commutator, derived_subgroup, random_pr
Notes
=====
The algorithm is described in [1], pp. 73-74; it makes use of the
generation of random elements for permutation groups by the product
replacement algorithm.
"""
if hasattr(other, 'generators'):
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in other.generators):
return other
Z = PermutationGroup(other.generators[:])
base, strong_gens = Z.schreier_sims_incremental()
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
self._random_pr_init(r=10, n=20)
_loop = True
while _loop:
Z._random_pr_init(r=10, n=10)
for _ in range(k):
g = self.random_pr()
h = Z.random_pr()
conj = h^g
res = _strip(conj, base, basic_orbits, basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
gens = Z.generators
gens.append(conj)
Z = PermutationGroup(gens)
strong_gens.append(conj)
temp_base, temp_strong_gens = \
Z.schreier_sims_incremental(base, strong_gens)
base, strong_gens = temp_base, temp_strong_gens
strong_gens_distr = \
_distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base,
strong_gens_distr)
_loop = False
for g in self.generators:
for h in Z.generators:
conj = h^g
res = _strip(conj, base, basic_orbits,
basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
_loop = True
break
if _loop:
break
return Z
elif hasattr(other, '__getitem__'):
return self.normal_closure(PermutationGroup(other))
elif hasattr(other, 'array_form'):
return self.normal_closure(PermutationGroup([other]))
def orbit(self, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit_transversal
"""
return _orbit(self.degree, self.generators, alpha, action)
def orbit_rep(self, alpha, beta, schreier_vector=None):
"""Return a group element which sends ``alpha`` to ``beta``.
Explanation
===========
If ``beta`` is not in the orbit of ``alpha``, the function returns
``False``. This implementation makes use of the schreier vector.
For a proof of correctness, see [1], p.80
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
(0 4 1 2 3)
See Also
========
schreier_vector
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if schreier_vector[beta] is None:
return False
k = schreier_vector[beta]
gens = [x._array_form for x in self.generators]
a = []
while k != -1:
a.append(gens[k])
beta = gens[k].index(beta) # beta = (~gens[k])(beta)
k = schreier_vector[beta]
if a:
return _af_new(_af_rmuln(*a))
else:
return _af_new(list(range(self._degree)))
def orbit_transversal(self, alpha, pairs=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
For a permutation group `G`, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
See Also
========
orbit
"""
return _orbit_transversal(self._degree, self.generators, alpha, pairs)
def orbits(self, rep=False):
"""Return the orbits of ``self``, ordered according to lowest element
in each orbit.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>>> G = PermutationGroup([a, b])
>>> G.orbits()
[{0, 2, 3, 4, 6}, {1, 5}]
"""
return _orbits(self._degree, self._generators)
def order(self):
"""Return the order of the group: the number of permutations that
can be generated from elements of the group.
The number of permutations comprising the group is given by
``len(group)``; the length of each permutation in the group is
given by ``group.size``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.order()
6
See Also
========
degree
"""
if self._order is not None:
return self._order
if self._is_sym:
n = self._degree
self._order = factorial(n)
return self._order
if self._is_alt:
n = self._degree
self._order = factorial(n)/2
return self._order
m = prod([len(x) for x in self.basic_transversals])
self._order = m
return m
def index(self, H):
"""
Returns the index of a permutation group.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)
>>> b =Permutation(3)
>>> G = PermutationGroup([a])
>>> H = PermutationGroup([b])
>>> G.index(H)
3
"""
if H.is_subgroup(self):
return self.order()//H.order()
@property
def is_symmetric(self):
"""Return ``True`` if the group is symmetric.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> g = SymmetricGroup(5)
>>> g.is_symmetric
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3))
>>> g.is_symmetric
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_sym = self._is_sym
if _is_sym is not None:
return _is_sym
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if any(g.is_odd for g in self.generators):
self._is_sym, self._is_alt = True, False
return True
self._is_sym, self._is_alt = False, True
return False
return self._eval_is_alt_sym_naive(only_sym=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_sym=True)
@property
def is_alternating(self):
"""Return ``True`` if the group is alternating.
Examples
========
>>> from sympy.combinatorics import AlternatingGroup
>>> g = AlternatingGroup(5)
>>> g.is_alternating
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3, 4))
>>> g.is_alternating
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_alt = self._is_alt
if _is_alt is not None:
return _is_alt
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if all(g.is_even for g in self.generators):
self._is_sym, self._is_alt = False, True
return True
self._is_sym, self._is_alt = True, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
@classmethod
def _distinct_primes_lemma(cls, primes):
"""Subroutine to test if there is only one cyclic group for the
order."""
primes = sorted(primes)
l = len(primes)
for i in range(l):
for j in range(i+1, l):
if primes[j] % primes[i] == 1:
return None
return True
@property
def is_cyclic(self):
r"""
Return ``True`` if the group is Cyclic.
Examples
========
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> G = AbelianGroup(3, 4)
>>> G.is_cyclic
True
>>> G = AbelianGroup(4, 4)
>>> G.is_cyclic
False
Notes
=====
If the order of a group $n$ can be factored into the distinct
primes $p_1, p_2, \dots , p_s$ and if
.. math::
\forall i, j \in \{1, 2, \dots, s \}:
p_i \not \equiv 1 \pmod {p_j}
holds true, there is only one group of the order $n$ which
is a cyclic group [1]_. This is a generalization of the lemma
that the group of order $15, 35, \dots$ are cyclic.
And also, these additional lemmas can be used to test if a
group is cyclic if the order of the group is already found.
- If the group is abelian and the order of the group is
square-free, the group is cyclic.
- If the order of the group is less than $6$ and is not $4$, the
group is cyclic.
- If the order of the group is prime, the group is cyclic.
References
==========
.. [1] 1978: John S. Rose: A Course on Group Theory,
Introduction to Finite Group Theory: 1.4
"""
if self._is_cyclic is not None:
return self._is_cyclic
if len(self.generators) == 1:
self._is_cyclic = True
self._is_abelian = True
return True
if self._is_abelian is False:
self._is_cyclic = False
return False
order = self.order()
if order < 6:
self._is_abelian = True
if order != 4:
self._is_cyclic = True
return True
factors = factorint(order)
if all(v == 1 for v in factors.values()):
if self._is_abelian:
self._is_cyclic = True
return True
primes = list(factors.keys())
if PermutationGroup._distinct_primes_lemma(primes) is True:
self._is_cyclic = True
self._is_abelian = True
return True
if not self.is_abelian:
self._is_cyclic = False
return False
self._is_cyclic = all(
any(g**(order//p) != self.identity for g in self.generators)
for p, e in factors.items() if e > 1
)
return self._is_cyclic
@property
def is_dihedral(self):
r"""
Return ``True`` if the group is dihedral.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup
>>> G = PermutationGroup(Permutation(1, 6)(2, 5)(3, 4), Permutation(0, 1, 2, 3, 4, 5, 6))
>>> G.is_dihedral
True
>>> G = SymmetricGroup(3)
>>> G.is_dihedral
True
>>> G = CyclicGroup(6)
>>> G.is_dihedral
False
References
==========
.. [Di1] https://math.stackexchange.com/a/827273
.. [Di2] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf
.. [Di3] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
.. [Di4] https://en.wikipedia.org/wiki/Dihedral_group
"""
if self._is_dihedral is not None:
return self._is_dihedral
order = self.order()
if order % 2 == 1:
self._is_dihedral = False
return False
if order == 2:
self._is_dihedral = True
return True
if order == 4:
# The dihedral group of order 4 is the Klein 4-group.
self._is_dihedral = not self.is_cyclic
return self._is_dihedral
if self.is_abelian:
# The only abelian dihedral groups are the ones of orders 2 and 4.
self._is_dihedral = False
return False
# Now we know the group is of even order >= 6, and nonabelian.
n = order // 2
# Handle special cases where there are exactly two generators.
gens = self.generators
if len(gens) == 2:
x, y = gens
a, b = x.order(), y.order()
# Make a >= b
if a < b:
x, y, a, b = y, x, b, a
# Using Theorem 2.1 of [Di3]:
if a == 2 == b:
self._is_dihedral = True
return True
# Using Theorem 1.1 of [Di3]:
if a == n and b == 2 and y*x*y == ~x:
self._is_dihedral = True
return True
# Proceed with algorithm of [Di1]
# Find elements of orders 2 and n
order_2, order_n = [], []
for p in self.elements:
k = p.order()
if k == 2:
order_2.append(p)
elif k == n:
order_n.append(p)
if len(order_2) != n + 1 - (n % 2):
self._is_dihedral = False
return False
if not order_n:
self._is_dihedral = False
return False
x = order_n[0]
# Want an element y of order 2 that is not a power of x
# (i.e. that is not the 180-deg rotation, when n is even).
y = order_2[0]
if n % 2 == 0 and y == x**(n//2):
y = order_2[1]
self._is_dihedral = (y*x*y == ~x)
return self._is_dihedral
def pointwise_stabilizer(self, points, incremental=True):
r"""Return the pointwise stabilizer for a set of points.
Explanation
===========
For a permutation group `G` and a set of points
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of
`p_1, p_2, \ldots, p_k` is defined as
`G_{p_1,\ldots, p_k} =
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20).
It is a subgroup of `G`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(7)
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
See Also
========
stabilizer, schreier_sims_incremental
Notes
=====
When incremental == True,
rather than the obvious implementation using successive calls to
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm
to obtain a base with starting segment - the given points.
"""
if incremental:
base, strong_gens = self.schreier_sims_incremental(base=points)
stab_gens = []
degree = self.degree
for gen in strong_gens:
if [gen(point) for point in points] == points:
stab_gens.append(gen)
if not stab_gens:
stab_gens = _af_new(list(range(degree)))
return PermutationGroup(stab_gens)
else:
gens = self._generators
degree = self.degree
for x in points:
gens = _stabilizer(degree, gens, x)
return PermutationGroup(gens)
def make_perm(self, n, seed=None):
"""
Multiply ``n`` randomly selected permutations from
pgroup together, starting with the identity
permutation. If ``n`` is a list of integers, those
integers will be used to select the permutations and they
will be applied in L to R order: make_perm((A, B, C)) will
give CBA(I) where I is the identity permutation.
``seed`` is used to set the seed for the random selection
of permutations from pgroup. If this is a list of integers,
the corresponding permutations from pgroup will be selected
in the order give. This is mainly used for testing purposes.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make_perm(1, [0])
(0 1)(2 3)
>>> G.make_perm(3, [0, 1, 0])
(0 2 3 1)
>>> G.make_perm([0, 1, 0])
(0 2 3 1)
See Also
========
random
"""
if is_sequence(n):
if seed is not None:
raise ValueError('If n is a sequence, seed should be None')
n, seed = len(n), n
else:
try:
n = int(n)
except TypeError:
raise ValueError('n must be an integer or a sequence.')
randomrange = _randrange(seed)
# start with the identity permutation
result = Permutation(list(range(self.degree)))
m = len(self)
for _ in range(n):
p = self[randomrange(m)]
result = rmul(result, p)
return result
def random(self, af=False):
"""Return a random group element
"""
rank = randrange(self.order())
return self.coset_unrank(rank, af)
def random_pr(self, gen_count=11, iterations=50, _random_prec=None):
"""Return a random group element using product replacement.
Explanation
===========
For the details of the product replacement algorithm, see
``_random_pr_init`` In ``random_pr`` the actual 'product replacement'
is performed. Notice that if the attribute ``_random_gens``
is empty, it needs to be initialized by ``_random_pr_init``.
See Also
========
_random_pr_init
"""
if self._random_gens == []:
self._random_pr_init(gen_count, iterations)
random_gens = self._random_gens
r = len(random_gens) - 1
# handle randomized input for testing purposes
if _random_prec is None:
s = randrange(r)
t = randrange(r - 1)
if t == s:
t = r - 1
x = choice([1, 2])
e = choice([-1, 1])
else:
s = _random_prec['s']
t = _random_prec['t']
if t == s:
t = r - 1
x = _random_prec['x']
e = _random_prec['e']
if x == 1:
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e))
random_gens[r] = _af_rmul(random_gens[r], random_gens[s])
else:
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s])
random_gens[r] = _af_rmul(random_gens[s], random_gens[r])
return _af_new(random_gens[r])
def random_stab(self, alpha, schreier_vector=None, _random_prec=None):
"""Random element from the stabilizer of ``alpha``.
The schreier vector for ``alpha`` is an optional argument used
for speeding up repeated calls. The algorithm is described in [1], p.81
See Also
========
random_pr, orbit_rep
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if _random_prec is None:
rand = self.random_pr()
else:
rand = _random_prec['rand']
beta = rand(alpha)
h = self.orbit_rep(alpha, beta, schreier_vector)
return rmul(~h, rand)
def schreier_sims(self):
"""Schreier-Sims algorithm.
Explanation
===========
It computes the generators of the chain of stabilizers
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1`
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`,
and the corresponding ``s`` cosets.
An element of the group can be written as the product
`h_1*..*h_s`.
We use the incremental Schreier-Sims algorithm.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_transversals
[{0: (2)(0 1), 1: (2), 2: (1 2)},
{0: (2), 2: (0 2)}]
"""
if self._transversals:
return
self._schreier_sims()
return
def _schreier_sims(self, base=None):
schreier = self.schreier_sims_incremental(base=base, slp_dict=True)
base, strong_gens = schreier[:2]
self._base = base
self._strong_gens = strong_gens
self._strong_gens_slp = schreier[2]
if not base:
self._transversals = []
self._basic_orbits = []
return
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\
strong_gens_distr, slp=True)
# rewrite the indices stored in slps in terms of strong_gens
for i, slp in enumerate(slps):
gens = strong_gens_distr[i]
for k in slp:
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]]
self._transversals = transversals
self._basic_orbits = [sorted(x) for x in basic_orbits]
self._transversal_slp = slps
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
if base is None:
base = []
if gens is None:
gens = self.generators[:]
degree = self.degree
id_af = list(range(degree))
# handle the trivial group
if len(gens) == 1 and gens[0].is_Identity:
if slp_dict:
return base, gens, {gens[0]: [gens[0]]}
return base, gens
# prevent side effects
_base, _gens = base[:], gens[:]
# remove the identity as a generator
_gens = [x for x in _gens if not x.is_Identity]
# make sure no generator fixes all base points
for gen in _gens:
if all(x == gen._array_form[x] for x in _base):
for new in id_af:
if gen._array_form[new] != new:
break
else:
assert None # can this ever happen?
_base.append(new)
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
strong_gens_slp = []
# initialize the basic stabilizers, basic orbits and basic transversals
orbs = {}
transversals = {}
slps = {}
base_len = len(_base)
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
_base[i], pairs=True, af=True, slp=True)
transversals[i] = dict(transversals[i])
orbs[i] = list(transversals[i].keys())
# main loop: amend the stabilizer chain until we have generators
# for all stabilizers
i = base_len - 1
while i >= 0:
# this flag is used to continue with the main loop from inside
# a nested loop
continue_i = False
# test the generators for being a strong generating set
db = {}
for beta, u_beta in list(transversals[i].items()):
for j, gen in enumerate(strong_gens_distr[i]):
gb = gen._array_form[beta]
u1 = transversals[i][gb]
g1 = _af_rmul(gen._array_form, u_beta)
slp = [(i, g) for g in slps[i][beta]]
slp = [(i, j)] + slp
if g1 != u1:
# test if the schreier generator is in the i+1-th
# would-be basic stabilizer
y = True
try:
u1_inv = db[gb]
except KeyError:
u1_inv = db[gb] = _af_invert(u1)
schreier_gen = _af_rmul(u1_inv, g1)
u1_inv_slp = slps[i][gb][:]
u1_inv_slp.reverse()
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
slp = u1_inv_slp + slp
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
if j <= base_len:
# new strong generator h at level j
y = False
elif h:
# h fixes all base points
y = False
moved = 0
while h[moved] == moved:
moved += 1
_base.append(moved)
base_len += 1
strong_gens_distr.append([])
if y is False:
# if a new strong generator is found, update the
# data structures and start over
h = _af_new(h)
strong_gens_slp.append((h, slp))
for l in range(i + 1, j):
strong_gens_distr[l].append(h)
transversals[l], slps[l] =\
_orbit_transversal(degree, strong_gens_distr[l],
_base[l], pairs=True, af=True, slp=True)
transversals[l] = dict(transversals[l])
orbs[l] = list(transversals[l].keys())
i = j - 1
# continue main loop using the flag
continue_i = True
if continue_i is True:
break
if continue_i is True:
break
if continue_i is True:
continue
i -= 1
strong_gens = _gens[:]
if slp_dict:
# create the list of the strong generators strong_gens and
# rewrite the indices of strong_gens_slp in terms of the
# elements of strong_gens
for k, slp in strong_gens_slp:
strong_gens.append(k)
for i in range(len(slp)):
s = slp[i]
if isinstance(s[1], tuple):
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
else:
slp[i] = strong_gens_distr[s[0]][s[1]]
strong_gens_slp = dict(strong_gens_slp)
# add the original generators
for g in _gens:
strong_gens_slp[g] = [g]
return (_base, strong_gens, strong_gens_slp)
strong_gens.extend([k for k, _ in strong_gens_slp])
return _base, strong_gens
def schreier_sims_random(self, base=None, gens=None, consec_succ=10,
_random_prec=None):
r"""Randomized Schreier-Sims algorithm.
Explanation
===========
The randomized Schreier-Sims algorithm takes the sequence ``base``
and the generating set ``gens``, and extends ``base`` to a base, and
``gens`` to a strong generating set relative to that base with
probability of a wrong answer at most `2^{-consec\_succ}`,
provided the random generators are sufficiently random.
Parameters
==========
base
The sequence to be extended to a base.
gens
The generating set to be extended to a strong generating set.
consec_succ
The parameter defining the probability of a wrong answer.
_random_prec
An internal parameter used for testing purposes.
Returns
=======
(base, strong_gens)
``base`` is the base and ``strong_gens`` is the strong generating
set relative to it.
Examples
========
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(5)
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP
True
Notes
=====
The algorithm is described in detail in [1], pp. 97-98. It extends
the orbits ``orbs`` and the permutation groups ``stabs`` to
basic orbits and basic stabilizers for the base and strong generating
set produced in the end.
The idea of the extension process
is to "sift" random group elements through the stabilizer chain
and amend the stabilizers/orbits along the way when a sift
is not successful.
The helper function ``_strip`` is used to attempt
to decompose a random group element according to the current
state of the stabilizer chain and report whether the element was
fully decomposed (successful sift) or not (unsuccessful sift). In
the latter case, the level at which the sift failed is reported and
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly.
The halting condition is for ``consec_succ`` consecutive successful
sifts to pass. This makes sure that the current ``base`` and ``gens``
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`.
See Also
========
schreier_sims
"""
if base is None:
base = []
if gens is None:
gens = self.generators
base_len = len(base)
n = self.degree
# make sure no generator fixes all base points
for gen in gens:
if all(gen(x) == x for x in base):
new = 0
while gen._array_form[new] == new:
new += 1
base.append(new)
base_len += 1
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(base, gens)
# initialize the basic stabilizers, basic transversals and basic orbits
transversals = {}
orbs = {}
for i in range(base_len):
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i],
base[i], pairs=True))
orbs[i] = list(transversals[i].keys())
# initialize the number of consecutive elements sifted
c = 0
# start sifting random elements while the number of consecutive sifts
# is less than consec_succ
while c < consec_succ:
if _random_prec is None:
g = self.random_pr()
else:
g = _random_prec['g'].pop()
h, j = _strip(g, base, orbs, transversals)
y = True
# determine whether a new base point is needed
if j <= base_len:
y = False
elif not h.is_Identity:
y = False
moved = 0
while h(moved) == moved:
moved += 1
base.append(moved)
base_len += 1
strong_gens_distr.append([])
# if the element doesn't sift, amend the strong generators and
# associated stabilizers and orbits
if y is False:
for l in range(1, j):
strong_gens_distr[l].append(h)
transversals[l] = dict(_orbit_transversal(n,
strong_gens_distr[l], base[l], pairs=True))
orbs[l] = list(transversals[l].keys())
c = 0
else:
c += 1
# build the strong generating set
strong_gens = strong_gens_distr[0][:]
for gen in strong_gens_distr[1]:
if gen not in strong_gens:
strong_gens.append(gen)
return base, strong_gens
def schreier_vector(self, alpha):
"""Computes the schreier vector for ``alpha``.
Explanation
===========
The Schreier vector efficiently stores information
about the orbit of ``alpha``. It can later be used to quickly obtain
elements of the group that send ``alpha`` to a particular element
in the orbit. Notice that the Schreier vector depends on the order
in which the group generators are listed. For a definition, see [3].
Since list indices start from zero, we adopt the convention to use
"None" instead of 0 to signify that an element does not belong
to the orbit.
For the algorithm and its correctness, see [2], pp.78-80.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_vector(0)
[-1, None, 0, 1, None, 1, 0]
See Also
========
orbit
"""
n = self.degree
v = [None]*n
v[alpha] = -1
orb = [alpha]
used = [False]*n
used[alpha] = True
gens = self.generators
r = len(gens)
for b in orb:
for i in range(r):
temp = gens[i]._array_form[b]
if used[temp] is False:
orb.append(temp)
used[temp] = True
v[temp] = i
return v
def stabilizer(self, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([
(5)(0 4)(1 3)])
See Also
========
orbit
"""
return PermGroup(_stabilizer(self._degree, self._generators, alpha))
@property
def strong_gens(self):
r"""Return a strong generating set from the Schreier-Sims algorithm.
Explanation
===========
A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group
`G` is a strong generating set relative to the sequence of points
(referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for
`1 \leq i \leq k` we have that the intersection of the pointwise
stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and
strong generating set and their applications are discussed in depth
in [1], pp. 87-89 and [2], pp. 55-57.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> D.strong_gens
[(0 1 2 3), (0 3)(1 2), (1 3)]
>>> D.base
[0, 1]
See Also
========
base, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._strong_gens == []:
self.schreier_sims()
return self._strong_gens
def subgroup(self, gens):
"""
Return the subgroup generated by `gens` which is a list of
elements of the group
"""
if not all(g in self for g in gens):
raise ValueError("The group does not contain the supplied generators")
G = PermutationGroup(gens)
return G
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None,
init_subgroup=None):
"""Find the subgroup of all elements satisfying the property ``prop``.
Explanation
===========
This is done by a depth-first search with respect to base images that
uses several tests to prune the search tree.
Parameters
==========
prop
The property to be used. Has to be callable on group elements
and always return ``True`` or ``False``. It is assumed that
all group elements satisfying ``prop`` indeed form a subgroup.
base
A base for the supergroup.
strong_gens
A strong generating set for the supergroup.
tests
A list of callables of length equal to the length of ``base``.
These are used to rule out group elements by partial base images,
so that ``tests[l](g)`` returns False if the element ``g`` is known
not to satisfy prop base on where g sends the first ``l + 1`` base
points.
init_subgroup
if a subgroup of the sought group is
known in advance, it can be passed to the function as this
parameter.
Returns
=======
res
The subgroup of all elements satisfying ``prop``. The generating
set for this group is guaranteed to be a strong generating set
relative to the base ``base``.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> prop_even = lambda x: x.is_even
>>> base, strong_gens = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
>>> G.is_subgroup(AlternatingGroup(7))
True
>>> _verify_bsgs(G, base, G.generators)
True
Notes
=====
This function is extremely lengthy and complicated and will require
some careful attention. The implementation is described in
[1], pp. 114-117, and the comments for the code here follow the lines
of the pseudocode in the book for clarity.
The complexity is exponential in general, since the search process by
itself visits all members of the supergroup. However, there are a lot
of tests which are used to prune the search tree, and users can define
their own tests via the ``tests`` parameter, so in practice, and for
some computations, it's not terrible.
A crucial part in the procedure is the frequent base change performed
(this is line 11 in the pseudocode) in order to obtain a new basic
stabilizer. The book mentiones that this can be done by using
``.baseswap(...)``, however the current implementation uses a more
straightforward way to find the next basic stabilizer - calling the
function ``.stabilizer(...)`` on the previous basic stabilizer.
"""
# initialize BSGS and basic group properties
def get_reps(orbits):
# get the minimal element in the base ordering
return [min(orbit, key = lambda x: base_ordering[x]) \
for orbit in orbits]
def update_nu(l):
temp_index = len(basic_orbits[l]) + 1 -\
len(res_basic_orbits_init_base[l])
# this corresponds to the element larger than all points
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
if base is None:
base, strong_gens = self.schreier_sims_incremental()
base_len = len(base)
degree = self.degree
identity = _af_new(list(range(degree)))
base_ordering = _base_ordering(base, degree)
# add an element larger than all points
base_ordering.append(degree)
# add an element smaller than all points
base_ordering.append(-1)
# compute BSGS-related structures
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals = _orbits_transversals_from_bsgs(base,
strong_gens_distr)
# handle subgroup initialization and tests
if init_subgroup is None:
init_subgroup = PermutationGroup([identity])
if tests is None:
trivial_test = lambda x: True
tests = []
for i in range(base_len):
tests.append(trivial_test)
# line 1: more initializations.
res = init_subgroup
f = base_len - 1
l = base_len - 1
# line 2: set the base for K to the base for G
res_base = base[:]
# line 3: compute BSGS and related structures for K
res_base, res_strong_gens = res.schreier_sims_incremental(
base=res_base)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_generators = res.generators
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\
for i in range(base_len)]
# initialize orbit representatives
orbit_reps = [None]*base_len
# line 4: orbit representatives for f-th basic stabilizer of K
orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(orbits)
# line 5: remove the base point from the representatives to avoid
# getting the identity element as a generator for K
orbit_reps[f].remove(base[f])
# line 6: more initializations
c = [0]*base_len
u = [identity]*base_len
sorted_orbits = [None]*base_len
for i in range(base_len):
sorted_orbits[i] = basic_orbits[i][:]
sorted_orbits[i].sort(key=lambda point: base_ordering[point])
# line 7: initializations
mu = [None]*base_len
nu = [None]*base_len
# this corresponds to the element smaller than all points
mu[l] = degree + 1
update_nu(l)
# initialize computed words
computed_words = [identity]*base_len
# line 8: main loop
while True:
# apply all the tests
while l < base_len - 1 and \
computed_words[l](base[l]) in orbit_reps[l] and \
base_ordering[mu[l]] < \
base_ordering[computed_words[l](base[l])] < \
base_ordering[nu[l]] and \
tests[l](computed_words):
# line 11: change the (partial) base of K
new_point = computed_words[l](base[l])
res_base[l] = new_point
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l],
new_point)
res_strong_gens_distr[l + 1] = new_stab_gens
# line 12: calculate minimal orbit representatives for the
# l+1-th basic stabilizer
orbits = _orbits(degree, new_stab_gens)
orbit_reps[l + 1] = get_reps(orbits)
# line 13: amend sorted orbits
l += 1
temp_orbit = [computed_words[l - 1](point) for point
in basic_orbits[l]]
temp_orbit.sort(key=lambda point: base_ordering[point])
sorted_orbits[l] = temp_orbit
# lines 14 and 15: update variables used minimality tests
new_mu = degree + 1
for i in range(l):
if base[l] in res_basic_orbits_init_base[i]:
candidate = computed_words[i](base[i])
if base_ordering[candidate] > base_ordering[new_mu]:
new_mu = candidate
mu[l] = new_mu
update_nu(l)
# line 16: determine the new transversal element
c[l] = 0
temp_point = sorted_orbits[l][c[l]]
gamma = computed_words[l - 1]._array_form.index(temp_point)
u[l] = transversals[l][gamma]
# update computed words
computed_words[l] = rmul(computed_words[l - 1], u[l])
# lines 17 & 18: apply the tests to the group element found
g = computed_words[l]
temp_point = g(base[l])
if l == base_len - 1 and \
base_ordering[mu[l]] < \
base_ordering[temp_point] < base_ordering[nu[l]] and \
temp_point in orbit_reps[l] and \
tests[l](computed_words) and \
prop(g):
# line 19: reset the base of K
res_generators.append(g)
res_base = base[:]
# line 20: recalculate basic orbits (and transversals)
res_strong_gens.append(g)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \
for i in range(base_len)]
# line 21: recalculate orbit representatives
# line 22: reset the search depth
orbit_reps[f] = get_reps(orbits)
l = f
# line 23: go up the tree until in the first branch not fully
# searched
while l >= 0 and c[l] == len(basic_orbits[l]) - 1:
l = l - 1
# line 24: if the entire tree is traversed, return K
if l == -1:
return PermutationGroup(res_generators)
# lines 25-27: update orbit representatives
if l < f:
# line 26
f = l
c[l] = 0
# line 27
temp_orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(temp_orbits)
# line 28: update variables used for minimality testing
mu[l] = degree + 1
temp_index = len(basic_orbits[l]) + 1 - \
len(res_basic_orbits_init_base[l])
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
# line 29: set the next element from the current branch and update
# accordingly
c[l] += 1
if l == 0:
gamma = sorted_orbits[l][c[l]]
else:
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]])
u[l] = transversals[l][gamma]
if l == 0:
computed_words[l] = u[l]
else:
computed_words[l] = rmul(computed_words[l - 1], u[l])
@property
def transitivity_degree(self):
r"""Compute the degree of transitivity of the group.
Explanation
===========
A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is
``k``-fold transitive, if, for any `k` points
`(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points
`(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that
`g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k`
The degree of transitivity of `G` is the maximum ``k`` such that
`G` is ``k``-fold transitive. ([8])
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
See Also
========
is_transitive, orbit
"""
if self._transitivity_degree is None:
n = self.degree
G = self
# if G is k-transitive, a tuple (a_0,..,a_k)
# can be brought to (b_0,...,b_(k-1), b_k)
# where b_0,...,b_(k-1) are fixed points;
# consider the group G_k which stabilizes b_0,...,b_(k-1)
# if G_k is transitive on the subset excluding b_0,...,b_(k-1)
# then G is (k+1)-transitive
for i in range(n):
orb = G.orbit(i)
if len(orb) != n - i:
self._transitivity_degree = i
return i
G = G.stabilizer(i)
self._transitivity_degree = n
return n
else:
return self._transitivity_degree
def _p_elements_group(self, p):
'''
For an abelian p-group, return the subgroup consisting of
all elements of order p (and the identity)
'''
gens = self.generators[:]
gens = sorted(gens, key=lambda x: x.order(), reverse=True)
gens_p = [g**(g.order()/p) for g in gens]
gens_r = []
for i in range(len(gens)):
x = gens[i]
x_order = x.order()
# x_p has order p
x_p = x**(x_order/p)
if i > 0:
P = PermutationGroup(gens_p[:i])
else:
P = PermutationGroup(self.identity)
if x**(x_order/p) not in P:
gens_r.append(x**(x_order/p))
else:
# replace x by an element of order (x.order()/p)
# so that gens still generates G
g = P.generator_product(x_p, original=True)
for s in g:
x = x*s**-1
x_order = x_order/p
# insert x to gens so that the sorting is preserved
del gens[i]
del gens_p[i]
j = i - 1
while j < len(gens) and gens[j].order() >= x_order:
j += 1
gens = gens[:j] + [x] + gens[j:]
gens_p = gens_p[:j] + [x] + gens_p[j:]
return PermutationGroup(gens_r)
def _sylow_alt_sym(self, p):
'''
Return a p-Sylow subgroup of a symmetric or an
alternating group.
Explanation
===========
The algorithm for this is hinted at in [1], Chapter 4,
Exercise 4.
For Sym(n) with n = p^i, the idea is as follows. Partition
the interval [0..n-1] into p equal parts, each of length p^(i-1):
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1].
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup
of ``self``) acting on each of the parts. Call the subgroups
P_1, P_2...P_p. The generators for the subgroups P_2...P_p
can be obtained from those of P_1 by applying a "shifting"
permutation to them, that is, a permutation mapping [0..p^(i-1)-1]
to the second part (the other parts are obtained by using the shift
multiple times). The union of this permutation and the generators
of P_1 is a p-Sylow subgroup of ``self``.
For n not equal to a power of p, partition
[0..n-1] in accordance with how n would be written in base p.
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup,
take the union of the generators for each of the parts.
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)}
from the first part, {(8 9)} from the second part and
nothing from the third. This gives 4 generators in total, and
the subgroup they generate is p-Sylow.
Alternating groups are treated the same except when p=2. In this
case, (0 1)(s s+1) should be added for an appropriate s (the start
of a part) for each part in the partitions.
See Also
========
sylow_subgroup, is_alt_sym
'''
n = self.degree
gens = []
identity = Permutation(n-1)
# the case of 2-sylow subgroups of alternating groups
# needs special treatment
alt = p == 2 and all(g.is_even for g in self.generators)
# find the presentation of n in base p
coeffs = []
m = n
while m > 0:
coeffs.append(m % p)
m = m // p
power = len(coeffs)-1
# for a symmetric group, gens[:i] is the generating
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For
# alternating groups, the same is given by gens[:2*(i-1)]
for i in range(1, power+1):
if i == 1 and alt:
# (0 1) shouldn't be added for alternating groups
continue
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)])
gens.append(identity*gen)
if alt:
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen
gens.append(gen)
# the first point in the current part (see the algorithm
# description in the docstring)
start = 0
while power > 0:
a = coeffs[power]
# make the permutation shifting the start of the first
# part ([0..p^i-1] for some i) to the current one
for _ in range(a):
shift = Permutation()
if start > 0:
for i in range(p**power):
shift = shift(i, start + i)
if alt:
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift
gens.append(gen)
j = 2*(power - 1)
else:
j = power
for i, gen in enumerate(gens[:j]):
if alt and i % 2 == 1:
continue
# shift the generator to the start of the
# partition part
gen = shift*gen*shift
gens.append(gen)
start += p**power
power = power-1
return gens
def sylow_subgroup(self, p):
'''
Return a p-Sylow subgroup of the group.
The algorithm is described in [1], Chapter 4, Section 7
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> D = DihedralGroup(6)
>>> S = D.sylow_subgroup(2)
>>> S.order()
4
>>> G = SymmetricGroup(6)
>>> S = G.sylow_subgroup(5)
>>> S.order()
5
>>> G1 = AlternatingGroup(3)
>>> G2 = AlternatingGroup(5)
>>> G3 = AlternatingGroup(9)
>>> S1 = G1.sylow_subgroup(3)
>>> S2 = G2.sylow_subgroup(3)
>>> S3 = G3.sylow_subgroup(3)
>>> len1 = len(S1.lower_central_series())
>>> len2 = len(S2.lower_central_series())
>>> len3 = len(S3.lower_central_series())
>>> len1 == len2
True
>>> len1 < len3
True
'''
from sympy.combinatorics.homomorphisms import (
orbit_homomorphism, block_homomorphism)
if not isprime(p):
raise ValueError("p must be a prime")
def is_p_group(G):
# check if the order of G is a power of p
# and return the power
m = G.order()
n = 0
while m % p == 0:
m = m/p
n += 1
if m == 1:
return True, n
return False, n
def _sylow_reduce(mu, nu):
# reduction based on two homomorphisms
# mu and nu with trivially intersecting
# kernels
Q = mu.image().sylow_subgroup(p)
Q = mu.invert_subgroup(Q)
nu = nu.restrict_to(Q)
R = nu.image().sylow_subgroup(p)
return nu.invert_subgroup(R)
order = self.order()
if order % p != 0:
return PermutationGroup([self.identity])
p_group, n = is_p_group(self)
if p_group:
return self
if self.is_alt_sym():
return PermutationGroup(self._sylow_alt_sym(p))
# if there is a non-trivial orbit with size not divisible
# by p, the sylow subgroup is contained in its stabilizer
# (by orbit-stabilizer theorem)
orbits = self.orbits()
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1]
if non_p_orbits:
G = self.stabilizer(list(non_p_orbits[0]).pop())
return G.sylow_subgroup(p)
if not self.is_transitive():
# apply _sylow_reduce to orbit actions
orbits = sorted(orbits, key=len)
omega1 = orbits.pop()
omega2 = orbits[0].union(*orbits)
mu = orbit_homomorphism(self, omega1)
nu = orbit_homomorphism(self, omega2)
return _sylow_reduce(mu, nu)
blocks = self.minimal_blocks()
if len(blocks) > 1:
# apply _sylow_reduce to block system actions
mu = block_homomorphism(self, blocks[0])
nu = block_homomorphism(self, blocks[1])
return _sylow_reduce(mu, nu)
elif len(blocks) == 1:
block = list(blocks)[0]
if any(e != 0 for e in block):
# self is imprimitive
mu = block_homomorphism(self, block)
if not is_p_group(mu.image())[0]:
S = mu.image().sylow_subgroup(p)
return mu.invert_subgroup(S).sylow_subgroup(p)
# find an element of order p
g = self.random()
g_order = g.order()
while g_order % p != 0 or g_order == 0:
g = self.random()
g_order = g.order()
g = g**(g_order // p)
if order % p**2 != 0:
return PermutationGroup(g)
C = self.centralizer(g)
while C.order() % p**n != 0:
S = C.sylow_subgroup(p)
s_order = S.order()
Z = S.center()
P = Z._p_elements_group(p)
h = P.random()
C_h = self.centralizer(h)
while C_h.order() % p*s_order != 0:
h = P.random()
C_h = self.centralizer(h)
C = C_h
return C.sylow_subgroup(p)
def _block_verify(self, L, alpha):
delta = sorted(list(self.orbit(alpha)))
# p[i] will be the number of the block
# delta[i] belongs to
p = [-1]*len(delta)
blocks = [-1]*len(delta)
B = [[]] # future list of blocks
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i]
t = L.orbit_transversal(alpha, pairs=True)
for a, beta in t:
B[0].append(a)
i_a = delta.index(a)
p[i_a] = 0
blocks[i_a] = alpha
u[i_a] = beta
rho = 0
m = 0 # number of blocks - 1
while rho <= m:
beta = B[rho][0]
for g in self.generators:
d = beta^g
i_d = delta.index(d)
sigma = p[i_d]
if sigma < 0:
# define a new block
m += 1
sigma = m
u[i_d] = u[delta.index(beta)]*g
p[i_d] = sigma
rep = d
blocks[i_d] = rep
newb = [rep]
for gamma in B[rho][1:]:
i_gamma = delta.index(gamma)
d = gamma^g
i_d = delta.index(d)
if p[i_d] < 0:
u[i_d] = u[i_gamma]*g
p[i_d] = sigma
blocks[i_d] = rep
newb.append(d)
else:
# B[rho] is not a block
s = u[i_gamma]*g*u[i_d]**(-1)
return False, s
B.append(newb)
else:
for h in B[rho][1:]:
if h^g not in B[sigma]:
# B[rho] is not a block
s = u[delta.index(beta)]*g*u[i_d]**(-1)
return False, s
rho += 1
return True, blocks
def _verify(H, K, phi, z, alpha):
'''
Return a list of relators ``rels`` in generators ``gens`_h` that
are mapped to ``H.generators`` by ``phi`` so that given a finite
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h``
<gens_h | rels_k + rels> is a finite presentation of ``H``.
Explanation
===========
``H`` should be generated by the union of ``K.generators`` and ``z``
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a
canonical injection from a free group into a permutation group
containing ``H``.
The algorithm is described in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics import free_group, Permutation, PermutationGroup
>>> from sympy.combinatorics.homomorphisms import homomorphism
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
>>> K = PermutationGroup(Permutation(5)(0, 2))
>>> F = free_group("x_0 x_1")[0]
>>> gens = F.generators
>>> phi = homomorphism(F, H, F.generators, H.generators)
>>> rels_k = [gens[0]**2] # relators for presentation of K
>>> z= Permutation(1, 5)
>>> check, rels_h = H._verify(K, phi, z, 1)
>>> check
True
>>> rels = rels_k + rels_h
>>> G = FpGroup(F, rels) # presentation of H
>>> G.order() == H.order()
True
See also
========
strong_presentation, presentation, stabilizer
'''
orbit = H.orbit(alpha)
beta = alpha^(z**-1)
K_beta = K.stabilizer(beta)
# orbit representatives of K_beta
gammas = [alpha, beta]
orbits = list({tuple(K_beta.orbit(o)) for o in orbit})
orbit_reps = [orb[0] for orb in orbits]
for rep in orbit_reps:
if rep not in gammas:
gammas.append(rep)
# orbit transversal of K
betas = [alpha, beta]
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)}
for s, g in K.orbit_transversal(beta, pairs=True):
if s not in transversal:
transversal[s] = transversal[beta]*phi.invert(g)
union = K.orbit(alpha).union(K.orbit(beta))
while (len(union) < len(orbit)):
for gamma in gammas:
if gamma in union:
r = gamma^z
if r not in union:
betas.append(r)
transversal[r] = transversal[gamma]*phi.invert(z)
for s, g in K.orbit_transversal(r, pairs=True):
if s not in transversal:
transversal[s] = transversal[r]*phi.invert(g)
union = union.union(K.orbit(r))
break
# compute relators
rels = []
for b in betas:
k_gens = K.stabilizer(b).generators
for y in k_gens:
new_rel = transversal[b]
gens = K.generator_product(y, original=True)
for g in gens[::-1]:
new_rel = new_rel*phi.invert(g)
new_rel = new_rel*transversal[b]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
for gamma in gammas:
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
return True, rels
def strong_presentation(self):
'''
Return a strong finite presentation of group. The generators
of the returned group are in the same order as the strong
generators of group.
The algorithm is based on Sims' Verify algorithm described
in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> P = DihedralGroup(4)
>>> G = P.strong_presentation()
>>> P.order() == G.order()
True
See Also
========
presentation, _verify
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import (block_homomorphism,
homomorphism, GroupHomomorphism)
strong_gens = self.strong_gens[:]
stabs = self.basic_stabilizers[:]
base = self.base[:]
# injection from a free group on len(strong_gens)
# generators into G
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))]
F = free_group(', '.join(gen_syms))[0]
phi = homomorphism(F, self, F.generators, strong_gens)
H = PermutationGroup(self.identity)
while stabs:
alpha = base.pop()
K = H
H = stabs.pop()
new_gens = [g for g in H.generators if g not in K]
if K.order() == 1:
z = new_gens.pop()
rels = [F.generators[-1]**z.order()]
intermediate_gens = [z]
K = PermutationGroup(intermediate_gens)
# add generators one at a time building up from K to H
while new_gens:
z = new_gens.pop()
intermediate_gens = [z] + intermediate_gens
K_s = PermutationGroup(intermediate_gens)
orbit = K_s.orbit(alpha)
orbit_k = K.orbit(alpha)
# split into cases based on the orbit of K_s
if orbit_k == orbit:
if z in K:
rel = phi.invert(z)
perm = z
else:
t = K.orbit_rep(alpha, alpha^z)
rel = phi.invert(z)*phi.invert(t)**-1
perm = z*t**-1
for g in K.generator_product(perm, original=True):
rel = rel*phi.invert(g)**-1
new_rels = [rel]
elif len(orbit_k) == 1:
# `success` is always true because `strong_gens`
# and `base` are already a verified BSGS. Later
# this could be changed to start with a randomly
# generated (potential) BSGS, and then new elements
# would have to be appended to it when `success`
# is false.
success, new_rels = K_s._verify(K, phi, z, alpha)
else:
# K.orbit(alpha) should be a block
# under the action of K_s on K_s.orbit(alpha)
check, block = K_s._block_verify(K, alpha)
if check:
# apply _verify to the action of K_s
# on the block system; for convenience,
# add the blocks as additional points
# that K_s should act on
t = block_homomorphism(K_s, block)
m = t.codomain.degree # number of blocks
d = K_s.degree
# conjugating with p will shift
# permutations in t.image() to
# higher numbers, e.g.
# p*(0 1)*p = (m m+1)
p = Permutation()
for i in range(m):
p *= Permutation(i, i+d)
t_img = t.images
# combine generators of K_s with their
# action on the block system
images = {g: g*p*t_img[g]*p for g in t_img}
for g in self.strong_gens[:-len(K_s.generators)]:
images[g] = g
K_s_act = PermutationGroup(list(images.values()))
f = GroupHomomorphism(self, K_s_act, images)
K_act = PermutationGroup([f(g) for g in K.generators])
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d)
for n in new_rels:
if n not in rels:
rels.append(n)
K = K_s
group = FpGroup(F, rels)
return simplify_presentation(group)
def presentation(self, eliminate_gens=True):
'''
Return an `FpGroup` presentation of the group.
The algorithm is described in [1], Chapter 6.1.
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.coset_table import CosetTable
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import homomorphism
if self._fp_presentation:
return self._fp_presentation
def _factor_group_by_rels(G, rels):
if isinstance(G, FpGroup):
rels.extend(G.relators)
return FpGroup(G.free_group, list(set(rels)))
return FpGroup(G, rels)
gens = self.generators
len_g = len(gens)
if len_g == 1:
order = gens[0].order()
# handle the trivial group
if order == 1:
return free_group([])[0]
F, x = free_group('x')
return FpGroup(F, [x**order])
if self.order() > 20:
half_gens = self.generators[0:(len_g+1)//2]
else:
half_gens = []
H = PermutationGroup(half_gens)
H_p = H.presentation()
len_h = len(H_p.generators)
C = self.coset_table(H)
n = len(C) # subgroup index
gen_syms = [('x_%d'%i) for i in range(len(gens))]
F = free_group(', '.join(gen_syms))[0]
# mapping generators of H_p to those of F
images = [F.generators[i] for i in range(len_h)]
R = homomorphism(H_p, F, H_p.generators, images, check=False)
# rewrite relators
rels = R(H_p.relators)
G_p = FpGroup(F, rels)
# injective homomorphism from G_p into self
T = homomorphism(G_p, self, G_p.generators, gens)
C_p = CosetTable(G_p, [])
C_p.table = [[None]*(2*len_g) for i in range(n)]
# initiate the coset transversal
transversal = [None]*n
transversal[0] = G_p.identity
# fill in the coset table as much as possible
for i in range(2*len_h):
C_p.table[0][i] = 0
gamma = 1
for alpha, x in product(range(n), range(2*len_g)):
beta = C[alpha][x]
if beta == gamma:
gen = G_p.generators[x//2]**((-1)**(x % 2))
transversal[beta] = transversal[alpha]*gen
C_p.table[alpha][x] = beta
C_p.table[beta][x + (-1)**(x % 2)] = alpha
gamma += 1
if gamma == n:
break
C_p.p = list(range(n))
beta = x = 0
while not C_p.is_complete():
# find the first undefined entry
while C_p.table[beta][x] == C[beta][x]:
x = (x + 1) % (2*len_g)
if x == 0:
beta = (beta + 1) % n
# define a new relator
gen = G_p.generators[x//2]**((-1)**(x % 2))
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1
perm = T(new_rel)
nxt = G_p.identity
for s in H.generator_product(perm, original=True):
nxt = nxt*T.invert(s)**-1
new_rel = new_rel*nxt
# continue coset enumeration
G_p = _factor_group_by_rels(G_p, [new_rel])
C_p.scan_and_fill(0, new_rel)
C_p = G_p.coset_enumeration([], strategy="coset_table",
draft=C_p, max_cosets=n, incomplete=True)
self._fp_presentation = simplify_presentation(G_p)
return self._fp_presentation
def polycyclic_group(self):
"""
Return the PolycyclicGroup instance with below parameters:
Explanation
===========
* pc_sequence : Polycyclic sequence is formed by collecting all
the missing generators between the adjacent groups in the
derived series of given permutation group.
* pc_series : Polycyclic series is formed by adding all the missing
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents
the derived series.
* relative_order : A list, computed by the ratio of adjacent groups in
pc_series.
"""
from sympy.combinatorics.pc_groups import PolycyclicGroup
if not self.is_polycyclic:
raise ValueError("The group must be solvable")
der = self.derived_series()
pc_series = []
pc_sequence = []
relative_order = []
pc_series.append(der[-1])
der.reverse()
for i in range(len(der)-1):
H = der[i]
for g in der[i+1].generators:
if g not in H:
H = PermutationGroup([g] + H.generators)
pc_series.insert(0, H)
pc_sequence.insert(0, g)
G1 = pc_series[0].order()
G2 = pc_series[1].order()
relative_order.insert(0, G1 // G2)
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None)
def _orbit(degree, generators, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.perm_groups import _orbit
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> _orbit(G.degree, G.generators, 0)
{0, 1, 2}
>>> _orbit(G.degree, G.generators, [0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit, orbit_transversal
"""
if not hasattr(alpha, '__getitem__'):
alpha = [alpha]
gens = [x._array_form for x in generators]
if len(alpha) == 1 or action == 'union':
orb = alpha
used = [False]*degree
for el in alpha:
used[el] = True
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] == False:
orb.append(temp)
used[temp] = True
return set(orb)
elif action == 'tuples':
alpha = tuple(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = tuple([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return set(orb)
elif action == 'sets':
alpha = frozenset(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = frozenset([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return {tuple(x) for x in orb}
def _orbits(degree, generators):
"""Compute the orbits of G.
If ``rep=False`` it returns a list of sets else it returns a list of
representatives of the orbits
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import _orbits
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> _orbits(a.size, [a, b])
[{0, 1, 2}]
"""
orbs = []
sorted_I = list(range(degree))
I = set(sorted_I)
while I:
i = sorted_I[0]
orb = _orbit(degree, generators, i)
orbs.append(orb)
# remove all indices that are in this orbit
I -= orb
sorted_I = [i for i in sorted_I if i not in orb]
return orbs
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
generators generators of the group ``G``
For a permutation group ``G``, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
if ``af`` is ``True``, the transversal elements are given in
array form.
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned
for `\beta \in Orb` where `slp_beta` is a list of indices of the
generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]`
`g_\beta = generators[i_n] \times \dots \times generators[i_1]`.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.perm_groups import _orbit_transversal
>>> G = DihedralGroup(6)
>>> _orbit_transversal(G.degree, G.generators, 0, False)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
"""
tr = [(alpha, list(range(degree)))]
slp_dict = {alpha: []}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
for x, px in tr:
px_slp = slp_dict[x]
for gen in gens:
temp = gen[x]
if used[temp] == False:
slp_dict[temp] = [gens.index(gen)] + px_slp
tr.append((temp, _af_rmul(gen, px)))
used[temp] = True
if pairs:
if not af:
tr = [(x, _af_new(y)) for x, y in tr]
if not slp:
return tr
return tr, slp_dict
if af:
tr = [y for _, y in tr]
if not slp:
return tr
return tr, slp_dict
tr = [_af_new(y) for _, y in tr]
if not slp:
return tr
return tr, slp_dict
def _stabilizer(degree, generators, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
degree : degree of G
generators : generators of G
Examples
========
>>> from sympy.combinatorics.perm_groups import _stabilizer
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> _stabilizer(G.degree, G.generators, 5)
[(5)(0 4)(1 3), (5)]
See Also
========
orbit
"""
orb = [alpha]
table = {alpha: list(range(degree))}
table_inv = {alpha: list(range(degree))}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
stab_gens = []
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] is False:
gen_temp = _af_rmul(gen, table[b])
orb.append(temp)
table[temp] = gen_temp
table_inv[temp] = _af_invert(gen_temp)
used[temp] = True
else:
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b])
if schreier_gen not in stab_gens:
stab_gens.append(schreier_gen)
return [_af_new(x) for x in stab_gens]
PermGroup = PermutationGroup
class SymmetricPermutationGroup(Basic):
"""
The class defining the lazy form of SymmetricGroup.
deg : int
"""
def __new__(cls, deg):
deg = _sympify(deg)
obj = Basic.__new__(cls, deg)
return obj
def __init__(self, *args, **kwargs):
self._deg = self.args[0]
self._order = None
def __contains__(self, i):
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> Permutation(1, 2, 3) in G
True
"""
if not isinstance(i, Permutation):
raise TypeError("A SymmetricPermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return i.size == self.degree
def order(self):
"""
Return the order of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.order()
24
"""
if self._order is not None:
return self._order
n = self._deg
self._order = factorial(n)
return self._order
@property
def degree(self):
"""
Return the degree of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.degree
4
"""
return self._deg
@property
def identity(self):
'''
Return the identity element of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.identity()
(3)
'''
return _af_new(list(range(self._deg)))
class Coset(Basic):
"""A left coset of a permutation group with respect to an element.
Parameters
==========
g : Permutation
H : PermutationGroup
dir : "+" or "-", If not specified by default it will be "+"
here ``dir`` specified the type of coset "+" represent the
right coset and "-" represent the left coset.
G : PermutationGroup, optional
The group which contains *H* as its subgroup and *g* as its
element.
If not specified, it would automatically become a symmetric
group ``SymmetricPermutationGroup(g.size)`` and
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree``
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup
used for representation purpose.
"""
def __new__(cls, g, H, G=None, dir="+"):
g = _sympify(g)
if not isinstance(g, Permutation):
raise NotImplementedError
H = _sympify(H)
if not isinstance(H, PermutationGroup):
raise NotImplementedError
if G is not None:
G = _sympify(G)
if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)):
raise NotImplementedError
if not H.is_subgroup(G):
raise ValueError("{} must be a subgroup of {}.".format(H, G))
if g not in G:
raise ValueError("{} must be an element of {}.".format(g, G))
else:
g_size = g.size
h_degree = H.degree
if g_size != h_degree:
raise ValueError(
"The size of the permutation {} and the degree of "
"the permutation group {} should be matching "
.format(g, H))
G = SymmetricPermutationGroup(g.size)
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("dir must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-'):
raise ValueError("dir must be one of '+' or '-' not %s" % dir)
obj = Basic.__new__(cls, g, H, G, dir)
return obj
def __init__(self, *args, **kwargs):
self._dir = self.args[3]
@property
def is_left_coset(self):
"""
Check if the coset is left coset that is ``gH``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="-")
>>> cst.is_left_coset
True
"""
return str(self._dir) == '-'
@property
def is_right_coset(self):
"""
Check if the coset is right coset that is ``Hg``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="+")
>>> cst.is_right_coset
True
"""
return str(self._dir) == '+'
def as_list(self):
"""
Return all the elements of coset in the form of list.
"""
g = self.args[0]
H = self.args[1]
cst = []
if str(self._dir) == '+':
for h in H.elements:
cst.append(h*g)
else:
for h in H.elements:
cst.append(g*h)
return cst
|
b3c6f322fe258955f0a894f622e60fb1e416e0c056dbecc3a5d1d45d0b1fedd5 | import itertools
from sympy.combinatorics.fp_groups import FpGroup, FpSubgroup, simplify_presentation
from sympy.combinatorics.free_groups import FreeGroup
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.core.numbers import igcd
from sympy.ntheory.factor_ import totient
from sympy.core.singleton import S
class GroupHomomorphism:
'''
A class representing group homomorphisms. Instantiate using `homomorphism()`.
References
==========
.. [1] Holt, D., Eick, B. and O'Brien, E. (2005). Handbook of computational group theory.
'''
def __init__(self, domain, codomain, images):
self.domain = domain
self.codomain = codomain
self.images = images
self._inverses = None
self._kernel = None
self._image = None
def _invs(self):
'''
Return a dictionary with `{gen: inverse}` where `gen` is a rewriting
generator of `codomain` (e.g. strong generator for permutation groups)
and `inverse` is an element of its preimage
'''
image = self.image()
inverses = {}
for k in list(self.images.keys()):
v = self.images[k]
if not (v in inverses
or v.is_identity):
inverses[v] = k
if isinstance(self.codomain, PermutationGroup):
gens = image.strong_gens
else:
gens = image.generators
for g in gens:
if g in inverses or g.is_identity:
continue
w = self.domain.identity
if isinstance(self.codomain, PermutationGroup):
parts = image._strong_gens_slp[g][::-1]
else:
parts = g
for s in parts:
if s in inverses:
w = w*inverses[s]
else:
w = w*inverses[s**-1]**-1
inverses[g] = w
return inverses
def invert(self, g):
'''
Return an element of the preimage of ``g`` or of each element
of ``g`` if ``g`` is a list.
Explanation
===========
If the codomain is an FpGroup, the inverse for equal
elements might not always be the same unless the FpGroup's
rewriting system is confluent. However, making a system
confluent can be time-consuming. If it's important, try
`self.codomain.make_confluent()` first.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.free_groups import FreeGroupElement
if isinstance(g, (Permutation, FreeGroupElement)):
if isinstance(self.codomain, FpGroup):
g = self.codomain.reduce(g)
if self._inverses is None:
self._inverses = self._invs()
image = self.image()
w = self.domain.identity
if isinstance(self.codomain, PermutationGroup):
gens = image.generator_product(g)[::-1]
else:
gens = g
# the following can't be "for s in gens:"
# because that would be equivalent to
# "for s in gens.array_form:" when g is
# a FreeGroupElement. On the other hand,
# when you call gens by index, the generator
# (or inverse) at position i is returned.
for i in range(len(gens)):
s = gens[i]
if s.is_identity:
continue
if s in self._inverses:
w = w*self._inverses[s]
else:
w = w*self._inverses[s**-1]**-1
return w
elif isinstance(g, list):
return [self.invert(e) for e in g]
def kernel(self):
'''
Compute the kernel of `self`.
'''
if self._kernel is None:
self._kernel = self._compute_kernel()
return self._kernel
def _compute_kernel(self):
G = self.domain
G_order = G.order()
if G_order is S.Infinity:
raise NotImplementedError(
"Kernel computation is not implemented for infinite groups")
gens = []
if isinstance(G, PermutationGroup):
K = PermutationGroup(G.identity)
else:
K = FpSubgroup(G, gens, normal=True)
i = self.image().order()
while K.order()*i != G_order:
r = G.random()
k = r*self.invert(self(r))**-1
if k not in K:
gens.append(k)
if isinstance(G, PermutationGroup):
K = PermutationGroup(gens)
else:
K = FpSubgroup(G, gens, normal=True)
return K
def image(self):
'''
Compute the image of `self`.
'''
if self._image is None:
values = list(set(self.images.values()))
if isinstance(self.codomain, PermutationGroup):
self._image = self.codomain.subgroup(values)
else:
self._image = FpSubgroup(self.codomain, values)
return self._image
def _apply(self, elem):
'''
Apply `self` to `elem`.
'''
if elem not in self.domain:
if isinstance(elem, (list, tuple)):
return [self._apply(e) for e in elem]
raise ValueError("The supplied element does not belong to the domain")
if elem.is_identity:
return self.codomain.identity
else:
images = self.images
value = self.codomain.identity
if isinstance(self.domain, PermutationGroup):
gens = self.domain.generator_product(elem, original=True)
for g in gens:
if g in self.images:
value = images[g]*value
else:
value = images[g**-1]**-1*value
else:
i = 0
for _, p in elem.array_form:
if p < 0:
g = elem[i]**-1
else:
g = elem[i]
value = value*images[g]**p
i += abs(p)
return value
def __call__(self, elem):
return self._apply(elem)
def is_injective(self):
'''
Check if the homomorphism is injective
'''
return self.kernel().order() == 1
def is_surjective(self):
'''
Check if the homomorphism is surjective
'''
im = self.image().order()
oth = self.codomain.order()
if im is S.Infinity and oth is S.Infinity:
return None
else:
return im == oth
def is_isomorphism(self):
'''
Check if `self` is an isomorphism.
'''
return self.is_injective() and self.is_surjective()
def is_trivial(self):
'''
Check is `self` is a trivial homomorphism, i.e. all elements
are mapped to the identity.
'''
return self.image().order() == 1
def compose(self, other):
'''
Return the composition of `self` and `other`, i.e.
the homomorphism phi such that for all g in the domain
of `other`, phi(g) = self(other(g))
'''
if not other.image().is_subgroup(self.domain):
raise ValueError("The image of `other` must be a subgroup of "
"the domain of `self`")
images = {g: self(other(g)) for g in other.images}
return GroupHomomorphism(other.domain, self.codomain, images)
def restrict_to(self, H):
'''
Return the restriction of the homomorphism to the subgroup `H`
of the domain.
'''
if not isinstance(H, PermutationGroup) or not H.is_subgroup(self.domain):
raise ValueError("Given H is not a subgroup of the domain")
domain = H
images = {g: self(g) for g in H.generators}
return GroupHomomorphism(domain, self.codomain, images)
def invert_subgroup(self, H):
'''
Return the subgroup of the domain that is the inverse image
of the subgroup ``H`` of the homomorphism image
'''
if not H.is_subgroup(self.image()):
raise ValueError("Given H is not a subgroup of the image")
gens = []
P = PermutationGroup(self.image().identity)
for h in H.generators:
h_i = self.invert(h)
if h_i not in P:
gens.append(h_i)
P = PermutationGroup(gens)
for k in self.kernel().generators:
if k*h_i not in P:
gens.append(k*h_i)
P = PermutationGroup(gens)
return P
def homomorphism(domain, codomain, gens, images=(), check=True):
'''
Create (if possible) a group homomorphism from the group ``domain``
to the group ``codomain`` defined by the images of the domain's
generators ``gens``. ``gens`` and ``images`` can be either lists or tuples
of equal sizes. If ``gens`` is a proper subset of the group's generators,
the unspecified generators will be mapped to the identity. If the
images are not specified, a trivial homomorphism will be created.
If the given images of the generators do not define a homomorphism,
an exception is raised.
If ``check`` is ``False``, do not check whether the given images actually
define a homomorphism.
'''
if not isinstance(domain, (PermutationGroup, FpGroup, FreeGroup)):
raise TypeError("The domain must be a group")
if not isinstance(codomain, (PermutationGroup, FpGroup, FreeGroup)):
raise TypeError("The codomain must be a group")
generators = domain.generators
if not all(g in generators for g in gens):
raise ValueError("The supplied generators must be a subset of the domain's generators")
if not all(g in codomain for g in images):
raise ValueError("The images must be elements of the codomain")
if images and len(images) != len(gens):
raise ValueError("The number of images must be equal to the number of generators")
gens = list(gens)
images = list(images)
images.extend([codomain.identity]*(len(generators)-len(images)))
gens.extend([g for g in generators if g not in gens])
images = dict(zip(gens,images))
if check and not _check_homomorphism(domain, codomain, images):
raise ValueError("The given images do not define a homomorphism")
return GroupHomomorphism(domain, codomain, images)
def _check_homomorphism(domain, codomain, images):
"""
Check that a given mapping of generators to images defines a homomorphism.
Parameters
==========
domain : PermutationGroup, FpGroup, FreeGroup
codomain : PermutationGroup, FpGroup, FreeGroup
images : dict
The set of keys must be equal to domain.generators.
The values must be elements of the codomain.
"""
pres = domain if hasattr(domain, 'relators') else domain.presentation()
rels = pres.relators
gens = pres.generators
symbols = [g.ext_rep[0] for g in gens]
symbols_to_domain_generators = dict(zip(symbols, domain.generators))
identity = codomain.identity
def _image(r):
w = identity
for symbol, power in r.array_form:
g = symbols_to_domain_generators[symbol]
w *= images[g]**power
return w
for r in rels:
if isinstance(codomain, FpGroup):
s = codomain.equals(_image(r), identity)
if s is None:
# only try to make the rewriting system
# confluent when it can't determine the
# truth of equality otherwise
success = codomain.make_confluent()
s = codomain.equals(_image(r), identity)
if s is None and not success:
raise RuntimeError("Can't determine if the images "
"define a homomorphism. Try increasing "
"the maximum number of rewriting rules "
"(group._rewriting_system.set_max(new_value); "
"the current value is stored in group._rewriting"
"_system.maxeqns)")
else:
s = _image(r).is_identity
if not s:
return False
return True
def orbit_homomorphism(group, omega):
'''
Return the homomorphism induced by the action of the permutation
group ``group`` on the set ``omega`` that is closed under the action.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
codomain = SymmetricGroup(len(omega))
identity = codomain.identity
omega = list(omega)
images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
group._schreier_sims(base=omega)
H = GroupHomomorphism(group, codomain, images)
if len(group.basic_stabilizers) > len(omega):
H._kernel = group.basic_stabilizers[len(omega)]
else:
H._kernel = PermutationGroup([group.identity])
return H
def block_homomorphism(group, blocks):
'''
Return the homomorphism induced by the action of the permutation
group ``group`` on the block system ``blocks``. The latter should be
of the same form as returned by the ``minimal_block`` method for
permutation groups, namely a list of length ``group.degree`` where
the i-th entry is a representative of the block i belongs to.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
n = len(blocks)
# number the blocks; m is the total number,
# b is such that b[i] is the number of the block i belongs to,
# p is the list of length m such that p[i] is the representative
# of the i-th block
m = 0
p = []
b = [None]*n
for i in range(n):
if blocks[i] == i:
p.append(i)
b[i] = m
m += 1
for i in range(n):
b[i] = b[blocks[i]]
codomain = SymmetricGroup(m)
# the list corresponding to the identity permutation in codomain
identity = range(m)
images = {g: Permutation([b[p[i]^g] for i in identity]) for g in group.generators}
H = GroupHomomorphism(group, codomain, images)
return H
def group_isomorphism(G, H, isomorphism=True):
'''
Compute an isomorphism between 2 given groups.
Parameters
==========
G : A finite ``FpGroup`` or a ``PermutationGroup``.
First group.
H : A finite ``FpGroup`` or a ``PermutationGroup``
Second group.
isomorphism : bool
This is used to avoid the computation of homomorphism
when the user only wants to check if there exists
an isomorphism between the groups.
Returns
=======
If isomorphism = False -- Returns a boolean.
If isomorphism = True -- Returns a boolean and an isomorphism between `G` and `H`.
Examples
========
>>> from sympy.combinatorics import free_group, Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> from sympy.combinatorics.homomorphisms import group_isomorphism
>>> from sympy.combinatorics.named_groups import DihedralGroup, AlternatingGroup
>>> D = DihedralGroup(8)
>>> p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
>>> P = PermutationGroup(p)
>>> group_isomorphism(D, P)
(False, None)
>>> F, a, b = free_group("a, b")
>>> G = FpGroup(F, [a**3, b**3, (a*b)**2])
>>> H = AlternatingGroup(4)
>>> (check, T) = group_isomorphism(G, H)
>>> check
True
>>> T(b*a*b**-1*a**-1*b**-1)
(0 2 3)
Notes
=====
Uses the approach suggested by Robert Tarjan to compute the isomorphism between two groups.
First, the generators of ``G`` are mapped to the elements of ``H`` and
we check if the mapping induces an isomorphism.
'''
if not isinstance(G, (PermutationGroup, FpGroup)):
raise TypeError("The group must be a PermutationGroup or an FpGroup")
if not isinstance(H, (PermutationGroup, FpGroup)):
raise TypeError("The group must be a PermutationGroup or an FpGroup")
if isinstance(G, FpGroup) and isinstance(H, FpGroup):
G = simplify_presentation(G)
H = simplify_presentation(H)
# Two infinite FpGroups with the same generators are isomorphic
# when the relators are same but are ordered differently.
if G.generators == H.generators and (G.relators).sort() == (H.relators).sort():
if not isomorphism:
return True
return (True, homomorphism(G, H, G.generators, H.generators))
# `_H` is the permutation group isomorphic to `H`.
_H = H
g_order = G.order()
h_order = H.order()
if g_order is S.Infinity:
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
if isinstance(H, FpGroup):
if h_order is S.Infinity:
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
_H, h_isomorphism = H._to_perm_group()
if (g_order != h_order) or (G.is_abelian != H.is_abelian):
if not isomorphism:
return False
return (False, None)
if not isomorphism:
# Two groups of the same cyclic numbered order
# are isomorphic to each other.
n = g_order
if (igcd(n, totient(n))) == 1:
return True
# Match the generators of `G` with subsets of `_H`
gens = list(G.generators)
for subset in itertools.permutations(_H, len(gens)):
images = list(subset)
images.extend([_H.identity]*(len(G.generators)-len(images)))
_images = dict(zip(gens,images))
if _check_homomorphism(G, _H, _images):
if isinstance(H, FpGroup):
images = h_isomorphism.invert(images)
T = homomorphism(G, H, G.generators, images, check=False)
if T.is_isomorphism():
# It is a valid isomorphism
if not isomorphism:
return True
return (True, T)
if not isomorphism:
return False
return (False, None)
def is_isomorphic(G, H):
'''
Check if the groups are isomorphic to each other
Parameters
==========
G : A finite ``FpGroup`` or a ``PermutationGroup``
First group.
H : A finite ``FpGroup`` or a ``PermutationGroup``
Second group.
Returns
=======
boolean
'''
return group_isomorphism(G, H, isomorphism=False)
|
0ff9407be6345759f95b7273b56b37e2d51ab134c580da908b832e3d9739a099 | from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import Float, _illegal
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (Abs, sign, arg, re)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.special.gamma_functions import gamma
from sympy.polys import PolynomialError, factor
from sympy.series.order import Order
from .gruntz import gruntz
def limit(e, z, z0, dir="+"):
"""Computes the limit of ``e(z)`` at the point ``z0``.
Parameters
==========
e : expression, the limit of which is to be taken
z : symbol representing the variable in the limit.
Other symbols are treated as constants. Multivariate limits
are not supported.
z0 : the value toward which ``z`` tends. Can be any expression,
including ``oo`` and ``-oo``.
dir : string, optional (default: "+")
The limit is bi-directional if ``dir="+-"``, from the right
(z->z0+) if ``dir="+"``, and from the left (z->z0-) if
``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir``
argument is determined from the direction of the infinity
(i.e., ``dir="-"`` for ``oo``).
Examples
========
>>> from sympy import limit, sin, oo
>>> from sympy.abc import x
>>> limit(sin(x)/x, x, 0)
1
>>> limit(1/x, x, 0) # default dir='+'
oo
>>> limit(1/x, x, 0, dir="-")
-oo
>>> limit(1/x, x, 0, dir='+-')
zoo
>>> limit(1/x, x, oo)
0
Notes
=====
First we try some heuristics for easy and frequent cases like "x", "1/x",
"x**2" and similar, so that it's fast. For all other cases, we use the
Gruntz algorithm (see the gruntz() function).
See Also
========
limit_seq : returns the limit of a sequence.
"""
return Limit(e, z, z0, dir).doit(deep=False)
def heuristics(e, z, z0, dir):
"""Computes the limit of an expression term-wise.
Parameters are the same as for the ``limit`` function.
Works with the arguments of expression ``e`` one by one, computing
the limit of each and then combining the results. This approach
works only for simple limits, but it is fast.
"""
rv = None
if z0 is S.Infinity:
rv = limit(e.subs(z, 1/z), z, S.Zero, "+")
if isinstance(rv, Limit):
return
elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function:
r = []
from sympy.simplify.simplify import together
for a in e.args:
l = limit(a, z, z0, dir)
if l.has(S.Infinity) and l.is_finite is None:
if isinstance(e, Add):
m = factor_terms(e)
if not isinstance(m, Mul): # try together
m = together(m)
if not isinstance(m, Mul): # try factor if the previous methods failed
m = factor(e)
if isinstance(m, Mul):
return heuristics(m, z, z0, dir)
return
return
elif isinstance(l, Limit):
return
elif l is S.NaN:
return
else:
r.append(l)
if r:
rv = e.func(*r)
if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r):
r2 = []
e2 = []
for ii, rval in enumerate(r):
if isinstance(rval, AccumBounds):
r2.append(rval)
else:
e2.append(e.args[ii])
if len(e2) > 0:
e3 = Mul(*e2).simplify()
l = limit(e3, z, z0, dir)
rv = l * Mul(*r2)
if rv is S.NaN:
try:
from sympy.simplify.ratsimp import ratsimp
rat_e = ratsimp(e)
except PolynomialError:
return
if rat_e is S.NaN or rat_e == e:
return
return limit(rat_e, z, z0, dir)
return rv
class Limit(Expr):
"""Represents an unevaluated limit.
Examples
========
>>> from sympy import Limit, sin
>>> from sympy.abc import x
>>> Limit(sin(x)/x, x, 0)
Limit(sin(x)/x, x, 0, dir='+')
>>> Limit(1/x, x, 0, dir="-")
Limit(1/x, x, 0, dir='-')
"""
def __new__(cls, e, z, z0, dir="+"):
e = sympify(e)
z = sympify(z)
z0 = sympify(z0)
if z0 in (S.Infinity, S.ImaginaryUnit*S.Infinity):
dir = "-"
elif z0 in (S.NegativeInfinity, S.ImaginaryUnit*S.NegativeInfinity):
dir = "+"
if(z0.has(z)):
raise NotImplementedError("Limits approaching a variable point are"
" not supported (%s -> %s)" % (z, z0))
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("direction must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-', '+-'):
raise ValueError("direction must be one of '+', '-' "
"or '+-', not %s" % dir)
obj = Expr.__new__(cls)
obj._args = (e, z, z0, dir)
return obj
@property
def free_symbols(self):
e = self.args[0]
isyms = e.free_symbols
isyms.difference_update(self.args[1].free_symbols)
isyms.update(self.args[2].free_symbols)
return isyms
def pow_heuristics(self, e):
_, z, z0, _ = self.args
b1, e1 = e.base, e.exp
if not b1.has(z):
res = limit(e1*log(b1), z, z0)
return exp(res)
ex_lim = limit(e1, z, z0)
base_lim = limit(b1, z, z0)
if base_lim is S.One:
if ex_lim in (S.Infinity, S.NegativeInfinity):
res = limit(e1*(b1 - 1), z, z0)
return exp(res)
if base_lim is S.NegativeInfinity and ex_lim is S.Infinity:
return S.ComplexInfinity
def doit(self, **hints):
"""Evaluates the limit.
Parameters
==========
deep : bool, optional (default: True)
Invoke the ``doit`` method of the expressions involved before
taking the limit.
hints : optional keyword arguments
To be passed to ``doit`` methods; only used if deep is True.
"""
e, z, z0, dir = self.args
if str(dir) == '+-':
r = limit(e, z, z0, dir='+')
l = limit(e, z, z0, dir='-')
if isinstance(r, Limit) and isinstance(l, Limit):
if r.args[0] == l.args[0]:
return self
if r == l:
return l
if r.is_infinite and l.is_infinite:
return S.ComplexInfinity
raise ValueError("The limit does not exist since "
"left hand limit = %s and right hand limit = %s"
% (l, r))
if z0 is S.ComplexInfinity:
raise NotImplementedError("Limits at complex "
"infinity are not implemented")
if z0.is_infinite:
cdir = sign(z0)
cdir = cdir/abs(cdir)
e = e.subs(z, cdir*z)
dir = "-"
z0 = S.Infinity
if hints.get('deep', True):
e = e.doit(**hints)
z = z.doit(**hints)
z0 = z0.doit(**hints)
if e == z:
return z0
if not e.has(z):
return e
if z0 is S.NaN:
return S.NaN
if e.has(*_illegal):
return self
if e.is_Order:
return Order(limit(e.expr, z, z0), *e.args[1:])
cdir = 0
if str(dir) == "+":
cdir = 1
elif str(dir) == "-":
cdir = -1
def set_signs(expr):
if not expr.args:
return expr
newargs = tuple(set_signs(arg) for arg in expr.args)
if newargs != expr.args:
expr = expr.func(*newargs)
abs_flag = isinstance(expr, Abs)
arg_flag = isinstance(expr, arg)
sign_flag = isinstance(expr, sign)
if abs_flag or sign_flag or arg_flag:
sig = limit(expr.args[0], z, z0, dir)
if sig.is_zero:
sig = limit(1/expr.args[0], z, z0, dir)
if sig.is_extended_real:
if (sig < 0) == True:
return (-expr.args[0] if abs_flag else
S.NegativeOne if sign_flag else S.Pi)
elif (sig > 0) == True:
return (expr.args[0] if abs_flag else
S.One if sign_flag else S.Zero)
return expr
if e.has(Float):
# Convert floats like 0.5 to exact SymPy numbers like S.Half, to
# prevent rounding errors which can lead to unexpected execution
# of conditional blocks that work on comparisons
# Also see comments in https://github.com/sympy/sympy/issues/19453
from sympy.simplify.simplify import nsimplify
e = nsimplify(e)
e = set_signs(e)
if e.is_meromorphic(z, z0):
if z0 is S.Infinity:
newe = e.subs(z, 1/z)
# cdir changes sign as oo- should become 0+
cdir = -cdir
else:
newe = e.subs(z, z + z0)
try:
coeff, ex = newe.leadterm(z, cdir=cdir)
except ValueError:
pass
else:
if ex > 0:
return S.Zero
elif ex == 0:
return coeff
if cdir == 1 or not(int(ex) & 1):
return S.Infinity*sign(coeff)
elif cdir == -1:
return S.NegativeInfinity*sign(coeff)
else:
return S.ComplexInfinity
if z0 is S.Infinity:
if e.is_Mul:
e = factor_terms(e)
newe = e.subs(z, 1/z)
# cdir changes sign as oo- should become 0+
cdir = -cdir
else:
newe = e.subs(z, z + z0)
try:
coeff, ex = newe.leadterm(z, cdir=cdir)
except (ValueError, NotImplementedError, PoleError):
# The NotImplementedError catching is for custom functions
from sympy.simplify.powsimp import powsimp
e = powsimp(e)
if e.is_Pow:
r = self.pow_heuristics(e)
if r is not None:
return r
try:
coeff = newe.as_leading_term(z, cdir=cdir)
if coeff != newe and coeff.has(exp):
return gruntz(coeff, z, 0, "-" if re(cdir).is_negative else "+")
except (ValueError, NotImplementedError, PoleError):
pass
else:
if isinstance(coeff, AccumBounds) and ex == S.Zero:
return coeff
if coeff.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN):
return self
if not coeff.has(z):
if ex.is_positive:
return S.Zero
elif ex == 0:
return coeff
elif ex.is_negative:
if cdir == 1:
return S.Infinity*sign(coeff)
elif cdir == -1:
return S.NegativeInfinity*sign(coeff)*S.NegativeOne**(S.One + ex)
else:
return S.ComplexInfinity
else:
raise NotImplementedError("Not sure of sign of %s" % ex)
# gruntz fails on factorials but works with the gamma function
# If no factorial term is present, e should remain unchanged.
# factorial is defined to be zero for negative inputs (which
# differs from gamma) so only rewrite for positive z0.
if z0.is_extended_positive:
e = e.rewrite(factorial, gamma)
l = None
try:
r = gruntz(e, z, z0, dir)
if r is S.NaN or l is S.NaN:
raise PoleError()
except (PoleError, ValueError):
if l is not None:
raise
r = heuristics(e, z, z0, dir)
if r is None:
return self
return r
|
ac4e5f297ed17fbe38cc7ff26da4ddcad18d0cf986b449ddf280fd6edb8cfdc5 | from collections import defaultdict
from sympy.core import sympify, S, Mul, Derivative, Pow
from sympy.core.add import _unevaluated_Add, Add
from sympy.core.assumptions import assumptions
from sympy.core.exprtools import Factors, gcd_terms
from sympy.core.function import _mexpand, expand_mul, expand_power_base
from sympy.core.mul import _keep_coeff, _unevaluated_Mul, _mulsort
from sympy.core.numbers import Rational, zoo, nan
from sympy.core.parameters import global_parameters
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.symbol import Dummy, Wild, symbols
from sympy.functions import exp, sqrt, log
from sympy.functions.elementary.complexes import Abs
from sympy.polys import gcd
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.utilities.iterables import iterable, sift
def collect(expr, syms, func=None, evaluate=None, exact=False, distribute_order_term=True):
"""
Collect additive terms of an expression.
Explanation
===========
This function collects additive terms of an expression with respect
to a list of expression up to powers with rational exponents. By the
term symbol here are meant arbitrary expressions, which can contain
powers, products, sums etc. In other words symbol is a pattern which
will be searched for in the expression's terms.
The input expression is not expanded by :func:`collect`, so user is
expected to provide an expression in an appropriate form. This makes
:func:`collect` more predictable as there is no magic happening behind the
scenes. However, it is important to note, that powers of products are
converted to products of powers using the :func:`~.expand_power_base`
function.
There are two possible types of output. First, if ``evaluate`` flag is
set, this function will return an expression with collected terms or
else it will return a dictionary with expressions up to rational powers
as keys and collected coefficients as values.
Examples
========
>>> from sympy import S, collect, expand, factor, Wild
>>> from sympy.abc import a, b, c, x, y
This function can collect symbolic coefficients in polynomials or
rational expressions. It will manage to find all integer or rational
powers of collection variable::
>>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x)
c + x**2*(a + b) + x*(a - b)
The same result can be achieved in dictionary form::
>>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
>>> d[x**2]
a + b
>>> d[x]
a - b
>>> d[S.One]
c
You can also work with multivariate polynomials. However, remember that
this function is greedy so it will care only about a single symbol at time,
in specification order::
>>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
x**2*(y + 1) + x*y + y*(a + 1)
Also more complicated expressions can be used as patterns::
>>> from sympy import sin, log
>>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
(a + b)*sin(2*x)
>>> collect(a*x*log(x) + b*(x*log(x)), x*log(x))
x*(a + b)*log(x)
You can use wildcards in the pattern::
>>> w = Wild('w1')
>>> collect(a*x**y - b*x**y, w**y)
x**y*(a - b)
It is also possible to work with symbolic powers, although it has more
complicated behavior, because in this case power's base and symbolic part
of the exponent are treated as a single symbol::
>>> collect(a*x**c + b*x**c, x)
a*x**c + b*x**c
>>> collect(a*x**c + b*x**c, x**c)
x**c*(a + b)
However if you incorporate rationals to the exponents, then you will get
well known behavior::
>>> collect(a*x**(2*c) + b*x**(2*c), x**c)
x**(2*c)*(a + b)
Note also that all previously stated facts about :func:`collect` function
apply to the exponential function, so you can get::
>>> from sympy import exp
>>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
(a + b)*exp(2*x)
If you are interested only in collecting specific powers of some symbols
then set ``exact`` flag to True::
>>> collect(a*x**7 + b*x**7, x, exact=True)
a*x**7 + b*x**7
>>> collect(a*x**7 + b*x**7, x**7, exact=True)
x**7*(a + b)
If you want to collect on any object containing symbols, set
``exact`` to None:
>>> collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x, x, exact=None)
x*exp(x) + 3*x + (y + 2)*sin(x)
>>> collect(a*x*y + x*y + b*x + x, [x, y], exact=None)
x*y*(a + 1) + x*(b + 1)
You can also apply this function to differential equations, where
derivatives of arbitrary order can be collected. Note that if you
collect with respect to a function or a derivative of a function, all
derivatives of that function will also be collected. Use
``exact=True`` to prevent this from happening::
>>> from sympy import Derivative as D, collect, Function
>>> f = Function('f') (x)
>>> collect(a*D(f,x) + b*D(f,x), D(f,x))
(a + b)*Derivative(f(x), x)
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f)
(a + b)*Derivative(f(x), (x, 2))
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True)
a*Derivative(f(x), (x, 2)) + b*Derivative(f(x), (x, 2))
>>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f)
(a + b)*f(x) + (a + b)*Derivative(f(x), x)
Or you can even match both derivative order and exponent at the same time::
>>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x))
(a + b)*Derivative(f(x), (x, 2))**2
Finally, you can apply a function to each of the collected coefficients.
For example you can factorize symbolic coefficients of polynomial::
>>> f = expand((x + a + 1)**3)
>>> collect(f, x, factor)
x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + (a + 1)**3
.. note:: Arguments are expected to be in expanded form, so you might have
to call :func:`~.expand` prior to calling this function.
See Also
========
collect_const, collect_sqrt, rcollect
"""
expr = sympify(expr)
syms = [sympify(i) for i in (syms if iterable(syms) else [syms])]
# replace syms[i] if it is not x, -x or has Wild symbols
cond = lambda x: x.is_Symbol or (-x).is_Symbol or bool(
x.atoms(Wild))
_, nonsyms = sift(syms, cond, binary=True)
if nonsyms:
reps = dict(zip(nonsyms, [Dummy(**assumptions(i)) for i in nonsyms]))
syms = [reps.get(s, s) for s in syms]
rv = collect(expr.subs(reps), syms,
func=func, evaluate=evaluate, exact=exact,
distribute_order_term=distribute_order_term)
urep = {v: k for k, v in reps.items()}
if not isinstance(rv, dict):
return rv.xreplace(urep)
else:
return {urep.get(k, k).xreplace(urep): v.xreplace(urep)
for k, v in rv.items()}
# see if other expressions should be considered
if exact is None:
_syms = set()
for i in Add.make_args(expr):
if not i.has_free(*syms) or i in syms:
continue
if not i.is_Mul and i not in syms:
_syms.add(i)
else:
# identify compound generators
g = i._new_rawargs(*i.as_coeff_mul(*syms)[1])
if g not in syms:
_syms.add(g)
simple = all(i.is_Pow and i.base in syms for i in _syms)
syms = syms + list(ordered(_syms))
if not simple:
return collect(expr, syms,
func=func, evaluate=evaluate, exact=False,
distribute_order_term=distribute_order_term)
if evaluate is None:
evaluate = global_parameters.evaluate
def make_expression(terms):
product = []
for term, rat, sym, deriv in terms:
if deriv is not None:
var, order = deriv
while order > 0:
term, order = Derivative(term, var), order - 1
if sym is None:
if rat is S.One:
product.append(term)
else:
product.append(Pow(term, rat))
else:
product.append(Pow(term, rat*sym))
return Mul(*product)
def parse_derivative(deriv):
# scan derivatives tower in the input expression and return
# underlying function and maximal differentiation order
expr, sym, order = deriv.expr, deriv.variables[0], 1
for s in deriv.variables[1:]:
if s == sym:
order += 1
else:
raise NotImplementedError(
'Improve MV Derivative support in collect')
while isinstance(expr, Derivative):
s0 = expr.variables[0]
for s in expr.variables:
if s != s0:
raise NotImplementedError(
'Improve MV Derivative support in collect')
if s0 == sym:
expr, order = expr.expr, order + len(expr.variables)
else:
break
return expr, (sym, Rational(order))
def parse_term(expr):
"""Parses expression expr and outputs tuple (sexpr, rat_expo,
sym_expo, deriv)
where:
- sexpr is the base expression
- rat_expo is the rational exponent that sexpr is raised to
- sym_expo is the symbolic exponent that sexpr is raised to
- deriv contains the derivatives of the expression
For example, the output of x would be (x, 1, None, None)
the output of 2**x would be (2, 1, x, None).
"""
rat_expo, sym_expo = S.One, None
sexpr, deriv = expr, None
if expr.is_Pow:
if isinstance(expr.base, Derivative):
sexpr, deriv = parse_derivative(expr.base)
else:
sexpr = expr.base
if expr.base == S.Exp1:
arg = expr.exp
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_Mul(rational=True)
sexpr, rat_expo = exp(tail), coeff
elif expr.exp.is_Number:
rat_expo = expr.exp
else:
coeff, tail = expr.exp.as_coeff_Mul()
if coeff.is_Number:
rat_expo, sym_expo = coeff, tail
else:
sym_expo = expr.exp
elif isinstance(expr, exp):
arg = expr.exp
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_Mul(rational=True)
sexpr, rat_expo = exp(tail), coeff
elif isinstance(expr, Derivative):
sexpr, deriv = parse_derivative(expr)
return sexpr, rat_expo, sym_expo, deriv
def parse_expression(terms, pattern):
"""Parse terms searching for a pattern.
Terms is a list of tuples as returned by parse_terms;
Pattern is an expression treated as a product of factors.
"""
pattern = Mul.make_args(pattern)
if len(terms) < len(pattern):
# pattern is longer than matched product
# so no chance for positive parsing result
return None
else:
pattern = [parse_term(elem) for elem in pattern]
terms = terms[:] # need a copy
elems, common_expo, has_deriv = [], None, False
for elem, e_rat, e_sym, e_ord in pattern:
if elem.is_Number and e_rat == 1 and e_sym is None:
# a constant is a match for everything
continue
for j in range(len(terms)):
if terms[j] is None:
continue
term, t_rat, t_sym, t_ord = terms[j]
# keeping track of whether one of the terms had
# a derivative or not as this will require rebuilding
# the expression later
if t_ord is not None:
has_deriv = True
if (term.match(elem) is not None and
(t_sym == e_sym or t_sym is not None and
e_sym is not None and
t_sym.match(e_sym) is not None)):
if exact is False:
# we don't have to be exact so find common exponent
# for both expression's term and pattern's element
expo = t_rat / e_rat
if common_expo is None:
# first time
common_expo = expo
else:
# common exponent was negotiated before so
# there is no chance for a pattern match unless
# common and current exponents are equal
if common_expo != expo:
common_expo = 1
else:
# we ought to be exact so all fields of
# interest must match in every details
if e_rat != t_rat or e_ord != t_ord:
continue
# found common term so remove it from the expression
# and try to match next element in the pattern
elems.append(terms[j])
terms[j] = None
break
else:
# pattern element not found
return None
return [_f for _f in terms if _f], elems, common_expo, has_deriv
if evaluate:
if expr.is_Add:
o = expr.getO() or 0
expr = expr.func(*[
collect(a, syms, func, True, exact, distribute_order_term)
for a in expr.args if a != o]) + o
elif expr.is_Mul:
return expr.func(*[
collect(term, syms, func, True, exact, distribute_order_term)
for term in expr.args])
elif expr.is_Pow:
b = collect(
expr.base, syms, func, True, exact, distribute_order_term)
return Pow(b, expr.exp)
syms = [expand_power_base(i, deep=False) for i in syms]
order_term = None
if distribute_order_term:
order_term = expr.getO()
if order_term is not None:
if order_term.has(*syms):
order_term = None
else:
expr = expr.removeO()
summa = [expand_power_base(i, deep=False) for i in Add.make_args(expr)]
collected, disliked = defaultdict(list), S.Zero
for product in summa:
c, nc = product.args_cnc(split_1=False)
args = list(ordered(c)) + nc
terms = [parse_term(i) for i in args]
small_first = True
for symbol in syms:
if isinstance(symbol, Derivative) and small_first:
terms = list(reversed(terms))
small_first = not small_first
result = parse_expression(terms, symbol)
if result is not None:
if not symbol.is_commutative:
raise AttributeError("Can not collect noncommutative symbol")
terms, elems, common_expo, has_deriv = result
# when there was derivative in current pattern we
# will need to rebuild its expression from scratch
if not has_deriv:
margs = []
for elem in elems:
if elem[2] is None:
e = elem[1]
else:
e = elem[1]*elem[2]
margs.append(Pow(elem[0], e))
index = Mul(*margs)
else:
index = make_expression(elems)
terms = expand_power_base(make_expression(terms), deep=False)
index = expand_power_base(index, deep=False)
collected[index].append(terms)
break
else:
# none of the patterns matched
disliked += product
# add terms now for each key
collected = {k: Add(*v) for k, v in collected.items()}
if disliked is not S.Zero:
collected[S.One] = disliked
if order_term is not None:
for key, val in collected.items():
collected[key] = val + order_term
if func is not None:
collected = {
key: func(val) for key, val in collected.items()}
if evaluate:
return Add(*[key*val for key, val in collected.items()])
else:
return collected
def rcollect(expr, *vars):
"""
Recursively collect sums in an expression.
Examples
========
>>> from sympy.simplify import rcollect
>>> from sympy.abc import x, y
>>> expr = (x**2*y + x*y + x + y)/(x + y)
>>> rcollect(expr, y)
(x + y*(x**2 + x + 1))/(x + y)
See Also
========
collect, collect_const, collect_sqrt
"""
if expr.is_Atom or not expr.has(*vars):
return expr
else:
expr = expr.__class__(*[rcollect(arg, *vars) for arg in expr.args])
if expr.is_Add:
return collect(expr, vars)
else:
return expr
def collect_sqrt(expr, evaluate=None):
"""Return expr with terms having common square roots collected together.
If ``evaluate`` is False a count indicating the number of sqrt-containing
terms will be returned and, if non-zero, the terms of the Add will be
returned, else the expression itself will be returned as a single term.
If ``evaluate`` is True, the expression with any collected terms will be
returned.
Note: since I = sqrt(-1), it is collected, too.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b
>>> r2, r3, r5 = [sqrt(i) for i in [2, 3, 5]]
>>> collect_sqrt(a*r2 + b*r2)
sqrt(2)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r3)
sqrt(2)*(a + b) + sqrt(3)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5)
sqrt(3)*a + sqrt(5)*b + sqrt(2)*(a + b)
If evaluate is False then the arguments will be sorted and
returned as a list and a count of the number of sqrt-containing
terms will be returned:
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5, evaluate=False)
((sqrt(3)*a, sqrt(5)*b, sqrt(2)*(a + b)), 3)
>>> collect_sqrt(a*sqrt(2) + b, evaluate=False)
((b, sqrt(2)*a), 1)
>>> collect_sqrt(a + b, evaluate=False)
((a + b,), 0)
See Also
========
collect, collect_const, rcollect
"""
if evaluate is None:
evaluate = global_parameters.evaluate
# this step will help to standardize any complex arguments
# of sqrts
coeff, expr = expr.as_content_primitive()
vars = set()
for a in Add.make_args(expr):
for m in a.args_cnc()[0]:
if m.is_number and (
m.is_Pow and m.exp.is_Rational and m.exp.q == 2 or
m is S.ImaginaryUnit):
vars.add(m)
# we only want radicals, so exclude Number handling; in this case
# d will be evaluated
d = collect_const(expr, *vars, Numbers=False)
hit = expr != d
if not evaluate:
nrad = 0
# make the evaluated args canonical
args = list(ordered(Add.make_args(d)))
for i, m in enumerate(args):
c, nc = m.args_cnc()
for ci in c:
# XXX should this be restricted to ci.is_number as above?
if ci.is_Pow and ci.exp.is_Rational and ci.exp.q == 2 or \
ci is S.ImaginaryUnit:
nrad += 1
break
args[i] *= coeff
if not (hit or nrad):
args = [Add(*args)]
return tuple(args), nrad
return coeff*d
def collect_abs(expr):
"""Return ``expr`` with arguments of multiple Abs in a term collected
under a single instance.
Examples
========
>>> from sympy.simplify.radsimp import collect_abs
>>> from sympy.abc import x
>>> collect_abs(abs(x + 1)/abs(x**2 - 1))
Abs((x + 1)/(x**2 - 1))
>>> collect_abs(abs(1/x))
Abs(1/x)
"""
def _abs(mul):
c, nc = mul.args_cnc()
a = []
o = []
for i in c:
if isinstance(i, Abs):
a.append(i.args[0])
elif isinstance(i, Pow) and isinstance(i.base, Abs) and i.exp.is_real:
a.append(i.base.args[0]**i.exp)
else:
o.append(i)
if len(a) < 2 and not any(i.exp.is_negative for i in a if isinstance(i, Pow)):
return mul
absarg = Mul(*a)
A = Abs(absarg)
args = [A]
args.extend(o)
if not A.has(Abs):
args.extend(nc)
return Mul(*args)
if not isinstance(A, Abs):
# reevaluate and make it unevaluated
A = Abs(absarg, evaluate=False)
args[0] = A
_mulsort(args)
args.extend(nc) # nc always go last
return Mul._from_args(args, is_commutative=not nc)
return expr.replace(
lambda x: isinstance(x, Mul),
lambda x: _abs(x)).replace(
lambda x: isinstance(x, Pow),
lambda x: _abs(x))
def collect_const(expr, *vars, Numbers=True):
"""A non-greedy collection of terms with similar number coefficients in
an Add expr. If ``vars`` is given then only those constants will be
targeted. Although any Number can also be targeted, if this is not
desired set ``Numbers=False`` and no Float or Rational will be collected.
Parameters
==========
expr : SymPy expression
This parameter defines the expression the expression from which
terms with similar coefficients are to be collected. A non-Add
expression is returned as it is.
vars : variable length collection of Numbers, optional
Specifies the constants to target for collection. Can be multiple in
number.
Numbers : bool
Specifies to target all instance of
:class:`sympy.core.numbers.Number` class. If ``Numbers=False``, then
no Float or Rational will be collected.
Returns
=======
expr : Expr
Returns an expression with similar coefficient terms collected.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import s, x, y, z
>>> from sympy.simplify.radsimp import collect_const
>>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
sqrt(3)*(sqrt(2) + 2)
>>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
(sqrt(3) + sqrt(7))*(s + 1)
>>> s = sqrt(2) + 2
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
(sqrt(2) + 3)*(sqrt(3) + sqrt(7))
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)
The collection is sign-sensitive, giving higher precedence to the
unsigned values:
>>> collect_const(x - y - z)
x - (y + z)
>>> collect_const(-y - z)
-(y + z)
>>> collect_const(2*x - 2*y - 2*z, 2)
2*(x - y - z)
>>> collect_const(2*x - 2*y - 2*z, -2)
2*x - 2*(y + z)
See Also
========
collect, collect_sqrt, rcollect
"""
if not expr.is_Add:
return expr
recurse = False
if not vars:
recurse = True
vars = set()
for a in expr.args:
for m in Mul.make_args(a):
if m.is_number:
vars.add(m)
else:
vars = sympify(vars)
if not Numbers:
vars = [v for v in vars if not v.is_Number]
vars = list(ordered(vars))
for v in vars:
terms = defaultdict(list)
Fv = Factors(v)
for m in Add.make_args(expr):
f = Factors(m)
q, r = f.div(Fv)
if r.is_one:
# only accept this as a true factor if
# it didn't change an exponent from an Integer
# to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
# -- we aren't looking for this sort of change
fwas = f.factors.copy()
fnow = q.factors
if not any(k in fwas and fwas[k].is_Integer and not
fnow[k].is_Integer for k in fnow):
terms[v].append(q.as_expr())
continue
terms[S.One].append(m)
args = []
hit = False
uneval = False
for k in ordered(terms):
v = terms[k]
if k is S.One:
args.extend(v)
continue
if len(v) > 1:
v = Add(*v)
hit = True
if recurse and v != expr:
vars.append(v)
else:
v = v[0]
# be careful not to let uneval become True unless
# it must be because it's going to be more expensive
# to rebuild the expression as an unevaluated one
if Numbers and k.is_Number and v.is_Add:
args.append(_keep_coeff(k, v, sign=True))
uneval = True
else:
args.append(k*v)
if hit:
if uneval:
expr = _unevaluated_Add(*args)
else:
expr = Add(*args)
if not expr.is_Add:
break
return expr
def radsimp(expr, symbolic=True, max_terms=4):
r"""
Rationalize the denominator by removing square roots.
Explanation
===========
The expression returned from radsimp must be used with caution
since if the denominator contains symbols, it will be possible to make
substitutions that violate the assumptions of the simplification process:
that for a denominator matching a + b*sqrt(c), a != +/-b*sqrt(c). (If
there are no symbols, this assumptions is made valid by collecting terms
of sqrt(c) so the match variable ``a`` does not contain ``sqrt(c)``.) If
you do not want the simplification to occur for symbolic denominators, set
``symbolic`` to False.
If there are more than ``max_terms`` radical terms then the expression is
returned unchanged.
Examples
========
>>> from sympy import radsimp, sqrt, Symbol, pprint
>>> from sympy import factor_terms, fraction, signsimp
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b, c
>>> radsimp(1/(2 + sqrt(2)))
(2 - sqrt(2))/2
>>> x,y = map(Symbol, 'xy')
>>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2))
>>> radsimp(e)
sqrt(2)*(x + y)
No simplification beyond removal of the gcd is done. One might
want to polish the result a little, however, by collecting
square root terms:
>>> r2 = sqrt(2)
>>> r5 = sqrt(5)
>>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5)); pprint(ans)
___ ___ ___ ___
\/ 5 *a + \/ 5 *b - \/ 2 *x - \/ 2 *y
------------------------------------------
2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
>>> n, d = fraction(ans)
>>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True))
___ ___
\/ 5 *(a + b) - \/ 2 *(x + y)
------------------------------------------
2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
If radicals in the denominator cannot be removed or there is no denominator,
the original expression will be returned.
>>> radsimp(sqrt(2)*x + sqrt(2))
sqrt(2)*x + sqrt(2)
Results with symbols will not always be valid for all substitutions:
>>> eq = 1/(a + b*sqrt(c))
>>> eq.subs(a, b*sqrt(c))
1/(2*b*sqrt(c))
>>> radsimp(eq).subs(a, b*sqrt(c))
nan
If ``symbolic=False``, symbolic denominators will not be transformed (but
numeric denominators will still be processed):
>>> radsimp(eq, symbolic=False)
1/(a + b*sqrt(c))
"""
from sympy.simplify.simplify import signsimp
syms = symbols("a:d A:D")
def _num(rterms):
# return the multiplier that will simplify the expression described
# by rterms [(sqrt arg, coeff), ... ]
a, b, c, d, A, B, C, D = syms
if len(rterms) == 2:
reps = dict(list(zip([A, a, B, b], [j for i in rterms for j in i])))
return (
sqrt(A)*a - sqrt(B)*b).xreplace(reps)
if len(rterms) == 3:
reps = dict(list(zip([A, a, B, b, C, c], [j for i in rterms for j in i])))
return (
(sqrt(A)*a + sqrt(B)*b - sqrt(C)*c)*(2*sqrt(A)*sqrt(B)*a*b - A*a**2 -
B*b**2 + C*c**2)).xreplace(reps)
elif len(rterms) == 4:
reps = dict(list(zip([A, a, B, b, C, c, D, d], [j for i in rterms for j in i])))
return ((sqrt(A)*a + sqrt(B)*b - sqrt(C)*c - sqrt(D)*d)*(2*sqrt(A)*sqrt(B)*a*b
- A*a**2 - B*b**2 - 2*sqrt(C)*sqrt(D)*c*d + C*c**2 +
D*d**2)*(-8*sqrt(A)*sqrt(B)*sqrt(C)*sqrt(D)*a*b*c*d + A**2*a**4 -
2*A*B*a**2*b**2 - 2*A*C*a**2*c**2 - 2*A*D*a**2*d**2 + B**2*b**4 -
2*B*C*b**2*c**2 - 2*B*D*b**2*d**2 + C**2*c**4 - 2*C*D*c**2*d**2 +
D**2*d**4)).xreplace(reps)
elif len(rterms) == 1:
return sqrt(rterms[0][0])
else:
raise NotImplementedError
def ispow2(d, log2=False):
if not d.is_Pow:
return False
e = d.exp
if e.is_Rational and e.q == 2 or symbolic and denom(e) == 2:
return True
if log2:
q = 1
if e.is_Rational:
q = e.q
elif symbolic:
d = denom(e)
if d.is_Integer:
q = d
if q != 1 and log(q, 2).is_Integer:
return True
return False
def handle(expr):
# Handle first reduces to the case
# expr = 1/d, where d is an add, or d is base**p/2.
# We do this by recursively calling handle on each piece.
from sympy.simplify.simplify import nsimplify
n, d = fraction(expr)
if expr.is_Atom or (d.is_Atom and n.is_Atom):
return expr
elif not n.is_Atom:
n = n.func(*[handle(a) for a in n.args])
return _unevaluated_Mul(n, handle(1/d))
elif n is not S.One:
return _unevaluated_Mul(n, handle(1/d))
elif d.is_Mul:
return _unevaluated_Mul(*[handle(1/d) for d in d.args])
# By this step, expr is 1/d, and d is not a mul.
if not symbolic and d.free_symbols:
return expr
if ispow2(d):
d2 = sqrtdenest(sqrt(d.base))**numer(d.exp)
if d2 != d:
return handle(1/d2)
elif d.is_Pow and (d.exp.is_integer or d.base.is_positive):
# (1/d**i) = (1/d)**i
return handle(1/d.base)**d.exp
if not (d.is_Add or ispow2(d)):
return 1/d.func(*[handle(a) for a in d.args])
# handle 1/d treating d as an Add (though it may not be)
keep = True # keep changes that are made
# flatten it and collect radicals after checking for special
# conditions
d = _mexpand(d)
# did it change?
if d.is_Atom:
return 1/d
# is it a number that might be handled easily?
if d.is_number:
_d = nsimplify(d)
if _d.is_Number and _d.equals(d):
return 1/_d
while True:
# collect similar terms
collected = defaultdict(list)
for m in Add.make_args(d): # d might have become non-Add
p2 = []
other = []
for i in Mul.make_args(m):
if ispow2(i, log2=True):
p2.append(i.base if i.exp is S.Half else i.base**(2*i.exp))
elif i is S.ImaginaryUnit:
p2.append(S.NegativeOne)
else:
other.append(i)
collected[tuple(ordered(p2))].append(Mul(*other))
rterms = list(ordered(list(collected.items())))
rterms = [(Mul(*i), Add(*j)) for i, j in rterms]
nrad = len(rterms) - (1 if rterms[0][0] is S.One else 0)
if nrad < 1:
break
elif nrad > max_terms:
# there may have been invalid operations leading to this point
# so don't keep changes, e.g. this expression is troublesome
# in collecting terms so as not to raise the issue of 2834:
# r = sqrt(sqrt(5) + 5)
# eq = 1/(sqrt(5)*r + 2*sqrt(5)*sqrt(-sqrt(5) + 5) + 5*r)
keep = False
break
if len(rterms) > 4:
# in general, only 4 terms can be removed with repeated squaring
# but other considerations can guide selection of radical terms
# so that radicals are removed
if all(x.is_Integer and (y**2).is_Rational for x, y in rterms):
nd, d = rad_rationalize(S.One, Add._from_args(
[sqrt(x)*y for x, y in rterms]))
n *= nd
else:
# is there anything else that might be attempted?
keep = False
break
from sympy.simplify.powsimp import powsimp, powdenest
num = powsimp(_num(rterms))
n *= num
d *= num
d = powdenest(_mexpand(d), force=symbolic)
if d.has(S.Zero, nan, zoo):
return expr
if d.is_Atom:
break
if not keep:
return expr
return _unevaluated_Mul(n, 1/d)
coeff, expr = expr.as_coeff_Add()
expr = expr.normal()
old = fraction(expr)
n, d = fraction(handle(expr))
if old != (n, d):
if not d.is_Atom:
was = (n, d)
n = signsimp(n, evaluate=False)
d = signsimp(d, evaluate=False)
u = Factors(_unevaluated_Mul(n, 1/d))
u = _unevaluated_Mul(*[k**v for k, v in u.factors.items()])
n, d = fraction(u)
if old == (n, d):
n, d = was
n = expand_mul(n)
if d.is_Number or d.is_Add:
n2, d2 = fraction(gcd_terms(_unevaluated_Mul(n, 1/d)))
if d2.is_Number or (d2.count_ops() <= d.count_ops()):
n, d = [signsimp(i) for i in (n2, d2)]
if n.is_Mul and n.args[0].is_Number:
n = n.func(*n.args)
return coeff + _unevaluated_Mul(n, 1/d)
def rad_rationalize(num, den):
"""
Rationalize ``num/den`` by removing square roots in the denominator;
num and den are sum of terms whose squares are positive rationals.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import rad_rationalize
>>> rad_rationalize(sqrt(3), 1 + sqrt(2)/3)
(-sqrt(3) + sqrt(6)/3, -7/9)
"""
if not den.is_Add:
return num, den
g, a, b = split_surds(den)
a = a*sqrt(g)
num = _mexpand((a - b)*num)
den = _mexpand(a**2 - b**2)
return rad_rationalize(num, den)
def fraction(expr, exact=False):
"""Returns a pair with expression's numerator and denominator.
If the given expression is not a fraction then this function
will return the tuple (expr, 1).
This function will not make any attempt to simplify nested
fractions or to do any term rewriting at all.
If only one of the numerator/denominator pair is needed then
use numer(expr) or denom(expr) functions respectively.
>>> from sympy import fraction, Rational, Symbol
>>> from sympy.abc import x, y
>>> fraction(x/y)
(x, y)
>>> fraction(x)
(x, 1)
>>> fraction(1/y**2)
(1, y**2)
>>> fraction(x*y/2)
(x*y, 2)
>>> fraction(Rational(1, 2))
(1, 2)
This function will also work fine with assumptions:
>>> k = Symbol('k', negative=True)
>>> fraction(x * y**k)
(x, y**(-k))
If we know nothing about sign of some exponent and ``exact``
flag is unset, then structure this exponent's structure will
be analyzed and pretty fraction will be returned:
>>> from sympy import exp, Mul
>>> fraction(2*x**(-y))
(2, x**y)
>>> fraction(exp(-x))
(1, exp(x))
>>> fraction(exp(-x), exact=True)
(exp(-x), 1)
The ``exact`` flag will also keep any unevaluated Muls from
being evaluated:
>>> u = Mul(2, x + 1, evaluate=False)
>>> fraction(u)
(2*x + 2, 1)
>>> fraction(u, exact=True)
(2*(x + 1), 1)
"""
expr = sympify(expr)
numer, denom = [], []
for term in Mul.make_args(expr):
if term.is_commutative and (term.is_Pow or isinstance(term, exp)):
b, ex = term.as_base_exp()
if ex.is_negative:
if ex is S.NegativeOne:
denom.append(b)
elif exact:
if ex.is_constant():
denom.append(Pow(b, -ex))
else:
numer.append(term)
else:
denom.append(Pow(b, -ex))
elif ex.is_positive:
numer.append(term)
elif not exact and ex.is_Mul:
n, d = term.as_numer_denom()
if n != 1:
numer.append(n)
denom.append(d)
else:
numer.append(term)
elif term.is_Rational and not term.is_Integer:
if term.p != 1:
numer.append(term.p)
denom.append(term.q)
else:
numer.append(term)
return Mul(*numer, evaluate=not exact), Mul(*denom, evaluate=not exact)
def numer(expr):
return fraction(expr)[0]
def denom(expr):
return fraction(expr)[1]
def fraction_expand(expr, **hints):
return expr.expand(frac=True, **hints)
def numer_expand(expr, **hints):
a, b = fraction(expr)
return a.expand(numer=True, **hints) / b
def denom_expand(expr, **hints):
a, b = fraction(expr)
return a / b.expand(denom=True, **hints)
expand_numer = numer_expand
expand_denom = denom_expand
expand_fraction = fraction_expand
def split_surds(expr):
"""
Split an expression with terms whose squares are positive rationals
into a sum of terms whose surds squared have gcd equal to g
and a sum of terms with surds squared prime with g.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import split_surds
>>> split_surds(3*sqrt(3) + sqrt(5)/7 + sqrt(6) + sqrt(10) + sqrt(15))
(3, sqrt(2) + sqrt(5) + 3, sqrt(5)/7 + sqrt(10))
"""
args = sorted(expr.args, key=default_sort_key)
coeff_muls = [x.as_coeff_Mul() for x in args]
surds = [x[1]**2 for x in coeff_muls if x[1].is_Pow]
surds.sort(key=default_sort_key)
g, b1, b2 = _split_gcd(*surds)
g2 = g
if not b2 and len(b1) >= 2:
b1n = [x/g for x in b1]
b1n = [x for x in b1n if x != 1]
# only a common factor has been factored; split again
g1, b1n, b2 = _split_gcd(*b1n)
g2 = g*g1
a1v, a2v = [], []
for c, s in coeff_muls:
if s.is_Pow and s.exp == S.Half:
s1 = s.base
if s1 in b1:
a1v.append(c*sqrt(s1/g2))
else:
a2v.append(c*s)
else:
a2v.append(c*s)
a = Add(*a1v)
b = Add(*a2v)
return g2, a, b
def _split_gcd(*a):
"""
Split the list of integers ``a`` into a list of integers, ``a1`` having
``g = gcd(a1)``, and a list ``a2`` whose elements are not divisible by
``g``. Returns ``g, a1, a2``.
Examples
========
>>> from sympy.simplify.radsimp import _split_gcd
>>> _split_gcd(55, 35, 22, 14, 77, 10)
(5, [55, 35, 10], [22, 14, 77])
"""
g = a[0]
b1 = [g]
b2 = []
for x in a[1:]:
g1 = gcd(g, x)
if g1 == 1:
b2.append(x)
else:
g = g1
b1.append(x)
return g, b1, b2
|
8b6486540743de6c5c4515f96a8c1708194bd9c56f1d893dfefbcf9600244a80 | import warnings
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.relational import is_eq
from sympy.functions.elementary.complexes import (conjugate, im, re, sign)
from sympy.functions.elementary.exponential import (exp, log as ln)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, cos, sin, atan2)
from sympy.simplify.trigsimp import trigsimp
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.core.sympify import sympify, _sympify
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_not, fuzzy_or
from mpmath.libmp.libmpf import prec_to_dps
def _check_norm(elements, norm):
"""validate if input norm is consistent"""
if norm is not None and norm.is_number:
if norm.is_positive is False:
raise ValueError("Input norm must be positive.")
numerical = all(i.is_number and i.is_real is True for i in elements)
if numerical and is_eq(norm**2, sum(i**2 for i in elements)) is False:
raise ValueError("Incompatible value for norm.")
def _is_extrinsic(seq):
"""validate seq and return True if seq is lowercase and False if uppercase"""
if type(seq) != str:
raise ValueError('Expected seq to be a string.')
if len(seq) != 3:
raise ValueError("Expected 3 axes, got `{}`.".format(seq))
intrinsic = seq.isupper()
extrinsic = seq.islower()
if not (intrinsic or extrinsic):
raise ValueError("seq must either be fully uppercase (for extrinsic "
"rotations), or fully lowercase, for intrinsic "
"rotations).")
i, j, k = seq.lower()
if (i == j) or (j == k):
raise ValueError("Consecutive axes must be different")
bad = set(seq) - set('xyzXYZ')
if bad:
raise ValueError("Expected axes from `seq` to be from "
"['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
"got {}".format(''.join(bad)))
return extrinsic
class Quaternion(Expr):
"""Provides basic quaternion operations.
Quaternion objects can be instantiated as Quaternion(a, b, c, d)
as in (a + b*i + c*j + d*k).
Parameters
==========
norm : None or number
Pre-defined quaternion norm. If a value is given, Quaternion.norm
returns this pre-defined value instead of calculating the norm
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k
Quaternions over complex fields can be defined as :
>>> from sympy import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
Defining symbolic unit quaternions:
>>> from sympy import Quaternion
>>> from sympy.abc import w, x, y, z
>>> q = Quaternion(w, x, y, z, norm=1)
>>> q
w + x*i + y*j + z*k
>>> q.norm()
1
References
==========
.. [1] http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
.. [2] https://en.wikipedia.org/wiki/Quaternion
"""
_op_priority = 11.0
is_commutative = False
def __new__(cls, a=0, b=0, c=0, d=0, real_field=True, norm=None):
a, b, c, d = map(sympify, (a, b, c, d))
if any(i.is_commutative is False for i in [a, b, c, d]):
raise ValueError("arguments have to be commutative")
else:
obj = Expr.__new__(cls, a, b, c, d)
obj._a = a
obj._b = b
obj._c = c
obj._d = d
obj._real_field = real_field
obj.set_norm(norm)
return obj
def set_norm(self, norm):
"""Sets norm of an already instantiated quaternion.:
Parameters
==========
norm : None or number
Pre-defined quaternion norm. If a value is given, Quaternion.norm
returns this pre-defined value instead of calculating the norm
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion(a, b, c, d)
>>> q.norm()
sqrt(a**2 + b**2 + c**2 + d**2)
Setting the norm:
>>> q.set_norm(1)
>>> q.norm()
1
Removing set norm:
>>> q.set_norm(None)
>>> q.norm()
sqrt(a**2 + b**2 + c**2 + d**2)
"""
norm = sympify(norm)
_check_norm(self.args, norm)
self._norm = norm
@property
def a(self):
return self._a
@property
def b(self):
return self._b
@property
def c(self):
return self._c
@property
def d(self):
return self._d
@property
def real_field(self):
return self._real_field
@property
def product_matrix_left(self):
r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
left. This can be useful when treating quaternion elements as column
vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
are real numbers, the product matrix from the left is:
.. math::
M = \begin{bmatrix} a &-b &-c &-d \\
b & a &-d & c \\
c & d & a &-b \\
d &-c & b & a \end{bmatrix}
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q1 = Quaternion(1, 0, 0, 1)
>>> q2 = Quaternion(a, b, c, d)
>>> q1.product_matrix_left
Matrix([
[1, 0, 0, -1],
[0, 1, -1, 0],
[0, 1, 1, 0],
[1, 0, 0, 1]])
>>> q1.product_matrix_left * q2.to_Matrix()
Matrix([
[a - d],
[b - c],
[b + c],
[a + d]])
This is equivalent to:
>>> (q1 * q2).to_Matrix()
Matrix([
[a - d],
[b - c],
[b + c],
[a + d]])
"""
return Matrix([
[self.a, -self.b, -self.c, -self.d],
[self.b, self.a, -self.d, self.c],
[self.c, self.d, self.a, -self.b],
[self.d, -self.c, self.b, self.a]])
@property
def product_matrix_right(self):
r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
right. This can be useful when treating quaternion elements as column
vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
are real numbers, the product matrix from the left is:
.. math::
M = \begin{bmatrix} a &-b &-c &-d \\
b & a & d &-c \\
c &-d & a & b \\
d & c &-b & a \end{bmatrix}
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q1 = Quaternion(a, b, c, d)
>>> q2 = Quaternion(1, 0, 0, 1)
>>> q2.product_matrix_right
Matrix([
[1, 0, 0, -1],
[0, 1, 1, 0],
[0, -1, 1, 0],
[1, 0, 0, 1]])
Note the switched arguments: the matrix represents the quaternion on
the right, but is still considered as a matrix multiplication from the
left.
>>> q2.product_matrix_right * q1.to_Matrix()
Matrix([
[ a - d],
[ b + c],
[-b + c],
[ a + d]])
This is equivalent to:
>>> (q1 * q2).to_Matrix()
Matrix([
[ a - d],
[ b + c],
[-b + c],
[ a + d]])
"""
return Matrix([
[self.a, -self.b, -self.c, -self.d],
[self.b, self.a, self.d, -self.c],
[self.c, -self.d, self.a, self.b],
[self.d, self.c, -self.b, self.a]])
def to_Matrix(self, vector_only=False):
"""Returns elements of quaternion as a column vector.
By default, a Matrix of length 4 is returned, with the real part as the
first element.
If vector_only is True, returns only imaginary part as a Matrix of
length 3.
Parameters
==========
vector_only : bool
If True, only imaginary part is returned.
Default : False
Returns
=======
Matrix
A column vector constructed by the elements of the quaternion.
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion(a, b, c, d)
>>> q
a + b*i + c*j + d*k
>>> q.to_Matrix()
Matrix([
[a],
[b],
[c],
[d]])
>>> q.to_Matrix(vector_only=True)
Matrix([
[b],
[c],
[d]])
"""
if vector_only:
return Matrix(self.args[1:])
else:
return Matrix(self.args)
@classmethod
def from_Matrix(cls, elements):
"""Returns quaternion from elements of a column vector`.
If vector_only is True, returns only imaginary part as a Matrix of
length 3.
Parameters
==========
elements : Matrix, list or tuple of length 3 or 4. If length is 3,
assume real part is zero.
Default : False
Returns
=======
Quaternion
A quaternion created from the input elements.
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion.from_Matrix([a, b, c, d])
>>> q
a + b*i + c*j + d*k
>>> q = Quaternion.from_Matrix([b, c, d])
>>> q
0 + b*i + c*j + d*k
"""
length = len(elements)
if length != 3 and length != 4:
raise ValueError("Input elements must have length 3 or 4, got {} "
"elements".format(length))
if length == 3:
return Quaternion(0, *elements)
else:
return Quaternion(*elements)
@classmethod
def from_euler(cls, angles, seq):
"""Returns quaternion equivalent to rotation represented by the Euler
angles, in the sequence defined by `seq`.
Parameters
==========
angles : list, tuple or Matrix of 3 numbers
The Euler angles (in radians).
seq : string of length 3
Represents the sequence of rotations.
For intrinsic rotations, seq must be all lowercase and its elements
must be from the set `{'x', 'y', 'z'}`
For extrinsic rotations, seq must be all uppercase and its elements
must be from the set `{'X', 'Y', 'Z'}`
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the Euler angles
in the given sequence.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import pi
>>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')
>>> q
sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k
>>> q = Quaternion.from_euler([0, pi/2, pi] , 'zyz')
>>> q
0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k
>>> q = Quaternion.from_euler([0, pi/2, pi] , 'ZYZ')
>>> q
0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k
"""
if len(angles) != 3:
raise ValueError("3 angles must be given.")
extrinsic = _is_extrinsic(seq)
i, j, k = seq.lower()
# get elementary basis vectors
ei = [1 if n == i else 0 for n in 'xyz']
ej = [1 if n == j else 0 for n in 'xyz']
ek = [1 if n == k else 0 for n in 'xyz']
# calculate distinct quaternions
qi = cls.from_axis_angle(ei, angles[0])
qj = cls.from_axis_angle(ej, angles[1])
qk = cls.from_axis_angle(ek, angles[2])
if extrinsic:
return trigsimp(qk * qj * qi)
else:
return trigsimp(qi * qj * qk)
def to_euler(self, seq, angle_addition=True, avoid_square_root=False):
r"""Returns Euler angles representing same rotation as the quaternion,
in the sequence given by `seq`. This implements the method described
in [1]_.
Parameters
==========
seq : string of length 3
Represents the sequence of rotations.
For intrinsic rotations, seq must be all lowercase and its elements
must be from the set `{'x', 'y', 'z'}`
For extrinsic rotations, seq must be all uppercase and its elements
must be from the set `{'X', 'Y', 'Z'}`
angle_addition : bool
Default : True
When True, first and third angles are given as an addition and
subtraction of two simpler `atan2` expressions. When False, the
first and third angles are each given by a single more complicated
`atan2` expression. This equivalent is given by:
--math::
\operatorname{atan_2} (b,a) \pm \operatorname{atan_2} (d,c) =
\operatorname{atan_2} (bc\pm ad, ac\mp bd)
avoid_square_root : bool
Default : False
When True, the second angle is calculated with an expression based
on acos`, which is slightly more complicated but avoids a square
root. When False, second angle is calculated with `atan2`, which
is simpler and can be better for numerical reasons (some
numerical implementations of `acos` have problems near zero).
Returns
=======
Tuple
The Euler angles calculated from the quaternion
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> euler = Quaternion(a, b, c, d).to_euler('zyz')
>>> euler
(-atan2(-b, c) + atan2(d, a),
2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2)),
atan2(-b, c) + atan2(d, a))
References
==========
.. [1] https://doi.org/10.1371/journal.pone.0276302
"""
if self.is_zero_quaternion():
raise ValueError('Cannot convert a quaternion with norm 0.')
angles = [0, 0, 0]
extrinsic = _is_extrinsic(seq)
i, j, k = seq.lower()
# get index corresponding to elementary basis vectors
i = 'xyz'.index(i) + 1
j = 'xyz'.index(j) + 1
k = 'xyz'.index(k) + 1
if not extrinsic:
i, k = k, i
# check if sequence is symmetric
symmetric = i == k
if symmetric:
k = 6 - i - j
# parity of the permutation
sign = (i - j) * (j - k) * (k - i) // 2
# permutate elements
elements = [self.a, self.b, self.c, self.d]
a = elements[0]
b = elements[i]
c = elements[j]
d = elements[k] * sign
if not symmetric:
a, b, c, d = a - c, b + d, c + a, d - b
if avoid_square_root:
n2 = self.norm()**2 if symmetric else 2 * self.norm()**2
angles[1] = acos((a*a + b*b - c*c - d*d) / n2)
else:
angles[1] = 2 * atan2(sqrt(c * c + d * d), sqrt(a * a + b * b))
# Check for singularities in numerical cases
case = 0
if is_eq(c, S.Zero) and is_eq(d, S.Zero):
case = 1
if is_eq(a, S.Zero) and is_eq(b, S.Zero):
case = 2
if case == 0:
if angle_addition:
angles[0] = atan2(b, a) + atan2(d, c)
angles[2] = atan2(b, a) - atan2(d, c)
else:
angles[0] = atan2(b*c + a*d, a*c - b*d)
angles[2] = atan2(b*c - a*d, a*c + b*d)
else: # any degenerate case
warnings.warn('Singularity case, setting third angle to zero')
angles[2 * (not extrinsic)] = sympify(0)
if case == 1:
angles[2 * extrinsic] = 2 * atan2(b, a)
else:
angles[2 * extrinsic] = 2 * atan2(d, c)
angles[2 * extrinsic] *= (-1 if extrinsic else 1)
# for Tait-Bryan angles
if not symmetric:
angles[1] -= S.Pi / 2
angles[0] *= sign
if extrinsic:
return tuple(angles[::-1])
else:
return tuple(angles)
@classmethod
def from_axis_angle(cls, vector, angle):
"""Returns a rotation quaternion given the axis and the angle of rotation.
Parameters
==========
vector : tuple of three numbers
The vector representation of the given axis.
angle : number
The angle by which axis is rotated (in radians).
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the given axis and the angle of rotation.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
"""
(x, y, z) = vector
norm = sqrt(x**2 + y**2 + z**2)
(x, y, z) = (x / norm, y / norm, z / norm)
s = sin(angle * S.Half)
a = cos(angle * S.Half)
b = x * s
c = y * s
d = z * s
# note that this quaternion is already normalized by construction:
# c^2 + (s*x)^2 + (s*y)^2 + (s*z)^2 = c^2 + s^2*(x^2 + y^2 + z^2) = c^2 + s^2 * 1 = c^2 + s^2 = 1
# so, what we return is a normalized quaternion
return cls(a, b, c, d)
@classmethod
def from_rotation_matrix(cls, M):
"""Returns the equivalent quaternion of a matrix. The quaternion will be normalized
only if the matrix is special orthogonal (orthogonal and det(M) = 1).
Parameters
==========
M : Matrix
Input matrix to be converted to equivalent quaternion. M must be special
orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.
Returns
=======
Quaternion
The quaternion equivalent to given matrix.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
>>> q
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
"""
absQ = M.det()**Rational(1, 3)
a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2
b = b * sign(M[2, 1] - M[1, 2])
c = c * sign(M[0, 2] - M[2, 0])
d = d * sign(M[1, 0] - M[0, 1])
return Quaternion(a, b, c, d)
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
return self.add(other)
def __sub__(self, other):
return self.add(other*-1)
def __mul__(self, other):
return self._generic_mul(self, _sympify(other))
def __rmul__(self, other):
return self._generic_mul(_sympify(other), self)
def __pow__(self, p):
return self.pow(p)
def __neg__(self):
return Quaternion(-self._a, -self._b, -self._c, -self.d)
def __truediv__(self, other):
return self * sympify(other)**-1
def __rtruediv__(self, other):
return sympify(other) * self**-1
def _eval_Integral(self, *args):
return self.integrate(*args)
def diff(self, *symbols, **kwargs):
kwargs.setdefault('evaluate', True)
return self.func(*[a.diff(*symbols, **kwargs) for a in self.args])
def add(self, other):
"""Adds quaternions.
Parameters
==========
other : Quaternion
The quaternion to add to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after adding self to other
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
>>> q1 + 5
6 + 2*i + 3*j + 4*k
>>> x = symbols('x', real = True)
>>> q1.add(x)
(x + 1) + 2*i + 3*j + 4*k
Quaternions over complex fields :
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
q1 = self
q2 = sympify(other)
# If q2 is a number or a SymPy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
elif q2.is_commutative:
return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
else:
raise ValueError("Only commutative expressions can be added with a Quaternion.")
return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
+ q2.d)
def mul(self, other):
"""Multiplies quaternions.
Parameters
==========
other : Quaternion or symbol
The quaternion to multiply to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after multiplying self with other
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real = True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
return self._generic_mul(self, _sympify(other))
@staticmethod
def _generic_mul(q1, q2):
"""Generic multiplication.
Parameters
==========
q1 : Quaternion or symbol
q2 : Quaternion or symbol
It is important to note that if neither q1 nor q2 is a Quaternion,
this function simply returns q1 * q2.
Returns
=======
Quaternion
The resultant quaternion after multiplying q1 and q2
Examples
========
>>> from sympy import Quaternion
>>> from sympy import Symbol, S
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> Quaternion._generic_mul(q1, q2)
(-60) + 12*i + 30*j + 24*k
>>> Quaternion._generic_mul(q1, S(2))
2 + 4*i + 6*j + 8*k
>>> x = Symbol('x', real = True)
>>> Quaternion._generic_mul(q1, x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> Quaternion._generic_mul(q3, 2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
# None is a Quaternion:
if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
return q1 * q2
# If q1 is a number or a SymPy expression instead of a quaternion
if not isinstance(q1, Quaternion):
if q2.real_field and q1.is_complex:
return Quaternion(re(q1), im(q1), 0, 0) * q2
elif q1.is_commutative:
return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If q2 is a number or a SymPy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return q1 * Quaternion(re(q2), im(q2), 0, 0)
elif q2.is_commutative:
return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If any of the quaternions has a fixed norm, pre-compute norm
if q1._norm is None and q2._norm is None:
norm = None
else:
norm = q1.norm() * q2.norm()
return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
-q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d,
norm=norm)
def _eval_conjugate(self):
"""Returns the conjugate of the quaternion."""
q = self
return Quaternion(q.a, -q.b, -q.c, -q.d, norm=q._norm)
def norm(self):
"""Returns the norm of the quaternion."""
if self._norm is None: # check if norm is pre-defined
q = self
# trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
# arise when from_axis_angle is used).
self._norm = sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))
return self._norm
def normalize(self):
"""Returns the normalized form of the quaternion."""
q = self
return q * (1/q.norm())
def inverse(self):
"""Returns the inverse of the quaternion."""
q = self
if not q.norm():
raise ValueError("Cannot compute inverse for a quaternion with zero norm")
return conjugate(q) * (1/q.norm()**2)
def pow(self, p):
"""Finds the pth power of the quaternion.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
Returns the p-th power of the current quaternion.
Returns the inverse if p = -1.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
"""
p = sympify(p)
q = self
if p == -1:
return q.inverse()
res = 1
if not p.is_Integer:
return NotImplemented
if p < 0:
q, p = q.inverse(), -p
while p > 0:
if p % 2 == 1:
res = q * res
p = p//2
q = q * q
return res
def exp(self):
"""Returns the exponential of q (e^q).
Returns
=======
Quaternion
Exponential of q (e^q).
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
"""
# exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
a = exp(q.a) * cos(vector_norm)
b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
d = exp(q.a) * sin(vector_norm) * q.d / vector_norm
return Quaternion(a, b, c, d)
def _ln(self):
"""Returns the natural logarithm of the quaternion (_ln(q)).
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q._ln()
log(sqrt(30))
+ 2*sqrt(29)*acos(sqrt(30)/30)/29*i
+ 3*sqrt(29)*acos(sqrt(30)/30)/29*j
+ 4*sqrt(29)*acos(sqrt(30)/30)/29*k
"""
# _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
q_norm = q.norm()
a = ln(q_norm)
b = q.b * acos(q.a / q_norm) / vector_norm
c = q.c * acos(q.a / q_norm) / vector_norm
d = q.d * acos(q.a / q_norm) / vector_norm
return Quaternion(a, b, c, d)
def _eval_subs(self, *args):
elements = [i.subs(*args) for i in self.args]
norm = self._norm
try:
norm = norm.subs(*args)
except AttributeError:
pass
_check_norm(elements, norm)
return Quaternion(*elements, norm=norm)
def _eval_evalf(self, prec):
"""Returns the floating point approximations (decimal numbers) of the quaternion.
Returns
=======
Quaternion
Floating point approximations of quaternion(self)
Examples
========
>>> from sympy import Quaternion
>>> from sympy import sqrt
>>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
>>> q.evalf()
1.00000000000000
+ 0.707106781186547*i
+ 0.577350269189626*j
+ 0.500000000000000*k
"""
nprec = prec_to_dps(prec)
return Quaternion(*[arg.evalf(n=nprec) for arg in self.args])
def pow_cos_sin(self, p):
"""Computes the pth power in the cos-sin form.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
The p-th power in the cos-sin form.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
"""
# q = ||q||*(cos(a) + u*sin(a))
# q^p = ||q||^p * (cos(p*a) + u*sin(p*a))
q = self
(v, angle) = q.to_axis_angle()
q2 = Quaternion.from_axis_angle(v, p * angle)
return q2 * (q.norm()**p)
def integrate(self, *args):
"""Computes integration of quaternion.
Returns
=======
Quaternion
Integration of the quaternion(self) with the given variable.
Examples
========
Indefinite Integral of quaternion :
>>> from sympy import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate(x)
x + 2*x*i + 3*x*j + 4*x*k
Definite integral of quaternion :
>>> from sympy import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate((x, 1, 5))
4 + 8*i + 12*j + 16*k
"""
# TODO: is this expression correct?
return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
integrate(self.c, *args), integrate(self.d, *args))
@staticmethod
def rotate_point(pin, r):
"""Returns the coordinates of the point pin(a 3 tuple) after rotation.
Parameters
==========
pin : tuple
A 3-element tuple of coordinates of a point which needs to be
rotated.
r : Quaternion or tuple
Axis and angle of rotation.
It's important to note that when r is a tuple, it must be of the form
(axis, angle)
Returns
=======
tuple
The coordinates of the point after rotation.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
"""
if isinstance(r, tuple):
# if r is of the form (vector, angle)
q = Quaternion.from_axis_angle(r[0], r[1])
else:
# if r is a quaternion
q = r.normalize()
pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
return (pout.b, pout.c, pout.d)
def to_axis_angle(self):
"""Returns the axis and angle of rotation of a quaternion
Returns
=======
tuple
Tuple of (axis, angle)
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
"""
q = self
if q.a.is_negative:
q = q * -1
q = q.normalize()
angle = trigsimp(2 * acos(q.a))
# Since quaternion is normalised, q.a is less than 1.
s = sqrt(1 - q.a*q.a)
x = trigsimp(q.b / s)
y = trigsimp(q.c / s)
z = trigsimp(q.d / s)
v = (x, y, z)
t = (v, angle)
return t
def to_rotation_matrix(self, v=None, homogeneous=True):
"""Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Parameters
==========
v : tuple or None
Default value: None
homogeneous : bool
When True, gives an expression that may be more efficient for
symbolic calculations but less so for direct evaluation. Both
formulas are mathematically equivalent.
Default value: True
Returns
=======
tuple
Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix())
Matrix([
[cos(x), -sin(x), 0],
[sin(x), cos(x), 0],
[ 0, 0, 1]])
Generates a 4x4 transformation matrix (used for rotation about a point
other than the origin) if the point(v) is passed as an argument.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix((1, 1, 1)))
Matrix([
[cos(x), -sin(x), 0, sin(x) - cos(x) + 1],
[sin(x), cos(x), 0, -sin(x) - cos(x) + 1],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
"""
q = self
s = q.norm()**-2
# diagonal elements are different according to parameter normal
if homogeneous:
m00 = s*(q.a**2 + q.b**2 - q.c**2 - q.d**2)
m11 = s*(q.a**2 - q.b**2 + q.c**2 - q.d**2)
m22 = s*(q.a**2 - q.b**2 - q.c**2 + q.d**2)
else:
m00 = 1 - 2*s*(q.c**2 + q.d**2)
m11 = 1 - 2*s*(q.b**2 + q.d**2)
m22 = 1 - 2*s*(q.b**2 + q.c**2)
m01 = 2*s*(q.b*q.c - q.d*q.a)
m02 = 2*s*(q.b*q.d + q.c*q.a)
m10 = 2*s*(q.b*q.c + q.d*q.a)
m12 = 2*s*(q.c*q.d - q.b*q.a)
m20 = 2*s*(q.b*q.d - q.c*q.a)
m21 = 2*s*(q.c*q.d + q.b*q.a)
if not v:
return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])
else:
(x, y, z) = v
m03 = x - x*m00 - y*m01 - z*m02
m13 = y - x*m10 - y*m11 - z*m12
m23 = z - x*m20 - y*m21 - z*m22
m30 = m31 = m32 = 0
m33 = 1
return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
[m20, m21, m22, m23], [m30, m31, m32, m33]])
def scalar_part(self):
r"""Returns scalar part($\mathbf{S}(q)$) of the quaternion q.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{S}(q) = a$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(4, 8, 13, 12)
>>> q.scalar_part()
4
"""
return self.a
def vector_part(self):
r"""
Returns vector part($\mathbf{V}(q)$) of the quaternion q.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{V}(q) = bi + cj + dk$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.vector_part()
0 + 1*i + 1*j + 1*k
>>> q = Quaternion(4, 8, 13, 12)
>>> q.vector_part()
0 + 8*i + 13*j + 12*k
"""
return Quaternion(0, self.b, self.c, self.d)
def axis(self):
r"""
Returns the axis($\mathbf{Ax}(q)$) of the quaternion.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{Ax}(q)$ i.e., the versor of the vector part of that quaternion
equal to $\mathbf{U}[\mathbf{V}(q)]$.
The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.axis()
0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k
See Also
========
vector_part
"""
axis = self.vector_part().normalize()
return Quaternion(0, axis.b, axis.c, axis.d)
def is_pure(self):
"""
Returns true if the quaternion is pure, false if the quaternion is not pure
or returns none if it is unknown.
Explanation
===========
A pure quaternion (also a vector quaternion) is a quaternion with scalar
part equal to 0.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 8, 13, 12)
>>> q.is_pure()
True
See Also
========
scalar_part
"""
return self.a.is_zero
def is_zero_quaternion(self):
"""
Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion
and None if the value is unknown.
Explanation
===========
A zero quaternion is a quaternion with both scalar part and
vector part equal to 0.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 0, 0, 0)
>>> q.is_zero_quaternion()
False
>>> q = Quaternion(0, 0, 0, 0)
>>> q.is_zero_quaternion()
True
See Also
========
scalar_part
vector_part
"""
return self.norm().is_zero
def angle(self):
r"""
Returns the angle of the quaternion measured in the real-axis plane.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
are real numbers, returns the angle of the quaternion given by
.. math::
angle := atan2(\sqrt{b^2 + c^2 + d^2}, {a})
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 4, 4, 4)
>>> q.angle()
atan(4*sqrt(3))
"""
return atan2(self.vector_part().norm(), self.scalar_part())
def arc_coplanar(self, other):
"""
Returns True if the transformation arcs represented by the input quaternions happen in the same plane.
Explanation
===========
Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel.
The plane of a quaternion is the one normal to its axis.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the planes of the two quaternions are the same, apart from its orientation/sign.
False : if the planes of the two quaternions are not the same, apart from its orientation/sign.
None : if plane of either of the quaternion is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(1, 4, 4, 4)
>>> q2 = Quaternion(3, 8, 8, 8)
>>> Quaternion.arc_coplanar(q1, q2)
True
>>> q1 = Quaternion(2, 8, 13, 12)
>>> Quaternion.arc_coplanar(q1, q2)
False
See Also
========
vector_coplanar
is_pure
"""
if (self.is_zero_quaternion()) or (other.is_zero_quaternion()):
raise ValueError('Neither of the given quaternions can be 0')
return fuzzy_or([(self.axis() - other.axis()).is_zero_quaternion(), (self.axis() + other.axis()).is_zero_quaternion()])
@classmethod
def vector_coplanar(cls, q1, q2, q3):
r"""
Returns True if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar.
Explanation
===========
Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.
Parameters
==========
q1 : a pure Quaternion.
q2 : a pure Quaternion.
q3 : a pure Quaternion.
Returns
=======
True : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar.
False : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are not coplanar.
None : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(0, 4, 4, 4)
>>> q2 = Quaternion(0, 8, 8, 8)
>>> q3 = Quaternion(0, 24, 24, 24)
>>> Quaternion.vector_coplanar(q1, q2, q3)
True
>>> q1 = Quaternion(0, 8, 16, 8)
>>> q2 = Quaternion(0, 8, 3, 12)
>>> Quaternion.vector_coplanar(q1, q2, q3)
False
See Also
========
axis
is_pure
"""
if fuzzy_not(q1.is_pure()) or fuzzy_not(q2.is_pure()) or fuzzy_not(q3.is_pure()):
raise ValueError('The given quaternions must be pure')
M = Matrix([[q1.b, q1.c, q1.d], [q2.b, q2.c, q2.d], [q3.b, q3.c, q3.d]]).det()
return M.is_zero
def parallel(self, other):
"""
Returns True if the two pure quaternions seen as 3D vectors are parallel.
Explanation
===========
Two pure quaternions are called parallel when their vector product is commutative which
implies that the quaternions seen as 3D vectors have same direction.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the two pure quaternions seen as 3D vectors are parallel.
False : if the two pure quaternions seen as 3D vectors are not parallel.
None : if the two pure quaternions seen as 3D vectors are parallel is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.parallel(q1)
True
>>> q1 = Quaternion(0, 8, 13, 12)
>>> q.parallel(q1)
False
"""
if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
raise ValueError('The provided quaternions must be pure')
return (self*other - other*self).is_zero_quaternion()
def orthogonal(self, other):
"""
Returns the orthogonality of two quaternions.
Explanation
===========
Two pure quaternions are called orthogonal when their product is anti-commutative.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the two pure quaternions seen as 3D vectors are orthogonal.
False : if the two pure quaternions seen as 3D vectors are not orthogonal.
None : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.orthogonal(q1)
False
>>> q1 = Quaternion(0, 2, 2, 0)
>>> q = Quaternion(0, 2, -2, 0)
>>> q.orthogonal(q1)
True
"""
if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
raise ValueError('The given quaternions must be pure')
return (self*other + other*self).is_zero_quaternion()
def index_vector(self):
r"""
Returns the index vector of the quaternion.
Explanation
===========
Index vector is given by $\mathbf{T}(q)$ multiplied by $\mathbf{Ax}(q)$ where $\mathbf{Ax}(q)$ is the axis of the quaternion q,
and mod(q) is the $\mathbf{T}(q)$ (magnitude) of the quaternion.
Returns
=======
Quaternion: representing index vector of the provided quaternion.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.index_vector()
0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k
See Also
========
axis
norm
"""
return self.norm() * self.axis()
def mensor(self):
"""
Returns the natural logarithm of the norm(magnitude) of the quaternion.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.mensor()
log(2*sqrt(10))
>>> q.norm()
2*sqrt(10)
See Also
========
norm
"""
return ln(self.norm())
|
9ec1fa2d983273f6ac96fe0d6b95ef24c122cc2eae4b3b1c465556f75935a6ee | """ Generic SymPy-Independent Strategies """
from __future__ import annotations
from collections.abc import Callable, Mapping
from typing import TypeVar
from sys import stdout
_S = TypeVar('_S')
_T = TypeVar('_T')
def identity(x: _T) -> _T:
return x
def exhaust(rule: Callable[[_T], _T]) -> Callable[[_T], _T]:
""" Apply a rule repeatedly until it has no effect """
def exhaustive_rl(expr: _T) -> _T:
new, old = rule(expr), expr
while new != old:
new, old = rule(new), new
return new
return exhaustive_rl
def memoize(rule: Callable[[_S], _T]) -> Callable[[_S], _T]:
"""Memoized version of a rule
Notes
=====
This cache can grow infinitely, so it is not recommended to use this
than ``functools.lru_cache`` unless you need very heavy computation.
"""
cache: dict[_S, _T] = {}
def memoized_rl(expr: _S) -> _T:
if expr in cache:
return cache[expr]
else:
result = rule(expr)
cache[expr] = result
return result
return memoized_rl
def condition(
cond: Callable[[_T], bool], rule: Callable[[_T], _T]
) -> Callable[[_T], _T]:
""" Only apply rule if condition is true """
def conditioned_rl(expr: _T) -> _T:
if cond(expr):
return rule(expr)
return expr
return conditioned_rl
def chain(*rules: Callable[[_T], _T]) -> Callable[[_T], _T]:
"""
Compose a sequence of rules so that they apply to the expr sequentially
"""
def chain_rl(expr: _T) -> _T:
for rule in rules:
expr = rule(expr)
return expr
return chain_rl
def debug(rule, file=None):
""" Print out before and after expressions each time rule is used """
if file is None:
file = stdout
def debug_rl(*args, **kwargs):
expr = args[0]
result = rule(*args, **kwargs)
if result != expr:
file.write("Rule: %s\n" % rule.__name__)
file.write("In: %s\nOut: %s\n\n" % (expr, result))
return result
return debug_rl
def null_safe(rule: Callable[[_T], _T | None]) -> Callable[[_T], _T]:
""" Return original expr if rule returns None """
def null_safe_rl(expr: _T) -> _T:
result = rule(expr)
if result is None:
return expr
return result
return null_safe_rl
def tryit(rule: Callable[[_T], _T], exception) -> Callable[[_T], _T]:
""" Return original expr if rule raises exception """
def try_rl(expr: _T) -> _T:
try:
return rule(expr)
except exception:
return expr
return try_rl
def do_one(*rules: Callable[[_T], _T]) -> Callable[[_T], _T]:
""" Try each of the rules until one works. Then stop. """
def do_one_rl(expr: _T) -> _T:
for rl in rules:
result = rl(expr)
if result != expr:
return result
return expr
return do_one_rl
def switch(
key: Callable[[_S], _T],
ruledict: Mapping[_T, Callable[[_S], _S]]
) -> Callable[[_S], _S]:
""" Select a rule based on the result of key called on the function """
def switch_rl(expr: _S) -> _S:
rl = ruledict.get(key(expr), identity)
return rl(expr)
return switch_rl
# XXX Untyped default argument for minimize function
# where python requires SupportsRichComparison type
def _identity(x):
return x
def minimize(
*rules: Callable[[_S], _T],
objective=_identity
) -> Callable[[_S], _T]:
""" Select result of rules that minimizes objective
>>> from sympy.strategies import minimize
>>> inc = lambda x: x + 1
>>> dec = lambda x: x - 1
>>> rl = minimize(inc, dec)
>>> rl(4)
3
>>> rl = minimize(inc, dec, objective=lambda x: -x) # maximize
>>> rl(4)
5
"""
def minrule(expr: _S) -> _T:
return min([rule(expr) for rule in rules], key=objective)
return minrule
|
8209cff65dcd22926cb2c04c54aaf8fb233f9bcb8292b926d7dd590ba31f6637 | from functools import partial
from sympy.strategies import chain, minimize
from sympy.strategies.core import identity
import sympy.strategies.branch as branch
from sympy.strategies.branch import yieldify
def treeapply(tree, join, leaf=identity):
""" Apply functions onto recursive containers (tree).
Explanation
===========
join - a dictionary mapping container types to functions
e.g. ``{list: minimize, tuple: chain}``
Keys are containers/iterables. Values are functions [a] -> a.
Examples
========
>>> from sympy.strategies.tree import treeapply
>>> tree = [(3, 2), (4, 1)]
>>> treeapply(tree, {list: max, tuple: min})
2
>>> add = lambda *args: sum(args)
>>> def mul(*args):
... total = 1
... for arg in args:
... total *= arg
... return total
>>> treeapply(tree, {list: mul, tuple: add})
25
"""
for typ in join:
if isinstance(tree, typ):
return join[typ](*map(partial(treeapply, join=join, leaf=leaf),
tree))
return leaf(tree)
def greedy(tree, objective=identity, **kwargs):
""" Execute a strategic tree. Select alternatives greedily
Trees
-----
Nodes in a tree can be either
function - a leaf
list - a selection among operations
tuple - a sequence of chained operations
Textual examples
----------------
Text: Run f, then run g, e.g. ``lambda x: g(f(x))``
Code: ``(f, g)``
Text: Run either f or g, whichever minimizes the objective
Code: ``[f, g]``
Textx: Run either f or g, whichever is better, then run h
Code: ``([f, g], h)``
Text: Either expand then simplify or try factor then foosimp. Finally print
Code: ``([(expand, simplify), (factor, foosimp)], print)``
Objective
---------
"Better" is determined by the objective keyword. This function makes
choices to minimize the objective. It defaults to the identity.
Examples
========
>>> from sympy.strategies.tree import greedy
>>> inc = lambda x: x + 1
>>> dec = lambda x: x - 1
>>> double = lambda x: 2*x
>>> tree = [inc, (dec, double)] # either inc or dec-then-double
>>> fn = greedy(tree)
>>> fn(4) # lowest value comes from the inc
5
>>> fn(1) # lowest value comes from dec then double
0
This function selects between options in a tuple. The result is chosen
that minimizes the objective function.
>>> fn = greedy(tree, objective=lambda x: -x) # maximize
>>> fn(4) # highest value comes from the dec then double
6
>>> fn(1) # highest value comes from the inc
2
Greediness
----------
This is a greedy algorithm. In the example:
([a, b], c) # do either a or b, then do c
the choice between running ``a`` or ``b`` is made without foresight to c
"""
optimize = partial(minimize, objective=objective)
return treeapply(tree, {list: optimize, tuple: chain}, **kwargs)
def allresults(tree, leaf=yieldify):
""" Execute a strategic tree. Return all possibilities.
Returns a lazy iterator of all possible results
Exhaustiveness
--------------
This is an exhaustive algorithm. In the example
([a, b], [c, d])
All of the results from
(a, c), (b, c), (a, d), (b, d)
are returned. This can lead to combinatorial blowup.
See sympy.strategies.greedy for details on input
"""
return treeapply(tree, {list: branch.multiplex, tuple: branch.chain},
leaf=leaf)
def brute(tree, objective=identity, **kwargs):
return lambda expr: min(tuple(allresults(tree, **kwargs)(expr)),
key=objective)
|
5da4c03ea0e88bae76ee3baf47c2cb3759afe9972c943ac69684d304c8c9cf10 | """ Rewrite Rules
DISCLAIMER: This module is experimental. The interface is subject to change.
A rule is a function that transforms one expression into another
Rule :: Expr -> Expr
A strategy is a function that says how a rule should be applied to a syntax
tree. In general strategies take rules and produce a new rule
Strategy :: [Rules], Other-stuff -> Rule
This allows developers to separate a mathematical transformation from the
algorithmic details of applying that transformation. The goal is to separate
the work of mathematical programming from algorithmic programming.
Submodules
strategies.rl - some fundamental rules
strategies.core - generic non-SymPy specific strategies
strategies.traverse - strategies that traverse a SymPy tree
strategies.tools - some conglomerate strategies that do depend on SymPy
"""
from . import rl
from . import traverse
from .rl import rm_id, unpack, flatten, sort, glom, distribute, rebuild
from .util import new
from .core import (
condition, debug, chain, null_safe, do_one, exhaust, minimize, tryit)
from .tools import canon, typed
from . import branch
__all__ = [
'rl',
'traverse',
'rm_id', 'unpack', 'flatten', 'sort', 'glom', 'distribute', 'rebuild',
'new',
'condition', 'debug', 'chain', 'null_safe', 'do_one', 'exhaust',
'minimize', 'tryit',
'canon', 'typed',
'branch',
]
|
111012cc43f648ff84709f29fb85f2444601d79ab7b7cd71d5cc9a989f8cf3cd | from . import rl
from .core import do_one, exhaust, switch
from .traverse import top_down
def subs(d, **kwargs):
""" Full simultaneous exact substitution.
Examples
========
>>> from sympy.strategies.tools import subs
>>> from sympy import Basic, S
>>> mapping = {S(1): S(4), S(4): S(1), Basic(S(5)): Basic(S(6), S(7))}
>>> expr = Basic(S(1), Basic(S(2), S(3)), Basic(S(4), Basic(S(5))))
>>> subs(mapping)(expr)
Basic(4, Basic(2, 3), Basic(1, Basic(6, 7)))
"""
if d:
return top_down(do_one(*map(rl.subs, *zip(*d.items()))), **kwargs)
else:
return lambda x: x
def canon(*rules, **kwargs):
""" Strategy for canonicalization.
Explanation
===========
Apply each rule in a bottom_up fashion through the tree.
Do each one in turn.
Keep doing this until there is no change.
"""
return exhaust(top_down(exhaust(do_one(*rules)), **kwargs))
def typed(ruletypes):
""" Apply rules based on the expression type
inputs:
ruletypes -- a dict mapping {Type: rule}
Examples
========
>>> from sympy.strategies import rm_id, typed
>>> from sympy import Add, Mul
>>> rm_zeros = rm_id(lambda x: x==0)
>>> rm_ones = rm_id(lambda x: x==1)
>>> remove_idents = typed({Add: rm_zeros, Mul: rm_ones})
"""
return switch(type, ruletypes)
|
236a6e0f69216c298eddef7f9e05277252e093573ec411de51ff9b66ee6168b3 | """ Generic Rules for SymPy
This file assumes knowledge of Basic and little else.
"""
from sympy.utilities.iterables import sift
from .util import new
# Functions that create rules
def rm_id(isid, new=new):
""" Create a rule to remove identities.
isid - fn :: x -> Bool --- whether or not this element is an identity.
Examples
========
>>> from sympy.strategies import rm_id
>>> from sympy import Basic, S
>>> remove_zeros = rm_id(lambda x: x==0)
>>> remove_zeros(Basic(S(1), S(0), S(2)))
Basic(1, 2)
>>> remove_zeros(Basic(S(0), S(0))) # If only identites then we keep one
Basic(0)
See Also:
unpack
"""
def ident_remove(expr):
""" Remove identities """
ids = list(map(isid, expr.args))
if sum(ids) == 0: # No identities. Common case
return expr
elif sum(ids) != len(ids): # there is at least one non-identity
return new(expr.__class__,
*[arg for arg, x in zip(expr.args, ids) if not x])
else:
return new(expr.__class__, expr.args[0])
return ident_remove
def glom(key, count, combine):
""" Create a rule to conglomerate identical args.
Examples
========
>>> from sympy.strategies import glom
>>> from sympy import Add
>>> from sympy.abc import x
>>> key = lambda x: x.as_coeff_Mul()[1]
>>> count = lambda x: x.as_coeff_Mul()[0]
>>> combine = lambda cnt, arg: cnt * arg
>>> rl = glom(key, count, combine)
>>> rl(Add(x, -x, 3*x, 2, 3, evaluate=False))
3*x + 5
Wait, how are key, count and combine supposed to work?
>>> key(2*x)
x
>>> count(2*x)
2
>>> combine(2, x)
2*x
"""
def conglomerate(expr):
""" Conglomerate together identical args x + x -> 2x """
groups = sift(expr.args, key)
counts = {k: sum(map(count, args)) for k, args in groups.items()}
newargs = [combine(cnt, mat) for mat, cnt in counts.items()]
if set(newargs) != set(expr.args):
return new(type(expr), *newargs)
else:
return expr
return conglomerate
def sort(key, new=new):
""" Create a rule to sort by a key function.
Examples
========
>>> from sympy.strategies import sort
>>> from sympy import Basic, S
>>> sort_rl = sort(str)
>>> sort_rl(Basic(S(3), S(1), S(2)))
Basic(1, 2, 3)
"""
def sort_rl(expr):
return new(expr.__class__, *sorted(expr.args, key=key))
return sort_rl
def distribute(A, B):
""" Turns an A containing Bs into a B of As
where A, B are container types
>>> from sympy.strategies import distribute
>>> from sympy import Add, Mul, symbols
>>> x, y = symbols('x,y')
>>> dist = distribute(Mul, Add)
>>> expr = Mul(2, x+y, evaluate=False)
>>> expr
2*(x + y)
>>> dist(expr)
2*x + 2*y
"""
def distribute_rl(expr):
for i, arg in enumerate(expr.args):
if isinstance(arg, B):
first, b, tail = expr.args[:i], expr.args[i], expr.args[i + 1:]
return B(*[A(*(first + (arg,) + tail)) for arg in b.args])
return expr
return distribute_rl
def subs(a, b):
""" Replace expressions exactly """
def subs_rl(expr):
if expr == a:
return b
else:
return expr
return subs_rl
# Functions that are rules
def unpack(expr):
""" Rule to unpack singleton args
>>> from sympy.strategies import unpack
>>> from sympy import Basic, S
>>> unpack(Basic(S(2)))
2
"""
if len(expr.args) == 1:
return expr.args[0]
else:
return expr
def flatten(expr, new=new):
""" Flatten T(a, b, T(c, d), T2(e)) to T(a, b, c, d, T2(e)) """
cls = expr.__class__
args = []
for arg in expr.args:
if arg.__class__ == cls:
args.extend(arg.args)
else:
args.append(arg)
return new(expr.__class__, *args)
def rebuild(expr):
""" Rebuild a SymPy tree.
Explanation
===========
This function recursively calls constructors in the expression tree.
This forces canonicalization and removes ugliness introduced by the use of
Basic.__new__
"""
if expr.is_Atom:
return expr
else:
return expr.func(*list(map(rebuild, expr.args)))
|
d9f6d1f35dc8638218728e660681892eee73f3c3a15e6c2e23180e3bd22f64ee | from sympy.core.basic import Basic
new = Basic.__new__
def assoc(d, k, v):
d = d.copy()
d[k] = v
return d
basic_fns = {'op': type,
'new': Basic.__new__,
'leaf': lambda x: not isinstance(x, Basic) or x.is_Atom,
'children': lambda x: x.args}
expr_fns = assoc(basic_fns, 'new', lambda op, *args: op(*args))
|
4a121744db6995211f64d8b9543603df28badf4e5e473e1399c844384bdc89cc | """
This module adds several functions for interactive source code inspection.
"""
def get_class(lookup_view):
"""
Convert a string version of a class name to the object.
For example, get_class('sympy.core.Basic') will return
class Basic located in module sympy.core
"""
if isinstance(lookup_view, str):
mod_name, func_name = get_mod_func(lookup_view)
if func_name != '':
lookup_view = getattr(
__import__(mod_name, {}, {}, ['*']), func_name)
if not callable(lookup_view):
raise AttributeError(
"'%s.%s' is not a callable." % (mod_name, func_name))
return lookup_view
def get_mod_func(callback):
"""
splits the string path to a class into a string path to the module
and the name of the class.
Examples
========
>>> from sympy.utilities.source import get_mod_func
>>> get_mod_func('sympy.core.basic.Basic')
('sympy.core.basic', 'Basic')
"""
dot = callback.rfind('.')
if dot == -1:
return callback, ''
return callback[:dot], callback[dot + 1:]
|
9db421cc823c770e73778850276494cab88ae5d3aba9ff9b6e3cb5d172905cfc | """This module contains some general purpose utilities that are used across
SymPy.
"""
from .iterables import (flatten, group, take, subsets,
variations, numbered_symbols, cartes, capture, dict_merge,
prefixes, postfixes, sift, topological_sort, unflatten,
has_dups, has_variety, reshape, rotations)
from .misc import filldedent
from .lambdify import lambdify
from .decorator import threaded, xthreaded, public, memoize_property
from .timeutils import timed
__all__ = [
'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols',
'cartes', 'capture', 'dict_merge', 'prefixes', 'postfixes', 'sift',
'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape',
'rotations',
'filldedent',
'lambdify',
'threaded', 'xthreaded', 'public', 'memoize_property',
'timed',
]
|
79f14c75cfe96680c25869cd7617f4f637497b2f01a8e27e93f355d579bbced4 | from collections import defaultdict, OrderedDict
from itertools import (
chain, combinations, combinations_with_replacement, cycle, islice,
permutations, product
)
# For backwards compatibility
from itertools import product as cartes # noqa: F401
from operator import gt
# this is the logical location of these functions
from sympy.utilities.enumerative import (
multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser)
from sympy.utilities.misc import as_int
from sympy.utilities.decorator import deprecated
def is_palindromic(s, i=0, j=None):
"""
Return True if the sequence is the same from left to right as it
is from right to left in the whole sequence (default) or in the
Python slice ``s[i: j]``; else False.
Examples
========
>>> from sympy.utilities.iterables import is_palindromic
>>> is_palindromic([1, 0, 1])
True
>>> is_palindromic('abcbb')
False
>>> is_palindromic('abcbb', 1)
False
Normal Python slicing is performed in place so there is no need to
create a slice of the sequence for testing:
>>> is_palindromic('abcbb', 1, -1)
True
>>> is_palindromic('abcbb', -4, -1)
True
See Also
========
sympy.ntheory.digits.is_palindromic: tests integers
"""
i, j, _ = slice(i, j).indices(len(s))
m = (j - i)//2
# if length is odd, middle element will be ignored
return all(s[i + k] == s[j - 1 - k] for k in range(m))
def flatten(iterable, levels=None, cls=None): # noqa: F811
"""
Recursively denest iterable containers.
>>> from sympy import flatten
>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten([1, 2, [3]])
[1, 2, 3]
>>> flatten([1, [2, 3], [4, 5]])
[1, 2, 3, 4, 5]
>>> flatten([1.0, 2, (1, None)])
[1.0, 2, 1, None]
If you want to denest only a specified number of levels of
nested containers, then set ``levels`` flag to the desired
number of levels::
>>> ls = [[(-2, -1), (1, 2)], [(0, 0)]]
>>> flatten(ls, levels=1)
[(-2, -1), (1, 2), (0, 0)]
If cls argument is specified, it will only flatten instances of that
class, for example:
>>> from sympy import Basic, S
>>> class MyOp(Basic):
... pass
...
>>> flatten([MyOp(S(1), MyOp(S(2), S(3)))], cls=MyOp)
[1, 2, 3]
adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
"""
from sympy.tensor.array import NDimArray
if levels is not None:
if not levels:
return iterable
elif levels > 0:
levels -= 1
else:
raise ValueError(
"expected non-negative number of levels, got %s" % levels)
if cls is None:
reducible = lambda x: is_sequence(x, set)
else:
reducible = lambda x: isinstance(x, cls)
result = []
for el in iterable:
if reducible(el):
if hasattr(el, 'args') and not isinstance(el, NDimArray):
el = el.args
result.extend(flatten(el, levels=levels, cls=cls))
else:
result.append(el)
return result
def unflatten(iter, n=2):
"""Group ``iter`` into tuples of length ``n``. Raise an error if
the length of ``iter`` is not a multiple of ``n``.
"""
if n < 1 or len(iter) % n:
raise ValueError('iter length is not a multiple of %i' % n)
return list(zip(*(iter[i::n] for i in range(n))))
def reshape(seq, how):
"""Reshape the sequence according to the template in ``how``.
Examples
========
>>> from sympy.utilities import reshape
>>> seq = list(range(1, 9))
>>> reshape(seq, [4]) # lists of 4
[[1, 2, 3, 4], [5, 6, 7, 8]]
>>> reshape(seq, (4,)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, 2)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, [2])) # (i, i, [i, i])
[(1, 2, [3, 4]), (5, 6, [7, 8])]
>>> reshape(seq, ((2,), [2])) # etc....
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
>>> reshape(seq, (1, [2], 1))
[(1, [2, 3], 4), (5, [6, 7], 8)]
>>> reshape(tuple(seq), ([[1], 1, (2,)],))
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
>>> reshape(tuple(seq), ([1], 1, (2,)))
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
>>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)])
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
"""
m = sum(flatten(how))
n, rem = divmod(len(seq), m)
if m < 0 or rem:
raise ValueError('template must sum to positive number '
'that divides the length of the sequence')
i = 0
container = type(how)
rv = [None]*n
for k in range(len(rv)):
_rv = []
for hi in how:
if isinstance(hi, int):
_rv.extend(seq[i: i + hi])
i += hi
else:
n = sum(flatten(hi))
hi_type = type(hi)
_rv.append(hi_type(reshape(seq[i: i + n], hi)[0]))
i += n
rv[k] = container(_rv)
return type(seq)(rv)
def group(seq, multiple=True):
"""
Splits a sequence into a list of lists of equal, adjacent elements.
Examples
========
>>> from sympy import group
>>> group([1, 1, 1, 2, 2, 3])
[[1, 1, 1], [2, 2], [3]]
>>> group([1, 1, 1, 2, 2, 3], multiple=False)
[(1, 3), (2, 2), (3, 1)]
>>> group([1, 1, 3, 2, 2, 1], multiple=False)
[(1, 2), (3, 1), (2, 2), (1, 1)]
See Also
========
multiset
"""
if not seq:
return []
current, groups = [seq[0]], []
for elem in seq[1:]:
if elem == current[-1]:
current.append(elem)
else:
groups.append(current)
current = [elem]
groups.append(current)
if multiple:
return groups
for i, current in enumerate(groups):
groups[i] = (current[0], len(current))
return groups
def _iproduct2(iterable1, iterable2):
'''Cartesian product of two possibly infinite iterables'''
it1 = iter(iterable1)
it2 = iter(iterable2)
elems1 = []
elems2 = []
sentinel = object()
def append(it, elems):
e = next(it, sentinel)
if e is not sentinel:
elems.append(e)
n = 0
append(it1, elems1)
append(it2, elems2)
while n <= len(elems1) + len(elems2):
for m in range(n-len(elems1)+1, len(elems2)):
yield (elems1[n-m], elems2[m])
n += 1
append(it1, elems1)
append(it2, elems2)
def iproduct(*iterables):
'''
Cartesian product of iterables.
Generator of the Cartesian product of iterables. This is analogous to
itertools.product except that it works with infinite iterables and will
yield any item from the infinite product eventually.
Examples
========
>>> from sympy.utilities.iterables import iproduct
>>> sorted(iproduct([1,2], [3,4]))
[(1, 3), (1, 4), (2, 3), (2, 4)]
With an infinite iterator:
>>> from sympy import S
>>> (3,) in iproduct(S.Integers)
True
>>> (3, 4) in iproduct(S.Integers, S.Integers)
True
.. seealso::
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
'''
if len(iterables) == 0:
yield ()
return
elif len(iterables) == 1:
for e in iterables[0]:
yield (e,)
elif len(iterables) == 2:
yield from _iproduct2(*iterables)
else:
first, others = iterables[0], iterables[1:]
for ef, eo in _iproduct2(first, iproduct(*others)):
yield (ef,) + eo
def multiset(seq):
"""Return the hashable sequence in multiset form with values being the
multiplicity of the item in the sequence.
Examples
========
>>> from sympy.utilities.iterables import multiset
>>> multiset('mississippi')
{'i': 4, 'm': 1, 'p': 2, 's': 4}
See Also
========
group
"""
rv = defaultdict(int)
for s in seq:
rv[s] += 1
return dict(rv)
def ibin(n, bits=None, str=False):
"""Return a list of length ``bits`` corresponding to the binary value
of ``n`` with small bits to the right (last). If bits is omitted, the
length will be the number required to represent ``n``. If the bits are
desired in reversed order, use the ``[::-1]`` slice of the returned list.
If a sequence of all bits-length lists starting from ``[0, 0,..., 0]``
through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g.
``'all'``.
If the bit *string* is desired pass ``str=True``.
Examples
========
>>> from sympy.utilities.iterables import ibin
>>> ibin(2)
[1, 0]
>>> ibin(2, 4)
[0, 0, 1, 0]
If all lists corresponding to 0 to 2**n - 1, pass a non-integer
for bits:
>>> bits = 2
>>> for i in ibin(2, 'all'):
... print(i)
(0, 0)
(0, 1)
(1, 0)
(1, 1)
If a bit string is desired of a given length, use str=True:
>>> n = 123
>>> bits = 10
>>> ibin(n, bits, str=True)
'0001111011'
>>> ibin(n, bits, str=True)[::-1] # small bits left
'1101111000'
>>> list(ibin(3, 'all', str=True))
['000', '001', '010', '011', '100', '101', '110', '111']
"""
if n < 0:
raise ValueError("negative numbers are not allowed")
n = as_int(n)
if bits is None:
bits = 0
else:
try:
bits = as_int(bits)
except ValueError:
bits = -1
else:
if n.bit_length() > bits:
raise ValueError(
"`bits` must be >= {}".format(n.bit_length()))
if not str:
if bits >= 0:
return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")]
else:
return variations(range(2), n, repetition=True)
else:
if bits >= 0:
return bin(n)[2:].rjust(bits, "0")
else:
return (bin(i)[2:].rjust(n, "0") for i in range(2**n))
def variations(seq, n, repetition=False):
r"""Returns an iterator over the n-sized variations of ``seq`` (size N).
``repetition`` controls whether items in ``seq`` can appear more than once;
Examples
========
``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without
repetition of ``seq``'s elements:
>>> from sympy import variations
>>> list(variations([1, 2], 2))
[(1, 2), (2, 1)]
``variations(seq, n, True)`` will return the `N^n` permutations obtained
by allowing repetition of elements:
>>> list(variations([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 1), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(variations([0, 1], 3, repetition=False))
[]
>>> list(variations([0, 1], 3, repetition=True))[:4]
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]
.. seealso::
`itertools.permutations <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_,
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
"""
if not repetition:
seq = tuple(seq)
if len(seq) < n:
return iter(()) # 0 length iterator
return permutations(seq, n)
else:
if n == 0:
return iter(((),)) # yields 1 empty tuple
else:
return product(seq, repeat=n)
def subsets(seq, k=None, repetition=False):
r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``.
A `k`-subset of an `n`-element set is any subset of length exactly `k`. The
number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``,
whereas there are `2^n` subsets all together. If `k` is ``None`` then all
`2^n` subsets will be returned from shortest to longest.
Examples
========
>>> from sympy import subsets
``subsets(seq, k)`` will return the `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations)
without repetition, i.e. once an item has been removed, it can no
longer be "taken":
>>> list(subsets([1, 2], 2))
[(1, 2)]
>>> list(subsets([1, 2]))
[(), (1,), (2,), (1, 2)]
>>> list(subsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
``subsets(seq, k, repetition=True)`` will return the `\frac{(n - 1 + k)!}{k!(n - 1)!}`
combinations *with* repetition:
>>> list(subsets([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(subsets([0, 1], 3, repetition=False))
[]
>>> list(subsets([0, 1], 3, repetition=True))
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]
"""
if k is None:
if not repetition:
return chain.from_iterable((combinations(seq, k)
for k in range(len(seq) + 1)))
else:
return chain.from_iterable((combinations_with_replacement(seq, k)
for k in range(len(seq) + 1)))
else:
if not repetition:
return combinations(seq, k)
else:
return combinations_with_replacement(seq, k)
def filter_symbols(iterator, exclude):
"""
Only yield elements from `iterator` that do not occur in `exclude`.
Parameters
==========
iterator : iterable
iterator to take elements from
exclude : iterable
elements to exclude
Returns
=======
iterator : iterator
filtered iterator
"""
exclude = set(exclude)
for s in iterator:
if s not in exclude:
yield s
def numbered_symbols(prefix='x', cls=None, start=0, exclude=(), *args, **assumptions):
"""
Generate an infinite stream of Symbols consisting of a prefix and
increasing subscripts provided that they do not occur in ``exclude``.
Parameters
==========
prefix : str, optional
The prefix to use. By default, this function will generate symbols of
the form "x0", "x1", etc.
cls : class, optional
The class to use. By default, it uses ``Symbol``, but you can also use ``Wild`` or ``Dummy``.
start : int, optional
The start number. By default, it is 0.
Returns
=======
sym : Symbol
The subscripted symbols.
"""
exclude = set(exclude or [])
if cls is None:
# We can't just make the default cls=Symbol because it isn't
# imported yet.
from sympy.core import Symbol
cls = Symbol
while True:
name = '%s%s' % (prefix, start)
s = cls(name, *args, **assumptions)
if s not in exclude:
yield s
start += 1
def capture(func):
"""Return the printed output of func().
``func`` should be a function without arguments that produces output with
print statements.
>>> from sympy.utilities.iterables import capture
>>> from sympy import pprint
>>> from sympy.abc import x
>>> def foo():
... print('hello world!')
...
>>> 'hello' in capture(foo) # foo, not foo()
True
>>> capture(lambda: pprint(2/x))
'2\\n-\\nx\\n'
"""
from io import StringIO
import sys
stdout = sys.stdout
sys.stdout = file = StringIO()
try:
func()
finally:
sys.stdout = stdout
return file.getvalue()
def sift(seq, keyfunc, binary=False):
"""
Sift the sequence, ``seq`` according to ``keyfunc``.
Returns
=======
When ``binary`` is ``False`` (default), the output is a dictionary
where elements of ``seq`` are stored in a list keyed to the value
of keyfunc for that element. If ``binary`` is True then a tuple
with lists ``T`` and ``F`` are returned where ``T`` is a list
containing elements of seq for which ``keyfunc`` was ``True`` and
``F`` containing those elements for which ``keyfunc`` was ``False``;
a ValueError is raised if the ``keyfunc`` is not binary.
Examples
========
>>> from sympy.utilities import sift
>>> from sympy.abc import x, y
>>> from sympy import sqrt, exp, pi, Tuple
>>> sift(range(5), lambda x: x % 2)
{0: [0, 2, 4], 1: [1, 3]}
sift() returns a defaultdict() object, so any key that has no matches will
give [].
>>> sift([x], lambda x: x.is_commutative)
{True: [x]}
>>> _[False]
[]
Sometimes you will not know how many keys you will get:
>>> sift([sqrt(x), exp(x), (y**x)**2],
... lambda x: x.as_base_exp()[0])
{E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]}
Sometimes you expect the results to be binary; the
results can be unpacked by setting ``binary`` to True:
>>> sift(range(4), lambda x: x % 2, binary=True)
([1, 3], [0, 2])
>>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True)
([1], [pi])
A ValueError is raised if the predicate was not actually binary
(which is a good test for the logic where sifting is used and
binary results were expected):
>>> unknown = exp(1) - pi # the rationality of this is unknown
>>> args = Tuple(1, pi, unknown)
>>> sift(args, lambda x: x.is_rational, binary=True)
Traceback (most recent call last):
...
ValueError: keyfunc gave non-binary output
The non-binary sifting shows that there were 3 keys generated:
>>> set(sift(args, lambda x: x.is_rational).keys())
{None, False, True}
If you need to sort the sifted items it might be better to use
``ordered`` which can economically apply multiple sort keys
to a sequence while sorting.
See Also
========
ordered
"""
if not binary:
m = defaultdict(list)
for i in seq:
m[keyfunc(i)].append(i)
return m
sift = F, T = [], []
for i in seq:
try:
sift[keyfunc(i)].append(i)
except (IndexError, TypeError):
raise ValueError('keyfunc gave non-binary output')
return T, F
def take(iter, n):
"""Return ``n`` items from ``iter`` iterator. """
return [ value for _, value in zip(range(n), iter) ]
def dict_merge(*dicts):
"""Merge dictionaries into a single dictionary. """
merged = {}
for dict in dicts:
merged.update(dict)
return merged
def common_prefix(*seqs):
"""Return the subsequence that is a common start of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_prefix
>>> common_prefix(list(range(3)))
[0, 1, 2]
>>> common_prefix(list(range(3)), list(range(4)))
[0, 1, 2]
>>> common_prefix([1, 2, 3], [1, 2, 5])
[1, 2]
>>> common_prefix([1, 2, 3], [1, 3, 5])
[1]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(min(len(s) for s in seqs)):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i += 1
return seqs[0][:i]
def common_suffix(*seqs):
"""Return the subsequence that is a common ending of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_suffix
>>> common_suffix(list(range(3)))
[0, 1, 2]
>>> common_suffix(list(range(3)), list(range(4)))
[]
>>> common_suffix([1, 2, 3], [9, 2, 3])
[2, 3]
>>> common_suffix([1, 2, 3], [9, 7, 3])
[3]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(-1, -min(len(s) for s in seqs) - 1, -1):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i -= 1
if i == -1:
return []
else:
return seqs[0][i + 1:]
def prefixes(seq):
"""
Generate all prefixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import prefixes
>>> list(prefixes([1,2,3,4]))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[:i + 1]
def postfixes(seq):
"""
Generate all postfixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import postfixes
>>> list(postfixes([1,2,3,4]))
[[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[n - i - 1:]
def topological_sort(graph, key=None):
r"""
Topological sort of graph's vertices.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph to be sorted topologically.
key : callable[T] (optional)
Ordering key for vertices on the same level. By default the natural
(e.g. lexicographic) ordering is used (in this case the base type
must implement ordering relations).
Examples
========
Consider a graph::
+---+ +---+ +---+
| 7 |\ | 5 | | 3 |
+---+ \ +---+ +---+
| _\___/ ____ _/ |
| / \___/ \ / |
V V V V |
+----+ +---+ |
| 11 | | 8 | |
+----+ +---+ |
| | \____ ___/ _ |
| \ \ / / \ |
V \ V V / V V
+---+ \ +---+ | +----+
| 2 | | | 9 | | | 10 |
+---+ | +---+ | +----+
\________/
where vertices are integers. This graph can be encoded using
elementary Python's data structures as follows::
>>> V = [2, 3, 5, 7, 8, 9, 10, 11]
>>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
... (11, 2), (11, 9), (11, 10), (8, 9)]
To compute a topological sort for graph ``(V, E)`` issue::
>>> from sympy.utilities.iterables import topological_sort
>>> topological_sort((V, E))
[3, 5, 7, 8, 11, 2, 9, 10]
If specific tie breaking approach is needed, use ``key`` parameter::
>>> topological_sort((V, E), key=lambda v: -v)
[7, 5, 11, 3, 10, 8, 9, 2]
Only acyclic graphs can be sorted. If the input graph has a cycle,
then ``ValueError`` will be raised::
>>> topological_sort((V, E + [(10, 7)]))
Traceback (most recent call last):
...
ValueError: cycle detected
References
==========
.. [1] https://en.wikipedia.org/wiki/Topological_sorting
"""
V, E = graph
L = []
S = set(V)
E = list(E)
for v, u in E:
S.discard(u)
if key is None:
key = lambda value: value
S = sorted(S, key=key, reverse=True)
while S:
node = S.pop()
L.append(node)
for u, v in list(E):
if u == node:
E.remove((u, v))
for _u, _v in E:
if v == _v:
break
else:
kv = key(v)
for i, s in enumerate(S):
ks = key(s)
if kv > ks:
S.insert(i, v)
break
else:
S.append(v)
if E:
raise ValueError("cycle detected")
else:
return L
def strongly_connected_components(G):
r"""
Strongly connected components of a directed graph in reverse topological
order.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose strongly connected components are to be found.
Examples
========
Consider a directed graph (in dot notation)::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
.. graphviz::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
where vertices are the letters A, B, C and D. This graph can be encoded
using Python's elementary data structures as follows::
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')]
The strongly connected components of this graph can be computed as
>>> from sympy.utilities.iterables import strongly_connected_components
>>> strongly_connected_components((V, E))
[['D'], ['B', 'C'], ['A']]
This also gives the components in reverse topological order.
Since the subgraph containing B and C has a cycle they must be together in
a strongly connected component. A and D are connected to the rest of the
graph but not in a cyclic manner so they appear as their own strongly
connected components.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the strongly connected
components in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Strongly_connected_component
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.connected_components
"""
# Map from a vertex to its neighbours
V, E = G
Gmap = {vi: [] for vi in V}
for v1, v2 in E:
Gmap[v1].append(v2)
return _strongly_connected_components(V, Gmap)
def _strongly_connected_components(V, Gmap):
"""More efficient internal routine for strongly_connected_components"""
#
# Here V is an iterable of vertices and Gmap is a dict mapping each vertex
# to a list of neighbours e.g.:
#
# V = [0, 1, 2, 3]
# Gmap = {0: [2, 3], 1: [0]}
#
# For a large graph these data structures can often be created more
# efficiently then those expected by strongly_connected_components() which
# in this case would be
#
# V = [0, 1, 2, 3]
# Gmap = [(0, 2), (0, 3), (1, 0)]
#
# XXX: Maybe this should be the recommended function to use instead...
#
# Non-recursive Tarjan's algorithm:
lowlink = {}
indices = {}
stack = OrderedDict()
callstack = []
components = []
nomore = object()
def start(v):
index = len(stack)
indices[v] = lowlink[v] = index
stack[v] = None
callstack.append((v, iter(Gmap[v])))
def finish(v1):
# Finished a component?
if lowlink[v1] == indices[v1]:
component = [stack.popitem()[0]]
while component[-1] is not v1:
component.append(stack.popitem()[0])
components.append(component[::-1])
v2, _ = callstack.pop()
if callstack:
v1, _ = callstack[-1]
lowlink[v1] = min(lowlink[v1], lowlink[v2])
for v in V:
if v in indices:
continue
start(v)
while callstack:
v1, it1 = callstack[-1]
v2 = next(it1, nomore)
# Finished children of v1?
if v2 is nomore:
finish(v1)
# Recurse on v2
elif v2 not in indices:
start(v2)
elif v2 in stack:
lowlink[v1] = min(lowlink[v1], indices[v2])
# Reverse topological sort order:
return components
def connected_components(G):
r"""
Connected components of an undirected graph or weakly connected components
of a directed graph.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose connected components are to be found.
Examples
========
Given an undirected graph::
graph {
A -- B
C -- D
}
.. graphviz::
graph {
A -- B
C -- D
}
We can find the connected components using this function if we include
each edge in both directions::
>>> from sympy.utilities.iterables import connected_components
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')]
>>> connected_components((V, E))
[['A', 'B'], ['C', 'D']]
The weakly connected components of a directed graph can found the same
way.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the connected components
in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.strongly_connected_components
"""
# Duplicate edges both ways so that the graph is effectively undirected
# and return the strongly connected components:
V, E = G
E_undirected = []
for v1, v2 in E:
E_undirected.extend([(v1, v2), (v2, v1)])
return strongly_connected_components((V, E_undirected))
def rotate_left(x, y):
"""
Left rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_left
>>> a = [0, 1, 2]
>>> rotate_left(a, 1)
[1, 2, 0]
"""
if len(x) == 0:
return []
y = y % len(x)
return x[y:] + x[:y]
def rotate_right(x, y):
"""
Right rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_right
>>> a = [0, 1, 2]
>>> rotate_right(a, 1)
[2, 0, 1]
"""
if len(x) == 0:
return []
y = len(x) - y % len(x)
return x[y:] + x[:y]
def least_rotation(x, key=None):
'''
Returns the number of steps of left rotation required to
obtain lexicographically minimal string/list/tuple, etc.
Examples
========
>>> from sympy.utilities.iterables import least_rotation, rotate_left
>>> a = [3, 1, 5, 1, 2]
>>> least_rotation(a)
3
>>> rotate_left(a, _)
[1, 2, 3, 1, 5]
References
==========
.. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
'''
from sympy.functions.elementary.miscellaneous import Id
if key is None: key = Id
S = x + x # Concatenate string to it self to avoid modular arithmetic
f = [-1] * len(S) # Failure function
k = 0 # Least rotation of string found so far
for j in range(1,len(S)):
sj = S[j]
i = f[j-k-1]
while i != -1 and sj != S[k+i+1]:
if key(sj) < key(S[k+i+1]):
k = j-i-1
i = f[i]
if sj != S[k+i+1]:
if key(sj) < key(S[k]):
k = j
f[j-k] = -1
else:
f[j-k] = i+1
return k
def multiset_combinations(m, n, g=None):
"""
Return the unique combinations of size ``n`` from multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_combinations
>>> from itertools import combinations
>>> [''.join(i) for i in multiset_combinations('baby', 3)]
['abb', 'aby', 'bby']
>>> def count(f, s): return len(list(f(s, 3)))
The number of combinations depends on the number of letters; the
number of unique combinations depends on how the letters are
repeated.
>>> s1 = 'abracadabra'
>>> s2 = 'banana tree'
>>> count(combinations, s1), count(multiset_combinations, s1)
(165, 23)
>>> count(combinations, s2), count(multiset_combinations, s2)
(165, 54)
"""
from sympy.core.sorting import ordered
if g is None:
if isinstance(m, dict):
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
N = sum(m.values())
if n > N:
return
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(m)
N = len(m)
if n > N:
return
try:
m = multiset(m)
g = [(k, m[k]) for k in ordered(m)]
except TypeError:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
else:
# not checking counts since g is intended for internal use
N = sum(v for k, v in g)
if n > N or not n:
yield []
else:
for i, (k, v) in enumerate(g):
if v >= n:
yield [k]*n
v = n - 1
for v in range(min(n, v), 0, -1):
for j in multiset_combinations(None, n - v, g[i + 1:]):
rv = [k]*v + j
if len(rv) == n:
yield rv
def multiset_permutations(m, size=None, g=None):
"""
Return the unique permutations of multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_permutations
>>> from sympy import factorial
>>> [''.join(i) for i in multiset_permutations('aab')]
['aab', 'aba', 'baa']
>>> factorial(len('banana'))
720
>>> len(list(multiset_permutations('banana')))
60
"""
from sympy.core.sorting import ordered
if g is None:
if isinstance(m, dict):
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
do = [gi for gi in g if gi[1] > 0]
SUM = sum([gi[1] for gi in do])
if not do or size is not None and (size > SUM or size < 1):
if not do and size is None or size == 0:
yield []
return
elif size == 1:
for k, v in do:
yield [k]
elif len(do) == 1:
k, v = do[0]
v = v if size is None else (size if size <= v else 0)
yield [k for i in range(v)]
elif all(v == 1 for k, v in do):
for p in permutations([k for k, v in do], size):
yield list(p)
else:
size = size if size is not None else SUM
for i, (k, v) in enumerate(do):
do[i][1] -= 1
for j in multiset_permutations(None, size - 1, do):
if j:
yield [k] + j
do[i][1] += 1
def _partition(seq, vector, m=None):
"""
Return the partition of seq as specified by the partition vector.
Examples
========
>>> from sympy.utilities.iterables import _partition
>>> _partition('abcde', [1, 0, 1, 2, 0])
[['b', 'e'], ['a', 'c'], ['d']]
Specifying the number of bins in the partition is optional:
>>> _partition('abcde', [1, 0, 1, 2, 0], 3)
[['b', 'e'], ['a', 'c'], ['d']]
The output of _set_partitions can be passed as follows:
>>> output = (3, [1, 0, 1, 2, 0])
>>> _partition('abcde', *output)
[['b', 'e'], ['a', 'c'], ['d']]
See Also
========
combinatorics.partitions.Partition.from_rgs
"""
if m is None:
m = max(vector) + 1
elif isinstance(vector, int): # entered as m, vector
vector, m = m, vector
p = [[] for i in range(m)]
for i, v in enumerate(vector):
p[v].append(seq[i])
return p
def _set_partitions(n):
"""Cycle through all partitions of n elements, yielding the
current number of partitions, ``m``, and a mutable list, ``q``
such that ``element[i]`` is in part ``q[i]`` of the partition.
NOTE: ``q`` is modified in place and generally should not be changed
between function calls.
Examples
========
>>> from sympy.utilities.iterables import _set_partitions, _partition
>>> for m, q in _set_partitions(3):
... print('%s %s %s' % (m, q, _partition('abc', q, m)))
1 [0, 0, 0] [['a', 'b', 'c']]
2 [0, 0, 1] [['a', 'b'], ['c']]
2 [0, 1, 0] [['a', 'c'], ['b']]
2 [0, 1, 1] [['a'], ['b', 'c']]
3 [0, 1, 2] [['a'], ['b'], ['c']]
Notes
=====
This algorithm is similar to, and solves the same problem as,
Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer
Programming. Knuth uses the term "restricted growth string" where
this code refers to a "partition vector". In each case, the meaning is
the same: the value in the ith element of the vector specifies to
which part the ith set element is to be assigned.
At the lowest level, this code implements an n-digit big-endian
counter (stored in the array q) which is incremented (with carries) to
get the next partition in the sequence. A special twist is that a
digit is constrained to be at most one greater than the maximum of all
the digits to the left of it. The array p maintains this maximum, so
that the code can efficiently decide when a digit can be incremented
in place or whether it needs to be reset to 0 and trigger a carry to
the next digit. The enumeration starts with all the digits 0 (which
corresponds to all the set elements being assigned to the same 0th
part), and ends with 0123...n, which corresponds to each set element
being assigned to a different, singleton, part.
This routine was rewritten to use 0-based lists while trying to
preserve the beauty and efficiency of the original algorithm.
References
==========
.. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms,
2nd Ed, p 91, algorithm "nexequ". Available online from
https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed
November 17, 2012).
"""
p = [0]*n
q = [0]*n
nc = 1
yield nc, q
while nc != n:
m = n
while 1:
m -= 1
i = q[m]
if p[i] != 1:
break
q[m] = 0
i += 1
q[m] = i
m += 1
nc += m - n
p[0] += n - m
if i == nc:
p[nc] = 0
nc += 1
p[i - 1] -= 1
p[i] += 1
yield nc, q
def multiset_partitions(multiset, m=None):
"""
Return unique partitions of the given multiset (in list form).
If ``m`` is None, all multisets will be returned, otherwise only
partitions with ``m`` parts will be returned.
If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
will be supplied.
Examples
========
>>> from sympy.utilities.iterables import multiset_partitions
>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
Only unique partitions are returned and these will be returned in a
canonical order regardless of the order of the input:
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) ==
... list(multiset_partitions(sorted(a))))
True
If m is omitted then all partitions will be returned:
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
Counting
========
The number of partitions of a set is given by the bell number:
>>> from sympy import bell
>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
The number of partitions of length k from a set of size n is given by the
Stirling Number of the 2nd kind:
>>> from sympy.functions.combinatorial.numbers import stirling
>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
These comments on counting apply to *sets*, not multisets.
Notes
=====
When all the elements are the same in the multiset, the order
of the returned partitions is determined by the ``partitions``
routine. If one is counting partitions then it is better to use
the ``nT`` function.
See Also
========
partitions
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
sympy.functions.combinatorial.numbers.nT
"""
# This function looks at the supplied input and dispatches to
# several special-case routines as they apply.
if isinstance(multiset, int):
n = multiset
if m and m > n:
return
multiset = list(range(n))
if m == 1:
yield [multiset[:]]
return
# If m is not None, it can sometimes be faster to use
# MultisetPartitionTraverser.enum_range() even for inputs
# which are sets. Since the _set_partitions code is quite
# fast, this is only advantageous when the overall set
# partitions outnumber those with the desired number of parts
# by a large factor. (At least 60.) Such a switch is not
# currently implemented.
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(multiset[i])
yield rv
return
if len(multiset) == 1 and isinstance(multiset, str):
multiset = [multiset]
if not has_variety(multiset):
# Only one component, repeated n times. The resulting
# partitions correspond to partitions of integer n.
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
x = multiset[:1]
for size, p in partitions(n, m, size=True):
if m is None or size == m:
rv = []
for k in sorted(p):
rv.extend([x*k]*p[k])
yield rv
else:
from sympy.core.sorting import ordered
multiset = list(ordered(multiset))
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
# Split the information of the multiset into two lists -
# one of the elements themselves, and one (of the same length)
# giving the number of repeats for the corresponding element.
elements, multiplicities = zip(*group(multiset, False))
if len(elements) < len(multiset):
# General case - multiset with more than one distinct element
# and at least one element repeated more than once.
if m:
mpt = MultisetPartitionTraverser()
for state in mpt.enum_range(multiplicities, m-1, m):
yield list_visitor(state, elements)
else:
for state in multiset_partitions_taocp(multiplicities):
yield list_visitor(state, elements)
else:
# Set partitions case - no repeated elements. Pretty much
# same as int argument case above, with same possible, but
# currently unimplemented optimization for some cases when
# m is not None
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(i)
yield [[multiset[j] for j in i] for i in rv]
def partitions(n, m=None, k=None, size=False):
"""Generate all partitions of positive integer, n.
Parameters
==========
m : integer (default gives partitions of all sizes)
limits number of parts in partition (mnemonic: m, maximum parts)
k : integer (default gives partitions number from 1 through n)
limits the numbers that are kept in the partition (mnemonic: k, keys)
size : bool (default False, only partition is returned)
when ``True`` then (M, P) is returned where M is the sum of the
multiplicities and P is the generated partition.
Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, "4: one of them".
Examples
========
>>> from sympy.utilities.iterables import partitions
The numbers appearing in the partition (the key of the returned dict)
are limited with k:
>>> for p in partitions(6, k=2): # doctest: +SKIP
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
The maximum number of parts in the partition (the sum of the values in
the returned dict) are limited with m (default value, None, gives
partitions from 1 through n):
>>> for p in partitions(6, m=2): # doctest: +SKIP
... print(p)
...
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
References
==========
.. [1] modified from Tim Peter's version to allow for k and m values:
http://code.activestate.com/recipes/218332-generator-for-integer-partitions/
See Also
========
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
"""
if (n <= 0 or
m is not None and m < 1 or
k is not None and k < 1 or
m and k and m*k < n):
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
if size:
yield 0, {}
else:
yield {}
return
if m is None:
m = n
else:
m = min(m, n)
k = min(k or n, n)
n, m, k = as_int(n), as_int(m), as_int(k)
q, r = divmod(n, k)
ms = {k: q}
keys = [k] # ms.keys(), from largest to smallest
if r:
ms[r] = 1
keys.append(r)
room = m - q - bool(r)
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
while keys != [1]:
# Reuse any 1's.
if keys[-1] == 1:
del keys[-1]
reuse = ms.pop(1)
room += reuse
else:
reuse = 0
while 1:
# Let i be the smallest key larger than 1. Reuse one
# instance of i.
i = keys[-1]
newcount = ms[i] = ms[i] - 1
reuse += i
if newcount == 0:
del keys[-1], ms[i]
room += 1
# Break the remainder into pieces of size i-1.
i -= 1
q, r = divmod(reuse, i)
need = q + bool(r)
if need > room:
if not keys:
return
continue
ms[i] = q
keys.append(i)
if r:
ms[r] = 1
keys.append(r)
break
room -= need
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
def ordered_partitions(n, m=None, sort=True):
"""Generates ordered partitions of integer ``n``.
Parameters
==========
m : integer (default None)
The default value gives partitions of all sizes else only
those with size m. In addition, if ``m`` is not None then
partitions are generated *in place* (see examples).
sort : bool (default True)
Controls whether partitions are
returned in sorted order when ``m`` is not None; when False,
the partitions are returned as fast as possible with elements
sorted, but when m|n the partitions will not be in
ascending lexicographical order.
Examples
========
>>> from sympy.utilities.iterables import ordered_partitions
All partitions of 5 in ascending lexicographical:
>>> for p in ordered_partitions(5):
... print(p)
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 3]
[1, 2, 2]
[1, 4]
[2, 3]
[5]
Only partitions of 5 with two parts:
>>> for p in ordered_partitions(5, 2):
... print(p)
[1, 4]
[2, 3]
When ``m`` is given, a given list objects will be used more than
once for speed reasons so you will not see the correct partitions
unless you make a copy of each as it is generated:
>>> [p for p in ordered_partitions(7, 3)]
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
>>> [list(p) for p in ordered_partitions(7, 3)]
[[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]
When ``n`` is a multiple of ``m``, the elements are still sorted
but the partitions themselves will be *unordered* if sort is False;
the default is to return them in ascending lexicographical order.
>>> for p in ordered_partitions(6, 2):
... print(p)
[1, 5]
[2, 4]
[3, 3]
But if speed is more important than ordering, sort can be set to
False:
>>> for p in ordered_partitions(6, 2, sort=False):
... print(p)
[1, 5]
[3, 3]
[2, 4]
References
==========
.. [1] Generating Integer Partitions, [online],
Available: https://jeromekelleher.net/generating-integer-partitions.html
.. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All
Partitions: A Comparison Of Two Encodings", [online],
Available: https://arxiv.org/pdf/0909.2331v2.pdf
"""
if n < 1 or m is not None and m < 1:
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
yield []
return
if m is None:
# The list `a`'s leading elements contain the partition in which
# y is the biggest element and x is either the same as y or the
# 2nd largest element; v and w are adjacent element indices
# to which x and y are being assigned, respectively.
a = [1]*n
y = -1
v = n
while v > 0:
v -= 1
x = a[v] + 1
while y >= 2 * x:
a[v] = x
y -= x
v += 1
w = v + 1
while x <= y:
a[v] = x
a[w] = y
yield a[:w + 1]
x += 1
y -= 1
a[v] = x + y
y = a[v] - 1
yield a[:w]
elif m == 1:
yield [n]
elif n == m:
yield [1]*n
else:
# recursively generate partitions of size m
for b in range(1, n//m + 1):
a = [b]*m
x = n - b*m
if not x:
if sort:
yield a
elif not sort and x <= m:
for ax in ordered_partitions(x, sort=False):
mi = len(ax)
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
else:
for mi in range(1, m):
for ax in ordered_partitions(x, mi, sort=True):
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
def binary_partitions(n):
"""
Generates the binary partition of n.
A binary partition consists only of numbers that are
powers of two. Each step reduces a `2^{k+1}` to `2^k` and
`2^k`. Thus 16 is converted to 8 and 8.
Examples
========
>>> from sympy.utilities.iterables import binary_partitions
>>> for i in binary_partitions(5):
... print(i)
...
[4, 1]
[2, 2, 1]
[2, 1, 1, 1]
[1, 1, 1, 1, 1]
References
==========
.. [1] TAOCP 4, section 7.2.1.5, problem 64
"""
from math import ceil, log
power = int(2**(ceil(log(n, 2))))
acc = 0
partition = []
while power:
if acc + power <= n:
partition.append(power)
acc += power
power >>= 1
last_num = len(partition) - 1 - (n & 1)
while last_num >= 0:
yield partition
if partition[last_num] == 2:
partition[last_num] = 1
partition.append(1)
last_num -= 1
continue
partition.append(1)
partition[last_num] >>= 1
x = partition[last_num + 1] = partition[last_num]
last_num += 1
while x > 1:
if x <= len(partition) - last_num - 1:
del partition[-x + 1:]
last_num += 1
partition[last_num] = x
else:
x >>= 1
yield [1]*n
def has_dups(seq):
"""Return True if there are any duplicate elements in ``seq``.
Examples
========
>>> from sympy import has_dups, Dict, Set
>>> has_dups((1, 2, 1))
True
>>> has_dups(range(3))
False
>>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict()))
True
"""
from sympy.core.containers import Dict
from sympy.sets.sets import Set
if isinstance(seq, (dict, set, Dict, Set)):
return False
unique = set()
try:
return any(True for s in seq if s in unique or unique.add(s))
except TypeError:
return len(seq) != len(list(uniq(seq)))
def has_variety(seq):
"""Return True if there are any different elements in ``seq``.
Examples
========
>>> from sympy import has_variety
>>> has_variety((1, 2, 1))
True
>>> has_variety((1, 1, 1))
False
"""
for i, s in enumerate(seq):
if i == 0:
sentinel = s
else:
if s != sentinel:
return True
return False
def uniq(seq, result=None):
"""
Yield unique elements from ``seq`` as an iterator. The second
parameter ``result`` is used internally; it is not necessary
to pass anything for this.
Note: changing the sequence during iteration will raise a
RuntimeError if the size of the sequence is known; if you pass
an iterator and advance the iterator you will change the
output of this routine but there will be no warning.
Examples
========
>>> from sympy.utilities.iterables import uniq
>>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
>>> type(uniq(dat)) in (list, tuple)
False
>>> list(uniq(dat))
[1, 4, 5, 2]
>>> list(uniq(x for x in dat))
[1, 4, 5, 2]
>>> list(uniq([[1], [2, 1], [1]]))
[[1], [2, 1]]
"""
try:
n = len(seq)
except TypeError:
n = None
def check():
# check that size of seq did not change during iteration;
# if n == None the object won't support size changing, e.g.
# an iterator can't be changed
if n is not None and len(seq) != n:
raise RuntimeError('sequence changed size during iteration')
try:
seen = set()
result = result or []
for i, s in enumerate(seq):
if not (s in seen or seen.add(s)):
yield s
check()
except TypeError:
if s not in result:
yield s
check()
result.append(s)
if hasattr(seq, '__getitem__'):
yield from uniq(seq[i + 1:], result)
else:
yield from uniq(seq, result)
def generate_bell(n):
"""Return permutations of [0, 1, ..., n - 1] such that each permutation
differs from the last by the exchange of a single pair of neighbors.
The ``n!`` permutations are returned as an iterator. In order to obtain
the next permutation from a random starting permutation, use the
``next_trotterjohnson`` method of the Permutation class (which generates
the same sequence in a different manner).
Examples
========
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
This is the sort of permutation used in the ringing of physical bells,
and does not produce permutations in lexicographical order. Rather, the
permutations differ from each other by exactly one inversion, and the
position at which the swapping occurs varies periodically in a simple
fashion. Consider the first few permutations of 4 elements generated
by ``permutations`` and ``generate_bell``:
>>> list(permutations(range(4)))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
>>> list(generate_bell(4))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
Notice how the 2nd and 3rd lexicographical permutations have 3 elements
out of place whereas each "bell" permutation always has only two
elements out of place relative to the previous permutation (and so the
signature (+/-1) of a permutation is opposite of the signature of the
previous permutation).
How the position of inversion varies across the elements can be seen
by tracing out where the largest number appears in the permutations:
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[ XXXXXX XXXXXX XXXXXX ]
See Also
========
sympy.combinatorics.permutations.Permutation.next_trotterjohnson
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_ringing
.. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018
.. [3] http://programminggeeks.com/bell-algorithm-for-permutation/
.. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
.. [5] Generating involutions, derangements, and relatives by ECO
Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010
"""
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
if n == 1:
yield (0,)
elif n == 2:
yield (0, 1)
yield (1, 0)
elif n == 3:
yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
else:
m = n - 1
op = [0] + [-1]*m
l = list(range(n))
while True:
yield tuple(l)
# find biggest element with op
big = None, -1 # idx, value
for i in range(n):
if op[i] and l[i] > big[1]:
big = i, l[i]
i, _ = big
if i is None:
break # there are no ops left
# swap it with neighbor in the indicated direction
j = i + op[i]
l[i], l[j] = l[j], l[i]
op[i], op[j] = op[j], op[i]
# if it landed at the end or if the neighbor in the same
# direction is bigger then turn off op
if j == 0 or j == m or l[j + op[j]] > l[j]:
op[j] = 0
# any element bigger to the left gets +1 op
for i in range(j):
if l[i] > l[j]:
op[i] = 1
# any element bigger to the right gets -1 op
for i in range(j + 1, n):
if l[i] > l[j]:
op[i] = -1
def generate_involutions(n):
"""
Generates involutions.
An involution is a permutation that when multiplied
by itself equals the identity permutation. In this
implementation the involutions are generated using
Fixed Points.
Alternatively, an involution can be considered as
a permutation that does not contain any cycles with
a length that is greater than two.
Examples
========
>>> from sympy.utilities.iterables import generate_involutions
>>> list(generate_involutions(3))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
>>> len(list(generate_involutions(4)))
10
References
==========
.. [1] http://mathworld.wolfram.com/PermutationInvolution.html
"""
idx = list(range(n))
for p in permutations(idx):
for i in idx:
if p[p[i]] != i:
break
else:
yield p
def multiset_derangements(s):
"""Generate derangements of the elements of s *in place*.
Examples
========
>>> from sympy.utilities.iterables import multiset_derangements, uniq
Because the derangements of multisets (not sets) are generated
in place, copies of the return value must be made if a collection
of derangements is desired or else all values will be the same:
>>> list(uniq([i for i in multiset_derangements('1233')]))
[[None, None, None, None]]
>>> [i.copy() for i in multiset_derangements('1233')]
[['3', '3', '1', '2'], ['3', '3', '2', '1']]
>>> [''.join(i) for i in multiset_derangements('1233')]
['3312', '3321']
"""
from sympy.core.sorting import ordered
# create multiset dictionary of hashable elements or else
# remap elements to integers
try:
ms = multiset(s)
except TypeError:
# give each element a canonical integer value
key = dict(enumerate(ordered(uniq(s))))
h = []
for si in s:
for k in key:
if key[k] == si:
h.append(k)
break
for i in multiset_derangements(h):
yield [key[j] for j in i]
return
mx = max(ms.values()) # max repetition of any element
n = len(s) # the number of elements
## special cases
# 1) one element has more than half the total cardinality of s: no
# derangements are possible.
if mx*2 > n:
return
# 2) all elements appear once: singletons
if len(ms) == n:
yield from _set_derangements(s)
return
# find the first element that is repeated the most to place
# in the following two special cases where the selection
# is unambiguous: either there are two elements with multiplicity
# of mx or else there is only one with multiplicity mx
for M in ms:
if ms[M] == mx:
break
inonM = [i for i in range(n) if s[i] != M] # location of non-M
iM = [i for i in range(n) if s[i] == M] # locations of M
rv = [None]*n
# 3) half are the same
if 2*mx == n:
# M goes into non-M locations
for i in inonM:
rv[i] = M
# permutations of non-M go to M locations
for p in multiset_permutations([s[i] for i in inonM]):
for i, pi in zip(iM, p):
rv[i] = pi
yield rv
# clean-up (and encourages proper use of routine)
rv[:] = [None]*n
return
# 4) single repeat covers all but 1 of the non-repeats:
# if there is one repeat then the multiset of the values
# of ms would be {mx: 1, 1: n - mx}, i.e. there would
# be n - mx + 1 values with the condition that n - 2*mx = 1
if n - 2*mx == 1 and len(ms.values()) == n - mx + 1:
for i, i1 in enumerate(inonM):
ifill = inonM[:i] + inonM[i+1:]
for j in ifill:
rv[j] = M
for p in permutations([s[j] for j in ifill]):
rv[i1] = s[i1]
for j, pi in zip(iM, p):
rv[j] = pi
k = i1
for j in iM:
rv[j], rv[k] = rv[k], rv[j]
yield rv
k = j
# clean-up (and encourages proper use of routine)
rv[:] = [None]*n
return
## general case is handled with 3 helpers:
# 1) `finish_derangements` will place the last two elements
# which have arbitrary multiplicities, e.g. for multiset
# {c: 3, a: 2, b: 2}, the last two elements are a and b
# 2) `iopen` will tell where a given element can be placed
# 3) `do` will recursively place elements into subsets of
# valid locations
def finish_derangements():
"""Place the last two elements into the partially completed
derangement, and yield the results.
"""
a = take[1][0] # penultimate element
a_ct = take[1][1]
b = take[0][0] # last element to be placed
b_ct = take[0][1]
# split the indexes of the not-already-assigned elements of rv into
# three categories
forced_a = [] # positions which must have an a
forced_b = [] # positions which must have a b
open_free = [] # positions which could take either
for i in range(len(s)):
if rv[i] is None:
if s[i] == a:
forced_b.append(i)
elif s[i] == b:
forced_a.append(i)
else:
open_free.append(i)
if len(forced_a) > a_ct or len(forced_b) > b_ct:
# No derangement possible
return
for i in forced_a:
rv[i] = a
for i in forced_b:
rv[i] = b
for a_place in combinations(open_free, a_ct - len(forced_a)):
for a_pos in a_place:
rv[a_pos] = a
for i in open_free:
if rv[i] is None: # anything not in the subset is set to b
rv[i] = b
yield rv
# Clean up/undo the final placements
for i in open_free:
rv[i] = None
# additional cleanup - clear forced_a, forced_b
for i in forced_a:
rv[i] = None
for i in forced_b:
rv[i] = None
def iopen(v):
# return indices at which element v can be placed in rv:
# locations which are not already occupied if that location
# does not already contain v in the same location of s
return [i for i in range(n) if rv[i] is None and s[i] != v]
def do(j):
if j == 1:
# handle the last two elements (regardless of multiplicity)
# with a special method
yield from finish_derangements()
else:
# place the mx elements of M into a subset of places
# into which it can be replaced
M, mx = take[j]
for i in combinations(iopen(M), mx):
# place M
for ii in i:
rv[ii] = M
# recursively place the next element
yield from do(j - 1)
# mark positions where M was placed as once again
# open for placement of other elements
for ii in i:
rv[ii] = None
# process elements in order of canonically decreasing multiplicity
take = sorted(ms.items(), key=lambda x:(x[1], x[0]))
yield from do(len(take) - 1)
rv[:] = [None]*n
def random_derangement(t, choice=None, strict=True):
"""Return a list of elements in which none are in the same positions
as they were originally. If an element fills more than half of the positions
then an error will be raised since no derangement is possible. To obtain
a derangement of as many items as possible--with some of the most numerous
remaining in their original positions--pass `strict=False`. To produce a
pseudorandom derangment, pass a pseudorandom selector like `choice` (see
below).
Examples
========
>>> from sympy.utilities.iterables import random_derangement
>>> t = 'SymPy: a CAS in pure Python'
>>> d = random_derangement(t)
>>> all(i != j for i, j in zip(d, t))
True
A predictable result can be obtained by using a pseudorandom
generator for the choice:
>>> from sympy.core.random import seed, choice as c
>>> seed(1)
>>> d = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert len(set(d)) != 1 # we got different values
By reseeding, the same sequence can be obtained:
>>> seed(1)
>>> d2 = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert d == d2
"""
if choice is None:
import secrets
choice = secrets.choice
def shuffle(rv):
'''Knuth shuffle'''
for i in range(len(rv) - 1, 0, -1):
x = choice(rv[:i + 1])
j = rv.index(x)
rv[i], rv[j] = rv[j], rv[i]
def pick(rv, n):
'''shuffle rv and return the first n values
'''
shuffle(rv)
return rv[:n]
ms = multiset(t)
tot = len(t)
ms = sorted(ms.items(), key=lambda x: x[1])
# if there are not enough spaces for the most
# plentiful element to move to then some of them
# will have to stay in place
M, mx = ms[-1]
n = len(t)
xs = 2*mx - tot
if xs > 0:
if strict:
raise ValueError('no derangement possible')
opts = [i for (i, c) in enumerate(t) if c == ms[-1][0]]
pick(opts, xs)
stay = sorted(opts[:xs])
rv = list(t)
for i in reversed(stay):
rv.pop(i)
rv = random_derangement(rv, choice)
for i in stay:
rv.insert(i, ms[-1][0])
return ''.join(rv) if type(t) is str else rv
# the normal derangement calculated from here
if n == len(ms):
# approx 1/3 will succeed
rv = list(t)
while True:
shuffle(rv)
if all(i != j for i,j in zip(rv, t)):
break
else:
# general case
rv = [None]*n
while True:
j = 0
while j > -len(ms): # do most numerous first
j -= 1
e, c = ms[j]
opts = [i for i in range(n) if rv[i] is None and t[i] != e]
if len(opts) < c:
for i in range(n):
rv[i] = None
break # try again
pick(opts, c)
for i in range(c):
rv[opts[i]] = e
else:
return rv
return rv
def _set_derangements(s):
"""
yield derangements of items in ``s`` which are assumed to contain
no repeated elements
"""
if len(s) < 2:
return
if len(s) == 2:
yield [s[1], s[0]]
return
if len(s) == 3:
yield [s[1], s[2], s[0]]
yield [s[2], s[0], s[1]]
return
for p in permutations(s):
if not any(i == j for i, j in zip(p, s)):
yield list(p)
def generate_derangements(s):
"""
Return unique derangements of the elements of iterable ``s``.
Examples
========
>>> from sympy.utilities.iterables import generate_derangements
>>> list(generate_derangements([0, 1, 2]))
[[1, 2, 0], [2, 0, 1]]
>>> list(generate_derangements([0, 1, 2, 2]))
[[2, 2, 0, 1], [2, 2, 1, 0]]
>>> list(generate_derangements([0, 1, 1]))
[]
See Also
========
sympy.functions.combinatorial.factorials.subfactorial
"""
if not has_dups(s):
yield from _set_derangements(s)
else:
for p in multiset_derangements(s):
yield list(p)
def necklaces(n, k, free=False):
"""
A routine to generate necklaces that may (free=True) or may not
(free=False) be turned over to be viewed. The "necklaces" returned
are comprised of ``n`` integers (beads) with ``k`` different
values (colors). Only unique necklaces are returned.
Examples
========
>>> from sympy.utilities.iterables import necklaces, bracelets
>>> def show(s, i):
... return ''.join(s[j] for j in i)
The "unrestricted necklace" is sometimes also referred to as a
"bracelet" (an object that can be turned over, a sequence that can
be reversed) and the term "necklace" is used to imply a sequence
that cannot be reversed. So ACB == ABC for a bracelet (rotate and
reverse) while the two are different for a necklace since rotation
alone cannot make the two sequences the same.
(mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)
>>> B = [show('ABC', i) for i in bracelets(3, 3)]
>>> N = [show('ABC', i) for i in necklaces(3, 3)]
>>> set(N) - set(B)
{'ACB'}
>>> list(necklaces(4, 2))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]
>>> [show('.o', i) for i in bracelets(4, 2)]
['....', '...o', '..oo', '.o.o', '.ooo', 'oooo']
References
==========
.. [1] http://mathworld.wolfram.com/Necklace.html
.. [2] Frank Ruskey, Carla Savage, and Terry Min Yih Wang,
Generating necklaces, Journal of Algorithms 13 (1992), 414-430;
https://doi.org/10.1016/0196-6774(92)90047-G
"""
# The FKM algorithm
if k == 0 and n > 0:
return
a = [0]*n
yield tuple(a)
if n == 0:
return
while True:
i = n - 1
while a[i] == k - 1:
i -= 1
if i == -1:
return
a[i] += 1
for j in range(n - i - 1):
a[j + i + 1] = a[j]
if n % (i + 1) == 0 and (not free or all(a <= a[j::-1] + a[-1:j:-1] for j in range(n - 1))):
# No need to test j = n - 1.
yield tuple(a)
def bracelets(n, k):
"""Wrapper to necklaces to return a free (unrestricted) necklace."""
return necklaces(n, k, free=True)
def generate_oriented_forest(n):
"""
This algorithm generates oriented forests.
An oriented graph is a directed graph having no symmetric pair of directed
edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can
also be described as a disjoint union of trees, which are graphs in which
any two vertices are connected by exactly one simple path.
Examples
========
>>> from sympy.utilities.iterables import generate_oriented_forest
>>> list(generate_oriented_forest(4))
[[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \
[0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]
References
==========
.. [1] T. Beyer and S.M. Hedetniemi: constant time generation of
rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980
.. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python
"""
P = list(range(-1, n))
while True:
yield P[1:]
if P[n] > 0:
P[n] = P[P[n]]
else:
for p in range(n - 1, 0, -1):
if P[p] != 0:
target = P[p] - 1
for q in range(p - 1, 0, -1):
if P[q] == target:
break
offset = p - q
for i in range(p, n + 1):
P[i] = P[i - offset]
break
else:
break
def minlex(seq, directed=True, key=None):
r"""
Return the rotation of the sequence in which the lexically smallest
elements appear first, e.g. `cba \rightarrow acb`.
The sequence returned is a tuple, unless the input sequence is a string
in which case a string is returned.
If ``directed`` is False then the smaller of the sequence and the
reversed sequence is returned, e.g. `cba \rightarrow abc`.
If ``key`` is not None then it is used to extract a comparison key from each element in iterable.
Examples
========
>>> from sympy.combinatorics.polyhedron import minlex
>>> minlex((1, 2, 0))
(0, 1, 2)
>>> minlex((1, 0, 2))
(0, 2, 1)
>>> minlex((1, 0, 2), directed=False)
(0, 1, 2)
>>> minlex('11010011000', directed=True)
'00011010011'
>>> minlex('11010011000', directed=False)
'00011001011'
>>> minlex(('bb', 'aaa', 'c', 'a'))
('a', 'bb', 'aaa', 'c')
>>> minlex(('bb', 'aaa', 'c', 'a'), key=len)
('c', 'a', 'bb', 'aaa')
"""
from sympy.functions.elementary.miscellaneous import Id
if key is None: key = Id
best = rotate_left(seq, least_rotation(seq, key=key))
if not directed:
rseq = seq[::-1]
rbest = rotate_left(rseq, least_rotation(rseq, key=key))
best = min(best, rbest, key=key)
# Convert to tuple, unless we started with a string.
return tuple(best) if not isinstance(seq, str) else best
def runs(seq, op=gt):
"""Group the sequence into lists in which successive elements
all compare the same with the comparison operator, ``op``:
op(seq[i + 1], seq[i]) is True from all elements in a run.
Examples
========
>>> from sympy.utilities.iterables import runs
>>> from operator import ge
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
[[0, 1, 2], [2], [1, 4], [3], [2], [2]]
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge)
[[0, 1, 2, 2], [1, 4], [3], [2, 2]]
"""
cycles = []
seq = iter(seq)
try:
run = [next(seq)]
except StopIteration:
return []
while True:
try:
ei = next(seq)
except StopIteration:
break
if op(ei, run[-1]):
run.append(ei)
continue
else:
cycles.append(run)
run = [ei]
if run:
cycles.append(run)
return cycles
def sequence_partitions(l, n, /):
r"""Returns the partition of sequence $l$ into $n$ bins
Explanation
===========
Given the sequence $l_1 \cdots l_m \in V^+$ where
$V^+$ is the Kleene plus of $V$
The set of $n$ partitions of $l$ is defined as:
.. math::
\{(s_1, \cdots, s_n) | s_1 \in V^+, \cdots, s_n \in V^+,
s_1 \cdots s_n = l_1 \cdots l_m\}
Parameters
==========
l : Sequence[T]
A nonempty sequence of any Python objects
n : int
A positive integer
Yields
======
out : list[Sequence[T]]
A list of sequences with concatenation equals $l$.
This should conform with the type of $l$.
Examples
========
>>> from sympy.utilities.iterables import sequence_partitions
>>> for out in sequence_partitions([1, 2, 3, 4], 2):
... print(out)
[[1], [2, 3, 4]]
[[1, 2], [3, 4]]
[[1, 2, 3], [4]]
Notes
=====
This is modified version of EnricoGiampieri's partition generator
from https://stackoverflow.com/questions/13131491/
See Also
========
sequence_partitions_empty
"""
# Asserting l is nonempty is done only for sanity check
if n == 1 and l:
yield [l]
return
for i in range(1, len(l)):
for part in sequence_partitions(l[i:], n - 1):
yield [l[:i]] + part
def sequence_partitions_empty(l, n, /):
r"""Returns the partition of sequence $l$ into $n$ bins with
empty sequence
Explanation
===========
Given the sequence $l_1 \cdots l_m \in V^*$ where
$V^*$ is the Kleene star of $V$
The set of $n$ partitions of $l$ is defined as:
.. math::
\{(s_1, \cdots, s_n) | s_1 \in V^*, \cdots, s_n \in V^*,
s_1 \cdots s_n = l_1 \cdots l_m\}
There are more combinations than :func:`sequence_partitions` because
empty sequence can fill everywhere, so we try to provide different
utility for this.
Parameters
==========
l : Sequence[T]
A sequence of any Python objects (can be possibly empty)
n : int
A positive integer
Yields
======
out : list[Sequence[T]]
A list of sequences with concatenation equals $l$.
This should conform with the type of $l$.
Examples
========
>>> from sympy.utilities.iterables import sequence_partitions_empty
>>> for out in sequence_partitions_empty([1, 2, 3, 4], 2):
... print(out)
[[], [1, 2, 3, 4]]
[[1], [2, 3, 4]]
[[1, 2], [3, 4]]
[[1, 2, 3], [4]]
[[1, 2, 3, 4], []]
See Also
========
sequence_partitions
"""
if n < 1:
return
if n == 1:
yield [l]
return
for i in range(0, len(l) + 1):
for part in sequence_partitions_empty(l[i:], n - 1):
yield [l[:i]] + part
def kbins(l, k, ordered=None):
"""
Return sequence ``l`` partitioned into ``k`` bins.
Examples
========
The default is to give the items in the same order, but grouped
into k partitions without any reordering:
>>> from sympy.utilities.iterables import kbins
>>> for p in kbins(list(range(5)), 2):
... print(p)
...
[[0], [1, 2, 3, 4]]
[[0, 1], [2, 3, 4]]
[[0, 1, 2], [3, 4]]
[[0, 1, 2, 3], [4]]
The ``ordered`` flag is either None (to give the simple partition
of the elements) or is a 2 digit integer indicating whether the order of
the bins and the order of the items in the bins matters. Given::
A = [[0], [1, 2]]
B = [[1, 2], [0]]
C = [[2, 1], [0]]
D = [[0], [2, 1]]
the following values for ``ordered`` have the shown meanings::
00 means A == B == C == D
01 means A == B
10 means A == D
11 means A == A
>>> for ordered_flag in [None, 0, 1, 10, 11]:
... print('ordered = %s' % ordered_flag)
... for p in kbins(list(range(3)), 2, ordered=ordered_flag):
... print(' %s' % p)
...
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]
See Also
========
partitions, multiset_partitions
"""
if ordered is None:
yield from sequence_partitions(l, k)
elif ordered == 11:
for pl in multiset_permutations(l):
pl = list(pl)
yield from sequence_partitions(pl, k)
elif ordered == 00:
yield from multiset_partitions(l, k)
elif ordered == 10:
for p in multiset_partitions(l, k):
for perm in permutations(p):
yield list(perm)
elif ordered == 1:
for kgot, p in partitions(len(l), k, size=True):
if kgot != k:
continue
for li in multiset_permutations(l):
rv = []
i = j = 0
li = list(li)
for size, multiplicity in sorted(p.items()):
for m in range(multiplicity):
j = i + size
rv.append(li[i: j])
i = j
yield rv
else:
raise ValueError(
'ordered must be one of 00, 01, 10 or 11, not %s' % ordered)
def permute_signs(t):
"""Return iterator in which the signs of non-zero elements
of t are permuted.
Examples
========
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]
"""
for signs in product(*[(1, -1)]*(len(t) - t.count(0))):
signs = list(signs)
yield type(t)([i*signs.pop() if i else i for i in t])
def signed_permutations(t):
"""Return iterator in which the signs of non-zero elements
of t and the order of the elements are permuted.
Examples
========
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
(0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
(1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
(-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
(2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]
"""
return (type(t)(i) for j in permutations(t)
for i in permute_signs(j))
def rotations(s, dir=1):
"""Return a generator giving the items in s as list where
each subsequent list has the items rotated to the left (default)
or right (``dir=-1``) relative to the previous list.
Examples
========
>>> from sympy import rotations
>>> list(rotations([1,2,3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]
>>> list(rotations([1,2,3], -1))
[[1, 2, 3], [3, 1, 2], [2, 3, 1]]
"""
seq = list(s)
for i in range(len(seq)):
yield seq
seq = rotate_left(seq, dir)
def roundrobin(*iterables):
"""roundrobin recipe taken from itertools documentation:
https://docs.python.org/3/library/itertools.html#recipes
roundrobin('ABC', 'D', 'EF') --> A D E B F C
Recipe credited to George Sakkis
"""
nexts = cycle(iter(it).__next__ for it in iterables)
pending = len(iterables)
while pending:
try:
for nxt in nexts:
yield nxt()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
class NotIterable:
"""
Use this as mixin when creating a class which is not supposed to
return true when iterable() is called on its instances because
calling list() on the instance, for example, would result in
an infinite loop.
"""
pass
def iterable(i, exclude=(str, dict, NotIterable)):
"""
Return a boolean indicating whether ``i`` is SymPy iterable.
True also indicates that the iterator is finite, e.g. you can
call list(...) on the instance.
When SymPy is working with iterables, it is almost always assuming
that the iterable is not a string or a mapping, so those are excluded
by default. If you want a pure Python definition, make exclude=None. To
exclude multiple items, pass them as a tuple.
You can also set the _iterable attribute to True or False on your class,
which will override the checks here, including the exclude test.
As a rule of thumb, some SymPy functions use this to check if they should
recursively map over an object. If an object is technically iterable in
the Python sense but does not desire this behavior (e.g., because its
iteration is not finite, or because iteration might induce an unwanted
computation), it should disable it by setting the _iterable attribute to False.
See also: is_sequence
Examples
========
>>> from sympy.utilities.iterables import iterable
>>> from sympy import Tuple
>>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1]
>>> for i in things:
... print('%s %s' % (iterable(i), type(i)))
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'sympy.core.containers.Tuple'>
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable("no", exclude=str)
False
"""
if hasattr(i, '_iterable'):
return i._iterable
try:
iter(i)
except TypeError:
return False
if exclude:
return not isinstance(i, exclude)
return True
def is_sequence(i, include=None):
"""
Return a boolean indicating whether ``i`` is a sequence in the SymPy
sense. If anything that fails the test below should be included as
being a sequence for your application, set 'include' to that object's
type; multiple types should be passed as a tuple of types.
Note: although generators can generate a sequence, they often need special
handling to make sure their elements are captured before the generator is
exhausted, so these are not included by default in the definition of a
sequence.
See also: iterable
Examples
========
>>> from sympy.utilities.iterables import is_sequence
>>> from types import GeneratorType
>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is_sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
"""
return (hasattr(i, '__getitem__') and
iterable(i) or
bool(include) and
isinstance(i, include))
@deprecated(
"""
Using postorder_traversal from the sympy.utilities.iterables submodule is
deprecated.
Instead, use postorder_traversal from the top-level sympy namespace, like
sympy.postorder_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved")
def postorder_traversal(node, keys=None):
from sympy.core.traversal import postorder_traversal as _postorder_traversal
return _postorder_traversal(node, keys=keys)
@deprecated(
"""
Using interactive_traversal from the sympy.utilities.iterables submodule
is deprecated.
Instead, use interactive_traversal from the top-level sympy namespace,
like
sympy.interactive_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved")
def interactive_traversal(expr):
from sympy.interactive.traversal import interactive_traversal as _interactive_traversal
return _interactive_traversal(expr)
@deprecated(
"""
Importing default_sort_key from sympy.utilities.iterables is deprecated.
Use from sympy import default_sort_key instead.
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def default_sort_key(*args, **kwargs):
from sympy import default_sort_key as _default_sort_key
return _default_sort_key(*args, **kwargs)
@deprecated(
"""
Importing default_sort_key from sympy.utilities.iterables is deprecated.
Use from sympy import default_sort_key instead.
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def ordered(*args, **kwargs):
from sympy import ordered as _ordered
return _ordered(*args, **kwargs)
|
1189014015bb3b85c65dd8577bfb22b73cc031b62c1be9730b1e7cc6a493ad22 | """
This module contains the machinery handling assumptions.
Do also consider the guide :ref:`assumptions-guide`.
All symbolic objects have assumption attributes that can be accessed via
``.is_<assumption name>`` attribute.
Assumptions determine certain properties of symbolic objects and can
have 3 possible values: ``True``, ``False``, ``None``. ``True`` is returned if the
object has the property and ``False`` is returned if it does not or cannot
(i.e. does not make sense):
>>> from sympy import I
>>> I.is_algebraic
True
>>> I.is_real
False
>>> I.is_prime
False
When the property cannot be determined (or when a method is not
implemented) ``None`` will be returned. For example, a generic symbol, ``x``,
may or may not be positive so a value of ``None`` is returned for ``x.is_positive``.
By default, all symbolic values are in the largest set in the given context
without specifying the property. For example, a symbol that has a property
being integer, is also real, complex, etc.
Here follows a list of possible assumption names:
.. glossary::
commutative
object commutes with any other object with
respect to multiplication operation. See [12]_.
complex
object can have only values from the set
of complex numbers. See [13]_.
imaginary
object value is a number that can be written as a real
number multiplied by the imaginary unit ``I``. See
[3]_. Please note that ``0`` is not considered to be an
imaginary number, see
`issue #7649 <https://github.com/sympy/sympy/issues/7649>`_.
real
object can have only values from the set
of real numbers.
extended_real
object can have only values from the set
of real numbers, ``oo`` and ``-oo``.
integer
object can have only values from the set
of integers.
odd
even
object can have only values from the set of
odd (even) integers [2]_.
prime
object is a natural number greater than 1 that has
no positive divisors other than 1 and itself. See [6]_.
composite
object is a positive integer that has at least one positive
divisor other than 1 or the number itself. See [4]_.
zero
object has the value of 0.
nonzero
object is a real number that is not zero.
rational
object can have only values from the set
of rationals.
algebraic
object can have only values from the set
of algebraic numbers [11]_.
transcendental
object can have only values from the set
of transcendental numbers [10]_.
irrational
object value cannot be represented exactly by :class:`~.Rational`, see [5]_.
finite
infinite
object absolute value is bounded (arbitrarily large).
See [7]_, [8]_, [9]_.
negative
nonnegative
object can have only negative (nonnegative)
values [1]_.
positive
nonpositive
object can have only positive (nonpositive) values.
extended_negative
extended_nonnegative
extended_positive
extended_nonpositive
extended_nonzero
as without the extended part, but also including infinity with
corresponding sign, e.g., extended_positive includes ``oo``
hermitian
antihermitian
object belongs to the field of Hermitian
(antihermitian) operators.
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x', real=True); x
x
>>> x.is_real
True
>>> x.is_complex
True
See Also
========
.. seealso::
:py:class:`sympy.core.numbers.ImaginaryUnit`
:py:class:`sympy.core.numbers.Zero`
:py:class:`sympy.core.numbers.One`
:py:class:`sympy.core.numbers.Infinity`
:py:class:`sympy.core.numbers.NegativeInfinity`
:py:class:`sympy.core.numbers.ComplexInfinity`
Notes
=====
The fully-resolved assumptions for any SymPy expression
can be obtained as follows:
>>> from sympy.core.assumptions import assumptions
>>> x = Symbol('x',positive=True)
>>> assumptions(x + I)
{'commutative': True, 'complex': True, 'composite': False, 'even':
False, 'extended_negative': False, 'extended_nonnegative': False,
'extended_nonpositive': False, 'extended_nonzero': False,
'extended_positive': False, 'extended_real': False, 'finite': True,
'imaginary': False, 'infinite': False, 'integer': False, 'irrational':
False, 'negative': False, 'noninteger': False, 'nonnegative': False,
'nonpositive': False, 'nonzero': False, 'odd': False, 'positive':
False, 'prime': False, 'rational': False, 'real': False, 'zero':
False}
Developers Notes
================
The current (and possibly incomplete) values are stored
in the ``obj._assumptions dictionary``; queries to getter methods
(with property decorators) or attributes of objects/classes
will return values and update the dictionary.
>>> eq = x**2 + I
>>> eq._assumptions
{}
>>> eq.is_finite
True
>>> eq._assumptions
{'finite': True, 'infinite': False}
For a :class:`~.Symbol`, there are two locations for assumptions that may
be of interest. The ``assumptions0`` attribute gives the full set of
assumptions derived from a given set of initial assumptions. The
latter assumptions are stored as ``Symbol._assumptions.generator``
>>> Symbol('x', prime=True, even=True)._assumptions.generator
{'even': True, 'prime': True}
The ``generator`` is not necessarily canonical nor is it filtered
in any way: it records the assumptions used to instantiate a Symbol
and (for storage purposes) represents a more compact representation
of the assumptions needed to recreate the full set in
``Symbol.assumptions0``.
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_number
.. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29
.. [3] https://en.wikipedia.org/wiki/Imaginary_number
.. [4] https://en.wikipedia.org/wiki/Composite_number
.. [5] https://en.wikipedia.org/wiki/Irrational_number
.. [6] https://en.wikipedia.org/wiki/Prime_number
.. [7] https://en.wikipedia.org/wiki/Finite
.. [8] https://docs.python.org/3/library/math.html#math.isfinite
.. [9] http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html
.. [10] https://en.wikipedia.org/wiki/Transcendental_number
.. [11] https://en.wikipedia.org/wiki/Algebraic_number
.. [12] https://en.wikipedia.org/wiki/Commutative_property
.. [13] https://en.wikipedia.org/wiki/Complex_number
"""
from .facts import FactRules, FactKB
from .core import BasicMeta
from .sympify import sympify
from sympy.core.random import _assumptions_shuffle as shuffle
from sympy.core.assumptions_generated import generated_assumptions as _assumptions
def _load_pre_generated_assumption_rules():
""" Load the assumption rules from pre-generated data
To update the pre-generated data, see :method::`_generate_assumption_rules`
"""
_assume_rules=FactRules._from_python(_assumptions)
return _assume_rules
def _generate_assumption_rules():
""" Generate the default assumption rules
This method should only be called to update the pre-generated
assumption rules.
To update the pre-generated assumptions run: bin/ask_update.py
"""
_assume_rules = FactRules([
'integer -> rational',
'rational -> real',
'rational -> algebraic',
'algebraic -> complex',
'transcendental == complex & !algebraic',
'real -> hermitian',
'imaginary -> complex',
'imaginary -> antihermitian',
'extended_real -> commutative',
'complex -> commutative',
'complex -> finite',
'odd == integer & !even',
'even == integer & !odd',
'real -> complex',
'extended_real -> real | infinite',
'real == extended_real & finite',
'extended_real == extended_negative | zero | extended_positive',
'extended_negative == extended_nonpositive & extended_nonzero',
'extended_positive == extended_nonnegative & extended_nonzero',
'extended_nonpositive == extended_real & !extended_positive',
'extended_nonnegative == extended_real & !extended_negative',
'real == negative | zero | positive',
'negative == nonpositive & nonzero',
'positive == nonnegative & nonzero',
'nonpositive == real & !positive',
'nonnegative == real & !negative',
'positive == extended_positive & finite',
'negative == extended_negative & finite',
'nonpositive == extended_nonpositive & finite',
'nonnegative == extended_nonnegative & finite',
'nonzero == extended_nonzero & finite',
'zero -> even & finite',
'zero == extended_nonnegative & extended_nonpositive',
'zero == nonnegative & nonpositive',
'nonzero -> real',
'prime -> integer & positive',
'composite -> integer & positive & !prime',
'!composite -> !positive | !even | prime',
'irrational == real & !rational',
'imaginary -> !extended_real',
'infinite == !finite',
'noninteger == extended_real & !integer',
'extended_nonzero == extended_real & !zero',
])
return _assume_rules
#_assume_rules = _load_pre_generated_assumption_rules()
_assume_rules =_generate_assumption_rules()
_assume_defined = _assume_rules.defined_facts.copy()
_assume_defined.add('polar')
_assume_defined = frozenset(_assume_defined)
def assumptions(expr, _check=None):
"""return the T/F assumptions of ``expr``"""
n = sympify(expr)
if n.is_Symbol:
rv = n.assumptions0 # are any important ones missing?
if _check is not None:
rv = {k: rv[k] for k in set(rv) & set(_check)}
return rv
rv = {}
for k in _assume_defined if _check is None else _check:
v = getattr(n, 'is_{}'.format(k))
if v is not None:
rv[k] = v
return rv
def common_assumptions(exprs, check=None):
"""return those assumptions which have the same True or False
value for all the given expressions.
Examples
========
>>> from sympy.core import common_assumptions
>>> from sympy import oo, pi, sqrt
>>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo])
{'commutative': True, 'composite': False,
'extended_real': True, 'imaginary': False, 'odd': False}
By default, all assumptions are tested; pass an iterable of the
assumptions to limit those that are reported:
>>> common_assumptions([0, 1, 2], ['positive', 'integer'])
{'integer': True}
"""
check = _assume_defined if check is None else set(check)
if not check or not exprs:
return {}
# get all assumptions for each
assume = [assumptions(i, _check=check) for i in sympify(exprs)]
# focus on those of interest that are True
for i, e in enumerate(assume):
assume[i] = {k: e[k] for k in set(e) & check}
# what assumptions are in common?
common = set.intersection(*[set(i) for i in assume])
# which ones hold the same value
a = assume[0]
return {k: a[k] for k in common if all(a[k] == b[k]
for b in assume)}
def failing_assumptions(expr, **assumptions):
"""
Return a dictionary containing assumptions with values not
matching those of the passed assumptions.
Examples
========
>>> from sympy import failing_assumptions, Symbol
>>> x = Symbol('x', positive=True)
>>> y = Symbol('y')
>>> failing_assumptions(6*x + y, positive=True)
{'positive': None}
>>> failing_assumptions(x**2 - 1, positive=True)
{'positive': None}
If *expr* satisfies all of the assumptions, an empty dictionary is returned.
>>> failing_assumptions(x**2, positive=True)
{}
"""
expr = sympify(expr)
failed = {}
for k in assumptions:
test = getattr(expr, 'is_%s' % k, None)
if test is not assumptions[k]:
failed[k] = test
return failed # {} or {assumption: value != desired}
def check_assumptions(expr, against=None, **assume):
"""
Checks whether assumptions of ``expr`` match the T/F assumptions
given (or possessed by ``against``). True is returned if all
assumptions match; False is returned if there is a mismatch and
the assumption in ``expr`` is not None; else None is returned.
Explanation
===========
*assume* is a dict of assumptions with True or False values
Examples
========
>>> from sympy import Symbol, pi, I, exp, check_assumptions
>>> check_assumptions(-5, integer=True)
True
>>> check_assumptions(pi, real=True, integer=False)
True
>>> check_assumptions(pi, negative=True)
False
>>> check_assumptions(exp(I*pi/7), real=False)
True
>>> x = Symbol('x', positive=True)
>>> check_assumptions(2*x + 1, positive=True)
True
>>> check_assumptions(-2*x - 5, positive=True)
False
To check assumptions of *expr* against another variable or expression,
pass the expression or variable as ``against``.
>>> check_assumptions(2*x + 1, x)
True
To see if a number matches the assumptions of an expression, pass
the number as the first argument, else its specific assumptions
may not have a non-None value in the expression:
>>> check_assumptions(x, 3)
>>> check_assumptions(3, x)
True
``None`` is returned if ``check_assumptions()`` could not conclude.
>>> check_assumptions(2*x - 1, x)
>>> z = Symbol('z')
>>> check_assumptions(z, real=True)
See Also
========
failing_assumptions
"""
expr = sympify(expr)
if against is not None:
if assume:
raise ValueError(
'Expecting `against` or `assume`, not both.')
assume = assumptions(against)
known = True
for k, v in assume.items():
if v is None:
continue
e = getattr(expr, 'is_' + k, None)
if e is None:
known = None
elif v != e:
return False
return known
class StdFactKB(FactKB):
"""A FactKB specialized for the built-in rules
This is the only kind of FactKB that Basic objects should use.
"""
def __init__(self, facts=None):
super().__init__(_assume_rules)
# save a copy of the facts dict
if not facts:
self._generator = {}
elif not isinstance(facts, FactKB):
self._generator = facts.copy()
else:
self._generator = facts.generator
if facts:
self.deduce_all_facts(facts)
def copy(self):
return self.__class__(self)
@property
def generator(self):
return self._generator.copy()
def as_property(fact):
"""Convert a fact name to the name of the corresponding property"""
return 'is_%s' % fact
def make_property(fact):
"""Create the automagic property corresponding to a fact."""
def getit(self):
try:
return self._assumptions[fact]
except KeyError:
if self._assumptions is self.default_assumptions:
self._assumptions = self.default_assumptions.copy()
return _ask(fact, self)
getit.func_name = as_property(fact)
return property(getit)
def _ask(fact, obj):
"""
Find the truth value for a property of an object.
This function is called when a request is made to see what a fact
value is.
For this we use several techniques:
First, the fact-evaluation function is tried, if it exists (for
example _eval_is_integer). Then we try related facts. For example
rational --> integer
another example is joined rule:
integer & !odd --> even
so in the latter case if we are looking at what 'even' value is,
'integer' and 'odd' facts will be asked.
In all cases, when we settle on some fact value, its implications are
deduced, and the result is cached in ._assumptions.
"""
# FactKB which is dict-like and maps facts to their known values:
assumptions = obj._assumptions
# A dict that maps facts to their handlers:
handler_map = obj._prop_handler
# This is our queue of facts to check:
facts_to_check = [fact]
facts_queued = {fact}
# Loop over the queue as it extends
for fact_i in facts_to_check:
# If fact_i has already been determined then we don't need to rerun the
# handler. There is a potential race condition for multithreaded code
# though because it's possible that fact_i was checked in another
# thread. The main logic of the loop below would potentially skip
# checking assumptions[fact] in this case so we check it once after the
# loop to be sure.
if fact_i in assumptions:
continue
# Now we call the associated handler for fact_i if it exists.
fact_i_value = None
handler_i = handler_map.get(fact_i)
if handler_i is not None:
fact_i_value = handler_i(obj)
# If we get a new value for fact_i then we should update our knowledge
# of fact_i as well as any related facts that can be inferred using the
# inference rules connecting the fact_i and any other fact values that
# are already known.
if fact_i_value is not None:
assumptions.deduce_all_facts(((fact_i, fact_i_value),))
# Usually if assumptions[fact] is now not None then that is because of
# the call to deduce_all_facts above. The handler for fact_i returned
# True or False and knowing fact_i (which is equal to fact in the first
# iteration) implies knowing a value for fact. It is also possible
# though that independent code e.g. called indirectly by the handler or
# called in another thread in a multithreaded context might have
# resulted in assumptions[fact] being set. Either way we return it.
fact_value = assumptions.get(fact)
if fact_value is not None:
return fact_value
# Extend the queue with other facts that might determine fact_i. Here
# we randomise the order of the facts that are checked. This should not
# lead to any non-determinism if all handlers are logically consistent
# with the inference rules for the facts. Non-deterministic assumptions
# queries can result from bugs in the handlers that are exposed by this
# call to shuffle. These are pushed to the back of the queue meaning
# that the inference graph is traversed in breadth-first order.
new_facts_to_check = list(_assume_rules.prereq[fact_i] - facts_queued)
shuffle(new_facts_to_check)
facts_to_check.extend(new_facts_to_check)
facts_queued.update(new_facts_to_check)
# The above loop should be able to handle everything fine in a
# single-threaded context but in multithreaded code it is possible that
# this thread skipped computing a particular fact that was computed in
# another thread (due to the continue). In that case it is possible that
# fact was inferred and is now stored in the assumptions dict but it wasn't
# checked for in the body of the loop. This is an obscure case but to make
# sure we catch it we check once here at the end of the loop.
if fact in assumptions:
return assumptions[fact]
# This query can not be answered. It's possible that e.g. another thread
# has already stored None for fact but assumptions._tell does not mind if
# we call _tell twice setting the same value. If this raises
# InconsistentAssumptions then it probably means that another thread
# attempted to compute this and got a value of True or False rather than
# None. In that case there must be a bug in at least one of the handlers.
# If the handlers are all deterministic and are consistent with the
# inference rules then the same value should be computed for fact in all
# threads.
assumptions._tell(fact, None)
return None
class ManagedProperties(BasicMeta):
"""Metaclass for classes with old-style assumptions"""
def __init__(cls, *args, **kws):
BasicMeta.__init__(cls, *args, **kws)
local_defs = {}
for k in _assume_defined:
attrname = as_property(k)
v = cls.__dict__.get(attrname, '')
if isinstance(v, (bool, int, type(None))):
if v is not None:
v = bool(v)
local_defs[k] = v
defs = {}
for base in reversed(cls.__bases__):
assumptions = getattr(base, '_explicit_class_assumptions', None)
if assumptions is not None:
defs.update(assumptions)
defs.update(local_defs)
cls._explicit_class_assumptions = defs
cls.default_assumptions = StdFactKB(defs)
cls._prop_handler = {}
for k in _assume_defined:
eval_is_meth = getattr(cls, '_eval_is_%s' % k, None)
if eval_is_meth is not None:
cls._prop_handler[k] = eval_is_meth
# Put definite results directly into the class dict, for speed
for k, v in cls.default_assumptions.items():
setattr(cls, as_property(k), v)
# protection e.g. for Integer.is_even=F <- (Rational.is_integer=F)
derived_from_bases = set()
for base in cls.__bases__:
default_assumptions = getattr(base, 'default_assumptions', None)
# is an assumption-aware class
if default_assumptions is not None:
derived_from_bases.update(default_assumptions)
for fact in derived_from_bases - set(cls.default_assumptions):
pname = as_property(fact)
if pname not in cls.__dict__:
setattr(cls, pname, make_property(fact))
# Finally, add any missing automagic property (e.g. for Basic)
for fact in _assume_defined:
pname = as_property(fact)
if not hasattr(cls, pname):
setattr(cls, pname, make_property(fact))
|
9a215d56934a7eeb5b92962220ecc6f6454d526e464e4fbf9e7990a948550d9b | """
When you need to use random numbers in SymPy library code, import from here
so there is only one generator working for SymPy. Imports from here should
behave the same as if they were being imported from Python's random module.
But only the routines currently used in SymPy are included here. To use others
import ``rng`` and access the method directly. For example, to capture the
current state of the generator use ``rng.getstate()``.
There is intentionally no Random to import from here. If you want
to control the state of the generator, import ``seed`` and call it
with or without an argument to set the state.
Examples
========
>>> from sympy.core.random import random, seed
>>> assert random() < 1
>>> seed(1); a = random()
>>> b = random()
>>> seed(1); c = random()
>>> assert a == c
>>> assert a != b # remote possibility this will fail
"""
from sympy.utilities.iterables import is_sequence
from sympy.utilities.misc import as_int
import random as _random
rng = _random.Random()
choice = rng.choice
random = rng.random
randint = rng.randint
randrange = rng.randrange
sample = rng.sample
# seed = rng.seed
shuffle = rng.shuffle
uniform = rng.uniform
_assumptions_rng = _random.Random()
_assumptions_shuffle = _assumptions_rng.shuffle
def seed(a=None, version=2):
rng.seed(a=a, version=version)
_assumptions_rng.seed(a=a, version=version)
def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None):
"""
Return a random complex number.
To reduce chance of hitting branch cuts or anything, we guarantee
b <= Im z <= d, a <= Re z <= c
When rational is True, a rational approximation to a random number
is obtained within specified tolerance, if any.
"""
from sympy.core.numbers import I
from sympy.simplify.simplify import nsimplify
A, B = uniform(a, c), uniform(b, d)
if not rational:
return A + I*B
return (nsimplify(A, rational=True, tolerance=tolerance) +
I*nsimplify(B, rational=True, tolerance=tolerance))
def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1):
"""
Test numerically that f and g agree when evaluated in the argument z.
If z is None, all symbols will be tested. This routine does not test
whether there are Floats present with precision higher than 15 digits
so if there are, your results may not be what you expect due to round-
off errors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x
>>> from sympy.core.random import verify_numerically as tn
>>> tn(sin(x)**2 + cos(x)**2, 1, x)
True
"""
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.core.numbers import comp
f, g = (sympify(i) for i in (f, g))
if z is None:
z = f.free_symbols | g.free_symbols
elif isinstance(z, Symbol):
z = [z]
reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z]))
z1 = f.subs(reps).n()
z2 = g.subs(reps).n()
return comp(z1, z2, tol)
def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1):
"""
Test numerically that the symbolically computed derivative of f
with respect to z is correct.
This routine does not test whether there are Floats present with
precision higher than 15 digits so if there are, your results may
not be what you expect due to round-off errors.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x
>>> from sympy.core.random import test_derivative_numerically as td
>>> td(sin(x), x)
True
"""
from sympy.core.numbers import comp
from sympy.core.function import Derivative
z0 = random_complex_number(a, b, c, d)
f1 = f.diff(z).subs(z, z0)
f2 = Derivative(f, z).doit_numerically(z0)
return comp(f1.n(), f2.n(), tol)
def _randrange(seed=None):
"""Return a randrange generator.
``seed`` can be
* None - return randomly seeded generator
* int - return a generator seeded with the int
* list - the values to be returned will be taken from the list
in the order given; the provided list is not modified.
Examples
========
>>> from sympy.core.random import _randrange
>>> rr = _randrange()
>>> rr(1000) # doctest: +SKIP
999
>>> rr = _randrange(3)
>>> rr(1000) # doctest: +SKIP
238
>>> rr = _randrange([0, 5, 1, 3, 4])
>>> rr(3), rr(3)
(0, 1)
"""
if seed is None:
return randrange
elif isinstance(seed, int):
rng.seed(seed)
return randrange
elif is_sequence(seed):
seed = list(seed) # make a copy
seed.reverse()
def give(a, b=None, seq=seed):
if b is None:
a, b = 0, a
a, b = as_int(a), as_int(b)
w = b - a
if w < 1:
raise ValueError('_randrange got empty range')
try:
x = seq.pop()
except IndexError:
raise ValueError('_randrange sequence was too short')
if a <= x < b:
return x
else:
return give(a, b, seq)
return give
else:
raise ValueError('_randrange got an unexpected seed')
def _randint(seed=None):
"""Return a randint generator.
``seed`` can be
* None - return randomly seeded generator
* int - return a generator seeded with the int
* list - the values to be returned will be taken from the list
in the order given; the provided list is not modified.
Examples
========
>>> from sympy.core.random import _randint
>>> ri = _randint()
>>> ri(1, 1000) # doctest: +SKIP
999
>>> ri = _randint(3)
>>> ri(1, 1000) # doctest: +SKIP
238
>>> ri = _randint([0, 5, 1, 2, 4])
>>> ri(1, 3), ri(1, 3)
(1, 2)
"""
if seed is None:
return randint
elif isinstance(seed, int):
rng.seed(seed)
return randint
elif is_sequence(seed):
seed = list(seed) # make a copy
seed.reverse()
def give(a, b, seq=seed):
a, b = as_int(a), as_int(b)
w = b - a
if w < 0:
raise ValueError('_randint got empty range')
try:
x = seq.pop()
except IndexError:
raise ValueError('_randint sequence was too short')
if a <= x <= b:
return x
else:
return give(a, b, seq)
return give
else:
raise ValueError('_randint got an unexpected seed')
|
bea69bc7822df00a16972ed72fa95bbee247c8633101bd2376ba87e4864067c8 | from __future__ import annotations
from .basic import Atom, Basic
from .sorting import ordered
from .evalf import EvalfMixin
from .function import AppliedUndef
from .singleton import S
from .sympify import _sympify, SympifyError
from .parameters import global_parameters
from .logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
from sympy.logic.boolalg import Boolean, BooleanAtom
from sympy.utilities.iterables import sift
from sympy.utilities.misc import filldedent
__all__ = (
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
'StrictGreaterThan', 'GreaterThan',
)
from .expr import Expr
from sympy.multipledispatch import dispatch
from .containers import Tuple
from .symbol import Symbol
def _nontrivBool(side):
return isinstance(side, Boolean) and \
not isinstance(side, Atom)
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
# and Expr.
# from .. import Expr
def _canonical(cond):
# return a condition in which all relationals are canonical
reps = {r: r.canonical for r in cond.atoms(Relational)}
return cond.xreplace(reps)
# XXX: AttributeError was being caught here but it wasn't triggered by any of
# the tests so I've removed it...
def _canonical_coeff(rel):
# return -2*x + 1 < 0 as x > 1/2
# XXX make this part of Relational.canonical?
rel = rel.canonical
if not rel.is_Relational or rel.rhs.is_Boolean:
return rel # Eq(x, True)
b, l = rel.lhs.as_coeff_Add(rational=True)
m, lhs = l.as_coeff_Mul(rational=True)
rhs = (rel.rhs - b)/m
if m < 0:
return rel.reversed.func(lhs, rhs)
return rel.func(lhs, rhs)
class Relational(Boolean, EvalfMixin):
"""Base class for all relation types.
Explanation
===========
Subclasses of Relational should generally be instantiated directly, but
Relational can be instantiated with a valid ``rop`` value to dispatch to
the appropriate subclass.
Parameters
==========
rop : str or None
Indicates what subclass to instantiate. Valid values can be found
in the keys of Relational.ValidRelationOperator.
Examples
========
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
A relation's type can be defined upon creation using ``rop``.
The relation type of an existing expression can be obtained
using its ``rel_op`` property.
Here is a table of all the relation types, along with their
``rop`` and ``rel_op`` values:
+---------------------+----------------------------+------------+
|Relation |``rop`` |``rel_op`` |
+=====================+============================+============+
|``Equality`` |``==`` or ``eq`` or ``None``|``==`` |
+---------------------+----------------------------+------------+
|``Unequality`` |``!=`` or ``ne`` |``!=`` |
+---------------------+----------------------------+------------+
|``GreaterThan`` |``>=`` or ``ge`` |``>=`` |
+---------------------+----------------------------+------------+
|``LessThan`` |``<=`` or ``le`` |``<=`` |
+---------------------+----------------------------+------------+
|``StrictGreaterThan``|``>`` or ``gt`` |``>`` |
+---------------------+----------------------------+------------+
|``StrictLessThan`` |``<`` or ``lt`` |``<`` |
+---------------------+----------------------------+------------+
For example, setting ``rop`` to ``==`` produces an
``Equality`` relation, ``Eq()``.
So does setting ``rop`` to ``eq``, or leaving ``rop`` unspecified.
That is, the first three ``Rel()`` below all produce the same result.
Using a ``rop`` from a different row in the table produces a
different relation type.
For example, the fourth ``Rel()`` below using ``lt`` for ``rop``
produces a ``StrictLessThan`` inequality:
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
>>> Rel(y, x + x**2, 'eq')
Eq(y, x**2 + x)
>>> Rel(y, x + x**2)
Eq(y, x**2 + x)
>>> Rel(y, x + x**2, 'lt')
y < x**2 + x
To obtain the relation type of an existing expression,
get its ``rel_op`` property.
For example, ``rel_op`` is ``==`` for the ``Equality`` relation above,
and ``<`` for the strict less than inequality above:
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> my_equality = Rel(y, x + x**2, '==')
>>> my_equality.rel_op
'=='
>>> my_inequality = Rel(y, x + x**2, 'lt')
>>> my_inequality.rel_op
'<'
"""
__slots__ = ()
ValidRelationOperator: dict[str | None, type[Relational]] = {}
is_Relational = True
# ValidRelationOperator - Defined below, because the necessary classes
# have not yet been defined
def __new__(cls, lhs, rhs, rop=None, **assumptions):
# If called by a subclass, do nothing special and pass on to Basic.
if cls is not Relational:
return Basic.__new__(cls, lhs, rhs, **assumptions)
# XXX: Why do this? There should be a separate function to make a
# particular subclass of Relational from a string.
#
# If called directly with an operator, look up the subclass
# corresponding to that operator and delegate to it
cls = cls.ValidRelationOperator.get(rop, None)
if cls is None:
raise ValueError("Invalid relational operator symbol: %r" % rop)
if not issubclass(cls, (Eq, Ne)):
# validate that Booleans are not being used in a relational
# other than Eq/Ne;
# Note: Symbol is a subclass of Boolean but is considered
# acceptable here.
if any(map(_nontrivBool, (lhs, rhs))):
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
return cls(lhs, rhs, **assumptions)
@property
def lhs(self):
"""The left-hand side of the relation."""
return self._args[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self._args[1]
@property
def reversed(self):
"""Return the relationship with sides reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversed
Eq(1, x)
>>> x < 1
x < 1
>>> _.reversed
1 > x
"""
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
a, b = self.args
return Relational.__new__(ops.get(self.func, self.func), b, a)
@property
def reversedsign(self):
"""Return the relationship with signs reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversedsign
Eq(-x, -1)
>>> x < 1
x < 1
>>> _.reversedsign
-x > -1
"""
a, b = self.args
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
else:
return self
@property
def negated(self):
"""Return the negated relationship.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.negated
Ne(x, 1)
>>> x < 1
x < 1
>>> _.negated
x >= 1
Notes
=====
This works more or less identical to ``~``/``Not``. The difference is
that ``negated`` returns the relationship even if ``evaluate=False``.
Hence, this is useful in code when checking for e.g. negated relations
to existing ones as it will not be affected by the `evaluate` flag.
"""
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
# If there ever will be new Relational subclasses, the following line
# will work until it is properly sorted out
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
# b, evaluate=evaluate)))(*self.args, evaluate=False)
return Relational.__new__(ops.get(self.func), *self.args)
@property
def weak(self):
"""return the non-strict version of the inequality or self
EXAMPLES
========
>>> from sympy.abc import x
>>> (x < 1).weak
x <= 1
>>> _.weak
x <= 1
"""
return self
@property
def strict(self):
"""return the strict version of the inequality or self
EXAMPLES
========
>>> from sympy.abc import x
>>> (x <= 1).strict
x < 1
>>> _.strict
x < 1
"""
return self
def _eval_evalf(self, prec):
return self.func(*[s._evalf(prec) for s in self.args])
@property
def canonical(self):
"""Return a canonical form of the relational by putting a
number on the rhs, canonically removing a sign or else
ordering the args canonically. No other simplification is
attempted.
Examples
========
>>> from sympy.abc import x, y
>>> x < 2
x < 2
>>> _.reversed.canonical
x < 2
>>> (-y < x).canonical
x > -y
>>> (-y > x).canonical
x < -y
>>> (-y < -x).canonical
x < y
The canonicalization is recursively applied:
>>> from sympy import Eq
>>> Eq(x < y, y > x).canonical
True
"""
args = tuple([i.canonical if isinstance(i, Relational) else i for i in self.args])
if args != self.args:
r = self.func(*args)
if not isinstance(r, Relational):
return r
else:
r = self
if r.rhs.is_number:
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
r = r.reversed
elif r.lhs.is_number:
r = r.reversed
elif tuple(ordered(args)) != args:
r = r.reversed
LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
return r
# Check if first value has negative sign
if LHS_CEMS and LHS_CEMS():
return r.reversedsign
elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
# Right hand side has a minus, but not lhs.
# How does the expression with reversed signs behave?
# This is so that expressions of the type
# Eq(x, -y) and Eq(-x, y)
# have the same canonical representation
expr1, _ = ordered([r.lhs, -r.rhs])
if expr1 != r.lhs:
return r.reversed.reversedsign
return r
def equals(self, other, failing_expression=False):
"""Return True if the sides of the relationship are mathematically
identical and the type of relationship is the same.
If failing_expression is True, return the expression whose truth value
was unknown."""
if isinstance(other, Relational):
if other in (self, self.reversed):
return True
a, b = self, other
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
if a.func != b.func:
return False
left, right = [i.equals(j,
failing_expression=failing_expression)
for i, j in zip(a.args, b.args)]
if left is True:
return right
if right is True:
return left
lr, rl = [i.equals(j, failing_expression=failing_expression)
for i, j in zip(a.args, b.reversed.args)]
if lr is True:
return rl
if rl is True:
return lr
e = (left, right, lr, rl)
if all(i is False for i in e):
return False
for i in e:
if i not in (True, False):
return i
else:
if b.func != a.func:
b = b.reversed
if a.func != b.func:
return False
left = a.lhs.equals(b.lhs,
failing_expression=failing_expression)
if left is False:
return False
right = a.rhs.equals(b.rhs,
failing_expression=failing_expression)
if right is False:
return False
if left is True:
return right
return left
def _eval_simplify(self, **kwargs):
from .add import Add
from .expr import Expr
r = self
r = r.func(*[i.simplify(**kwargs) for i in r.args])
if r.is_Relational:
if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr):
return r
dif = r.lhs - r.rhs
# replace dif with a valid Number that will
# allow a definitive comparison with 0
v = None
if dif.is_comparable:
v = dif.n(2)
elif dif.equals(0): # XXX this is expensive
v = S.Zero
if v is not None:
r = r.func._eval_relation(v, S.Zero)
r = r.canonical
# If there is only one symbol in the expression,
# try to write it on a simplified form
free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
if len(free) == 1:
try:
from sympy.solvers.solveset import linear_coeffs
x = free.pop()
dif = r.lhs - r.rhs
m, b = linear_coeffs(dif, x)
if m.is_zero is False:
if m.is_negative:
# Dividing with a negative number, so change order of arguments
# canonical will put the symbol back on the lhs later
r = r.func(-b / m, x)
else:
r = r.func(x, -b / m)
else:
r = r.func(b, S.Zero)
except ValueError:
# maybe not a linear function, try polynomial
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polytools import gcd, Poly, poly
try:
p = poly(dif, x)
c = p.all_coeffs()
constant = c[-1]
c[-1] = 0
scale = gcd(c)
c = [ctmp / scale for ctmp in c]
r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale)
except PolynomialError:
pass
elif len(free) >= 2:
try:
from sympy.solvers.solveset import linear_coeffs
from sympy.polys.polytools import gcd
free = list(ordered(free))
dif = r.lhs - r.rhs
m = linear_coeffs(dif, *free)
constant = m[-1]
del m[-1]
scale = gcd(m)
m = [mtmp / scale for mtmp in m]
nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
if scale.is_zero is False:
if constant != 0:
# lhs: expression, rhs: constant
newexpr = Add(*[i * j for i, j in nzm])
r = r.func(newexpr, -constant / scale)
else:
# keep first term on lhs
lhsterm = nzm[0][0] * nzm[0][1]
del nzm[0]
newexpr = Add(*[i * j for i, j in nzm])
r = r.func(lhsterm, -newexpr)
else:
r = r.func(constant, S.Zero)
except ValueError:
pass
# Did we get a simplified result?
r = r.canonical
measure = kwargs['measure']
if measure(r) < kwargs['ratio'] * measure(self):
return r
else:
return self
def _eval_trigsimp(self, **opts):
from sympy.simplify.trigsimp import trigsimp
return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
def expand(self, **kwargs):
args = (arg.expand(**kwargs) for arg in self.args)
return self.func(*args)
def __bool__(self):
raise TypeError("cannot determine truth value of Relational")
def _eval_as_set(self):
# self is univariate and periodicity(self, x) in (0, None)
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.sets.conditionset import ConditionSet
syms = self.free_symbols
assert len(syms) == 1
x = syms.pop()
try:
xset = solve_univariate_inequality(self, x, relational=False)
except NotImplementedError:
# solve_univariate_inequality raises NotImplementedError for
# unsolvable equations/inequalities.
xset = ConditionSet(x, self, S.Reals)
return xset
@property
def binary_symbols(self):
# override where necessary
return set()
Rel = Relational
class Equality(Relational):
"""
An equal relation between two objects.
Explanation
===========
Represents that two objects are equal. If they can be easily shown
to be definitively equal (or unequal), this will reduce to True (or
False). Otherwise, the relation is maintained as an unevaluated
Equality object. Use the ``simplify`` function on this object for
more nontrivial evaluation of the equality relation.
As usual, the keyword argument ``evaluate=False`` can be used to
prevent any evaluation.
Examples
========
>>> from sympy import Eq, simplify, exp, cos
>>> from sympy.abc import x, y
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>>> Eq(2, 5)
False
>>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
False
>>> Eq(exp(x), exp(x).rewrite(cos))
Eq(exp(x), sinh(x) + cosh(x))
>>> simplify(_)
True
See Also
========
sympy.logic.boolalg.Equivalent : for representing equality between two
boolean expressions
Notes
=====
Python treats 1 and True (and 0 and False) as being equal; SymPy
does not. And integer will always compare as unequal to a Boolean:
>>> Eq(True, 1), True == 1
(False, True)
This class is not the same as the == operator. The == operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
If either object defines an ``_eval_Eq`` method, it can be used in place of
the default algorithm. If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)``
returns anything other than None, that return value will be substituted for
the Equality. If None is returned by ``_eval_Eq``, an Equality object will
be created as usual.
Since this object is already an expression, it does not respond to
the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``.
This can be done with the ``rewrite(Add)`` method.
.. deprecated:: 1.5
``Eq(expr)`` with a single argument is a shorthand for ``Eq(expr, 0)``,
but this behavior is deprecated and will be removed in a future version
of SymPy.
"""
rel_op = '=='
__slots__ = ()
is_Equality = True
def __new__(cls, lhs, rhs, **options):
evaluate = options.pop('evaluate', global_parameters.evaluate)
lhs = _sympify(lhs)
rhs = _sympify(rhs)
if evaluate:
val = is_eq(lhs, rhs)
if val is None:
return cls(lhs, rhs, evaluate=False)
else:
return _sympify(val)
return Relational.__new__(cls, lhs, rhs)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs == rhs)
def _eval_rewrite_as_Add(self, *args, **kwargs):
"""
return Eq(L, R) as L - R. To control the evaluation of
the result set pass `evaluate=True` to give L - R;
if `evaluate=None` then terms in L and R will not cancel
but they will be listed in canonical order; otherwise
non-canonical args will be returned. If one side is 0, the
non-zero side will be returned.
Examples
========
>>> from sympy import Eq, Add
>>> from sympy.abc import b, x
>>> eq = Eq(x + b, x - b)
>>> eq.rewrite(Add)
2*b
>>> eq.rewrite(Add, evaluate=None).args
(b, b, x, -x)
>>> eq.rewrite(Add, evaluate=False).args
(b, x, b, -x)
"""
from .add import _unevaluated_Add, Add
L, R = args
if L == 0:
return R
if R == 0:
return L
evaluate = kwargs.get('evaluate', True)
if evaluate:
# allow cancellation of args
return L - R
args = Add.make_args(L) + Add.make_args(-R)
if evaluate is None:
# no cancellation, but canonical
return _unevaluated_Add(*args)
# no cancellation, not canonical
return Add._from_args(args)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return {self.lhs}
elif self.rhs.is_Symbol:
return {self.rhs}
return set()
def _eval_simplify(self, **kwargs):
# standard simplify
e = super()._eval_simplify(**kwargs)
if not isinstance(e, Equality):
return e
from .expr import Expr
if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr):
return e
free = self.free_symbols
if len(free) == 1:
try:
from .add import Add
from sympy.solvers.solveset import linear_coeffs
x = free.pop()
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
if m.is_zero is False:
enew = e.func(x, -b / m)
else:
enew = e.func(m * x, -b)
measure = kwargs['measure']
if measure(enew) <= kwargs['ratio'] * measure(e):
e = enew
except ValueError:
pass
return e.canonical
def integrate(self, *args, **kwargs):
"""See the integrate function in sympy.integrals"""
from sympy.integrals.integrals import integrate
return integrate(self, *args, **kwargs)
def as_poly(self, *gens, **kwargs):
'''Returns lhs-rhs as a Poly
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x**2, 1).as_poly(x)
Poly(x**2 - 1, x, domain='ZZ')
'''
return (self.lhs - self.rhs).as_poly(*gens, **kwargs)
Eq = Equality
class Unequality(Relational):
"""An unequal relation between two objects.
Explanation
===========
Represents that two objects are not equal. If they can be shown to be
definitively equal, this will reduce to False; if definitively unequal,
this will reduce to True. Otherwise, the relation is maintained as an
Unequality object.
Examples
========
>>> from sympy import Ne
>>> from sympy.abc import x, y
>>> Ne(y, x+x**2)
Ne(y, x**2 + x)
See Also
========
Equality
Notes
=====
This class is not the same as the != operator. The != operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
This class is effectively the inverse of Equality. As such, it uses the
same algorithms, including any available `_eval_Eq` methods.
"""
rel_op = '!='
__slots__ = ()
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
val = is_neq(lhs, rhs)
if val is None:
return cls(lhs, rhs, evaluate=False)
else:
return _sympify(val)
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs != rhs)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return {self.lhs}
elif self.rhs.is_Symbol:
return {self.rhs}
return set()
def _eval_simplify(self, **kwargs):
# simplify as an equality
eq = Equality(*self.args)._eval_simplify(**kwargs)
if isinstance(eq, Equality):
# send back Ne with the new args
return self.func(*eq.args)
return eq.negated # result of Ne is the negated Eq
Ne = Unequality
class _Inequality(Relational):
"""Internal base class for all *Than types.
Each subclass must implement _eval_relation to provide the method for
comparing two real numbers.
"""
__slots__ = ()
def __new__(cls, lhs, rhs, **options):
try:
lhs = _sympify(lhs)
rhs = _sympify(rhs)
except SympifyError:
return NotImplemented
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
for me in (lhs, rhs):
if me.is_extended_real is False:
raise TypeError("Invalid comparison of non-real %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
# First we invoke the appropriate inequality method of `lhs`
# (e.g., `lhs.__lt__`). That method will try to reduce to
# boolean or raise an exception. It may keep calling
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
# In some cases, `Expr` will just invoke us again (if neither it
# nor a subclass was able to reduce to boolean or raise an
# exception). In that case, it must call us with
# `evaluate=False` to prevent infinite recursion.
return cls._eval_relation(lhs, rhs, **options)
# make a "non-evaluated" Expr for the inequality
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs, **options):
val = cls._eval_fuzzy_relation(lhs, rhs)
if val is None:
return cls(lhs, rhs, evaluate=False)
else:
return _sympify(val)
class _Greater(_Inequality):
"""Not intended for general use
_Greater is only used so that GreaterThan and StrictGreaterThan may
subclass it for the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[0]
@property
def lts(self):
return self._args[1]
class _Less(_Inequality):
"""Not intended for general use.
_Less is only used so that LessThan and StrictLessThan may subclass it for
the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[1]
@property
def lts(self):
return self._args[0]
class GreaterThan(_Greater):
r"""Class representations of inequalities.
Explanation
===========
The ``*Than`` classes represent inequal relationships, where the left-hand
side is generally bigger or smaller than the right-hand side. For example,
the GreaterThan class represents an inequal relationship where the
left-hand side is at least as big as the right side, if not bigger. In
mathematical notation:
lhs $\ge$ rhs
In total, there are four ``*Than`` classes, to represent the four
inequalities:
+-----------------+--------+
|Class Name | Symbol |
+=================+========+
|GreaterThan | ``>=`` |
+-----------------+--------+
|LessThan | ``<=`` |
+-----------------+--------+
|StrictGreaterThan| ``>`` |
+-----------------+--------+
|StrictLessThan | ``<`` |
+-----------------+--------+
All classes take two arguments, lhs and rhs.
+----------------------------+-----------------+
|Signature Example | Math Equivalent |
+============================+=================+
|GreaterThan(lhs, rhs) | lhs $\ge$ rhs |
+----------------------------+-----------------+
|LessThan(lhs, rhs) | lhs $\le$ rhs |
+----------------------------+-----------------+
|StrictGreaterThan(lhs, rhs) | lhs $>$ rhs |
+----------------------------+-----------------+
|StrictLessThan(lhs, rhs) | lhs $<$ rhs |
+----------------------------+-----------------+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
objects also have the .lts and .gts properties, which represent the "less
than side" and "greater than side" of the operator. Use of .lts and .gts
in an algorithm rather than .lhs and .rhs as an assumption of inequality
direction will make more explicit the intent of a certain section of code,
and will make it similarly more robust to client code changes:
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
Examples
========
One generally does not instantiate these classes directly, but uses various
convenience methods:
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
x >= 2
x > 2
x <= 2
x < 2
Another option is to use the Python inequality operators (``>=``, ``>``,
``<=``, ``<``) directly. Their main advantage over the ``Ge``, ``Gt``,
``Le``, and ``Lt`` counterparts, is that one can write a more
"mathematical looking" statement rather than littering the math with
oddball function calls. However there are certain (minor) caveats of
which to be aware (search for 'gotcha', below).
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
However, it is also perfectly valid to instantiate a ``*Than`` class less
succinctly and less conveniently:
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
Notes
=====
There are a couple of "gotchas" to be aware of when using Python's
operators.
The first is that what your write is not always what you get:
>>> 1 < x
x > 1
Due to the order that Python parses a statement, it may
not immediately find two objects comparable. When ``1 < x``
is evaluated, Python recognizes that the number 1 is a native
number and that x is *not*. Because a native Python number does
not know how to compare itself with a SymPy object
Python will try the reflective operation, ``x > 1`` and that is the
form that gets evaluated, hence returned.
If the order of the statement is important (for visual output to
the console, perhaps), one can work around this annoyance in a
couple ways:
(1) "sympify" the literal before comparison
>>> S(1) < x
1 < x
(2) use one of the wrappers or less succinct methods described
above
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
The second gotcha involves writing equality tests between relationals
when one or both sides of the test involve a literal relational:
>>> e = x < 1; e
x < 1
>>> e == e # neither side is a literal
True
>>> e == x < 1 # expecting True, too
False
>>> e != x < 1 # expecting False
x < 1
>>> x < 1 != x < 1 # expecting False or the same thing as before
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
The solution for this case is to wrap literal relationals in
parentheses:
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
The third gotcha involves chained inequalities not involving
``==`` or ``!=``. Occasionally, one may be tempted to write:
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
Due to an implementation detail or decision of Python [1]_,
there is no way for SymPy to create a chained inequality with
that syntax so one must use And:
>>> e = And(x < y, y < z)
>>> type( e )
And
>>> e
(x < y) & (y < z)
Although this can also be done with the '&' operator, it cannot
be done with the 'and' operarator:
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
.. [1] This implementation detail is that Python provides no reliable
method to determine that a chained inequality is being built.
Chained comparison operators are evaluated pairwise, using "and"
logic (see
http://docs.python.org/reference/expressions.html#not-in). This
is done in an efficient way, so that each object being compared
is only evaluated once and the comparison can short-circuit. For
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
> 3)``. The ``and`` operator coerces each side into a bool,
returning the object itself when it short-circuits. The bool of
the --Than operators will raise TypeError on purpose, because
SymPy cannot determine the mathematical ordering of symbolic
expressions. Thus, if we were to compute ``x > y > z``, with
``x``, ``y``, and ``z`` being Symbols, Python converts the
statement (roughly) into these steps:
(1) x > y > z
(2) (x > y) and (y > z)
(3) (GreaterThanObject) and (y > z)
(4) (GreaterThanObject.__bool__()) and (y > z)
(5) TypeError
Because of the ``and`` added at step 2, the statement gets turned into a
weak ternary statement, and the first object's ``__bool__`` method will
raise TypeError. Thus, creating a chained inequality is not possible.
In Python, there is no way to override the ``and`` operator, or to
control how it short circuits, so it is impossible to make something
like ``x > y > z`` work. There was a PEP to change this,
:pep:`335`, but it was officially closed in March, 2012.
"""
__slots__ = ()
rel_op = '>='
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_ge(lhs, rhs)
@property
def strict(self):
return Gt(*self.args)
Ge = GreaterThan
class LessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<='
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_le(lhs, rhs)
@property
def strict(self):
return Lt(*self.args)
Le = LessThan
class StrictGreaterThan(_Greater):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '>'
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_gt(lhs, rhs)
@property
def weak(self):
return Ge(*self.args)
Gt = StrictGreaterThan
class StrictLessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<'
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_lt(lhs, rhs)
@property
def weak(self):
return Le(*self.args)
Lt = StrictLessThan
# A class-specific (not object-specific) data item used for a minor speedup.
# It is defined here, rather than directly in the class, because the classes
# that it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
None: Equality,
'==': Equality,
'eq': Equality,
'!=': Unequality,
'<>': Unequality,
'ne': Unequality,
'>=': GreaterThan,
'ge': GreaterThan,
'<=': LessThan,
'le': LessThan,
'>': StrictGreaterThan,
'gt': StrictGreaterThan,
'<': StrictLessThan,
'lt': StrictLessThan,
}
def _n2(a, b):
"""Return (a - b).evalf(2) if a and b are comparable, else None.
This should only be used when a and b are already sympified.
"""
# /!\ it is very important (see issue 8245) not to
# use a re-evaluated number in the calculation of dif
if a.is_comparable and b.is_comparable:
dif = (a - b).evalf(2)
if dif.is_comparable:
return dif
@dispatch(Expr, Expr)
def _eval_is_ge(lhs, rhs):
return None
@dispatch(Basic, Basic)
def _eval_is_eq(lhs, rhs):
return None
@dispatch(Tuple, Expr) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
return False
@dispatch(Tuple, AppliedUndef) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
return None
@dispatch(Tuple, Symbol) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
return None
@dispatch(Tuple, Tuple) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if len(lhs) != len(rhs):
return False
return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs))
def is_lt(lhs, rhs, assumptions=None):
"""Fuzzy bool for lhs is strictly less than rhs.
See the docstring for :func:`~.is_ge` for more.
"""
return fuzzy_not(is_ge(lhs, rhs, assumptions))
def is_gt(lhs, rhs, assumptions=None):
"""Fuzzy bool for lhs is strictly greater than rhs.
See the docstring for :func:`~.is_ge` for more.
"""
return fuzzy_not(is_le(lhs, rhs, assumptions))
def is_le(lhs, rhs, assumptions=None):
"""Fuzzy bool for lhs is less than or equal to rhs.
See the docstring for :func:`~.is_ge` for more.
"""
return is_ge(rhs, lhs, assumptions)
def is_ge(lhs, rhs, assumptions=None):
"""
Fuzzy bool for *lhs* is greater than or equal to *rhs*.
Parameters
==========
lhs : Expr
The left-hand side of the expression, must be sympified,
and an instance of expression. Throws an exception if
lhs is not an instance of expression.
rhs : Expr
The right-hand side of the expression, must be sympified
and an instance of expression. Throws an exception if
lhs is not an instance of expression.
assumptions: Boolean, optional
Assumptions taken to evaluate the inequality.
Returns
=======
``True`` if *lhs* is greater than or equal to *rhs*, ``False`` if *lhs*
is less than *rhs*, and ``None`` if the comparison between *lhs* and
*rhs* is indeterminate.
Explanation
===========
This function is intended to give a relatively fast determination and
deliberately does not attempt slow calculations that might help in
obtaining a determination of True or False in more difficult cases.
The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are
each implemented in terms of ``is_ge`` in the following way:
is_ge(x, y) := is_ge(x, y)
is_le(x, y) := is_ge(y, x)
is_lt(x, y) := fuzzy_not(is_ge(x, y))
is_gt(x, y) := fuzzy_not(is_ge(y, x))
Therefore, supporting new type with this function will ensure behavior for
other three functions as well.
To maintain these equivalences in fuzzy logic it is important that in cases where
either x or y is non-real all comparisons will give None.
Examples
========
>>> from sympy import S, Q
>>> from sympy.core.relational import is_ge, is_le, is_gt, is_lt
>>> from sympy.abc import x
>>> is_ge(S(2), S(0))
True
>>> is_ge(S(0), S(2))
False
>>> is_le(S(0), S(2))
True
>>> is_gt(S(0), S(2))
False
>>> is_lt(S(2), S(0))
False
Assumptions can be passed to evaluate the quality which is otherwise
indeterminate.
>>> print(is_ge(x, S(0)))
None
>>> is_ge(x, S(0), assumptions=Q.positive(x))
True
New types can be supported by dispatching to ``_eval_is_ge``.
>>> from sympy import Expr, sympify
>>> from sympy.multipledispatch import dispatch
>>> class MyExpr(Expr):
... def __new__(cls, arg):
... return super().__new__(cls, sympify(arg))
... @property
... def value(self):
... return self.args[0]
>>> @dispatch(MyExpr, MyExpr)
... def _eval_is_ge(a, b):
... return is_ge(a.value, b.value)
>>> a = MyExpr(1)
>>> b = MyExpr(2)
>>> is_ge(b, a)
True
>>> is_le(a, b)
True
"""
from sympy.assumptions.wrapper import AssumptionsWrapper, is_extended_nonnegative
if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)):
raise TypeError("Can only compare inequalities with Expr")
retval = _eval_is_ge(lhs, rhs)
if retval is not None:
return retval
else:
n2 = _n2(lhs, rhs)
if n2 is not None:
# use float comparison for infinity.
# otherwise get stuck in infinite recursion
if n2 in (S.Infinity, S.NegativeInfinity):
n2 = float(n2)
return n2 >= 0
_lhs = AssumptionsWrapper(lhs, assumptions)
_rhs = AssumptionsWrapper(rhs, assumptions)
if _lhs.is_extended_real and _rhs.is_extended_real:
if (_lhs.is_infinite and _lhs.is_extended_positive) or (_rhs.is_infinite and _rhs.is_extended_negative):
return True
diff = lhs - rhs
if diff is not S.NaN:
rv = is_extended_nonnegative(diff, assumptions)
if rv is not None:
return rv
def is_neq(lhs, rhs, assumptions=None):
"""Fuzzy bool for lhs does not equal rhs.
See the docstring for :func:`~.is_eq` for more.
"""
return fuzzy_not(is_eq(lhs, rhs, assumptions))
def is_eq(lhs, rhs, assumptions=None):
"""
Fuzzy bool representing mathematical equality between *lhs* and *rhs*.
Parameters
==========
lhs : Expr
The left-hand side of the expression, must be sympified.
rhs : Expr
The right-hand side of the expression, must be sympified.
assumptions: Boolean, optional
Assumptions taken to evaluate the equality.
Returns
=======
``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*,
and ``None`` if the comparison between *lhs* and *rhs* is indeterminate.
Explanation
===========
This function is intended to give a relatively fast determination and
deliberately does not attempt slow calculations that might help in
obtaining a determination of True or False in more difficult cases.
:func:`~.is_neq` calls this function to return its value, so supporting
new type with this function will ensure correct behavior for ``is_neq``
as well.
Examples
========
>>> from sympy import Q, S
>>> from sympy.core.relational import is_eq, is_neq
>>> from sympy.abc import x
>>> is_eq(S(0), S(0))
True
>>> is_neq(S(0), S(0))
False
>>> is_eq(S(0), S(2))
False
>>> is_neq(S(0), S(2))
True
Assumptions can be passed to evaluate the equality which is otherwise
indeterminate.
>>> print(is_eq(x, S(0)))
None
>>> is_eq(x, S(0), assumptions=Q.zero(x))
True
New types can be supported by dispatching to ``_eval_is_eq``.
>>> from sympy import Basic, sympify
>>> from sympy.multipledispatch import dispatch
>>> class MyBasic(Basic):
... def __new__(cls, arg):
... return Basic.__new__(cls, sympify(arg))
... @property
... def value(self):
... return self.args[0]
...
>>> @dispatch(MyBasic, MyBasic)
... def _eval_is_eq(a, b):
... return is_eq(a.value, b.value)
...
>>> a = MyBasic(1)
>>> b = MyBasic(1)
>>> is_eq(a, b)
True
>>> is_neq(a, b)
False
"""
# here, _eval_Eq is only called for backwards compatibility
# new code should use is_eq with multiple dispatch as
# outlined in the docstring
for side1, side2 in (lhs, rhs), (rhs, lhs):
eval_func = getattr(side1, '_eval_Eq', None)
if eval_func is not None:
retval = eval_func(side2)
if retval is not None:
return retval
retval = _eval_is_eq(lhs, rhs)
if retval is not None:
return retval
if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
retval = _eval_is_eq(rhs, lhs)
if retval is not None:
return retval
# retval is still None, so go through the equality logic
# If expressions have the same structure, they must be equal.
if lhs == rhs:
return True # e.g. True == True
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
return False # True != False
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
isinstance(lhs, Boolean) !=
isinstance(rhs, Boolean)):
return False # only Booleans can equal Booleans
from sympy.assumptions.wrapper import (AssumptionsWrapper,
is_infinite, is_extended_real)
from .add import Add
_lhs = AssumptionsWrapper(lhs, assumptions)
_rhs = AssumptionsWrapper(rhs, assumptions)
if _lhs.is_infinite or _rhs.is_infinite:
if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]):
return False
if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]):
return False
if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]):
return fuzzy_xor([_lhs.is_extended_positive, fuzzy_not(_rhs.is_extended_positive)])
# Try to split real/imaginary parts and equate them
I = S.ImaginaryUnit
def split_real_imag(expr):
real_imag = lambda t: (
'real' if is_extended_real(t, assumptions) else
'imag' if is_extended_real(I*t, assumptions) else None)
return sift(Add.make_args(expr), real_imag)
lhs_ri = split_real_imag(lhs)
if not lhs_ri[None]:
rhs_ri = split_real_imag(rhs)
if not rhs_ri[None]:
eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']), assumptions)
eq_imag = is_eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']), assumptions)
return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
from sympy.functions.elementary.complexes import arg
# Compare e.g. zoo with 1+I*oo by comparing args
arglhs = arg(lhs)
argrhs = arg(rhs)
# Guard against Eq(nan, nan) -> False
if not (arglhs == S.NaN and argrhs == S.NaN):
return fuzzy_bool(is_eq(arglhs, argrhs, assumptions))
if all(isinstance(i, Expr) for i in (lhs, rhs)):
# see if the difference evaluates
dif = lhs - rhs
_dif = AssumptionsWrapper(dif, assumptions)
z = _dif.is_zero
if z is not None:
if z is False and _dif.is_commutative: # issue 10728
return False
if z:
return True
n2 = _n2(lhs, rhs)
if n2 is not None:
return _sympify(n2 == 0)
# see if the ratio evaluates
n, d = dif.as_numer_denom()
rv = None
_n = AssumptionsWrapper(n, assumptions)
_d = AssumptionsWrapper(d, assumptions)
if _n.is_zero:
rv = _d.is_nonzero
elif _n.is_finite:
if _d.is_infinite:
rv = True
elif _n.is_zero is False:
rv = _d.is_infinite
if rv is None:
# if the condition that makes the denominator
# infinite does not make the original expression
# True then False can be returned
from sympy.simplify.simplify import clear_coefficients
l, r = clear_coefficients(d, S.Infinity)
args = [_.subs(l, r) for _ in (lhs, rhs)]
if args != [lhs, rhs]:
rv = fuzzy_bool(is_eq(*args, assumptions))
if rv is True:
rv = None
elif any(is_infinite(a, assumptions) for a in Add.make_args(n)):
# (inf or nan)/x != 0
rv = False
if rv is not None:
return rv
|
92cae98a4da5abbc1cab02dae2a27e0557daf2a1aba99ff5bfd2f019c6a86b86 | from typing import Tuple as tTuple
from collections import defaultdict
from functools import cmp_to_key, reduce
from itertools import product
import operator
from .sympify import sympify
from .basic import Basic
from .singleton import S
from .operations import AssocOp, AssocOpDispatcher
from .cache import cacheit
from .logic import fuzzy_not, _fuzzy_group
from .expr import Expr
from .parameters import global_parameters
from .kind import KindDispatcher
from .traversal import bottom_up
from sympy.utilities.iterables import sift
# internal marker to indicate:
# "there are still non-commutative objects -- don't forget to process them"
class NC_Marker:
is_Order = False
is_Mul = False
is_Number = False
is_Poly = False
is_commutative = False
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _mulsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Mul(*args):
"""Return a well-formed unevaluated Mul: Numbers are collected and
put in slot 0, any arguments that are Muls will be flattened, and args
are sorted. Use this when args have changed but you still want to return
an unevaluated Mul.
Examples
========
>>> from sympy.core.mul import _unevaluated_Mul as uMul
>>> from sympy import S, sqrt, Mul
>>> from sympy.abc import x
>>> a = uMul(*[S(3.0), x, S(2)])
>>> a.args[0]
6.00000000000000
>>> a.args[1]
x
Two unevaluated Muls with the same arguments will
always compare as equal during testing:
>>> m = uMul(sqrt(2), sqrt(3))
>>> m == uMul(sqrt(3), sqrt(2))
True
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
>>> m == uMul(u)
True
>>> m == Mul(*m.args)
False
"""
args = list(args)
newargs = []
ncargs = []
co = S.One
while args:
a = args.pop()
if a.is_Mul:
c, nc = a.args_cnc()
args.extend(c)
if nc:
ncargs.append(Mul._from_args(nc))
elif a.is_Number:
co *= a
else:
newargs.append(a)
_mulsort(newargs)
if co is not S.One:
newargs.insert(0, co)
if ncargs:
newargs.append(Mul._from_args(ncargs))
return Mul._from_args(newargs)
class Mul(Expr, AssocOp):
"""
Expression representing multiplication operation for algebraic field.
.. deprecated:: 1.7
Using arguments that aren't subclasses of :class:`~.Expr` in core
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
deprecated. See :ref:`non-expr-args-deprecated` for details.
Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*``
on most scalar objects in SymPy calls this class.
Another use of ``Mul()`` is to represent the structure of abstract
multiplication so that its arguments can be substituted to return
different class. Refer to examples section for this.
``Mul()`` evaluates the argument unless ``evaluate=False`` is passed.
The evaluation logic includes:
1. Flattening
``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)``
2. Identity removing
``Mul(x, 1, y)`` -> ``Mul(x, y)``
3. Exponent collecting by ``.as_base_exp()``
``Mul(x, x**2)`` -> ``Pow(x, 3)``
4. Term sorting
``Mul(y, x, 2)`` -> ``Mul(2, x, y)``
Since multiplication can be vector space operation, arguments may
have the different :obj:`sympy.core.kind.Kind()`. Kind of the
resulting object is automatically inferred.
Examples
========
>>> from sympy import Mul
>>> from sympy.abc import x, y
>>> Mul(x, 1)
x
>>> Mul(x, x)
x**2
If ``evaluate=False`` is passed, result is not evaluated.
>>> Mul(1, 2, evaluate=False)
1*2
>>> Mul(x, x, evaluate=False)
x*x
``Mul()`` also represents the general structure of multiplication
operation.
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 2,2)
>>> expr = Mul(x,y).subs({y:A})
>>> expr
x*A
>>> type(expr)
<class 'sympy.matrices.expressions.matmul.MatMul'>
See Also
========
MatMul
"""
__slots__ = ()
args: tTuple[Expr]
is_Mul = True
_args_type = Expr
_kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True)
@property
def kind(self):
arg_kinds = (a.kind for a in self.args)
return self._kind_dispatcher(*arg_kinds)
def could_extract_minus_sign(self):
if self == (-self):
return False # e.g. zoo*x == -zoo*x
c = self.args[0]
return c.is_Number and c.is_extended_negative
def __neg__(self):
c, args = self.as_coeff_mul()
if args[0] is not S.ComplexInfinity:
c = -c
if c is not S.One:
if args[0].is_Number:
args = list(args)
if c is S.NegativeOne:
args[0] = -args[0]
else:
args[0] *= c
else:
args = (c,) + args
return self._from_args(args, self.is_commutative)
@classmethod
def flatten(cls, seq):
"""Return commutative, noncommutative and order arguments by
combining related terms.
Notes
=====
* In an expression like ``a*b*c``, Python process this through SymPy
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
- Sometimes terms are not combined as one would like:
{c.f. https://github.com/sympy/sympy/issues/4596}
>>> from sympy import Mul, sqrt
>>> from sympy.abc import x, y, z
>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
Powers with compound bases may not find a single base to
combine with unless all arguments are processed at once.
Post-processing may be necessary in such cases.
{c.f. https://github.com/sympy/sympy/issues/5728}
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a,a,a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs(a.base, z).subs(z, a.base)
(x*sqrt(y))**(3/2)
- If more than two terms are being multiplied then all the
previous terms will be re-processed for each new argument.
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
expression, then ``a*b*c`` (or building up the product
with ``*=``) will process all the arguments of ``a`` and
``b`` twice: once when ``a*b`` is computed and again when
``c`` is multiplied.
Using ``Mul(a, b, c)`` will process all arguments once.
* The results of Mul are cached according to arguments, so flatten
will only be called once for ``Mul(a, b, c)``. If you can
structure a calculation so the arguments are most likely to be
repeats then this can save time in computing the answer. For
example, say you had a Mul, M, that you wished to divide by ``d[i]``
and multiply by ``n[i]`` and you suspect there are many repeats
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
product, ``M*n[i]`` will be returned without flattening -- the
cached value will be returned. If you divide by the ``d[i]``
first (and those are more unique than the ``n[i]``) then that will
create a new Mul, ``M/d[i]`` the args of which will be traversed
again when it is multiplied by ``n[i]``.
{c.f. https://github.com/sympy/sympy/issues/5706}
This consideration is moot if the cache is turned off.
NB
--
The validity of the above notes depends on the implementation
details of Mul and flatten which may change at any time. Therefore,
you should only consider them when your code is highly performance
sensitive.
Removal of 1 from the sequence is already handled by AssocOp.__new__.
"""
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.matrices.expressions import MatrixExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
seq = [a, b]
assert a is not S.One
if not a.is_zero and a.is_Rational:
r, b = b.as_coeff_Mul()
if b.is_Add:
if r is not S.One: # 2-arg hack
# leave the Mul as a Mul?
ar = a*r
if ar is S.One:
arb = b
else:
arb = cls(a*r, b, evaluate=False)
rv = [arb], [], None
elif global_parameters.distribute and b.is_commutative:
newb = Add(*[_keep_coeff(a, bi) for bi in b.args])
rv = [newb], [], None
if rv:
return rv
# apply associativity, separate commutative part of seq
c_part = [] # out: commutative factors
nc_part = [] # out: non-commutative factors
nc_seq = []
coeff = S.One # standalone term
# e.g. 3 * ...
c_powers = [] # (base,exp) n
# e.g. (x,n) for x
num_exp = [] # (num-base, exp) y
# e.g. (3, y) for ... * 3 * ...
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
pnum_rat = {} # (num-base, Rat-exp) 1/2
# e.g. (3, 1/2) for ... * 3 * ...
order_symbols = None
# --- PART 1 ---
#
# "collect powers and coeff":
#
# o coeff
# o c_powers
# o num_exp
# o neg1e
# o pnum_rat
#
# NOTE: this is optimized for all-objects-are-commutative case
for o in seq:
# O(x)
if o.is_Order:
o, order_symbols = o.as_expr_variables(order_symbols)
# Mul([...])
if o.is_Mul:
if o.is_commutative:
seq.extend(o.args) # XXX zerocopy?
else:
# NCMul can have commutative parts as well
for q in o.args:
if q.is_commutative:
seq.append(q)
else:
nc_seq.append(q)
# append non-commutative marker, so we don't forget to
# process scheduled non-commutative objects
seq.append(NC_Marker)
continue
# 3
elif o.is_Number:
if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
# we know for sure the result will be nan
return [S.NaN], [], None
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
coeff *= o
if coeff is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__mul__(coeff)
continue
elif o is S.ComplexInfinity:
if not coeff:
# 0 * zoo = NaN
return [S.NaN], [], None
coeff = S.ComplexInfinity
continue
elif o is S.ImaginaryUnit:
neg1e += S.Half
continue
elif o.is_commutative:
# e
# o = b
b, e = o.as_base_exp()
# y
# 3
if o.is_Pow:
if b.is_Number:
# get all the factors with numeric base so they can be
# combined below, but don't combine negatives unless
# the exponent is an integer
if e.is_Rational:
if e.is_Integer:
coeff *= Pow(b, e) # it is an unevaluated power
continue
elif e.is_negative: # also a sign of an unevaluated power
seq.append(Pow(b, e))
continue
elif b.is_negative:
neg1e += e
b = -b
if b is not S.One:
pnum_rat.setdefault(b, []).append(e)
continue
elif b.is_positive or e.is_integer:
num_exp.append((b, e))
continue
c_powers.append((b, e))
# NON-COMMUTATIVE
# TODO: Make non-commutative exponents not combine automatically
else:
if o is not NC_Marker:
nc_seq.append(o)
# process nc_seq (if any)
while nc_seq:
o = nc_seq.pop(0)
if not nc_part:
nc_part.append(o)
continue
# b c b+c
# try to combine last terms: a * a -> a
o1 = nc_part.pop()
b1, e1 = o1.as_base_exp()
b2, e2 = o.as_base_exp()
new_exp = e1 + e2
# Only allow powers to combine if the new exponent is
# not an Add. This allow things like a**2*b**3 == a**5
# if a.is_commutative == False, but prohibits
# a**x*a**y and x**a*x**b from combining (x,y commute).
if b1 == b2 and (not new_exp.is_Add):
o12 = b1 ** new_exp
# now o12 could be a commutative object
if o12.is_commutative:
seq.append(o12)
continue
else:
nc_seq.insert(0, o12)
else:
nc_part.extend([o1, o])
# We do want a combined exponent if it would not be an Add, such as
# y 2y 3y
# x * x -> x
# We determine if two exponents have the same term by using
# as_coeff_Mul.
#
# Unfortunately, this isn't smart enough to consider combining into
# exponents that might already be adds, so things like:
# z - y y
# x * x will be left alone. This is because checking every possible
# combination can slow things down.
# gather exponents of common bases...
def _gather(c_powers):
common_b = {} # b:e
for b, e in c_powers:
co = e.as_coeff_Mul()
common_b.setdefault(b, {}).setdefault(
co[1], []).append(co[0])
for b, d in common_b.items():
for di, li in d.items():
d[di] = Add(*li)
new_c_powers = []
for b, e in common_b.items():
new_c_powers.extend([(b, c*t) for t, c in e.items()])
return new_c_powers
# in c_powers
c_powers = _gather(c_powers)
# and in num_exp
num_exp = _gather(num_exp)
# --- PART 2 ---
#
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
# o combine collected powers (2**x * 3**x -> 6**x)
# with numeric base
# ................................
# now we have:
# - coeff:
# - c_powers: (b, e)
# - num_exp: (2, e)
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
# 0 1
# x -> 1 x -> x
# this should only need to run twice; if it fails because
# it needs to be run more times, perhaps this should be
# changed to a "while True" loop -- the only reason it
# isn't such now is to allow a less-than-perfect result to
# be obtained rather than raising an error or entering an
# infinite loop
for i in range(2):
new_c_powers = []
changed = False
for b, e in c_powers:
if e.is_zero:
# canceling out infinities yields NaN
if (b.is_Add or b.is_Mul) and any(infty in b.args
for infty in (S.ComplexInfinity, S.Infinity,
S.NegativeInfinity)):
return [S.NaN], [], None
continue
if e is S.One:
if b.is_Number:
coeff *= b
continue
p = b
if e is not S.One:
p = Pow(b, e)
# check to make sure that the base doesn't change
# after exponentiation; to allow for unevaluated
# Pow, we only do so if b is not already a Pow
if p.is_Pow and not b.is_Pow:
bi = b
b, e = p.as_base_exp()
if b != bi:
changed = True
c_part.append(p)
new_c_powers.append((b, e))
# there might have been a change, but unless the base
# matches some other base, there is nothing to do
if changed and len({
b for b, e in new_c_powers}) != len(new_c_powers):
# start over again
c_part = []
c_powers = _gather(new_c_powers)
else:
break
# x x x
# 2 * 3 -> 6
inv_exp_dict = {} # exp:Mul(num-bases) x x
# e.g. x:6 for ... * 2 * 3 * ...
for b, e in num_exp:
inv_exp_dict.setdefault(e, []).append(b)
for e, b in inv_exp_dict.items():
inv_exp_dict[e] = cls(*b)
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
# b, e -> e' = sum(e), b
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
comb_e = {}
for b, e in pnum_rat.items():
comb_e.setdefault(Add(*e), []).append(b)
del pnum_rat
# process them, reducing exponents to values less than 1
# and updating coeff if necessary else adding them to
# num_rat for further processing
num_rat = []
for e, b in comb_e.items():
b = cls(*b)
if e.q == 1:
coeff *= Pow(b, e)
continue
if e.p > e.q:
e_i, ep = divmod(e.p, e.q)
coeff *= Pow(b, e_i)
e = Rational(ep, e.q)
num_rat.append((b, e))
del comb_e
# extract gcd of bases in num_rat
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
pnew = defaultdict(list)
i = 0 # steps through num_rat which may grow
while i < len(num_rat):
bi, ei = num_rat[i]
grow = []
for j in range(i + 1, len(num_rat)):
bj, ej = num_rat[j]
g = bi.gcd(bj)
if g is not S.One:
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
# this might have a gcd with something else
e = ei + ej
if e.q == 1:
coeff *= Pow(g, e)
else:
if e.p > e.q:
e_i, ep = divmod(e.p, e.q) # change e in place
coeff *= Pow(g, e_i)
e = Rational(ep, e.q)
grow.append((g, e))
# update the jth item
num_rat[j] = (bj/g, ej)
# update bi that we are checking with
bi = bi/g
if bi is S.One:
break
if bi is not S.One:
obj = Pow(bi, ei)
if obj.is_Number:
coeff *= obj
else:
# changes like sqrt(12) -> 2*sqrt(3)
for obj in Mul.make_args(obj):
if obj.is_Number:
coeff *= obj
else:
assert obj.is_Pow
bi, ei = obj.args
pnew[ei].append(bi)
num_rat.extend(grow)
i += 1
# combine bases of the new powers
for e, b in pnew.items():
pnew[e] = cls(*b)
# handle -1 and I
if neg1e:
# treat I as (-1)**(1/2) and compute -1's total exponent
p, q = neg1e.as_numer_denom()
# if the integer part is odd, extract -1
n, p = divmod(p, q)
if n % 2:
coeff = -coeff
# if it's a multiple of 1/2 extract I
if q == 2:
c_part.append(S.ImaginaryUnit)
elif p:
# see if there is any positive base this power of
# -1 can join
neg1e = Rational(p, q)
for e, b in pnew.items():
if e == neg1e and b.is_positive:
pnew[e] = -b
break
else:
# keep it separate; we've already evaluated it as
# much as possible so evaluate=False
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
# add all the pnew powers
c_part.extend([Pow(b, e) for e, b in pnew.items()])
# oo, -oo
if coeff in (S.Infinity, S.NegativeInfinity):
def _handle_for_oo(c_part, coeff_sign):
new_c_part = []
for t in c_part:
if t.is_extended_positive:
continue
if t.is_extended_negative:
coeff_sign *= -1
continue
new_c_part.append(t)
return new_c_part, coeff_sign
c_part, coeff_sign = _handle_for_oo(c_part, 1)
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
coeff *= coeff_sign
# zoo
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + bounded_im
# bounded_real + infinite_im
# infinite_real + infinite_im
# and non-zero real or imaginary will not change that status.
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
# 0
elif coeff.is_zero:
# we know for sure the result will be 0 except the multiplicand
# is infinity or a matrix
if any(isinstance(c, MatrixExpr) for c in nc_part):
return [coeff], nc_part, order_symbols
if any(c.is_finite == False for c in c_part):
return [S.NaN], [], order_symbols
return [coeff], [], order_symbols
# check for straggling Numbers that were produced
_new = []
for i in c_part:
if i.is_Number:
coeff *= i
else:
_new.append(i)
c_part = _new
# order commutative part canonically
_mulsort(c_part)
# current code expects coeff to be always in slot-0
if coeff is not S.One:
c_part.insert(0, coeff)
# we are done
if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
# 2*(1+a) -> 2 + 2 * a
coeff = c_part[0]
c_part = [Add(*[coeff*f for f in c_part[1].args])]
return c_part, nc_part, order_symbols
def _eval_power(self, e):
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
cargs, nc = self.args_cnc(split_1=False)
if e.is_Integer:
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
Pow(Mul._from_args(nc), e, evaluate=False)
if e.is_Rational and e.q == 2:
if self.is_imaginary:
a = self.as_real_imag()[1]
if a.is_Rational:
from .power import integer_nthroot
n, d = abs(a/2).as_numer_denom()
n, t = integer_nthroot(n, 2)
if t:
d, t = integer_nthroot(d, 2)
if t:
from sympy.functions.elementary.complexes import sign
r = sympify(n)/d
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
p = Pow(self, e, evaluate=False)
if e.is_Rational or e.is_Float:
return p._eval_expand_power_base()
return p
@classmethod
def class_key(cls):
return 3, 0, cls.__name__
def _eval_evalf(self, prec):
c, m = self.as_coeff_Mul()
if c is S.NegativeOne:
if m.is_Mul:
rv = -AssocOp._eval_evalf(m, prec)
else:
mnew = m._eval_evalf(prec)
if mnew is not None:
m = mnew
rv = -m
else:
rv = AssocOp._eval_evalf(self, prec)
if rv.is_number:
return rv.expand()
return rv
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from .numbers import Float
im_part, imag_unit = self.as_coeff_Mul()
if imag_unit is not S.ImaginaryUnit:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
return (Float(0)._mpf_, Float(im_part)._mpf_)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_mul() which gives the head and a tuple containing
the arguments of the tail when treated as a Mul.
- if you want the coefficient when self is treated as an Add
then use self.as_coeff_add()[0]
Examples
========
>>> from sympy.abc import x, y
>>> (3*x*y).as_two_terms()
(3, x*y)
"""
args = self.args
if len(args) == 1:
return S.One, self
elif len(args) == 2:
return args
else:
return args[0], self._new_rawargs(*args[1:])
@cacheit
def as_coeff_mul(self, *deps, rational=True, **kwargs):
if deps:
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
return self._new_rawargs(*l2), tuple(l1)
args = self.args
if args[0].is_Number:
if not rational or args[0].is_Rational:
return args[0], args[1:]
elif args[0].is_extended_negative:
return S.NegativeOne, (-args[0],) + args[1:]
return S.One, args
def as_coeff_Mul(self, rational=False):
"""
Efficiently extract the coefficient of a product.
"""
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number:
if not rational or coeff.is_Rational:
if len(args) == 1:
return coeff, args[0]
else:
return coeff, self._new_rawargs(*args)
elif coeff.is_extended_negative:
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
return S.One, self
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.complexes import Abs, im, re
other = []
coeffr = []
coeffi = []
addterms = S.One
for a in self.args:
r, i = a.as_real_imag()
if i.is_zero:
coeffr.append(r)
elif r.is_zero:
coeffi.append(i*S.ImaginaryUnit)
elif a.is_commutative:
aconj = a.conjugate() if other else None
# search for complex conjugate pairs:
for i, x in enumerate(other):
if x == aconj:
coeffr.append(Abs(x)**2)
del other[i]
break
else:
if a.is_Add:
addterms *= a
else:
other.append(a)
else:
other.append(a)
m = self.func(*other)
if hints.get('ignore') == m:
return
if len(coeffi) % 2:
imco = im(coeffi.pop(0))
# all other pairs make a real factor; they will be
# put into reco below
else:
imco = S.Zero
reco = self.func(*(coeffr + coeffi))
r, i = (reco*re(m), reco*im(m))
if addterms == 1:
if m == 1:
if imco.is_zero:
return (reco, S.Zero)
else:
return (S.Zero, reco*imco)
if imco is S.Zero:
return (r, i)
return (-imco*i, imco*r)
from .function import expand_mul
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
if imco is S.Zero:
return (r*addre - i*addim, i*addre + r*addim)
else:
r, i = -imco*i, imco*r
return (r*addre - i*addim, r*addim + i*addre)
@staticmethod
def _expandsums(sums):
"""
Helper function for _eval_expand_mul.
sums must be a list of instances of Basic.
"""
L = len(sums)
if L == 1:
return sums[0].args
terms = []
left = Mul._expandsums(sums[:L//2])
right = Mul._expandsums(sums[L//2:])
terms = [Mul(a, b) for a in left for b in right]
added = Add(*terms)
return Add.make_args(added) # it may have collapsed down to one term
def _eval_expand_mul(self, **hints):
from sympy.simplify.radsimp import fraction
# Handle things like 1/(x*(x + 1)), which are automatically converted
# to 1/x*1/(x + 1)
expr = self
n, d = fraction(expr)
if d.is_Mul:
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
for i in (n, d)]
expr = n/d
if not expr.is_Mul:
return expr
plain, sums, rewrite = [], [], False
for factor in expr.args:
if factor.is_Add:
sums.append(factor)
rewrite = True
else:
if factor.is_commutative:
plain.append(factor)
else:
sums.append(Basic(factor)) # Wrapper
if not rewrite:
return expr
else:
plain = self.func(*plain)
if sums:
deep = hints.get("deep", False)
terms = self.func._expandsums(sums)
args = []
for term in terms:
t = self.func(plain, term)
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
t = t._eval_expand_mul()
args.append(t)
return Add(*args)
else:
return plain
@cacheit
def _eval_derivative(self, s):
args = list(self.args)
terms = []
for i in range(len(args)):
d = args[i].diff(s)
if d:
# Note: reduce is used in step of Mul as Mul is unable to
# handle subtypes and operation priority:
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
return Add.fromiter(terms)
@cacheit
def _eval_derivative_n_times(self, s, n):
from .function import AppliedUndef
from .symbol import Symbol, symbols, Dummy
if not isinstance(s, (AppliedUndef, Symbol)):
# other types of s may not be well behaved, e.g.
# (cos(x)*sin(y)).diff([[x, y, z]])
return super()._eval_derivative_n_times(s, n)
from .numbers import Integer
args = self.args
m = len(args)
if isinstance(n, (int, Integer)):
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
terms = []
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
for kvals, c in multinomial_coefficients_iterator(m, n):
p = Mul(*[arg.diff((s, k)) for k, arg in zip(kvals, args)])
terms.append(c * p)
return Add(*terms)
from sympy.concrete.summations import Sum
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.miscellaneous import Max
kvals = symbols("k1:%i" % m, cls=Dummy)
klast = n - sum(kvals)
nfact = factorial(n)
e, l = (# better to use the multinomial?
nfact/prod(map(factorial, kvals))/factorial(klast)*\
Mul(*[args[t].diff((s, kvals[t])) for t in range(m-1)])*\
args[-1].diff((s, Max(0, klast))),
[(k, 0, n) for k in kvals])
return Sum(e, *l)
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
arg0 = self.args[0]
rest = Mul(*self.args[1:])
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
rest)
def _matches_simple(self, expr, repl_dict):
# handle (w*3).matches('x*5') -> {w: x*5/3}
coeff, terms = self.as_coeff_Mul()
terms = Mul.make_args(terms)
if len(terms) == 1:
newexpr = self.__class__._combine_inverse(expr, coeff)
return terms[0].matches(newexpr, repl_dict)
return
def matches(self, expr, repl_dict=None, old=False):
expr = sympify(expr)
if self.is_commutative and expr.is_commutative:
return self._matches_commutative(expr, repl_dict, old)
elif self.is_commutative is not expr.is_commutative:
return None
# Proceed only if both both expressions are non-commutative
c1, nc1 = self.args_cnc()
c2, nc2 = expr.args_cnc()
c1, c2 = [c or [1] for c in [c1, c2]]
# TODO: Should these be self.func?
comm_mul_self = Mul(*c1)
comm_mul_expr = Mul(*c2)
repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
# If the commutative arguments didn't match and aren't equal, then
# then the expression as a whole doesn't match
if not repl_dict and c1 != c2:
return None
# Now match the non-commutative arguments, expanding powers to
# multiplications
nc1 = Mul._matches_expand_pows(nc1)
nc2 = Mul._matches_expand_pows(nc2)
repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
return repl_dict or None
@staticmethod
def _matches_expand_pows(arg_list):
new_args = []
for arg in arg_list:
if arg.is_Pow and arg.exp > 0:
new_args.extend([arg.base] * arg.exp)
else:
new_args.append(arg)
return new_args
@staticmethod
def _matches_noncomm(nodes, targets, repl_dict=None):
"""Non-commutative multiplication matcher.
`nodes` is a list of symbols within the matcher multiplication
expression, while `targets` is a list of arguments in the
multiplication expression being matched against.
"""
if repl_dict is None:
repl_dict = {}
else:
repl_dict = repl_dict.copy()
# List of possible future states to be considered
agenda = []
# The current matching state, storing index in nodes and targets
state = (0, 0)
node_ind, target_ind = state
# Mapping between wildcard indices and the index ranges they match
wildcard_dict = {}
while target_ind < len(targets) and node_ind < len(nodes):
node = nodes[node_ind]
if node.is_Wild:
Mul._matches_add_wildcard(wildcard_dict, state)
states_matches = Mul._matches_new_states(wildcard_dict, state,
nodes, targets)
if states_matches:
new_states, new_matches = states_matches
agenda.extend(new_states)
if new_matches:
for match in new_matches:
repl_dict[match] = new_matches[match]
if not agenda:
return None
else:
state = agenda.pop()
node_ind, target_ind = state
return repl_dict
@staticmethod
def _matches_add_wildcard(dictionary, state):
node_ind, target_ind = state
if node_ind in dictionary:
begin, end = dictionary[node_ind]
dictionary[node_ind] = (begin, target_ind)
else:
dictionary[node_ind] = (target_ind, target_ind)
@staticmethod
def _matches_new_states(dictionary, state, nodes, targets):
node_ind, target_ind = state
node = nodes[node_ind]
target = targets[target_ind]
# Don't advance at all if we've exhausted the targets but not the nodes
if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
return None
if node.is_Wild:
match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
nodes, targets)
if match_attempt:
# If the same node has been matched before, don't return
# anything if the current match is diverging from the previous
# match
other_node_inds = Mul._matches_get_other_nodes(dictionary,
nodes, node_ind)
for ind in other_node_inds:
other_begin, other_end = dictionary[ind]
curr_begin, curr_end = dictionary[node_ind]
other_targets = targets[other_begin:other_end + 1]
current_targets = targets[curr_begin:curr_end + 1]
for curr, other in zip(current_targets, other_targets):
if curr != other:
return None
# A wildcard node can match more than one target, so only the
# target index is advanced
new_state = [(node_ind, target_ind + 1)]
# Only move on to the next node if there is one
if node_ind < len(nodes) - 1:
new_state.append((node_ind + 1, target_ind + 1))
return new_state, match_attempt
else:
# If we're not at a wildcard, then make sure we haven't exhausted
# nodes but not targets, since in this case one node can only match
# one target
if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
return None
match_attempt = node.matches(target)
if match_attempt:
return [(node_ind + 1, target_ind + 1)], match_attempt
elif node == target:
return [(node_ind + 1, target_ind + 1)], None
else:
return None
@staticmethod
def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
"""Determine matches of a wildcard with sub-expression in `target`."""
wildcard = nodes[wildcard_ind]
begin, end = dictionary[wildcard_ind]
terms = targets[begin:end + 1]
# TODO: Should this be self.func?
mult = Mul(*terms) if len(terms) > 1 else terms[0]
return wildcard.matches(mult)
@staticmethod
def _matches_get_other_nodes(dictionary, nodes, node_ind):
"""Find other wildcards that may have already been matched."""
ind_node = nodes[node_ind]
return [ind for ind in dictionary if nodes[ind] == ind_node]
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs/rhs, but treats arguments like symbols, so things
like oo/oo return 1 (instead of a nan) and ``I`` behaves like
a symbol instead of sqrt(-1).
"""
from sympy.simplify.simplify import signsimp
from .symbol import Dummy
if lhs == rhs:
return S.One
def check(l, r):
if l.is_Float and r.is_comparable:
# if both objects are added to 0 they will share the same "normalization"
# and are more likely to compare the same. Since Add(foo, 0) will not allow
# the 0 to pass, we use __add__ directly.
return l.__add__(0) == r.evalf().__add__(0)
return False
if check(lhs, rhs) or check(rhs, lhs):
return S.One
if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
# gruntz and limit wants a literal I to not combine
# with a power of -1
d = Dummy('I')
_i = {S.ImaginaryUnit: d}
i_ = {d: S.ImaginaryUnit}
a = lhs.xreplace(_i).as_powers_dict()
b = rhs.xreplace(_i).as_powers_dict()
blen = len(b)
for bi in tuple(b.keys()):
if bi in a:
a[bi] -= b.pop(bi)
if not a[bi]:
a.pop(bi)
if len(b) != blen:
lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
rv = lhs/rhs
srv = signsimp(rv)
return srv if srv.is_Number else rv
def as_powers_dict(self):
d = defaultdict(int)
for term in self.args:
for b, e in term.as_powers_dict().items():
d[b] += e
return d
def as_numer_denom(self):
# don't use _from_args to rebuild the numerators and denominators
# as the order is not guaranteed to be the same once they have
# been separated from each other
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
return self.func(*numers), self.func(*denoms)
def as_base_exp(self):
e1 = None
bases = []
nc = 0
for m in self.args:
b, e = m.as_base_exp()
if not b.is_commutative:
nc += 1
if e1 is None:
e1 = e
elif e != e1 or nc > 1:
return self, S.One
bases.append(b)
return self.func(*bases), e1
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_meromorphic(self, x, a):
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
quick_exit=True)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
def _eval_is_complex(self):
comp = _fuzzy_group(a.is_complex for a in self.args)
if comp is False:
if any(a.is_infinite for a in self.args):
if any(a.is_zero is not False for a in self.args):
return None
return False
return comp
def _eval_is_zero_infinite_helper(self):
#
# Helper used by _eval_is_zero and _eval_is_infinite.
#
# Three-valued logic is tricky so let us reason this carefully. It
# would be nice to say that we just check is_zero/is_infinite in all
# args but we need to be careful about the case that one arg is zero
# and another is infinite like Mul(0, oo) or more importantly a case
# where it is not known if the arguments are zero or infinite like
# Mul(y, 1/x). If either y or x could be zero then there is a
# *possibility* that we have Mul(0, oo) which should give None for both
# is_zero and is_infinite.
#
# We keep track of whether we have seen a zero or infinity but we also
# need to keep track of whether we have *possibly* seen one which
# would be indicated by None.
#
# For each argument there is the possibility that is_zero might give
# True, False or None and likewise that is_infinite might give True,
# False or None, giving 9 combinations. The True cases for is_zero and
# is_infinite are mutually exclusive though so there are 3 main cases:
#
# - is_zero = True
# - is_infinite = True
# - is_zero and is_infinite are both either False or None
#
# At the end seen_zero and seen_infinite can be any of 9 combinations
# of True/False/None. Unless one is False though we cannot return
# anything except None:
#
# - is_zero=True needs seen_zero=True and seen_infinite=False
# - is_zero=False needs seen_zero=False
# - is_infinite=True needs seen_infinite=True and seen_zero=False
# - is_infinite=False needs seen_infinite=False
# - anything else gives both is_zero=None and is_infinite=None
#
# The loop only sets the flags to True or None and never back to False.
# Hence as soon as neither flag is False we exit early returning None.
# In particular as soon as we encounter a single arg that has
# is_zero=is_infinite=None we exit. This is a common case since it is
# the default assumptions for a Symbol and also the case for most
# expressions containing such a symbol. The early exit gives a big
# speedup for something like Mul(*symbols('x:1000')).is_zero.
#
seen_zero = seen_infinite = False
for a in self.args:
if a.is_zero:
if seen_infinite is not False:
return None, None
seen_zero = True
elif a.is_infinite:
if seen_zero is not False:
return None, None
seen_infinite = True
else:
if seen_zero is False and a.is_zero is None:
if seen_infinite is not False:
return None, None
seen_zero = None
if seen_infinite is False and a.is_infinite is None:
if seen_zero is not False:
return None, None
seen_infinite = None
return seen_zero, seen_infinite
def _eval_is_zero(self):
# True iff any arg is zero and no arg is infinite but need to handle
# three valued logic carefully.
seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
if seen_zero is False:
return False
elif seen_zero is True and seen_infinite is False:
return True
else:
return None
def _eval_is_infinite(self):
# True iff any arg is infinite and no arg is zero but need to handle
# three valued logic carefully.
seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
if seen_infinite is True and seen_zero is False:
return True
elif seen_infinite is False:
return False
else:
return None
# We do not need to implement _eval_is_finite because the assumptions
# system can infer it from finite = not infinite.
def _eval_is_rational(self):
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
# All args except one are rational
if all(a.is_zero is False for a in self.args):
return False
def _eval_is_algebraic(self):
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
# All args except one are algebraic
if all(a.is_zero is False for a in self.args):
return False
# without involving odd/even checks this code would suffice:
#_eval_is_integer = lambda self: _fuzzy_group(
# (a.is_integer for a in self.args), quick_exit=True)
def _eval_is_integer(self):
from sympy.ntheory.factor_ import trailing
is_rational = self._eval_is_rational()
if is_rational is False:
return False
numerators = []
denominators = []
unknown = False
for a in self.args:
hit = False
if a.is_integer:
if abs(a) is not S.One:
numerators.append(a)
elif a.is_Rational:
n, d = a.as_numer_denom()
if abs(n) is not S.One:
numerators.append(n)
if d is not S.One:
denominators.append(d)
elif a.is_Pow:
b, e = a.as_base_exp()
if not b.is_integer or not e.is_integer:
hit = unknown = True
if e.is_negative:
denominators.append(2 if a is S.Half else
Pow(a, S.NegativeOne))
elif not hit:
# int b and pos int e: a = b**e is integer
assert not e.is_positive
# for rational self and e equal to zero: a = b**e is 1
assert not e.is_zero
return # sign of e unknown -> self.is_integer unknown
else:
# x**2, 2**x, or x**y with x and y int-unknown -> unknown
return
else:
return
if not denominators and not unknown:
return True
allodd = lambda x: all(i.is_odd for i in x)
alleven = lambda x: all(i.is_even for i in x)
anyeven = lambda x: any(i.is_even for i in x)
from .relational import is_gt
if not numerators and denominators and all(
is_gt(_, S.One) for _ in denominators):
return False
elif unknown:
return
elif allodd(numerators) and anyeven(denominators):
return False
elif anyeven(numerators) and denominators == [2]:
return True
elif alleven(numerators) and allodd(denominators
) and (Mul(*denominators, evaluate=False) - 1
).is_positive:
return False
if len(denominators) == 1:
d = denominators[0]
if d.is_Integer and d.is_even:
# if minimal power of 2 in num vs den is not
# negative then we have an integer
if (Add(*[i.as_base_exp()[1] for i in
numerators if i.is_even]) - trailing(d.p)
).is_nonnegative:
return True
if len(numerators) == 1:
n = numerators[0]
if n.is_Integer and n.is_even:
# if minimal power of 2 in den vs num is positive
# then we have have a non-integer
if (Add(*[i.as_base_exp()[1] for i in
denominators if i.is_even]) - trailing(n.p)
).is_positive:
return False
def _eval_is_polar(self):
has_polar = any(arg.is_polar for arg in self.args)
return has_polar and \
all(arg.is_polar or arg.is_positive for arg in self.args)
def _eval_is_extended_real(self):
return self._eval_real_imag(True)
def _eval_real_imag(self, real):
zero = False
t_not_re_im = None
for t in self.args:
if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
return False
elif t.is_imaginary: # I
real = not real
elif t.is_extended_real: # 2
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_extended_real is False:
# symbolic or literal like `2 + I` or symbolic imaginary
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
else:
return
if t_not_re_im:
if t_not_re_im.is_extended_real is False:
if real: # like 3
return zero # 3*(smthng like 2 + I or i) is not real
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
if not real: # like I
return zero # I*(smthng like 2 or 2 + I) is not real
elif zero is False:
return real # can't be trumped by 0
elif real:
return real # doesn't matter what zero is
def _eval_is_imaginary(self):
if all(a.is_zero is False and a.is_finite for a in self.args):
return self._eval_real_imag(False)
def _eval_is_hermitian(self):
return self._eval_herm_antiherm(True)
def _eval_is_antihermitian(self):
return self._eval_herm_antiherm(False)
def _eval_herm_antiherm(self, herm):
for t in self.args:
if t.is_hermitian is None or t.is_antihermitian is None:
return
if t.is_hermitian:
continue
elif t.is_antihermitian:
herm = not herm
else:
return
if herm is not False:
return herm
is_zero = self._eval_is_zero()
if is_zero:
return True
elif is_zero is False:
return herm
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
return True
return
if a is None:
return
if all(x.is_real for x in self.args):
return False
def _eval_is_extended_positive(self):
"""Return True if self is positive, False if not, and None if it
cannot be determined.
Explanation
===========
This algorithm is non-recursive and works by keeping track of the
sign which changes when a negative or nonpositive is encountered.
Whether a nonpositive or nonnegative is seen is also tracked since
the presence of these makes it impossible to return True, but
possible to return False if the end result is nonpositive. e.g.
pos * neg * nonpositive -> pos or zero -> None is returned
pos * neg * nonnegative -> neg or zero -> False is returned
"""
return self._eval_pos_neg(1)
def _eval_pos_neg(self, sign):
saw_NON = saw_NOT = False
for t in self.args:
if t.is_extended_positive:
continue
elif t.is_extended_negative:
sign = -sign
elif t.is_zero:
if all(a.is_finite for a in self.args):
return False
return
elif t.is_extended_nonpositive:
sign = -sign
saw_NON = True
elif t.is_extended_nonnegative:
saw_NON = True
# FIXME: is_positive/is_negative is False doesn't take account of
# Symbol('x', infinite=True, extended_real=True) which has
# e.g. is_positive is False but has uncertain sign.
elif t.is_positive is False:
sign = -sign
if saw_NOT:
return
saw_NOT = True
elif t.is_negative is False:
if saw_NOT:
return
saw_NOT = True
else:
return
if sign == 1 and saw_NON is False and saw_NOT is False:
return True
if sign < 0:
return False
def _eval_is_extended_negative(self):
return self._eval_pos_neg(-1)
def _eval_is_odd(self):
is_integer = self._eval_is_integer()
if is_integer is not True:
return is_integer
from sympy.simplify.radsimp import fraction
n, d = fraction(self)
if d.is_Integer and d.is_even:
from sympy.ntheory.factor_ import trailing
# if minimal power of 2 in num vs den is
# positive then we have an even number
if (Add(*[i.as_base_exp()[1] for i in
Mul.make_args(n) if i.is_even]) - trailing(d.p)
).is_positive:
return False
return
r, acc = True, 1
for t in self.args:
if abs(t) is S.One:
continue
if t.is_even:
return False
if r is False:
pass
elif acc != 1 and (acc + t).is_odd:
r = False
elif t.is_even is None:
r = None
acc = t
return r
def _eval_is_even(self):
from sympy.simplify.radsimp import fraction
n, d = fraction(self)
if n.is_Integer and n.is_even:
# if minimal power of 2 in den vs num is not
# negative then this is not an integer and
# can't be even
from sympy.ntheory.factor_ import trailing
if (Add(*[i.as_base_exp()[1] for i in
Mul.make_args(d) if i.is_even]) - trailing(n.p)
).is_nonnegative:
return False
def _eval_is_composite(self):
"""
Here we count the number of arguments that have a minimum value
greater than two.
If there are more than one of such a symbol then the result is composite.
Else, the result cannot be determined.
"""
number_of_args = 0 # count of symbols with minimum value greater than one
for arg in self.args:
if not (arg.is_integer and arg.is_positive):
return None
if (arg-1).is_positive:
number_of_args += 1
if number_of_args > 1:
return True
def _eval_subs(self, old, new):
from sympy.functions.elementary.complexes import sign
from sympy.ntheory.factor_ import multiplicity
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import fraction
if not old.is_Mul:
return None
# try keep replacement literal so -2*x doesn't replace 4*x
if old.args[0].is_Number and old.args[0] < 0:
if self.args[0].is_Number:
if self.args[0] < 0:
return self._subs(-old, -new)
return None
def base_exp(a):
# if I and -1 are in a Mul, they get both end up with
# a -1 base (see issue 6421); all we want here are the
# true Pow or exp separated into base and exponent
from sympy.functions.elementary.exponential import exp
if a.is_Pow or isinstance(a, exp):
return a.as_base_exp()
return a, S.One
def breakup(eq):
"""break up powers of eq when treated as a Mul:
b**(Rational*e) -> b**e, Rational
commutatives come back as a dictionary {b**e: Rational}
noncommutatives come back as a list [(b**e, Rational)]
"""
(c, nc) = (defaultdict(int), list())
for a in Mul.make_args(eq):
a = powdenest(a)
(b, e) = base_exp(a)
if e is not S.One:
(co, _) = e.as_coeff_mul()
b = Pow(b, e/co)
e = co
if a.is_commutative:
c[b] += e
else:
nc.append([b, e])
return (c, nc)
def rejoin(b, co):
"""
Put rational back with exponent; in general this is not ok, but
since we took it from the exponent for analysis, it's ok to put
it back.
"""
(b, e) = base_exp(b)
return Pow(b, e*co)
def ndiv(a, b):
"""if b divides a in an extractive way (like 1/4 divides 1/2
but not vice versa, and 2/5 does not divide 1/3) then return
the integer number of times it divides, else return 0.
"""
if not b.q % a.q or not a.q % b.q:
return int(a/b)
return 0
# give Muls in the denominator a chance to be changed (see issue 5651)
# rv will be the default return value
rv = None
n, d = fraction(self)
self2 = self
if d is not S.One:
self2 = n._subs(old, new)/d._subs(old, new)
if not self2.is_Mul:
return self2._subs(old, new)
if self2 != self:
rv = self2
# Now continue with regular substitution.
# handle the leading coefficient and use it to decide if anything
# should even be started; we always know where to find the Rational
# so it's a quick test
co_self = self2.args[0]
co_old = old.args[0]
co_xmul = None
if co_old.is_Rational and co_self.is_Rational:
# if coeffs are the same there will be no updating to do
# below after breakup() step; so skip (and keep co_xmul=None)
if co_old != co_self:
co_xmul = co_self.extract_multiplicatively(co_old)
elif co_old.is_Rational:
return rv
# break self and old into factors
(c, nc) = breakup(self2)
(old_c, old_nc) = breakup(old)
# update the coefficients if we had an extraction
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
# then co_self in c is replaced by (3/5)**2 and co_residual
# is 2*(1/7)**2
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
mult = S(multiplicity(abs(co_old), co_self))
c.pop(co_self)
if co_old in c:
c[co_old] += mult
else:
c[co_old] = mult
co_residual = co_self/co_old**mult
else:
co_residual = 1
# do quick tests to see if we can't succeed
ok = True
if len(old_nc) > len(nc):
# more non-commutative terms
ok = False
elif len(old_c) > len(c):
# more commutative terms
ok = False
elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
# unmatched non-commutative bases
ok = False
elif set(old_c).difference(set(c)):
# unmatched commutative terms
ok = False
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
# differences in sign
ok = False
if not ok:
return rv
if not old_c:
cdid = None
else:
rat = []
for (b, old_e) in old_c.items():
c_e = c[b]
rat.append(ndiv(c_e, old_e))
if not rat[-1]:
return rv
cdid = min(rat)
if not old_nc:
ncdid = None
for i in range(len(nc)):
nc[i] = rejoin(*nc[i])
else:
ncdid = 0 # number of nc replacements we did
take = len(old_nc) # how much to look at each time
limit = cdid or S.Infinity # max number that we can take
failed = [] # failed terms will need subs if other terms pass
i = 0
while limit and i + take <= len(nc):
hit = False
# the bases must be equivalent in succession, and
# the powers must be extractively compatible on the
# first and last factor but equal in between.
rat = []
for j in range(take):
if nc[i + j][0] != old_nc[j][0]:
break
elif j == 0:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif j == take - 1:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif nc[i + j][1] != old_nc[j][1]:
break
else:
rat.append(1)
j += 1
else:
ndo = min(rat)
if ndo:
if take == 1:
if cdid:
ndo = min(cdid, ndo)
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
nc[i][1] - ndo*old_nc[0][1])
else:
ndo = 1
# the left residual
l = rejoin(nc[i][0], nc[i][1] - ndo*
old_nc[0][1])
# eliminate all middle terms
mid = new
# the right residual (which may be the same as the middle if take == 2)
ir = i + take - 1
r = (nc[ir][0], nc[ir][1] - ndo*
old_nc[-1][1])
if r[1]:
if i + take < len(nc):
nc[i:i + take] = [l*mid, r]
else:
r = rejoin(*r)
nc[i:i + take] = [l*mid*r]
else:
# there was nothing left on the right
nc[i:i + take] = [l*mid]
limit -= ndo
ncdid += ndo
hit = True
if not hit:
# do the subs on this failing factor
failed.append(i)
i += 1
else:
if not ncdid:
return rv
# although we didn't fail, certain nc terms may have
# failed so we rebuild them after attempting a partial
# subs on them
failed.extend(range(i, len(nc)))
for i in failed:
nc[i] = rejoin(*nc[i]).subs(old, new)
# rebuild the expression
if cdid is None:
do = ncdid
elif ncdid is None:
do = cdid
else:
do = min(ncdid, cdid)
margs = []
for b in c:
if b in old_c:
# calculate the new exponent
e = c[b] - old_c[b]*do
margs.append(rejoin(b, e))
else:
margs.append(rejoin(b.subs(old, new), c[b]))
if cdid and not ncdid:
# in case we are replacing commutative with non-commutative,
# we want the new term to come at the front just like the
# rest of this routine
margs = [Pow(new, cdid)] + margs
return co_residual*self2.func(*margs)*self2.func(*nc)
def _eval_nseries(self, x, n, logx, cdir=0):
from .function import PoleError
from sympy.functions.elementary.integers import ceiling
from sympy.series.order import Order
def coeff_exp(term, x):
lt = term.as_coeff_exponent(x)
if lt[0].has(x):
try:
lt = term.leadterm(x)
except ValueError:
return term, S.Zero
return lt
ords = []
try:
for t in self.args:
coeff, exp = t.leadterm(x)
if not coeff.has(x):
ords.append((t, exp))
else:
raise ValueError
n0 = sum(t[1] for t in ords if t[1].is_number)
facs = []
for t, m in ords:
n1 = ceiling(n - n0 + (m if m.is_number else 0))
s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
ns = s.getn()
if ns is not None:
if ns < n1: # less than expected
n -= n1 - ns # reduce n
facs.append(s)
except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError):
n0 = sympify(sum(t[1] for t in ords if t[1].is_number))
if n0.is_nonnegative:
n0 = S.Zero
facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args]
from sympy.simplify.powsimp import powsimp
res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
if res.has(Order):
res += Order(x**n, x)
return res
res = S.Zero
ords2 = [Add.make_args(factor) for factor in facs]
for fac in product(*ords2):
ords3 = [coeff_exp(term, x) for term in fac]
coeffs, powers = zip(*ords3)
power = sum(powers)
if (power - n).is_negative:
res += Mul(*coeffs)*(x**power)
def max_degree(e, x):
if e is x:
return S.One
if e.is_Atom:
return S.Zero
if e.is_Add:
return max(max_degree(a, x) for a in e.args)
if e.is_Mul:
return Add(*[max_degree(a, x) for a in e.args])
if e.is_Pow:
return max_degree(e.base, x)*e.exp
return S.Zero
if self.is_polynomial(x):
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polytools import degree
try:
if max_degree(self, x) >= n or degree(self, x) != degree(res, x):
res += Order(x**n, x)
except PolynomialError:
pass
else:
return res
if res != self:
if (self - res).subs(x, 0) == S.Zero and n > 0:
lt = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
if lt == S.Zero:
return res
res += Order(x**n, x)
return res
def _eval_as_leading_term(self, x, logx=None, cdir=0):
return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args[::-1]])
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args[::-1]])
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
(6, -sqrt(2)*(1 - sqrt(2)))
See docstring of Expr.as_content_primitive for more examples.
"""
coef = S.One
args = []
for a in self.args:
c, p = a.as_content_primitive(radical=radical, clear=clear)
coef *= c
if p is not S.One:
args.append(p)
# don't use self._from_args here to reconstruct args
# since there may be identical args now that should be combined
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
return coef, self.func(*args)
def as_ordered_factors(self, order=None):
"""Transform an expression into an ordered list of factors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x, y
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
[2, x, y, sin(x), cos(x)]
"""
cpart, ncpart = self.args_cnc()
cpart.sort(key=lambda expr: expr.sort_key(order=order))
return cpart + ncpart
@property
def _sorted_args(self):
return tuple(self.as_ordered_factors())
mul = AssocOpDispatcher('mul')
def prod(a, start=1):
"""Return product of elements of a. Start with int 1 so if only
ints are included then an int result is returned.
Examples
========
>>> from sympy import prod, S
>>> prod(range(3))
0
>>> type(_) is int
True
>>> prod([S(2), 3])
6
>>> _.is_Integer
True
You can start the product at something other than 1:
>>> prod([1, 2], 3)
6
"""
return reduce(operator.mul, a, start)
def _keep_coeff(coeff, factors, clear=True, sign=False):
"""Return ``coeff*factors`` unevaluated if necessary.
If ``clear`` is False, do not keep the coefficient as a factor
if it can be distributed on a single factor such that one or
more terms will still have integer coefficients.
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
Examples
========
>>> from sympy.core.mul import _keep_coeff
>>> from sympy.abc import x, y
>>> from sympy import S
>>> _keep_coeff(S.Half, x + 2)
(x + 2)/2
>>> _keep_coeff(S.Half, x + 2, clear=False)
x/2 + 1
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
y*(x + 2)/2
>>> _keep_coeff(S(-1), x + y)
-x - y
>>> _keep_coeff(S(-1), x + y, sign=True)
-(x + y)
"""
if not coeff.is_Number:
if factors.is_Number:
factors, coeff = coeff, factors
else:
return coeff*factors
if factors is S.One:
return coeff
if coeff is S.One:
return factors
elif coeff is S.NegativeOne and not sign:
return -factors
elif factors.is_Add:
if not clear and coeff.is_Rational and coeff.q != 1:
args = [i.as_coeff_Mul() for i in factors.args]
args = [(_keep_coeff(c, coeff), m) for c, m in args]
if any(c.is_Integer for c, _ in args):
return Add._from_args([Mul._from_args(
i[1:] if i[0] == 1 else i) for i in args])
return Mul(coeff, factors, evaluate=False)
elif factors.is_Mul:
margs = list(factors.args)
if margs[0].is_Number:
margs[0] *= coeff
if margs[0] == 1:
margs.pop(0)
else:
margs.insert(0, coeff)
return Mul._from_args(margs)
else:
m = coeff*factors
if m.is_Number and not factors.is_Number:
m = Mul._from_args((coeff, factors))
return m
def expand_2arg(e):
def do(e):
if e.is_Mul:
c, r = e.as_coeff_Mul()
if c.is_Number and r.is_Add:
return _unevaluated_Add(*[c*ri for ri in r.args])
return e
return bottom_up(e, do)
from .numbers import Rational
from .power import Pow
from .add import Add, _unevaluated_Add
|
9cdf8829c8b85695c910db9eef5aa6361ba9af86a1e88837562a5e83e91cfef9 | """Functions for generating interesting polynomials, e.g. for benchmarking. """
from sympy.core import Add, Mul, Symbol, sympify, Dummy, symbols
from sympy.core.containers import Tuple
from sympy.core.singleton import S
from sympy.ntheory import nextprime
from sympy.polys.densearith import (
dmp_add_term, dmp_neg, dmp_mul, dmp_sqr
)
from sympy.polys.densebasic import (
dmp_zero, dmp_one, dmp_ground,
dup_from_raw_dict, dmp_raise, dup_random
)
from sympy.polys.domains import ZZ
from sympy.polys.factortools import dup_zz_cyclotomic_poly
from sympy.polys.polyclasses import DMP
from sympy.polys.polytools import Poly, PurePoly
from sympy.polys.polyutils import _analyze_gens
from sympy.utilities import subsets, public, filldedent
@public
def swinnerton_dyer_poly(n, x=None, polys=False):
"""Generates n-th Swinnerton-Dyer polynomial in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n <= 0:
raise ValueError(
"Cannot generate Swinnerton-Dyer polynomial of order %s" % n)
if x is not None:
sympify(x)
else:
x = Dummy('x')
if n > 3:
from sympy.functions.elementary.miscellaneous import sqrt
from .numberfields import minimal_polynomial
p = 2
a = [sqrt(2)]
for i in range(2, n + 1):
p = nextprime(p)
a.append(sqrt(p))
return minimal_polynomial(Add(*a), x, polys=polys)
if n == 1:
ex = x**2 - 2
elif n == 2:
ex = x**4 - 10*x**2 + 1
elif n == 3:
ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
return PurePoly(ex, x) if polys else ex
@public
def cyclotomic_poly(n, x=None, polys=False):
"""Generates cyclotomic polynomial of order `n` in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n <= 0:
raise ValueError(
"Cannot generate cyclotomic polynomial of order %s" % n)
poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
@public
def symmetric_poly(n, *gens, polys=False):
"""
Generates symmetric polynomial of order `n`.
Parameters
==========
polys: bool, optional (default: False)
Returns a Poly object when ``polys=True``, otherwise
(default) returns an expression.
"""
gens = _analyze_gens(gens)
if n < 0 or n > len(gens) or not gens:
raise ValueError("Cannot generate symmetric polynomial of order %s for %s" % (n, gens))
elif not n:
poly = S.One
else:
poly = Add(*[Mul(*s) for s in subsets(gens, int(n))])
return Poly(poly, *gens) if polys else poly
@public
def random_poly(x, n, inf, sup, domain=ZZ, polys=False):
"""Generates a polynomial of degree ``n`` with coefficients in
``[inf, sup]``.
Parameters
----------
x
`x` is the independent term of polynomial
n : int
`n` decides the order of polynomial
inf
Lower limit of range in which coefficients lie
sup
Upper limit of range in which coefficients lie
domain : optional
Decides what ring the coefficients are supposed
to belong. Default is set to Integers.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain)
return poly if polys else poly.as_expr()
@public
def interpolating_poly(n, x, X='x', Y='y'):
"""Construct Lagrange interpolating polynomial for ``n``
data points. If a sequence of values are given for ``X`` and ``Y``
then the first ``n`` values will be used.
"""
ok = getattr(x, 'free_symbols', None)
if isinstance(X, str):
X = symbols("%s:%s" % (X, n))
elif ok and ok & Tuple(*X).free_symbols:
ok = False
if isinstance(Y, str):
Y = symbols("%s:%s" % (Y, n))
elif ok and ok & Tuple(*Y).free_symbols:
ok = False
if not ok:
raise ValueError(filldedent('''
Expecting symbol for x that does not appear in X or Y.
Use `interpolate(list(zip(X, Y)), x)` instead.'''))
coeffs = []
numert = Mul(*[x - X[i] for i in range(n)])
for i in range(n):
numer = numert/(x - X[i])
denom = Mul(*[(X[i] - X[j]) for j in range(n) if i != j])
coeffs.append(numer/denom)
return Add(*[coeff*y for coeff, y in zip(coeffs, Y)])
def fateman_poly_F_1(n):
"""Fateman's GCD benchmark: trivial GCD """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0, y_1 = Y[0], Y[1]
u = y_0 + Add(*[y for y in Y[1:]])
v = y_0**2 + Add(*[y**2 for y in Y[1:]])
F = ((u + 1)*(u + 2)).as_poly(*Y)
G = ((v + 1)*(-3*y_1*y_0**2 + y_1**2 - 1)).as_poly(*Y)
H = Poly(1, *Y)
return F, G, H
def dmp_fateman_poly_F_1(n, K):
"""Fateman's GCD benchmark: trivial GCD """
u = [K(1), K(0)]
for i in range(n):
u = [dmp_one(i, K), u]
v = [K(1), K(0), K(0)]
for i in range(0, n):
v = [dmp_one(i, K), dmp_zero(i), v]
m = n - 1
U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
Y = dmp_raise(f, m, 1, K)
F = dmp_mul(U, V, n, K)
G = dmp_mul(W, Y, n, K)
H = dmp_one(n, K)
return F, G, H
def fateman_poly_F_2(n):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0 = Y[0]
u = Add(*[y for y in Y[1:]])
H = Poly((y_0 + u + 1)**2, *Y)
F = Poly((y_0 - u - 2)**2, *Y)
G = Poly((y_0 + u + 2)**2, *Y)
return H*F, H*G, H
def dmp_fateman_poly_F_2(n, K):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
u = [K(1), K(0)]
for i in range(n - 1):
u = [dmp_one(i, K), u]
m = n - 1
v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K)
f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
g = dmp_sqr([dmp_one(m, K), v], n, K)
v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K)
h = dmp_sqr([dmp_one(m, K), v], n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def fateman_poly_F_3(n):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0 = Y[0]
u = Add(*[y**(n + 1) for y in Y[1:]])
H = Poly((y_0**(n + 1) + u + 1)**2, *Y)
F = Poly((y_0**(n + 1) - u - 2)**2, *Y)
G = Poly((y_0**(n + 1) + u + 2)**2, *Y)
return H*F, H*G, H
def dmp_fateman_poly_F_3(n, K):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
u = dup_from_raw_dict({n + 1: K.one}, K)
for i in range(0, n - 1):
u = dmp_add_term([u], dmp_one(i, K), n + 1, i + 1, K)
v = dmp_add_term(u, dmp_ground(K(2), n - 2), 0, n, K)
f = dmp_sqr(
dmp_add_term([dmp_neg(v, n - 1, K)], dmp_one(n - 1, K), n + 1, n, K), n, K)
g = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
v = dmp_add_term(u, dmp_one(n - 2, K), 0, n - 1, K)
h = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
# A few useful polynomials from Wang's paper ('78).
from sympy.polys.rings import ring
def _f_0():
R, x, y, z = ring("x,y,z", ZZ)
return x**2*y*z**2 + 2*x**2*y*z + 3*x**2*y + 2*x**2 + 3*x + 4*y**2*z**2 + 5*y**2*z + 6*y**2 + y*z**2 + 2*y*z + y + 1
def _f_1():
R, x, y, z = ring("x,y,z", ZZ)
return x**3*y*z + x**2*y**2*z**2 + x**2*y**2 + 20*x**2*y*z + 30*x**2*y + x**2*z**2 + 10*x**2*z + x*y**3*z + 30*x*y**2*z + 20*x*y**2 + x*y*z**3 + 10*x*y*z**2 + x*y*z + 610*x*y + 20*x*z**2 + 230*x*z + 300*x + y**2*z**2 + 10*y**2*z + 30*y*z**2 + 320*y*z + 200*y + 600*z + 6000
def _f_2():
R, x, y, z = ring("x,y,z", ZZ)
return x**5*y**3 + x**5*y**2*z + x**5*y*z**2 + x**5*z**3 + x**3*y**2 + x**3*y*z + 90*x**3*y + 90*x**3*z + x**2*y**2*z - 11*x**2*y**2 + x**2*z**3 - 11*x**2*z**2 + y*z - 11*y + 90*z - 990
def _f_3():
R, x, y, z = ring("x,y,z", ZZ)
return x**5*y**2 + x**4*z**4 + x**4 + x**3*y**3*z + x**3*z + x**2*y**4 + x**2*y**3*z**3 + x**2*y*z**5 + x**2*y*z + x*y**2*z**4 + x*y**2 + x*y*z**7 + x*y*z**3 + x*y*z**2 + y**2*z + y*z**4
def _f_4():
R, x, y, z = ring("x,y,z", ZZ)
return -x**9*y**8*z - x**8*y**5*z**3 - x**7*y**12*z**2 - 5*x**7*y**8 - x**6*y**9*z**4 + x**6*y**7*z**3 + 3*x**6*y**7*z - 5*x**6*y**5*z**2 - x**6*y**4*z**3 + x**5*y**4*z**5 + 3*x**5*y**4*z**3 - x**5*y*z**5 + x**4*y**11*z**4 + 3*x**4*y**11*z**2 - x**4*y**8*z**4 + 5*x**4*y**7*z**2 + 15*x**4*y**7 - 5*x**4*y**4*z**2 + x**3*y**8*z**6 + 3*x**3*y**8*z**4 - x**3*y**5*z**6 + 5*x**3*y**4*z**4 + 15*x**3*y**4*z**2 + x**3*y**3*z**5 + 3*x**3*y**3*z**3 - 5*x**3*y*z**4 + x**2*z**7 + 3*x**2*z**5 + x*y**7*z**6 + 3*x*y**7*z**4 + 5*x*y**3*z**4 + 15*x*y**3*z**2 + y**4*z**8 + 3*y**4*z**6 + 5*z**6 + 15*z**4
def _f_5():
R, x, y, z = ring("x,y,z", ZZ)
return -x**3 - 3*x**2*y + 3*x**2*z - 3*x*y**2 + 6*x*y*z - 3*x*z**2 - y**3 + 3*y**2*z - 3*y*z**2 + z**3
def _f_6():
R, x, y, z, t = ring("x,y,z,t", ZZ)
return 2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 - 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t - 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 + y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 - 2*z*t**3
def _w_1():
R, x, y, z = ring("x,y,z", ZZ)
return 4*x**6*y**4*z**2 + 4*x**6*y**3*z**3 - 4*x**6*y**2*z**4 - 4*x**6*y*z**5 + x**5*y**4*z**3 + 12*x**5*y**3*z - x**5*y**2*z**5 + 12*x**5*y**2*z**2 - 12*x**5*y*z**3 - 12*x**5*z**4 + 8*x**4*y**4 + 6*x**4*y**3*z**2 + 8*x**4*y**3*z - 4*x**4*y**2*z**4 + 4*x**4*y**2*z**3 - 8*x**4*y**2*z**2 - 4*x**4*y*z**5 - 2*x**4*y*z**4 - 8*x**4*y*z**3 + 2*x**3*y**4*z + x**3*y**3*z**3 - x**3*y**2*z**5 - 2*x**3*y**2*z**3 + 9*x**3*y**2*z - 12*x**3*y*z**3 + 12*x**3*y*z**2 - 12*x**3*z**4 + 3*x**3*z**3 + 6*x**2*y**3 - 6*x**2*y**2*z**2 + 8*x**2*y**2*z - 2*x**2*y*z**4 - 8*x**2*y*z**3 + 2*x**2*y*z**2 + 2*x*y**3*z - 2*x*y**2*z**3 - 3*x*y*z + 3*x*z**3 - 2*y**2 + 2*y*z**2
def _w_2():
R, x, y = ring("x,y", ZZ)
return 24*x**8*y**3 + 48*x**8*y**2 + 24*x**7*y**5 - 72*x**7*y**2 + 25*x**6*y**4 + 2*x**6*y**3 + 4*x**6*y + 8*x**6 + x**5*y**6 + x**5*y**3 - 12*x**5 + x**4*y**5 - x**4*y**4 - 2*x**4*y**3 + 292*x**4*y**2 - x**3*y**6 + 3*x**3*y**3 - x**2*y**5 + 12*x**2*y**3 + 48*x**2 - 12*y**3
def f_polys():
return _f_0(), _f_1(), _f_2(), _f_3(), _f_4(), _f_5(), _f_6()
def w_polys():
return _w_1(), _w_2()
|
3ec9f7f4089160fc23a9277e1a4ae6d7042ed56d9a5a55274b52ae93058dfb84 | """Line-like geometrical entities.
Contains
========
LinearEntity
Line
Ray
Segment
LinearEntity2D
Line2D
Ray2D
Segment2D
LinearEntity3D
Line3D
Ray3D
Segment3D
"""
from sympy.core.containers import Tuple
from sympy.core.evalf import N
from sympy.core.expr import Expr
from sympy.core.numbers import Rational, oo, Float
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2)
from .entity import GeometryEntity, GeometrySet
from .exceptions import GeometryError
from .point import Point, Point3D
from .util import find, intersection
from sympy.logic.boolalg import And
from sympy.matrices import Matrix
from sympy.sets.sets import Intersection
from sympy.simplify.simplify import simplify
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.misc import Undecidable, filldedent
import random
class LinearEntity(GeometrySet):
"""A base class for all linear entities (Line, Ray and Segment)
in n-dimensional Euclidean space.
Attributes
==========
ambient_dimension
direction
length
p1
p2
points
Notes
=====
This is an abstract class and is not meant to be instantiated.
See Also
========
sympy.geometry.entity.GeometryEntity
"""
def __new__(cls, p1, p2=None, **kwargs):
p1, p2 = Point._normalize_dimension(p1, p2)
if p1 == p2:
# sometimes we return a single point if we are not given two unique
# points. This is done in the specific subclass
raise ValueError(
"%s.__new__ requires two unique Points." % cls.__name__)
if len(p1) != len(p2):
raise ValueError(
"%s.__new__ requires two Points of equal dimension." % cls.__name__)
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
def __contains__(self, other):
"""Return a definitive answer or else raise an error if it cannot
be determined that other is on the boundaries of self."""
result = self.contains(other)
if result is not None:
return result
else:
raise Undecidable(
"Cannot decide whether '%s' contains '%s'" % (self, other))
def _span_test(self, other):
"""Test whether the point `other` lies in the positive span of `self`.
A point x is 'in front' of a point y if x.dot(y) >= 0. Return
-1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
and 1 if `other` is in front of `self.p1`."""
if self.p1 == other:
return 0
rel_pos = other - self.p1
d = self.direction
if d.dot(rel_pos) > 0:
return 1
return -1
@property
def ambient_dimension(self):
"""A property method that returns the dimension of LinearEntity
object.
Parameters
==========
p1 : LinearEntity
Returns
=======
dimension : integer
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
2
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
3
"""
return len(self.p1)
def angle_between(l1, l2):
"""Return the non-reflex angle formed by rays emanating from
the origin with directions the same as the direction vectors
of the linear entities.
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
angle : angle in radians
Notes
=====
From the dot product of vectors v1 and v2 it is known that:
``dot(v1, v2) = |v1|*|v2|*cos(A)``
where A is the angle formed between the two vectors. We can
get the directional vectors of the two lines and readily
find the angle between the two using the above formula.
See Also
========
is_perpendicular, Ray2D.closing_angle
Examples
========
>>> from sympy import Line
>>> e = Line((0, 0), (1, 0))
>>> ne = Line((0, 0), (1, 1))
>>> sw = Line((1, 1), (0, 0))
>>> ne.angle_between(e)
pi/4
>>> sw.angle_between(e)
3*pi/4
To obtain the non-obtuse angle at the intersection of lines, use
the ``smallest_angle_between`` method:
>>> sw.smallest_angle_between(e)
pi/4
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
>>> l1.angle_between(l2)
acos(-sqrt(2)/3)
>>> l1.smallest_angle_between(l2)
acos(sqrt(2)/3)
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
v1, v2 = l1.direction, l2.direction
return acos(v1.dot(v2)/(abs(v1)*abs(v2)))
def smallest_angle_between(l1, l2):
"""Return the smallest angle formed at the intersection of the
lines containing the linear entities.
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
angle : angle in radians
See Also
========
angle_between, is_perpendicular, Ray2D.closing_angle
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.smallest_angle_between(l2)
pi/4
See Also
========
angle_between, Ray2D.closing_angle
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
v1, v2 = l1.direction, l2.direction
return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the Line.
Parameters
==========
parameter : str, optional
The name of the parameter which will be used for the parametric
point. The default value is 't'. When this parameter is 0, the
first point used to define the line will be returned, and when
it is 1 the second point will be returned.
Returns
=======
point : Point
Raises
======
ValueError
When ``parameter`` already appears in the Line's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.arbitrary_point()
Point2D(4*t + 1, 3*t)
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
>>> l1 = Line3D(p1, p2)
>>> l1.arbitrary_point()
Point3D(4*t + 1, 3*t, t)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError(filldedent('''
Symbol %s already appears in object
and cannot be used as a parameter.
''' % t.name))
# multiply on the right so the variable gets
# combined with the coordinates of the point
return self.p1 + (self.p2 - self.p1)*t
@staticmethod
def are_concurrent(*lines):
"""Is a sequence of linear entities concurrent?
Two or more linear entities are concurrent if they all
intersect at a single point.
Parameters
==========
lines : a sequence of linear entities.
Returns
=======
True : if the set of linear entities intersect in one point
False : otherwise.
See Also
========
sympy.geometry.util.intersection
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> p3, p4 = Point(-2, -2), Point(0, 2)
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
>>> Line.are_concurrent(l1, l2, l3)
True
>>> l4 = Line(p2, p3)
>>> Line.are_concurrent(l2, l3, l4)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
>>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
>>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
>>> Line3D.are_concurrent(l1, l2, l3)
True
>>> l4 = Line3D(p2, p3)
>>> Line3D.are_concurrent(l2, l3, l4)
False
"""
common_points = Intersection(*lines)
if common_points.is_FiniteSet and len(common_points) == 1:
return True
return False
def contains(self, other):
"""Subclasses should implement this method and should return
True if other is on the boundaries of self;
False if not on the boundaries of self;
None if a determination cannot be made."""
raise NotImplementedError()
@property
def direction(self):
"""The direction vector of the LinearEntity.
Returns
=======
p : a Point; the ray from the origin to this point is the
direction of `self`
Examples
========
>>> from sympy import Line
>>> a, b = (1, 1), (1, 3)
>>> Line(a, b).direction
Point2D(0, 2)
>>> Line(b, a).direction
Point2D(0, -2)
This can be reported so the distance from the origin is 1:
>>> Line(b, a).direction.unit
Point2D(0, -1)
See Also
========
sympy.geometry.point.Point.unit
"""
return self.p2 - self.p1
def intersection(self, other):
"""The intersection with another geometrical entity.
Parameters
==========
o : Point or LinearEntity
Returns
=======
intersection : list of geometrical entities
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
>>> l1 = Line(p1, p2)
>>> l1.intersection(p3)
[Point2D(7, 7)]
>>> p4, p5 = Point(5, 0), Point(0, 3)
>>> l2 = Line(p4, p5)
>>> l1.intersection(l2)
[Point2D(15/8, 15/8)]
>>> p6, p7 = Point(0, 5), Point(2, 6)
>>> s1 = Segment(p6, p7)
>>> l1.intersection(s1)
[]
>>> from sympy import Point3D, Line3D, Segment3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
>>> l1 = Line3D(p1, p2)
>>> l1.intersection(p3)
[Point3D(7, 7, 7)]
>>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
>>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
>>> l1.intersection(l2)
[Point3D(1, 1, -3)]
>>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
>>> s1 = Segment3D(p6, p7)
>>> l1.intersection(s1)
[]
"""
def intersect_parallel_rays(ray1, ray2):
if ray1.direction.dot(ray2.direction) > 0:
# rays point in the same direction
# so return the one that is "in front"
return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
else:
# rays point in opposite directions
st = ray1._span_test(ray2.p1)
if st < 0:
return []
elif st == 0:
return [ray2.p1]
return [Segment(ray1.p1, ray2.p1)]
def intersect_parallel_ray_and_segment(ray, seg):
st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
if st1 < 0 and st2 < 0:
return []
elif st1 >= 0 and st2 >= 0:
return [seg]
elif st1 >= 0: # st2 < 0:
return [Segment(ray.p1, seg.p1)]
else: # st1 < 0 and st2 >= 0:
return [Segment(ray.p1, seg.p2)]
def intersect_parallel_segments(seg1, seg2):
if seg1.contains(seg2):
return [seg2]
if seg2.contains(seg1):
return [seg1]
# direct the segments so they're oriented the same way
if seg1.direction.dot(seg2.direction) < 0:
seg2 = Segment(seg2.p2, seg2.p1)
# order the segments so seg1 is "behind" seg2
if seg1._span_test(seg2.p1) < 0:
seg1, seg2 = seg2, seg1
if seg2._span_test(seg1.p2) < 0:
return []
return [Segment(seg2.p1, seg1.p2)]
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if other.is_Point:
if self.contains(other):
return [other]
else:
return []
elif isinstance(other, LinearEntity):
# break into cases based on whether
# the lines are parallel, non-parallel intersecting, or skew
pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
rank = Point.affine_rank(*pts)
if rank == 1:
# we're collinear
if isinstance(self, Line):
return [other]
if isinstance(other, Line):
return [self]
if isinstance(self, Ray) and isinstance(other, Ray):
return intersect_parallel_rays(self, other)
if isinstance(self, Ray) and isinstance(other, Segment):
return intersect_parallel_ray_and_segment(self, other)
if isinstance(self, Segment) and isinstance(other, Ray):
return intersect_parallel_ray_and_segment(other, self)
if isinstance(self, Segment) and isinstance(other, Segment):
return intersect_parallel_segments(self, other)
elif rank == 2:
# we're in the same plane
l1 = Line(*pts[:2])
l2 = Line(*pts[2:])
# check to see if we're parallel. If we are, we can't
# be intersecting, since the collinear case was already
# handled
if l1.direction.is_scalar_multiple(l2.direction):
return []
# find the intersection as if everything were lines
# by solving the equation t*d + p1 == s*d' + p1'
m = Matrix([l1.direction, -l2.direction]).transpose()
v = Matrix([l2.p1 - l1.p1]).transpose()
# we cannot use m.solve(v) because that only works for square matrices
m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
# rank == 2 ensures we have 2 pivots, but let's check anyway
if len(pivots) != 2:
raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
coeff = m_rref[0, 2]
line_intersection = l1.direction*coeff + self.p1
# if both are lines, skip a containment check
if isinstance(self, Line) and isinstance(other, Line):
return [line_intersection]
if ((isinstance(self, Line) or
self.contains(line_intersection)) and
other.contains(line_intersection)):
return [line_intersection]
if not self.atoms(Float) and not other.atoms(Float):
# if it can fail when there are no Floats then
# maybe the following parametric check should be
# done
return []
# floats may fail exact containment so check that the
# arbitrary points, when equal, both give a
# non-negative parameter when the arbitrary point
# coordinates are equated
t, u = [Dummy(i) for i in 'tu']
tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u),
t, u, dict=True)[0]
def ok(p, l):
if isinstance(l, Line):
# p > -oo
return True
if isinstance(l, Ray):
# p >= 0
return p.is_nonnegative
if isinstance(l, Segment):
# 0 <= p <= 1
return p.is_nonnegative and (1 - p).is_nonnegative
raise ValueError("unexpected line type")
if ok(tu[t], self) and ok(tu[u], other):
return [line_intersection]
return []
else:
# we're skew
return []
return other.intersection(self)
def is_parallel(l1, l2):
"""Are two linear entities parallel?
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
True : if l1 and l2 are parallel,
False : otherwise.
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4 = Point(3, 4), Point(6, 7)
>>> l1, l2 = Line(p1, p2), Line(p3, p4)
>>> Line.is_parallel(l1, l2)
True
>>> p5 = Point(6, 6)
>>> l3 = Line(p3, p5)
>>> Line.is_parallel(l1, l3)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
>>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
>>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
>>> Line3D.is_parallel(l1, l2)
True
>>> p5 = Point3D(6, 6, 6)
>>> l3 = Line3D(p3, p5)
>>> Line3D.is_parallel(l1, l3)
False
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
return l1.direction.is_scalar_multiple(l2.direction)
def is_perpendicular(l1, l2):
"""Are two linear entities perpendicular?
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
True : if l1 and l2 are perpendicular,
False : otherwise.
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.is_perpendicular(l2)
True
>>> p4 = Point(5, 3)
>>> l3 = Line(p1, p4)
>>> l1.is_perpendicular(l3)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
>>> l1.is_perpendicular(l2)
False
>>> p4 = Point3D(5, 3, 7)
>>> l3 = Line3D(p1, p4)
>>> l1.is_perpendicular(l3)
False
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
return S.Zero.equals(l1.direction.dot(l2.direction))
def is_similar(self, other):
"""
Return True if self and other are contained in the same line.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
>>> l1 = Line(p1, p2)
>>> l2 = Line(p1, p3)
>>> l1.is_similar(l2)
True
"""
l = Line(self.p1, self.p2)
return l.contains(other)
@property
def length(self):
"""
The length of the line.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.length
oo
"""
return S.Infinity
@property
def p1(self):
"""The first defining point of a linear entity.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p1
Point2D(0, 0)
"""
return self.args[0]
@property
def p2(self):
"""The second defining point of a linear entity.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p2
Point2D(5, 3)
"""
return self.args[1]
def parallel_line(self, p):
"""Create a new Line parallel to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
is_parallel
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
"""
p = Point(p, dim=self.ambient_dimension)
return Line(p, p + self.direction)
def perpendicular_line(self, p):
"""Create a new Line perpendicular to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> L = Line3D(p1, p2)
>>> P = L.perpendicular_line(p3); P
Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
>>> L.is_perpendicular(P)
True
In 3D the, the first point used to define the line is the point
through which the perpendicular was required to pass; the
second point is (arbitrarily) contained in the given line:
>>> P.p2 in L
True
"""
p = Point(p, dim=self.ambient_dimension)
if p in self:
p = p + self.direction.orthogonal_direction
return Line(p, self.projection(p))
def perpendicular_segment(self, p):
"""Create a perpendicular line segment from `p` to this line.
The endpoints of the segment are ``p`` and the closest point in
the line containing self. (If self is not a line, the point might
not be in self.)
Parameters
==========
p : Point
Returns
=======
segment : Segment
Notes
=====
Returns `p` itself if `p` is on this linear entity.
See Also
========
perpendicular_line
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
>>> l1 = Line(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point(4, 0))
Segment2D(Point2D(4, 0), Point2D(2, 2))
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point3D(4, 0, 0))
Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))
"""
p = Point(p, dim=self.ambient_dimension)
if p in self:
return p
l = self.perpendicular_line(p)
# The intersection should be unique, so unpack the singleton
p2, = Intersection(Line(self.p1, self.p2), l)
return Segment(p, p2)
@property
def points(self):
"""The two points used to define this linear entity.
Returns
=======
points : tuple of Points
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 11)
>>> l1 = Line(p1, p2)
>>> l1.points
(Point2D(0, 0), Point2D(5, 11))
"""
return (self.p1, self.p2)
def projection(self, other):
"""Project a point, line, ray, or segment onto this linear entity.
Parameters
==========
other : Point or LinearEntity (Line, Ray, Segment)
Returns
=======
projection : Point or LinearEntity (Line, Ray, Segment)
The return type matches the type of the parameter ``other``.
Raises
======
GeometryError
When method is unable to perform projection.
Notes
=====
A projection involves taking the two points that define
the linear entity and projecting those points onto a
Line and then reforming the linear entity using these
projections.
A point P is projected onto a line L by finding the point
on L that is closest to P. This point is the intersection
of L and the line perpendicular to L that passes through P.
See Also
========
sympy.geometry.point.Point, perpendicular_line
Examples
========
>>> from sympy import Point, Line, Segment, Rational
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point2D(1/4, 1/4)
>>> p4, p5 = Point(10, 0), Point(12, 1)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
>>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point3D(2/3, 2/3, 5/3)
>>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
def proj_point(p):
return Point.project(p - self.p1, self.direction) + self.p1
if isinstance(other, Point):
return proj_point(other)
elif isinstance(other, LinearEntity):
p1, p2 = proj_point(other.p1), proj_point(other.p2)
# test to see if we're degenerate
if p1 == p2:
return p1
projected = other.__class__(p1, p2)
projected = Intersection(self, projected)
if projected.is_empty:
return projected
# if we happen to have intersected in only a point, return that
if projected.is_FiniteSet and len(projected) == 1:
# projected is a set of size 1, so unpack it in `a`
a, = projected
return a
# order args so projection is in the same direction as self
if self.direction.dot(projected.direction) < 0:
p1, p2 = projected.args
projected = projected.func(p2, p1)
return projected
raise GeometryError(
"Do not know how to project %s onto %s" % (other, self))
def random_point(self, seed=None):
"""A random point on a LinearEntity.
Returns
=======
point : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line, Ray, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> line = Line(p1, p2)
>>> r = line.random_point(seed=42) # seed value is optional
>>> r.n(3)
Point2D(-0.72, -0.432)
>>> r in line
True
>>> Ray(p1, p2).random_point(seed=42).n(3)
Point2D(0.72, 0.432)
>>> Segment(p1, p2).random_point(seed=42).n(3)
Point2D(3.2, 1.92)
"""
if seed is not None:
rng = random.Random(seed)
else:
rng = random
t = Dummy()
pt = self.arbitrary_point(t)
if isinstance(self, Ray):
v = abs(rng.gauss(0, 1))
elif isinstance(self, Segment):
v = rng.random()
elif isinstance(self, Line):
v = rng.gauss(0, 1)
else:
raise NotImplementedError('unhandled line type')
return pt.subs(t, Rational(v))
def bisectors(self, other):
"""Returns the perpendicular lines which pass through the intersections
of self and other that are in the same plane.
Parameters
==========
line : Line3D
Returns
=======
list: two Line instances
Examples
========
>>> from sympy import Point3D, Line3D
>>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
>>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
>>> r1.bisectors(r2)
[Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
"""
if not isinstance(other, LinearEntity):
raise GeometryError("Expecting LinearEntity, not %s" % other)
l1, l2 = self, other
# make sure dimensions match or else a warning will rise from
# intersection calculation
if l1.p1.ambient_dimension != l2.p1.ambient_dimension:
if isinstance(l1, Line2D):
l1, l2 = l2, l1
_, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore')
_, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore')
l2 = Line(p1, p2)
point = intersection(l1, l2)
# Three cases: Lines may intersect in a point, may be equal or may not intersect.
if not point:
raise GeometryError("The lines do not intersect")
else:
pt = point[0]
if isinstance(pt, Line):
# Intersection is a line because both lines are coincident
return [self]
d1 = l1.direction.unit
d2 = l2.direction.unit
bis1 = Line(pt, pt + d1 + d2)
bis2 = Line(pt, pt + d1 - d2)
return [bis1, bis2]
class Line(LinearEntity):
"""An infinite line in space.
A 2D line is declared with two distinct points, point and slope, or
an equation. A 3D line may be defined with a point and a direction ratio.
Parameters
==========
p1 : Point
p2 : Point
slope : SymPy expression
direction_ratio : list
equation : equation of a line
Notes
=====
`Line` will automatically subclass to `Line2D` or `Line3D` based
on the dimension of `p1`. The `slope` argument is only relevant
for `Line2D` and the `direction_ratio` argument is only relevant
for `Line3D`.
The order of the points will define the direction of the line
which is used when calculating the angle between lines.
See Also
========
sympy.geometry.point.Point
sympy.geometry.line.Line2D
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Line, Segment, Point, Eq
>>> from sympy.abc import x, y, a, b
>>> L = Line(Point(2,3), Point(3,5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
Instantiate with keyword ``slope``:
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
Instantiate with another linear object
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
The line corresponding to an equation in the for `ax + by + c = 0`,
can be entered:
>>> Line(3*x + y + 18)
Line2D(Point2D(0, -18), Point2D(1, -21))
If `x` or `y` has a different name, then they can be specified, too,
as a string (to match the name) or symbol:
>>> Line(Eq(3*a + b, -18), x='a', y=b)
Line2D(Point2D(0, -18), Point2D(1, -21))
"""
def __new__(cls, *args, **kwargs):
if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
missing = uniquely_named_symbol('?', args)
if not kwargs:
x = 'x'
y = 'y'
else:
x = kwargs.pop('x', missing)
y = kwargs.pop('y', missing)
if kwargs:
raise ValueError('expecting only x and y as keywords')
equation = args[0]
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
def find_or_missing(x):
try:
return find(x, equation)
except ValueError:
return missing
x = find_or_missing(x)
y = find_or_missing(y)
a, b, c = linear_coeffs(equation, x, y)
if b:
return Line((0, -c/b), slope=-a/b)
if a:
return Line((-c/a, 0), slope=oo)
raise ValueError('not found in equation: %s' % (set('xy') - {x, y}))
else:
if len(args) > 0:
p1 = args[0]
if len(args) > 1:
p2 = args[1]
else:
p2 = None
if isinstance(p1, LinearEntity):
if p2:
raise ValueError('If p1 is a LinearEntity, p2 must be None.')
dim = len(p1.p1)
else:
p1 = Point(p1)
dim = len(p1)
if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
p2 = Point(p2)
if dim == 2:
return Line2D(p1, p2, **kwargs)
elif dim == 3:
return Line3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def contains(self, other):
"""
Return True if `other` is on this Line, or False otherwise.
Examples
========
>>> from sympy import Line,Point
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> l = Line(p1, p2)
>>> l.contains(p1)
True
>>> l.contains((0, 1))
True
>>> l.contains((0, 0))
False
>>> a = (0, 0, 0)
>>> b = (1, 1, 1)
>>> c = (2, 2, 2)
>>> l1 = Line(a, b)
>>> l2 = Line(b, a)
>>> l1 == l2
False
>>> l1 in l2
True
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
return Point.is_collinear(other, self.p1, self.p2)
if isinstance(other, LinearEntity):
return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
return False
def distance(self, other):
"""
Finds the shortest distance between a line and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1, 1))
2*sqrt(6)/3
>>> s.distance((-1, 1, 1))
2*sqrt(6)/3
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if self.contains(other):
return S.Zero
return self.perpendicular_segment(other).length
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
if not isinstance(other, Line):
return False
return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of line. Gives
values that will produce a line that is +/- 5 units long (where a
unit is the distance between the two points that define the line).
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.plot_interval()
[t, -5, 5]
"""
t = _symbol(parameter, real=True)
return [t, -5, 5]
class Ray(LinearEntity):
"""A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point
The source of the Ray
p2 : Point or radian value
This point determines the direction in which the Ray propagates.
If given as an angle it is interpreted in radians with the positive
direction being ccw.
Attributes
==========
source
See Also
========
sympy.geometry.line.Ray2D
sympy.geometry.line.Ray3D
sympy.geometry.point.Point
sympy.geometry.line.Line
Notes
=====
`Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
dimension of `p1`.
Examples
========
>>> from sympy import Ray, Point, pi
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
"""
def __new__(cls, p1, p2=None, **kwargs):
p1 = Point(p1)
if p2 is not None:
p1, p2 = Point._normalize_dimension(p1, Point(p2))
dim = len(p1)
if dim == 2:
return Ray2D(p1, p2, **kwargs)
elif dim == 3:
return Ray3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = (N(self.p1), N(self.p2))
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" '
'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
).format(2.*scale_factor, path, fill_color)
def contains(self, other):
"""
Is other GeometryEntity contained in this Ray?
Examples
========
>>> from sympy import Ray,Point,Segment
>>> p1, p2 = Point(0, 0), Point(4, 4)
>>> r = Ray(p1, p2)
>>> r.contains(p1)
True
>>> r.contains((1, 1))
True
>>> r.contains((1, 3))
False
>>> s = Segment((1, 1), (2, 2))
>>> r.contains(s)
True
>>> s = Segment((1, 2), (2, 5))
>>> r.contains(s)
False
>>> r1 = Ray((2, 2), (3, 3))
>>> r.contains(r1)
True
>>> r1 = Ray((2, 2), (3, 5))
>>> r.contains(r1)
False
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
if Point.is_collinear(self.p1, self.p2, other):
# if we're in the direction of the ray, our
# direction vector dot the ray's direction vector
# should be non-negative
return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
return False
elif isinstance(other, Ray):
if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
return False
elif isinstance(other, Segment):
return other.p1 in self and other.p2 in self
# No other known entity can be contained in a Ray
return False
def distance(self, other):
"""
Finds the shortest distance between the ray and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Ray(p1, p2)
>>> s.distance(Point(-1, -1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
>>> s = Ray(p1, p2)
>>> s
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
>>> s.distance(Point(-1, -1, 2))
4*sqrt(3)/3
>>> s.distance((-1, -1, 2))
4*sqrt(3)/3
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if self.contains(other):
return S.Zero
proj = Line(self.p1, self.p2).projection(other)
if self.contains(proj):
return abs(other - proj)
else:
return abs(other - self.source)
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
if not isinstance(other, Ray):
return False
return self.source == other.source and other.p2 in self
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Ray. Gives
values that will produce a ray that is 10 units long (where a unit is
the distance between the two points that define the ray).
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Ray, pi
>>> r = Ray((0, 0), angle=pi/4)
>>> r.plot_interval()
[t, 0, 10]
"""
t = _symbol(parameter, real=True)
return [t, 0, 10]
@property
def source(self):
"""The point from which the ray emanates.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(4, 1)
>>> r1 = Ray(p1, p2)
>>> r1.source
Point2D(0, 0)
>>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
>>> r1 = Ray(p2, p1)
>>> r1.source
Point3D(4, 1, 5)
"""
return self.p1
class Segment(LinearEntity):
"""A line segment in space.
Parameters
==========
p1 : Point
p2 : Point
Attributes
==========
length : number or SymPy expression
midpoint : Point
See Also
========
sympy.geometry.line.Segment2D
sympy.geometry.line.Segment3D
sympy.geometry.point.Point
sympy.geometry.line.Line
Notes
=====
If 2D or 3D points are used to define `Segment`, it will
be automatically subclassed to `Segment2D` or `Segment3D`.
Examples
========
>>> from sympy import Point, Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> s.midpoint
Point2D(5/2, 2)
>>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
"""
def __new__(cls, p1, p2, **kwargs):
p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
dim = len(p1)
if dim == 2:
return Segment2D(p1, p2, **kwargs)
elif dim == 3:
return Segment3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def contains(self, other):
"""
Is the other GeometryEntity contained within this Segment?
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s2 = Segment(p2, p1)
>>> s.contains(s2)
True
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
>>> s = Segment3D(p1, p2)
>>> s2 = Segment3D(p2, p1)
>>> s.contains(s2)
True
>>> s.contains((p1 + p2)/2)
True
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
if Point.is_collinear(other, self.p1, self.p2):
if isinstance(self, Segment2D):
# if it is collinear and is in the bounding box of the
# segment then it must be on the segment
vert = (1/self.slope).equals(0)
if vert is False:
isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
if isin in (True, False):
return isin
if vert is True:
isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
if isin in (True, False):
return isin
# use the triangle inequality
d1, d2 = other - self.p1, other - self.p2
d = self.p2 - self.p1
# without the call to simplify, SymPy cannot tell that an expression
# like (a+b)*(a/2+b/2) is always non-negative. If it cannot be
# determined, raise an Undecidable error
try:
# the triangle inequality says that |d1|+|d2| >= |d| and is strict
# only if other lies in the line segment
return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
except TypeError:
raise Undecidable("Cannot determine if {} is in {}".format(other, self))
if isinstance(other, Segment):
return other.p1 in self and other.p2 in self
return False
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
return isinstance(other, self.func) and list(
ordered(self.args)) == list(ordered(other.args))
def distance(self, other):
"""
Finds the shortest distance between a line segment and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s.distance(Point(10, 15))
sqrt(170)
>>> s.distance((0, 12))
sqrt(73)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
>>> s = Segment3D(p1, p2)
>>> s.distance(Point3D(10, 15, 12))
sqrt(341)
>>> s.distance((10, 15, 12))
sqrt(341)
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
vp1 = other - self.p1
vp2 = other - self.p2
dot_prod_sign_1 = self.direction.dot(vp1) >= 0
dot_prod_sign_2 = self.direction.dot(vp2) <= 0
if dot_prod_sign_1 and dot_prod_sign_2:
return Line(self.p1, self.p2).distance(other)
if dot_prod_sign_1 and not dot_prod_sign_2:
return abs(vp2)
if not dot_prod_sign_1 and dot_prod_sign_2:
return abs(vp1)
raise NotImplementedError()
@property
def length(self):
"""The length of the line segment.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.length
5
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.length
sqrt(34)
"""
return Point.distance(self.p1, self.p2)
@property
def midpoint(self):
"""The midpoint of the line segment.
See Also
========
sympy.geometry.point.Point.midpoint
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.midpoint
Point2D(2, 3/2)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.midpoint
Point3D(2, 3/2, 3/2)
"""
return Point.midpoint(self.p1, self.p2)
def perpendicular_bisector(self, p=None):
"""The perpendicular bisector of this segment.
If no point is specified or the point specified is not on the
bisector then the bisector is returned as a Line. Otherwise a
Segment is returned that joins the point specified and the
intersection of the bisector and the segment.
Parameters
==========
p : Point
Returns
=======
bisector : Line or Segment
See Also
========
LinearEntity.perpendicular_segment
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
>>> s1 = Segment(p1, p2)
>>> s1.perpendicular_bisector()
Line2D(Point2D(3, 3), Point2D(-3, 9))
>>> s1.perpendicular_bisector(p3)
Segment2D(Point2D(5, 1), Point2D(3, 3))
"""
l = self.perpendicular_line(self.midpoint)
if p is not None:
p2 = Point(p, dim=self.ambient_dimension)
if p2 in l:
return Segment(p2, self.midpoint)
return l
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Segment gives
values that will produce the full segment in a plot.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> s1 = Segment(p1, p2)
>>> s1.plot_interval()
[t, 0, 1]
"""
t = _symbol(parameter, real=True)
return [t, 0, 1]
class LinearEntity2D(LinearEntity):
"""A base class for all linear entities (line, ray and segment)
in a 2-dimensional Euclidean space.
Attributes
==========
p1
p2
coefficients
slope
points
Notes
=====
This is an abstract class and is not meant to be instantiated.
See Also
========
sympy.geometry.entity.GeometryEntity
"""
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.points
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def perpendicular_line(self, p):
"""Create a new Line perpendicular to this linear entity which passes
through the point `p`.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.perpendicular_line(p3)
>>> p3 in l2
True
>>> l1.is_perpendicular(l2)
True
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> L = Line(p1, p2)
>>> P = L.perpendicular_line(p3); P
Line2D(Point2D(-2, 2), Point2D(-5, 4))
>>> L.is_perpendicular(P)
True
In 2D, the first point of the perpendicular line is the
point through which was required to pass; the second
point is arbitrarily chosen. To get a line that explicitly
uses a point in the line, create a line from the perpendicular
segment from the line to the point:
>>> Line(L.perpendicular_segment(p3))
Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
"""
p = Point(p, dim=self.ambient_dimension)
# any two lines in R^2 intersect, so blindly making
# a line through p in an orthogonal direction will work
# and is faster than finding the projection point as in 3D
return Line(p, p + self.direction.orthogonal_direction)
@property
def slope(self):
"""The slope of this linear entity, or infinity if vertical.
Returns
=======
slope : number or SymPy expression
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.slope
5/3
>>> p3 = Point(0, 4)
>>> l2 = Line(p1, p3)
>>> l2.slope
oo
"""
d1, d2 = (self.p1 - self.p2).args
if d1 == 0:
return S.Infinity
return simplify(d2/d1)
class Line2D(LinearEntity2D, Line):
"""An infinite line in space 2D.
A line is declared with two distinct points or a point and slope
as defined using keyword `slope`.
Parameters
==========
p1 : Point
pt : Point
slope : SymPy expression
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Line, Segment, Point
>>> L = Line(Point(2,3), Point(3,5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
Instantiate with keyword ``slope``:
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
Instantiate with another linear object
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
"""
def __new__(cls, p1, pt=None, slope=None, **kwargs):
if isinstance(p1, LinearEntity):
if pt is not None:
raise ValueError('When p1 is a LinearEntity, pt should be None')
p1, pt = Point._normalize_dimension(*p1.args, dim=2)
else:
p1 = Point(p1, dim=2)
if pt is not None and slope is None:
try:
p2 = Point(pt, dim=2)
except (NotImplementedError, TypeError, ValueError):
raise ValueError(filldedent('''
The 2nd argument was not a valid Point.
If it was a slope, enter it with keyword "slope".
'''))
elif slope is not None and pt is None:
slope = sympify(slope)
if slope.is_finite is False:
# when infinite slope, don't change x
dx = 0
dy = 1
else:
# go over 1 up slope
dx = 1
dy = slope
# XXX avoiding simplification by adding to coords directly
p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
else:
raise ValueError('A 2nd Point or keyword "slope" must be used.')
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = (N(self.p1), N(self.p2))
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" '
'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
).format(2.*scale_factor, path, fill_color)
@property
def coefficients(self):
"""The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.
See Also
========
sympy.geometry.line.Line2D.equation
Examples
========
>>> from sympy import Point, Line
>>> from sympy.abc import x, y
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.coefficients
(-3, 5, 0)
>>> p3 = Point(x, y)
>>> l2 = Line(p1, p3)
>>> l2.coefficients
(-y, x, 0)
"""
p1, p2 = self.points
if p1.x == p2.x:
return (S.One, S.Zero, -p1.x)
elif p1.y == p2.y:
return (S.Zero, S.One, -p1.y)
return tuple([simplify(i) for i in
(self.p1.y - self.p2.y,
self.p2.x - self.p1.x,
self.p1.x*self.p2.y - self.p1.y*self.p2.x)])
def equation(self, x='x', y='y'):
"""The equation of the line: ax + by + c.
Parameters
==========
x : str, optional
The name to use for the x-axis, default value is 'x'.
y : str, optional
The name to use for the y-axis, default value is 'y'.
Returns
=======
equation : SymPy expression
See Also
========
sympy.geometry.line.Line2D.coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.equation()
-3*x + 4*y + 3
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
p1, p2 = self.points
if p1.x == p2.x:
return x - p1.x
elif p1.y == p2.y:
return y - p1.y
a, b, c = self.coefficients
return a*x + b*y + c
class Ray2D(LinearEntity2D, Ray):
"""
A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point
The source of the Ray
p2 : Point or radian value
This point determines the direction in which the Ray propagates.
If given as an angle it is interpreted in radians with the positive
direction being ccw.
Attributes
==========
source
xdirection
ydirection
See Also
========
sympy.geometry.point.Point, Line
Examples
========
>>> from sympy import Point, pi, Ray
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
"""
def __new__(cls, p1, pt=None, angle=None, **kwargs):
p1 = Point(p1, dim=2)
if pt is not None and angle is None:
try:
p2 = Point(pt, dim=2)
except (NotImplementedError, TypeError, ValueError):
raise ValueError(filldedent('''
The 2nd argument was not a valid Point; if
it was meant to be an angle it should be
given with keyword "angle".'''))
if p1 == p2:
raise ValueError('A Ray requires two distinct points.')
elif angle is not None and pt is None:
# we need to know if the angle is an odd multiple of pi/2
angle = sympify(angle)
c = _pi_coeff(angle)
p2 = None
if c is not None:
if c.is_Rational:
if c.q == 2:
if c.p == 1:
p2 = p1 + Point(0, 1)
elif c.p == 3:
p2 = p1 + Point(0, -1)
elif c.q == 1:
if c.p == 0:
p2 = p1 + Point(1, 0)
elif c.p == 1:
p2 = p1 + Point(-1, 0)
if p2 is None:
c *= S.Pi
else:
c = angle % (2*S.Pi)
if not p2:
m = 2*c/S.Pi
left = And(1 < m, m < 3) # is it in quadrant 2 or 3?
x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
p2 = p1 + Point(x, y)
else:
raise ValueError('A 2nd point or keyword "angle" must be used.')
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
@property
def xdirection(self):
"""The x direction of the ray.
Positive infinity if the ray points in the positive x direction,
negative infinity if the ray points in the negative x direction,
or 0 if the ray is vertical.
See Also
========
ydirection
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
"""
if self.p1.x < self.p2.x:
return S.Infinity
elif self.p1.x == self.p2.x:
return S.Zero
else:
return S.NegativeInfinity
@property
def ydirection(self):
"""The y direction of the ray.
Positive infinity if the ray points in the positive y direction,
negative infinity if the ray points in the negative y direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
"""
if self.p1.y < self.p2.y:
return S.Infinity
elif self.p1.y == self.p2.y:
return S.Zero
else:
return S.NegativeInfinity
def closing_angle(r1, r2):
"""Return the angle by which r2 must be rotated so it faces the same
direction as r1.
Parameters
==========
r1 : Ray2D
r2 : Ray2D
Returns
=======
angle : angle in radians (ccw angle is positive)
See Also
========
LinearEntity.angle_between
Examples
========
>>> from sympy import Ray, pi
>>> r1 = Ray((0, 0), (1, 0))
>>> r2 = r1.rotate(-pi/2)
>>> angle = r1.closing_angle(r2); angle
pi/2
>>> r2.rotate(angle).direction.unit == r1.direction.unit
True
>>> r2.closing_angle(r1)
-pi/2
"""
if not all(isinstance(r, Ray2D) for r in (r1, r2)):
# although the direction property is defined for
# all linear entities, only the Ray is truly a
# directed object
raise TypeError('Both arguments must be Ray2D objects.')
a1 = atan2(*list(reversed(r1.direction.args)))
a2 = atan2(*list(reversed(r2.direction.args)))
if a1*a2 < 0:
a1 = 2*S.Pi + a1 if a1 < 0 else a1
a2 = 2*S.Pi + a2 if a2 < 0 else a2
return a1 - a2
class Segment2D(LinearEntity2D, Segment):
"""A line segment in 2D space.
Parameters
==========
p1 : Point
p2 : Point
Attributes
==========
length : number or SymPy expression
midpoint : Point
See Also
========
sympy.geometry.point.Point, Line
Examples
========
>>> from sympy import Point, Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1)); s
Segment2D(Point2D(4, 3), Point2D(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> s.midpoint
Point2D(5/2, 2)
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point(p1, dim=2)
p2 = Point(p2, dim=2)
if p1 == p2:
return p1
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = (N(self.p1), N(self.p2))
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2.*scale_factor, path, fill_color)
class LinearEntity3D(LinearEntity):
"""An base class for all linear entities (line, ray and segment)
in a 3-dimensional Euclidean space.
Attributes
==========
p1
p2
direction_ratio
direction_cosine
points
Notes
=====
This is a base class and is not meant to be instantiated.
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point3D(p1, dim=3)
p2 = Point3D(p2, dim=3)
if p1 == p2:
# if it makes sense to return a Point, handle in subclass
raise ValueError(
"%s.__new__ requires two unique Points." % cls.__name__)
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
ambient_dimension = 3
@property
def direction_ratio(self):
"""The direction ratio of a given line in 3D.
See Also
========
sympy.geometry.line.Line3D.equation
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_ratio
[5, 3, 1]
"""
p1, p2 = self.points
return p1.direction_ratio(p2)
@property
def direction_cosine(self):
"""The normalized direction ratio of a given line in 3D.
See Also
========
sympy.geometry.line.Line3D.equation
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_cosine
[sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
>>> sum(i**2 for i in _)
1
"""
p1, p2 = self.points
return p1.direction_cosine(p2)
class Line3D(LinearEntity3D, Line):
"""An infinite 3D line in space.
A line is declared with two distinct points or a point and direction_ratio
as defined using keyword `direction_ratio`.
Parameters
==========
p1 : Point3D
pt : Point3D
direction_ratio : list
See Also
========
sympy.geometry.point.Point3D
sympy.geometry.line.Line
sympy.geometry.line.Line2D
Examples
========
>>> from sympy import Line3D, Point3D
>>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L
Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L.points
(Point3D(2, 3, 4), Point3D(3, 5, 1))
"""
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
if isinstance(p1, LinearEntity3D):
if pt is not None:
raise ValueError('if p1 is a LinearEntity, pt must be None.')
p1, pt = p1.args
else:
p1 = Point(p1, dim=3)
if pt is not None and len(direction_ratio) == 0:
pt = Point(pt, dim=3)
elif len(direction_ratio) == 3 and pt is None:
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
p1.z + direction_ratio[2])
else:
raise ValueError('A 2nd Point or keyword "direction_ratio" must '
'be used.')
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
def equation(self, x='x', y='y', z='z'):
"""Return the equations that define the line in 3D.
Parameters
==========
x : str, optional
The name to use for the x-axis, default value is 'x'.
y : str, optional
The name to use for the y-axis, default value is 'y'.
z : str, optional
The name to use for the z-axis, default value is 'z'.
Returns
=======
equation : Tuple of simultaneous equations
Examples
========
>>> from sympy import Point3D, Line3D, solve
>>> from sympy.abc import x, y, z
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
>>> l1 = Line3D(p1, p2)
>>> eq = l1.equation(x, y, z); eq
(-3*x + 4*y + 3, z)
>>> solve(eq.subs(z, 0), (x, y, z))
{x: 4*y/3 + 1}
"""
x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
p1, p2 = self.points
d1, d2, d3 = p1.direction_ratio(p2)
x1, y1, z1 = p1
eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
# eliminate k from equations by solving first eq with k for k
for i, e in enumerate(eqs):
if e.has(k):
kk = solve(eqs[i], k)[0]
eqs.pop(i)
break
return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])
class Ray3D(LinearEntity3D, Ray):
"""
A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point3D
The source of the Ray
p2 : Point or a direction vector
direction_ratio: Determines the direction in which the Ray propagates.
Attributes
==========
source
xdirection
ydirection
zdirection
See Also
========
sympy.geometry.point.Point3D, Line3D
Examples
========
>>> from sympy import Point3D, Ray3D
>>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r
Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.points
(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.source
Point3D(2, 3, 4)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.direction_ratio
[1, 2, -4]
"""
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
if isinstance(p1, LinearEntity3D):
if pt is not None:
raise ValueError('If p1 is a LinearEntity, pt must be None')
p1, pt = p1.args
else:
p1 = Point(p1, dim=3)
if pt is not None and len(direction_ratio) == 0:
pt = Point(pt, dim=3)
elif len(direction_ratio) == 3 and pt is None:
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
p1.z + direction_ratio[2])
else:
raise ValueError(filldedent('''
A 2nd Point or keyword "direction_ratio" must be used.
'''))
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
@property
def xdirection(self):
"""The x direction of the ray.
Positive infinity if the ray points in the positive x direction,
negative infinity if the ray points in the negative x direction,
or 0 if the ray is vertical.
See Also
========
ydirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
"""
if self.p1.x < self.p2.x:
return S.Infinity
elif self.p1.x == self.p2.x:
return S.Zero
else:
return S.NegativeInfinity
@property
def ydirection(self):
"""The y direction of the ray.
Positive infinity if the ray points in the positive y direction,
negative infinity if the ray points in the negative y direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
"""
if self.p1.y < self.p2.y:
return S.Infinity
elif self.p1.y == self.p2.y:
return S.Zero
else:
return S.NegativeInfinity
@property
def zdirection(self):
"""The z direction of the ray.
Positive infinity if the ray points in the positive z direction,
negative infinity if the ray points in the negative z direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
>>> r2.zdirection
0
"""
if self.p1.z < self.p2.z:
return S.Infinity
elif self.p1.z == self.p2.z:
return S.Zero
else:
return S.NegativeInfinity
class Segment3D(LinearEntity3D, Segment):
"""A line segment in a 3D space.
Parameters
==========
p1 : Point3D
p2 : Point3D
Attributes
==========
length : number or SymPy expression
midpoint : Point3D
See Also
========
sympy.geometry.point.Point3D, Line3D
Examples
========
>>> from sympy import Point3D, Segment3D
>>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point(p1, dim=3)
p2 = Point(p2, dim=3)
if p1 == p2:
return p1
return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
|
75c04c69361fd548ec2393fdc000640d2a06307581d489fa89b25da2adb0a3f9 | """
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import annotations
from typing import Any
from functools import reduce
from math import prod
from abc import abstractmethod, ABCMeta
from collections import defaultdict
import operator
import itertools
from sympy.core.numbers import (Integer, Rational)
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.assumptions import ManagedProperties
from sympy.core.containers import Tuple, Dict
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.external.gmpy import SYMPY_INTS
from sympy.matrices import eye
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
from sympy.utilities.decorator import memoize_property, deprecated
def deprecate_data():
sympy_deprecation_warning(
"""
The data attribute of TensorIndexType is deprecated. Use The
replace_with_arrays() method instead.
""",
deprecated_since_version="1.4",
active_deprecations_target="deprecated-tensorindextype-attrs",
stacklevel=4,
)
def deprecate_fun_eval():
sympy_deprecation_warning(
"""
The Tensor.fun_eval() method is deprecated. Use
Tensor.substitute_indices() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensor-fun-eval",
stacklevel=4,
)
def deprecate_call():
sympy_deprecation_warning(
"""
Calling a tensor like Tensor(*indices) is deprecated. Use
Tensor.substitute_indices() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensor-fun-eval",
stacklevel=4,
)
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``.
Explanation
===========
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor.
Explanation
===========
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index.name
typ = index.tensor_index_type
contr = index.is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index.is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_name, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
return dummy_name_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self) -> list[TensorIndex]:
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``.
Explanation
===========
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
See ``canonicalize`` in ``tensor_can.py`` in combinatorics module.
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# Converts the symmetry of the metric into msym from .canonicalize()
# method in the combinatorics module
def metric_symmetry_to_msym(metric):
if metric is None:
return None
sym = metric.symmetry
if sym == TensorSymmetry.fully_symmetric(2):
return 0
if sym == TensorSymmetry.fully_symmetric(-2):
return 1
return None
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(metric_symmetry_to_msym(typ.metric))
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h.comm in (0, 1):
comm = h.comm
else:
comm = TensorManager.get_comm(h.comm, h.comm)
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
Explanation
===========
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict: dict[Any, Any] = {}
_substitutions_dict_tensmul: dict[Any, Any] = {}
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
Explanation
===========
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all(i is None for i in data_list):
return None
if any(i is None for i in data_list):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all(i is None for i in data_list):
return None
if any(i is None for i in data_list):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
from .array.arrayop import Flatten
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, range(rank)))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(Flatten(last_data - sign_change*data_swapped)):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Explanation
===========
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if not indextype.dim.is_number:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
Explanation
===========
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the transpose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, SymPy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager:
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
Get the commutation group number corresponding to ``i``.
``i`` can be a symbol or a number or a string.
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
Set the commutation parameter ``c`` for commutation groups ``i, j``.
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
Set the commutation group numbers ``c`` for symbols ``i, j``.
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or ``None`` for no metric
metric_name : string with the name of the metric tensor
Attributes
==========
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The possible values of the ``metric_symmetry`` parameter are:
``1`` : metric tensor is fully symmetric
``0`` : metric tensor possesses no index symmetry
``-1`` : metric tensor is fully antisymmetric
``None``: there is no metric tensor (metric equals to ``None``)
The metric is assumed to be symmetric by default. It can also be set
to a custom tensor by the ``.set_metric()`` method.
If there is a metric the metric is used to raise and lower indices.
In the case of non-symmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
From these it is easy to find:
``g(-a, b) = delta(-a, b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
For antisymmetric metrics there is also the following equality:
``g(a, -b) = -delta(a, -b)``
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
metric_symmetry=1, metric_name='metric', **kwargs):
if 'dummy_fmt' in kwargs:
dummy_fmt = kwargs['dummy_fmt']
sympy_deprecation_warning(
f"""
The dummy_fmt keyword to TensorIndexType is deprecated. Use
dummy_name={dummy_fmt} instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-dummy-fmt",
)
dummy_name = dummy_fmt
if isinstance(name, str):
name = Symbol(name)
if dummy_name is None:
dummy_name = str(name)[0]
if isinstance(dummy_name, str):
dummy_name = Symbol(dummy_name)
if dim is None:
dim = Symbol("dim_" + dummy_name.name)
else:
dim = sympify(dim)
if eps_dim is None:
eps_dim = dim
else:
eps_dim = sympify(eps_dim)
metric_symmetry = sympify(metric_symmetry)
if isinstance(metric_name, str):
metric_name = Symbol(metric_name)
if 'metric' in kwargs:
SymPyDeprecationWarning(
"""
The 'metric' keyword argument to TensorIndexType is
deprecated. Use the 'metric_symmetry' keyword argument or the
TensorIndexType.set_metric() method instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-metric",
)
metric = kwargs.get('metric')
if metric is not None:
if metric in (True, False, 0, 1):
metric_name = 'metric'
#metric_antisym = metric
else:
metric_name = metric.name
#metric_antisym = metric.antisym
if metric:
metric_symmetry = -1
else:
metric_symmetry = 1
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
metric_symmetry, metric_name)
obj._autogenerated = []
return obj
@property
def name(self):
return self.args[0].name
@property
def dummy_name(self):
return self.args[1].name
@property
def dim(self):
return self.args[2]
@property
def eps_dim(self):
return self.args[3]
@memoize_property
def metric(self):
metric_symmetry = self.args[4]
metric_name = self.args[5]
if metric_symmetry is None:
return None
if metric_symmetry == 0:
symmetry = TensorSymmetry.no_symmetry(2)
elif metric_symmetry == 1:
symmetry = TensorSymmetry.fully_symmetric(2)
elif metric_symmetry == -1:
symmetry = TensorSymmetry.fully_symmetric(-2)
return TensorHead(metric_name, [self]*2, symmetry)
@memoize_property
def delta(self):
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
@memoize_property
def epsilon(self):
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
return None
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
def set_metric(self, tensor):
self._metric = tensor
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
# Everything below this line is deprecated
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim.is_number:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim.is_number:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
with ignore_warnings(SymPyDeprecationWarning):
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
with ignore_warnings(SymPyDeprecationWarning):
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
@deprecated(
"""
The TensorIndexType.get_kronecker_delta() method is deprecated. Use
the TensorIndexType.delta attribute instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-methods",
)
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
delta = TensorHead('KD', [self]*2, sym2)
return delta
@deprecated(
"""
The TensorIndexType.get_epsilon() method is deprecated. Use
the TensorIndexType.epsilon attribute instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-methods",
)
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
return epsilon
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents a tensor index
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensor_index_type : ``TensorIndexType`` of the index
is_up : flag for contravariant index (is_up=True by default)
Attributes
==========
``name``
``tensor_index_type``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name. Adding
``-`` to a covariant (is_up=False) index makes it contravariant.
Dummy indices have a name with head given by
``tensor_inde_type.dummy_name`` with underscore and a number.
Similar to ``symbols`` multiple contravariant indices can be created
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
of names.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
A(mu, -rho)
>>> A(mu, -mu)
A(-L_0, L_0)
"""
def __new__(cls, name, tensor_index_type, is_up=True):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{}".format(len(tensor_index_type._autogenerated))
name_symbol = Symbol(name)
tensor_index_type._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
@property
def name(self):
return self.args[0].name
@property
def tensor_index_type(self):
return self.args[1]
@property
def is_up(self):
return self.args[2]
def _print(self):
s = self.name
if not self.is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return ((self.tensor_index_type, self.name) <
(other.tensor_index_type, other.name))
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types.
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
index permutation). For the relevant terminology see ``tensor_can.py``
section of the combinatorics module.
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
(i.e., Bianchi identity), are not covered. See combinatorics module for
information on how to generate BSGS for a general index permutation group.
Simple symmetries can be generated using built-in methods.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor of rank 2
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
Note, that the same can also be done using built-in TensorSymmetry methods
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
return Basic.__new__(cls, base, generators, **kw_args)
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.generators[0].size - 2
@classmethod
def fully_symmetric(cls, rank):
"""
Returns a fully symmetric (antisymmetric if ``rank``<0)
TensorSymmetry object for ``abs(rank)`` indices.
"""
if rank > 0:
bsgs = get_symmetric_group_sgs(rank, False)
elif rank < 0:
bsgs = get_symmetric_group_sgs(-rank, True)
elif rank == 0:
bsgs = ([], [Permutation(1)])
return TensorSymmetry(bsgs)
@classmethod
def direct_product(cls, *args):
"""
Returns a TensorSymmetry object that is being a direct product of
fully (anti-)symmetric index permutation groups.
Notes
=====
Some examples for different values of ``(*args)``:
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
``(1, 1, 1)`` tensor with 3 indices without any symmetry
"""
base, sgs = [], [Permutation(1)]
for arg in args:
if arg > 0:
bsgs2 = get_symmetric_group_sgs(arg, False)
elif arg < 0:
bsgs2 = get_symmetric_group_sgs(-arg, True)
else:
continue
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
return TensorSymmetry(base, sgs)
@classmethod
def riemann(cls):
"""
Returns a monotorem symmetry of the Riemann tensor
"""
return TensorSymmetry(riemann_bsgs)
@classmethod
def no_symmetry(cls, rank):
"""
TensorSymmetry object for ``rank`` indices with no symmetry
"""
return TensorSymmetry([], [Permutation(rank+1)])
@deprecated(
"""
The tensorsymmetry() function is deprecated. Use the TensorSymmetry
constructor instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorsymmetry",
)
def tensorsymmetry(*args):
"""
Returns a ``TensorSymmetry`` object. This method is deprecated, use
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
Explanation
===========
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
@deprecated(
"TensorType is deprecated. Use tensor_heads() instead.",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensortype",
)
class TensorType(Basic):
"""
Class of tensor types. Deprecated, use tensor_heads() instead.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
Parameters
==========
s : name or string of names.
comm : Commutation group.
see ``_TensorManager.set_comm``
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self.index_types, self.symmetry, comm)
else:
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
@deprecated(
"""
The tensorhead() function is deprecated. Use tensor_heads() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorhead",
)
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s). This method is deprecated,
use TensorHead constructor or tensor_heads() instead.
Parameters
==========
name : name or sequence of names (as in ``symbols``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
with ignore_warnings(SymPyDeprecationWarning):
sym = tensorsymmetry(*sym)
return TensorHead(name, typ, sym, comm)
class TensorHead(Basic):
"""
Tensor head of the tensor.
Parameters
==========
name : name of the tensor
index_types : list of TensorIndexType
symmetry : TensorSymmetry of the tensor
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank`` : total number of indices
``symmetry``
``comm`` : commutation group
Notes
=====
Similar to ``symbols`` multiple TensorHeads can be created using
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
is the string of names and ``sym`` is the monoterm tensor symmetry
(see ``tensorsymmetry``).
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
Define a fully antisymmetric tensor of rank 2:
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor:
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, index_types, symmetry=None, comm=0):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
if symmetry is None:
symmetry = TensorSymmetry.no_symmetry(len(index_types))
else:
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
obj.comm = TensorManager.comm_symbols2i(comm)
return obj
@property
def name(self):
return self.args[0].name
@property
def index_types(self):
return list(self.args[1])
@property
def symmetry(self):
return self.args[2]
@property
def rank(self):
return len(self.index_types)
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self.comm, other.comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
Explanation
===========
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Indices can also be strings, in which case the attribute
``index_types`` is used to convert them to proper ``TensorIndex``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
updated_indices = []
for idx, typ in zip(indices, self.index_types):
if isinstance(idx, str):
idx = idx.strip().replace(" ", "")
if idx.startswith('-'):
updated_indices.append(TensorIndex(idx[1:], typ,
is_up=False))
else:
updated_indices.append(TensorIndex(idx, typ))
else:
updated_indices.append(idx)
updated_indices += indices[len(updated_indices):]
tensor = Tensor(self, updated_indices, **kw_args)
return tensor.doit()
# Everything below this line is deprecated
def __pow__(self, other):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No power on abstract tensors.")
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.index_types]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (other * S.Half)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
deprecate_data()
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def tensor_heads(s, index_types, symmetry=None, comm=0):
"""
Returns a sequence of TensorHeads from a string `s`
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
if len(thlist) == 1:
return thlist[0]
return thlist
class _TensorMetaclass(ManagedProperties, ABCMeta):
pass
class TensExpr(Expr, metaclass=_TensorMetaclass):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
Explanation
===========
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __truediv__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rtruediv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No power without ndarray data.")
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (other * S.Half)
def __rpow__(self, other):
raise NotImplementedError
@property
@abstractmethod
def nocoeff(self):
raise NotImplementedError("abstract method")
@property
@abstractmethod
def coeff(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_indices(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_free_indices(self) -> list[TensorIndex]:
raise NotImplementedError("abstract method")
@abstractmethod
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
raise NotImplementedError("abstract method")
def fun_eval(self, *index_tuples):
deprecate_fun_eval()
return self.substitute_indices(*index_tuples)
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy.matrices.dense import Matrix
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@staticmethod
def _contract_and_permute_with_metric(metric, array, pos, dim):
# TODO: add possibility of metric after (spinors)
from .array import tensorcontraction, tensorproduct, permutedims
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(dim))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# Raise indices:
for pos in pos2up:
index_type_pos = index_types1[pos]
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
# Lower indices:
for pos in pos2down:
index_type_pos = index_types1[pos]
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices=None):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read. The
original index order will be used if no value is passed.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
Since 'indices' is optional, we can also call replace_with_arrays by
this way if no specific index order is needed:
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]})
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
-3
Symmetrization of an array:
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
indices = indices or []
remap = {k.args[0] if k.is_up else -k.args[0]: k for k in self.get_free_indices()}
for i, index in enumerate(indices):
if isinstance(index, (Symbol, Mul)):
if index in remap:
indices[i] = remap[index]
else:
indices[i] = -remap[-index]
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all(dim1 == dim2 if
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
array.shape))):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy.concrete.summations import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
def _expand_partial_derivative(self):
# simply delegate the _expand_partial_derivative() to
# its arguments to expand a possibly found PartialDerivative
return self.func(*[
a._expand_partial_derivative()
if isinstance(a, TensExpr) else a
for a in self.args])
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors.
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
args.sort(key=default_sort_key)
if not args:
return S.Zero
if len(args) == 1:
return args[0]
return Basic.__new__(cls, *args, **kw_args)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self) -> list[TensorIndex]:
return self.free_indices
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
return self.func(*newargs)
@memoize_property
def rank(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].rank
else:
return 0
@memoize_property
def free_args(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_args
else:
return []
@memoize_property
def free_indices(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].get_free_indices()
else:
return set()
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
if not isinstance(t, TensExpr):
return [], [], []
if hasattr(t, "_index_structure") and hasattr(t, "components"):
x = get_index_structure(t)
return t.components, x.free, x.dum
return [], [], []
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
def get_indices_set(x: Expr) -> set[TensorIndex]:
if isinstance(x, TensExpr):
return set(x.get_free_indices())
return set()
indices0 = get_indices_set(args[0])
list_indices = [get_indices_set(arg) for arg in args[1:]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set()
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set():
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other.coeff == 0:
return all(x.coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t.coeff == 0
else:
return all(x.coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``.
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensAdd(*new_args).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
def _eval_partial_derivative(self, s):
# Evaluation like Add
list_addends = []
for a in self.args:
if isinstance(a, TensExpr):
list_addends.append(a._eval_partial_derivative(s))
# do not call diff if s is no symbol
elif s._diff_wrt:
list_addends.append(a._eval_derivative(s))
return self.func(*list_addends)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
Explanation
===========
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = TensorHead("A", [Lorentz, Lorentz])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
It is also possible to use symbols instead of inidices (appropriate indices
are then generated automatically).
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> A(x, mu)
A(x, mu)
>>> A(x, -x)
A(L_0, -L_0)
"""
is_commutative = False
_index_structure = None # type: _IndexStructure
args: tuple[TensorHead, Tuple]
def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free = obj._index_structure.free[:]
obj._dum = obj._index_structure.dum[:]
obj._ext_rank = obj._index_structure._ext_rank
obj._coeff = S.One
obj._nocoeff = obj
obj._component = tensor_head
obj._components = [tensor_head]
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj.is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@property
def free(self):
return self._free
@property
def dum(self):
return self._dum
@property
def ext_rank(self):
return self._ext_rank
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self._nocoeff
@property
def component(self):
return self._component
@property
def components(self):
return self._components
@property
def head(self):
return self.args[0]
@property
def indices(self):
return self.args[1]
@property
def free_indices(self):
return set(self._index_structure.get_free_indices())
@property
def index_types(self):
return self.head.index_types
@property
def rank(self):
return len(self.free_indices)
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **hints):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()
def _get_free_indices_set(self):
return {i[0] for i in self._index_structure.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos}
def _get_indices_set(self):
return set(self.args[1].args)
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``.
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self.is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self) -> list[TensorIndex]:
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self) -> list[TensorIndex]:
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
# TODO: this could be optimized by only swapping the indices
# instead of visiting the whole expression tree:
return self.xreplace(repl)
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``.
``index_types`` list of tuples ``(old_index, new_index)``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
indices = []
for index in self.indices:
for ind_old, ind_new in index_tuples:
if (index.name == ind_old.name and index.tensor_index_type ==
ind_old.tensor_index_type):
if index.is_up == ind_old.is_up:
indices.append(ind_new)
else:
indices.append(-ind_new)
break
else:
indices.append(index)
return self.head(*indices)
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices1 = self.get_indices()
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
for pos in (p1, p2):
if indices1[pos].is_up ^ indices2[pos].is_up:
metric = replacement_dict[indices1[pos].tensor_index_type]
if indices1[pos].is_up:
metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
sign = sign*typ.dim
else:
# g(i, -i)
sign = sign*typ.dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy.tensor.indexed import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr
if not isinstance(s, Tensor):
return S.Zero
else:
# @a_i/@a_k = delta_i^k
# @a_i/@a^k = g_ij delta^j_k
# @a^i/@a^k = delta^i_k
# @a^i/@a_k = g^ij delta_j^k
# TODO: if there is no metric present, the derivative should be zero?
if self.head != s.head:
return S.Zero
# if heads are the same, provide delta and/or metric products
# for every free index pair in the appropriate tensor
# assumed that the free indices are in proper order
# A contravariante index in the derivative becomes covariant
# after performing the derivative and vice versa
kronecker_delta_list = [1]
# not guarantee a correct index order
for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
if iself.tensor_index_type != iother.tensor_index_type:
raise ValueError("index types not compatible")
else:
tensor_index_type = iself.tensor_index_type
tensor_metric = tensor_index_type.metric
dummy = TensorIndex("d_" + str(count), tensor_index_type,
is_up=iself.is_up)
if iself.is_up == iother.is_up:
kroneckerdelta = tensor_index_type.delta(iself, -iother)
else:
kroneckerdelta = (
TensMul(tensor_metric(iself, dummy),
tensor_index_type.delta(-dummy, -iother))
)
kronecker_delta_list.append(kroneckerdelta)
return TensMul.fromiter(kronecker_delta_list).doit()
# doit necessary to rename dummy indices accordingly
class TensMul(TensExpr, AssocOp):
"""
Product of tensors.
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
_index_structure = None # type: _IndexStructure
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types[:]
obj._index_structure = index_structure
obj._free = index_structure.free[:]
obj._dum = index_structure.dum[:]
obj._free_indices = {x[0] for x in obj.free}
obj._rank = len(obj.free)
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
index_types = property(lambda self: self._index_types)
free = property(lambda self: self._free)
dum = property(lambda self: self._dum)
free_indices = property(lambda self: self._free_indices)
rank = property(lambda self: self._rank)
ext_rank = property(lambda self: self._ext_rank)
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all(_has_index_order(arg) for arg in args)
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_name_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [
arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **hints):
is_canon_bp = self._is_canon_bp
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return {i[0] for i in self.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos}
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
# return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self.coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor.
Explanation
===========
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self) -> list[TensorIndex]:
"""
Returns the list of free indices of the tensor.
Explanation
===========
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])
def split(self):
"""
Returns a list of tensors, whose product is ``self``.
Explanation
===========
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if self.coeff.could_extract_minus_sign():
# expressions like "-A(a)"
sign = "-"
if args[0] == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
Explanation
===========
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in (0, 1):
continue
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = {}
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``.
Parameters
==========
g : metric
Notes
=====
See the ``TensorIndexType`` docstring for the contraction conventions.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensMul(*new_args).doit()
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy.concrete.summations import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s):
# Evaluation like Mul
terms = []
for i, arg in enumerate(self.args):
# checking whether some tensor instance is differentiated
# or some other thing is necessary, but ugly
if isinstance(arg, TensExpr):
d = arg._eval_partial_derivative(s)
else:
# do not call diff is s is no symbol
if s._diff_wrt:
d = arg._eval_derivative(s)
else:
d = S.Zero
if d:
terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
return TensAdd.fromiter(terms)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self):
return self._free_indices
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
# TODO: can be improved:
return self.xreplace(repl)
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
combinatorics module for the details.
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = t_r*Rational(2, 3)
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
Replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
Returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements of the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
if not isinstance(t, TensExpr):
return t
return t.substitute_indices(*index_tuples)
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
15de5184e05505dd9978fce9673058027492bdb001806ffd5bb7cf884ceeeb94 | """A module that handles matrices.
Includes functions for fast creating matrices like zero, one/eye, random
matrix, etc.
"""
from .common import ShapeError, NonSquareMatrixError, MatrixKind
from .dense import (
GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
randMatrix, rot_axis1, rot_axis2, rot_axis3, rot_ccw_axis1,
rot_ccw_axis2, rot_ccw_axis3, symarray, wronskian, zeros)
from .dense import MutableDenseMatrix
from .matrices import DeferredVector, MatrixBase
MutableMatrix = MutableDenseMatrix
Matrix = MutableMatrix
from .sparse import MutableSparseMatrix
from .sparsetools import banded
from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
ImmutableMatrix = ImmutableDenseMatrix
SparseMatrix = MutableSparseMatrix
from .expressions import (
MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
hadamard_product, HadamardProduct, HadamardPower, Determinant, det,
diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace,
DotProduct, kronecker_product, KroneckerProduct,
PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per)
from .utilities import dotprodsimp
__all__ = [
'ShapeError', 'NonSquareMatrixError', 'MatrixKind',
'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell',
'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones',
'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray',
'wronskian', 'zeros', 'rot_ccw_axis1', 'rot_ccw_axis2', 'rot_ccw_axis3',
'MutableDenseMatrix',
'DeferredVector', 'MatrixBase',
'Matrix', 'MutableMatrix',
'MutableSparseMatrix',
'banded',
'ImmutableDenseMatrix', 'ImmutableSparseMatrix',
'ImmutableMatrix', 'SparseMatrix',
'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix',
'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr',
'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix',
'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint',
'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant',
'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix',
'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product',
'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet',
'Permanent', 'per',
'dotprodsimp',
]
|
a004f6f357483c54a4f213aeee82a4143c5a63cb833c9403a4debc953b554113 | """
Basic methods common to all matrices to be used
when creating more advanced matrices (e.g., matrices over rings,
etc.).
"""
from collections import defaultdict
from collections.abc import Iterable
from inspect import isfunction
from functools import reduce
from sympy.assumptions.refine import refine
from sympy.core import SympifyError, Add
from sympy.core.basic import Atom
from sympy.core.decorators import call_highest_priority
from sympy.core.kind import Kind, NumberKind
from sympy.core.logic import fuzzy_and, FuzzyBool
from sympy.core.mod import Mod
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import Abs, re, im
from .utilities import _dotprodsimp, _simplify
from sympy.polys.polytools import Poly
from sympy.utilities.iterables import flatten, is_sequence
from sympy.utilities.misc import as_int, filldedent
from sympy.tensor.array import NDimArray
from .utilities import _get_intermediate_simp_bool
class MatrixError(Exception):
pass
class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
class NonSquareMatrixError(ShapeError):
pass
class NonInvertibleMatrixError(ValueError, MatrixError):
"""The matrix in not invertible (division by multidimensional zero error)."""
pass
class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
"""The matrix is not a positive-definite matrix."""
pass
class MatrixRequired:
"""All subclasses of matrix objects must implement the
required matrix properties listed here."""
rows = None # type: int
cols = None # type: int
_simplify = None
@classmethod
def _new(cls, *args, **kwargs):
"""`_new` must, at minimum, be callable as
`_new(rows, cols, mat) where mat is a flat list of the
elements of the matrix."""
raise NotImplementedError("Subclasses must implement this.")
def __eq__(self, other):
raise NotImplementedError("Subclasses must implement this.")
def __getitem__(self, key):
"""Implementations of __getitem__ should accept ints, in which
case the matrix is indexed as a flat list, tuples (i,j) in which
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
where a and b are any combination of slices and integers."""
raise NotImplementedError("Subclasses must implement this.")
def __len__(self):
"""The total number of entries in the matrix."""
raise NotImplementedError("Subclasses must implement this.")
@property
def shape(self):
raise NotImplementedError("Subclasses must implement this.")
class MatrixShaping(MatrixRequired):
"""Provides basic matrix shaping and extracting of submatrices"""
def _eval_col_del(self, col):
def entry(i, j):
return self[i, j] if j < col else self[i, j + 1]
return self._new(self.rows, self.cols - 1, entry)
def _eval_col_insert(self, pos, other):
def entry(i, j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, j - other.cols]
return self._new(self.rows, self.cols + other.cols, entry)
def _eval_col_join(self, other):
rows = self.rows
def entry(i, j):
if i < rows:
return self[i, j]
return other[i - rows, j]
return classof(self, other)._new(self.rows + other.rows, self.cols,
entry)
def _eval_extract(self, rowsList, colsList):
mat = list(self)
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices))
def _eval_get_diag_blocks(self):
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
def _eval_row_del(self, row):
def entry(i, j):
return self[i, j] if i < row else self[i + 1, j]
return self._new(self.rows - 1, self.cols, entry)
def _eval_row_insert(self, pos, other):
entries = list(self)
insert_pos = pos * self.cols
entries[insert_pos:insert_pos] = list(other)
return self._new(self.rows + other.rows, self.cols, entries)
def _eval_row_join(self, other):
cols = self.cols
def entry(i, j):
if j < cols:
return self[i, j]
return other[i, j - cols]
return classof(self, other)._new(self.rows, self.cols + other.cols,
entry)
def _eval_tolist(self):
return [list(self[i,:]) for i in range(self.rows)]
def _eval_todok(self):
dok = {}
rows, cols = self.shape
for i in range(rows):
for j in range(cols):
val = self[i, j]
if val != self.zero:
dok[i, j] = val
return dok
def _eval_vec(self):
rows = self.rows
def entry(n, _):
# we want to read off the columns first
j = n // rows
i = n - j * rows
return self[i, j]
return self._new(len(self), 1, entry)
def _eval_vech(self, diagonal):
c = self.cols
v = []
if diagonal:
for j in range(c):
for i in range(j, c):
v.append(self[i, j])
else:
for j in range(c):
for i in range(j + 1, c):
v.append(self[i, j])
return self._new(len(v), 1, v)
def col_del(self, col):
"""Delete the specified column."""
if col < 0:
col += self.cols
if not 0 <= col < self.cols:
raise IndexError("Column {} is out of range.".format(col))
return self._eval_col_del(col)
def col_insert(self, pos, other):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return type(self)(other)
pos = as_int(pos)
if pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != other.rows:
raise ShapeError(
"The matrices have incompatible number of rows ({} and {})"
.format(self.rows, other.rows))
return self._eval_col_insert(pos, other)
def col_join(self, other):
"""Concatenates two matrices along self's last and other's first row.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
if self.cols != other.cols:
raise ShapeError(
"The matrices have incompatible number of columns ({} and {})"
.format(self.cols, other.cols))
return self._eval_col_join(other)
def col(self, j):
"""Elementary column selector.
Examples
========
>>> from sympy import eye
>>> eye(2).col(0)
Matrix([
[1],
[0]])
See Also
========
row
col_del
col_join
col_insert
"""
return self[:, j]
def extract(self, rowsList, colsList):
r"""Return a submatrix by specifying a list of rows and columns.
Negative indices can be given. All indices must be in the range
$-n \le i < n$ where $n$ is the number of rows or columns.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
RowsList or colsList can also be a list of booleans, in which case
the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix([
[0, 2],
[3, 5],
[6, 8],
[9, 11]])
"""
if not is_sequence(rowsList) or not is_sequence(colsList):
raise TypeError("rowsList and colsList must be iterable")
# ensure rowsList and colsList are lists of integers
if rowsList and all(isinstance(i, bool) for i in rowsList):
rowsList = [index for index, item in enumerate(rowsList) if item]
if colsList and all(isinstance(i, bool) for i in colsList):
colsList = [index for index, item in enumerate(colsList) if item]
# ensure everything is in range
rowsList = [a2idx(k, self.rows) for k in rowsList]
colsList = [a2idx(k, self.cols) for k in colsList]
return self._eval_extract(rowsList, colsList)
def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
return self._eval_get_diag_blocks()
@classmethod
def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.row_join, args)
def reshape(self, rows, cols):
"""Reshape the matrix. Total number of elements must remain the same.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
"""
if self.rows * self.cols != rows * cols:
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
return self._new(rows, cols, lambda i, j: self[i * cols + j])
def row_del(self, row):
"""Delete the specified row."""
if row < 0:
row += self.rows
if not 0 <= row < self.rows:
raise IndexError("Row {} is out of range.".format(row))
return self._eval_row_del(row)
def row_insert(self, pos, other):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return self._new(other)
pos = as_int(pos)
if pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != other.cols:
raise ShapeError(
"The matrices have incompatible number of columns ({} and {})"
.format(self.cols, other.cols))
return self._eval_row_insert(pos, other)
def row_join(self, other):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"The matrices have incompatible number of rows ({} and {})"
.format(self.rows, other.rows))
return self._eval_row_join(other)
def diagonal(self, k=0):
"""Returns the kth diagonal of self. The main diagonal
corresponds to `k=0`; diagonals above and below correspond to
`k > 0` and `k < 0`, respectively. The values of `self[i, j]`
for which `j - i = k`, are returned in order of increasing
`i + j`, starting with `i + j = |k|`.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, lambda i, j: j - i); m
Matrix([
[ 0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]])
>>> _.diagonal()
Matrix([[0, 0, 0]])
>>> m.diagonal(1)
Matrix([[1, 1]])
>>> m.diagonal(-2)
Matrix([[-2]])
Even though the diagonal is returned as a Matrix, the element
retrieval can be done with a single index:
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
2
See Also
========
diag - to create a diagonal matrix
"""
rv = []
k = as_int(k)
r = 0 if k > 0 else -k
c = 0 if r else k
while True:
if r == self.rows or c == self.cols:
break
rv.append(self[r, c])
r += 1
c += 1
if not rv:
raise ValueError(filldedent('''
The %s diagonal is out of range [%s, %s]''' % (
k, 1 - self.rows, self.cols - 1)))
return self._new(1, len(rv), rv)
def row(self, i):
"""Elementary row selector.
Examples
========
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[1, 0]])
See Also
========
col
row_del
row_join
row_insert
"""
return self[i, :]
@property
def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def todok(self):
"""Return the matrix as dictionary of keys.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix.eye(3)
>>> M.todok()
{(0, 0): 1, (1, 1): 1, (2, 2): 1}
"""
return self._eval_todok()
def tolist(self):
"""Return the Matrix as a nested Python list.
Examples
========
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
When there are no rows then it will not be possible to tell how
many columns were in the original matrix:
>>> ones(0, 3).tolist()
[]
"""
if not self.rows:
return []
if not self.cols:
return [[] for i in range(self.rows)]
return self._eval_tolist()
def todod(M):
"""Returns matrix as dict of dicts containing non-zero elements of the Matrix
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[0, 1],[0, 3]])
>>> A
Matrix([
[0, 1],
[0, 3]])
>>> A.todod()
{0: {1: 1}, 1: {1: 3}}
"""
rowsdict = {}
Mlol = M.tolist()
for i, Mi in enumerate(Mlol):
row = {j: Mij for j, Mij in enumerate(Mi) if Mij}
if row:
rowsdict[i] = row
return rowsdict
def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self._eval_vec()
def vech(self, diagonal=True, check_symmetry=True):
"""Reshapes the matrix into a column vector by stacking the
elements in the lower triangle.
Parameters
==========
diagonal : bool, optional
If ``True``, it includes the diagonal elements.
check_symmetry : bool, optional
If ``True``, it checks whether the matrix is symmetric.
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
Notes
=====
This should work for symmetric matrices and ``vech`` can
represent symmetric matrices in vector form with less size than
``vec``.
See Also
========
vec
"""
if not self.is_square:
raise NonSquareMatrixError
if check_symmetry and not self.is_symmetric():
raise ValueError("The matrix is not symmetric.")
return self._eval_vech(diagonal)
@classmethod
def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.col_join, args)
class MatrixSpecial(MatrixRequired):
"""Construction of special matrices"""
@classmethod
def _eval_diag(cls, rows, cols, diag_dict):
"""diag_dict is a defaultdict containing
all the entries of the diagonal matrix."""
def entry(i, j):
return diag_dict[(i, j)]
return cls._new(rows, cols, entry)
@classmethod
def _eval_eye(cls, rows, cols):
vals = [cls.zero]*(rows*cols)
vals[::cols+1] = [cls.one]*min(rows, cols)
return cls._new(rows, cols, vals, copy=False)
@classmethod
def _eval_jordan_block(cls, size: int, eigenvalue, band='upper'):
if band == 'lower':
def entry(i, j):
if i == j:
return eigenvalue
elif j + 1 == i:
return cls.one
return cls.zero
else:
def entry(i, j):
if i == j:
return eigenvalue
elif i + 1 == j:
return cls.one
return cls.zero
return cls._new(size, size, entry)
@classmethod
def _eval_ones(cls, rows, cols):
def entry(i, j):
return cls.one
return cls._new(rows, cols, entry)
@classmethod
def _eval_zeros(cls, rows, cols):
return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False)
@classmethod
def _eval_wilkinson(cls, n):
def entry(i, j):
return cls.one if i + 1 == j else cls.zero
D = cls._new(2*n + 1, 2*n + 1, entry)
wminus = cls.diag([i for i in range(-n, n + 1)], unpack=True) + D + D.T
wplus = abs(cls.diag([i for i in range(-n, n + 1)], unpack=True)) + D + D.T
return wminus, wplus
@classmethod
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
"""Returns a matrix with the specified diagonal.
If matrices are passed, a block-diagonal matrix
is created (i.e. the "direct sum" of the matrices).
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single
sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to
have variable-length rows.
Examples
========
>>> from sympy import Matrix
>>> Matrix.diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The current default is to unpack a single sequence. If this is
not desired, set `unpack=False` and it will be interpreted as
a matrix.
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
When more than one element is passed, each is interpreted as
something to put on the diagonal. Lists are converted to
matrices. Filling of the diagonal always continues from
the bottom right hand corner of the previous item: this
will create a block-diagonal matrix whether the matrices
are square or not.
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[0, 4, 5]])
When `unpack` is False, elements within a list need not all be
of the same length. Setting `strict` to True would raise a
ValueError for the following:
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
Matrix([
[1, 2, 3],
[4, 5, 0],
[6, 0, 0]])
The type of the returned matrix can be set with the ``cls``
keyword.
>>> from sympy import ImmutableMatrix
>>> from sympy.utilities.misc import func_name
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
'ImmutableDenseMatrix'
A zero dimension matrix can be used to position the start of
the filling at the start of an arbitrary row or column:
>>> from sympy import ones
>>> r2 = ones(0, 2)
>>> Matrix.diag(r2, 1, 2)
Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
See Also
========
eye
diagonal - to extract a diagonal
.dense.diag
.expressions.blockmatrix.BlockMatrix
.sparsetools.banded - to create multi-diagonal matrices
"""
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.dense import Matrix
from sympy.matrices import SparseMatrix
klass = kwargs.get('cls', kls)
if unpack and len(args) == 1 and is_sequence(args[0]) and \
not isinstance(args[0], MatrixBase):
args = args[0]
# fill a default dict with the diagonal entries
diag_entries = defaultdict(int)
rmax = cmax = 0 # keep track of the biggest index seen
for m in args:
if isinstance(m, list):
if strict:
# if malformed, Matrix will raise an error
_ = Matrix(m)
r, c = _.shape
m = _.tolist()
else:
r, c, smat = SparseMatrix._handle_creation_inputs(m)
for (i, j), _ in smat.items():
diag_entries[(i + rmax, j + cmax)] = _
m = [] # to skip process below
elif hasattr(m, 'shape'): # a Matrix
# convert to list of lists
r, c = m.shape
m = m.tolist()
else: # in this case, we're a single value
diag_entries[(rmax, cmax)] = m
rmax += 1
cmax += 1
continue
# process list of lists
for i, mi in enumerate(m):
for j, _ in enumerate(mi):
diag_entries[(i + rmax, j + cmax)] = _
rmax += r
cmax += c
if rows is None:
rows, cols = cols, rows
if rows is None:
rows, cols = rmax, cmax
else:
cols = rows if cols is None else cols
if rows < rmax or cols < cmax:
raise ValueError(filldedent('''
The constructed matrix is {} x {} but a size of {} x {}
was specified.'''.format(rmax, cmax, rows, cols)))
return klass._eval_diag(rows, cols, diag_entries)
@classmethod
def eye(kls, rows, cols=None, **kwargs):
"""Returns an identity matrix.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_eye(rows, cols)
@classmethod
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
"""Returns a Jordan block
Parameters
==========
size : Integer, optional
Specifies the shape of the Jordan block matrix.
eigenvalue : Number or Symbol
Specifies the value for the main diagonal of the matrix.
.. note::
The keyword ``eigenval`` is also specified as an alias
of this keyword, but it is not recommended to use.
We may deprecate the alias in later release.
band : 'upper' or 'lower', optional
Specifies the position of the off-diagonal to put `1` s on.
cls : Matrix, optional
Specifies the matrix class of the output form.
If it is not specified, the class type where the method is
being executed on will be returned.
Returns
=======
Matrix
A Jordan block matrix.
Raises
======
ValueError
If insufficient arguments are given for matrix size
specification, or no eigenvalue is given.
Examples
========
Creating a default Jordan block:
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Creating an alternative Jordan block matrix where `1` is on
lower off-diagonal:
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([
[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
Creating a Jordan block with keyword arguments
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
"""
klass = kwargs.pop('cls', kls)
eigenval = kwargs.get('eigenval', None)
if eigenvalue is None and eigenval is None:
raise ValueError("Must supply an eigenvalue")
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
raise ValueError(
"Inconsistent values are given: 'eigenval'={}, "
"'eigenvalue'={}".format(eigenval, eigenvalue))
else:
if eigenval is not None:
eigenvalue = eigenval
if size is None:
raise ValueError("Must supply a matrix size")
size = as_int(size)
return klass._eval_jordan_block(size, eigenvalue, band)
@classmethod
def ones(kls, rows, cols=None, **kwargs):
"""Returns a matrix of ones.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_ones(rows, cols)
@classmethod
def zeros(kls, rows, cols=None, **kwargs):
"""Returns a matrix of zeros.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_zeros(rows, cols)
@classmethod
def companion(kls, poly):
"""Returns a companion matrix of a polynomial.
Examples
========
>>> from sympy import Matrix, Poly, Symbol, symbols
>>> x = Symbol('x')
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
>>> Matrix.companion(p)
Matrix([
[0, 0, 0, 0, -c0],
[1, 0, 0, 0, -c1],
[0, 1, 0, 0, -c2],
[0, 0, 1, 0, -c3],
[0, 0, 0, 1, -c4]])
"""
poly = kls._sympify(poly)
if not isinstance(poly, Poly):
raise ValueError("{} must be a Poly instance.".format(poly))
if not poly.is_monic:
raise ValueError("{} must be a monic polynomial.".format(poly))
if not poly.is_univariate:
raise ValueError(
"{} must be a univariate polynomial.".format(poly))
size = poly.degree()
if not size >= 1:
raise ValueError(
"{} must have degree not less than 1.".format(poly))
coeffs = poly.all_coeffs()
def entry(i, j):
if j == size - 1:
return -coeffs[-1 - i]
elif i == j + 1:
return kls.one
return kls.zero
return kls._new(size, size, entry)
@classmethod
def wilkinson(kls, n, **kwargs):
"""Returns two square Wilkinson Matrix of size 2*n + 1
$W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n)
Examples
========
>>> from sympy import Matrix
>>> wminus, wplus = Matrix.wilkinson(3)
>>> wminus
Matrix([
[-3, 1, 0, 0, 0, 0, 0],
[ 1, -2, 1, 0, 0, 0, 0],
[ 0, 1, -1, 1, 0, 0, 0],
[ 0, 0, 1, 0, 1, 0, 0],
[ 0, 0, 0, 1, 1, 1, 0],
[ 0, 0, 0, 0, 1, 2, 1],
[ 0, 0, 0, 0, 0, 1, 3]])
>>> wplus
Matrix([
[3, 1, 0, 0, 0, 0, 0],
[1, 2, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 1, 3]])
References
==========
.. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/
.. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp.
"""
klass = kwargs.get('cls', kls)
n = as_int(n)
return klass._eval_wilkinson(n)
class MatrixProperties(MatrixRequired):
"""Provides basic properties of a matrix."""
def _eval_atoms(self, *types):
result = set()
for i in self:
result.update(i.atoms(*types))
return result
def _eval_free_symbols(self):
return set().union(*(i.free_symbols for i in self if i))
def _eval_has(self, *patterns):
return any(a.has(*patterns) for a in self)
def _eval_is_anti_symmetric(self, simpfunc):
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
return False
return True
def _eval_is_diagonal(self):
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
# _eval_is_hermitian is called by some general SymPy
# routines and has a different *args signature. Make
# sure the names don't clash by adding `_matrix_` in name.
def _eval_is_matrix_hermitian(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
return mat.is_zero_matrix
def _eval_is_Identity(self) -> FuzzyBool:
def dirac(i, j):
if i == j:
return 1
return 0
return all(self[i, j] == dirac(i, j)
for i in range(self.rows)
for j in range(self.cols))
def _eval_is_lower_hessenberg(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
def _eval_is_lower(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
def _eval_is_symbolic(self):
return self.has(Symbol)
def _eval_is_symmetric(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
return mat.is_zero_matrix
def _eval_is_zero_matrix(self):
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero is None for i in self):
return None
return True
def _eval_is_upper_hessenberg(self):
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(min(self.cols, (i - 1))))
def _eval_values(self):
return [i for i in self if not i.is_zero]
def _has_positive_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and(x.is_positive for x in diagonal_entries)
def _has_nonnegative_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and(x.is_nonnegative for x in diagonal_entries)
def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
>>> Matrix([[x, y], [y, x]])
Matrix([
[x, y],
[y, x]])
>>> _.atoms()
{x, y}
"""
types = tuple(t if isinstance(t, type) else type(t) for t in types)
if not types:
types = (Atom,)
return self._eval_atoms(*types)
@property
def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}
"""
return self._eval_free_symbols()
def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
"""
return self._eval_has(*patterns)
def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2, 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite would not
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If ``simplify=False`` is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_anti_symmetric(simpfunc)
def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
sympy.matrices.matrices.MatrixEigen.is_diagonalizable
diagonalize
"""
return self._eval_is_diagonal()
@property
def is_weakly_diagonally_dominant(self):
r"""Tests if the matrix is row weakly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row weakly diagonally dominant if
.. math::
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_weakly_diagonally_dominant
True
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_weakly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_weakly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_nonnegative
return fuzzy_and(test_row(i) for i in range(rows))
@property
def is_strongly_diagonally_dominant(self):
r"""Tests if the matrix is row strongly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row strongly diagonally dominant if
.. math::
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_strongly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_positive
return fuzzy_and(test_row(i) for i in range(rows))
@property
def is_hermitian(self):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
if not self.is_square:
return False
return self._eval_is_matrix_hermitian(_simplify)
@property
def is_Identity(self) -> FuzzyBool:
if not self.is_square:
return False
return self._eval_is_Identity()
@property
def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return self._eval_is_lower_hessenberg()
@property
def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return self._eval_is_lower()
@property
def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return self._eval_is_symbolic()
def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_symmetric(simpfunc)
@property
def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return self._eval_is_upper_hessenberg()
@property
def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(min(i, self.cols)))
@property
def is_zero_matrix(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero_matrix
True
>>> b.is_zero_matrix
True
>>> c.is_zero_matrix
False
>>> d.is_zero_matrix
True
>>> e.is_zero_matrix
"""
return self._eval_is_zero_matrix()
def values(self):
"""Return non-zero values of self."""
return self._eval_values()
class MatrixOperations(MatrixRequired):
"""Provides basic matrix shape and elementwise
operations. Should not be instantiated directly."""
def _eval_adjoint(self):
return self.transpose().conjugate()
def _eval_applyfunc(self, f):
out = self._new(self.rows, self.cols, [f(x) for x in self])
return out
def _eval_as_real_imag(self): # type: ignore
return (self.applyfunc(re), self.applyfunc(im))
def _eval_conjugate(self):
return self.applyfunc(lambda x: x.conjugate())
def _eval_permute_cols(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[i, mapping[j]]
return self._new(self.rows, self.cols, entry)
def _eval_permute_rows(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[mapping[i], j]
return self._new(self.rows, self.cols, entry)
def _eval_trace(self):
return sum(self[i, i] for i in range(self.rows))
def _eval_transpose(self):
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self._eval_adjoint()
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
return self._eval_applyfunc(f)
def as_real_imag(self, deep=True, **hints):
"""Returns a tuple containing the (real, imaginary) part of matrix."""
# XXX: Ignoring deep and hints...
return self._eval_as_real_imag()
def conjugate(self):
"""Return the by-element conjugation.
Examples
========
>>> from sympy import SparseMatrix, I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([
[1, 2 + I],
[3, 4],
[I, -I]])
>>> a.C
Matrix([
[ 1, 2 - I],
[ 3, 4],
[-I, I]])
See Also
========
transpose: Matrix transposition
H: Hermite conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self._eval_conjugate()
def doit(self, **hints):
return self.applyfunc(lambda x: x.doit(**hints))
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""Apply evalf() to each element of self."""
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
'quad':quad, 'verbose':verbose}
return self.applyfunc(lambda i: i.evalf(n, **options))
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
@property
def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self.T.C
def permute(self, perm, orientation='rows', direction='forward'):
r"""Permute the rows or columns of a matrix by the given list of
swaps.
Parameters
==========
perm : Permutation, list, or list of lists
A representation for the permutation.
If it is ``Permutation``, it is used directly with some
resizing with respect to the matrix size.
If it is specified as list of lists,
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
from applying the product of cycles. The direction how the
cyclic product is applied is described in below.
If it is specified as a list, the list should represent
an array form of a permutation. (e.g., ``[1, 2, 0]``) which
would would form the swapping function
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
orientation : 'rows', 'cols'
A flag to control whether to permute the rows or the columns
direction : 'forward', 'backward'
A flag to control whether to apply the permutations from
the start of the list first, or from the back of the list
first.
For example, if the permutation specification is
``[[0, 1], [0, 2]]``,
If the flag is set to ``'forward'``, the cycle would be
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
If the flag is set to ``'backward'``, the cycle would be
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
If the argument ``perm`` is not in a form of list of lists,
this flag takes no effect.
Examples
========
>>> from sympy import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> from sympy import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Notes
=====
If a bijective function
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
permutation.
If the matrix `A` is the matrix to permute, represented as
a horizontal or a vertical stack of vectors:
.. math::
A =
\begin{bmatrix}
a_0 \\ a_1 \\ \vdots \\ a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
\end{bmatrix}
If the matrix `B` is the result, the permutation of matrix rows
is defined as:
.. math::
B := \begin{bmatrix}
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
\end{bmatrix}
And the permutation of matrix columns is defined as:
.. math::
B := \begin{bmatrix}
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
\cdots & \alpha_{\sigma(n-1)}
\end{bmatrix}
"""
from sympy.combinatorics import Permutation
# allow british variants and `columns`
if direction == 'forwards':
direction = 'forward'
if direction == 'backwards':
direction = 'backward'
if orientation == 'columns':
orientation = 'cols'
if direction not in ('forward', 'backward'):
raise TypeError("direction='{}' is an invalid kwarg. "
"Try 'forward' or 'backward'".format(direction))
if orientation not in ('rows', 'cols'):
raise TypeError("orientation='{}' is an invalid kwarg. "
"Try 'rows' or 'cols'".format(orientation))
if not isinstance(perm, (Permutation, Iterable)):
raise ValueError(
"{} must be a list, a list of lists, "
"or a SymPy permutation object.".format(perm))
# ensure all swaps are in range
max_index = self.rows if orientation == 'rows' else self.cols
if not all(0 <= t <= max_index for t in flatten(list(perm))):
raise IndexError("`swap` indices out of range.")
if perm and not isinstance(perm, Permutation) and \
isinstance(perm[0], Iterable):
if direction == 'forward':
perm = list(reversed(perm))
perm = Permutation(perm, size=max_index+1)
else:
perm = Permutation(perm, size=max_index+1)
if orientation == 'rows':
return self._eval_permute_rows(perm)
if orientation == 'cols':
return self._eval_permute_cols(perm)
def permute_cols(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='cols', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='cols', direction=direction)
def permute_rows(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='rows', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='rows', direction=direction)
def refine(self, assumptions=True):
"""Apply refine to each element of the matrix.
Examples
========
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([
[ Abs(x)**2, sqrt(x**2)],
[sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([
[ x**2, Abs(x)],
[Abs(x), x**2]])
"""
return self.applyfunc(lambda x: refine(x, assumptions))
def replace(self, F, G, map=False, simultaneous=True, exact=None):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
return self.applyfunc(
lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact))
def rot90(self, k=1):
"""Rotates Matrix by 90 degrees
Parameters
==========
k : int
Specifies how many times the matrix is rotated by 90 degrees
(clockwise when positive, counter-clockwise when negative).
Examples
========
>>> from sympy import Matrix, symbols
>>> A = Matrix(2, 2, symbols('a:d'))
>>> A
Matrix([
[a, b],
[c, d]])
Rotating the matrix clockwise one time:
>>> A.rot90(1)
Matrix([
[c, a],
[d, b]])
Rotating the matrix anticlockwise two times:
>>> A.rot90(-2)
Matrix([
[d, c],
[b, a]])
"""
mod = k%4
if mod == 0:
return self
if mod == 1:
return self[::-1, ::].T
if mod == 2:
return self[::-1, ::-1]
if mod == 3:
return self[::, ::-1].T
def simplify(self, **kwargs):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, sin, cos
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(**kwargs))
def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
args = (list(args[0]),)
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
def trace(self):
"""
Returns the trace of a square matrix i.e. the sum of the
diagonal elements.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
return self._eval_trace()
def transpose(self):
"""
Returns the transpose of the matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([
[1, 3],
[2, 4]])
>>> from sympy import Matrix, I
>>> m=Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m.transpose()
Matrix([
[ 1, 3],
[2 + I, 4]])
>>> m.T == m.transpose()
True
See Also
========
conjugate: By-element conjugation
"""
return self._eval_transpose()
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
@property
def C(self):
'''By-element conjugation'''
return self.conjugate()
def n(self, *args, **kwargs):
"""Apply evalf() to each element of self."""
return self.evalf(*args, **kwargs)
def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
def _eval_simplify(self, **kwargs):
# XXX: We can't use self.simplify here as mutable subclasses will
# override simplify and have it return None
return MatrixOperations.simplify(self, **kwargs)
def _eval_trigsimp(self, **opts):
from sympy.simplify.trigsimp import trigsimp
return self.applyfunc(lambda x: trigsimp(x, **opts))
def upper_triangular(self, k=0):
"""returns the elements on and above the kth diagonal of a matrix.
If k is not specified then simply returns upper-triangular portion
of a matrix
Examples
========
>>> from sympy import ones
>>> A = ones(4)
>>> A.upper_triangular()
Matrix([
[1, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 0, 0, 1]])
>>> A.upper_triangular(2)
Matrix([
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0],
[0, 0, 0, 0]])
>>> A.upper_triangular(-1)
Matrix([
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1]])
"""
def entry(i, j):
return self[i, j] if i + k <= j else self.zero
return self._new(self.rows, self.cols, entry)
def lower_triangular(self, k=0):
"""returns the elements on and below the kth diagonal of a matrix.
If k is not specified then simply returns lower-triangular portion
of a matrix
Examples
========
>>> from sympy import ones
>>> A = ones(4)
>>> A.lower_triangular()
Matrix([
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1]])
>>> A.lower_triangular(-2)
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 1, 0, 0]])
>>> A.lower_triangular(1)
Matrix([
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]])
"""
def entry(i, j):
return self[i, j] if i + k >= j else self.zero
return self._new(self.rows, self.cols, entry)
class MatrixArithmetic(MatrixRequired):
"""Provides basic matrix arithmetic operations.
Should not be instantiated directly."""
_op_priority = 10.01
def _eval_Abs(self):
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
def _eval_add(self, other):
return self._new(self.rows, self.cols,
lambda i, j: self[i, j] + other[i, j])
def _eval_matrix_mul(self, other):
def entry(i, j):
vec = [self[i,k]*other[k,j] for k in range(self.cols)]
try:
return Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
return reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, entry)
def _eval_matrix_mul_elementwise(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
def _eval_matrix_rmul(self, other):
def entry(i, j):
return sum(other[i,k]*self[k,j] for k in range(other.cols))
return self._new(other.rows, self.cols, entry)
def _eval_pow_by_recursion(self, num):
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion(num - 1)
else:
a = b = self._eval_pow_by_recursion(num // 2)
return a.multiply(b)
def _eval_pow_by_cayley(self, exp):
from sympy.discrete.recurrences import linrec_coeffs
row = self.shape[0]
p = self.charpoly()
coeffs = (-p).all_coeffs()[1:]
coeffs = linrec_coeffs(coeffs, exp)
new_mat = self.eye(row)
ans = self.zeros(row)
for i in range(row):
ans += coeffs[i]*new_mat
new_mat *= self
return ans
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
if prevsimp is None:
prevsimp = [True]*len(self)
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
prevsimp=prevsimp)
else:
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
prevsimp=prevsimp)
m = a.multiply(b, dotprodsimp=False)
lenm = len(m)
elems = [None]*lenm
for i in range(lenm):
if prevsimp[i]:
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
else:
elems[i] = m[i]
return m._new(m.rows, m.cols, elems)
def _eval_scalar_mul(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
def _eval_scalar_rmul(self, other):
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
def _eval_Mod(self, other):
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
# Python arithmetic functions
def __abs__(self):
"""Returns a new matrix with entry-wise absolute values."""
return self._eval_Abs()
@call_highest_priority('__radd__')
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes do not match."""
if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented
return NotImplemented
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape'):
if self.shape != other.shape:
raise ShapeError("Matrix size mismatch: %s + %s" % (
self.shape, other.shape))
# honest SymPy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
# call the highest-priority class's _eval_add
a, b = self, other
if a.__class__ != classof(a, b):
b, a = a, b
return a._eval_add(b)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_add(self, other)
raise TypeError('cannot add %s and %s' % (type(self), type(other)))
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * (self.one / other)
@call_highest_priority('__rmatmul__')
def __matmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__mul__(other)
def __mod__(self, other):
return self.applyfunc(lambda x: x % other)
@call_highest_priority('__rmul__')
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
return self.multiply(other)
def multiply(self, other, dotprodsimp=None):
"""Same as __mul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[1] != other.shape[0]:
raise ShapeError("Matrix size mismatch: %s * %s." % (
self.shape, other.shape))
# honest SymPy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_mul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_mul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_mul(other)
except TypeError:
pass
return NotImplemented
def multiply_elementwise(self, other):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.matrices.MatrixBase.cross
sympy.matrices.matrices.MatrixBase.dot
multiply
"""
if self.shape != other.shape:
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
return self._eval_matrix_mul_elementwise(other)
def __neg__(self):
return self._eval_scalar_mul(-1)
@call_highest_priority('__rpow__')
def __pow__(self, exp):
"""Return self**exp a scalar or symbol."""
return self.pow(exp)
def pow(self, exp, method=None):
r"""Return self**exp a scalar or symbol.
Parameters
==========
method : multiply, mulsimp, jordan, cayley
If multiply then it returns exponentiation using recursion.
If jordan then Jordan form exponentiation will be used.
If cayley then the exponentiation is done using Cayley-Hamilton
theorem.
If mulsimp then the exponentiation is done using recursion
with dotprodsimp. This specifies whether intermediate term
algebraic simplification is used during naive matrix power to
control expression blowup and thus speed up calculation.
If None, then it heuristically decides which method to use.
"""
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
raise TypeError('No such method')
if self.rows != self.cols:
raise NonSquareMatrixError()
a = self
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
exp = sympify(exp)
if exp.is_zero:
return a._new(a.rows, a.cols, lambda i, j: int(i == j))
if exp == 1:
return a
diagonal = getattr(a, 'is_diagonal', None)
if diagonal is not None and diagonal():
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
if exp.is_Number and exp % 1 == 0:
if a.rows == 1:
return a._new([[a[0]**exp]])
if exp < 0:
exp = -exp
a = a.inv()
# When certain conditions are met,
# Jordan block algorithm is faster than
# computation by recursion.
if method == 'jordan':
try:
return jordan_pow(exp)
except MatrixError:
if method == 'jordan':
raise
elif method == 'cayley':
if not exp.is_Number or exp % 1 != 0:
raise ValueError("cayley method is only valid for integer powers")
return a._eval_pow_by_cayley(exp)
elif method == "mulsimp":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("mulsimp method is only valid for integer powers")
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif method == "multiply":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("multiply method is only valid for integer powers")
return a._eval_pow_by_recursion(exp)
elif method is None and exp.is_Number and exp % 1 == 0:
# Decide heuristically which method to apply
if a.rows == 2 and exp > 100000:
return jordan_pow(exp)
elif _get_intermediate_simp_bool(True, None):
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif exp > 10000:
return a._eval_pow_by_cayley(exp)
else:
return a._eval_pow_by_recursion(exp)
if jordan_pow:
try:
return jordan_pow(exp)
except NonInvertibleMatrixError:
# Raised by jordan_pow on zero determinant matrix unless exp is
# definitely known to be a non-negative integer.
# Here we raise if n is definitely not a non-negative integer
# but otherwise we can leave this as an unevaluated MatPow.
if exp.is_integer is False or exp.is_nonnegative is False:
raise
from sympy.matrices.expressions import MatPow
return MatPow(a, exp)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
@call_highest_priority('__matmul__')
def __rmatmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__rmul__(other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self.rmultiply(other)
def rmultiply(self, other, dotprodsimp=None):
"""Same as __rmul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[0] != other.shape[1]:
raise ShapeError("Matrix size mismatch.")
# honest SymPy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_rmul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_rmul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_rmul(other)
except TypeError:
pass
return NotImplemented
@call_highest_priority('__sub__')
def __rsub__(self, a):
return (-self) + a
@call_highest_priority('__rsub__')
def __sub__(self, a):
return self + (-a)
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
MatrixSpecial, MatrixShaping):
"""All common matrix operations including basic arithmetic, shaping,
and special matrices like `zeros`, and `eye`."""
_diff_wrt = True # type: bool
class _MinimalMatrix:
"""Class providing the minimum functionality
for a matrix-like object and implementing every method
required for a `MatrixRequired`. This class does not have everything
needed to become a full-fledged SymPy object, but it will satisfy the
requirements of anything inheriting from `MatrixRequired`. If you wish
to make a specialized matrix type, make sure to implement these
methods and properties with the exception of `__init__` and `__repr__`
which are included for convenience."""
is_MatrixLike = True
_sympify = staticmethod(sympify)
_class_priority = 3
zero = S.Zero
one = S.One
is_Matrix = True
is_MatrixExpr = False
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args, **kwargs)
def __init__(self, rows, cols=None, mat=None, copy=False):
if isfunction(mat):
# if we passed in a function, use that to populate the indices
mat = list(mat(i, j) for i in range(rows) for j in range(cols))
if cols is None and mat is None:
mat = rows
rows, cols = getattr(mat, 'shape', (rows, cols))
try:
# if we passed in a list of lists, flatten it and set the size
if cols is None and mat is None:
mat = rows
cols = len(mat[0])
rows = len(mat)
mat = [x for l in mat for x in l]
except (IndexError, TypeError):
pass
self.mat = tuple(self._sympify(x) for x in mat)
self.rows, self.cols = rows, cols
if self.rows is None or self.cols is None:
raise NotImplementedError("Cannot initialize matrix with given parameters")
def __getitem__(self, key):
def _normalize_slices(row_slice, col_slice):
"""Ensure that row_slice and col_slice do not have
`None` in their arguments. Any integers are converted
to slices of length 1"""
if not isinstance(row_slice, slice):
row_slice = slice(row_slice, row_slice + 1, None)
row_slice = slice(*row_slice.indices(self.rows))
if not isinstance(col_slice, slice):
col_slice = slice(col_slice, col_slice + 1, None)
col_slice = slice(*col_slice.indices(self.cols))
return (row_slice, col_slice)
def _coord_to_index(i, j):
"""Return the index in _mat corresponding
to the (i,j) position in the matrix. """
return i * self.cols + j
if isinstance(key, tuple):
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
# if the coordinates are not slices, make them so
# and expand the slices so they don't contain `None`
i, j = _normalize_slices(i, j)
rowsList, colsList = list(range(self.rows))[i], \
list(range(self.cols))[j]
indices = (i * self.cols + j for i in rowsList for j in
colsList)
return self._new(len(rowsList), len(colsList),
list(self.mat[i] for i in indices))
# if the key is a tuple of ints, change
# it to an array index
key = _coord_to_index(i, j)
return self.mat[key]
def __eq__(self, other):
try:
classof(self, other)
except TypeError:
return False
return (
self.shape == other.shape and list(self) == list(other))
def __len__(self):
return self.rows*self.cols
def __repr__(self):
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
self.mat)
@property
def shape(self):
return (self.rows, self.cols)
class _CastableMatrix: # this is needed here ONLY FOR TESTS.
def as_mutable(self):
return self
def as_immutable(self):
return self
class _MatrixWrapper:
"""Wrapper class providing the minimum functionality for a matrix-like
object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix
math operations should work on matrix-like objects. This one is intended for
matrix-like objects which use the same indexing format as SymPy with respect
to returning matrix elements instead of rows for non-tuple indexes.
"""
is_Matrix = False # needs to be here because of __getattr__
is_MatrixLike = True
def __init__(self, mat, shape):
self.mat = mat
self.shape = shape
self.rows, self.cols = shape
def __getitem__(self, key):
if isinstance(key, tuple):
return sympify(self.mat.__getitem__(key))
return sympify(self.mat.__getitem__((key // self.rows, key % self.cols)))
def __iter__(self): # supports numpy.matrix and numpy.array
mat = self.mat
cols = self.cols
return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols))
class MatrixKind(Kind):
"""
Kind for all matrices in SymPy.
Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``,
but any expression representing the matrix can have this.
Parameters
==========
element_kind : Kind
Kind of the element. Default is
:class:`sympy.core.kind.NumberKind`,
which means that the matrix contains only numbers.
Examples
========
Any instance of matrix class has ``MatrixKind``:
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 2,2)
>>> A.kind
MatrixKind(NumberKind)
Although expression representing a matrix may be not instance of
matrix class, it will have ``MatrixKind`` as well:
>>> from sympy import MatrixExpr, Integral
>>> from sympy.abc import x
>>> intM = Integral(A, x)
>>> isinstance(intM, MatrixExpr)
False
>>> intM.kind
MatrixKind(NumberKind)
Use ``isinstance()`` to check for ``MatrixKind`` without specifying
the element kind. Use ``is`` with specifying the element kind:
>>> from sympy import Matrix
>>> from sympy.core import NumberKind
>>> from sympy.matrices import MatrixKind
>>> M = Matrix([1, 2])
>>> isinstance(M.kind, MatrixKind)
True
>>> M.kind is MatrixKind(NumberKind)
True
See Also
========
sympy.core.kind.NumberKind
sympy.core.kind.UndefinedKind
sympy.core.containers.TupleKind
sympy.sets.sets.SetKind
"""
def __new__(cls, element_kind=NumberKind):
obj = super().__new__(cls, element_kind)
obj.element_kind = element_kind
return obj
def __repr__(self):
return "MatrixKind(%s)" % self.element_kind
def _matrixify(mat):
"""If `mat` is a Matrix or is matrix-like,
return a Matrix or MatrixWrapper object. Otherwise
`mat` is passed through without modification."""
if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False):
return mat
if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)):
return mat
shape = None
if hasattr(mat, 'shape'): # numpy, scipy.sparse
if len(mat.shape) == 2:
shape = mat.shape
elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath
shape = (mat.rows, mat.cols)
if shape:
return _MatrixWrapper(mat, shape)
return mat
def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if not isinstance(j, int):
jindex = getattr(j, '__index__', None)
if jindex is not None:
j = jindex()
else:
raise IndexError("Invalid index a[%r]" % (j,))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j,))
return int(j)
def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.common import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
"""
priority_A = getattr(A, '_class_priority', None)
priority_B = getattr(B, '_class_priority', None)
if None not in (priority_A, priority_B):
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
try:
import numpy
except ImportError:
pass
else:
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
cbbae9b2c926baec5567fc273fa3a73b54414e63afd53c94ff537b75f2781b3c | import random
from sympy.core.basic import Basic
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import is_sequence
from .common import ShapeError
from .decompositions import _cholesky, _LDLdecomposition
from .matrices import MatrixBase
from .repmatrix import MutableRepMatrix, RepMatrix
from .solvers import _lower_triangular_solve, _upper_triangular_solve
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
class DenseMatrix(RepMatrix):
"""Matrix implementation based on DomainMatrix as the internal representation"""
#
# DenseMatrix is a superclass for both MutableDenseMatrix and
# ImmutableDenseMatrix. Methods shared by both classes but not for the
# Sparse classes should be implemented here.
#
is_MatrixExpr = False # type: bool
_op_priority = 10.01
_class_priority = 4
@property
def _mat(self):
sympy_deprecation_warning(
"""
The private _mat attribute of Matrix is deprecated. Use the
.flat() method instead.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-private-matrix-attributes"
)
return self.flat()
def _eval_inverse(self, **kwargs):
return self.inv(method=kwargs.get('method', 'GE'),
iszerofunc=kwargs.get('iszerofunc', _iszero),
try_block_diag=kwargs.get('try_block_diag', False))
def as_immutable(self):
"""Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls
return cls._fromrep(self._rep.copy())
def as_mutable(self):
"""Returns a mutable version of this matrix
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return Matrix(self)
def cholesky(self, hermitian=True):
return _cholesky(self, hermitian=hermitian)
def LDLdecomposition(self, hermitian=True):
return _LDLdecomposition(self, hermitian=hermitian)
def lower_triangular_solve(self, rhs):
return _lower_triangular_solve(self, rhs)
def upper_triangular_solve(self, rhs):
return _upper_triangular_solve(self, rhs)
cholesky.__doc__ = _cholesky.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
def _force_mutable(x):
"""Return a matrix as a Matrix, otherwise return x."""
if getattr(x, 'is_Matrix', False):
return x.as_mutable()
elif isinstance(x, Basic):
return x
elif hasattr(x, '__array__'):
a = x.__array__()
if len(a.shape) == 0:
return sympify(a)
return Matrix(x)
return x
class MutableDenseMatrix(DenseMatrix, MutableRepMatrix):
def simplify(self, **kwargs):
"""Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also
========
sympy.simplify.simplify.simplify
"""
from sympy.simplify.simplify import simplify as _simplify
for (i, j), element in self.todok().items():
self[i, j] = _simplify(element, **kwargs)
MutableMatrix = Matrix = MutableDenseMatrix
###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray
###########
def list2numpy(l, dtype=object): # pragma: no cover
"""Converts Python list of SymPy expressions to a NumPy array.
See Also
========
matrix2numpy
"""
from numpy import empty
a = empty(len(l), dtype)
for i, s in enumerate(l):
a[i] = s
return a
def matrix2numpy(m, dtype=object): # pragma: no cover
"""Converts SymPy's matrix to a NumPy array.
See Also
========
list2numpy
"""
from numpy import empty
a = empty(m.shape, dtype)
for i in range(m.rows):
for j in range(m.cols):
a[i, j] = m[i, j]
return a
def rot_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis.
For a right-handed coordinate system, this corresponds to a
clockwise rotation.
Examples
========
>>> from sympy import pi, rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
###########
# Rotation matrices in 3D:
# rot_axis[123], rot_ccw_axis[123]
###########
def rot_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis.
For a right-handed coordinate system, this corresponds to a
clockwise rotation.
Examples
========
>>> from sympy import pi, rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([
[ 1/2, 0, -sqrt(3)/2],
[ 0, 1, 0],
[sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, 0, -st),
(0, 1, 0),
(st, 0, ct))
return Matrix(lil)
def rot_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis.
For a right-handed coordinate system, this corresponds to a
clockwise rotation.
Examples
========
>>> from sympy import pi, rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
See Also
========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((1, 0, 0),
(0, ct, st),
(0, -st, ct))
return Matrix(lil)
def rot_ccw_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis.
For a right-handed coordinate system, this corresponds to a
counterclockwise rotation.
Examples
========
>>> from sympy import pi, rot_ccw_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_ccw_axis3(theta)
Matrix([
[ 1/2, -sqrt(3)/2, 0],
[sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_ccw_axis3(pi/2)
Matrix([
[0, -1, 0],
[1, 0, 0],
[0, 0, 1]])
See Also
========
rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
return rot_axis3(-theta)
def rot_ccw_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis.
For a right-handed coordinate system, this corresponds to a
counterclockwise rotation.
Examples
========
>>> from sympy import pi, rot_ccw_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_ccw_axis2(theta)
Matrix([
[ 1/2, 0, sqrt(3)/2],
[ 0, 1, 0],
[-sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_ccw_axis2(pi/2)
Matrix([
[ 0, 0, 1],
[ 0, 1, 0],
[-1, 0, 0]])
See Also
========
rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
return rot_axis2(-theta)
def rot_ccw_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis.
For a right-handed coordinate system, this corresponds to a
counterclockwise rotation.
Examples
========
>>> from sympy import pi, rot_ccw_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_ccw_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, -sqrt(3)/2],
[0, sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_ccw_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, -1],
[0, 1, 0]])
See Also
========
rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
return rot_axis1(-theta)
@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs): # pragma: no cover
r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a
non-empty prefix if you want your symbols to be unique for different output
arrays, as SymPy symbols with identical names are the same object.
Parameters
----------
prefix : string
A prefix prepended to the name of every symbol.
shape : int or tuple
Shape of the created array. If an int, the array is one-dimensional; for
more than one dimension the shape must be a tuple.
\*\*kwargs : dict
keyword arguments passed on to Symbol
Examples
========
These doctests require numpy.
>>> from sympy import symarray
>>> symarray('', 3)
[_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must*
provide unique prefixes:
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
[a_1_0 a_1_1 a_1_2]]
>>> symarray('a', (2, 3, 2))
[[[a_0_0_0 a_0_0_1]
[a_0_1_0 a_0_1_1]
[a_0_2_0 a_0_2_1]]
<BLANKLINE>
[[a_1_0_0 a_1_0_1]
[a_1_1_0 a_1_1_1]
[a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]
"""
from numpy import empty, ndindex
arr = empty(shape, dtype=object)
for index in ndindex(shape):
arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
**kwargs)
return arr
###############
# Functions
###############
def casoratian(seqs, n, zero=True):
"""Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set
of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian,
denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) +
| a(n+1) b(n+1) . . . z(n+1) |
| . . . . |
| . . . . |
| . . . . |
+ a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied
to a generating set of a recurrence to factor out linearly
dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0
True
"""
seqs = list(map(sympify, seqs))
if not zero:
f = lambda i, j: seqs[j].subs(n, n + i)
else:
f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs):
"""Create square identity matrix n x n
See Also
========
diag
zeros
ones
"""
return Matrix.eye(*args, **kwargs)
def diag(*values, strict=True, unpack=False, **kwargs):
"""Returns a matrix with the provided values placed on the
diagonal. If non-square matrices are included, they will
produce a block-diagonal matrix.
Examples
========
This version of diag is a thin wrapper to Matrix.diag that differs
in that it treats all lists like matrices -- even when a single list
is given. If this is not desired, either put a `*` before the list or
set `unpack=True`.
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag([1, 2, 3]) # a column vector
Matrix([
[1],
[2],
[3]])
See Also
========
.common.MatrixCommon.eye
.common.MatrixCommon.diagonal - to extract a diagonal
.common.MatrixCommon.diag
.expressions.blockmatrix.BlockMatrix
"""
return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
def GramSchmidt(vlist, orthonormal=False):
"""Apply the Gram-Schmidt process to a set of vectors.
Parameters
==========
vlist : List of Matrix
Vectors to be orthogonalized for.
orthonormal : Bool, optional
If true, return an orthonormal basis.
Returns
=======
vlist : List of Matrix
Orthogonalized vectors
Notes
=====
This routine is mostly duplicate from ``Matrix.orthogonalize``,
except for some difference that this always raises error when
linearly dependent vectors are found, and the keyword ``normalize``
has been named as ``orthonormal`` in this function.
See Also
========
.matrices.MatrixSubspaces.orthogonalize
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
return MutableDenseMatrix.orthogonalize(
*vlist, normalize=orthonormal, rankcheck=True
)
def hessian(f, varlist, constraints=()):
"""Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of
constraints may optionally be given.
Examples
========
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
[ d d ]
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 dy dx ]
[ dx ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
[dy dy dx 2 ]
[ dy ]
References
==========
.. [1] https://en.wikipedia.org/wiki/Hessian_matrix
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
wronskian
"""
# f is the expression representing a function f, return regular matrix
if isinstance(varlist, MatrixBase):
if 1 not in varlist.shape:
raise ShapeError("`varlist` must be a column or row vector.")
if varlist.cols == 1:
varlist = varlist.T
varlist = varlist.tolist()[0]
if is_sequence(varlist):
n = len(varlist)
if not n:
raise ShapeError("`len(varlist)` must not be zero.")
else:
raise ValueError("Improper variable list in hessian function")
if not getattr(f, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
m = len(constraints)
N = m + n
out = zeros(N)
for k, g in enumerate(constraints):
if not getattr(g, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
for i in range(n):
out[k, i + m] = g.diff(varlist[i])
for i in range(n):
for j in range(i, n):
out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
for i in range(N):
for j in range(i + 1, N):
out[j, i] = out[i, j]
return out
def jordan_cell(eigenval, n):
"""
Create a Jordan block:
Examples
========
>>> from sympy import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
"""
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B):
"""Return the Hadamard product (elementwise product) of A and B
>>> from sympy import Matrix, matrix_multiply_elementwise
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.common.MatrixCommon.__mul__
"""
return A.multiply_elementwise(B)
def ones(*args, **kwargs):
"""Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
zeros
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
percent=100, prng=None):
"""Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be
square. If ``percent`` is less than 100 then only approximately the given
percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the
following way.
* If ``prng`` is supplied, it will be used as random number generator.
It should be an instance of ``random.Random``, or at least have
``randint`` and ``shuffle`` methods with same signatures.
* if ``prng`` is not supplied but ``seed`` is supplied, then new
``random.Random`` with given ``seed`` will be created;
* otherwise, a new ``random.Random`` with default seed will be used.
Examples
========
>>> from sympy import randMatrix
>>> randMatrix(3) # doctest:+SKIP
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2) # doctest:+SKIP
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True) # doctest:+SKIP
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
[77, 70, 0],
[70, 0, 0],
[ 0, 0, 88]
"""
# Note that ``Random()`` is equivalent to ``Random(None)``
prng = prng or random.Random(seed)
if c is None:
c = r
if symmetric and r != c:
raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
ij = range(r * c)
if percent != 100:
ij = prng.sample(ij, int(len(ij)*percent // 100))
m = zeros(r, c)
if not symmetric:
for ijk in ij:
i, j = divmod(ijk, c)
m[i, j] = prng.randint(min, max)
else:
for ijk in ij:
i, j = divmod(ijk, c)
if i <= j:
m[i, j] = m[j, i] = prng.randint(min, max)
return m
def wronskian(functions, var, method='bareiss'):
"""
Compute Wronskian for [] of functions
::
| f1 f2 ... fn |
| f1' f2' ... fn' |
| . . . . |
W(f1, ..., fn) = | . . . . |
| . . . . |
| (n) (n) (n) |
| D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
hessian
"""
functions = [sympify(f) for f in functions]
n = len(functions)
if n == 0:
return S.One
W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
return W.det(method)
def zeros(*args, **kwargs):
"""Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
ones
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.zeros(*args, **kwargs)
|
29123b48bc28448fb6dcac7de7f00c09455aaa2aef3783790e34b39da0b24583 | import mpmath as mp
from collections.abc import Callable
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.function import diff
from sympy.core.expr import Expr
from sympy.core.kind import _NumberKind, UndefinedKind
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol
from sympy.core.sympify import sympify, _sympify
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.complexes import re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta, LeviCivita
from sympy.polys import cancel
from sympy.printing import sstr
from sympy.printing.defaults import Printable
from sympy.printing.str import StrPrinter
from sympy.utilities.iterables import flatten, NotIterable, is_sequence, reshape
from sympy.utilities.misc import as_int, filldedent
from .common import (
MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError,
ShapeError, MatrixKind, a2idx)
from .utilities import _iszero, _is_zero_after_expand_mul, _simplify
from .determinant import (
_find_reasonable_pivot, _find_reasonable_pivot_naive,
_adjugate, _charpoly, _cofactor, _cofactor_matrix, _per,
_det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix)
from .reductions import _is_echelon, _echelon_form, _rank, _rref
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize
from .eigen import (
_eigenvals, _eigenvects,
_bidiagonalize, _bidiagonal_decomposition,
_is_diagonalizable, _diagonalize,
_is_positive_definite, _is_positive_semidefinite,
_is_negative_definite, _is_negative_semidefinite, _is_indefinite,
_jordan_form, _left_eigenvects, _singular_values)
from .decompositions import (
_rank_decomposition, _cholesky, _LDLdecomposition,
_LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF,
_singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition)
from .graph import (
_connected_components, _connected_components_decomposition,
_strongly_connected_components, _strongly_connected_components_decomposition)
from .solvers import (
_diagonal_solve, _lower_triangular_solve, _upper_triangular_solve,
_cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve,
_pinv_solve, _solve, _solve_least_squares)
from .inverse import (
_pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR,
_inv, _inv_block)
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % self.name
class MatrixDeterminant(MatrixCommon):
"""Provides basic matrix determinant operations. Should not be instantiated
directly. See ``determinant.py`` for their implementations."""
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
return _det_bareiss(self, iszerofunc=iszerofunc)
def _eval_det_berkowitz(self):
return _det_berkowitz(self)
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc)
def _eval_determinant(self): # for expressions.determinant.Determinant
return _det(self)
def adjugate(self, method="berkowitz"):
return _adjugate(self, method=method)
def charpoly(self, x='lambda', simplify=_simplify):
return _charpoly(self, x=x, simplify=simplify)
def cofactor(self, i, j, method="berkowitz"):
return _cofactor(self, i, j, method=method)
def cofactor_matrix(self, method="berkowitz"):
return _cofactor_matrix(self, method=method)
def det(self, method="bareiss", iszerofunc=None):
return _det(self, method=method, iszerofunc=iszerofunc)
def per(self):
return _per(self)
def minor(self, i, j, method="berkowitz"):
return _minor(self, i, j, method=method)
def minor_submatrix(self, i, j):
return _minor_submatrix(self, i, j)
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__
_eval_det_lu.__doc__ = _det_LU.__doc__
_eval_determinant.__doc__ = _det.__doc__
adjugate.__doc__ = _adjugate.__doc__
charpoly.__doc__ = _charpoly.__doc__
cofactor.__doc__ = _cofactor.__doc__
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__
det.__doc__ = _det.__doc__
per.__doc__ = _per.__doc__
minor.__doc__ = _minor.__doc__
minor_submatrix.__doc__ = _minor_submatrix.__doc__
class MatrixReductions(MatrixDeterminant):
"""Provides basic matrix row/column operations. Should not be instantiated
directly. See ``reductions.py`` for some of their implementations."""
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify,
with_pivots=with_pivots)
@property
def is_echelon(self):
return _is_echelon(self)
def rank(self, iszerofunc=_iszero, simplify=False):
return _rank(self, iszerofunc=iszerofunc, simplify=simplify)
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True,
normalize_last=True):
return _rref(self, iszerofunc=iszerofunc, simplify=simplify,
pivots=pivots, normalize_last=normalize_last)
echelon_form.__doc__ = _echelon_form.__doc__
is_echelon.__doc__ = _is_echelon.__doc__
rank.__doc__ = _rank.__doc__
rref.__doc__ = _rref.__doc__
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
"""Validate the arguments for a row/column operation. ``error_str``
can be one of "row" or "col" depending on the arguments being parsed."""
if op not in ["n->kn", "n<->m", "n->n+km"]:
raise ValueError("Unknown {} operation '{}'. Valid col operations "
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
# define self_col according to error_str
self_cols = self.cols if error_str == 'col' else self.rows
# normalize and validate the arguments
if op == "n->kn":
col = col if col is not None else col1
if col is None or k is None:
raise ValueError("For a {0} operation 'n->kn' you must provide the "
"kwargs `{0}` and `k`".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col))
elif op == "n<->m":
# we need two cols to swap. It does not matter
# how they were specified, so gather them together and
# remove `None`
cols = {col, k, col1, col2}.difference([None])
if len(cols) > 2:
# maybe the user left `k` by mistake?
cols = {col, col1, col2}.difference([None])
if len(cols) != 2:
raise ValueError("For a {0} operation 'n<->m' you must provide the "
"kwargs `{0}1` and `{0}2`".format(error_str))
col1, col2 = cols
if not 0 <= col1 < self_cols:
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col1))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2))
elif op == "n->n+km":
col = col1 if col is None else col
col2 = col1 if col2 is None else col2
if col is None or col2 is None or k is None:
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
if col == col2:
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
"be different.".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2))
else:
raise ValueError('invalid operation %s' % repr(op))
return op, col, k, col1, col2
def _eval_col_op_multiply_col_by_const(self, col, k):
def entry(i, j):
if j == col:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_swap(self, col1, col2):
def entry(i, j):
if j == col1:
return self[i, col2]
elif j == col2:
return self[i, col1]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
def entry(i, j):
if j == col:
return self[i, j] + k * self[i, col2]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_swap(self, row1, row2):
def entry(i, j):
if i == row1:
return self[row2, j]
elif i == row2:
return self[row1, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_multiply_row_by_const(self, row, k):
def entry(i, j):
if i == row:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
def entry(i, j):
if i == row:
return self[i, j] + k * self[row2, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
"""Performs the elementary column operation `op`.
`op` may be one of
* ``"n->kn"`` (column n goes to k*n)
* ``"n<->m"`` (swap column n and column m)
* ``"n->n+km"`` (column n goes to column n + k*column m)
Parameters
==========
op : string; the elementary row operation
col : the column to apply the column operation
k : the multiple to apply in the column operation
col1 : one column of a column swap
col2 : second column of a column swap or column "m" in the column operation
"n->n+km"
"""
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_col_op_multiply_col_by_const(col, k)
if op == "n<->m":
return self._eval_col_op_swap(col1, col2)
if op == "n->n+km":
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
"""Performs the elementary row operation `op`.
`op` may be one of
* ``"n->kn"`` (row n goes to k*n)
* ``"n<->m"`` (swap row n and row m)
* ``"n->n+km"`` (row n goes to row n + k*row m)
Parameters
==========
op : string; the elementary row operation
row : the row to apply the row operation
k : the multiple to apply in the row operation
row1 : one row of a row swap
row2 : second row of a row swap or row "m" in the row operation
"n->n+km"
"""
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_row_op_multiply_row_by_const(row, k)
if op == "n<->m":
return self._eval_row_op_swap(row1, row2)
if op == "n->n+km":
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
class MatrixSubspaces(MatrixReductions):
"""Provides methods relating to the fundamental subspaces of a matrix.
Should not be instantiated directly. See ``subspaces.py`` for their
implementations."""
def columnspace(self, simplify=False):
return _columnspace(self, simplify=simplify)
def nullspace(self, simplify=False, iszerofunc=_iszero):
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc)
def rowspace(self, simplify=False):
return _rowspace(self, simplify=simplify)
# This is a classmethod but is converted to such later in order to allow
# assignment of __doc__ since that does not work for already wrapped
# classmethods in Python 3.6.
def orthogonalize(cls, *vecs, **kwargs):
return _orthogonalize(cls, *vecs, **kwargs)
columnspace.__doc__ = _columnspace.__doc__
nullspace.__doc__ = _nullspace.__doc__
rowspace.__doc__ = _rowspace.__doc__
orthogonalize.__doc__ = _orthogonalize.__doc__
orthogonalize = classmethod(orthogonalize) # type:ignore
class MatrixEigen(MatrixSubspaces):
"""Provides basic matrix eigenvalue/vector operations.
Should not be instantiated directly. See ``eigen.py`` for their
implementations."""
def eigenvals(self, error_when_incomplete=True, **flags):
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags)
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
return _eigenvects(self, error_when_incomplete=error_when_incomplete,
iszerofunc=iszerofunc, **flags)
def is_diagonalizable(self, reals_only=False, **kwargs):
return _is_diagonalizable(self, reals_only=reals_only, **kwargs)
def diagonalize(self, reals_only=False, sort=False, normalize=False):
return _diagonalize(self, reals_only=reals_only, sort=sort,
normalize=normalize)
def bidiagonalize(self, upper=True):
return _bidiagonalize(self, upper=upper)
def bidiagonal_decomposition(self, upper=True):
return _bidiagonal_decomposition(self, upper=upper)
@property
def is_positive_definite(self):
return _is_positive_definite(self)
@property
def is_positive_semidefinite(self):
return _is_positive_semidefinite(self)
@property
def is_negative_definite(self):
return _is_negative_definite(self)
@property
def is_negative_semidefinite(self):
return _is_negative_semidefinite(self)
@property
def is_indefinite(self):
return _is_indefinite(self)
def jordan_form(self, calc_transform=True, **kwargs):
return _jordan_form(self, calc_transform=calc_transform, **kwargs)
def left_eigenvects(self, **flags):
return _left_eigenvects(self, **flags)
def singular_values(self):
return _singular_values(self)
eigenvals.__doc__ = _eigenvals.__doc__
eigenvects.__doc__ = _eigenvects.__doc__
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__
diagonalize.__doc__ = _diagonalize.__doc__
is_positive_definite.__doc__ = _is_positive_definite.__doc__
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__
is_negative_definite.__doc__ = _is_negative_definite.__doc__
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__
is_indefinite.__doc__ = _is_indefinite.__doc__
jordan_form.__doc__ = _jordan_form.__doc__
left_eigenvects.__doc__ = _left_eigenvects.__doc__
singular_values.__doc__ = _singular_values.__doc__
bidiagonalize.__doc__ = _bidiagonalize.__doc__
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__
class MatrixCalculus(MatrixCommon):
"""Provides calculus-related matrix operations."""
def diff(self, *args, **kwargs):
"""Calculate the derivative of each element in the matrix.
``args`` will be passed to the ``integrate`` function.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
# XXX this should be handled here rather than in Derivative
from sympy.tensor.array.array_derivatives import ArrayDerivative
kwargs.setdefault('evaluate', True)
deriv = ArrayDerivative(self, *args, evaluate=True)
if not isinstance(self, Basic):
return deriv.as_mutable()
else:
return deriv
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def integrate(self, *args, **kwargs):
"""Integrate each element of the matrix. ``args`` will
be passed to the ``integrate`` function.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self.applyfunc(lambda x: x.integrate(*args, **kwargs))
def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
Parameters
==========
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both ``self`` and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and ``self`` can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("``self`` must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
def limit(self, *args):
"""Calculate the limit of each element in the matrix.
``args`` will be passed to the ``limit`` function.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self.applyfunc(lambda x: x.limit(*args))
# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
"""A class to house deprecated matrix methods."""
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
return self.charpoly(x=x)
def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
return self.det(method='berkowitz')
def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return self.eigenvals(**flags)
def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = self.one, []
for poly in self.berkowitz():
minors.append(sign * poly[-1])
sign = -sign
return tuple(minors)
def berkowitz(self):
from sympy.matrices import zeros
berk = ((1,),)
if not self:
return berk
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0] * (N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A * items[i])
for i, B in enumerate(items):
items[i] = (R * B)[0, 0]
items = [self.one, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([self.one, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T * polys[i])
return berk + tuple(map(tuple, polys))
def cofactorMatrix(self, method="berkowitz"):
return self.cofactor_matrix(method=method)
def det_bareis(self):
return _det_bareiss(self)
def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareiss
berkowitz_det
"""
return self.det(method='lu')
def jordan_cell(self, eigenval, n):
return self.jordan_block(size=n, eigenvalue=eigenval)
def jordan_cells(self, calc_transformation=True):
P, J = self.jordan_form()
return P, J.get_diag_blocks()
def minorEntry(self, i, j, method="berkowitz"):
return self.minor(i, j, method=method)
def minorMatrix(self, i, j):
return self.minor_submatrix(i, j)
def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse."""
return self.permute_rows(perm, direction='backward')
def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation."""
return self.permute_rows(perm, direction='forward')
@Mul._kind_dispatcher.register(_NumberKind, MatrixKind)
def num_mat_mul(k1, k2):
"""
Return MatrixKind. The element kind is selected by recursive dispatching.
Do not need to dispatch in reversed order because KindDispatcher
searches for this automatically.
"""
# Deal with Mul._kind_dispatcher's commutativity
# XXX: this function is called with either k1 or k2 as MatrixKind because
# the Mul kind dispatcher is commutative. Maybe it shouldn't be. Need to
# swap the args here because NumberKind does not have an element_kind
# attribute.
if not isinstance(k2, MatrixKind):
k1, k2 = k2, k1
elemk = Mul._kind_dispatcher(k1, k2.element_kind)
return MatrixKind(elemk)
@Mul._kind_dispatcher.register(MatrixKind, MatrixKind)
def mat_mat_mul(k1, k2):
"""
Return MatrixKind. The element kind is selected by recursive dispatching.
"""
elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind)
return MatrixKind(elemk)
class MatrixBase(MatrixDeprecated,
MatrixCalculus,
MatrixEigen,
MatrixCommon,
Printable):
"""Base class for matrix objects."""
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
_class_priority = 3
_sympify = staticmethod(sympify)
zero = S.Zero
one = S.One
@property
def kind(self) -> MatrixKind:
elem_kinds = set(e.kind for e in self.flat())
if len(elem_kinds) == 1:
elemkind, = elem_kinds
else:
elemkind = UndefinedKind
return MatrixKind(elemkind)
def flat(self):
return [self[i, j] for i in range(self.rows) for j in range(self.cols)]
def __array__(self, dtype=object):
from .dense import matrix2numpy
return matrix2numpy(self, dtype=dtype)
def __len__(self):
"""Return the number of elements of ``self``.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows * self.cols
def _matrix_pow_by_jordan_blocks(self, num):
from sympy.matrices import diag, MutableMatrix
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0,0]
if l.is_zero:
if N == 1 and n.is_nonnegative:
jc[0,0] = l**n
elif not (n.is_integer and n.is_nonnegative):
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer")
else:
for i in range(N):
jc[0,i] = KroneckerDelta(i, n)
else:
for i in range(N):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[0,i] = l**(n-i)*bn
for i in range(N):
for j in range(1, N-i):
jc[j,i+j] = jc [j-1,i+j-1]
P, J = self.jordan_form()
jordan_cells = J.get_diag_blocks()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P.multiply(diag(*jordan_cells))
.multiply(P.inv()))
def __str__(self):
if S.Zero in self.shape:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def _format_str(self, printer=None):
if not printer:
printer = StrPrinter()
# Handle zero dimensions:
if S.Zero in self.shape:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
@classmethod
def irregular(cls, ntop, *matrices, **kwargs):
"""Return a matrix filled by the given matrices which
are listed in order of appearance from left to right, top to
bottom as they first appear in the matrix. They must fill the
matrix completely.
Examples
========
>>> from sympy import ones, Matrix
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
Matrix([
[1, 2, 2, 2, 3, 3],
[1, 2, 2, 2, 3, 3],
[4, 2, 2, 2, 5, 5],
[6, 6, 7, 7, 5, 5]])
"""
ntop = as_int(ntop)
# make sure we are working with explicit matrices
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i
for i in matrices]
q = list(range(len(b)))
dat = [i.rows for i in b]
active = [q.pop(0) for _ in range(ntop)]
cols = sum([b[i].cols for i in active])
rows = []
while any(dat):
r = []
for a, j in enumerate(active):
r.extend(b[j][-dat[j], :])
dat[j] -= 1
if dat[j] == 0 and q:
active[a] = q.pop(0)
if len(r) != cols:
raise ValueError(filldedent('''
Matrices provided do not appear to fill
the space completely.'''))
rows.append(r)
return cls._new(rows)
@classmethod
def _handle_ndarray(cls, arg):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a Python list out of it.
arr = arg.__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
flat_list = [cls._sympify(i) for i in arr]
return arr.shape[0], 1, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
See Also
========
irregular - filling a matrix with irregular blocks
"""
from sympy.matrices import SparseMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.blockmatrix import BlockMatrix
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0].flat()
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit().flat()
elif isinstance(args[0], mp.matrix):
M = args[0]
flat_list = [cls._sympify(x) for x in M]
return M.rows, M.cols, flat_list
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
return cls._handle_ndarray(args[0])
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0]) \
and not isinstance(args[0], DeferredVector):
dat = list(args[0])
ismat = lambda i: isinstance(i, MatrixBase) and (
evaluate or
isinstance(i, BlockMatrix) or
isinstance(i, MatrixSymbol))
raw = lambda i: is_sequence(i) and not ismat(i)
evaluate = kwargs.get('evaluate', True)
if evaluate:
def make_explicit(x):
"""make Block and Symbol explicit"""
if isinstance(x, BlockMatrix):
return x.as_explicit()
elif isinstance(x, MatrixSymbol) and all(_.is_Integer for _ in x.shape):
return x.as_explicit()
else:
return x
def make_explicit_row(row):
# Could be list or could be list of lists
if isinstance(row, (list, tuple)):
return [make_explicit(x) for x in row]
else:
return make_explicit(row)
if isinstance(dat, (list, tuple)):
dat = [make_explicit_row(row) for row in dat]
if dat in ([], [[]]):
rows = cols = 0
flat_list = []
elif not any(raw(i) or ismat(i) for i in dat):
# a column as a list of values
flat_list = [cls._sympify(i) for i in dat]
rows = len(flat_list)
cols = 1 if rows else 0
elif evaluate and all(ismat(i) for i in dat):
# a column as a list of matrices
ncol = {i.cols for i in dat if any(i.shape)}
if ncol:
if len(ncol) != 1:
raise ValueError('mismatched dimensions')
flat_list = [_ for i in dat for r in i.tolist() for _ in r]
cols = ncol.pop()
rows = len(flat_list)//cols
else:
rows = cols = 0
flat_list = []
elif evaluate and any(ismat(i) for i in dat):
ncol = set()
flat_list = []
for i in dat:
if ismat(i):
flat_list.extend(
[k for j in i.tolist() for k in j])
if any(i.shape):
ncol.add(i.cols)
elif raw(i):
if i:
ncol.add(len(i))
flat_list.extend([cls._sympify(ij) for ij in i])
else:
ncol.add(1)
flat_list.append(i)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
cols = ncol.pop()
rows = len(flat_list)//cols
else:
# list of lists; each sublist is a logical row
# which might consist of many rows if the values in
# the row are matrices
flat_list = []
ncol = set()
rows = cols = 0
for row in dat:
if not is_sequence(row) and \
not getattr(row, 'is_Matrix', False):
raise ValueError('expecting list of lists')
if hasattr(row, '__array__'):
if 0 in row.shape:
continue
elif not row:
continue
if evaluate and all(ismat(i) for i in row):
r, c, flatT = cls._handle_creation_inputs(
[i.T for i in row])
T = reshape(flatT, [c])
flat = \
[T[i][j] for j in range(c) for i in range(r)]
r, c = c, r
else:
r = 1
if getattr(row, 'is_Matrix', False):
c = 1
flat = [row]
else:
c = len(row)
flat = [cls._sympify(i) for i in row]
ncol.add(c)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
flat_list.extend(flat)
rows += r
cols = ncol.pop() if ncol else 0
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
'List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError(filldedent('''
Data type not understood; expecting list of lists
or lists of values.'''))
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if isinstance(i, slice) or isinstance(j, slice):
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def add(self, b):
"""Return self + b """
return self + b
def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
if not self:
return self.zero
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def copy(self):
"""
Returns the copy of a matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.copy()
Matrix([
[1, 2],
[3, 4]])
"""
return self._new(self.rows, self.cols, self.flat())
def cross(self, b):
r"""
Return the cross product of ``self`` and ``b`` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as ``self`` will be returned. If ``b`` has the same
shape as ``self`` then common identities for the cross product (like
`a \times b = - b \times a`) will hold.
Parameters
==========
b : 3x1 or 1x3 Matrix
See Also
========
dot
multiply
multiply_elementwise
"""
from sympy.matrices.expressions.matexpr import MatrixExpr
if not isinstance(b, (MatrixBase, MatrixExpr)):
raise TypeError(
"{} must be a Matrix, not {}.".format(b, type(b)))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
((self.rows, self.cols), (b.rows, b.cols)))
else:
return self._new(self.rows, self.cols, (
(self[1] * b[2] - self[2] * b[1]),
(self[2] * b[0] - self[0] * b[2]),
(self[0] * b[1] - self[1] * b[0])))
@property
def D(self):
"""Return Dirac conjugate (if ``self.rows == 4``).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation
sympy.matrices.common.MatrixCommon.H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H * mgamma(0)
def dot(self, b, hermitian=None, conjugate_convention=None):
"""Return the dot or inner product of two vectors of equal length.
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
A scalar is returned.
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
to compute the hermitian inner product.
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
the conjugate of the first vector (``self``) is used. If ``"right"``
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
>>> q.dot(q, hermitian=True)
3
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
if (1 not in self.shape) or (1 not in b.shape):
raise ShapeError
if len(self) != len(b):
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
mat = self
n = len(mat)
if mat.shape != (1, n):
mat = mat.reshape(1, n)
if b.shape != (n, 1):
b = b.reshape(n, 1)
# Now ``mat`` is a row vector and ``b`` is a column vector.
# If it so happens that only conjugate_convention is passed
# then automatically set hermitian to True. If only hermitian
# is true but no conjugate_convention is not passed then
# automatically set it to ``"maths"``
if conjugate_convention is not None and hermitian is None:
hermitian = True
if hermitian and conjugate_convention is None:
conjugate_convention = "maths"
if hermitian == True:
if conjugate_convention in ("maths", "left", "math"):
mat = mat.conjugate()
elif conjugate_convention in ("physics", "right"):
b = b.conjugate()
else:
raise ValueError("Unknown conjugate_convention was entered."
" conjugate_convention must be one of the"
" following: math, maths, left, physics or right.")
return (mat * b)[0]
def dual(self):
"""Returns the dual of a matrix, which is:
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k) * M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b) * M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
def _eval_matrix_exp_jblock(self):
"""A helper function to compute an exponential of a Jordan block
matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_exp_jblock()
Matrix([[exp(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_exp_jblock()
Matrix([
[exp(lamda), exp(lamda), exp(lamda)/2],
[ 0, exp(lamda), exp(lamda)],
[ 0, 0, exp(lamda)]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition
"""
size = self.rows
l = self[0, 0]
exp_l = exp(l)
bands = {i: exp_l / factorial(i) for i in range(size)}
from .sparsetools import banded
return self.__class__(banded(size, bands))
def analytic_func(self, f, x):
"""
Computes f(A) where A is a Square Matrix
and f is an analytic function.
Examples
========
>>> from sympy import Symbol, Matrix, S, log
>>> x = Symbol('x')
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> f = log(x)
>>> m.analytic_func(f, x)
Matrix([
[ 0, log(2)],
[log(2), 0]])
Parameters
==========
f : Expr
Analytic Function
x : Symbol
parameter of f
"""
f, x = _sympify(f), _sympify(x)
if not self.is_square:
raise NonSquareMatrixError
if not x.is_symbol:
raise ValueError("{} must be a symbol.".format(x))
if x not in f.free_symbols:
raise ValueError(
"{} must be a parameter of {}.".format(x, f))
if x in self.free_symbols:
raise ValueError(
"{} must not be a parameter of {}.".format(x, self))
eigen = self.eigenvals()
max_mul = max(eigen.values())
derivative = {}
dd = f
for i in range(max_mul - 1):
dd = diff(dd, x)
derivative[i + 1] = dd
n = self.shape[0]
r = self.zeros(n)
f_val = self.zeros(n, 1)
row = 0
for i in eigen:
mul = eigen[i]
f_val[row] = f.subs(x, i)
if f_val[row].is_number and not f_val[row].is_complex:
raise ValueError(
"Cannot evaluate the function because the "
"function {} is not analytic at the given "
"eigenvalue {}".format(f, f_val[row]))
val = 1
for a in range(n):
r[row, a] = val
val *= i
if mul > 1:
coe = [1 for ii in range(n)]
deri = 1
while mul > 1:
row = row + 1
mul -= 1
d_i = derivative[deri].subs(x, i)
if d_i.is_number and not d_i.is_complex:
raise ValueError(
"Cannot evaluate the function because the "
"derivative {} is not analytic at the given "
"eigenvalue {}".format(derivative[deri], d_i))
f_val[row] = d_i
for a in range(n):
if a - deri + 1 <= 0:
r[row, a] = 0
coe[a] = 0
continue
coe[a] = coe[a]*(a - deri + 1)
r[row, a] = coe[a]*pow(i, a - deri)
deri += 1
row += 1
c = r.solve(f_val)
ans = self.zeros(n)
pre = self.eye(n)
for i in range(n):
ans = ans + c[i]*pre
pre *= self
return ans
def exp(self):
"""Return the exponential of a square matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> t = Symbol('t')
>>> m = Matrix([[0, 1], [-1, 0]]) * t
>>> m.exp()
Matrix([
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
blocks = [cell._eval_matrix_exp_jblock() for cell in cells]
from sympy.matrices import diag
eJ = diag(*blocks)
# n = self.rows
ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None)
if all(value.is_real for value in self.values()):
return type(self)(re(ret))
else:
return type(self)(ret)
def _eval_matrix_log_jblock(self):
"""Helper function to compute logarithm of a jordan block.
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_log_jblock()
Matrix([[log(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_log_jblock()
Matrix([
[log(lamda), 1/lamda, -1/(2*lamda**2)],
[ 0, log(lamda), 1/lamda],
[ 0, 0, log(lamda)]])
"""
size = self.rows
l = self[0, 0]
if l.is_zero:
raise MatrixError(
'Could not take logarithm or reciprocal for the given '
'eigenvalue {}'.format(l))
bands = {0: log(l)}
for i in range(1, size):
bands[i] = -((-l) ** -i) / i
from .sparsetools import banded
return self.__class__(banded(size, bands))
def log(self, simplify=cancel):
"""Return the logarithm of a square matrix
Parameters
==========
simplify : function, bool
The function to simplify the result with.
Default is ``cancel``, which is effective to reduce the
expression growing for taking reciprocals and inverses for
symbolic matrices.
Examples
========
>>> from sympy import S, Matrix
Examples for positive-definite matrices:
>>> m = Matrix([[1, 1], [0, 1]])
>>> m.log()
Matrix([
[0, 1],
[0, 0]])
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> m.log()
Matrix([
[ 0, log(2)],
[log(2), 0]])
Examples for non positive-definite matrices:
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
>>> m.log()
Matrix([
[ I*pi/2, log(2) - I*pi/2],
[log(2) - I*pi/2, I*pi/2]])
>>> m = Matrix(
... [[0, 0, 0, 1],
... [0, 0, 1, 0],
... [0, 1, 0, 0],
... [1, 0, 0, 0]])
>>> m.log()
Matrix([
[ I*pi/2, 0, 0, -I*pi/2],
[ 0, I*pi/2, -I*pi/2, 0],
[ 0, -I*pi/2, I*pi/2, 0],
[-I*pi/2, 0, 0, I*pi/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Logarithm is valid only for square matrices")
try:
if simplify:
P, J = simplify(self).jordan_form()
else:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Logarithm is implemented only for matrices for which "
"the Jordan normal form can be computed")
blocks = [
cell._eval_matrix_log_jblock()
for cell in cells]
from sympy.matrices import diag
eJ = diag(*blocks)
if simplify:
ret = simplify(P * eJ * simplify(P.inv()))
ret = self.__class__(ret)
else:
ret = P * eJ * P.inv()
return ret
def is_nilpotent(self):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self:
return True
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s)
p = self.charpoly(x)
if p.args[0] == x ** self.rows:
return True
return False
def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of ``self``'s
range.
See Also
========
key2ij
"""
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for ``self``'s range or returning slices
unchanged.
See Also
========
key2bounds
"""
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx(key, len(self)), self.cols)
def normalized(self, iszerofunc=_iszero):
"""Return the normalized version of ``self``.
Parameters
==========
iszerofunc : Function, optional
A function to determine whether ``self`` is a zero vector.
The default ``_iszero`` tests to see if each element is
exactly zero.
Returns
=======
Matrix
Normalized vector form of ``self``.
It has the same length as a unit vector. However, a zero vector
will be returned for a vector with norm 0.
Raises
======
ShapeError
If the matrix is not in a vector form.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
if iszerofunc(norm):
out = self.zeros(self.rows, self.cols)
else:
out = self.applyfunc(lambda i: i / norm)
return out
def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf maximum row sum max(abs(x))
-inf -- min(abs(x))
1 maximum column sum as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if S.One in self.shape:
if ord in (2, None): # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord is S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord is S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 1: # Maximum column sum
m = self.applyfunc(abs)
return Max(*[sum(m.col(i)) for i in range(m.cols)])
elif ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif ord is S.Infinity: # Infinity Norm - Maximum row sum
m = self.applyfunc(abs)
return Max(*[sum(m.row(i)) for i in range(m.rows)])
elif (ord is None or isinstance(ord,
str) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v * (self.dot(v) / v.dot(v))
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix, StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if S.Zero in self.shape:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i, j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
return _rank_decomposition(self, iszerofunc=iszerofunc,
simplify=simplify)
def cholesky(self, hermitian=True):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def LDLdecomposition(self, hermitian=True):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc,
rankcheck=rankcheck)
def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
return _LUdecomposition_Simple(self, iszerofunc=iszerofunc,
simpfunc=simpfunc, rankcheck=rankcheck)
def LUdecompositionFF(self):
return _LUdecompositionFF(self)
def singular_value_decomposition(self):
return _singular_value_decomposition(self)
def QRdecomposition(self):
return _QRdecomposition(self)
def upper_hessenberg_decomposition(self):
return _upper_hessenberg_decomposition(self)
def diagonal_solve(self, rhs):
return _diagonal_solve(self, rhs)
def lower_triangular_solve(self, rhs):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def upper_triangular_solve(self, rhs):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def cholesky_solve(self, rhs):
return _cholesky_solve(self, rhs)
def LDLsolve(self, rhs):
return _LDLsolve(self, rhs)
def LUsolve(self, rhs, iszerofunc=_iszero):
return _LUsolve(self, rhs, iszerofunc=iszerofunc)
def QRsolve(self, b):
return _QRsolve(self, b)
def gauss_jordan_solve(self, B, freevar=False):
return _gauss_jordan_solve(self, B, freevar=freevar)
def pinv_solve(self, B, arbitrary_matrix=None):
return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix)
def solve(self, rhs, method='GJ'):
return _solve(self, rhs, method=method)
def solve_least_squares(self, rhs, method='CH'):
return _solve_least_squares(self, rhs, method=method)
def pinv(self, method='RD'):
return _pinv(self, method=method)
def inv_mod(self, m):
return _inv_mod(self, m)
def inverse_ADJ(self, iszerofunc=_iszero):
return _inv_ADJ(self, iszerofunc=iszerofunc)
def inverse_BLOCK(self, iszerofunc=_iszero):
return _inv_block(self, iszerofunc=iszerofunc)
def inverse_GE(self, iszerofunc=_iszero):
return _inv_GE(self, iszerofunc=iszerofunc)
def inverse_LU(self, iszerofunc=_iszero):
return _inv_LU(self, iszerofunc=iszerofunc)
def inverse_CH(self, iszerofunc=_iszero):
return _inv_CH(self, iszerofunc=iszerofunc)
def inverse_LDL(self, iszerofunc=_iszero):
return _inv_LDL(self, iszerofunc=iszerofunc)
def inverse_QR(self, iszerofunc=_iszero):
return _inv_QR(self, iszerofunc=iszerofunc)
def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False):
return _inv(self, method=method, iszerofunc=iszerofunc,
try_block_diag=try_block_diag)
def connected_components(self):
return _connected_components(self)
def connected_components_decomposition(self):
return _connected_components_decomposition(self)
def strongly_connected_components(self):
return _strongly_connected_components(self)
def strongly_connected_components_decomposition(self, lower=True):
return _strongly_connected_components_decomposition(self, lower=lower)
_sage_ = Basic._sage_
rank_decomposition.__doc__ = _rank_decomposition.__doc__
cholesky.__doc__ = _cholesky.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
LUdecomposition.__doc__ = _LUdecomposition.__doc__
LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__
LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__
singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__
QRdecomposition.__doc__ = _QRdecomposition.__doc__
upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__
diagonal_solve.__doc__ = _diagonal_solve.__doc__
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
cholesky_solve.__doc__ = _cholesky_solve.__doc__
LDLsolve.__doc__ = _LDLsolve.__doc__
LUsolve.__doc__ = _LUsolve.__doc__
QRsolve.__doc__ = _QRsolve.__doc__
gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__
pinv_solve.__doc__ = _pinv_solve.__doc__
solve.__doc__ = _solve.__doc__
solve_least_squares.__doc__ = _solve_least_squares.__doc__
pinv.__doc__ = _pinv.__doc__
inv_mod.__doc__ = _inv_mod.__doc__
inverse_ADJ.__doc__ = _inv_ADJ.__doc__
inverse_GE.__doc__ = _inv_GE.__doc__
inverse_LU.__doc__ = _inv_LU.__doc__
inverse_CH.__doc__ = _inv_CH.__doc__
inverse_LDL.__doc__ = _inv_LDL.__doc__
inverse_QR.__doc__ = _inv_QR.__doc__
inverse_BLOCK.__doc__ = _inv_block.__doc__
inv.__doc__ = _inv.__doc__
connected_components.__doc__ = _connected_components.__doc__
connected_components_decomposition.__doc__ = \
_connected_components_decomposition.__doc__
strongly_connected_components.__doc__ = \
_strongly_connected_components.__doc__
strongly_connected_components_decomposition.__doc__ = \
_strongly_connected_components_decomposition.__doc__
|
9910c54ec696c4823e23722e71d2d1492665b574694bc6c86cbe955543bd54f9 | from types import FunctionType
from collections import Counter
from mpmath import mp, workprec
from mpmath.libmp.libmpf import prec_to_dps
from sympy.core.sorting import default_sort_key
from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted
from sympy.core.logic import fuzzy_and, fuzzy_or
from sympy.core.numbers import Float
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys import roots, CRootOf, ZZ, QQ, EX
from sympy.polys.matrices import DomainMatrix
from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy
from sympy.polys.polytools import gcd
from .common import MatrixError, NonSquareMatrixError
from .determinant import _find_reasonable_pivot
from .utilities import _iszero, _simplify
def _eigenvals_eigenvects_mpmath(M):
norm2 = lambda v: mp.sqrt(sum(i**2 for i in v))
v1 = None
prec = max([x._prec for x in M.atoms(Float)])
eps = 2**-prec
while prec < DEFAULT_MAXPREC:
with workprec(prec):
A = mp.matrix(M.evalf(n=prec_to_dps(prec)))
E, ER = mp.eig(A)
v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))])
if v1 is not None and mp.fabs(v1 - v2) < eps:
return E, ER
v1 = v2
prec *= 2
# we get here because the next step would have taken us
# past MAXPREC or because we never took a step; in case
# of the latter, we refuse to send back a solution since
# it would not have been verified; we also resist taking
# a small step to arrive exactly at MAXPREC since then
# the two calculations might be artificially close.
raise PrecisionExhausted
def _eigenvals_mpmath(M, multiple=False):
"""Compute eigenvalues using mpmath"""
E, _ = _eigenvals_eigenvects_mpmath(M)
result = [_sympify(x) for x in E]
if multiple:
return result
return dict(Counter(result))
def _eigenvects_mpmath(M):
E, ER = _eigenvals_eigenvects_mpmath(M)
result = []
for i in range(M.rows):
eigenval = _sympify(E[i])
eigenvect = _sympify(ER[:, i])
result.append((eigenval, 1, [eigenvect]))
return result
# This function is a candidate for caching if it gets implemented for matrices.
def _eigenvals(
M, error_when_incomplete=True, *, simplify=False, multiple=False,
rational=False, **flags):
r"""Compute eigenvalues of the matrix.
Parameters
==========
error_when_incomplete : bool, optional
If it is set to ``True``, it will raise an error if not all
eigenvalues are computed. This is caused by ``roots`` not returning
a full list of eigenvalues.
simplify : bool or function, optional
If it is set to ``True``, it attempts to return the most
simplified form of expressions returned by applying default
simplification method in every routine.
If it is set to ``False``, it will skip simplification in this
particular routine to save computation resources.
If a function is passed to, it will attempt to apply
the particular function as simplification method.
rational : bool, optional
If it is set to ``True``, every floating point numbers would be
replaced with rationals before computation. It can solve some
issues of ``roots`` routine not working well with floats.
multiple : bool, optional
If it is set to ``True``, the result will be in the form of a
list.
If it is set to ``False``, the result will be in the form of a
dictionary.
Returns
=======
eigs : list or dict
Eigenvalues of a matrix. The return format would be specified by
the key ``multiple``.
Raises
======
MatrixError
If not enough roots had got computed.
NonSquareMatrixError
If attempted to compute eigenvalues from a non-square matrix.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvals()
{-1: 1, 0: 1, 2: 1}
See Also
========
MatrixDeterminant.charpoly
eigenvects
Notes
=====
Eigenvalues of a matrix $A$ can be computed by solving a matrix
equation $\det(A - \lambda I) = 0$
It's not always possible to return radical solutions for
eigenvalues for matrices larger than $4, 4$ shape due to
Abel-Ruffini theorem.
If there is no radical solution is found for the eigenvalue,
it may return eigenvalues in the form of
:class:`sympy.polys.rootoftools.ComplexRootOf`.
"""
if not M:
if multiple:
return []
return {}
if not M.is_square:
raise NonSquareMatrixError("{} must be a square matrix.".format(M))
if M._rep.domain not in (ZZ, QQ):
# Skip this check for ZZ/QQ because it can be slow
if all(x.is_number for x in M) and M.has(Float):
return _eigenvals_mpmath(M, multiple=multiple)
if rational:
from sympy.simplify import nsimplify
M = M.applyfunc(
lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
if multiple:
return _eigenvals_list(
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
**flags)
return _eigenvals_dict(
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
**flags)
eigenvals_error_message = \
"It is not always possible to express the eigenvalues of a matrix " + \
"of size 5x5 or higher in radicals. " + \
"We have CRootOf, but domains other than the rationals are not " + \
"currently supported. " + \
"If there are no symbols in the matrix, " + \
"it should still be possible to compute numeric approximations " + \
"of the eigenvalues using " + \
"M.evalf().eigenvals() or M.charpoly().nroots()."
def _eigenvals_list(
M, error_when_incomplete=True, simplify=False, **flags):
iblocks = M.strongly_connected_components()
all_eigs = []
is_dom = M._rep.domain in (ZZ, QQ)
for b in iblocks:
# Fast path for a 1x1 block:
if is_dom and len(b) == 1:
index = b[0]
val = M[index, index]
all_eigs.append(val)
continue
block = M[b, b]
if isinstance(simplify, FunctionType):
charpoly = block.charpoly(simplify=simplify)
else:
charpoly = block.charpoly()
eigs = roots(charpoly, multiple=True, **flags)
if len(eigs) != block.rows:
degree = int(charpoly.degree())
f = charpoly.as_expr()
x = charpoly.gen
try:
eigs = [CRootOf(f, x, idx) for idx in range(degree)]
except NotImplementedError:
if error_when_incomplete:
raise MatrixError(eigenvals_error_message)
else:
eigs = []
all_eigs += eigs
if not simplify:
return all_eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
return [simplify(value) for value in all_eigs]
def _eigenvals_dict(
M, error_when_incomplete=True, simplify=False, **flags):
iblocks = M.strongly_connected_components()
all_eigs = {}
is_dom = M._rep.domain in (ZZ, QQ)
for b in iblocks:
# Fast path for a 1x1 block:
if is_dom and len(b) == 1:
index = b[0]
val = M[index, index]
all_eigs[val] = all_eigs.get(val, 0) + 1
continue
block = M[b, b]
if isinstance(simplify, FunctionType):
charpoly = block.charpoly(simplify=simplify)
else:
charpoly = block.charpoly()
eigs = roots(charpoly, multiple=False, **flags)
if sum(eigs.values()) != block.rows:
degree = int(charpoly.degree())
f = charpoly.as_expr()
x = charpoly.gen
try:
eigs = {CRootOf(f, x, idx): 1 for idx in range(degree)}
except NotImplementedError:
if error_when_incomplete:
raise MatrixError(eigenvals_error_message)
else:
eigs = {}
for k, v in eigs.items():
if k in all_eigs:
all_eigs[k] += v
else:
all_eigs[k] = v
if not simplify:
return all_eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
return {simplify(key): value for key, value in all_eigs.items()}
def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False):
"""Get a basis for the eigenspace for a particular eigenvalue"""
m = M - M.eye(M.rows) * eigenval
ret = m.nullspace(iszerofunc=iszerofunc)
# The nullspace for a real eigenvalue should be non-trivial.
# If we didn't find an eigenvector, try once more a little harder
if len(ret) == 0 and simplify:
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
if len(ret) == 0:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue {}".format(eigenval))
return ret
def _eigenvects_DOM(M, **kwargs):
DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
DOM = DOM.to_dense()
if DOM.domain != EX:
rational, algebraic = dom_eigenvects(DOM)
eigenvects = dom_eigenvects_to_sympy(
rational, algebraic, M.__class__, **kwargs)
eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0]))
return eigenvects
return None
def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags):
eigenvals = M.eigenvals(rational=False, **flags)
# Make sure that we have all roots in radical form
for x in eigenvals:
if x.has(CRootOf):
raise MatrixError(
"Eigenvector computation is not implemented if the matrix have "
"eigenvalues in CRootOf form")
eigenvals = sorted(eigenvals.items(), key=default_sort_key)
ret = []
for val, mult in eigenvals:
vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify)
ret.append((val, mult, vects))
return ret
# This functions is a candidate for caching if it gets implemented for matrices.
def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags):
"""Compute eigenvectors of the matrix.
Parameters
==========
error_when_incomplete : bool, optional
Raise an error when not all eigenvalues are computed. This is
caused by ``roots`` not returning a full list of eigenvalues.
iszerofunc : function, optional
Specifies a zero testing function to be used in ``rref``.
Default value is ``_iszero``, which uses SymPy's naive and fast
default assumption handler.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
is tested as non-zero, and ``None`` if it is undecidable.
simplify : bool or function, optional
If ``True``, ``as_content_primitive()`` will be used to tidy up
normalization artifacts.
It will also be used by the ``nullspace`` routine.
chop : bool or positive number, optional
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after
being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
When ``chop=True`` a default precision will be used; a number will
be interpreted as the desired level of precision.
Returns
=======
ret : [(eigenval, multiplicity, eigenspace), ...]
A ragged list containing tuples of data obtained by ``eigenvals``
and ``nullspace``.
``eigenspace`` is a list containing the ``eigenvector`` for each
eigenvalue.
``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
Raises
======
NotImplementedError
If failed to compute nullspace.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
See Also
========
eigenvals
MatrixSubspaces.nullspace
"""
simplify = flags.get('simplify', True)
primitive = flags.get('simplify', False)
flags.pop('simplify', None) # remove this if it's there
flags.pop('multiple', None) # remove this if it's there
if not isinstance(simplify, FunctionType):
simpfunc = _simplify if simplify else lambda x: x
has_floats = M.has(Float)
if has_floats:
if all(x.is_number for x in M):
return _eigenvects_mpmath(M)
from sympy.simplify import nsimplify
M = M.applyfunc(lambda x: nsimplify(x, rational=True))
ret = _eigenvects_DOM(M)
if ret is None:
ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags)
if primitive:
# if the primitive flag is set, get rid of any common
# integer denominators
def denom_clean(l):
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
if has_floats:
# if we had floats to start with, turn the eigenvectors to floats
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es])
for val, mult, es in ret]
return ret
def _is_diagonalizable_with_eigen(M, reals_only=False):
"""See _is_diagonalizable. This function returns the bool along with the
eigenvectors to avoid calculating them again in functions like
``diagonalize``."""
if not M.is_square:
return False, []
eigenvecs = M.eigenvects(simplify=True)
for val, mult, basis in eigenvecs:
if reals_only and not val.is_real: # if we have a complex eigenvalue
return False, eigenvecs
if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic
return False, eigenvecs
return True, eigenvecs
def _is_diagonalizable(M, reals_only=False, **kwargs):
"""Returns ``True`` if a matrix is diagonalizable.
Parameters
==========
reals_only : bool, optional
If ``True``, it tests whether the matrix can be diagonalized
to contain only real numbers on the diagonal.
If ``False``, it tests whether the matrix can be diagonalized
at all, even with numbers that may not be real.
Examples
========
Example of a diagonalizable matrix:
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
>>> M.is_diagonalizable()
True
Example of a non-diagonalizable matrix:
>>> M = Matrix([[0, 1], [0, 0]])
>>> M.is_diagonalizable()
False
Example of a matrix that is diagonalized in terms of non-real entries:
>>> M = Matrix([[0, 1], [-1, 0]])
>>> M.is_diagonalizable(reals_only=False)
True
>>> M.is_diagonalizable(reals_only=True)
False
See Also
========
is_diagonal
diagonalize
"""
if not M.is_square:
return False
if all(e.is_real for e in M) and M.is_symmetric():
return True
if all(e.is_complex for e in M) and M.is_hermitian:
return True
return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0]
#G&VL, Matrix Computations, Algo 5.4.2
def _householder_vector(x):
if not x.cols == 1:
raise ValueError("Input must be a column matrix")
v = x.copy()
v_plus = x.copy()
v_minus = x.copy()
q = x[0, 0] / abs(x[0, 0])
norm_x = x.norm()
v_plus[0, 0] = x[0, 0] + q * norm_x
v_minus[0, 0] = x[0, 0] - q * norm_x
if x[1:, 0].norm() == 0:
bet = 0
v[0, 0] = 1
else:
if v_plus.norm() <= v_minus.norm():
v = v_plus
else:
v = v_minus
v = v / v[0]
bet = 2 / (v.norm() ** 2)
return v, bet
def _bidiagonal_decmp_hholder(M):
m = M.rows
n = M.cols
A = M.as_mutable()
U, V = A.eye(m), A.eye(n)
for i in range(min(m, n)):
v, bet = _householder_vector(A[i:, i])
hh_mat = A.eye(m - i) - bet * v * v.H
A[i:, i:] = hh_mat * A[i:, i:]
temp = A.eye(m)
temp[i:, i:] = hh_mat
U = U * temp
if i + 1 <= n - 2:
v, bet = _householder_vector(A[i, i+1:].T)
hh_mat = A.eye(n - i - 1) - bet * v * v.H
A[i:, i+1:] = A[i:, i+1:] * hh_mat
temp = A.eye(n)
temp[i+1:, i+1:] = hh_mat
V = temp * V
return U, A, V
def _eval_bidiag_hholder(M):
m = M.rows
n = M.cols
A = M.as_mutable()
for i in range(min(m, n)):
v, bet = _householder_vector(A[i:, i])
hh_mat = A.eye(m-i) - bet * v * v.H
A[i:, i:] = hh_mat * A[i:, i:]
if i + 1 <= n - 2:
v, bet = _householder_vector(A[i, i+1:].T)
hh_mat = A.eye(n - i - 1) - bet * v * v.H
A[i:, i+1:] = A[i:, i+1:] * hh_mat
return A
def _bidiagonal_decomposition(M, upper=True):
"""
Returns $(U,B,V.H)$ for
$$A = UBV^{H}$$
where $A$ is the input matrix, and $B$ is its Bidiagonalized form
Note: Bidiagonal Computation can hang for symbolic matrices.
Parameters
==========
upper : bool. Whether to do upper bidiagnalization or lower.
True for upper and False for lower.
References
==========
.. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
.. [2] Complex Matrix Bidiagonalization, https://github.com/vslobody/Householder-Bidiagonalization
"""
if not isinstance(upper, bool):
raise ValueError("upper must be a boolean")
if upper:
return _bidiagonal_decmp_hholder(M)
X = _bidiagonal_decmp_hholder(M.H)
return X[2].H, X[1].H, X[0].H
def _bidiagonalize(M, upper=True):
"""
Returns $B$, the Bidiagonalized form of the input matrix.
Note: Bidiagonal Computation can hang for symbolic matrices.
Parameters
==========
upper : bool. Whether to do upper bidiagnalization or lower.
True for upper and False for lower.
References
==========
.. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
.. [2] Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
"""
if not isinstance(upper, bool):
raise ValueError("upper must be a boolean")
if upper:
return _eval_bidiag_hholder(M)
return _eval_bidiag_hholder(M.H).H
def _diagonalize(M, reals_only=False, sort=False, normalize=False):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Parameters
==========
reals_only : bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
normalize : bool. If True, normalize the columns of P. (Default: False)
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> M
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = M.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * M * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
if not M.is_square:
raise NonSquareMatrixError()
is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
reals_only=reals_only)
if not is_diagonalizable:
raise MatrixError("Matrix is not diagonalizable")
if sort:
eigenvecs = sorted(eigenvecs, key=default_sort_key)
p_cols, diag = [], []
for val, mult, basis in eigenvecs:
diag += [val] * mult
p_cols += basis
if normalize:
p_cols = [v / v.norm() for v in p_cols]
return M.hstack(*p_cols), M.diag(*diag)
def _fuzzy_positive_definite(M):
positive_diagonals = M._has_positive_diagonals()
if positive_diagonals is False:
return False
if positive_diagonals and M.is_strongly_diagonally_dominant:
return True
return None
def _fuzzy_positive_semidefinite(M):
nonnegative_diagonals = M._has_nonnegative_diagonals()
if nonnegative_diagonals is False:
return False
if nonnegative_diagonals and M.is_weakly_diagonally_dominant:
return True
return None
def _is_positive_definite(M):
if not M.is_hermitian:
if not M.is_square:
return False
M = M + M.H
fuzzy = _fuzzy_positive_definite(M)
if fuzzy is not None:
return fuzzy
return _is_positive_definite_GE(M)
def _is_positive_semidefinite(M):
if not M.is_hermitian:
if not M.is_square:
return False
M = M + M.H
fuzzy = _fuzzy_positive_semidefinite(M)
if fuzzy is not None:
return fuzzy
return _is_positive_semidefinite_cholesky(M)
def _is_negative_definite(M):
return _is_positive_definite(-M)
def _is_negative_semidefinite(M):
return _is_positive_semidefinite(-M)
def _is_indefinite(M):
if M.is_hermitian:
eigen = M.eigenvals()
args1 = [x.is_positive for x in eigen.keys()]
any_positive = fuzzy_or(args1)
args2 = [x.is_negative for x in eigen.keys()]
any_negative = fuzzy_or(args2)
return fuzzy_and([any_positive, any_negative])
elif M.is_square:
return (M + M.H).is_indefinite
return False
def _is_positive_definite_GE(M):
"""A division-free gaussian elimination method for testing
positive-definiteness."""
M = M.as_mutable()
size = M.rows
for i in range(size):
is_positive = M[i, i].is_positive
if is_positive is not True:
return is_positive
for j in range(i+1, size):
M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:]
return True
def _is_positive_semidefinite_cholesky(M):
"""Uses Cholesky factorization with complete pivoting
References
==========
.. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf
.. [2] https://www.value-at-risk.net/cholesky-factorization/
"""
M = M.as_mutable()
for k in range(M.rows):
diags = [M[i, i] for i in range(k, M.rows)]
pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags)
if nonzero:
return None
if pivot is None:
for i in range(k+1, M.rows):
for j in range(k, M.cols):
iszero = M[i, j].is_zero
if iszero is None:
return None
elif iszero is False:
return False
return True
if M[k, k].is_negative or pivot_val.is_negative:
return False
elif not (M[k, k].is_nonnegative and pivot_val.is_nonnegative):
return None
if pivot > 0:
M.col_swap(k, k+pivot)
M.row_swap(k, k+pivot)
M[k, k] = sqrt(M[k, k])
M[k, k+1:] /= M[k, k]
M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:]
return M[-1, -1].is_nonnegative
_doc_positive_definite = \
r"""Finds out the definiteness of a matrix.
Explanation
===========
A square real matrix $A$ is:
- A positive definite matrix if $x^T A x > 0$
for all non-zero real vectors $x$.
- A positive semidefinite matrix if $x^T A x \geq 0$
for all non-zero real vectors $x$.
- A negative definite matrix if $x^T A x < 0$
for all non-zero real vectors $x$.
- A negative semidefinite matrix if $x^T A x \leq 0$
for all non-zero real vectors $x$.
- An indefinite matrix if there exists non-zero real vectors
$x, y$ with $x^T A x > 0 > y^T A y$.
A square complex matrix $A$ is:
- A positive definite matrix if $\text{re}(x^H A x) > 0$
for all non-zero complex vectors $x$.
- A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$
for all non-zero complex vectors $x$.
- A negative definite matrix if $\text{re}(x^H A x) < 0$
for all non-zero complex vectors $x$.
- A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$
for all non-zero complex vectors $x$.
- An indefinite matrix if there exists non-zero complex vectors
$x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.
A matrix need not be symmetric or hermitian to be positive definite.
- A real non-symmetric matrix is positive definite if and only if
$\frac{A + A^T}{2}$ is positive definite.
- A complex non-hermitian matrix is positive definite if and only if
$\frac{A + A^H}{2}$ is positive definite.
And this extension can apply for all the definitions above.
However, for complex cases, you can restrict the definition of
$\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix
to be hermitian.
But we do not present this restriction for computation because you
can check ``M.is_hermitian`` independently with this and use
the same procedure.
Examples
========
An example of symmetric positive definite matrix:
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])
>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric positive semidefinite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric negative definite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric indefinite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of non-symmetric positive definite matrix.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
Notes
=====
Although some people trivialize the definition of positive definite
matrices only for symmetric or hermitian matrices, this restriction
is not correct because it does not classify all instances of
positive definite matrices from the definition $x^T A x > 0$ or
$\text{re}(x^H A x) > 0$.
For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in
the example above is an example of real positive definite matrix
that is not symmetric.
However, since the following formula holds true;
.. math::
\text{re}(x^H A x) > 0 \iff
\text{re}(x^H \frac{A + A^H}{2} x) > 0
We can classify all positive definite matrices that may or may not
be symmetric or hermitian by transforming the matrix to
$\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$
(which is guaranteed to be always real symmetric or complex
hermitian) and we can defer most of the studies to symmetric or
hermitian positive definite matrices.
But it is a different problem for the existance of Cholesky
decomposition. Because even though a non symmetric or a non
hermitian matrix can be positive definite, Cholesky or LDL
decomposition does not exist because the decompositions require the
matrix to be symmetric or hermitian.
References
==========
.. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues
.. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
.. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
Math. Monthly 77, 259-264 1970.
"""
_is_positive_definite.__doc__ = _doc_positive_definite
_is_positive_semidefinite.__doc__ = _doc_positive_definite
_is_negative_definite.__doc__ = _doc_positive_definite
_is_negative_semidefinite.__doc__ = _doc_positive_definite
_is_indefinite.__doc__ = _doc_positive_definite
def _jordan_form(M, calc_transform=True, *, chop=False):
"""Return $(P, J)$ where $J$ is a Jordan block
matrix and $P$ is a matrix such that $M = P J P^{-1}$
Parameters
==========
calc_transform : bool
If ``False``, then only $J$ is returned.
chop : bool
All matrices are converted to exact types when computing
eigenvalues and eigenvectors. As a result, there may be
approximation errors. If ``chop==True``, these errors
will be truncated.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = M.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
See Also
========
jordan_block
"""
if not M.is_square:
raise NonSquareMatrixError("Only square matrices have Jordan forms")
mat = M
has_floats = M.has(Float)
if has_floats:
try:
max_prec = max(term._prec for term in M.values() if isinstance(term, Float))
except ValueError:
# if no term in the matrix is explicitly a Float calling max()
# will throw a error so setting max_prec to default value of 53
max_prec = 53
# setting minimum max_dps to 15 to prevent loss of precision in
# matrix containing non evaluated expressions
max_dps = max(prec_to_dps(max_prec), 15)
def restore_floats(*args):
"""If ``has_floats`` is `True`, cast all ``args`` as
matrices of floats."""
if has_floats:
args = [m.evalf(n=max_dps, chop=chop) for m in args]
if len(args) == 1:
return args[0]
return args
# cache calculations for some speedup
mat_cache = {}
def eig_mat(val, pow):
"""Cache computations of ``(M - val*I)**pow`` for quick
retrieval"""
if (val, pow) in mat_cache:
return mat_cache[(val, pow)]
if (val, pow - 1) in mat_cache:
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply(
mat_cache[(val, 1)], dotprodsimp=None)
else:
mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow)
return mat_cache[(val, pow)]
# helper functions
def nullity_chain(val, algebraic_multiplicity):
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
until it is constant where ``E = M - val*I``"""
# mat.rank() is faster than computing the null space,
# so use the rank-nullity theorem
cols = M.cols
ret = [0]
nullity = cols - eig_mat(val, 1).rank()
i = 2
while nullity != ret[-1]:
ret.append(nullity)
if nullity == algebraic_multiplicity:
break
nullity = cols - eig_mat(val, i).rank()
i += 1
# Due to issues like #7146 and #15872, SymPy sometimes
# gives the wrong rank. In this case, raise an error
# instead of returning an incorrect matrix
if nullity < ret[-1] or nullity > algebraic_multiplicity:
raise MatrixError(
"SymPy had encountered an inconsistent "
"result while computing Jordan block: "
"{}".format(M))
return ret
def blocks_from_nullity_chain(d):
"""Return a list of the size of each Jordan block.
If d_n is the nullity of E**n, then the number
of Jordan blocks of size n is
2*d_n - d_(n-1) - d_(n+1)"""
# d[0] is always the number of columns, so skip past it
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
return mid + end
def pick_vec(small_basis, big_basis):
"""Picks a vector from big_basis that isn't in
the subspace spanned by small_basis"""
if len(small_basis) == 0:
return big_basis[0]
for v in big_basis:
_, pivots = M.hstack(*(small_basis + [v])).echelon_form(
with_pivots=True)
if pivots[-1] == len(small_basis):
return v
# roots doesn't like Floats, so replace them with Rationals
if has_floats:
from sympy.simplify import nsimplify
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
# first calculate the jordan block structure
eigs = mat.eigenvals()
# Make sure that we have all roots in radical form
for x in eigs:
if x.has(CRootOf):
raise MatrixError(
"Jordan normal form is not implemented if the matrix have "
"eigenvalues in CRootOf form")
# most matrices have distinct eigenvalues
# and so are diagonalizable. In this case, don't
# do extra work!
if len(eigs.keys()) == mat.cols:
blocks = list(sorted(eigs.keys(), key=default_sort_key))
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
jordan_basis = [eig_mat(eig, 1).nullspace()[0]
for eig in blocks]
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
block_structure = []
for eig in sorted(eigs.keys(), key=default_sort_key):
algebraic_multiplicity = eigs[eig]
chain = nullity_chain(eig, algebraic_multiplicity)
block_sizes = blocks_from_nullity_chain(chain)
# if block_sizes = = [a, b, c, ...], then the number of
# Jordan blocks of size 1 is a, of size 2 is b, etc.
# create an array that has (eig, block_size) with one
# entry for each block
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
# we expect larger Jordan blocks to come earlier
size_nums.reverse()
block_structure.extend(
[(eig, size) for size, num in size_nums for _ in range(num)])
jordan_form_size = sum(size for eig, size in block_structure)
if jordan_form_size != M.rows:
raise MatrixError(
"SymPy had encountered an inconsistent result while "
"computing Jordan block. : {}".format(M))
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
# For each generalized eigenspace, calculate a basis.
# We start by looking for a vector in null( (A - eig*I)**n )
# which isn't in null( (A - eig*I)**(n-1) ) where n is
# the size of the Jordan block
#
# Ideally we'd just loop through block_structure and
# compute each generalized eigenspace. However, this
# causes a lot of unneeded computation. Instead, we
# go through the eigenvalues separately, since we know
# their generalized eigenspaces must have bases that
# are linearly independent.
jordan_basis = []
for eig in sorted(eigs.keys(), key=default_sort_key):
eig_basis = []
for block_eig, size in block_structure:
if block_eig != eig:
continue
null_big = (eig_mat(eig, size)).nullspace()
null_small = (eig_mat(eig, size - 1)).nullspace()
# we want to pick something that is in the big basis
# and not the small, but also something that is independent
# of any other generalized eigenvectors from a different
# generalized eigenspace sharing the same eigenvalue.
vec = pick_vec(null_small + eig_basis, null_big)
new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None)
for i in range(size)]
eig_basis.extend(new_vecs)
jordan_basis.extend(reversed(new_vecs))
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
def _left_eigenvects(M, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
eigs = M.transpose().eigenvects(**flags)
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
def _singular_values(M):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> M.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
if M.rows >= M.cols:
valmultpairs = M.H.multiply(M).eigenvals()
else:
valmultpairs = M.multiply(M.H).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)] * v # dangerous! same k in several spots!
# Pad with zeros if singular values are computed in reverse way,
# to give consistent format.
if len(vals) < M.cols:
vals += [M.zero] * (M.cols - len(vals))
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals
|
50d14b4c8642bcc0eaaa29e8c500f1ec73dd73248e8351aeee11851117fff8b1 | from sympy.core.containers import Tuple
from sympy.combinatorics.generators import rubik_cube_generators
from sympy.combinatorics.homomorphisms import is_isomorphic
from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\
DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup
from sympy.combinatorics.perm_groups import (PermutationGroup,
_orbit_transversal, Coset, SymmetricPermutationGroup)
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube
from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\
_verify_normal_closure
from sympy.testing.pytest import skip, XFAIL, slow
rmul = Permutation.rmul
def test_has():
a = Permutation([1, 0])
G = PermutationGroup([a])
assert G.is_abelian
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert not G.is_abelian
G = PermutationGroup([a])
assert G.has(a)
assert not G.has(b)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([0, 2, 1, 3, 4])
assert PermutationGroup(a, b).degree == \
PermutationGroup(a, b).degree == 6
g = PermutationGroup(Permutation(0, 2, 1))
assert Tuple(1, g).has(g)
def test_generate():
a = Permutation([1, 0])
g = list(PermutationGroup([a]).generate())
assert g == [Permutation([0, 1]), Permutation([1, 0])]
assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1
g = PermutationGroup([a]).generate(method='dimino')
assert list(g) == [Permutation([0, 1]), Permutation([1, 0])]
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
g = G.generate()
v1 = [p.array_form for p in list(g)]
v1.sort()
assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0,
1], [2, 1, 0]]
v2 = list(G.generate(method='dimino', af=True))
assert v1 == sorted(v2)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b]).generate(af=True)
assert len(list(g)) == 360
def test_order():
a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9])
b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0])
g = PermutationGroup([a, b])
assert g.order() == 1814400
assert PermutationGroup().order() == 1
def test_equality():
p_1 = Permutation(0, 1, 3)
p_2 = Permutation(0, 2, 3)
p_3 = Permutation(0, 1, 2)
p_4 = Permutation(0, 1, 3)
g_1 = PermutationGroup(p_1, p_2)
g_2 = PermutationGroup(p_3, p_4)
g_3 = PermutationGroup(p_2, p_1)
g_4 = PermutationGroup(p_1, p_2)
assert g_1 != g_2
assert g_1.generators != g_2.generators
assert g_1.equals(g_2)
assert g_1 != g_3
assert g_1.equals(g_3)
assert g_1 == g_4
def test_stabilizer():
S = SymmetricGroup(2)
H = S.stabilizer(0)
assert H.generators == [Permutation(1)]
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
G = PermutationGroup([a, b])
G0 = G.stabilizer(0)
assert G0.order() == 60
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 6
G2_1 = G2.stabilizer(1)
v = list(G2_1.generate(af=True))
assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]
gens = (
(1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
(0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 7, 17, 18),
(0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19))
gens = [Permutation(p) for p in gens]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 181440
S = SymmetricGroup(3)
assert [G.order() for G in S.basic_stabilizers] == [6, 2]
def test_center():
# the center of the dihedral group D_n is of order 2 for even n
for i in (4, 6, 10):
D = DihedralGroup(i)
assert (D.center()).order() == 2
# the center of the dihedral group D_n is of order 1 for odd n>2
for i in (3, 5, 7):
D = DihedralGroup(i)
assert (D.center()).order() == 1
# the center of an abelian group is the group itself
for i in (2, 3, 5):
for j in (1, 5, 7):
for k in (1, 1, 11):
G = AbelianGroup(i, j, k)
assert G.center().is_subgroup(G)
# the center of a nonabelian simple group is trivial
for i in(1, 5, 9):
A = AlternatingGroup(i)
assert (A.center()).order() == 1
# brute-force verifications
D = DihedralGroup(5)
A = AlternatingGroup(3)
C = CyclicGroup(4)
G.is_subgroup(D*A*C)
assert _verify_centralizer(G, G)
def test_centralizer():
# the centralizer of the trivial group is the entire group
S = SymmetricGroup(2)
assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
A = AlternatingGroup(5)
assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
# a centralizer in the trivial group is the trivial group itself
triv = PermutationGroup([Permutation([0, 1, 2, 3])])
D = DihedralGroup(4)
assert triv.centralizer(D).is_subgroup(triv)
# brute-force verifications for centralizers of groups
for i in (4, 5, 6):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
D = DihedralGroup(i)
for gp in (S, A, C, D):
for gp2 in (S, A, C, D):
if not gp2.is_subgroup(gp):
assert _verify_centralizer(gp, gp2)
# verify the centralizer for all elements of several groups
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_centralizer(S, element)
A = AlternatingGroup(5)
elements = list(A.generate_dimino())
for element in elements:
assert _verify_centralizer(A, element)
D = DihedralGroup(7)
elements = list(D.generate_dimino())
for element in elements:
assert _verify_centralizer(D, element)
# verify centralizers of small groups within small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp.degree == gp2.degree:
assert _verify_centralizer(gp, gp2)
def test_coset_rank():
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
i = 0
for h in G.generate(af=True):
rk = G.coset_rank(h)
assert rk == i
h1 = G.coset_unrank(rk, af=True)
assert h == h1
i += 1
assert G.coset_unrank(48) == None
assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0]
def test_coset_factor():
a = Permutation([0, 2, 1])
G = PermutationGroup([a])
c = Permutation([2, 1, 0])
assert not G.coset_factor(c)
assert G.coset_rank(c) is None
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b])
assert g.order() == 360
d = Permutation([1, 0, 2, 3, 4, 5])
assert not g.coset_factor(d.array_form)
assert not g.contains(d)
assert Permutation(2) in G
c = Permutation([1, 0, 2, 3, 5, 4])
v = g.coset_factor(c, True)
tr = g.basic_transversals
p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))])
assert p == c
v = g.coset_factor(c)
p = Permutation.rmul(*v)
assert p == c
assert g.contains(c)
G = PermutationGroup([Permutation([2, 1, 0])])
p = Permutation([1, 0, 2])
assert G.coset_factor(p) == []
def test_orbits():
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
g = PermutationGroup([a, b])
assert g.orbit(0) == {0, 1, 2}
assert g.orbits() == [{0, 1, 2}]
assert g.is_transitive() and g.is_transitive(strict=False)
assert g.orbit_transversal(0) == \
[Permutation(
[0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])]
assert g.orbit_transversal(0, True) == \
[(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])),
(1, Permutation([1, 2, 0]))]
G = DihedralGroup(6)
transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True)
for i, t in transversal:
slp = slps[i]
w = G.identity
for s in slp:
w = G.generators[s]*w
assert w == t
a = Permutation(list(range(1, 100)) + [0])
G = PermutationGroup([a])
assert [min(o) for o in G.orbits()] == [0]
G = PermutationGroup(rubik_cube_generators())
assert [min(o) for o in G.orbits()] == [0, 1]
assert not G.is_transitive() and not G.is_transitive(strict=False)
G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)])
assert not G.is_transitive() and G.is_transitive(strict=False)
assert PermutationGroup(
Permutation(3)).is_transitive(strict=False) is False
def test_is_normal():
gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]]
G1 = PermutationGroup(gens_s5)
assert G1.order() == 120
gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]]
G2 = PermutationGroup(gens_a5)
assert G2.order() == 60
assert G2.is_normal(G1)
gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]]
G3 = PermutationGroup(gens3)
assert not G3.is_normal(G1)
assert G3.order() == 12
G4 = G1.normal_closure(G3.generators)
assert G4.order() == 60
gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]]
G5 = PermutationGroup(gens5)
assert G5.order() == 24
G6 = G1.normal_closure(G5.generators)
assert G6.order() == 120
assert G1.is_subgroup(G6)
assert not G1.is_subgroup(G4)
assert G2.is_subgroup(G4)
I5 = PermutationGroup(Permutation(4))
assert I5.is_normal(G5)
assert I5.is_normal(G6, strict=False)
p1 = Permutation([1, 0, 2, 3, 4])
p2 = Permutation([0, 1, 2, 4, 3])
p3 = Permutation([3, 4, 2, 1, 0])
id_ = Permutation([0, 1, 2, 3, 4])
H = PermutationGroup([p1, p3])
H_n1 = PermutationGroup([p1, p2])
H_n2_1 = PermutationGroup(p1)
H_n2_2 = PermutationGroup(p2)
H_id = PermutationGroup(id_)
assert H_n1.is_normal(H)
assert H_n2_1.is_normal(H_n1)
assert H_n2_2.is_normal(H_n1)
assert H_id.is_normal(H_n2_1)
assert H_id.is_normal(H_n1)
assert H_id.is_normal(H)
assert not H_n2_1.is_normal(H)
assert not H_n2_2.is_normal(H)
def test_eq():
a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [
1, 2, 0, 3, 4, 5]]
a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]]
g = Permutation([1, 2, 3, 4, 5, 0])
G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]]
assert G1.order() == G2.order() == G3.order() == 6
assert G1.is_subgroup(G2)
assert not G1.is_subgroup(G3)
G4 = PermutationGroup([Permutation([0, 1])])
assert not G1.is_subgroup(G4)
assert G4.is_subgroup(G1, 0)
assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g))
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0)
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
def test_derived_subgroup():
a = Permutation([1, 0, 2, 4, 3])
b = Permutation([0, 1, 3, 2, 4])
G = PermutationGroup([a, b])
C = G.derived_subgroup()
assert C.order() == 3
assert C.is_normal(G)
assert C.is_subgroup(G, 0)
assert not G.is_subgroup(C, 0)
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
C = G.derived_subgroup()
assert C.order() == 12
def test_is_solvable():
a = Permutation([1, 2, 0])
b = Permutation([1, 0, 2])
G = PermutationGroup([a, b])
assert G.is_solvable
G = PermutationGroup([a])
assert G.is_solvable
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert not G.is_solvable
P = SymmetricGroup(10)
S = P.sylow_subgroup(3)
assert S.is_solvable
def test_rubik1():
gens = rubik_cube_generators()
gens1 = [gens[-1]] + [p**2 for p in gens[1:]]
G1 = PermutationGroup(gens1)
assert G1.order() == 19508428800
gens2 = [p**2 for p in gens]
G2 = PermutationGroup(gens2)
assert G2.order() == 663552
assert G2.is_subgroup(G1, 0)
C1 = G1.derived_subgroup()
assert C1.order() == 4877107200
assert C1.is_subgroup(G1, 0)
assert not G2.is_subgroup(C1, 0)
G = RubikGroup(2)
assert G.order() == 3674160
@XFAIL
def test_rubik():
skip('takes too much time')
G = PermutationGroup(rubik_cube_generators())
assert G.order() == 43252003274489856000
G1 = PermutationGroup(G[:3])
assert G1.order() == 170659735142400
assert not G1.is_normal(G)
G2 = G.normal_closure(G1.generators)
assert G2.is_subgroup(G)
def test_direct_product():
C = CyclicGroup(4)
D = DihedralGroup(4)
G = C*C*C
assert G.order() == 64
assert G.degree == 12
assert len(G.orbits()) == 3
assert G.is_abelian is True
H = D*C
assert H.order() == 32
assert H.is_abelian is False
def test_orbit_rep():
G = DihedralGroup(6)
assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]),
Permutation([4, 3, 2, 1, 0, 5])]
H = CyclicGroup(4)*G
assert H.orbit_rep(1, 5) is False
def test_schreier_vector():
G = CyclicGroup(50)
v = [0]*50
v[23] = -1
assert G.schreier_vector(23) == v
H = DihedralGroup(8)
assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
L = SymmetricGroup(4)
assert L.schreier_vector(1) == [1, -1, 0, 0]
def test_random_pr():
D = DihedralGroup(6)
r = 11
n = 3
_random_prec_n = {}
_random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1}
_random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1}
_random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1}
D._random_pr_init(r, n, _random_prec_n=_random_prec_n)
assert D._random_gens[11] == [0, 1, 2, 3, 4, 5]
_random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1}
assert D.random_pr(_random_prec=_random_prec) == \
Permutation([0, 5, 4, 3, 2, 1])
def test_is_alt_sym():
G = DihedralGroup(10)
assert G.is_alt_sym() is False
assert G._eval_is_alt_sym_naive() is False
assert G._eval_is_alt_sym_naive(only_alt=True) is False
assert G._eval_is_alt_sym_naive(only_sym=True) is False
S = SymmetricGroup(10)
assert S._eval_is_alt_sym_naive() is True
assert S._eval_is_alt_sym_naive(only_alt=True) is False
assert S._eval_is_alt_sym_naive(only_sym=True) is True
N_eps = 10
_random_prec = {'N_eps': N_eps,
0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])}
assert S.is_alt_sym(_random_prec=_random_prec) is True
A = AlternatingGroup(10)
assert A._eval_is_alt_sym_naive() is True
assert A._eval_is_alt_sym_naive(only_alt=True) is True
assert A._eval_is_alt_sym_naive(only_sym=True) is False
_random_prec = {'N_eps': N_eps,
0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])}
assert A.is_alt_sym(_random_prec=_random_prec) is False
G = PermutationGroup(
Permutation(1, 3, size=8)(0, 2, 4, 6),
Permutation(5, 7, size=8)(0, 2, 4, 6))
assert G.is_alt_sym() is False
# Tests for monte-carlo c_n parameter setting, and which guarantees
# to give False.
G = DihedralGroup(10)
assert G._eval_is_alt_sym_monte_carlo() is False
G = DihedralGroup(20)
assert G._eval_is_alt_sym_monte_carlo() is False
# A dry-running test to check if it looks up for the updated cache.
G = DihedralGroup(6)
G.is_alt_sym()
assert G.is_alt_sym() == False
def test_minimal_block():
D = DihedralGroup(6)
block_system = D.minimal_block([0, 3])
for i in range(3):
assert block_system[i] == block_system[i + 3]
S = SymmetricGroup(6)
assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]
assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4))
assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
def test_minimal_blocks():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
P = SymmetricGroup(5)
assert P.minimal_blocks() == [[0]*5]
P = PermutationGroup(Permutation(0, 3))
assert P.minimal_blocks() == False
def test_max_div():
S = SymmetricGroup(10)
assert S.max_div == 5
def test_is_primitive():
S = SymmetricGroup(5)
assert S.is_primitive() is True
C = CyclicGroup(7)
assert C.is_primitive() is True
a = Permutation(0, 1, 2, size=6)
b = Permutation(3, 4, 5, size=6)
G = PermutationGroup(a, b)
assert G.is_primitive() is False
def test_random_stab():
S = SymmetricGroup(5)
_random_el = Permutation([1, 3, 2, 0, 4])
_random_prec = {'rand': _random_el}
g = S.random_stab(2, _random_prec=_random_prec)
assert g == Permutation([1, 3, 2, 0, 4])
h = S.random_stab(1)
assert h(1) == 1
def test_transitivity_degree():
perm = Permutation([1, 2, 0])
C = PermutationGroup([perm])
assert C.transitivity_degree == 1
gen1 = Permutation([1, 2, 0, 3, 4])
gen2 = Permutation([1, 2, 3, 4, 0])
# alternating group of degree 5
Alt = PermutationGroup([gen1, gen2])
assert Alt.transitivity_degree == 3
def test_schreier_sims_random():
assert sorted(Tetra.pgroup.base) == [0, 1]
S = SymmetricGroup(3)
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]),
Permutation([0, 2, 1])]
assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
D = DihedralGroup(3)
_random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]),
Permutation([1, 0, 2])]}
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]),
Permutation([0, 2, 1])]
assert D.schreier_sims_random([], D.generators, 2,
_random_prec=_random_prec) == (base, strong_gens)
def test_baseswap():
S = SymmetricGroup(4)
S.schreier_sims()
base = S.base
strong_gens = S.strong_gens
assert base == [0, 1, 2]
deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
randomized = S.baseswap(base, strong_gens, 1)
assert deterministic[0] == [0, 2, 1]
assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
assert randomized[0] == [0, 2, 1]
assert _verify_bsgs(S, randomized[0], randomized[1]) is True
def test_schreier_sims_incremental():
identity = Permutation([0, 1, 2, 3, 4])
TrivialGroup = PermutationGroup([identity])
base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
S = SymmetricGroup(5)
base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(S, base, strong_gens) is True
D = DihedralGroup(2)
base, strong_gens = D.schreier_sims_incremental(base=[1])
assert _verify_bsgs(D, base, strong_gens) is True
A = AlternatingGroup(7)
gens = A.generators[:]
gen0 = gens[0]
gen1 = gens[1]
gen1 = rmul(gen1, ~gen0)
gen0 = rmul(gen0, gen1)
gen1 = rmul(gen0, gen1)
base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
assert _verify_bsgs(A, base, strong_gens) is True
C = CyclicGroup(11)
gen = C.generators[0]
base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
assert _verify_bsgs(C, base, strong_gens) is True
def _subgroup_search(i, j, k):
prop_true = lambda x: True
prop_fix_points = lambda x: [x(point) for point in points] == points
prop_comm_g = lambda x: rmul(x, g) == rmul(g, x)
prop_even = lambda x: x.is_even
for i in range(i, j, k):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
Sym = S.subgroup_search(prop_true)
assert Sym.is_subgroup(S)
Alt = S.subgroup_search(prop_even)
assert Alt.is_subgroup(A)
Sym = S.subgroup_search(prop_true, init_subgroup=C)
assert Sym.is_subgroup(S)
points = [7]
assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
points = [3, 4]
assert S.stabilizer(3).stabilizer(4).is_subgroup(
S.subgroup_search(prop_fix_points))
points = [3, 5]
fix35 = A.subgroup_search(prop_fix_points)
points = [5]
fix5 = A.subgroup_search(prop_fix_points)
assert A.subgroup_search(prop_fix_points, init_subgroup=fix35
).is_subgroup(fix5)
base, strong_gens = A.schreier_sims_incremental()
g = A.generators[0]
comm_g = \
A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
assert _verify_bsgs(comm_g, base, comm_g.generators) is True
assert [prop_comm_g(gen) is True for gen in comm_g.generators]
def test_subgroup_search():
_subgroup_search(10, 15, 2)
@XFAIL
def test_subgroup_search2():
skip('takes too much time')
_subgroup_search(16, 17, 1)
def test_normal_closure():
# the normal closure of the trivial group is trivial
S = SymmetricGroup(3)
identity = Permutation([0, 1, 2])
closure = S.normal_closure(identity)
assert closure.is_trivial
# the normal closure of the entire group is the entire group
A = AlternatingGroup(4)
assert A.normal_closure(A).is_subgroup(A)
# brute-force verifications for subgroups
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
C = CyclicGroup(i)
for gp in (A, D, C):
assert _verify_normal_closure(S, gp)
# brute-force verifications for all elements of a group
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_normal_closure(S, element)
# small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
assert _verify_normal_closure(gp, gp2)
def test_derived_series():
# the derived series of the trivial group consists only of the trivial group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.derived_series()[0].is_subgroup(triv)
# the derived series for a simple group consists only of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.derived_series()[0].is_subgroup(A)
# the derived series for S_4 is S_4 > A_4 > K_4 > triv
S = SymmetricGroup(4)
series = S.derived_series()
assert series[1].is_subgroup(AlternatingGroup(4))
assert series[2].is_subgroup(DihedralGroup(2))
assert series[3].is_trivial
def test_lower_central_series():
# the lower central series of the trivial group consists of the trivial
# group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.lower_central_series()[0].is_subgroup(triv)
# the lower central series of a simple group consists of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.lower_central_series()[0].is_subgroup(A)
# GAP-verified example
S = SymmetricGroup(6)
series = S.lower_central_series()
assert len(series) == 2
assert series[1].is_subgroup(AlternatingGroup(6))
def test_commutator():
# the commutator of the trivial group and the trivial group is trivial
S = SymmetricGroup(3)
triv = PermutationGroup([Permutation([0, 1, 2])])
assert S.commutator(triv, triv).is_subgroup(triv)
# the commutator of the trivial group and any other group is again trivial
A = AlternatingGroup(3)
assert S.commutator(triv, A).is_subgroup(triv)
# the commutator is commutative
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
# the commutator of an abelian group is trivial
S = SymmetricGroup(7)
A1 = AbelianGroup(2, 5)
A2 = AbelianGroup(3, 4)
triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
assert S.commutator(A1, A1).is_subgroup(triv)
assert S.commutator(A2, A2).is_subgroup(triv)
# examples calculated by hand
S = SymmetricGroup(3)
A = AlternatingGroup(3)
assert S.commutator(A, S).is_subgroup(A)
def test_is_nilpotent():
# every abelian group is nilpotent
for i in (1, 2, 3):
C = CyclicGroup(i)
Ab = AbelianGroup(i, i + 2)
assert C.is_nilpotent
assert Ab.is_nilpotent
Ab = AbelianGroup(5, 7, 10)
assert Ab.is_nilpotent
# A_5 is not solvable and thus not nilpotent
assert AlternatingGroup(5).is_nilpotent is False
def test_is_trivial():
for i in range(5):
triv = PermutationGroup([Permutation(list(range(i)))])
assert triv.is_trivial
def test_pointwise_stabilizer():
S = SymmetricGroup(2)
stab = S.pointwise_stabilizer([0])
assert stab.generators == [Permutation(1)]
S = SymmetricGroup(5)
points = []
stab = S
for point in (2, 0, 3, 4, 1):
stab = stab.stabilizer(point)
points.append(point)
assert S.pointwise_stabilizer(points).is_subgroup(stab)
def test_make_perm():
assert cube.pgroup.make_perm(5, seed=list(range(5))) == \
Permutation([4, 7, 6, 5, 0, 3, 2, 1])
assert cube.pgroup.make_perm(7, seed=list(range(7))) == \
Permutation([6, 7, 3, 2, 5, 4, 0, 1])
def test_elements():
from sympy.sets.sets import FiniteSet
p = Permutation(2, 3)
assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)}
assert FiniteSet(*PermutationGroup(p).elements) \
== FiniteSet(Permutation(2, 3), Permutation(3))
def test_is_group():
assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group == True
assert SymmetricGroup(4).is_group == True
def test_PermutationGroup():
assert PermutationGroup() == PermutationGroup(Permutation())
assert (PermutationGroup() == 0) is False
def test_coset_transvesal():
G = AlternatingGroup(5)
H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4))
assert G.coset_transversal(H) == \
[Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3),
Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4),
Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3),
Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)]
def test_coset_table():
G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2),
Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7));
H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7))
assert G.coset_table(H) == \
[[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1],
[5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3],
[2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5],
[6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7],
[10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9],
[7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]]
def test_subgroup():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert H.is_subgroup(G)
def test_generator_product():
G = SymmetricGroup(5)
p = Permutation(0, 2, 3)(1, 4)
gens = G.generator_product(p)
assert all(g in G.strong_gens for g in gens)
w = G.identity
for g in gens:
w = g*w
assert w == p
def test_sylow_subgroup():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
S = P.sylow_subgroup(2)
assert S.order() == 4
P = DihedralGroup(12)
S = P.sylow_subgroup(3)
assert S.order() == 3
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2))
S = P.sylow_subgroup(3)
assert S.order() == 9
S = P.sylow_subgroup(2)
assert S.order() == 8
P = SymmetricGroup(10)
S = P.sylow_subgroup(2)
assert S.order() == 256
S = P.sylow_subgroup(3)
assert S.order() == 81
S = P.sylow_subgroup(5)
assert S.order() == 25
# the length of the lower central series
# of a p-Sylow subgroup of Sym(n) grows with
# the highest exponent exp of p such
# that n >= p**exp
exp = 1
length = 0
for i in range(2, 9):
P = SymmetricGroup(i)
S = P.sylow_subgroup(2)
ls = S.lower_central_series()
if i // 2**exp > 0:
# length increases with exponent
assert len(ls) > length
length = len(ls)
exp += 1
else:
assert len(ls) == length
G = SymmetricGroup(100)
S = G.sylow_subgroup(3)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 3 > 0
G = AlternatingGroup(100)
S = G.sylow_subgroup(2)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 2 > 0
G = DihedralGroup(18)
S = G.sylow_subgroup(p=2)
assert S.order() == 4
G = DihedralGroup(50)
S = G.sylow_subgroup(p=2)
assert S.order() == 4
@slow
def test_presentation():
def _test(P):
G = P.presentation()
return G.order() == P.order()
def _strong_test(P):
G = P.strong_presentation()
chk = len(G.generators) == len(P.strong_gens)
return chk and G.order() == P.order()
P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7))
assert _test(P)
P = AlternatingGroup(5)
assert _test(P)
P = SymmetricGroup(5)
assert _test(P)
P = PermutationGroup([Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)])
assert _strong_test(P)
P = DihedralGroup(6)
assert _strong_test(P)
a = Permutation(0,1)(2,3)
b = Permutation(0,2)(3,1)
c = Permutation(4,5)
P = PermutationGroup(c, a, b)
assert _strong_test(P)
def test_polycyclic():
a = Permutation([0, 1, 2])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert G.is_polycyclic == True
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert G.is_polycyclic == False
def test_elementary():
a = Permutation([1, 5, 2, 0, 3, 6, 4])
G = PermutationGroup([a])
assert G.is_elementary(7) == False
a = Permutation(0, 1)(2, 3)
b = Permutation(0, 2)(3, 1)
G = PermutationGroup([a, b])
assert G.is_elementary(2) == True
c = Permutation(4, 5, 6)
G = PermutationGroup([a, b, c])
assert G.is_elementary(2) == False
G = SymmetricGroup(4).sylow_subgroup(2)
assert G.is_elementary(2) == False
H = AlternatingGroup(4).sylow_subgroup(2)
assert H.is_elementary(2) == True
def test_perfect():
G = AlternatingGroup(3)
assert G.is_perfect == False
G = AlternatingGroup(5)
assert G.is_perfect == True
def test_index():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert G.index(H) == 4
def test_cyclic():
G = SymmetricGroup(2)
assert G.is_cyclic
G = AbelianGroup(3, 7)
assert G.is_cyclic
G = AbelianGroup(7, 7)
assert not G.is_cyclic
G = AlternatingGroup(3)
assert G.is_cyclic
G = AlternatingGroup(4)
assert not G.is_cyclic
# Order less than 6
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 1))
assert G.is_cyclic
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3)
)
assert G.is_cyclic
G = PermutationGroup(
Permutation(3),
Permutation(0, 1)(2, 3),
Permutation(0, 2)(1, 3),
Permutation(0, 3)(1, 2)
)
assert G.is_cyclic is False
# Order 15
G = PermutationGroup(
Permutation(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
Permutation(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13)
)
assert G.is_cyclic
# Distinct prime orders
assert PermutationGroup._distinct_primes_lemma([3, 5]) is True
assert PermutationGroup._distinct_primes_lemma([5, 7]) is True
assert PermutationGroup._distinct_primes_lemma([2, 3]) is None
assert PermutationGroup._distinct_primes_lemma([3, 5, 7]) is None
assert PermutationGroup._distinct_primes_lemma([5, 7, 13]) is True
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3))
assert G.is_cyclic
assert G._is_abelian
# Non-abelian and therefore not cyclic
G = PermutationGroup(*SymmetricGroup(3).generators)
assert G.is_cyclic is False
# Abelian and cyclic
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(4, 5, 6)
)
assert G.is_cyclic
# Abelian but not cyclic
G = PermutationGroup(
Permutation(0, 1),
Permutation(2, 3),
Permutation(4, 5, 6)
)
assert G.is_cyclic is False
def test_dihedral():
G = SymmetricGroup(2)
assert G.is_dihedral
G = SymmetricGroup(3)
assert G.is_dihedral
G = AbelianGroup(2, 2)
assert G.is_dihedral
G = CyclicGroup(4)
assert not G.is_dihedral
G = AbelianGroup(3, 5)
assert not G.is_dihedral
G = AbelianGroup(2)
assert G.is_dihedral
G = AbelianGroup(6)
assert not G.is_dihedral
# D6, generated by two adjacent flips
G = PermutationGroup(
Permutation(1, 5)(2, 4),
Permutation(0, 1)(3, 4)(2, 5))
assert G.is_dihedral
# D7, generated by a flip and a rotation
G = PermutationGroup(
Permutation(1, 6)(2, 5)(3, 4),
Permutation(0, 1, 2, 3, 4, 5, 6))
assert G.is_dihedral
# S4, presented by three generators, fails due to having exactly 9
# elements of order 2:
G = PermutationGroup(
Permutation(0, 1), Permutation(0, 2),
Permutation(0, 3))
assert not G.is_dihedral
# D7, given by three generators
G = PermutationGroup(
Permutation(1, 6)(2, 5)(3, 4),
Permutation(2, 0)(3, 6)(4, 5),
Permutation(0, 1, 2, 3, 4, 5, 6))
assert G.is_dihedral
def test_abelian_invariants():
G = AbelianGroup(2, 3, 4)
assert G.abelian_invariants() == [2, 3, 4]
G=PermutationGroup([Permutation(1, 2, 3, 4), Permutation(1, 2), Permutation(5, 6)])
assert G.abelian_invariants() == [2, 2]
G = AlternatingGroup(7)
assert G.abelian_invariants() == []
G = AlternatingGroup(4)
assert G.abelian_invariants() == [3]
G = DihedralGroup(4)
assert G.abelian_invariants() == [2, 2]
G = PermutationGroup([Permutation(1, 2, 3, 4, 5, 6, 7)])
assert G.abelian_invariants() == [7]
G = DihedralGroup(12)
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3]
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
assert G.abelian_invariants() == [3]
G = PermutationGroup([Permutation(0, 1), Permutation(0, 2, 4, 6)(1, 3, 5, 7)])
assert G.abelian_invariants() == [2, 4]
G = SymmetricGroup(30)
S = G.sylow_subgroup(2)
assert S.abelian_invariants() == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3, 3, 3, 3]
S = G.sylow_subgroup(5)
assert S.abelian_invariants() == [5, 5, 5]
def test_composition_series():
a = Permutation(1, 2, 3)
b = Permutation(1, 2)
G = PermutationGroup([a, b])
comp_series = G.composition_series()
assert comp_series == G.derived_series()
# The first group in the composition series is always the group itself and
# the last group in the series is the trivial group.
S = SymmetricGroup(4)
assert S.composition_series()[0] == S
assert len(S.composition_series()) == 5
A = AlternatingGroup(4)
assert A.composition_series()[0] == A
assert len(A.composition_series()) == 4
# the composition series for C_8 is C_8 > C_4 > C_2 > triv
G = CyclicGroup(8)
series = G.composition_series()
assert is_isomorphic(series[1], CyclicGroup(4))
assert is_isomorphic(series[2], CyclicGroup(2))
assert series[3].is_trivial
def test_is_symmetric():
a = Permutation(0, 1, 2)
b = Permutation(0, 1, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 2, 1)
b = Permutation(1, 2, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 1, 2, 3)
b = Permutation(0, 3)(1, 2)
assert PermutationGroup(a, b).is_symmetric == False
def test_conjugacy_class():
S = SymmetricGroup(4)
x = Permutation(1, 2, 3)
C = {Permutation(0, 1, 2, size = 4), Permutation(0, 1, 3),
Permutation(0, 2, 1, size = 4), Permutation(0, 2, 3),
Permutation(0, 3, 1), Permutation(0, 3, 2),
Permutation(1, 2, 3), Permutation(1, 3, 2)}
assert S.conjugacy_class(x) == C
def test_conjugacy_classes():
S = SymmetricGroup(3)
expected = [{Permutation(size = 3)},
{Permutation(0, 1, size = 3), Permutation(0, 2), Permutation(1, 2)},
{Permutation(0, 1, 2), Permutation(0, 2, 1)}]
computed = S.conjugacy_classes()
assert len(expected) == len(computed)
assert all(e in computed for e in expected)
def test_coset_class():
a = Permutation(1, 2)
b = Permutation(0, 1)
G = PermutationGroup([a, b])
#Creating right coset
rht_coset = G*a
#Checking whether it is left coset or right coset
assert rht_coset.is_right_coset
assert not rht_coset.is_left_coset
#Creating list representation of coset
list_repr = rht_coset.as_list()
expected = [Permutation(0, 2), Permutation(0, 2, 1), Permutation(1, 2), Permutation(2), Permutation(2)(0, 1), Permutation(0, 1, 2)]
for ele in list_repr:
assert ele in expected
#Creating left coset
left_coset = a*G
#Checking whether it is left coset or right coset
assert not left_coset.is_right_coset
assert left_coset.is_left_coset
#Creating list representation of Coset
list_repr = left_coset.as_list()
expected = [Permutation(2)(0, 1), Permutation(0, 1, 2), Permutation(1, 2),
Permutation(2), Permutation(0, 2), Permutation(0, 2, 1)]
for ele in list_repr:
assert ele in expected
G = PermutationGroup(Permutation(1, 2, 3, 4), Permutation(2, 3, 4))
H = PermutationGroup(Permutation(1, 2, 3, 4))
g = Permutation(1, 3)(2, 4)
rht_coset = Coset(g, H, G, dir='+')
assert rht_coset.is_right_coset
list_repr = rht_coset.as_list()
expected = [Permutation(1, 2, 3, 4), Permutation(4), Permutation(1, 3)(2, 4),
Permutation(1, 4, 3, 2)]
for ele in list_repr:
assert ele in expected
def test_symmetricpermutationgroup():
a = SymmetricPermutationGroup(5)
assert a.degree == 5
assert a.order() == 120
assert a.identity() == Permutation(4)
|
530063e65a02b99022baf9aacb95406f0842413a61f28e81cd3686ac7d2bcc1e | from sympy.combinatorics import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.homomorphisms import homomorphism, group_isomorphism, is_isomorphic
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.fp_groups import FpGroup
from sympy.combinatorics.named_groups import AlternatingGroup, DihedralGroup, CyclicGroup
from sympy.testing.pytest import raises
def test_homomorphism():
# FpGroup -> PermutationGroup
F, a, b = free_group("a, b")
G = FpGroup(F, [a**3, b**3, (a*b)**2])
c = Permutation(3)(0, 1, 2)
d = Permutation(3)(1, 2, 3)
A = AlternatingGroup(4)
T = homomorphism(G, A, [a, b], [c, d])
assert T(a*b**2*a**-1) == c*d**2*c**-1
assert T.is_isomorphism()
assert T(T.invert(Permutation(3)(0, 2, 3))) == Permutation(3)(0, 2, 3)
T = homomorphism(G, AlternatingGroup(4), G.generators)
assert T.is_trivial()
assert T.kernel().order() == G.order()
E, e = free_group("e")
G = FpGroup(E, [e**8])
P = PermutationGroup([Permutation(0, 1, 2, 3), Permutation(0, 2)])
T = homomorphism(G, P, [e], [Permutation(0, 1, 2, 3)])
assert T.image().order() == 4
assert T(T.invert(Permutation(0, 2)(1, 3))) == Permutation(0, 2)(1, 3)
T = homomorphism(E, AlternatingGroup(4), E.generators, [c])
assert T.invert(c**2) == e**-1 #order(c) == 3 so c**2 == c**-1
# FreeGroup -> FreeGroup
T = homomorphism(F, E, [a], [e])
assert T(a**-2*b**4*a**2).is_identity
# FreeGroup -> FpGroup
G = FpGroup(F, [a*b*a**-1*b**-1])
T = homomorphism(F, G, F.generators, G.generators)
assert T.invert(a**-1*b**-1*a**2) == a*b**-1
# PermutationGroup -> PermutationGroup
D = DihedralGroup(8)
p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
P = PermutationGroup(p)
T = homomorphism(P, D, [p], [p])
assert T.is_injective()
assert not T.is_isomorphism()
assert T.invert(p**3) == p**3
T2 = homomorphism(F, P, [F.generators[0]], P.generators)
T = T.compose(T2)
assert T.domain == F
assert T.codomain == D
assert T(a*b) == p
D3 = DihedralGroup(3)
T = homomorphism(D3, D3, D3.generators, D3.generators)
assert T.is_isomorphism()
def test_isomorphisms():
F, a, b = free_group("a, b")
E, c, d = free_group("c, d")
# Infinite groups with differently ordered relators.
G = FpGroup(F, [a**2, b**3])
H = FpGroup(F, [b**3, a**2])
assert is_isomorphic(G, H)
# Trivial Case
# FpGroup -> FpGroup
H = FpGroup(F, [a**3, b**3, (a*b)**2])
F, c, d = free_group("c, d")
G = FpGroup(F, [c**3, d**3, (c*d)**2])
check, T = group_isomorphism(G, H)
assert check
assert T(c**3*d**2) == a**3*b**2
# FpGroup -> PermutationGroup
# FpGroup is converted to the equivalent isomorphic group.
F, a, b = free_group("a, b")
G = FpGroup(F, [a**3, b**3, (a*b)**2])
H = AlternatingGroup(4)
check, T = group_isomorphism(G, H)
assert check
assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3)
assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2)
# PermutationGroup -> PermutationGroup
D = DihedralGroup(8)
p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
P = PermutationGroup(p)
assert not is_isomorphic(D, P)
A = CyclicGroup(5)
B = CyclicGroup(7)
assert not is_isomorphic(A, B)
# Two groups of the same prime order are isomorphic to each other.
G = FpGroup(F, [a, b**5])
H = CyclicGroup(5)
assert G.order() == H.order()
assert is_isomorphic(G, H)
def test_check_homomorphism():
a = Permutation(1,2,3,4)
b = Permutation(1,3)
G = PermutationGroup([a, b])
raises(ValueError, lambda: homomorphism(G, G, [a], [a]))
|
1cc7755685a64aad242e58cf6e6bb0159c7d8c07f57a24016594fba5c8299b63 | from itertools import product
from sympy.concrete.summations import Sum
from sympy.core.function import (Function, diff)
from sympy.core import EulerGamma
from sympy.core.numbers import (E, I, Rational, oo, pi, zoo)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import (binomial, factorial, subfactorial)
from sympy.functions.elementary.complexes import (Abs, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (acosh, acoth, acsch, asech, atanh, sinh, tanh)
from sympy.functions.elementary.integers import (ceiling, floor, frac)
from sympy.functions.elementary.miscellaneous import (cbrt, real_root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin,
atan, cos, cot, csc, sec, sin, tan)
from sympy.functions.special.bessel import (besseli, bessely, besselj, besselk)
from sympy.functions.special.error_functions import (Ei, erf, erfc, erfi, fresnelc, fresnels)
from sympy.functions.special.gamma_functions import (digamma, gamma, uppergamma)
from sympy.functions.special.hyper import meijerg
from sympy.integrals.integrals import (Integral, integrate)
from sympy.series.limits import (Limit, limit)
from sympy.simplify.simplify import (logcombine, simplify)
from sympy.simplify.hyperexpand import hyperexpand
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core.mul import Mul
from sympy.series.limits import heuristics
from sympy.series.order import Order
from sympy.testing.pytest import XFAIL, raises
from sympy.abc import x, y, z, k
n = Symbol('n', integer=True, positive=True)
def test_basic1():
assert limit(x, x, oo) is oo
assert limit(x, x, -oo) is -oo
assert limit(-x, x, oo) is -oo
assert limit(x**2, x, -oo) is oo
assert limit(-x**2, x, oo) is -oo
assert limit(x*log(x), x, 0, dir="+") == 0
assert limit(1/x, x, oo) == 0
assert limit(exp(x), x, oo) is oo
assert limit(-exp(x), x, oo) is -oo
assert limit(exp(x)/x, x, oo) is oo
assert limit(1/x - exp(-x), x, oo) == 0
assert limit(x + 1/x, x, oo) is oo
assert limit(x - x**2, x, oo) is -oo
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1
assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0)
assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-')
assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((1 + x + y)**oo, x, 0, dir='-')
assert limit(y/x/log(x), x, 0) == -oo*sign(y)
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo
assert limit(gamma(1/x + 3), x, oo) == 2
assert limit(S.NaN, x, -oo) is S.NaN
assert limit(Order(2)*x, x, S.NaN) is S.NaN
assert limit(1/(x - 1), x, 1, dir="+") is oo
assert limit(1/(x - 1), x, 1, dir="-") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="-") is oo
assert limit(1/sin(x), x, pi, dir="+") is -oo
assert limit(1/sin(x), x, pi, dir="-") is oo
assert limit(1/cos(x), x, pi/2, dir="+") is -oo
assert limit(1/cos(x), x, pi/2, dir="-") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo
assert limit(tan(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(sec(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
# test bi-directional limits
assert limit(sin(x)/x, x, 0, dir="+-") == 1
assert limit(x**2, x, 0, dir="+-") == 0
assert limit(1/x**2, x, 0, dir="+-") is oo
# test failing bi-directional limits
assert limit(1/x, x, 0, dir="+-") is zoo
# approaching 0
# from dir="+"
assert limit(1 + 1/x, x, 0) is oo
# from dir='-'
# Add
assert limit(1 + 1/x, x, 0, dir='-') is -oo
# Pow
assert limit(x**(-2), x, 0, dir='-') is oo
assert limit(x**(-3), x, 0, dir='-') is -oo
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I
assert limit(x**2, x, 0, dir='-') == 0
assert limit(sqrt(x), x, 0, dir='-') == 0
assert limit(x**-pi, x, 0, dir='-') == -oo*(-1)**(1 - pi)
assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0)
# test pull request 22491
assert limit(1/asin(x), x, 0, dir = '+') == oo
assert limit(1/asin(x), x, 0, dir = '-') == -oo
assert limit(1/sinh(x), x, 0, dir = '+') == oo
assert limit(1/sinh(x), x, 0, dir = '-') == -oo
assert limit(log(1/x) + 1/sin(x), x, 0, dir = '+') == oo
assert limit(log(1/x) + 1/x, x, 0, dir = '+') == oo
def test_basic2():
assert limit(x**x, x, 0, dir="+") == 1
assert limit((exp(x) - 1)/x, x, 0) == 1
assert limit(1 + 1/x, x, oo) == 1
assert limit(-exp(1/x), x, oo) == -1
assert limit(x + exp(-x), x, oo) is oo
assert limit(x + exp(-x**2), x, oo) is oo
assert limit(x + exp(-exp(x)), x, oo) is oo
assert limit(13 + 1/x - exp(-x), x, oo) == 13
def test_basic3():
assert limit(1/x, x, 0, dir="+") is oo
assert limit(1/x, x, 0, dir="-") is -oo
def test_basic4():
assert limit(2*x + y*x, x, 0) == 0
assert limit(2*x + y*x, x, 1) == 2 + y
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9
def test_log():
# https://github.com/sympy/sympy/issues/21598
a, b, c = symbols('a b c', positive=True)
A = log(a/b) - (log(a) - log(b))
assert A.limit(a, oo) == 0
assert (A * c).limit(a, oo) == 0
tau, x = symbols('tau x', positive=True)
# The value of manualintegrate in the issue
expr = tau**2*((tau - 1)*(tau + 1)*log(x + 1)/(tau**2 + 1)**2 + 1/((tau**2\
+ 1)*(x + 1)) - (-2*tau*atan(x/tau) + (tau**2/2 - 1/2)*log(tau**2\
+ x**2))/(tau**2 + 1)**2)
assert limit(expr, x, oo) == pi*tau**3/(tau**2 + 1)**2
def test_piecewise():
# https://github.com/sympy/sympy/issues/18363
assert limit((real_root(x - 6, 3) + 2)/(x + 2), x, -2, '+') == Rational(1, 12)
def test_piecewise2():
func1 = 2*sqrt(x)*Piecewise(((4*x - 2)/Abs(sqrt(4 - 4*(2*x - 1)**2)), 4*x - 2\
>= 0), ((2 - 4*x)/Abs(sqrt(4 - 4*(2*x - 1)**2)), True))
func2 = Piecewise((x**2/2, x <= 0.5), (x/2 - 0.125, True))
func3 = Piecewise(((x - 9) / 5, x < -1), ((x - 9) / 5, x > 4), (sqrt(Abs(x - 3)), True))
assert limit(func1, x, 0) == 1
assert limit(func2, x, 0) == 0
assert limit(func3, x, -1) == 2
def test_basic5():
class my(Function):
@classmethod
def eval(cls, arg):
if arg is S.Infinity:
return S.NaN
assert limit(my(x), x, oo) == Limit(my(x), x, oo)
def test_issue_3885():
assert limit(x*y + x*z, z, 2) == x*y + 2*x
def test_Limit():
assert Limit(sin(x)/x, x, 0) != 1
assert Limit(sin(x)/x, x, 0).doit() == 1
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-'))
def test_floor():
assert limit(floor(x), x, -2, "+") == -2
assert limit(floor(x), x, -2, "-") == -3
assert limit(floor(x), x, -1, "+") == -1
assert limit(floor(x), x, -1, "-") == -2
assert limit(floor(x), x, 0, "+") == 0
assert limit(floor(x), x, 0, "-") == -1
assert limit(floor(x), x, 1, "+") == 1
assert limit(floor(x), x, 1, "-") == 0
assert limit(floor(x), x, 2, "+") == 2
assert limit(floor(x), x, 2, "-") == 1
assert limit(floor(x), x, 248, "+") == 248
assert limit(floor(x), x, 248, "-") == 247
# https://github.com/sympy/sympy/issues/14478
assert limit(x*floor(3/x)/2, x, 0, '+') == Rational(3, 2)
assert limit(floor(x + 1/2) - floor(x), x, oo) == AccumBounds(-S.Half, S(3)/2)
# test issue 9158
assert limit(floor(atan(x)), x, oo) == 1
assert limit(floor(atan(x)), x, -oo) == -2
assert limit(ceiling(atan(x)), x, oo) == 2
assert limit(ceiling(atan(x)), x, -oo) == -1
def test_floor_requires_robust_assumptions():
assert limit(floor(sin(x)), x, 0, "+") == 0
assert limit(floor(sin(x)), x, 0, "-") == -1
assert limit(floor(cos(x)), x, 0, "+") == 0
assert limit(floor(cos(x)), x, 0, "-") == 0
assert limit(floor(5 + sin(x)), x, 0, "+") == 5
assert limit(floor(5 + sin(x)), x, 0, "-") == 4
assert limit(floor(5 + cos(x)), x, 0, "+") == 5
assert limit(floor(5 + cos(x)), x, 0, "-") == 5
def test_ceiling():
assert limit(ceiling(x), x, -2, "+") == -1
assert limit(ceiling(x), x, -2, "-") == -2
assert limit(ceiling(x), x, -1, "+") == 0
assert limit(ceiling(x), x, -1, "-") == -1
assert limit(ceiling(x), x, 0, "+") == 1
assert limit(ceiling(x), x, 0, "-") == 0
assert limit(ceiling(x), x, 1, "+") == 2
assert limit(ceiling(x), x, 1, "-") == 1
assert limit(ceiling(x), x, 2, "+") == 3
assert limit(ceiling(x), x, 2, "-") == 2
assert limit(ceiling(x), x, 248, "+") == 249
assert limit(ceiling(x), x, 248, "-") == 248
# https://github.com/sympy/sympy/issues/14478
assert limit(x*ceiling(3/x)/2, x, 0, '+') == Rational(3, 2)
assert limit(ceiling(x + 1/2) - ceiling(x), x, oo) == AccumBounds(-S.Half, S(3)/2)
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
def test_frac():
assert limit(frac(x), x, oo) == AccumBounds(0, 1)
assert limit(frac(x)**(1/x), x, oo) == AccumBounds(0, 1)
assert limit(frac(x)**(1/x), x, -oo) == AccumBounds(1, oo)
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo) # wolfram gives (0, 1)
assert limit(frac(sin(x)), x, 0, "+") == 0
assert limit(frac(sin(x)), x, 0, "-") == 1
assert limit(frac(cos(x)), x, 0, "+-") == 1
assert limit(frac(x**2), x, 0, "+-") == 0
raises(ValueError, lambda: limit(frac(x), x, 0, '+-'))
assert limit(frac(-2*x + 1), x, 0, "+") == 1
assert limit(frac(-2*x + 1), x, 0, "-") == 0
assert limit(frac(x + S.Half), x, 0, "+-") == 1/2
assert limit(frac(1/x), x, 0) == AccumBounds(0, 1)
def test_issue_14355():
assert limit(floor(sin(x)/x), x, 0, '+') == 0
assert limit(floor(sin(x)/x), x, 0, '-') == 0
# test comment https://github.com/sympy/sympy/issues/14355#issuecomment-372121314
assert limit(floor(-tan(x)/x), x, 0, '+') == -2
assert limit(floor(-tan(x)/x), x, 0, '-') == -2
def test_atan():
x = Symbol("x", real=True)
assert limit(atan(x)*sin(1/x), x, 0) == 0
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2
def test_set_signs():
assert limit(abs(x), x, 0) == 0
assert limit(abs(sin(x)), x, 0) == 0
assert limit(abs(cos(x)), x, 0) == 1
assert limit(abs(sin(x + 1)), x, 0) == sin(1)
# https://github.com/sympy/sympy/issues/9449
assert limit((Abs(x + y) - Abs(x - y))/(2*x), x, 0) == sign(y)
# https://github.com/sympy/sympy/issues/12398
assert limit(Abs(log(x)/x**3), x, oo) == 0
assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3
# https://github.com/sympy/sympy/issues/18501
assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo
# https://github.com/sympy/sympy/issues/18997
assert limit(Abs(log(x)), x, 0) == oo
assert limit(Abs(log(Abs(x))), x, 0) == oo
# https://github.com/sympy/sympy/issues/19026
z = Symbol('z', positive=True)
assert limit(Abs(log(z) + 1)/log(z), z, oo) == 1
# https://github.com/sympy/sympy/issues/20704
assert limit(z*(Abs(1/z + y) - Abs(y - 1/z))/2, z, 0) == 0
# https://github.com/sympy/sympy/issues/21606
assert limit(cos(z)/sign(z), z, pi, '-') == -1
def test_heuristic():
x = Symbol("x", real=True)
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2)
def test_issue_3871():
z = Symbol("z", positive=True)
f = -1/z*exp(-z*x)
assert limit(f, x, oo) == 0
assert f.limit(x, oo) == 0
def test_exponential():
n = Symbol('n')
x = Symbol('x', real=True)
assert limit((1 + x/n)**n, n, oo) == exp(x)
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2)
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2)
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2)
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1
assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3'))
def test_exponential2():
n = Symbol('n')
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x)
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() is oo
def test_series_AccumBounds():
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2)
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3)
# not the exact bound
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2)
# test for issue #9934
lo = (-3 + cos(1))/2
hi = (1 + cos(1))/2
t1 = Mul(AccumBounds(lo, hi), 1/(-1 + cos(1)), evaluate=False)
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1
t2 = Mul(AccumBounds(-1 + sin(1)/2, sin(1)/2 + 1), 1/(1 - cos(1)))
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo) # wolfram says 0
# https://github.com/sympy/sympy/issues/12312
e = 2**(-x)*(sin(x) + 1)**x
assert limit(e, x, oo) == AccumBounds(0, oo)
def test_bessel_functions_at_infinity():
# Pull Request 23844 implements limits for all bessel and modified bessel
# functions approaching infinity along any direction i.e. abs(z0) tends to oo
assert limit(besselj(1, x), x, oo) == 0
assert limit(besselj(1, x), x, -oo) == 0
assert limit(besselj(1, x), x, I*oo) == oo*I
assert limit(besselj(1, x), x, -I*oo) == -oo*I
assert limit(bessely(1, x), x, oo) == 0
assert limit(bessely(1, x), x, -oo) == 0
assert limit(bessely(1, x), x, I*oo) == -oo
assert limit(bessely(1, x), x, -I*oo) == -oo
assert limit(besseli(1, x), x, oo) == oo
assert limit(besseli(1, x), x, -oo) == -oo
assert limit(besseli(1, x), x, I*oo) == 0
assert limit(besseli(1, x), x, -I*oo) == 0
assert limit(besselk(1, x), x, oo) == 0
assert limit(besselk(1, x), x, -oo) == -oo*I
assert limit(besselk(1, x), x, I*oo) == 0
assert limit(besselk(1, x), x, -I*oo) == 0
# test issue 14874
assert limit(besselk(0, x), x, oo) == 0
@XFAIL
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
def test_issue_2929():
assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0
def test_issue_3792():
assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half)
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1))
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1)
def test_issue_4090():
assert limit(1/(x + 3), x, 2) == Rational(1, 5)
assert limit(1/(x + pi), x, 2) == S.One/(2 + pi)
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi)
def test_issue_4547():
assert limit(cot(x), x, 0, dir='+') is oo
assert limit(cot(x), x, pi/2, dir='+') == 0
def test_issue_5164():
assert limit(x**0.5, x, oo) == oo**0.5 is oo
assert limit(x**0.5, x, 16) == S(16)**0.5
assert limit(x**0.5, x, 0) == 0
assert limit(x**(-0.5), x, oo) == 0
assert limit(x**(-0.5), x, 4) == S(4)**(-0.5)
def test_issue_5383():
func = (1.0 * 1 + 1.0 * x)**(1.0 * 1 / x)
assert limit(func, x, 0) == E
def test_issue_14793():
expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \
log(factorial(x)) + S(1)/(12*x))*x**3
assert limit(expr, x, oo) == S(1)/360
def test_issue_5183():
# using list(...) so py.test can recalculate values
tests = list(product([x, -x],
[-1, 1],
[2, 3, S.Half, Rational(2, 3)],
['-', '+']))
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
0, 0, 0, 0, 0, 0, 0, 0,
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
0, 0, 0, 0, 0, 0, 0, 0)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
y, s, e, d = args
eq = y**(s*e)
try:
assert limit(eq, x, 0, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, d, limit(eq, x, 0, dir=d))
else:
assert None
def test_issue_5184():
assert limit(sin(x)/x, x, oo) == 0
assert limit(atan(x), x, oo) == pi/2
assert limit(gamma(x), x, oo) is oo
assert limit(cos(x)/x, x, oo) == 0
assert limit(gamma(x), x, S.Half) == sqrt(pi)
r = Symbol('r', real=True)
assert limit(r*sin(1/r), r, 0) == 0
def test_issue_5229():
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0
def test_issue_4546():
# using list(...) so py.test can recalculate values
tests = list(product([cot, tan],
[-pi/2, 0, pi/2, pi, pi*Rational(3, 2)],
['-', '+']))
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
f, l, d = args
eq = f(x)
try:
assert limit(eq, x, l, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, l, d, limit(eq, x, l, dir=d))
else:
assert None
def test_issue_3934():
assert limit((1 + x**log(3))**(1/x), x, 0) == 1
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5
def test_calculate_series():
# NOTE
# The calculate_series method is being deprecated and is no longer responsible
# for result being returned. The mrv_leadterm function now uses simple leadterm
# calls rather than calculate_series.
# needs gruntz calculate_series to go to n = 32
assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1
# needs gruntz calculate_series to go to n = 128
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1
def test_issue_5955():
assert limit((x**16)/(1 + x**16), x, oo) == 1
assert limit((x**100)/(1 + x**100), x, oo) == 1
assert limit((x**1885)/(1 + x**1885), x, oo) == 1
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1
def test_newissue():
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1
def test_extended_real_line():
assert limit(x - oo, x, oo) == Limit(x - oo, x, oo)
assert limit(1/(x + sin(x)) - oo, x, 0) == Limit(1/(x + sin(x)) - oo, x, 0)
assert limit(oo/x, x, oo) == Limit(oo/x, x, oo)
assert limit(x - oo + 1/x, x, oo) == Limit(x - oo + 1/x, x, oo)
@XFAIL
def test_order_oo():
x = Symbol('x', positive=True)
assert Order(x)*oo != Order(1, x)
assert limit(oo/(x**2 - 4), x, oo) is oo
def test_issue_5436():
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo))
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo))
def test_Limit_dir():
raises(TypeError, lambda: Limit(x, x, 0, dir=0))
raises(ValueError, lambda: Limit(x, x, 0, dir='0'))
def test_polynomial():
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1
def test_rational():
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z)
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z)
def test_issue_5740():
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
def test_issue_6366():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert limit(r, x, 1).cancel() == n/2
def test_factorial():
f = factorial(x)
assert limit(f, x, oo) is oo
assert limit(x/f, x, oo) == 0
# see Stirling's approximation:
# https://en.wikipedia.org/wiki/Stirling's_approximation
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
assert limit(f, x, -oo) == gamma(-oo)
def test_issue_6560():
e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) +
35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1)))
assert limit(e, y, oo) == 5*x**3/4 + 3*x**2/4 - 3*x/4 - Rational(1, 4)
@XFAIL
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c +
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
raises(NotImplementedError, lambda: limit(expr, n, oo))
assert limit(expr.subs(c, m), n, oo) == 1
assert limit(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_7088():
a = Symbol('a')
assert limit(sqrt(x/(x + a)), x, oo) == 1
def test_branch_cuts():
assert limit(asin(I*x + 2), x, 0) == pi - asin(2)
assert limit(asin(I*x + 2), x, 0, '-') == asin(2)
assert limit(asin(I*x - 2), x, 0) == -asin(2)
assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2)
assert limit(acos(I*x + 2), x, 0) == -acos(2)
assert limit(acos(I*x + 2), x, 0, '-') == acos(2)
assert limit(acos(I*x - 2), x, 0) == acos(-2)
assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2)
assert limit(atan(x + 2*I), x, 0) == I*atanh(2)
assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2)
assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2)
assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2)
assert limit(atan(1/x), x, 0) == pi/2
assert limit(atan(1/x), x, 0, '-') == -pi/2
assert limit(atan(x), x, oo) == pi/2
assert limit(atan(x), x, -oo) == -pi/2
assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2)
assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2)
assert limit(acot(x), x, 0) == pi/2
assert limit(acot(x), x, 0, '-') == -pi/2
assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2)
assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2)
assert limit(log(I*x - 1), x, 0) == I*pi
assert limit(log(I*x - 1), x, 0, '-') == -I*pi
assert limit(log(-I*x - 1), x, 0) == -I*pi
assert limit(log(-I*x - 1), x, 0, '-') == I*pi
assert limit(sqrt(I*x - 1), x, 0) == I
assert limit(sqrt(I*x - 1), x, 0, '-') == -I
assert limit(sqrt(-I*x - 1), x, 0) == -I
assert limit(sqrt(-I*x - 1), x, 0, '-') == I
assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3)
assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3)
def test_issue_6364():
a = Symbol('a')
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2)
assert limit(e, z, 0) == 1/(cos(a)**2 - S.Half)
def test_issue_6682():
assert limit(exp(2*Ei(-x))/x**2, x, 0) == exp(2*EulerGamma)
def test_issue_4099():
a = Symbol('a')
assert limit(a/x, x, 0) == oo*sign(a)
assert limit(-a/x, x, 0) == -oo*sign(a)
assert limit(-a*x, x, oo) == -oo*sign(a)
assert limit(a*x, x, oo) == oo*sign(a)
def test_issue_4503():
dx = Symbol('dx')
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \
exp(x)/(2*sqrt(exp(x) + 1))
def test_issue_6052():
G = meijerg((), (), (1,), (0,), -x)
g = hyperexpand(G)
assert limit(g, x, 0, '+-') == 0
assert limit(g, x, oo) == -oo
def test_issue_7224():
expr = sqrt(x)*besseli(1,sqrt(8*x))
assert limit(x*diff(expr, x, x)/expr, x, 0) == 2
assert limit(x*diff(expr, x, x)/expr, x, 1).evalf(n=2) == 2.0
def test_issue_8208():
assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0
def test_issue_8229():
assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0
def test_issue_8433():
d, t = symbols('d t', positive=True)
assert limit(erf(1 - t/d), t, oo) == -1
def test_issue_8481():
k = Symbol('k', integer=True, nonnegative=True)
lamda = Symbol('lamda', positive=True)
assert limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0
def test_issue_8462():
assert limit(binomial(n, n/2), n, oo) == oo
assert limit(binomial(n, n/2) * 3 ** (-n), n, oo) == 0
def test_issue_8634():
n = Symbol('n', integer=True, positive=True)
x = Symbol('x')
assert limit(x**n, x, -oo) == oo*sign((-1)**n)
def test_issue_8635_18176():
x = Symbol('x', real=True)
k = Symbol('k', positive=True)
assert limit(x**n - x**(n - 0), x, oo) == 0
assert limit(x**n - x**(n - 5), x, oo) == oo
assert limit(x**n - x**(n - 2.5), x, oo) == oo
assert limit(x**n - x**(n - k - 1), x, oo) == oo
x = Symbol('x', positive=True)
assert limit(x**n - x**(n - 1), x, oo) == oo
assert limit(x**n - x**(n + 2), x, oo) == -oo
def test_issue_8730():
assert limit(subfactorial(x), x, oo) is oo
def test_issue_9252():
n = Symbol('n', integer=True)
c = Symbol('c', positive=True)
assert limit((log(n))**(n/log(n)) / (1 + c)**n, n, oo) == 0
# limit should depend on the value of c
raises(NotImplementedError, lambda: limit((log(n))**(n/log(n)) / c**n, n, oo))
def test_issue_9558():
assert limit(sin(x)**15, x, 0, '-') == 0
def test_issue_10801():
# make sure limits work with binomial
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi
def test_issue_10976():
s, x = symbols('s x', real=True)
assert limit(erf(s*x)/erf(s), s, 0) == x
def test_issue_9041():
assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1
def test_issue_9205():
x, y, a = symbols('x, y, a')
assert Limit(x, x, a).free_symbols == {a}
assert Limit(x, x, a, '-').free_symbols == {a}
assert Limit(x + y, x + y, a).free_symbols == {a}
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a}
def test_issue_9471():
assert limit(((27**(log(n,3)))/n**3),n,oo) == 1
assert limit(((27**(log(n,3)+1))/n**3),n,oo) == 27
def test_issue_11496():
assert limit(erfc(log(1/x)), x, oo) == 2
def test_issue_11879():
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1)
def test_limit_with_Float():
k = symbols("k")
assert limit(1.0 ** k, k, oo) == 1
assert limit(0.3*1.0**k, k, oo) == Rational(3, 10)
def test_issue_10610():
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3)
def test_issue_10868():
assert limit(log(x) + asech(x), x, 0, '+') == log(2)
assert limit(log(x) + asech(x), x, 0, '-') == log(2) + 2*I*pi
raises(ValueError, lambda: limit(log(x) + asech(x), x, 0, '+-'))
assert limit(log(x) + asech(x), x, oo) == oo
assert limit(log(x) + acsch(x), x, 0, '+') == log(2)
assert limit(log(x) + acsch(x), x, 0, '-') == -oo
raises(ValueError, lambda: limit(log(x) + acsch(x), x, 0, '+-'))
assert limit(log(x) + acsch(x), x, oo) == oo
def test_issue_6599():
assert limit((n + cos(n))/n, n, oo) == 1
def test_issue_12555():
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo
def test_issue_12769():
r, z, x = symbols('r z x', real=True)
a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True)
fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \
F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \
2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \
2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \
2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1)
assert fx.subs(K, F0).factor(deep=True) == limit(fx, K, F0).factor(deep=True)
def test_issue_13332():
assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) *
(6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36)
def test_issue_12564():
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo
assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, oo) is oo
assert limit(((x + sin(x))**2).expand(), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, -oo) is oo
assert limit(((x + sin(x))**2).expand(), x, -oo) is oo
def test_issue_14456():
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit())
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit())
def test_issue_14411():
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo
def test_issue_13382():
assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2
def test_issue_13403():
assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x, oo) == 1
def test_issue_13416():
assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x, oo) == 1
def test_issue_13462():
assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x**3/24 - x**2/8 + x/12
def test_issue_13750():
a = Symbol('a')
assert limit(erf(a - x), x, oo) == -1
assert limit(erf(sqrt(x) - x), x, oo) == -1
def test_issue_14276():
assert isinstance(limit(sin(x)**log(x), x, oo), Limit)
assert isinstance(limit(sin(x)**cos(x), x, oo), Limit)
assert isinstance(limit(sin(log(cos(x))), x, oo), Limit)
assert limit((1 + 1/(x**2 + cos(x)))**(x**2 + x), x, oo) == E
def test_issue_14514():
assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1
def test_issues_14525():
assert limit(sin(x)**2 - cos(x) + tan(x)*csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(sin(x)**2 - cos(x) + sin(x)*cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(cot(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(cos(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One)
assert limit(sin(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One)
assert limit(cos(x)**2 - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One)
assert limit(tan(x)**2 + sin(x)**2 - cos(x), x, oo) == AccumBounds(-S.One, S.Infinity)
def test_issue_14574():
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == Rational(5, 2)
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == Rational(-1, 2)
assert limit(4*fresnelc(x), x, -oo) == -2
def test_issue_14377():
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo))
def test_issue_15146():
e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \
2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3)
assert limit(e, x, oo) == S(1)/3
def test_issue_15202():
e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1)
assert limit(e, x, oo) == exp(1)
e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x)
assert limit(e, x, oo) == 10
def test_issue_15282():
assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000
def test_issue_15984():
assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-') == 0
def test_issue_13571():
assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1
def test_issue_13575():
assert limit(acos(erfi(x)), x, 1) == acos(erfi(S.One))
def test_issue_17325():
assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1
assert Limit(x**2, x, 0, dir="+-").doit() == 0
assert Limit(1/x**2, x, 0, dir="+-").doit() is oo
assert Limit(1/x, x, 0, dir="+-").doit() is zoo
def test_issue_10978():
assert LambertW(x).limit(x, 0) == 0
def test_issue_14313_comment():
assert limit(floor(n/2), n, oo) is oo
@XFAIL
def test_issue_15323():
d = ((1 - 1/x)**x).diff(x)
assert limit(d, x, 1, dir='+') == 1
def test_issue_12571():
assert limit(-LambertW(-log(x))/log(x), x, 1) == 1
def test_issue_14590():
assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1)
def test_issue_14393():
a, b = symbols('a b')
assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a + b)/a
def test_issue_14556():
assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1)
def test_issue_14811():
assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo
def test_issue_16222():
assert limit(exp(x), x, 1000000000) == exp(1000000000)
def test_issue_16714():
assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1))
def test_issue_16722():
z = symbols('z', positive=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
z = symbols('z', positive=True, integer=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
def test_issue_17431():
assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) *
(n + 2) * factorial(n) / (n + 1), n, oo) == 0
assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1))
, n, oo) == 0
assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0
def test_issue_17671():
assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
def test_issue_17751():
a, b, c, x = symbols('a b c x', positive=True)
assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2)
def test_issue_17792():
assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi)
def test_issue_18118():
assert limit(sign(sin(x)), x, 0, "-") == -1
assert limit(sign(sin(x)), x, 0, "+") == 1
def test_issue_18306():
assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1
def test_issue_18378():
assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3
def test_issue_18399():
assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo
assert limit((-x)**x, x, oo) is zoo
def test_issue_18442():
assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-')
def test_issue_18452():
assert limit(abs(log(x))**x, x, 0) == 1
assert limit(abs(log(x))**x, x, 0, "-") == 1
def test_issue_18473():
assert limit(sin(x)**(1/x), x, oo) == Limit(sin(x)**(1/x), x, oo, dir='-')
assert limit(cos(x)**(1/x), x, oo) == Limit(cos(x)**(1/x), x, oo, dir='-')
assert limit(tan(x)**(1/x), x, oo) == Limit(tan(x)**(1/x), x, oo, dir='-')
assert limit((cos(x) + 2)**(1/x), x, oo) == 1
assert limit((sin(x) + 10)**(1/x), x, oo) == 1
assert limit((cos(x) - 2)**(1/x), x, oo) == Limit((cos(x) - 2)**(1/x), x, oo, dir='-')
assert limit((cos(x) + 1)**(1/x), x, oo) == AccumBounds(0, 1)
assert limit((tan(x)**2)**(2/x) , x, oo) == AccumBounds(0, oo)
assert limit((sin(x)**2)**(1/x), x, oo) == AccumBounds(0, 1)
# Tests for issue #23751
assert limit((cos(x) + 1)**(1/x), x, -oo) == AccumBounds(1, oo)
assert limit((sin(x)**2)**(1/x), x, -oo) == AccumBounds(1, oo)
assert limit((tan(x)**2)**(2/x) , x, -oo) == AccumBounds(0, oo)
def test_issue_18482():
assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1)
def test_issue_18508():
assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2)
def test_issue_18521():
raises(NotImplementedError, lambda: limit(exp((2 - n) * x), x, oo))
def test_issue_18969():
a, b = symbols('a b', positive=True)
assert limit(LambertW(a), a, b) == LambertW(b)
assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b))
def test_issue_18992():
assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1)
def test_issue_19067():
x = Symbol('x')
assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1
def test_issue_19586():
assert limit(x**(2**x*3**(-x)), x, oo) == 1
def test_issue_13715():
n = Symbol('n')
p = Symbol('p', zero=True)
assert limit(n + p, n, 0) == 0
def test_issue_15055():
assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1
def test_issue_16708():
m, vi = symbols('m vi', positive=True)
B, ti, d = symbols('B ti d')
assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi
def test_issue_19154():
assert limit(besseli(1, 3 *x)/(x *besseli(1, x)**3), x , oo) == 2*sqrt(3)*pi/3
assert limit(besseli(1, 3 *x)/(x *besseli(1, x)**3), x , -oo) == -2*sqrt(3)*pi/3
def test_issue_19453():
beta = Symbol("beta", positive=True)
h = Symbol("h", positive=True)
m = Symbol("m", positive=True)
w = Symbol("omega", positive=True)
g = Symbol("g", positive=True)
e = exp(1)
q = 3*h**2*beta*g*e**(0.5*h*beta*w)
p = m**2*w**2
s = e**(h*beta*w) - 1
Z = -q/(4*p*s) - q/(2*p*s**2) - q*(e**(h*beta*w) + 1)/(2*p*s**3)\
+ e**(0.5*h*beta*w)/s
E = -diff(log(Z), beta)
assert limit(E - 0.5*h*w, beta, oo) == 0
assert limit(E.simplify() - 0.5*h*w, beta, oo) == 0
def test_issue_19739():
assert limit((-S(1)/4)**x, x, oo) == 0
def test_issue_19766():
assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2
def test_issue_19770():
m = Symbol('m')
# the result is not 0 for non-real m
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', real=True)
# can be improved to give the correct result 0
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', nonzero=True)
assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1)
assert limit(cos(m*x)/x, x, oo) == 0
def test_issue_7535():
assert limit(tan(x)/sin(tan(x)), x, pi/2) == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+')
assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='-')
assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-')
assert limit(sin(tan(x)),x,pi/2) == AccumBounds(-1, 1)
assert -oo*(1/sin(-oo)) == AccumBounds(-oo, oo)
assert oo*(1/sin(oo)) == AccumBounds(-oo, oo)
assert oo*(1/sin(-oo)) == AccumBounds(-oo, oo)
assert -oo*(1/sin(oo)) == AccumBounds(-oo, oo)
def test_issue_20365():
assert limit(((x + 1)**(1/x) - E)/x, x, 0) == -E/2
def test_issue_21031():
assert limit(((1 + x)**(1/x) - (1 + 2*x)**(1/(2*x)))/asin(x), x, 0) == E/2
def test_issue_21038():
assert limit(sin(pi*x)/(3*x - 12), x, 4) == pi/3
def test_issue_20578():
expr = abs(x) * sin(1/x)
assert limit(expr,x,0,'+') == 0
assert limit(expr,x,0,'-') == 0
assert limit(expr,x,0,'+-') == 0
def test_issue_21227():
f = log(x)
assert f.nseries(x, logx=y) == y
assert f.nseries(x, logx=-x) == -x
f = log(-log(x))
assert f.nseries(x, logx=y) == log(-y)
assert f.nseries(x, logx=-x) == log(x)
f = log(log(x))
assert f.nseries(x, logx=y) == log(y)
assert f.nseries(x, logx=-x) == log(-x)
assert f.nseries(x, logx=x) == log(x)
f = log(log(log(1/x)))
assert f.nseries(x, logx=y) == log(log(-y))
assert f.nseries(x, logx=-y) == log(log(y))
assert f.nseries(x, logx=x) == log(log(-x))
assert f.nseries(x, logx=-x) == log(log(x))
def test_issue_21415():
exp = (x-1)*cos(1/(x-1))
assert exp.limit(x,1) == 0
assert exp.expand().limit(x,1) == 0
def test_issue_21530():
assert limit(sinh(n + 1)/sinh(n), n, oo) == E
def test_issue_21550():
r = (sqrt(5) - 1)/2
assert limit((x - r)/(x**2 + x - 1), x, r) == sqrt(5)/5
def test_issue_21661():
out = limit((x**(x + 1) * (log(x) + 1) + 1) / x, x, 11)
assert out == S(3138428376722)/11 + 285311670611*log(11)
def test_issue_21701():
assert limit((besselj(z, x)/x**z).subs(z, 7), x, 0) == S(1)/645120
def test_issue_21721():
a = Symbol('a', real=True)
I = integrate(1/(pi*(1 + (x - a)**2)), x)
assert I.limit(x, oo) == S.Half
def test_issue_21756():
term = (1 - exp(-2*I*pi*z))/(1 - exp(-2*I*pi*z/5))
assert term.limit(z, 0) == 5
assert re(term).limit(z, 0) == 5
def test_issue_21785():
a = Symbol('a')
assert sqrt((-a**2 + x**2)/(1 - x**2)).limit(a, 1, '-') == I
def test_issue_22181():
assert limit((-1)**x * 2**(-x), x, oo) == 0
def test_issue_22220():
e1 = sqrt(30)*atan(sqrt(30)*tan(x/2)/6)/30
e2 = sqrt(30)*I*(-log(sqrt(2)*tan(x/2) - 2*sqrt(15)*I/5) +
+log(sqrt(2)*tan(x/2) + 2*sqrt(15)*I/5))/60
assert limit(e1, x, -pi) == -sqrt(30)*pi/60
assert limit(e2, x, -pi) == -sqrt(30)*pi/30
assert limit(e1, x, -pi, '-') == sqrt(30)*pi/60
assert limit(e2, x, -pi, '-') == 0
# test https://github.com/sympy/sympy/issues/22220#issuecomment-972727694
expr = log(x - I) - log(-x - I)
expr2 = logcombine(expr, force=True)
assert limit(expr, x, oo) == limit(expr2, x, oo) == I*pi
# test https://github.com/sympy/sympy/issues/22220#issuecomment-1077618340
expr = expr = (-log(tan(x/2) - I) +log(tan(x/2) + I))
assert limit(expr, x, pi, '+') == 2*I*pi
assert limit(expr, x, pi, '-') == 0
def test_issue_22334():
k, n = symbols('k, n', positive=True)
assert limit((n+1)**k/((n+1)**(k+1) - (n)**(k+1)), n, oo) == 1/(k + 1)
assert limit((n+1)**k/((n+1)**(k+1) - (n)**(k+1)).expand(), n, oo) == 1/(k + 1)
assert limit((n+1)**k/(n*(-n**k + (n + 1)**k) + (n + 1)**k), n, oo) == 1/(k + 1)
def test_sympyissue_22986():
assert limit(acosh(1 + 1/x)*sqrt(x), x, oo) == sqrt(2)
def test_issue_23231():
f = (2**x - 2**(-x))/(2**x + 2**(-x))
assert limit(f, x, -oo) == -1
def test_issue_23596():
assert integrate(((1 + x)/x**2)*exp(-1/x), (x, 0, oo)) == oo
def test_issue_23752():
expr1 = sqrt(-I*x**2 + x - 3)
expr2 = sqrt(-I*x**2 + I*x - 3)
assert limit(expr1, x, 0, '+') == -sqrt(3)*I
assert limit(expr1, x, 0, '-') == -sqrt(3)*I
assert limit(expr2, x, 0, '+') == sqrt(3)*I
assert limit(expr2, x, 0, '-') == -sqrt(3)*I
def test_issue_24276():
fx = log(tan(pi/2*tanh(x))).diff(x)
assert fx.limit(x, oo) == 2
assert fx.simplify().limit(x, oo) == 2
assert fx.rewrite(sin).limit(x, oo) == 2
assert fx.rewrite(sin).simplify().limit(x, oo) == 2
|
d4f92f5dd25df5a416e20900a21fabfbfa07809120f2ac47bfdf10f8f6e9ec81 | from sympy.core.function import diff
from sympy.core.function import expand
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, cos, sin, atan2, atan)
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import Matrix
from sympy.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.algebras.quaternion import Quaternion
from sympy.testing.pytest import raises, warns
from itertools import permutations, product
w, x, y, z = symbols('w:z')
phi = symbols('phi')
def test_quaternion_construction():
q = Quaternion(w, x, y, z)
assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z)
q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
pi*Rational(2, 3))
assert q2 == Quaternion(S.Half, S.Half,
S.Half, S.Half)
M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]])
q3 = trigsimp(Quaternion.from_rotation_matrix(M))
assert q3 == Quaternion(sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(2 - 2*cos(phi))*sign(sin(phi))/2)
nc = Symbol('nc', commutative=False)
raises(ValueError, lambda: Quaternion(w, x, nc, z))
def test_quaternion_construction_norm():
q1 = Quaternion(*symbols('a:d'))
q2 = Quaternion(w, x, y, z)
assert expand((q1*q2).norm()**2 - (q1.norm()**2 * q2.norm()**2)) == 0
q3 = Quaternion(w, x, y, z, norm=1)
assert (q1 * q3).norm() == q1.norm()
def test_to_and_from_Matrix():
q = Quaternion(w, x, y, z)
q_full = Quaternion.from_Matrix(q.to_Matrix())
q_vect = Quaternion.from_Matrix(q.to_Matrix(True))
assert (q - q_full).is_zero_quaternion()
assert (q.vector_part() - q_vect).is_zero_quaternion()
def test_product_matrices():
q1 = Quaternion(w, x, y, z)
q2 = Quaternion(*(symbols("a:d")))
assert (q1 * q2).to_Matrix() == q1.product_matrix_left * q2.to_Matrix()
assert (q1 * q2).to_Matrix() == q2.product_matrix_right * q1.to_Matrix()
R1 = (q1.product_matrix_left * q1.product_matrix_right.T)[1:, 1:]
R2 = simplify(q1.to_rotation_matrix()*q1.norm()**2)
assert R1 == R2
def test_quaternion_axis_angle():
test_data = [ # axis, angle, expected_quaternion
((1, 0, 0), 0, (1, 0, 0, 0)),
((1, 0, 0), pi/2, (sqrt(2)/2, sqrt(2)/2, 0, 0)),
((0, 1, 0), pi/2, (sqrt(2)/2, 0, sqrt(2)/2, 0)),
((0, 0, 1), pi/2, (sqrt(2)/2, 0, 0, sqrt(2)/2)),
((1, 0, 0), pi, (0, 1, 0, 0)),
((0, 1, 0), pi, (0, 0, 1, 0)),
((0, 0, 1), pi, (0, 0, 0, 1)),
((1, 1, 1), pi, (0, 1/sqrt(3),1/sqrt(3),1/sqrt(3))),
((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), pi*2/3, (S.Half, S.Half, S.Half, S.Half))
]
for axis, angle, expected in test_data:
assert Quaternion.from_axis_angle(axis, angle) == Quaternion(*expected)
def test_quaternion_axis_angle_simplification():
result = Quaternion.from_axis_angle((1, 2, 3), asin(4))
assert result.a == cos(asin(4)/2)
assert result.b == sqrt(14)*sin(asin(4)/2)/14
assert result.c == sqrt(14)*sin(asin(4)/2)/7
assert result.d == 3*sqrt(14)*sin(asin(4)/2)/14
def test_quaternion_complex_real_addition():
a = symbols("a", complex=True)
b = symbols("b", real=True)
# This symbol is not complex:
c = symbols("c", commutative=False)
q = Quaternion(w, x, y, z)
assert a + q == Quaternion(w + re(a), x + im(a), y, z)
assert 1 + q == Quaternion(1 + w, x, y, z)
assert I + q == Quaternion(w, 1 + x, y, z)
assert b + q == Quaternion(w + b, x, y, z)
raises(ValueError, lambda: c + q)
raises(ValueError, lambda: q * c)
raises(ValueError, lambda: c * q)
assert -q == Quaternion(-w, -x, -y, -z)
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 4, 7, 8)
assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I)
assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8)
assert q1 * (2 + 3*I) == \
Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I))
assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert q1 + q0 == q1
assert q1 - q0 == q1
assert q1 - q1 == q0
def test_quaternion_evalf():
assert Quaternion(sqrt(2), 0, 0, sqrt(3)).evalf() == Quaternion(sqrt(2).evalf(), 0, 0, sqrt(3).evalf())
assert Quaternion(1/sqrt(2), 0, 0, 1/sqrt(2)).evalf() == Quaternion((1/sqrt(2)).evalf(), 0, 0, (1/sqrt(2)).evalf())
def test_quaternion_functions():
q = Quaternion(w, x, y, z)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert conjugate(q) == Quaternion(w, -x, -y, -z)
assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2)
assert q.normalize() == Quaternion(w, x, y, z) / sqrt(w**2 + x**2 + y**2 + z**2)
assert q.inverse() == Quaternion(w, -x, -y, -z) / (w**2 + x**2 + y**2 + z**2)
assert q.inverse() == q.pow(-1)
raises(ValueError, lambda: q0.inverse())
assert q.pow(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
assert q**(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
assert q1.pow(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
assert q1**(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
assert q1.pow(-0.5) == NotImplemented
raises(TypeError, lambda: q1**(-0.5))
assert q1.exp() == \
Quaternion(E * cos(sqrt(29)),
2 * sqrt(29) * E * sin(sqrt(29)) / 29,
3 * sqrt(29) * E * sin(sqrt(29)) / 29,
4 * sqrt(29) * E * sin(sqrt(29)) / 29)
assert q1._ln() == \
Quaternion(log(sqrt(30)),
2 * sqrt(29) * acos(sqrt(30)/30) / 29,
3 * sqrt(29) * acos(sqrt(30)/30) / 29,
4 * sqrt(29) * acos(sqrt(30)/30) / 29)
assert q1.pow_cos_sin(2) == \
Quaternion(30 * cos(2 * acos(sqrt(30)/30)),
60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29)
assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)
assert integrate(Quaternion(x, x, x, x), x) == \
Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2)
assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5)
n = Symbol('n')
raises(TypeError, lambda: q1**n)
n = Symbol('n', integer=True)
raises(TypeError, lambda: q1**n)
assert Quaternion(22, 23, 55, 8).scalar_part() == 22
assert Quaternion(w, x, y, z).scalar_part() == w
assert Quaternion(22, 23, 55, 8).vector_part() == Quaternion(0, 23, 55, 8)
assert Quaternion(w, x, y, z).vector_part() == Quaternion(0, x, y, z)
assert q1.axis() == Quaternion(0, 2*sqrt(29)/29, 3*sqrt(29)/29, 4*sqrt(29)/29)
assert q1.axis().pow(2) == Quaternion(-1, 0, 0, 0)
assert q0.axis().scalar_part() == 0
assert q.axis() == Quaternion(0, x/sqrt(x**2 + y**2 + z**2), y/sqrt(x**2 + y**2 + z**2), z/sqrt(x**2 + y**2 + z**2))
assert q0.is_pure() == True
assert q1.is_pure() == False
assert Quaternion(0, 0, 0, 3).is_pure() == True
assert Quaternion(0, 2, 10, 3).is_pure() == True
assert Quaternion(w, 2, 10, 3).is_pure() == None
assert q1.angle() == atan(sqrt(29))
assert q.angle() == atan2(sqrt(x**2 + y**2 + z**2), w)
assert Quaternion.arc_coplanar(q1, Quaternion(2, 4, 6, 8)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(1, -2, -3, -4)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(1, 8, 12, 16)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(1, 2, 3, 4)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(w, 4, 6, 8)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(2, 7, 4, 1)) == False
assert Quaternion.arc_coplanar(q1, Quaternion(w, x, y, z)) == None
raises(ValueError, lambda: Quaternion.arc_coplanar(q1, q0))
assert Quaternion.vector_coplanar(Quaternion(0, 8, 12, 16), Quaternion(0, 4, 6, 8), Quaternion(0, 2, 3, 4)) == True
assert Quaternion.vector_coplanar(Quaternion(0, 0, 0, 0), Quaternion(0, 4, 6, 8), Quaternion(0, 2, 3, 4)) == True
assert Quaternion.vector_coplanar(Quaternion(0, 8, 2, 6), Quaternion(0, 1, 6, 6), Quaternion(0, 0, 3, 4)) == False
assert Quaternion.vector_coplanar(Quaternion(0, 1, 3, 4), Quaternion(0, 4, w, 6), Quaternion(0, 6, 8, 1)) == None
raises(ValueError, lambda: Quaternion.vector_coplanar(q0, Quaternion(0, 4, 6, 8), q1))
assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 4, 6)) == True
assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 2, 6)) == False
assert Quaternion(0, 1, 2, 3).parallel(Quaternion(w, x, y, 6)) == None
raises(ValueError, lambda: q0.parallel(q1))
assert Quaternion(0, 1, 2, 3).orthogonal(Quaternion(0, -2, 1, 0)) == True
assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(0, 2, 2, 6)) == False
assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(w, x, y, 6)) == None
raises(ValueError, lambda: q0.orthogonal(q1))
assert q1.index_vector() == Quaternion(0, 2*sqrt(870)/29, 3*sqrt(870)/29, 4*sqrt(870)/29)
assert Quaternion(0, 3, 9, 4).index_vector() == Quaternion(0, 3, 9, 4)
assert Quaternion(4, 3, 9, 4).mensor() == log(sqrt(122))
assert Quaternion(3, 3, 0, 2).mensor() == log(sqrt(22))
assert q0.is_zero_quaternion() == True
assert q1.is_zero_quaternion() == False
assert Quaternion(w, 0, 0, 0).is_zero_quaternion() == None
def test_quaternion_conversions():
q1 = Quaternion(1, 2, 3, 4)
assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
3 * sqrt(29)/29,
4 * sqrt(29)/29),
2 * acos(sqrt(30)/30))
assert q1.to_rotation_matrix() == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
[Rational(1, 3), Rational(14, 15), Rational(2, 15)]])
assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15), Rational(4, 5)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3), S.Zero],
[Rational(1, 3), Rational(14, 15), Rational(2, 15), Rational(-2, 5)],
[S.Zero, S.Zero, S.Zero, S.One]])
theta = symbols("theta", real=True)
q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))
assert trigsimp(q2.to_rotation_matrix()) == Matrix([
[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]])
assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
2*acos(cos(theta/2)))
assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
[cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
[sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def test_rotation_matrix_homogeneous():
q = Quaternion(w, x, y, z)
R1 = q.to_rotation_matrix(homogeneous=True) * q.norm()**2
R2 = simplify(q.to_rotation_matrix(homogeneous=False) * q.norm()**2)
assert R1 == R2
def test_quaternion_rotation_iss1593():
"""
There was a sign mistake in the definition,
of the rotation matrix. This tests that particular sign mistake.
See issue 1593 for reference.
See wikipedia
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
for the correct definition
"""
q = Quaternion(cos(phi/2), sin(phi/2), 0, 0)
assert(trigsimp(q.to_rotation_matrix()) == Matrix([
[1, 0, 0],
[0, cos(phi), -sin(phi)],
[0, sin(phi), cos(phi)]]))
def test_quaternion_multiplication():
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 2, 3, 5)
q3 = Quaternion(1, 1, 1, y)
assert Quaternion._generic_mul(S(4), S.One) == 4
assert Quaternion._generic_mul(S(4), q1) == Quaternion(12 + 16*I, 8 + 20*I, 0, 28 + 32*I)
assert q2.mul(2) == Quaternion(2, 4, 6, 10)
assert q2.mul(q3) == Quaternion(-5*y - 4, 3*y - 2, 9 - 2*y, y + 4)
assert q2.mul(q3) == q2*q3
z = symbols('z', complex=True)
z_quat = Quaternion(re(z), im(z), 0, 0)
q = Quaternion(*symbols('q:4', real=True))
assert z * q == z_quat * q
assert q * z == q * z_quat
def test_issue_16318():
#for rtruediv
q0 = Quaternion(0, 0, 0, 0)
raises(ValueError, lambda: 1/q0)
#for rotate_point
q = Quaternion(1, 2, 3, 4)
(axis, angle) = q.to_axis_angle()
assert Quaternion.rotate_point((1, 1, 1), (axis, angle)) == (S.One / 5, 1, S(7) / 5)
#test for to_axis_angle
q = Quaternion(-1, 1, 1, 1)
axis = (-sqrt(3)/3, -sqrt(3)/3, -sqrt(3)/3)
angle = 2*pi/3
assert (axis, angle) == q.to_axis_angle()
def test_to_euler():
q = Quaternion(w, x, y, z)
q_normalized = q.normalize()
seqs = ['zxy', 'zyx', 'zyz', 'zxz']
seqs += [seq.upper() for seq in seqs]
for seq in seqs:
euler_from_q = q.to_euler(seq)
q_back = simplify(Quaternion.from_euler(euler_from_q, seq))
assert q_back == q_normalized
def test_to_euler_iss24504():
"""
There was a mistake in the degenerate case testing
See issue 24504 for reference.
"""
q = Quaternion.from_euler((phi, 0, 0), 'zyz')
with warns(UserWarning, match='Singularity', test_stacklevel=False):
assert trigsimp(q.to_euler('zyz'), inverse=True) == (phi, 0, 0)
def test_to_euler_numerical_singilarities():
def test_one_case(angles, seq):
q = Quaternion.from_euler(angles, seq)
with warns(UserWarning, match='Singularity', test_stacklevel=False):
assert q.to_euler(seq) == angles
# symmetric
test_one_case((pi/2, 0, 0), 'zyz')
test_one_case((pi/2, 0, 0), 'ZYZ')
test_one_case((pi/2, pi, 0), 'zyz')
test_one_case((pi/2, pi, 0), 'ZYZ')
# asymmetric
test_one_case((pi/2, pi/2, 0), 'zyx')
test_one_case((pi/2, -pi/2, 0), 'zyx')
test_one_case((pi/2, pi/2, 0), 'ZYX')
test_one_case((pi/2, -pi/2, 0), 'ZYX')
def test_to_euler_options():
def test_one_case(q):
angles1 = Matrix(q.to_euler(seq, True, True))
angles2 = Matrix(q.to_euler(seq, False, False))
angle_errors = simplify(angles1-angles2).evalf()
for angle_error in angle_errors:
# forcing angles to set {-pi, pi}
angle_error = (angle_error + pi) % (2 * pi) - pi
assert angle_error < 10e-7
for xyz in ('xyz', 'XYZ'):
for seq_tuple in permutations(xyz):
for symmetric in (True, False):
if symmetric:
seq = ''.join([seq_tuple[0], seq_tuple[1], seq_tuple[0]])
else:
seq = ''.join(seq_tuple)
for elements in product([-1, 0, 1], repeat=4):
q = Quaternion(*elements)
if not q.is_zero_quaternion():
test_one_case(q)
|
4225d26bbba1be65014cbc94c01407ad891694e71e2a1e69e24543f7456708a3 | """ Generic SymPy-Independent Strategies """
def identity(x):
yield x
def exhaust(brule):
""" Apply a branching rule repeatedly until it has no effect """
def exhaust_brl(expr):
seen = {expr}
for nexpr in brule(expr):
if nexpr not in seen:
seen.add(nexpr)
yield from exhaust_brl(nexpr)
if seen == {expr}:
yield expr
return exhaust_brl
def onaction(brule, fn):
def onaction_brl(expr):
for result in brule(expr):
if result != expr:
fn(brule, expr, result)
yield result
return onaction_brl
def debug(brule, file=None):
""" Print the input and output expressions at each rule application """
if not file:
from sys import stdout
file = stdout
def write(brl, expr, result):
file.write("Rule: %s\n" % brl.__name__)
file.write("In: %s\nOut: %s\n\n" % (expr, result))
return onaction(brule, write)
def multiplex(*brules):
""" Multiplex many branching rules into one """
def multiplex_brl(expr):
seen = set()
for brl in brules:
for nexpr in brl(expr):
if nexpr not in seen:
seen.add(nexpr)
yield nexpr
return multiplex_brl
def condition(cond, brule):
""" Only apply branching rule if condition is true """
def conditioned_brl(expr):
if cond(expr):
yield from brule(expr)
else:
pass
return conditioned_brl
def sfilter(pred, brule):
""" Yield only those results which satisfy the predicate """
def filtered_brl(expr):
yield from filter(pred, brule(expr))
return filtered_brl
def notempty(brule):
def notempty_brl(expr):
yielded = False
for nexpr in brule(expr):
yielded = True
yield nexpr
if not yielded:
yield expr
return notempty_brl
def do_one(*brules):
""" Execute one of the branching rules """
def do_one_brl(expr):
yielded = False
for brl in brules:
for nexpr in brl(expr):
yielded = True
yield nexpr
if yielded:
return
return do_one_brl
def chain(*brules):
"""
Compose a sequence of brules so that they apply to the expr sequentially
"""
def chain_brl(expr):
if not brules:
yield expr
return
head, tail = brules[0], brules[1:]
for nexpr in head(expr):
yield from chain(*tail)(nexpr)
return chain_brl
def yieldify(rl):
""" Turn a rule into a branching rule """
def brl(expr):
yield rl(expr)
return brl
|
c716ccc11d8bccb7105ac1fdb2cf1d744f7d5471494d8f9c62247ac613b7b63d | from . import traverse
from .core import (
condition, debug, multiplex, exhaust, notempty,
chain, onaction, sfilter, yieldify, do_one, identity)
from .tools import canon
__all__ = [
'traverse',
'condition', 'debug', 'multiplex', 'exhaust', 'notempty', 'chain',
'onaction', 'sfilter', 'yieldify', 'do_one', 'identity',
'canon',
]
|
b6fbf722399018d61ba3eb2509b6c37ffaf2959779dfbc2f2dca5d06d4fe6db6 | from .core import exhaust, multiplex
from .traverse import top_down
def canon(*rules):
""" Strategy for canonicalization
Apply each branching rule in a top-down fashion through the tree.
Multiplex through all branching rule traversals
Keep doing this until there is no change.
"""
return exhaust(multiplex(*map(top_down, rules)))
|
ee205589074da4abbe007a05103eff0bd2814b261c4017cb1a8a442506cdb6f9 | """ Branching Strategies to Traverse a Tree """
from itertools import product
from sympy.strategies.util import basic_fns
from .core import chain, identity, do_one
def top_down(brule, fns=basic_fns):
""" Apply a rule down a tree running it on the top nodes first """
return chain(do_one(brule, identity),
lambda expr: sall(top_down(brule, fns), fns)(expr))
def sall(brule, fns=basic_fns):
""" Strategic all - apply rule to args """
op, new, children, leaf = map(fns.get, ('op', 'new', 'children', 'leaf'))
def all_rl(expr):
if leaf(expr):
yield expr
else:
myop = op(expr)
argss = product(*map(brule, children(expr)))
for args in argss:
yield new(myop, *args)
return all_rl
|
c26d0bea976f75d06045cc21a624a4fa70a0cb354689c91f9ce0a4987592d23e | from sympy.core.singleton import S
from sympy.strategies.rl import (
rm_id, glom, flatten, unpack, sort, distribute, subs, rebuild)
from sympy.core.basic import Basic
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.symbol import symbols
from sympy.abc import x
def test_rm_id():
rmzeros = rm_id(lambda x: x == 0)
assert rmzeros(Basic(S(0), S(1))) == Basic(S(1))
assert rmzeros(Basic(S(0), S(0))) == Basic(S(0))
assert rmzeros(Basic(S(2), S(1))) == Basic(S(2), S(1))
def test_glom():
def key(x):
return x.as_coeff_Mul()[1]
def count(x):
return x.as_coeff_Mul()[0]
def newargs(cnt, arg):
return cnt * arg
rl = glom(key, count, newargs)
result = rl(Add(x, -x, 3 * x, 2, 3, evaluate=False))
expected = Add(3 * x, 5)
assert set(result.args) == set(expected.args)
def test_flatten():
assert flatten(Basic(S(1), S(2), Basic(S(3), S(4)))) == \
Basic(S(1), S(2), S(3), S(4))
def test_unpack():
assert unpack(Basic(S(2))) == 2
assert unpack(Basic(S(2), S(3))) == Basic(S(2), S(3))
def test_sort():
assert sort(str)(Basic(S(3), S(1), S(2))) == Basic(S(1), S(2), S(3))
def test_distribute():
class T1(Basic):
pass
class T2(Basic):
pass
distribute_t12 = distribute(T1, T2)
assert distribute_t12(T1(S(1), S(2), T2(S(3), S(4)), S(5))) == \
T2(T1(S(1), S(2), S(3), S(5)), T1(S(1), S(2), S(4), S(5)))
assert distribute_t12(T1(S(1), S(2), S(3))) == T1(S(1), S(2), S(3))
def test_distribute_add_mul():
x, y = symbols('x, y')
expr = Mul(2, Add(x, y), evaluate=False)
expected = Add(Mul(2, x), Mul(2, y))
distribute_mul = distribute(Mul, Add)
assert distribute_mul(expr) == expected
def test_subs():
rl = subs(1, 2)
assert rl(1) == 2
assert rl(3) == 3
def test_rebuild():
expr = Basic.__new__(Add, S(1), S(2))
assert rebuild(expr) == 3
|
f4d2fde3caedea2f6d614e82433f5537113a9756de810b3e3313f67aecc4dd27 | from sympy.strategies.tree import treeapply, greedy, allresults, brute
from functools import partial, reduce
def inc(x):
return x + 1
def dec(x):
return x - 1
def double(x):
return 2 * x
def square(x):
return x**2
def add(*args):
return sum(args)
def mul(*args):
return reduce(lambda a, b: a * b, args, 1)
def test_treeapply():
tree = ([3, 3], [4, 1], 2)
assert treeapply(tree, {list: min, tuple: max}) == 3
assert treeapply(tree, {list: add, tuple: mul}) == 60
def test_treeapply_leaf():
assert treeapply(3, {}, leaf=lambda x: x**2) == 9
tree = ([3, 3], [4, 1], 2)
treep1 = ([4, 4], [5, 2], 3)
assert treeapply(tree, {list: min, tuple: max}, leaf=lambda x: x + 1) == \
treeapply(treep1, {list: min, tuple: max})
def test_treeapply_strategies():
from sympy.strategies import chain, minimize
join = {list: chain, tuple: minimize}
assert treeapply(inc, join) == inc
assert treeapply((inc, dec), join)(5) == minimize(inc, dec)(5)
assert treeapply([inc, dec], join)(5) == chain(inc, dec)(5)
tree = (inc, [dec, double]) # either inc or dec-then-double
assert treeapply(tree, join)(5) == 6
assert treeapply(tree, join)(1) == 0
maximize = partial(minimize, objective=lambda x: -x)
join = {list: chain, tuple: maximize}
fn = treeapply(tree, join)
assert fn(4) == 6 # highest value comes from the dec then double
assert fn(1) == 2 # highest value comes from the inc
def test_greedy():
tree = [inc, (dec, double)] # either inc or dec-then-double
fn = greedy(tree, objective=lambda x: -x)
assert fn(4) == 6 # highest value comes from the dec then double
assert fn(1) == 2 # highest value comes from the inc
tree = [inc, dec, [inc, dec, [(inc, inc), (dec, dec)]]]
lowest = greedy(tree)
assert lowest(10) == 8
highest = greedy(tree, objective=lambda x: -x)
assert highest(10) == 12
def test_allresults():
# square = lambda x: x**2
assert set(allresults(inc)(3)) == {inc(3)}
assert set(allresults([inc, dec])(3)) == {2, 4}
assert set(allresults((inc, dec))(3)) == {3}
assert set(allresults([inc, (dec, double)])(4)) == {5, 6}
def test_brute():
tree = ([inc, dec], square)
fn = brute(tree, lambda x: -x)
assert fn(2) == (2 + 1)**2
assert fn(-2) == (-2 - 1)**2
assert brute(inc)(1) == 2
|
51d3288c5227ddfd5bdb1da2446bf559f9f076ca3e2a5e7b193ca3094fc38f34 | from sympy.strategies.tools import subs, typed
from sympy.strategies.rl import rm_id
from sympy.core.basic import Basic
from sympy.core.singleton import S
def test_subs():
from sympy.core.symbol import symbols
a, b, c, d, e, f = symbols('a,b,c,d,e,f')
mapping = {a: d, d: a, Basic(e): Basic(f)}
expr = Basic(a, Basic(b, c), Basic(d, Basic(e)))
result = Basic(d, Basic(b, c), Basic(a, Basic(f)))
assert subs(mapping)(expr) == result
def test_subs_empty():
assert subs({})(Basic(S(1), S(2))) == Basic(S(1), S(2))
def test_typed():
class A(Basic):
pass
class B(Basic):
pass
rmzeros = rm_id(lambda x: x == S(0))
rmones = rm_id(lambda x: x == S(1))
remove_something = typed({A: rmzeros, B: rmones})
assert remove_something(A(S(0), S(1))) == A(S(1))
assert remove_something(B(S(0), S(1))) == B(S(0))
|
8d6b9985812df85d7cfebc443219fa3a0190d4636cf9d33f1856761799c7b362 | from sympy.strategies.traverse import (
top_down, bottom_up, sall, top_down_once, bottom_up_once, basic_fns)
from sympy.strategies.rl import rebuild
from sympy.strategies.util import expr_fns
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.numbers import Integer
from sympy.core.singleton import S
from sympy.core.symbol import Str, Symbol
from sympy.abc import x, y, z
def zero_symbols(expression):
return S.Zero if isinstance(expression, Symbol) else expression
def test_sall():
zero_onelevel = sall(zero_symbols)
assert zero_onelevel(Basic(x, y, Basic(x, z))) == \
Basic(S(0), S(0), Basic(x, z))
def test_bottom_up():
_test_global_traversal(bottom_up)
_test_stop_on_non_basics(bottom_up)
def test_top_down():
_test_global_traversal(top_down)
_test_stop_on_non_basics(top_down)
def _test_global_traversal(trav):
zero_all_symbols = trav(zero_symbols)
assert zero_all_symbols(Basic(x, y, Basic(x, z))) == \
Basic(S(0), S(0), Basic(S(0), S(0)))
def _test_stop_on_non_basics(trav):
def add_one_if_can(expr):
try:
return expr + 1
except TypeError:
return expr
expr = Basic(S(1), Str('a'), Basic(S(2), Str('b')))
expected = Basic(S(2), Str('a'), Basic(S(3), Str('b')))
rl = trav(add_one_if_can)
assert rl(expr) == expected
class Basic2(Basic):
pass
def rl(x):
if x.args and not isinstance(x.args[0], Integer):
return Basic2(*x.args)
return x
def test_top_down_once():
top_rl = top_down_once(rl)
assert top_rl(Basic(S(1.0), S(2.0), Basic(S(3), S(4)))) == \
Basic2(S(1.0), S(2.0), Basic(S(3), S(4)))
def test_bottom_up_once():
bottom_rl = bottom_up_once(rl)
assert bottom_rl(Basic(S(1), S(2), Basic(S(3.0), S(4.0)))) == \
Basic(S(1), S(2), Basic2(S(3.0), S(4.0)))
def test_expr_fns():
expr = x + y**3
e = bottom_up(lambda v: v + 1, expr_fns)(expr)
b = bottom_up(lambda v: Basic.__new__(Add, v, S(1)), basic_fns)(expr)
assert rebuild(b) == e
|
e365c796fd613754b540f11fdabf6975d6761102faa381443d0bdfa3e5265dcc | from __future__ import annotations
from sympy.core.singleton import S
from sympy.core.basic import Basic
from sympy.strategies.core import (
null_safe, exhaust, memoize, condition,
chain, tryit, do_one, debug, switch, minimize)
from io import StringIO
def posdec(x: int) -> int:
if x > 0:
return x - 1
return x
def inc(x: int) -> int:
return x + 1
def dec(x: int) -> int:
return x - 1
def test_null_safe():
def rl(expr: int) -> int | None:
if expr == 1:
return 2
return None
safe_rl = null_safe(rl)
assert rl(1) == safe_rl(1)
assert rl(3) is None
assert safe_rl(3) == 3
def test_exhaust():
sink = exhaust(posdec)
assert sink(5) == 0
assert sink(10) == 0
def test_memoize():
rl = memoize(posdec)
assert rl(5) == posdec(5)
assert rl(5) == posdec(5)
assert rl(-2) == posdec(-2)
def test_condition():
rl = condition(lambda x: x % 2 == 0, posdec)
assert rl(5) == 5
assert rl(4) == 3
def test_chain():
rl = chain(posdec, posdec)
assert rl(5) == 3
assert rl(1) == 0
def test_tryit():
def rl(expr: Basic) -> Basic:
assert False
safe_rl = tryit(rl, AssertionError)
assert safe_rl(S(1)) == S(1)
def test_do_one():
rl = do_one(posdec, posdec)
assert rl(5) == 4
def rl1(x: int) -> int:
if x == 1:
return 2
return x
def rl2(x: int) -> int:
if x == 2:
return 3
return x
rule = do_one(rl1, rl2)
assert rule(1) == 2
assert rule(rule(1)) == 3
def test_debug():
file = StringIO()
rl = debug(posdec, file)
rl(5)
log = file.getvalue()
file.close()
assert posdec.__name__ in log
assert '5' in log
assert '4' in log
def test_switch():
def key(x: int) -> int:
return x % 3
rl = switch(key, {0: inc, 1: dec})
assert rl(3) == 4
assert rl(4) == 3
assert rl(5) == 5
def test_minimize():
def key(x: int) -> int:
return -x
rl = minimize(inc, dec)
assert rl(4) == 3
rl = minimize(inc, dec, objective=key)
assert rl(4) == 5
|
e010e4a95aab4e5b22bd0d0f95d42be8f8d566c02291cdfdb52c460100378abf | from sympy.strategies.branch.tools import canon
from sympy.core.basic import Basic
from sympy.core.numbers import Integer
from sympy.core.singleton import S
def posdec(x):
if isinstance(x, Integer) and x > 0:
yield x - 1
else:
yield x
def branch5(x):
if isinstance(x, Integer):
if 0 < x < 5:
yield x - 1
elif 5 < x < 10:
yield x + 1
elif x == 5:
yield x + 1
yield x - 1
else:
yield x
def test_zero_ints():
expr = Basic(S(2), Basic(S(5), S(3)), S(8))
expected = {Basic(S(0), Basic(S(0), S(0)), S(0))}
brl = canon(posdec)
assert set(brl(expr)) == expected
def test_split5():
expr = Basic(S(2), Basic(S(5), S(3)), S(8))
expected = {
Basic(S(0), Basic(S(0), S(0)), S(10)),
Basic(S(0), Basic(S(10), S(0)), S(10))}
brl = canon(branch5)
assert set(brl(expr)) == expected
|
eab8a432765d6a64b3c30d6c4a233e690c2a6b8950ae933e0e9394f5709b88e4 | from sympy.core.basic import Basic
from sympy.core.numbers import Integer
from sympy.core.singleton import S
from sympy.strategies.branch.traverse import top_down, sall
from sympy.strategies.branch.core import do_one, identity
def inc(x):
if isinstance(x, Integer):
yield x + 1
def test_top_down_easy():
expr = Basic(S(1), S(2))
expected = Basic(S(2), S(3))
brl = top_down(inc)
assert set(brl(expr)) == {expected}
def test_top_down_big_tree():
expr = Basic(S(1), Basic(S(2)), Basic(S(3), Basic(S(4)), S(5)))
expected = Basic(S(2), Basic(S(3)), Basic(S(4), Basic(S(5)), S(6)))
brl = top_down(inc)
assert set(brl(expr)) == {expected}
def test_top_down_harder_function():
def split5(x):
if x == 5:
yield x - 1
yield x + 1
expr = Basic(Basic(S(5), S(6)), S(1))
expected = {Basic(Basic(S(4), S(6)), S(1)), Basic(Basic(S(6), S(6)), S(1))}
brl = top_down(split5)
assert set(brl(expr)) == expected
def test_sall():
expr = Basic(S(1), S(2))
expected = Basic(S(2), S(3))
brl = sall(inc)
assert list(brl(expr)) == [expected]
expr = Basic(S(1), S(2), Basic(S(3), S(4)))
expected = Basic(S(2), S(3), Basic(S(3), S(4)))
brl = sall(do_one(inc, identity))
assert list(brl(expr)) == [expected]
|
db7290589c42ff64f56abc0c024b7da58d59b46e7d6af9714d97154e7f3550f2 | from sympy.strategies.branch.core import (
exhaust, debug, multiplex, condition, notempty, chain, onaction, sfilter,
yieldify, do_one, identity)
def posdec(x):
if x > 0:
yield x - 1
else:
yield x
def branch5(x):
if 0 < x < 5:
yield x - 1
elif 5 < x < 10:
yield x + 1
elif x == 5:
yield x + 1
yield x - 1
else:
yield x
def even(x):
return x % 2 == 0
def inc(x):
yield x + 1
def one_to_n(n):
yield from range(n)
def test_exhaust():
brl = exhaust(branch5)
assert set(brl(3)) == {0}
assert set(brl(7)) == {10}
assert set(brl(5)) == {0, 10}
def test_debug():
from io import StringIO
file = StringIO()
rl = debug(posdec, file)
list(rl(5))
log = file.getvalue()
file.close()
assert posdec.__name__ in log
assert '5' in log
assert '4' in log
def test_multiplex():
brl = multiplex(posdec, branch5)
assert set(brl(3)) == {2}
assert set(brl(7)) == {6, 8}
assert set(brl(5)) == {4, 6}
def test_condition():
brl = condition(even, branch5)
assert set(brl(4)) == set(branch5(4))
assert set(brl(5)) == set()
def test_sfilter():
brl = sfilter(even, one_to_n)
assert set(brl(10)) == {0, 2, 4, 6, 8}
def test_notempty():
def ident_if_even(x):
if even(x):
yield x
brl = notempty(ident_if_even)
assert set(brl(4)) == {4}
assert set(brl(5)) == {5}
def test_chain():
assert list(chain()(2)) == [2] # identity
assert list(chain(inc, inc)(2)) == [4]
assert list(chain(branch5, inc)(4)) == [4]
assert set(chain(branch5, inc)(5)) == {5, 7}
assert list(chain(inc, branch5)(5)) == [7]
def test_onaction():
L = []
def record(fn, input, output):
L.append((input, output))
list(onaction(inc, record)(2))
assert L == [(2, 3)]
list(onaction(identity, record)(2))
assert L == [(2, 3)]
def test_yieldify():
yinc = yieldify(lambda x: x + 1)
assert list(yinc(3)) == [4]
def test_do_one():
def bad(expr):
raise ValueError
assert list(do_one(inc)(3)) == [4]
assert list(do_one(inc, bad)(3)) == [4]
assert list(do_one(inc, posdec)(3)) == [4]
|
aa085a63392ed23bc83df505c4bc98f7ffc7675a44820c56c4e70b73af423643 | from textwrap import dedent
from itertools import islice, product
from sympy.core.basic import Basic
from sympy.core.numbers import Integer
from sympy.core.sorting import ordered
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.matrices.dense import Matrix
from sympy.combinatorics import RGS_enum, RGS_unrank, Permutation
from sympy.utilities.iterables import (
_partition, _set_partitions, binary_partitions, bracelets, capture,
cartes, common_prefix, common_suffix, connected_components, dict_merge,
filter_symbols, flatten, generate_bell, generate_derangements,
generate_involutions, generate_oriented_forest, group, has_dups, ibin,
iproduct, kbins, minlex, multiset, multiset_combinations,
multiset_partitions, multiset_permutations, necklaces, numbered_symbols,
partitions, permutations, postfixes,
prefixes, reshape, rotate_left, rotate_right, runs, sift,
strongly_connected_components, subsets, take, topological_sort, unflatten,
uniq, variations, ordered_partitions, rotations, is_palindromic, iterable,
NotIterable, multiset_derangements,
sequence_partitions, sequence_partitions_empty)
from sympy.utilities.enumerative import (
factoring_visitor, multiset_partitions_taocp )
from sympy.core.singleton import S
from sympy.testing.pytest import raises, warns_deprecated_sympy
w, x, y, z = symbols('w,x,y,z')
def test_deprecated_iterables():
from sympy.utilities.iterables import default_sort_key, ordered
with warns_deprecated_sympy():
assert list(ordered([y, x])) == [x, y]
with warns_deprecated_sympy():
assert sorted([y, x], key=default_sort_key) == [x, y]
def test_is_palindromic():
assert is_palindromic('')
assert is_palindromic('x')
assert is_palindromic('xx')
assert is_palindromic('xyx')
assert not is_palindromic('xy')
assert not is_palindromic('xyzx')
assert is_palindromic('xxyzzyx', 1)
assert not is_palindromic('xxyzzyx', 2)
assert is_palindromic('xxyzzyx', 2, -1)
assert is_palindromic('xxyzzyx', 2, 6)
assert is_palindromic('xxyzyx', 1)
assert not is_palindromic('xxyzyx', 2)
assert is_palindromic('xxyzyx', 2, 2 + 3)
def test_flatten():
assert flatten((1, (1,))) == [1, 1]
assert flatten((x, (x,))) == [x, x]
ls = [[(-2, -1), (1, 2)], [(0, 0)]]
assert flatten(ls, levels=0) == ls
assert flatten(ls, levels=1) == [(-2, -1), (1, 2), (0, 0)]
assert flatten(ls, levels=2) == [-2, -1, 1, 2, 0, 0]
assert flatten(ls, levels=3) == [-2, -1, 1, 2, 0, 0]
raises(ValueError, lambda: flatten(ls, levels=-1))
class MyOp(Basic):
pass
assert flatten([MyOp(x, y), z]) == [MyOp(x, y), z]
assert flatten([MyOp(x, y), z], cls=MyOp) == [x, y, z]
assert flatten({1, 11, 2}) == list({1, 11, 2})
def test_iproduct():
assert list(iproduct()) == [()]
assert list(iproduct([])) == []
assert list(iproduct([1,2,3])) == [(1,),(2,),(3,)]
assert sorted(iproduct([1, 2], [3, 4, 5])) == [
(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)]
assert sorted(iproduct([0,1],[0,1],[0,1])) == [
(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)]
assert iterable(iproduct(S.Integers)) is True
assert iterable(iproduct(S.Integers, S.Integers)) is True
assert (3,) in iproduct(S.Integers)
assert (4, 5) in iproduct(S.Integers, S.Integers)
assert (1, 2, 3) in iproduct(S.Integers, S.Integers, S.Integers)
triples = set(islice(iproduct(S.Integers, S.Integers, S.Integers), 1000))
for n1, n2, n3 in triples:
assert isinstance(n1, Integer)
assert isinstance(n2, Integer)
assert isinstance(n3, Integer)
for t in set(product(*([range(-2, 3)]*3))):
assert t in iproduct(S.Integers, S.Integers, S.Integers)
def test_group():
assert group([]) == []
assert group([], multiple=False) == []
assert group([1]) == [[1]]
assert group([1], multiple=False) == [(1, 1)]
assert group([1, 1]) == [[1, 1]]
assert group([1, 1], multiple=False) == [(1, 2)]
assert group([1, 1, 1]) == [[1, 1, 1]]
assert group([1, 1, 1], multiple=False) == [(1, 3)]
assert group([1, 2, 1]) == [[1], [2], [1]]
assert group([1, 2, 1], multiple=False) == [(1, 1), (2, 1), (1, 1)]
assert group([1, 1, 2, 2, 2, 1, 3, 3]) == [[1, 1], [2, 2, 2], [1], [3, 3]]
assert group([1, 1, 2, 2, 2, 1, 3, 3], multiple=False) == [(1, 2),
(2, 3), (1, 1), (3, 2)]
def test_subsets():
# combinations
assert list(subsets([1, 2, 3], 0)) == [()]
assert list(subsets([1, 2, 3], 1)) == [(1,), (2,), (3,)]
assert list(subsets([1, 2, 3], 2)) == [(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 3)) == [(1, 2, 3)]
l = list(range(4))
assert list(subsets(l, 0, repetition=True)) == [()]
assert list(subsets(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(subsets(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 1), (1, 2),
(1, 3), (2, 2), (2, 3),
(3, 3)]
assert list(subsets(l, 3, repetition=True)) == [(0, 0, 0), (0, 0, 1),
(0, 0, 2), (0, 0, 3),
(0, 1, 1), (0, 1, 2),
(0, 1, 3), (0, 2, 2),
(0, 2, 3), (0, 3, 3),
(1, 1, 1), (1, 1, 2),
(1, 1, 3), (1, 2, 2),
(1, 2, 3), (1, 3, 3),
(2, 2, 2), (2, 2, 3),
(2, 3, 3), (3, 3, 3)]
assert len(list(subsets(l, 4, repetition=True))) == 35
assert list(subsets(l[:2], 3, repetition=False)) == []
assert list(subsets(l[:2], 3, repetition=True)) == [(0, 0, 0),
(0, 0, 1),
(0, 1, 1),
(1, 1, 1)]
assert list(subsets([1, 2], repetition=True)) == \
[(), (1,), (2,), (1, 1), (1, 2), (2, 2)]
assert list(subsets([1, 2], repetition=False)) == \
[(), (1,), (2,), (1, 2)]
assert list(subsets([1, 2, 3], 2)) == \
[(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 2, repetition=True)) == \
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]
def test_variations():
# permutations
l = list(range(4))
assert list(variations(l, 0, repetition=False)) == [()]
assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)]
assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
assert list(variations(l, 0, repetition=True)) == [()]
assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3),
(3, 0), (3, 1), (3, 2),
(3, 3)]
assert len(list(variations(l, 3, repetition=True))) == 64
assert len(list(variations(l, 4, repetition=True))) == 256
assert list(variations(l[:2], 3, repetition=False)) == []
assert list(variations(l[:2], 3, repetition=True)) == [
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
]
def test_cartes():
assert list(cartes([1, 2], [3, 4, 5])) == \
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
assert list(cartes()) == [()]
assert list(cartes('a')) == [('a',)]
assert list(cartes('a', repeat=2)) == [('a', 'a')]
assert list(cartes(list(range(2)))) == [(0,), (1,)]
def test_filter_symbols():
s = numbered_symbols()
filtered = filter_symbols(s, symbols("x0 x2 x3"))
assert take(filtered, 3) == list(symbols("x1 x4 x5"))
def test_numbered_symbols():
s = numbered_symbols(cls=Dummy)
assert isinstance(next(s), Dummy)
assert next(numbered_symbols('C', start=1, exclude=[symbols('C1')])) == \
symbols('C2')
def test_sift():
assert sift(list(range(5)), lambda _: _ % 2) == {1: [1, 3], 0: [0, 2, 4]}
assert sift([x, y], lambda _: _.has(x)) == {False: [y], True: [x]}
assert sift([S.One], lambda _: _.has(x)) == {False: [1]}
assert sift([0, 1, 2, 3], lambda x: x % 2, binary=True) == (
[1, 3], [0, 2])
assert sift([0, 1, 2, 3], lambda x: x % 3 == 1, binary=True) == (
[1], [0, 2, 3])
raises(ValueError, lambda:
sift([0, 1, 2, 3], lambda x: x % 3, binary=True))
def test_take():
X = numbered_symbols()
assert take(X, 5) == list(symbols('x0:5'))
assert take(X, 5) == list(symbols('x5:10'))
assert take([1, 2, 3, 4, 5], 5) == [1, 2, 3, 4, 5]
def test_dict_merge():
assert dict_merge({}, {1: x, y: z}) == {1: x, y: z}
assert dict_merge({1: x, y: z}, {}) == {1: x, y: z}
assert dict_merge({2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {2: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: y, 2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {1: y, 2: z}) == {1: y, 2: z, y: z}
def test_prefixes():
assert list(prefixes([])) == []
assert list(prefixes([1])) == [[1]]
assert list(prefixes([1, 2])) == [[1], [1, 2]]
assert list(prefixes([1, 2, 3, 4, 5])) == \
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]
def test_postfixes():
assert list(postfixes([])) == []
assert list(postfixes([1])) == [[1]]
assert list(postfixes([1, 2])) == [[2], [1, 2]]
assert list(postfixes([1, 2, 3, 4, 5])) == \
[[5], [4, 5], [3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]]
def test_topological_sort():
V = [2, 3, 5, 7, 8, 9, 10, 11]
E = [(7, 11), (7, 8), (5, 11),
(3, 8), (3, 10), (11, 2),
(11, 9), (11, 10), (8, 9)]
assert topological_sort((V, E)) == [3, 5, 7, 8, 11, 2, 9, 10]
assert topological_sort((V, E), key=lambda v: -v) == \
[7, 5, 11, 3, 10, 8, 9, 2]
raises(ValueError, lambda: topological_sort((V, E + [(10, 7)])))
def test_strongly_connected_components():
assert strongly_connected_components(([], [])) == []
assert strongly_connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert strongly_connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert strongly_connected_components((V, E)) == [[4], [2, 3], [1]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 1), (3, 4), (4, 3)]
assert strongly_connected_components((V, E)) == [[1, 2], [3, 4]]
def test_connected_components():
assert connected_components(([], [])) == []
assert connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2, 3, 4]]
V = [1, 2, 3, 4]
E = [(1, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2], [3, 4]]
def test_rotate():
A = [0, 1, 2, 3, 4]
assert rotate_left(A, 2) == [2, 3, 4, 0, 1]
assert rotate_right(A, 1) == [4, 0, 1, 2, 3]
A = []
B = rotate_right(A, 1)
assert B == []
B.append(1)
assert A == []
B = rotate_left(A, 1)
assert B == []
B.append(1)
assert A == []
def test_multiset_partitions():
A = [0, 1, 2, 3, 4]
assert list(multiset_partitions(A, 5)) == [[[0], [1], [2], [3], [4]]]
assert len(list(multiset_partitions(A, 4))) == 10
assert len(list(multiset_partitions(A, 3))) == 25
assert list(multiset_partitions([1, 1, 1, 2, 2], 2)) == [
[[1, 1, 1, 2], [2]], [[1, 1, 1], [2, 2]], [[1, 1, 2, 2], [1]],
[[1, 1, 2], [1, 2]], [[1, 1], [1, 2, 2]]]
assert list(multiset_partitions([1, 1, 2, 2], 2)) == [
[[1, 1, 2], [2]], [[1, 1], [2, 2]], [[1, 2, 2], [1]],
[[1, 2], [1, 2]]]
assert list(multiset_partitions([1, 2, 3, 4], 2)) == [
[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
assert list(multiset_partitions([1, 2, 2], 2)) == [
[[1, 2], [2]], [[1], [2, 2]]]
assert list(multiset_partitions(3)) == [
[[0, 1, 2]], [[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]],
[[0], [1], [2]]]
assert list(multiset_partitions(3, 2)) == [
[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]]]
assert list(multiset_partitions([1] * 3, 2)) == [[[1], [1, 1]]]
assert list(multiset_partitions([1] * 3)) == [
[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
a = [3, 2, 1]
assert list(multiset_partitions(a)) == \
list(multiset_partitions(sorted(a)))
assert list(multiset_partitions(a, 5)) == []
assert list(multiset_partitions(a, 1)) == [[[1, 2, 3]]]
assert list(multiset_partitions(a + [4], 5)) == []
assert list(multiset_partitions(a + [4], 1)) == [[[1, 2, 3, 4]]]
assert list(multiset_partitions(2, 5)) == []
assert list(multiset_partitions(2, 1)) == [[[0, 1]]]
assert list(multiset_partitions('a')) == [[['a']]]
assert list(multiset_partitions('a', 2)) == []
assert list(multiset_partitions('ab')) == [[['a', 'b']], [['a'], ['b']]]
assert list(multiset_partitions('ab', 1)) == [[['a', 'b']]]
assert list(multiset_partitions('aaa', 1)) == [['aaa']]
assert list(multiset_partitions([1, 1], 1)) == [[[1, 1]]]
ans = [('mpsyy',), ('mpsy', 'y'), ('mps', 'yy'), ('mps', 'y', 'y'),
('mpyy', 's'), ('mpy', 'sy'), ('mpy', 's', 'y'), ('mp', 'syy'),
('mp', 'sy', 'y'), ('mp', 's', 'yy'), ('mp', 's', 'y', 'y'),
('msyy', 'p'), ('msy', 'py'), ('msy', 'p', 'y'), ('ms', 'pyy'),
('ms', 'py', 'y'), ('ms', 'p', 'yy'), ('ms', 'p', 'y', 'y'),
('myy', 'ps'), ('myy', 'p', 's'), ('my', 'psy'), ('my', 'ps', 'y'),
('my', 'py', 's'), ('my', 'p', 'sy'), ('my', 'p', 's', 'y'),
('m', 'psyy'), ('m', 'psy', 'y'), ('m', 'ps', 'yy'),
('m', 'ps', 'y', 'y'), ('m', 'pyy', 's'), ('m', 'py', 'sy'),
('m', 'py', 's', 'y'), ('m', 'p', 'syy'),
('m', 'p', 'sy', 'y'), ('m', 'p', 's', 'yy'),
('m', 'p', 's', 'y', 'y')]
assert list(tuple("".join(part) for part in p)
for p in multiset_partitions('sympy')) == ans
factorings = [[24], [8, 3], [12, 2], [4, 6], [4, 2, 3],
[6, 2, 2], [2, 2, 2, 3]]
assert list(factoring_visitor(p, [2,3]) for
p in multiset_partitions_taocp([3, 1])) == factorings
def test_multiset_combinations():
ans = ['iii', 'iim', 'iip', 'iis', 'imp', 'ims', 'ipp', 'ips',
'iss', 'mpp', 'mps', 'mss', 'pps', 'pss', 'sss']
assert [''.join(i) for i in
list(multiset_combinations('mississippi', 3))] == ans
M = multiset('mississippi')
assert [''.join(i) for i in
list(multiset_combinations(M, 3))] == ans
assert [''.join(i) for i in multiset_combinations(M, 30)] == []
assert list(multiset_combinations([[1], [2, 3]], 2)) == [[[1], [2, 3]]]
assert len(list(multiset_combinations('a', 3))) == 0
assert len(list(multiset_combinations('a', 0))) == 1
assert list(multiset_combinations('abc', 1)) == [['a'], ['b'], ['c']]
raises(ValueError, lambda: list(multiset_combinations({0: 3, 1: -1}, 2)))
def test_multiset_permutations():
ans = ['abby', 'abyb', 'aybb', 'baby', 'bayb', 'bbay', 'bbya', 'byab',
'byba', 'yabb', 'ybab', 'ybba']
assert [''.join(i) for i in multiset_permutations('baby')] == ans
assert [''.join(i) for i in multiset_permutations(multiset('baby'))] == ans
assert list(multiset_permutations([0, 0, 0], 2)) == [[0, 0]]
assert list(multiset_permutations([0, 2, 1], 2)) == [
[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]
assert len(list(multiset_permutations('a', 0))) == 1
assert len(list(multiset_permutations('a', 3))) == 0
for nul in ([], {}, ''):
assert list(multiset_permutations(nul)) == [[]]
assert list(multiset_permutations(nul, 0)) == [[]]
# impossible requests give no result
assert list(multiset_permutations(nul, 1)) == []
assert list(multiset_permutations(nul, -1)) == []
def test():
for i in range(1, 7):
print(i)
for p in multiset_permutations([0, 0, 1, 0, 1], i):
print(p)
assert capture(lambda: test()) == dedent('''\
1
[0]
[1]
2
[0, 0]
[0, 1]
[1, 0]
[1, 1]
3
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
4
[0, 0, 0, 1]
[0, 0, 1, 0]
[0, 0, 1, 1]
[0, 1, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[1, 0, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]
5
[0, 0, 0, 1, 1]
[0, 0, 1, 0, 1]
[0, 0, 1, 1, 0]
[0, 1, 0, 0, 1]
[0, 1, 0, 1, 0]
[0, 1, 1, 0, 0]
[1, 0, 0, 0, 1]
[1, 0, 0, 1, 0]
[1, 0, 1, 0, 0]
[1, 1, 0, 0, 0]
6\n''')
raises(ValueError, lambda: list(multiset_permutations({0: 3, 1: -1})))
def test_partitions():
ans = [[{}], [(0, {})]]
for i in range(2):
assert list(partitions(0, size=i)) == ans[i]
assert list(partitions(1, 0, size=i)) == ans[i]
assert list(partitions(6, 2, 2, size=i)) == ans[i]
assert list(partitions(6, 2, None, size=i)) != ans[i]
assert list(partitions(6, None, 2, size=i)) != ans[i]
assert list(partitions(6, 2, 0, size=i)) == ans[i]
assert [p for p in partitions(6, k=2)] == [
{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]
assert [p for p in partitions(6, k=3)] == [
{3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
{1: 4, 2: 1}, {1: 6}]
assert [p for p in partitions(8, k=4, m=3)] == [
{4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
i for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
and sum(i.values()) <=3]
assert [p for p in partitions(S(3), m=2)] == [
{3: 1}, {1: 1, 2: 1}]
assert [i for i in partitions(4, k=3)] == [
{1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
i for i in partitions(4) if all(k <= 3 for k in i)]
# Consistency check on output of _partitions and RGS_unrank.
# This provides a sanity test on both routines. Also verifies that
# the total number of partitions is the same in each case.
# (from pkrathmann2)
for n in range(2, 6):
i = 0
for m, q in _set_partitions(n):
assert q == RGS_unrank(i, n)
i += 1
assert i == RGS_enum(n)
def test_binary_partitions():
assert [i[:] for i in binary_partitions(10)] == [[8, 2], [8, 1, 1],
[4, 4, 2], [4, 4, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1],
[4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2],
[2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1],
[2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
assert len([j[:] for j in binary_partitions(16)]) == 36
def test_bell_perm():
assert [len(set(generate_bell(i))) for i in range(1, 7)] == [
factorial(i) for i in range(1, 7)]
assert list(generate_bell(3)) == [
(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
# generate_bell and trotterjohnson are advertised to return the same
# permutations; this is not technically necessary so this test could
# be removed
for n in range(1, 5):
p = Permutation(range(n))
b = generate_bell(n)
for bi in b:
assert bi == tuple(p.array_form)
p = p.next_trotterjohnson()
raises(ValueError, lambda: list(generate_bell(0))) # XXX is this consistent with other permutation algorithms?
def test_involutions():
lengths = [1, 2, 4, 10, 26, 76]
for n, N in enumerate(lengths):
i = list(generate_involutions(n + 1))
assert len(i) == N
assert len({Permutation(j)**2 for j in i}) == 1
def test_derangements():
assert len(list(generate_derangements(list(range(6))))) == 265
assert ''.join(''.join(i) for i in generate_derangements('abcde')) == (
'badecbaecdbcaedbcdeabceadbdaecbdeacbdecabeacdbedacbedcacabedcadebcaebd'
'cdaebcdbeacdeabcdebaceabdcebadcedabcedbadabecdaebcdaecbdcaebdcbeadceab'
'dcebadeabcdeacbdebacdebcaeabcdeadbceadcbecabdecbadecdabecdbaedabcedacb'
'edbacedbca')
assert list(generate_derangements([0, 1, 2, 3])) == [
[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1],
[2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], [3, 2, 1, 0]]
assert list(generate_derangements([0, 1, 2, 2])) == [
[2, 2, 0, 1], [2, 2, 1, 0]]
assert list(generate_derangements('ba')) == [list('ab')]
# multiset_derangements
D = multiset_derangements
assert list(D('abb')) == []
assert [''.join(i) for i in D('ab')] == ['ba']
assert [''.join(i) for i in D('abc')] == ['bca', 'cab']
assert [''.join(i) for i in D('aabb')] == ['bbaa']
assert [''.join(i) for i in D('aabbcccc')] == [
'ccccaabb', 'ccccabab', 'ccccabba', 'ccccbaab', 'ccccbaba',
'ccccbbaa']
assert [''.join(i) for i in D('aabbccc')] == [
'cccabba', 'cccabab', 'cccaabb', 'ccacbba', 'ccacbab',
'ccacabb', 'cbccbaa', 'cbccaba', 'cbccaab', 'bcccbaa',
'bcccaba', 'bcccaab']
assert [''.join(i) for i in D('books')] == ['kbsoo', 'ksboo',
'sbkoo', 'skboo', 'oksbo', 'oskbo', 'okbso', 'obkso', 'oskob',
'oksob', 'osbok', 'obsok']
assert list(generate_derangements([[3], [2], [2], [1]])) == [
[[2], [1], [3], [2]], [[2], [3], [1], [2]]]
def test_necklaces():
def count(n, k, f):
return len(list(necklaces(n, k, f)))
m = []
for i in range(1, 8):
m.append((
i, count(i, 2, 0), count(i, 2, 1), count(i, 3, 1)))
assert Matrix(m) == Matrix([
[1, 2, 2, 3],
[2, 3, 3, 6],
[3, 4, 4, 10],
[4, 6, 6, 21],
[5, 8, 8, 39],
[6, 14, 13, 92],
[7, 20, 18, 198]])
def test_bracelets():
bc = [i for i in bracelets(2, 4)]
assert Matrix(bc) == Matrix([
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[1, 1],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[3, 3]
])
bc = [i for i in bracelets(4, 2)]
assert Matrix(bc) == Matrix([
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[0, 1, 1, 1],
[1, 1, 1, 1]
])
def test_generate_oriented_forest():
assert list(generate_oriented_forest(5)) == [[0, 1, 2, 3, 4],
[0, 1, 2, 3, 3], [0, 1, 2, 3, 2], [0, 1, 2, 3, 1], [0, 1, 2, 3, 0],
[0, 1, 2, 2, 2], [0, 1, 2, 2, 1], [0, 1, 2, 2, 0], [0, 1, 2, 1, 2],
[0, 1, 2, 1, 1], [0, 1, 2, 1, 0], [0, 1, 2, 0, 1], [0, 1, 2, 0, 0],
[0, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 1, 1, 0, 0],
[0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]]
assert len(list(generate_oriented_forest(10))) == 1842
def test_unflatten():
r = list(range(10))
assert unflatten(r) == list(zip(r[::2], r[1::2]))
assert unflatten(r, 5) == [tuple(r[:5]), tuple(r[5:])]
raises(ValueError, lambda: unflatten(list(range(10)), 3))
raises(ValueError, lambda: unflatten(list(range(10)), -2))
def test_common_prefix_suffix():
assert common_prefix([], [1]) == []
assert common_prefix(list(range(3))) == [0, 1, 2]
assert common_prefix(list(range(3)), list(range(4))) == [0, 1, 2]
assert common_prefix([1, 2, 3], [1, 2, 5]) == [1, 2]
assert common_prefix([1, 2, 3], [1, 3, 5]) == [1]
assert common_suffix([], [1]) == []
assert common_suffix(list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(4))) == []
assert common_suffix([1, 2, 3], [9, 2, 3]) == [2, 3]
assert common_suffix([1, 2, 3], [9, 7, 3]) == [3]
def test_minlex():
assert minlex([1, 2, 0]) == (0, 1, 2)
assert minlex((1, 2, 0)) == (0, 1, 2)
assert minlex((1, 0, 2)) == (0, 2, 1)
assert minlex((1, 0, 2), directed=False) == (0, 1, 2)
assert minlex('aba') == 'aab'
assert minlex(('bb', 'aaa', 'c', 'a'), key=len) == ('c', 'a', 'bb', 'aaa')
def test_ordered():
assert list(ordered((x, y), hash, default=False)) in [[x, y], [y, x]]
assert list(ordered((x, y), hash, default=False)) == \
list(ordered((y, x), hash, default=False))
assert list(ordered((x, y))) == [x, y]
seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]],
(lambda x: len(x), lambda x: sum(x))]
assert list(ordered(seq, keys, default=False, warn=False)) == \
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
raises(ValueError, lambda:
list(ordered(seq, keys, default=False, warn=True)))
def test_runs():
assert runs([]) == []
assert runs([1]) == [[1]]
assert runs([1, 1]) == [[1], [1]]
assert runs([1, 1, 2]) == [[1], [1, 2]]
assert runs([1, 2, 1]) == [[1, 2], [1]]
assert runs([2, 1, 1]) == [[2], [1], [1]]
from operator import lt
assert runs([2, 1, 1], lt) == [[2, 1], [1]]
def test_reshape():
seq = list(range(1, 9))
assert reshape(seq, [4]) == \
[[1, 2, 3, 4], [5, 6, 7, 8]]
assert reshape(seq, (4,)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, 2)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, [2])) == \
[(1, 2, [3, 4]), (5, 6, [7, 8])]
assert reshape(seq, ((2,), [2])) == \
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
assert reshape(seq, (1, [2], 1)) == \
[(1, [2, 3], 4), (5, [6, 7], 8)]
assert reshape(tuple(seq), ([[1], 1, (2,)],)) == \
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
assert reshape(tuple(seq), ([1], 1, (2,))) == \
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
assert reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) == \
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
raises(ValueError, lambda: reshape([0, 1], [-1]))
raises(ValueError, lambda: reshape([0, 1], [3]))
def test_uniq():
assert list(uniq(p for p in partitions(4))) == \
[{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
assert list(uniq(x % 2 for x in range(5))) == [0, 1]
assert list(uniq('a')) == ['a']
assert list(uniq('ababc')) == list('abc')
assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
[([1], 2, 2), (2, [1], 2), (2, 2, [1])]
assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \
[2, 3, 4, [2], [1], [3]]
f = [1]
raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
f = [[1]]
raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
def test_kbins():
assert len(list(kbins('1123', 2, ordered=1))) == 24
assert len(list(kbins('1123', 2, ordered=11))) == 36
assert len(list(kbins('1123', 2, ordered=10))) == 10
assert len(list(kbins('1123', 2, ordered=0))) == 5
assert len(list(kbins('1123', 2, ordered=None))) == 3
def test1():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins([0, 0, 1], 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test1()) == dedent('''\
ordered = None
[[0], [0, 1]]
[[0, 0], [1]]
ordered = 0
[[0, 0], [1]]
[[0, 1], [0]]
ordered = 1
[[0], [0, 1]]
[[0], [1, 0]]
[[1], [0, 0]]
ordered = 10
[[0, 0], [1]]
[[1], [0, 0]]
[[0, 1], [0]]
[[0], [0, 1]]
ordered = 11
[[0], [0, 1]]
[[0, 0], [1]]
[[0], [1, 0]]
[[0, 1], [0]]
[[1], [0, 0]]
[[1, 0], [0]]\n''')
def test2():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins(list(range(3)), 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test2()) == dedent('''\
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]\n''')
def test_has_dups():
assert has_dups(set()) is False
assert has_dups(list(range(3))) is False
assert has_dups([1, 2, 1]) is True
assert has_dups([[1], [1]]) is True
assert has_dups([[1], [2]]) is False
def test__partition():
assert _partition('abcde', [1, 0, 1, 2, 0]) == [
['b', 'e'], ['a', 'c'], ['d']]
assert _partition('abcde', [1, 0, 1, 2, 0], 3) == [
['b', 'e'], ['a', 'c'], ['d']]
output = (3, [1, 0, 1, 2, 0])
assert _partition('abcde', *output) == [['b', 'e'], ['a', 'c'], ['d']]
def test_ordered_partitions():
from sympy.functions.combinatorial.numbers import nT
f = ordered_partitions
assert list(f(0, 1)) == [[]]
assert list(f(1, 0)) == [[]]
for i in range(1, 7):
for j in [None] + list(range(1, i)):
assert (
sum(1 for p in f(i, j, 1)) ==
sum(1 for p in f(i, j, 0)) ==
nT(i, j))
def test_rotations():
assert list(rotations('ab')) == [['a', 'b'], ['b', 'a']]
assert list(rotations(range(3))) == [[0, 1, 2], [1, 2, 0], [2, 0, 1]]
assert list(rotations(range(3), dir=-1)) == [[0, 1, 2], [2, 0, 1], [1, 2, 0]]
def test_ibin():
assert ibin(3) == [1, 1]
assert ibin(3, 3) == [0, 1, 1]
assert ibin(3, str=True) == '11'
assert ibin(3, 3, str=True) == '011'
assert list(ibin(2, 'all')) == [(0, 0), (0, 1), (1, 0), (1, 1)]
assert list(ibin(2, '', str=True)) == ['00', '01', '10', '11']
raises(ValueError, lambda: ibin(-.5))
raises(ValueError, lambda: ibin(2, 1))
def test_iterable():
assert iterable(0) is False
assert iterable(1) is False
assert iterable(None) is False
class Test1(NotIterable):
pass
assert iterable(Test1()) is False
class Test2(NotIterable):
_iterable = True
assert iterable(Test2()) is True
class Test3:
pass
assert iterable(Test3()) is False
class Test4:
_iterable = True
assert iterable(Test4()) is True
class Test5:
def __iter__(self):
yield 1
assert iterable(Test5()) is True
class Test6(Test5):
_iterable = False
assert iterable(Test6()) is False
def test_sequence_partitions():
assert list(sequence_partitions([1], 1)) == [[[1]]]
assert list(sequence_partitions([1, 2], 1)) == [[[1, 2]]]
assert list(sequence_partitions([1, 2], 2)) == [[[1], [2]]]
assert list(sequence_partitions([1, 2, 3], 1)) == [[[1, 2, 3]]]
assert list(sequence_partitions([1, 2, 3], 2)) == \
[[[1], [2, 3]], [[1, 2], [3]]]
assert list(sequence_partitions([1, 2, 3], 3)) == [[[1], [2], [3]]]
# Exceptional cases
assert list(sequence_partitions([], 0)) == []
assert list(sequence_partitions([], 1)) == []
assert list(sequence_partitions([1, 2], 0)) == []
assert list(sequence_partitions([1, 2], 3)) == []
def test_sequence_partitions_empty():
assert list(sequence_partitions_empty([], 1)) == [[[]]]
assert list(sequence_partitions_empty([], 2)) == [[[], []]]
assert list(sequence_partitions_empty([], 3)) == [[[], [], []]]
assert list(sequence_partitions_empty([1], 1)) == [[[1]]]
assert list(sequence_partitions_empty([1], 2)) == [[[], [1]], [[1], []]]
assert list(sequence_partitions_empty([1], 3)) == \
[[[], [], [1]], [[], [1], []], [[1], [], []]]
assert list(sequence_partitions_empty([1, 2], 1)) == [[[1, 2]]]
assert list(sequence_partitions_empty([1, 2], 2)) == \
[[[], [1, 2]], [[1], [2]], [[1, 2], []]]
assert list(sequence_partitions_empty([1, 2], 3)) == [
[[], [], [1, 2]], [[], [1], [2]], [[], [1, 2], []],
[[1], [], [2]], [[1], [2], []], [[1, 2], [], []]
]
assert list(sequence_partitions_empty([1, 2, 3], 1)) == [[[1, 2, 3]]]
assert list(sequence_partitions_empty([1, 2, 3], 2)) == \
[[[], [1, 2, 3]], [[1], [2, 3]], [[1, 2], [3]], [[1, 2, 3], []]]
assert list(sequence_partitions_empty([1, 2, 3], 3)) == [
[[], [], [1, 2, 3]], [[], [1], [2, 3]],
[[], [1, 2], [3]], [[], [1, 2, 3], []],
[[1], [], [2, 3]], [[1], [2], [3]],
[[1], [2, 3], []], [[1, 2], [], [3]],
[[1, 2], [3], []], [[1, 2, 3], [], []]
]
# Exceptional cases
assert list(sequence_partitions([], 0)) == []
assert list(sequence_partitions([1], 0)) == []
assert list(sequence_partitions([1, 2], 0)) == []
|
1f9f0d7c7e4161e437448b1c6c372de926641d055126389c855512b92ae1bc05 | import random
from sympy.core.random import random as rand, seed, shuffle, _assumptions_shuffle
from sympy.core.symbol import Symbol, symbols
from sympy.functions.elementary.trigonometric import sin, acos
from sympy.abc import x
def test_random():
random.seed(42)
a = random.random()
random.seed(42)
Symbol('z').is_finite
b = random.random()
assert a == b
got = set()
for i in range(2):
random.seed(28)
m0, m1 = symbols('m_0 m_1', real=True)
_ = acos(-m0/m1)
got.add(random.uniform(0,1))
assert len(got) == 1
random.seed(10)
y = 0
for i in range(4):
y += sin(random.uniform(-10,10) * x)
random.seed(10)
z = 0
for i in range(4):
z += sin(random.uniform(-10,10) * x)
assert y == z
def test_seed():
assert rand() < 1
seed(1)
a = rand()
b = rand()
seed(1)
c = rand()
d = rand()
assert a == c
if not c == d:
assert a != b
else:
assert a == b
abc = 'abc'
first = list(abc)
second = list(abc)
third = list(abc)
seed(123)
shuffle(first)
seed(123)
shuffle(second)
_assumptions_shuffle(third)
assert first == second == third
|
612d612959d39b47a6a9a08fb1a4edf7f14c12c22ae8b251733ea6aaab983926 | from sympy.core.mod import Mod
from sympy.core.numbers import (I, oo, pi)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (asin, sin)
from sympy.simplify.simplify import simplify
from sympy.core import Symbol, S, Rational, Integer, Dummy, Wild, Pow
from sympy.core.assumptions import (assumptions, check_assumptions,
failing_assumptions, common_assumptions, _generate_assumption_rules,
_load_pre_generated_assumption_rules)
from sympy.core.facts import InconsistentAssumptions
from sympy.core.random import seed
from sympy.combinatorics import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.testing.pytest import raises, XFAIL
def test_symbol_unset():
x = Symbol('x', real=True, integer=True)
assert x.is_real is True
assert x.is_integer is True
assert x.is_imaginary is False
assert x.is_noninteger is False
assert x.is_number is False
def test_zero():
z = Integer(0)
assert z.is_commutative is True
assert z.is_integer is True
assert z.is_rational is True
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is False
assert z.is_positive is False
assert z.is_negative is False
assert z.is_nonpositive is True
assert z.is_nonnegative is True
assert z.is_even is True
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
assert z.is_number is True
def test_one():
z = Integer(1)
assert z.is_commutative is True
assert z.is_integer is True
assert z.is_rational is True
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is False
assert z.is_positive is True
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is True
assert z.is_even is False
assert z.is_odd is True
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_number is True
assert z.is_composite is False # issue 8807
def test_negativeone():
z = Integer(-1)
assert z.is_commutative is True
assert z.is_integer is True
assert z.is_rational is True
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is False
assert z.is_positive is False
assert z.is_negative is True
assert z.is_nonpositive is True
assert z.is_nonnegative is False
assert z.is_even is False
assert z.is_odd is True
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
assert z.is_number is True
def test_infinity():
oo = S.Infinity
assert oo.is_commutative is True
assert oo.is_integer is False
assert oo.is_rational is False
assert oo.is_algebraic is False
assert oo.is_transcendental is False
assert oo.is_extended_real is True
assert oo.is_real is False
assert oo.is_complex is False
assert oo.is_noninteger is True
assert oo.is_irrational is False
assert oo.is_imaginary is False
assert oo.is_nonzero is False
assert oo.is_positive is False
assert oo.is_negative is False
assert oo.is_nonpositive is False
assert oo.is_nonnegative is False
assert oo.is_extended_nonzero is True
assert oo.is_extended_positive is True
assert oo.is_extended_negative is False
assert oo.is_extended_nonpositive is False
assert oo.is_extended_nonnegative is True
assert oo.is_even is False
assert oo.is_odd is False
assert oo.is_finite is False
assert oo.is_infinite is True
assert oo.is_comparable is True
assert oo.is_prime is False
assert oo.is_composite is False
assert oo.is_number is True
def test_neg_infinity():
mm = S.NegativeInfinity
assert mm.is_commutative is True
assert mm.is_integer is False
assert mm.is_rational is False
assert mm.is_algebraic is False
assert mm.is_transcendental is False
assert mm.is_extended_real is True
assert mm.is_real is False
assert mm.is_complex is False
assert mm.is_noninteger is True
assert mm.is_irrational is False
assert mm.is_imaginary is False
assert mm.is_nonzero is False
assert mm.is_positive is False
assert mm.is_negative is False
assert mm.is_nonpositive is False
assert mm.is_nonnegative is False
assert mm.is_extended_nonzero is True
assert mm.is_extended_positive is False
assert mm.is_extended_negative is True
assert mm.is_extended_nonpositive is True
assert mm.is_extended_nonnegative is False
assert mm.is_even is False
assert mm.is_odd is False
assert mm.is_finite is False
assert mm.is_infinite is True
assert mm.is_comparable is True
assert mm.is_prime is False
assert mm.is_composite is False
assert mm.is_number is True
def test_zoo():
zoo = S.ComplexInfinity
assert zoo.is_complex is False
assert zoo.is_real is False
assert zoo.is_prime is False
def test_nan():
nan = S.NaN
assert nan.is_commutative is True
assert nan.is_integer is None
assert nan.is_rational is None
assert nan.is_algebraic is None
assert nan.is_transcendental is None
assert nan.is_real is None
assert nan.is_complex is None
assert nan.is_noninteger is None
assert nan.is_irrational is None
assert nan.is_imaginary is None
assert nan.is_positive is None
assert nan.is_negative is None
assert nan.is_nonpositive is None
assert nan.is_nonnegative is None
assert nan.is_even is None
assert nan.is_odd is None
assert nan.is_finite is None
assert nan.is_infinite is None
assert nan.is_comparable is False
assert nan.is_prime is None
assert nan.is_composite is None
assert nan.is_number is True
def test_pos_rational():
r = Rational(3, 4)
assert r.is_commutative is True
assert r.is_integer is False
assert r.is_rational is True
assert r.is_algebraic is True
assert r.is_transcendental is False
assert r.is_real is True
assert r.is_complex is True
assert r.is_noninteger is True
assert r.is_irrational is False
assert r.is_imaginary is False
assert r.is_positive is True
assert r.is_negative is False
assert r.is_nonpositive is False
assert r.is_nonnegative is True
assert r.is_even is False
assert r.is_odd is False
assert r.is_finite is True
assert r.is_infinite is False
assert r.is_comparable is True
assert r.is_prime is False
assert r.is_composite is False
r = Rational(1, 4)
assert r.is_nonpositive is False
assert r.is_positive is True
assert r.is_negative is False
assert r.is_nonnegative is True
r = Rational(5, 4)
assert r.is_negative is False
assert r.is_positive is True
assert r.is_nonpositive is False
assert r.is_nonnegative is True
r = Rational(5, 3)
assert r.is_nonnegative is True
assert r.is_positive is True
assert r.is_negative is False
assert r.is_nonpositive is False
def test_neg_rational():
r = Rational(-3, 4)
assert r.is_positive is False
assert r.is_nonpositive is True
assert r.is_negative is True
assert r.is_nonnegative is False
r = Rational(-1, 4)
assert r.is_nonpositive is True
assert r.is_positive is False
assert r.is_negative is True
assert r.is_nonnegative is False
r = Rational(-5, 4)
assert r.is_negative is True
assert r.is_positive is False
assert r.is_nonpositive is True
assert r.is_nonnegative is False
r = Rational(-5, 3)
assert r.is_nonnegative is False
assert r.is_positive is False
assert r.is_negative is True
assert r.is_nonpositive is True
def test_pi():
z = S.Pi
assert z.is_commutative is True
assert z.is_integer is False
assert z.is_rational is False
assert z.is_algebraic is False
assert z.is_transcendental is True
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is True
assert z.is_irrational is True
assert z.is_imaginary is False
assert z.is_positive is True
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is True
assert z.is_even is False
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
def test_E():
z = S.Exp1
assert z.is_commutative is True
assert z.is_integer is False
assert z.is_rational is False
assert z.is_algebraic is False
assert z.is_transcendental is True
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is True
assert z.is_irrational is True
assert z.is_imaginary is False
assert z.is_positive is True
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is True
assert z.is_even is False
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
def test_I():
z = S.ImaginaryUnit
assert z.is_commutative is True
assert z.is_integer is False
assert z.is_rational is False
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is False
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is True
assert z.is_positive is False
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is False
assert z.is_even is False
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is False
assert z.is_prime is False
assert z.is_composite is False
def test_symbol_real_false():
# issue 3848
a = Symbol('a', real=False)
assert a.is_real is False
assert a.is_integer is False
assert a.is_zero is False
assert a.is_negative is False
assert a.is_positive is False
assert a.is_nonnegative is False
assert a.is_nonpositive is False
assert a.is_nonzero is False
assert a.is_extended_negative is None
assert a.is_extended_positive is None
assert a.is_extended_nonnegative is None
assert a.is_extended_nonpositive is None
assert a.is_extended_nonzero is None
def test_symbol_extended_real_false():
# issue 3848
a = Symbol('a', extended_real=False)
assert a.is_real is False
assert a.is_integer is False
assert a.is_zero is False
assert a.is_negative is False
assert a.is_positive is False
assert a.is_nonnegative is False
assert a.is_nonpositive is False
assert a.is_nonzero is False
assert a.is_extended_negative is False
assert a.is_extended_positive is False
assert a.is_extended_nonnegative is False
assert a.is_extended_nonpositive is False
assert a.is_extended_nonzero is False
def test_symbol_imaginary():
a = Symbol('a', imaginary=True)
assert a.is_real is False
assert a.is_integer is False
assert a.is_negative is False
assert a.is_positive is False
assert a.is_nonnegative is False
assert a.is_nonpositive is False
assert a.is_zero is False
assert a.is_nonzero is False # since nonzero -> real
def test_symbol_zero():
x = Symbol('x', zero=True)
assert x.is_positive is False
assert x.is_nonpositive
assert x.is_negative is False
assert x.is_nonnegative
assert x.is_zero is True
# TODO Change to x.is_nonzero is None
# See https://github.com/sympy/sympy/pull/9583
assert x.is_nonzero is False
assert x.is_finite is True
def test_symbol_positive():
x = Symbol('x', positive=True)
assert x.is_positive is True
assert x.is_nonpositive is False
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is False
assert x.is_nonzero is True
def test_neg_symbol_positive():
x = -Symbol('x', positive=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is True
assert x.is_nonnegative is False
assert x.is_zero is False
assert x.is_nonzero is True
def test_symbol_nonpositive():
x = Symbol('x', nonpositive=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_nonpositive():
x = -Symbol('x', nonpositive=True)
assert x.is_positive is None
assert x.is_nonpositive is None
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsepositive():
x = Symbol('x', positive=False)
assert x.is_positive is False
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsepositive_mul():
# To test pull request 9379
# Explicit handling of arg.is_positive=False was added to Mul._eval_is_positive
x = 2*Symbol('x', positive=False)
assert x.is_positive is False # This was None before
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
@XFAIL
def test_symbol_infinitereal_mul():
ix = Symbol('ix', infinite=True, extended_real=True)
assert (-ix).is_extended_positive is None
def test_neg_symbol_falsepositive():
x = -Symbol('x', positive=False)
assert x.is_positive is None
assert x.is_nonpositive is None
assert x.is_negative is False
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_falsenegative():
# To test pull request 9379
# Explicit handling of arg.is_negative=False was added to Mul._eval_is_positive
x = -Symbol('x', negative=False)
assert x.is_positive is False # This was None before
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsepositive_real():
x = Symbol('x', positive=False, real=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_falsepositive_real():
x = -Symbol('x', positive=False, real=True)
assert x.is_positive is None
assert x.is_nonpositive is None
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsenonnegative():
x = Symbol('x', nonnegative=False)
assert x.is_positive is False
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is False
assert x.is_zero is False
assert x.is_nonzero is None
@XFAIL
def test_neg_symbol_falsenonnegative():
x = -Symbol('x', nonnegative=False)
assert x.is_positive is None
assert x.is_nonpositive is False # this currently returns None
assert x.is_negative is False # this currently returns None
assert x.is_nonnegative is None
assert x.is_zero is False # this currently returns None
assert x.is_nonzero is True # this currently returns None
def test_symbol_falsenonnegative_real():
x = Symbol('x', nonnegative=False, real=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is True
assert x.is_nonnegative is False
assert x.is_zero is False
assert x.is_nonzero is True
def test_neg_symbol_falsenonnegative_real():
x = -Symbol('x', nonnegative=False, real=True)
assert x.is_positive is True
assert x.is_nonpositive is False
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is False
assert x.is_nonzero is True
def test_prime():
assert S.NegativeOne.is_prime is False
assert S(-2).is_prime is False
assert S(-4).is_prime is False
assert S.Zero.is_prime is False
assert S.One.is_prime is False
assert S(2).is_prime is True
assert S(17).is_prime is True
assert S(4).is_prime is False
def test_composite():
assert S.NegativeOne.is_composite is False
assert S(-2).is_composite is False
assert S(-4).is_composite is False
assert S.Zero.is_composite is False
assert S(2).is_composite is False
assert S(17).is_composite is False
assert S(4).is_composite is True
x = Dummy(integer=True, positive=True, prime=False)
assert x.is_composite is None # x could be 1
assert (x + 1).is_composite is None
x = Dummy(positive=True, even=True, prime=False)
assert x.is_integer is True
assert x.is_composite is True
def test_prime_symbol():
x = Symbol('x', prime=True)
assert x.is_prime is True
assert x.is_integer is True
assert x.is_positive is True
assert x.is_negative is False
assert x.is_nonpositive is False
assert x.is_nonnegative is True
x = Symbol('x', prime=False)
assert x.is_prime is False
assert x.is_integer is None
assert x.is_positive is None
assert x.is_negative is None
assert x.is_nonpositive is None
assert x.is_nonnegative is None
def test_symbol_noncommutative():
x = Symbol('x', commutative=True)
assert x.is_complex is None
x = Symbol('x', commutative=False)
assert x.is_integer is False
assert x.is_rational is False
assert x.is_algebraic is False
assert x.is_irrational is False
assert x.is_real is False
assert x.is_complex is False
def test_other_symbol():
x = Symbol('x', integer=True)
assert x.is_integer is True
assert x.is_real is True
assert x.is_finite is True
x = Symbol('x', integer=True, nonnegative=True)
assert x.is_integer is True
assert x.is_nonnegative is True
assert x.is_negative is False
assert x.is_positive is None
assert x.is_finite is True
x = Symbol('x', integer=True, nonpositive=True)
assert x.is_integer is True
assert x.is_nonpositive is True
assert x.is_positive is False
assert x.is_negative is None
assert x.is_finite is True
x = Symbol('x', odd=True)
assert x.is_odd is True
assert x.is_even is False
assert x.is_integer is True
assert x.is_finite is True
x = Symbol('x', odd=False)
assert x.is_odd is False
assert x.is_even is None
assert x.is_integer is None
assert x.is_finite is None
x = Symbol('x', even=True)
assert x.is_even is True
assert x.is_odd is False
assert x.is_integer is True
assert x.is_finite is True
x = Symbol('x', even=False)
assert x.is_even is False
assert x.is_odd is None
assert x.is_integer is None
assert x.is_finite is None
x = Symbol('x', integer=True, nonnegative=True)
assert x.is_integer is True
assert x.is_nonnegative is True
assert x.is_finite is True
x = Symbol('x', integer=True, nonpositive=True)
assert x.is_integer is True
assert x.is_nonpositive is True
assert x.is_finite is True
x = Symbol('x', rational=True)
assert x.is_real is True
assert x.is_finite is True
x = Symbol('x', rational=False)
assert x.is_real is None
assert x.is_finite is None
x = Symbol('x', irrational=True)
assert x.is_real is True
assert x.is_finite is True
x = Symbol('x', irrational=False)
assert x.is_real is None
assert x.is_finite is None
with raises(AttributeError):
x.is_real = False
x = Symbol('x', algebraic=True)
assert x.is_transcendental is False
x = Symbol('x', transcendental=True)
assert x.is_algebraic is False
assert x.is_rational is False
assert x.is_integer is False
def test_issue_3825():
"""catch: hash instability"""
x = Symbol("x")
y = Symbol("y")
a1 = x + y
a2 = y + x
a2.is_comparable
h1 = hash(a1)
h2 = hash(a2)
assert h1 == h2
def test_issue_4822():
z = (-1)**Rational(1, 3)*(1 - I*sqrt(3))
assert z.is_real in [True, None]
def test_hash_vs_typeinfo():
"""seemingly different typeinfo, but in fact equal"""
# the following two are semantically equal
x1 = Symbol('x', even=True)
x2 = Symbol('x', integer=True, odd=False)
assert hash(x1) == hash(x2)
assert x1 == x2
def test_hash_vs_typeinfo_2():
"""different typeinfo should mean !eq"""
# the following two are semantically different
x = Symbol('x')
x1 = Symbol('x', even=True)
assert x != x1
assert hash(x) != hash(x1) # This might fail with very low probability
def test_hash_vs_eq():
"""catch: different hash for equal objects"""
a = 1 + S.Pi # important: do not fold it into a Number instance
ha = hash(a) # it should be Add/Mul/... to trigger the bug
a.is_positive # this uses .evalf() and deduces it is positive
assert a.is_positive is True
# be sure that hash stayed the same
assert ha == hash(a)
# now b should be the same expression
b = a.expand(trig=True)
hb = hash(b)
assert a == b
assert ha == hb
def test_Add_is_pos_neg():
# these cover lines not covered by the rest of tests in core
n = Symbol('n', extended_negative=True, infinite=True)
nn = Symbol('n', extended_nonnegative=True, infinite=True)
np = Symbol('n', extended_nonpositive=True, infinite=True)
p = Symbol('p', extended_positive=True, infinite=True)
r = Dummy(extended_real=True, finite=False)
x = Symbol('x')
xf = Symbol('xf', finite=True)
assert (n + p).is_extended_positive is None
assert (n + x).is_extended_positive is None
assert (p + x).is_extended_positive is None
assert (n + p).is_extended_negative is None
assert (n + x).is_extended_negative is None
assert (p + x).is_extended_negative is None
assert (n + xf).is_extended_positive is False
assert (p + xf).is_extended_positive is True
assert (n + xf).is_extended_negative is True
assert (p + xf).is_extended_negative is False
assert (x - S.Infinity).is_extended_negative is None # issue 7798
# issue 8046, 16.2
assert (p + nn).is_extended_positive
assert (n + np).is_extended_negative
assert (p + r).is_extended_positive is None
def test_Add_is_imaginary():
nn = Dummy(nonnegative=True)
assert (I*nn + I).is_imaginary # issue 8046, 17
def test_Add_is_algebraic():
a = Symbol('a', algebraic=True)
b = Symbol('a', algebraic=True)
na = Symbol('na', algebraic=False)
nb = Symbol('nb', algebraic=False)
x = Symbol('x')
assert (a + b).is_algebraic
assert (na + nb).is_algebraic is None
assert (a + na).is_algebraic is False
assert (a + x).is_algebraic is None
assert (na + x).is_algebraic is None
def test_Mul_is_algebraic():
a = Symbol('a', algebraic=True)
b = Symbol('b', algebraic=True)
na = Symbol('na', algebraic=False)
an = Symbol('an', algebraic=True, nonzero=True)
nb = Symbol('nb', algebraic=False)
x = Symbol('x')
assert (a*b).is_algebraic is True
assert (na*nb).is_algebraic is None
assert (a*na).is_algebraic is None
assert (an*na).is_algebraic is False
assert (a*x).is_algebraic is None
assert (na*x).is_algebraic is None
def test_Pow_is_algebraic():
e = Symbol('e', algebraic=True)
assert Pow(1, e, evaluate=False).is_algebraic
assert Pow(0, e, evaluate=False).is_algebraic
a = Symbol('a', algebraic=True)
azf = Symbol('azf', algebraic=True, zero=False)
na = Symbol('na', algebraic=False)
ia = Symbol('ia', algebraic=True, irrational=True)
ib = Symbol('ib', algebraic=True, irrational=True)
r = Symbol('r', rational=True)
x = Symbol('x')
assert (a**2).is_algebraic is True
assert (a**r).is_algebraic is None
assert (azf**r).is_algebraic is True
assert (a**x).is_algebraic is None
assert (na**r).is_algebraic is None
assert (ia**r).is_algebraic is True
assert (ia**ib).is_algebraic is False
assert (a**e).is_algebraic is None
# Gelfond-Schneider constant:
assert Pow(2, sqrt(2), evaluate=False).is_algebraic is False
assert Pow(S.GoldenRatio, sqrt(3), evaluate=False).is_algebraic is False
# issue 8649
t = Symbol('t', real=True, transcendental=True)
n = Symbol('n', integer=True)
assert (t**n).is_algebraic is None
assert (t**n).is_integer is None
assert (pi**3).is_algebraic is False
r = Symbol('r', zero=True)
assert (pi**r).is_algebraic is True
def test_Mul_is_prime_composite():
x = Symbol('x', positive=True, integer=True)
y = Symbol('y', positive=True, integer=True)
assert (x*y).is_prime is None
assert ( (x+1)*(y+1) ).is_prime is False
assert ( (x+1)*(y+1) ).is_composite is True
x = Symbol('x', positive=True)
assert ( (x+1)*(y+1) ).is_prime is None
assert ( (x+1)*(y+1) ).is_composite is None
def test_Pow_is_pos_neg():
z = Symbol('z', real=True)
w = Symbol('w', nonpositive=True)
assert (S.NegativeOne**S(2)).is_positive is True
assert (S.One**z).is_positive is True
assert (S.NegativeOne**S(3)).is_positive is False
assert (S.Zero**S.Zero).is_positive is True # 0**0 is 1
assert (w**S(3)).is_positive is False
assert (w**S(2)).is_positive is None
assert (I**2).is_positive is False
assert (I**4).is_positive is True
# tests emerging from #16332 issue
p = Symbol('p', zero=True)
q = Symbol('q', zero=False, real=True)
j = Symbol('j', zero=False, even=True)
x = Symbol('x', zero=True)
y = Symbol('y', zero=True)
assert (p**q).is_positive is False
assert (p**q).is_negative is False
assert (p**j).is_positive is False
assert (x**y).is_positive is True # 0**0
assert (x**y).is_negative is False
def test_Pow_is_prime_composite():
x = Symbol('x', positive=True, integer=True)
y = Symbol('y', positive=True, integer=True)
assert (x**y).is_prime is None
assert ( x**(y+1) ).is_prime is False
assert ( x**(y+1) ).is_composite is None
assert ( (x+1)**(y+1) ).is_composite is True
assert ( (-x-1)**(2*y) ).is_composite is True
x = Symbol('x', positive=True)
assert (x**y).is_prime is None
def test_Mul_is_infinite():
x = Symbol('x')
f = Symbol('f', finite=True)
i = Symbol('i', infinite=True)
z = Dummy(zero=True)
nzf = Dummy(finite=True, zero=False)
from sympy.core.mul import Mul
assert (x*f).is_finite is None
assert (x*i).is_finite is None
assert (f*i).is_finite is None
assert (x*f*i).is_finite is None
assert (z*i).is_finite is None
assert (nzf*i).is_finite is False
assert (z*f).is_finite is True
assert Mul(0, f, evaluate=False).is_finite is True
assert Mul(0, i, evaluate=False).is_finite is None
assert (x*f).is_infinite is None
assert (x*i).is_infinite is None
assert (f*i).is_infinite is None
assert (x*f*i).is_infinite is None
assert (z*i).is_infinite is S.NaN.is_infinite
assert (nzf*i).is_infinite is True
assert (z*f).is_infinite is False
assert Mul(0, f, evaluate=False).is_infinite is False
assert Mul(0, i, evaluate=False).is_infinite is S.NaN.is_infinite
def test_Add_is_infinite():
x = Symbol('x')
f = Symbol('f', finite=True)
i = Symbol('i', infinite=True)
i2 = Symbol('i2', infinite=True)
z = Dummy(zero=True)
nzf = Dummy(finite=True, zero=False)
from sympy.core.add import Add
assert (x+f).is_finite is None
assert (x+i).is_finite is None
assert (f+i).is_finite is False
assert (x+f+i).is_finite is None
assert (z+i).is_finite is False
assert (nzf+i).is_finite is False
assert (z+f).is_finite is True
assert (i+i2).is_finite is None
assert Add(0, f, evaluate=False).is_finite is True
assert Add(0, i, evaluate=False).is_finite is False
assert (x+f).is_infinite is None
assert (x+i).is_infinite is None
assert (f+i).is_infinite is True
assert (x+f+i).is_infinite is None
assert (z+i).is_infinite is True
assert (nzf+i).is_infinite is True
assert (z+f).is_infinite is False
assert (i+i2).is_infinite is None
assert Add(0, f, evaluate=False).is_infinite is False
assert Add(0, i, evaluate=False).is_infinite is True
def test_special_is_rational():
i = Symbol('i', integer=True)
i2 = Symbol('i2', integer=True)
ni = Symbol('ni', integer=True, nonzero=True)
r = Symbol('r', rational=True)
rn = Symbol('r', rational=True, nonzero=True)
nr = Symbol('nr', irrational=True)
x = Symbol('x')
assert sqrt(3).is_rational is False
assert (3 + sqrt(3)).is_rational is False
assert (3*sqrt(3)).is_rational is False
assert exp(3).is_rational is False
assert exp(ni).is_rational is False
assert exp(rn).is_rational is False
assert exp(x).is_rational is None
assert exp(log(3), evaluate=False).is_rational is True
assert log(exp(3), evaluate=False).is_rational is True
assert log(3).is_rational is False
assert log(ni + 1).is_rational is False
assert log(rn + 1).is_rational is False
assert log(x).is_rational is None
assert (sqrt(3) + sqrt(5)).is_rational is None
assert (sqrt(3) + S.Pi).is_rational is False
assert (x**i).is_rational is None
assert (i**i).is_rational is True
assert (i**i2).is_rational is None
assert (r**i).is_rational is None
assert (r**r).is_rational is None
assert (r**x).is_rational is None
assert (nr**i).is_rational is None # issue 8598
assert (nr**Symbol('z', zero=True)).is_rational
assert sin(1).is_rational is False
assert sin(ni).is_rational is False
assert sin(rn).is_rational is False
assert sin(x).is_rational is None
assert asin(r).is_rational is False
assert sin(asin(3), evaluate=False).is_rational is True
@XFAIL
def test_issue_6275():
x = Symbol('x')
# both zero or both Muls...but neither "change would be very appreciated.
# This is similar to x/x => 1 even though if x = 0, it is really nan.
assert isinstance(x*0, type(0*S.Infinity))
if 0*S.Infinity is S.NaN:
b = Symbol('b', finite=None)
assert (b*0).is_zero is None
def test_sanitize_assumptions():
# issue 6666
for cls in (Symbol, Dummy, Wild):
x = cls('x', real=1, positive=0)
assert x.is_real is True
assert x.is_positive is False
assert cls('', real=True, positive=None).is_positive is None
raises(ValueError, lambda: cls('', commutative=None))
raises(ValueError, lambda: Symbol._sanitize(dict(commutative=None)))
def test_special_assumptions():
e = -3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2
assert simplify(e < 0) is S.false
assert simplify(e > 0) is S.false
assert (e == 0) is False # it's not a literal 0
assert e.equals(0) is True
def test_inconsistent():
# cf. issues 5795 and 5545
raises(InconsistentAssumptions, lambda: Symbol('x', real=True,
commutative=False))
def test_issue_6631():
assert ((-1)**(I)).is_real is True
assert ((-1)**(I*2)).is_real is True
assert ((-1)**(I/2)).is_real is True
assert ((-1)**(I*S.Pi)).is_real is True
assert (I**(I + 2)).is_real is True
def test_issue_2730():
assert (1/(1 + I)).is_real is False
def test_issue_4149():
assert (3 + I).is_complex
assert (3 + I).is_imaginary is False
assert (3*I + S.Pi*I).is_imaginary
# as Zero.is_imaginary is False, see issue 7649
y = Symbol('y', real=True)
assert (3*I + S.Pi*I + y*I).is_imaginary is None
p = Symbol('p', positive=True)
assert (3*I + S.Pi*I + p*I).is_imaginary
n = Symbol('n', negative=True)
assert (-3*I - S.Pi*I + n*I).is_imaginary
i = Symbol('i', imaginary=True)
assert ([(i**a).is_imaginary for a in range(4)] ==
[False, True, False, True])
# tests from the PR #7887:
e = S("-sqrt(3)*I/2 + 0.866025403784439*I")
assert e.is_real is False
assert e.is_imaginary
def test_issue_2920():
n = Symbol('n', negative=True)
assert sqrt(n).is_imaginary
def test_issue_7899():
x = Symbol('x', real=True)
assert (I*x).is_real is None
assert ((x - I)*(x - 1)).is_zero is None
assert ((x - I)*(x - 1)).is_real is None
@XFAIL
def test_issue_7993():
x = Dummy(integer=True)
y = Dummy(noninteger=True)
assert (x - y).is_zero is False
def test_issue_8075():
raises(InconsistentAssumptions, lambda: Dummy(zero=True, finite=False))
raises(InconsistentAssumptions, lambda: Dummy(zero=True, infinite=True))
def test_issue_8642():
x = Symbol('x', real=True, integer=False)
assert (x*2).is_integer is None, (x*2).is_integer
def test_issues_8632_8633_8638_8675_8992():
p = Dummy(integer=True, positive=True)
nn = Dummy(integer=True, nonnegative=True)
assert (p - S.Half).is_positive
assert (p - 1).is_nonnegative
assert (nn + 1).is_positive
assert (-p + 1).is_nonpositive
assert (-nn - 1).is_negative
prime = Dummy(prime=True)
assert (prime - 2).is_nonnegative
assert (prime - 3).is_nonnegative is None
even = Dummy(positive=True, even=True)
assert (even - 2).is_nonnegative
p = Dummy(positive=True)
assert (p/(p + 1) - 1).is_negative
assert ((p + 2)**3 - S.Half).is_positive
n = Dummy(negative=True)
assert (n - 3).is_nonpositive
def test_issue_9115_9150():
n = Dummy('n', integer=True, nonnegative=True)
assert (factorial(n) >= 1) == True
assert (factorial(n) < 1) == False
assert factorial(n + 1).is_even is None
assert factorial(n + 2).is_even is True
assert factorial(n + 2) >= 2
def test_issue_9165():
z = Symbol('z', zero=True)
f = Symbol('f', finite=False)
assert 0/z is S.NaN
assert 0*(1/z) is S.NaN
assert 0*f is S.NaN
def test_issue_10024():
x = Dummy('x')
assert Mod(x, 2*pi).is_zero is None
def test_issue_10302():
x = Symbol('x')
r = Symbol('r', real=True)
u = -(3*2**pi)**(1/pi) + 2*3**(1/pi)
i = u + u*I
assert i.is_real is None # w/o simplification this should fail
assert (u + i).is_zero is None
assert (1 + i).is_zero is False
a = Dummy('a', zero=True)
assert (a + I).is_zero is False
assert (a + r*I).is_zero is None
assert (a + I).is_imaginary
assert (a + x + I).is_imaginary is None
assert (a + r*I + I).is_imaginary is None
def test_complex_reciprocal_imaginary():
assert (1 / (4 + 3*I)).is_imaginary is False
def test_issue_16313():
x = Symbol('x', extended_real=False)
k = Symbol('k', real=True)
l = Symbol('l', real=True, zero=False)
assert (-x).is_real is False
assert (k*x).is_real is None # k can be zero also
assert (l*x).is_real is False
assert (l*x*x).is_real is None # since x*x can be a real number
assert (-x).is_positive is False
def test_issue_16579():
# extended_real -> finite | infinite
x = Symbol('x', extended_real=True, infinite=False)
y = Symbol('y', extended_real=True, finite=False)
assert x.is_finite is True
assert y.is_infinite is True
# With PR 16978, complex now implies finite
c = Symbol('c', complex=True)
assert c.is_finite is True
raises(InconsistentAssumptions, lambda: Dummy(complex=True, finite=False))
# Now infinite == !finite
nf = Symbol('nf', finite=False)
assert nf.is_infinite is True
def test_issue_17556():
z = I*oo
assert z.is_imaginary is False
assert z.is_finite is False
def test_issue_21651():
k = Symbol('k', positive=True, integer=True)
exp = 2*2**(-k)
assert exp.is_integer is None
def test_assumptions_copy():
assert assumptions(Symbol('x'), dict(commutative=True)
) == {'commutative': True}
assert assumptions(Symbol('x'), ['integer']) == {}
assert assumptions(Symbol('x'), ['commutative']
) == {'commutative': True}
assert assumptions(Symbol('x')) == {'commutative': True}
assert assumptions(1)['positive']
assert assumptions(3 + I) == {
'algebraic': True,
'commutative': True,
'complex': True,
'composite': False,
'even': False,
'extended_negative': False,
'extended_nonnegative': False,
'extended_nonpositive': False,
'extended_nonzero': False,
'extended_positive': False,
'extended_real': False,
'finite': True,
'imaginary': False,
'infinite': False,
'integer': False,
'irrational': False,
'negative': False,
'noninteger': False,
'nonnegative': False,
'nonpositive': False,
'nonzero': False,
'odd': False,
'positive': False,
'prime': False,
'rational': False,
'real': False,
'transcendental': False,
'zero': False}
def test_check_assumptions():
assert check_assumptions(1, 0) is False
x = Symbol('x', positive=True)
assert check_assumptions(1, x) is True
assert check_assumptions(1, 1) is True
assert check_assumptions(-1, 1) is False
i = Symbol('i', integer=True)
# don't know if i is positive (or prime, etc...)
assert check_assumptions(i, 1) is None
assert check_assumptions(Dummy(integer=None), integer=True) is None
assert check_assumptions(Dummy(integer=None), integer=False) is None
assert check_assumptions(Dummy(integer=False), integer=True) is False
assert check_assumptions(Dummy(integer=True), integer=False) is False
# no T/F assumptions to check
assert check_assumptions(Dummy(integer=False), integer=None) is True
raises(ValueError, lambda: check_assumptions(2*x, x, positive=True))
def test_failing_assumptions():
x = Symbol('x', positive=True)
y = Symbol('y')
assert failing_assumptions(6*x + y, **x.assumptions0) == \
{'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
'negative': None, 'zero': None, 'extended_real': None, 'finite': None,
'infinite': None, 'extended_negative': None, 'extended_nonnegative': None,
'extended_nonpositive': None, 'extended_nonzero': None,
'extended_positive': None }
def test_common_assumptions():
assert common_assumptions([0, 1, 2]
) == {'algebraic': True, 'irrational': False, 'hermitian':
True, 'extended_real': True, 'real': True, 'extended_negative':
False, 'extended_nonnegative': True, 'integer': True,
'rational': True, 'imaginary': False, 'complex': True,
'commutative': True,'noninteger': False, 'composite': False,
'infinite': False, 'nonnegative': True, 'finite': True,
'transcendental': False,'negative': False}
assert common_assumptions([0, 1, 2], 'positive integer'.split()
) == {'integer': True}
assert common_assumptions([0, 1, 2], []) == {}
assert common_assumptions([], ['integer']) == {}
assert common_assumptions([0], ['integer']) == {'integer': True}
def test_pre_generated_assumption_rules_are_valid():
# check the pre-generated assumptions match freshly generated assumptions
# if this check fails, consider updating the assumptions
# see sympy.core.assumptions._generate_assumption_rules
pre_generated_assumptions =_load_pre_generated_assumption_rules()
generated_assumptions =_generate_assumption_rules()
assert pre_generated_assumptions._to_python() == generated_assumptions._to_python(), "pre-generated assumptions are invalid, see sympy.core.assumptions._generate_assumption_rules"
def test_ask_shuffle():
grp = PermutationGroup(Permutation(1, 0, 2), Permutation(2, 1, 3))
seed(123)
first = grp.random()
seed(123)
simplify(I)
second = grp.random()
seed(123)
simplify(-I)
third = grp.random()
assert first == second == third
|
e09abe1a7421eee8043a2a924adbaba401864434ce4017f109b66669cde3c5f6 | from sympy.core.logic import fuzzy_and
from sympy.core.sympify import _sympify
from sympy.multipledispatch import dispatch
from sympy.testing.pytest import XFAIL, raises
from sympy.assumptions.ask import Q
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.integers import (ceiling, floor)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.logic.boolalg import (And, Implies, Not, Or, Xor)
from sympy.sets import Reals
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.core.relational import (Relational, Equality, Unequality,
GreaterThan, LessThan, StrictGreaterThan,
StrictLessThan, Rel, Eq, Lt, Le,
Gt, Ge, Ne, is_le, is_gt, is_ge, is_lt, is_eq, is_neq)
from sympy.sets.sets import Interval, FiniteSet
from itertools import combinations
x, y, z, t = symbols('x,y,z,t')
def rel_check(a, b):
from sympy.testing.pytest import raises
assert a.is_number and b.is_number
for do in range(len({type(a), type(b)})):
if S.NaN in (a, b):
v = [(a == b), (a != b)]
assert len(set(v)) == 1 and v[0] == False
assert not (a != b) and not (a == b)
assert raises(TypeError, lambda: a < b)
assert raises(TypeError, lambda: a <= b)
assert raises(TypeError, lambda: a > b)
assert raises(TypeError, lambda: a >= b)
else:
E = [(a == b), (a != b)]
assert len(set(E)) == 2
v = [
(a < b), (a <= b), (a > b), (a >= b)]
i = [
[True, True, False, False],
[False, True, False, True], # <-- i == 1
[False, False, True, True]].index(v)
if i == 1:
assert E[0] or (a.is_Float != b.is_Float) # ugh
else:
assert E[1]
a, b = b, a
return True
def test_rel_ne():
assert Relational(x, y, '!=') == Ne(x, y)
# issue 6116
p = Symbol('p', positive=True)
assert Ne(p, 0) is S.true
def test_rel_subs():
e = Relational(x, y, '==')
e = e.subs(x, z)
assert isinstance(e, Equality)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '>=')
e = e.subs(x, z)
assert isinstance(e, GreaterThan)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '<=')
e = e.subs(x, z)
assert isinstance(e, LessThan)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '>')
e = e.subs(x, z)
assert isinstance(e, StrictGreaterThan)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '<')
e = e.subs(x, z)
assert isinstance(e, StrictLessThan)
assert e.lhs == z
assert e.rhs == y
e = Eq(x, 0)
assert e.subs(x, 0) is S.true
assert e.subs(x, 1) is S.false
def test_wrappers():
e = x + x**2
res = Relational(y, e, '==')
assert Rel(y, x + x**2, '==') == res
assert Eq(y, x + x**2) == res
res = Relational(y, e, '<')
assert Lt(y, x + x**2) == res
res = Relational(y, e, '<=')
assert Le(y, x + x**2) == res
res = Relational(y, e, '>')
assert Gt(y, x + x**2) == res
res = Relational(y, e, '>=')
assert Ge(y, x + x**2) == res
res = Relational(y, e, '!=')
assert Ne(y, x + x**2) == res
def test_Eq_Ne():
assert Eq(x, x) # issue 5719
# issue 6116
p = Symbol('p', positive=True)
assert Eq(p, 0) is S.false
# issue 13348; 19048
# SymPy is strict about 0 and 1 not being
# interpreted as Booleans
assert Eq(True, 1) is S.false
assert Eq(False, 0) is S.false
assert Eq(~x, 0) is S.false
assert Eq(~x, 1) is S.false
assert Ne(True, 1) is S.true
assert Ne(False, 0) is S.true
assert Ne(~x, 0) is S.true
assert Ne(~x, 1) is S.true
assert Eq((), 1) is S.false
assert Ne((), 1) is S.true
def test_as_poly():
from sympy.polys.polytools import Poly
# Only Eq should have an as_poly method:
assert Eq(x, 1).as_poly() == Poly(x - 1, x, domain='ZZ')
raises(AttributeError, lambda: Ne(x, 1).as_poly())
raises(AttributeError, lambda: Ge(x, 1).as_poly())
raises(AttributeError, lambda: Gt(x, 1).as_poly())
raises(AttributeError, lambda: Le(x, 1).as_poly())
raises(AttributeError, lambda: Lt(x, 1).as_poly())
def test_rel_Infinity():
# NOTE: All of these are actually handled by sympy.core.Number, and do
# not create Relational objects.
assert (oo > oo) is S.false
assert (oo > -oo) is S.true
assert (oo > 1) is S.true
assert (oo < oo) is S.false
assert (oo < -oo) is S.false
assert (oo < 1) is S.false
assert (oo >= oo) is S.true
assert (oo >= -oo) is S.true
assert (oo >= 1) is S.true
assert (oo <= oo) is S.true
assert (oo <= -oo) is S.false
assert (oo <= 1) is S.false
assert (-oo > oo) is S.false
assert (-oo > -oo) is S.false
assert (-oo > 1) is S.false
assert (-oo < oo) is S.true
assert (-oo < -oo) is S.false
assert (-oo < 1) is S.true
assert (-oo >= oo) is S.false
assert (-oo >= -oo) is S.true
assert (-oo >= 1) is S.false
assert (-oo <= oo) is S.true
assert (-oo <= -oo) is S.true
assert (-oo <= 1) is S.true
def test_infinite_symbol_inequalities():
x = Symbol('x', extended_positive=True, infinite=True)
y = Symbol('y', extended_positive=True, infinite=True)
z = Symbol('z', extended_negative=True, infinite=True)
w = Symbol('w', extended_negative=True, infinite=True)
inf_set = (x, y, oo)
ninf_set = (z, w, -oo)
for inf1 in inf_set:
assert (inf1 < 1) is S.false
assert (inf1 > 1) is S.true
assert (inf1 <= 1) is S.false
assert (inf1 >= 1) is S.true
for inf2 in inf_set:
assert (inf1 < inf2) is S.false
assert (inf1 > inf2) is S.false
assert (inf1 <= inf2) is S.true
assert (inf1 >= inf2) is S.true
for ninf1 in ninf_set:
assert (inf1 < ninf1) is S.false
assert (inf1 > ninf1) is S.true
assert (inf1 <= ninf1) is S.false
assert (inf1 >= ninf1) is S.true
assert (ninf1 < inf1) is S.true
assert (ninf1 > inf1) is S.false
assert (ninf1 <= inf1) is S.true
assert (ninf1 >= inf1) is S.false
for ninf1 in ninf_set:
assert (ninf1 < 1) is S.true
assert (ninf1 > 1) is S.false
assert (ninf1 <= 1) is S.true
assert (ninf1 >= 1) is S.false
for ninf2 in ninf_set:
assert (ninf1 < ninf2) is S.false
assert (ninf1 > ninf2) is S.false
assert (ninf1 <= ninf2) is S.true
assert (ninf1 >= ninf2) is S.true
def test_bool():
assert Eq(0, 0) is S.true
assert Eq(1, 0) is S.false
assert Ne(0, 0) is S.false
assert Ne(1, 0) is S.true
assert Lt(0, 1) is S.true
assert Lt(1, 0) is S.false
assert Le(0, 1) is S.true
assert Le(1, 0) is S.false
assert Le(0, 0) is S.true
assert Gt(1, 0) is S.true
assert Gt(0, 1) is S.false
assert Ge(1, 0) is S.true
assert Ge(0, 1) is S.false
assert Ge(1, 1) is S.true
assert Eq(I, 2) is S.false
assert Ne(I, 2) is S.true
raises(TypeError, lambda: Gt(I, 2))
raises(TypeError, lambda: Ge(I, 2))
raises(TypeError, lambda: Lt(I, 2))
raises(TypeError, lambda: Le(I, 2))
a = Float('.000000000000000000001', '')
b = Float('.0000000000000000000001', '')
assert Eq(pi + a, pi + b) is S.false
def test_rich_cmp():
assert (x < y) == Lt(x, y)
assert (x <= y) == Le(x, y)
assert (x > y) == Gt(x, y)
assert (x >= y) == Ge(x, y)
def test_doit():
from sympy.core.symbol import Symbol
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
np = Symbol('np', nonpositive=True)
nn = Symbol('nn', nonnegative=True)
assert Gt(p, 0).doit() is S.true
assert Gt(p, 1).doit() == Gt(p, 1)
assert Ge(p, 0).doit() is S.true
assert Le(p, 0).doit() is S.false
assert Lt(n, 0).doit() is S.true
assert Le(np, 0).doit() is S.true
assert Gt(nn, 0).doit() == Gt(nn, 0)
assert Lt(nn, 0).doit() is S.false
assert Eq(x, 0).doit() == Eq(x, 0)
def test_new_relational():
x = Symbol('x')
assert Eq(x, 0) == Relational(x, 0) # None ==> Equality
assert Eq(x, 0) == Relational(x, 0, '==')
assert Eq(x, 0) == Relational(x, 0, 'eq')
assert Eq(x, 0) == Equality(x, 0)
assert Eq(x, 0) != Relational(x, 1) # None ==> Equality
assert Eq(x, 0) != Relational(x, 1, '==')
assert Eq(x, 0) != Relational(x, 1, 'eq')
assert Eq(x, 0) != Equality(x, 1)
assert Eq(x, -1) == Relational(x, -1) # None ==> Equality
assert Eq(x, -1) == Relational(x, -1, '==')
assert Eq(x, -1) == Relational(x, -1, 'eq')
assert Eq(x, -1) == Equality(x, -1)
assert Eq(x, -1) != Relational(x, 1) # None ==> Equality
assert Eq(x, -1) != Relational(x, 1, '==')
assert Eq(x, -1) != Relational(x, 1, 'eq')
assert Eq(x, -1) != Equality(x, 1)
assert Ne(x, 0) == Relational(x, 0, '!=')
assert Ne(x, 0) == Relational(x, 0, '<>')
assert Ne(x, 0) == Relational(x, 0, 'ne')
assert Ne(x, 0) == Unequality(x, 0)
assert Ne(x, 0) != Relational(x, 1, '!=')
assert Ne(x, 0) != Relational(x, 1, '<>')
assert Ne(x, 0) != Relational(x, 1, 'ne')
assert Ne(x, 0) != Unequality(x, 1)
assert Ge(x, 0) == Relational(x, 0, '>=')
assert Ge(x, 0) == Relational(x, 0, 'ge')
assert Ge(x, 0) == GreaterThan(x, 0)
assert Ge(x, 1) != Relational(x, 0, '>=')
assert Ge(x, 1) != Relational(x, 0, 'ge')
assert Ge(x, 1) != GreaterThan(x, 0)
assert (x >= 1) == Relational(x, 1, '>=')
assert (x >= 1) == Relational(x, 1, 'ge')
assert (x >= 1) == GreaterThan(x, 1)
assert (x >= 0) != Relational(x, 1, '>=')
assert (x >= 0) != Relational(x, 1, 'ge')
assert (x >= 0) != GreaterThan(x, 1)
assert Le(x, 0) == Relational(x, 0, '<=')
assert Le(x, 0) == Relational(x, 0, 'le')
assert Le(x, 0) == LessThan(x, 0)
assert Le(x, 1) != Relational(x, 0, '<=')
assert Le(x, 1) != Relational(x, 0, 'le')
assert Le(x, 1) != LessThan(x, 0)
assert (x <= 1) == Relational(x, 1, '<=')
assert (x <= 1) == Relational(x, 1, 'le')
assert (x <= 1) == LessThan(x, 1)
assert (x <= 0) != Relational(x, 1, '<=')
assert (x <= 0) != Relational(x, 1, 'le')
assert (x <= 0) != LessThan(x, 1)
assert Gt(x, 0) == Relational(x, 0, '>')
assert Gt(x, 0) == Relational(x, 0, 'gt')
assert Gt(x, 0) == StrictGreaterThan(x, 0)
assert Gt(x, 1) != Relational(x, 0, '>')
assert Gt(x, 1) != Relational(x, 0, 'gt')
assert Gt(x, 1) != StrictGreaterThan(x, 0)
assert (x > 1) == Relational(x, 1, '>')
assert (x > 1) == Relational(x, 1, 'gt')
assert (x > 1) == StrictGreaterThan(x, 1)
assert (x > 0) != Relational(x, 1, '>')
assert (x > 0) != Relational(x, 1, 'gt')
assert (x > 0) != StrictGreaterThan(x, 1)
assert Lt(x, 0) == Relational(x, 0, '<')
assert Lt(x, 0) == Relational(x, 0, 'lt')
assert Lt(x, 0) == StrictLessThan(x, 0)
assert Lt(x, 1) != Relational(x, 0, '<')
assert Lt(x, 1) != Relational(x, 0, 'lt')
assert Lt(x, 1) != StrictLessThan(x, 0)
assert (x < 1) == Relational(x, 1, '<')
assert (x < 1) == Relational(x, 1, 'lt')
assert (x < 1) == StrictLessThan(x, 1)
assert (x < 0) != Relational(x, 1, '<')
assert (x < 0) != Relational(x, 1, 'lt')
assert (x < 0) != StrictLessThan(x, 1)
# finally, some fuzz testing
from sympy.core.random import randint
for i in range(100):
while 1:
strtype, length = (chr, 65535) if randint(0, 1) else (chr, 255)
relation_type = strtype(randint(0, length))
if randint(0, 1):
relation_type += strtype(randint(0, length))
if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge',
'<=', 'le', '>', 'gt', '<', 'lt', ':=',
'+=', '-=', '*=', '/=', '%='):
break
raises(ValueError, lambda: Relational(x, 1, relation_type))
assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '=='))
assert all(Relational(x, 0, op).rel_op == '!='
for op in ('ne', '<>', '!='))
assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>'))
assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<'))
assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>='))
assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<='))
def test_relational_arithmetic():
for cls in [Eq, Ne, Le, Lt, Ge, Gt]:
rel = cls(x, y)
raises(TypeError, lambda: 0+rel)
raises(TypeError, lambda: 1*rel)
raises(TypeError, lambda: 1**rel)
raises(TypeError, lambda: rel**1)
raises(TypeError, lambda: Add(0, rel))
raises(TypeError, lambda: Mul(1, rel))
raises(TypeError, lambda: Pow(1, rel))
raises(TypeError, lambda: Pow(rel, 1))
def test_relational_bool_output():
# https://github.com/sympy/sympy/issues/5931
raises(TypeError, lambda: bool(x > 3))
raises(TypeError, lambda: bool(x >= 3))
raises(TypeError, lambda: bool(x < 3))
raises(TypeError, lambda: bool(x <= 3))
raises(TypeError, lambda: bool(Eq(x, 3)))
raises(TypeError, lambda: bool(Ne(x, 3)))
def test_relational_logic_symbols():
# See issue 6204
assert (x < y) & (z < t) == And(x < y, z < t)
assert (x < y) | (z < t) == Or(x < y, z < t)
assert ~(x < y) == Not(x < y)
assert (x < y) >> (z < t) == Implies(x < y, z < t)
assert (x < y) << (z < t) == Implies(z < t, x < y)
assert (x < y) ^ (z < t) == Xor(x < y, z < t)
assert isinstance((x < y) & (z < t), And)
assert isinstance((x < y) | (z < t), Or)
assert isinstance(~(x < y), GreaterThan)
assert isinstance((x < y) >> (z < t), Implies)
assert isinstance((x < y) << (z < t), Implies)
assert isinstance((x < y) ^ (z < t), (Or, Xor))
def test_univariate_relational_as_set():
assert (x > 0).as_set() == Interval(0, oo, True, True)
assert (x >= 0).as_set() == Interval(0, oo)
assert (x < 0).as_set() == Interval(-oo, 0, True, True)
assert (x <= 0).as_set() == Interval(-oo, 0)
assert Eq(x, 0).as_set() == FiniteSet(0)
assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \
Interval(0, oo, True, True)
assert (x**2 >= 4).as_set() == Interval(-oo, -2) + Interval(2, oo)
@XFAIL
def test_multivariate_relational_as_set():
assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \
Interval(-oo, 0)*Interval(-oo, 0)
def test_Not():
assert Not(Equality(x, y)) == Unequality(x, y)
assert Not(Unequality(x, y)) == Equality(x, y)
assert Not(StrictGreaterThan(x, y)) == LessThan(x, y)
assert Not(StrictLessThan(x, y)) == GreaterThan(x, y)
assert Not(GreaterThan(x, y)) == StrictLessThan(x, y)
assert Not(LessThan(x, y)) == StrictGreaterThan(x, y)
def test_evaluate():
assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)'
assert Eq(x, x, evaluate=False).doit() == S.true
assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)'
assert Ne(x, x, evaluate=False).doit() == S.false
assert str(Ge(x, x, evaluate=False)) == 'x >= x'
assert str(Le(x, x, evaluate=False)) == 'x <= x'
assert str(Gt(x, x, evaluate=False)) == 'x > x'
assert str(Lt(x, x, evaluate=False)) == 'x < x'
def assert_all_ineq_raise_TypeError(a, b):
raises(TypeError, lambda: a > b)
raises(TypeError, lambda: a >= b)
raises(TypeError, lambda: a < b)
raises(TypeError, lambda: a <= b)
raises(TypeError, lambda: b > a)
raises(TypeError, lambda: b >= a)
raises(TypeError, lambda: b < a)
raises(TypeError, lambda: b <= a)
def assert_all_ineq_give_class_Inequality(a, b):
"""All inequality operations on `a` and `b` result in class Inequality."""
from sympy.core.relational import _Inequality as Inequality
assert isinstance(a > b, Inequality)
assert isinstance(a >= b, Inequality)
assert isinstance(a < b, Inequality)
assert isinstance(a <= b, Inequality)
assert isinstance(b > a, Inequality)
assert isinstance(b >= a, Inequality)
assert isinstance(b < a, Inequality)
assert isinstance(b <= a, Inequality)
def test_imaginary_compare_raises_TypeError():
# See issue #5724
assert_all_ineq_raise_TypeError(I, x)
def test_complex_compare_not_real():
# two cases which are not real
y = Symbol('y', imaginary=True)
z = Symbol('z', complex=True, extended_real=False)
for w in (y, z):
assert_all_ineq_raise_TypeError(2, w)
# some cases which should remain un-evaluated
t = Symbol('t')
x = Symbol('x', real=True)
z = Symbol('z', complex=True)
for w in (x, z, t):
assert_all_ineq_give_class_Inequality(2, w)
def test_imaginary_and_inf_compare_raises_TypeError():
# See pull request #7835
y = Symbol('y', imaginary=True)
assert_all_ineq_raise_TypeError(oo, y)
assert_all_ineq_raise_TypeError(-oo, y)
def test_complex_pure_imag_not_ordered():
raises(TypeError, lambda: 2*I < 3*I)
# more generally
x = Symbol('x', real=True, nonzero=True)
y = Symbol('y', imaginary=True)
z = Symbol('z', complex=True)
assert_all_ineq_raise_TypeError(I, y)
t = I*x # an imaginary number, should raise errors
assert_all_ineq_raise_TypeError(2, t)
t = -I*y # a real number, so no errors
assert_all_ineq_give_class_Inequality(2, t)
t = I*z # unknown, should be unevaluated
assert_all_ineq_give_class_Inequality(2, t)
def test_x_minus_y_not_same_as_x_lt_y():
"""
A consequence of pull request #7792 is that `x - y < 0` and `x < y`
are not synonymous.
"""
x = I + 2
y = I + 3
raises(TypeError, lambda: x < y)
assert x - y < 0
ineq = Lt(x, y, evaluate=False)
raises(TypeError, lambda: ineq.doit())
assert ineq.lhs - ineq.rhs < 0
t = Symbol('t', imaginary=True)
x = 2 + t
y = 3 + t
ineq = Lt(x, y, evaluate=False)
raises(TypeError, lambda: ineq.doit())
assert ineq.lhs - ineq.rhs < 0
# this one should give error either way
x = I + 2
y = 2*I + 3
raises(TypeError, lambda: x < y)
raises(TypeError, lambda: x - y < 0)
def test_nan_equality_exceptions():
# See issue #7774
import random
assert Equality(nan, nan) is S.false
assert Unequality(nan, nan) is S.true
# See issue #7773
A = (x, S.Zero, S.One/3, pi, oo, -oo)
assert Equality(nan, random.choice(A)) is S.false
assert Equality(random.choice(A), nan) is S.false
assert Unequality(nan, random.choice(A)) is S.true
assert Unequality(random.choice(A), nan) is S.true
def test_nan_inequality_raise_errors():
# See discussion in pull request #7776. We test inequalities with
# a set including examples of various classes.
for q in (x, S.Zero, S(10), S.One/3, pi, S(1.3), oo, -oo, nan):
assert_all_ineq_raise_TypeError(q, nan)
def test_nan_complex_inequalities():
# Comparisons of NaN with non-real raise errors, we're not too
# fussy whether its the NaN error or complex error.
for r in (I, zoo, Symbol('z', imaginary=True)):
assert_all_ineq_raise_TypeError(r, nan)
def test_complex_infinity_inequalities():
raises(TypeError, lambda: zoo > 0)
raises(TypeError, lambda: zoo >= 0)
raises(TypeError, lambda: zoo < 0)
raises(TypeError, lambda: zoo <= 0)
def test_inequalities_symbol_name_same():
"""Using the operator and functional forms should give same results."""
# We test all combinations from a set
# FIXME: could replace with random selection after test passes
A = (x, y, S.Zero, S.One/3, pi, oo, -oo)
for a in A:
for b in A:
assert Gt(a, b) == (a > b)
assert Lt(a, b) == (a < b)
assert Ge(a, b) == (a >= b)
assert Le(a, b) == (a <= b)
for b in (y, S.Zero, S.One/3, pi, oo, -oo):
assert Gt(x, b, evaluate=False) == (x > b)
assert Lt(x, b, evaluate=False) == (x < b)
assert Ge(x, b, evaluate=False) == (x >= b)
assert Le(x, b, evaluate=False) == (x <= b)
for b in (y, S.Zero, S.One/3, pi, oo, -oo):
assert Gt(b, x, evaluate=False) == (b > x)
assert Lt(b, x, evaluate=False) == (b < x)
assert Ge(b, x, evaluate=False) == (b >= x)
assert Le(b, x, evaluate=False) == (b <= x)
def test_inequalities_symbol_name_same_complex():
"""Using the operator and functional forms should give same results.
With complex non-real numbers, both should raise errors.
"""
# FIXME: could replace with random selection after test passes
for a in (x, S.Zero, S.One/3, pi, oo, Rational(1, 3)):
raises(TypeError, lambda: Gt(a, I))
raises(TypeError, lambda: a > I)
raises(TypeError, lambda: Lt(a, I))
raises(TypeError, lambda: a < I)
raises(TypeError, lambda: Ge(a, I))
raises(TypeError, lambda: a >= I)
raises(TypeError, lambda: Le(a, I))
raises(TypeError, lambda: a <= I)
def test_inequalities_cant_sympify_other():
# see issue 7833
from operator import gt, lt, ge, le
bar = "foo"
for a in (x, S.Zero, S.One/3, pi, I, zoo, oo, -oo, nan, Rational(1, 3)):
for op in (lt, gt, le, ge):
raises(TypeError, lambda: op(a, bar))
def test_ineq_avoid_wild_symbol_flip():
# see issue #7951, we try to avoid this internally, e.g., by using
# __lt__ instead of "<".
from sympy.core.symbol import Wild
p = symbols('p', cls=Wild)
# x > p might flip, but Gt should not:
assert Gt(x, p) == Gt(x, p, evaluate=False)
# Previously failed as 'p > x':
e = Lt(x, y).subs({y: p})
assert e == Lt(x, p, evaluate=False)
# Previously failed as 'p <= x':
e = Ge(x, p).doit()
assert e == Ge(x, p, evaluate=False)
def test_issue_8245():
a = S("6506833320952669167898688709329/5070602400912917605986812821504")
assert rel_check(a, a.n(10))
assert rel_check(a, a.n(20))
assert rel_check(a, a.n())
# prec of 30 is enough to fully capture a as mpf
assert Float(a, 30) == Float(str(a.p), '')/Float(str(a.q), '')
for i in range(31):
r = Rational(Float(a, i))
f = Float(r)
assert (f < a) == (Rational(f) < a)
# test sign handling
assert (-f < -a) == (Rational(-f) < -a)
# test equivalence handling
isa = Float(a.p,'')/Float(a.q,'')
assert isa <= a
assert not isa < a
assert isa >= a
assert not isa > a
assert isa > 0
a = sqrt(2)
r = Rational(str(a.n(30)))
assert rel_check(a, r)
a = sqrt(2)
r = Rational(str(a.n(29)))
assert rel_check(a, r)
assert Eq(log(cos(2)**2 + sin(2)**2), 0) is S.true
def test_issue_8449():
p = Symbol('p', nonnegative=True)
assert Lt(-oo, p)
assert Ge(-oo, p) is S.false
assert Gt(oo, -p)
assert Le(oo, -p) is S.false
def test_simplify_relational():
assert simplify(x*(y + 1) - x*y - x + 1 < x) == (x > 1)
assert simplify(x*(y + 1) - x*y - x - 1 < x) == (x > -1)
assert simplify(x < x*(y + 1) - x*y - x + 1) == (x < 1)
q, r = symbols("q r")
assert (((-q + r) - (q - r)) <= 0).simplify() == (q >= r)
root2 = sqrt(2)
equation = ((root2 * (-q + r) - root2 * (q - r)) <= 0).simplify()
assert equation == (q >= r)
r = S.One < x
# canonical operations are not the same as simplification,
# so if there is no simplification, canonicalization will
# be done unless the measure forbids it
assert simplify(r) == r.canonical
assert simplify(r, ratio=0) != r.canonical
# this is not a random test; in _eval_simplify
# this will simplify to S.false and that is the
# reason for the 'if r.is_Relational' in Relational's
# _eval_simplify routine
assert simplify(-(2**(pi*Rational(3, 2)) + 6**pi)**(1/pi) +
2*(2**(pi/2) + 3**pi)**(1/pi) < 0) is S.false
# canonical at least
assert Eq(y, x).simplify() == Eq(x, y)
assert Eq(x - 1, 0).simplify() == Eq(x, 1)
assert Eq(x - 1, x).simplify() == S.false
assert Eq(2*x - 1, x).simplify() == Eq(x, 1)
assert Eq(2*x, 4).simplify() == Eq(x, 2)
z = cos(1)**2 + sin(1)**2 - 1 # z.is_zero is None
assert Eq(z*x, 0).simplify() == S.true
assert Ne(y, x).simplify() == Ne(x, y)
assert Ne(x - 1, 0).simplify() == Ne(x, 1)
assert Ne(x - 1, x).simplify() == S.true
assert Ne(2*x - 1, x).simplify() == Ne(x, 1)
assert Ne(2*x, 4).simplify() == Ne(x, 2)
assert Ne(z*x, 0).simplify() == S.false
# No real-valued assumptions
assert Ge(y, x).simplify() == Le(x, y)
assert Ge(x - 1, 0).simplify() == Ge(x, 1)
assert Ge(x - 1, x).simplify() == S.false
assert Ge(2*x - 1, x).simplify() == Ge(x, 1)
assert Ge(2*x, 4).simplify() == Ge(x, 2)
assert Ge(z*x, 0).simplify() == S.true
assert Ge(x, -2).simplify() == Ge(x, -2)
assert Ge(-x, -2).simplify() == Le(x, 2)
assert Ge(x, 2).simplify() == Ge(x, 2)
assert Ge(-x, 2).simplify() == Le(x, -2)
assert Le(y, x).simplify() == Ge(x, y)
assert Le(x - 1, 0).simplify() == Le(x, 1)
assert Le(x - 1, x).simplify() == S.true
assert Le(2*x - 1, x).simplify() == Le(x, 1)
assert Le(2*x, 4).simplify() == Le(x, 2)
assert Le(z*x, 0).simplify() == S.true
assert Le(x, -2).simplify() == Le(x, -2)
assert Le(-x, -2).simplify() == Ge(x, 2)
assert Le(x, 2).simplify() == Le(x, 2)
assert Le(-x, 2).simplify() == Ge(x, -2)
assert Gt(y, x).simplify() == Lt(x, y)
assert Gt(x - 1, 0).simplify() == Gt(x, 1)
assert Gt(x - 1, x).simplify() == S.false
assert Gt(2*x - 1, x).simplify() == Gt(x, 1)
assert Gt(2*x, 4).simplify() == Gt(x, 2)
assert Gt(z*x, 0).simplify() == S.false
assert Gt(x, -2).simplify() == Gt(x, -2)
assert Gt(-x, -2).simplify() == Lt(x, 2)
assert Gt(x, 2).simplify() == Gt(x, 2)
assert Gt(-x, 2).simplify() == Lt(x, -2)
assert Lt(y, x).simplify() == Gt(x, y)
assert Lt(x - 1, 0).simplify() == Lt(x, 1)
assert Lt(x - 1, x).simplify() == S.true
assert Lt(2*x - 1, x).simplify() == Lt(x, 1)
assert Lt(2*x, 4).simplify() == Lt(x, 2)
assert Lt(z*x, 0).simplify() == S.false
assert Lt(x, -2).simplify() == Lt(x, -2)
assert Lt(-x, -2).simplify() == Gt(x, 2)
assert Lt(x, 2).simplify() == Lt(x, 2)
assert Lt(-x, 2).simplify() == Gt(x, -2)
# Test particulat branches of _eval_simplify
m = exp(1) - exp_polar(1)
assert simplify(m*x > 1) is S.false
# These two tests the same branch
assert simplify(m*x + 2*m*y > 1) is S.false
assert simplify(m*x + y > 1 + y) is S.false
def test_equals():
w, x, y, z = symbols('w:z')
f = Function('f')
assert Eq(x, 1).equals(Eq(x*(y + 1) - x*y - x + 1, x))
assert Eq(x, y).equals(x < y, True) == False
assert Eq(x, f(1)).equals(Eq(x, f(2)), True) == f(1) - f(2)
assert Eq(f(1), y).equals(Eq(f(2), y), True) == f(1) - f(2)
assert Eq(x, f(1)).equals(Eq(f(2), x), True) == f(1) - f(2)
assert Eq(f(1), x).equals(Eq(x, f(2)), True) == f(1) - f(2)
assert Eq(w, x).equals(Eq(y, z), True) == False
assert Eq(f(1), f(2)).equals(Eq(f(3), f(4)), True) == f(1) - f(3)
assert (x < y).equals(y > x, True) == True
assert (x < y).equals(y >= x, True) == False
assert (x < y).equals(z < y, True) == False
assert (x < y).equals(x < z, True) == False
assert (x < f(1)).equals(x < f(2), True) == f(1) - f(2)
assert (f(1) < x).equals(f(2) < x, True) == f(1) - f(2)
def test_reversed():
assert (x < y).reversed == (y > x)
assert (x <= y).reversed == (y >= x)
assert Eq(x, y, evaluate=False).reversed == Eq(y, x, evaluate=False)
assert Ne(x, y, evaluate=False).reversed == Ne(y, x, evaluate=False)
assert (x >= y).reversed == (y <= x)
assert (x > y).reversed == (y < x)
def test_canonical():
c = [i.canonical for i in (
x + y < z,
x + 2 > 3,
x < 2,
S(2) > x,
x**2 > -x/y,
Gt(3, 2, evaluate=False)
)]
assert [i.canonical for i in c] == c
assert [i.reversed.canonical for i in c] == c
assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c)
c = [i.reversed.func(i.rhs, i.lhs, evaluate=False).canonical for i in c]
assert [i.canonical for i in c] == c
assert [i.reversed.canonical for i in c] == c
assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c)
assert Eq(y < x, x > y).canonical is S.true
@XFAIL
def test_issue_8444_nonworkingtests():
x = symbols('x', real=True)
assert (x <= oo) == (x >= -oo) == True
x = symbols('x')
assert x >= floor(x)
assert (x < floor(x)) == False
assert x <= ceiling(x)
assert (x > ceiling(x)) == False
def test_issue_8444_workingtests():
x = symbols('x')
assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False)
assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False)
assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False)
assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False)
i = symbols('i', integer=True)
assert (i > floor(i)) == False
assert (i < ceiling(i)) == False
def test_issue_10304():
d = cos(1)**2 + sin(1)**2 - 1
assert d.is_comparable is False # if this fails, find a new d
e = 1 + d*I
assert simplify(Eq(e, 0)) is S.false
def test_issue_18412():
d = (Rational(1, 6) + z / 4 / y)
assert Eq(x, pi * y**3 * d).replace(y**3, z) == Eq(x, pi * z * d)
def test_issue_10401():
x = symbols('x')
fin = symbols('inf', finite=True)
inf = symbols('inf', infinite=True)
inf2 = symbols('inf2', infinite=True)
infx = symbols('infx', infinite=True, extended_real=True)
# Used in the commented tests below:
#infx2 = symbols('infx2', infinite=True, extended_real=True)
infnx = symbols('inf~x', infinite=True, extended_real=False)
infnx2 = symbols('inf~x2', infinite=True, extended_real=False)
infp = symbols('infp', infinite=True, extended_positive=True)
infp1 = symbols('infp1', infinite=True, extended_positive=True)
infn = symbols('infn', infinite=True, extended_negative=True)
zero = symbols('z', zero=True)
nonzero = symbols('nz', zero=False, finite=True)
assert Eq(1/(1/x + 1), 1).func is Eq
assert Eq(1/(1/x + 1), 1).subs(x, S.ComplexInfinity) is S.true
assert Eq(1/(1/fin + 1), 1) is S.false
T, F = S.true, S.false
assert Eq(fin, inf) is F
assert Eq(inf, inf2) not in (T, F) and inf != inf2
assert Eq(1 + inf, 2 + inf2) not in (T, F) and inf != inf2
assert Eq(infp, infp1) is T
assert Eq(infp, infn) is F
assert Eq(1 + I*oo, I*oo) is F
assert Eq(I*oo, 1 + I*oo) is F
assert Eq(1 + I*oo, 2 + I*oo) is F
assert Eq(1 + I*oo, 2 + I*infx) is F
assert Eq(1 + I*oo, 2 + infx) is F
# FIXME: The test below fails because (-infx).is_extended_positive is True
# (should be None)
#assert Eq(1 + I*infx, 1 + I*infx2) not in (T, F) and infx != infx2
#
assert Eq(zoo, sqrt(2) + I*oo) is F
assert Eq(zoo, oo) is F
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
assert Eq(i*I, r) not in (T, F)
assert Eq(infx, infnx) is F
assert Eq(infnx, infnx2) not in (T, F) and infnx != infnx2
assert Eq(zoo, oo) is F
assert Eq(inf/inf2, 0) is F
assert Eq(inf/fin, 0) is F
assert Eq(fin/inf, 0) is T
assert Eq(zero/nonzero, 0) is T and ((zero/nonzero) != 0)
# The commented out test below is incorrect because:
assert zoo == -zoo
assert Eq(zoo, -zoo) is T
assert Eq(oo, -oo) is F
assert Eq(inf, -inf) not in (T, F)
assert Eq(fin/(fin + 1), 1) is S.false
o = symbols('o', odd=True)
assert Eq(o, 2*o) is S.false
p = symbols('p', positive=True)
assert Eq(p/(p - 1), 1) is F
def test_issue_10633():
assert Eq(True, False) == False
assert Eq(False, True) == False
assert Eq(True, True) == True
assert Eq(False, False) == True
def test_issue_10927():
x = symbols('x')
assert str(Eq(x, oo)) == 'Eq(x, oo)'
assert str(Eq(x, -oo)) == 'Eq(x, -oo)'
def test_issues_13081_12583_12534():
# 13081
r = Rational('905502432259640373/288230376151711744')
assert (r < pi) is S.false
assert (r > pi) is S.true
# 12583
v = sqrt(2)
u = sqrt(v) + 2/sqrt(10 - 8/sqrt(2 - v) + 4*v*(1/sqrt(2 - v) - 1))
assert (u >= 0) is S.true
# 12534; Rational vs NumberSymbol
# here are some precisions for which Rational forms
# at a lower and higher precision bracket the value of pi
# e.g. for p = 20:
# Rational(pi.n(p + 1)).n(25) = 3.14159265358979323846 2834
# pi.n(25) = 3.14159265358979323846 2643
# Rational(pi.n(p )).n(25) = 3.14159265358979323846 1987
assert [p for p in range(20, 50) if
(Rational(pi.n(p)) < pi) and
(pi < Rational(pi.n(p + 1)))] == [20, 24, 27, 33, 37, 43, 48]
# pick one such precision and affirm that the reversed operation
# gives the opposite result, i.e. if x < y is true then x > y
# must be false
for i in (20, 21):
v = pi.n(i)
assert rel_check(Rational(v), pi)
assert rel_check(v, pi)
assert rel_check(pi.n(20), pi.n(21))
# Float vs Rational
# the rational form is less than the floating representation
# at the same precision
assert [i for i in range(15, 50) if Rational(pi.n(i)) > pi.n(i)] == []
# this should be the same if we reverse the relational
assert [i for i in range(15, 50) if pi.n(i) < Rational(pi.n(i))] == []
def test_issue_18188():
from sympy.sets.conditionset import ConditionSet
result1 = Eq(x*cos(x) - 3*sin(x), 0)
assert result1.as_set() == ConditionSet(x, Eq(x*cos(x) - 3*sin(x), 0), Reals)
result2 = Eq(x**2 + sqrt(x*2) + sin(x), 0)
assert result2.as_set() == ConditionSet(x, Eq(sqrt(2)*sqrt(x) + x**2 + sin(x), 0), Reals)
def test_binary_symbols():
ans = {x}
for f in Eq, Ne:
for t in S.true, S.false:
eq = f(x, S.true)
assert eq.binary_symbols == ans
assert eq.reversed.binary_symbols == ans
assert f(x, 1).binary_symbols == set()
def test_rel_args():
# can't have Boolean args; this is automatic for True/False
# with Python 3 and we confirm that SymPy does the same
# for true/false
for op in ['<', '<=', '>', '>=']:
for b in (S.true, x < 1, And(x, y)):
for v in (0.1, 1, 2**32, t, S.One):
raises(TypeError, lambda: Relational(b, v, op))
def test_Equality_rewrite_as_Add():
eq = Eq(x + y, y - x)
assert eq.rewrite(Add) == 2*x
assert eq.rewrite(Add, evaluate=None).args == (x, x, y, -y)
assert eq.rewrite(Add, evaluate=False).args == (x, y, x, -y)
for e in (True, False, None):
assert Eq(x, 0, evaluate=e).rewrite(Add) == x
assert Eq(0, x, evaluate=e).rewrite(Add) == x
def test_issue_15847():
a = Ne(x*(x+y), x**2 + x*y)
assert simplify(a) == False
def test_negated_property():
eq = Eq(x, y)
assert eq.negated == Ne(x, y)
eq = Ne(x, y)
assert eq.negated == Eq(x, y)
eq = Ge(x + y, y - x)
assert eq.negated == Lt(x + y, y - x)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, y).negated.negated == f(x, y)
def test_reversedsign_property():
eq = Eq(x, y)
assert eq.reversedsign == Eq(-x, -y)
eq = Ne(x, y)
assert eq.reversedsign == Ne(-x, -y)
eq = Ge(x + y, y - x)
assert eq.reversedsign == Le(-x - y, x - y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, y).reversedsign.reversedsign == f(x, y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, y).reversedsign.reversedsign == f(-x, y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, -y).reversedsign.reversedsign == f(x, -y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, -y).reversedsign.reversedsign == f(-x, -y)
def test_reversed_reversedsign_property():
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, y).reversed.reversedsign == f(x, y).reversedsign.reversed
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, y).reversed.reversedsign == f(-x, y).reversedsign.reversed
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, -y).reversed.reversedsign == f(x, -y).reversedsign.reversed
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, -y).reversed.reversedsign == \
f(-x, -y).reversedsign.reversed
def test_improved_canonical():
def test_different_forms(listofforms):
for form1, form2 in combinations(listofforms, 2):
assert form1.canonical == form2.canonical
def generate_forms(expr):
return [expr, expr.reversed, expr.reversedsign,
expr.reversed.reversedsign]
test_different_forms(generate_forms(x > -y))
test_different_forms(generate_forms(x >= -y))
test_different_forms(generate_forms(Eq(x, -y)))
test_different_forms(generate_forms(Ne(x, -y)))
test_different_forms(generate_forms(pi < x))
test_different_forms(generate_forms(pi - 5*y < -x + 2*y**2 - 7))
assert (pi >= x).canonical == (x <= pi)
def test_set_equality_canonical():
a, b, c = symbols('a b c')
A = Eq(FiniteSet(a, b, c), FiniteSet(1, 2, 3))
B = Ne(FiniteSet(a, b, c), FiniteSet(4, 5, 6))
assert A.canonical == A.reversed
assert B.canonical == B.reversed
def test_trigsimp():
# issue 16736
s, c = sin(2*x), cos(2*x)
eq = Eq(s, c)
assert trigsimp(eq) == eq # no rearrangement of sides
# simplification of sides might result in
# an unevaluated Eq
changed = trigsimp(Eq(s + c, sqrt(2)))
assert isinstance(changed, Eq)
assert changed.subs(x, pi/8) is S.true
# or an evaluated one
assert trigsimp(Eq(cos(x)**2 + sin(x)**2, 1)) is S.true
def test_polynomial_relation_simplification():
assert Ge(3*x*(x + 1) + 4, 3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))]
assert Le(-(3*x*(x + 1) + 4), -3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))]
assert ((x**2+3)*(x**2-1)+3*x >= 2*x**2).simplify() in [(x**4 + 3*x >= 3), (-x**4 - 3*x <= -3)]
def test_multivariate_linear_function_simplification():
assert Ge(x + y, x - y).simplify() == Ge(y, 0)
assert Le(-x + y, -x - y).simplify() == Le(y, 0)
assert Eq(2*x + y, 2*x + y - 3).simplify() == False
assert (2*x + y > 2*x + y - 3).simplify() == True
assert (2*x + y < 2*x + y - 3).simplify() == False
assert (2*x + y < 2*x + y + 3).simplify() == True
a, b, c, d, e, f, g = symbols('a b c d e f g')
assert Lt(a + b + c + 2*d, 3*d - f + g). simplify() == Lt(a, -b - c + d - f + g)
def test_nonpolymonial_relations():
assert Eq(cos(x), 0).simplify() == Eq(cos(x), 0)
def test_18778():
raises(TypeError, lambda: is_le(Basic(), Basic()))
raises(TypeError, lambda: is_gt(Basic(), Basic()))
raises(TypeError, lambda: is_ge(Basic(), Basic()))
raises(TypeError, lambda: is_lt(Basic(), Basic()))
def test_EvalEq():
"""
This test exists to ensure backwards compatibility.
The method to use is _eval_is_eq
"""
from sympy.core.expr import Expr
class PowTest(Expr):
def __new__(cls, base, exp):
return Basic.__new__(PowTest, _sympify(base), _sympify(exp))
def _eval_Eq(lhs, rhs):
if type(lhs) == PowTest and type(rhs) == PowTest:
return lhs.args[0] == rhs.args[0] and lhs.args[1] == rhs.args[1]
assert is_eq(PowTest(3, 4), PowTest(3,4))
assert is_eq(PowTest(3, 4), _sympify(4)) is None
assert is_neq(PowTest(3, 4), PowTest(3,7))
def test_is_eq():
# test assumptions
assert is_eq(x, y, Q.infinite(x) & Q.finite(y)) is False
assert is_eq(x, y, Q.infinite(x) & Q.infinite(y) & Q.extended_real(x) & ~Q.extended_real(y)) is False
assert is_eq(x, y, Q.infinite(x) & Q.infinite(y) & Q.extended_positive(x) & Q.extended_negative(y)) is False
assert is_eq(x+I, y+I, Q.infinite(x) & Q.finite(y)) is False
assert is_eq(1+x*I, 1+y*I, Q.infinite(x) & Q.finite(y)) is False
assert is_eq(x, S(0), assumptions=Q.zero(x))
assert is_eq(x, S(0), assumptions=~Q.zero(x)) is False
assert is_eq(x, S(0), assumptions=Q.nonzero(x)) is False
assert is_neq(x, S(0), assumptions=Q.zero(x)) is False
assert is_neq(x, S(0), assumptions=~Q.zero(x))
assert is_neq(x, S(0), assumptions=Q.nonzero(x))
# test registration
class PowTest(Expr):
def __new__(cls, base, exp):
return Basic.__new__(cls, _sympify(base), _sympify(exp))
@dispatch(PowTest, PowTest)
def _eval_is_eq(lhs, rhs):
if type(lhs) == PowTest and type(rhs) == PowTest:
return fuzzy_and([is_eq(lhs.args[0], rhs.args[0]), is_eq(lhs.args[1], rhs.args[1])])
assert is_eq(PowTest(3, 4), PowTest(3,4))
assert is_eq(PowTest(3, 4), _sympify(4)) is None
assert is_neq(PowTest(3, 4), PowTest(3,7))
def test_is_ge_le():
# test assumptions
assert is_ge(x, S(0), Q.nonnegative(x)) is True
assert is_ge(x, S(0), Q.negative(x)) is False
# test registration
class PowTest(Expr):
def __new__(cls, base, exp):
return Basic.__new__(cls, _sympify(base), _sympify(exp))
@dispatch(PowTest, PowTest)
def _eval_is_ge(lhs, rhs):
if type(lhs) == PowTest and type(rhs) == PowTest:
return fuzzy_and([is_ge(lhs.args[0], rhs.args[0]), is_ge(lhs.args[1], rhs.args[1])])
assert is_ge(PowTest(3, 9), PowTest(3,2))
assert is_gt(PowTest(3, 9), PowTest(3,2))
assert is_le(PowTest(3, 2), PowTest(3,9))
assert is_lt(PowTest(3, 2), PowTest(3,9))
def test_weak_strict():
for func in (Eq, Ne):
eq = func(x, 1)
assert eq.strict == eq.weak == eq
eq = Gt(x, 1)
assert eq.weak == Ge(x, 1)
assert eq.strict == eq
eq = Lt(x, 1)
assert eq.weak == Le(x, 1)
assert eq.strict == eq
eq = Ge(x, 1)
assert eq.strict == Gt(x, 1)
assert eq.weak == eq
eq = Le(x, 1)
assert eq.strict == Lt(x, 1)
assert eq.weak == eq
|
b2aaded34cb1f5d7545a0ae421e45215dafd431745bcca44abdd89ff4f3a99cb | """
Module for the DomainMatrix class.
A DomainMatrix represents a matrix with elements that are in a particular
Domain. Each DomainMatrix internally wraps a DDM which is used for the
lower-level operations. The idea is that the DomainMatrix class provides the
convenience routines for converting between Expr and the poly domains as well
as unifying matrices with different domains.
"""
from functools import reduce
from typing import Union as tUnion, Tuple as tTuple
from sympy.core.sympify import _sympify
from ..domains import Domain
from ..constructor import construct_domain
from .exceptions import (DMNonSquareMatrixError, DMShapeError,
DMDomainError, DMFormatError, DMBadInputError,
DMNotAField)
from .ddm import DDM
from .sdm import SDM
from .domainscalar import DomainScalar
from sympy.polys.domains import ZZ, EXRAW
def DM(rows, domain):
"""Convenient alias for DomainMatrix.from_list
Examples
=======
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DM
>>> DM([[1, 2], [3, 4]], ZZ)
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See also
=======
DomainMatrix.from_list
"""
return DomainMatrix.from_list(rows, domain)
class DomainMatrix:
r"""
Associate Matrix with :py:class:`~.Domain`
Explanation
===========
DomainMatrix uses :py:class:`~.Domain` for its internal representation
which makes it faster than the SymPy Matrix class (currently) for many
common operations, but this advantage makes it not entirely compatible
with Matrix. DomainMatrix are analogous to numpy arrays with "dtype".
In the DomainMatrix, each element has a domain such as :ref:`ZZ`
or :ref:`QQ(a)`.
Examples
========
Creating a DomainMatrix from the existing Matrix class:
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> Matrix1 = Matrix([
... [1, 2],
... [3, 4]])
>>> A = DomainMatrix.from_Matrix(Matrix1)
>>> A
DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
Directly forming a DomainMatrix:
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See Also
========
DDM
SDM
Domain
Poly
"""
rep: tUnion[SDM, DDM]
shape: tTuple[int, int]
domain: Domain
def __new__(cls, rows, shape, domain, *, fmt=None):
"""
Creates a :py:class:`~.DomainMatrix`.
Parameters
==========
rows : Represents elements of DomainMatrix as list of lists
shape : Represents dimension of DomainMatrix
domain : Represents :py:class:`~.Domain` of DomainMatrix
Raises
======
TypeError
If any of rows, shape and domain are not provided
"""
if isinstance(rows, (DDM, SDM)):
raise TypeError("Use from_rep to initialise from SDM/DDM")
elif isinstance(rows, list):
rep = DDM(rows, shape, domain)
elif isinstance(rows, dict):
rep = SDM(rows, shape, domain)
else:
msg = "Input should be list-of-lists or dict-of-dicts"
raise TypeError(msg)
if fmt is not None:
if fmt == 'sparse':
rep = rep.to_sdm()
elif fmt == 'dense':
rep = rep.to_ddm()
else:
raise ValueError("fmt should be 'sparse' or 'dense'")
return cls.from_rep(rep)
def __getnewargs__(self):
rep = self.rep
if isinstance(rep, DDM):
arg = list(rep)
elif isinstance(rep, SDM):
arg = dict(rep)
else:
raise RuntimeError # pragma: no cover
return arg, self.shape, self.domain
def __getitem__(self, key):
i, j = key
m, n = self.shape
if not (isinstance(i, slice) or isinstance(j, slice)):
return DomainScalar(self.rep.getitem(i, j), self.domain)
if not isinstance(i, slice):
if not -m <= i < m:
raise IndexError("Row index out of range")
i = i % m
i = slice(i, i+1)
if not isinstance(j, slice):
if not -n <= j < n:
raise IndexError("Column index out of range")
j = j % n
j = slice(j, j+1)
return self.from_rep(self.rep.extract_slice(i, j))
def getitem_sympy(self, i, j):
return self.domain.to_sympy(self.rep.getitem(i, j))
def extract(self, rowslist, colslist):
return self.from_rep(self.rep.extract(rowslist, colslist))
def __setitem__(self, key, value):
i, j = key
if not self.domain.of_type(value):
raise TypeError
if isinstance(i, int) and isinstance(j, int):
self.rep.setitem(i, j, value)
else:
raise NotImplementedError
@classmethod
def from_rep(cls, rep):
"""Create a new DomainMatrix efficiently from DDM/SDM.
Examples
========
Create a :py:class:`~.DomainMatrix` with an dense internal
representation as :py:class:`~.DDM`:
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.ddm import DDM
>>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> dM = DomainMatrix.from_rep(drep)
>>> dM
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
Create a :py:class:`~.DomainMatrix` with a sparse internal
representation as :py:class:`~.SDM`:
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import ZZ
>>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ)
>>> dM = DomainMatrix.from_rep(drep)
>>> dM
DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
Parameters
==========
rep: SDM or DDM
The internal sparse or dense representation of the matrix.
Returns
=======
DomainMatrix
A :py:class:`~.DomainMatrix` wrapping *rep*.
Notes
=====
This takes ownership of rep as its internal representation. If rep is
being mutated elsewhere then a copy should be provided to
``from_rep``. Only minimal verification or checking is done on *rep*
as this is supposed to be an efficient internal routine.
"""
if not isinstance(rep, (DDM, SDM)):
raise TypeError("rep should be of type DDM or SDM")
self = super().__new__(cls)
self.rep = rep
self.shape = rep.shape
self.domain = rep.domain
return self
@classmethod
def from_list(cls, rows, domain):
r"""
Convert a list of lists into a DomainMatrix
Parameters
==========
rows: list of lists
Each element of the inner lists should be either the single arg,
or tuple of args, that would be passed to the domain constructor
in order to form an element of the domain. See examples.
Returns
=======
DomainMatrix containing elements defined in rows
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import FF, QQ, ZZ
>>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
>>> A
DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
>>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
>>> B
DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
>>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
>>> C
DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
See Also
========
from_list_sympy
"""
nrows = len(rows)
ncols = 0 if not nrows else len(rows[0])
conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e)
domain_rows = [[conv(e) for e in row] for row in rows]
return DomainMatrix(domain_rows, (nrows, ncols), domain)
@classmethod
def from_list_sympy(cls, nrows, ncols, rows, **kwargs):
r"""
Convert a list of lists of Expr into a DomainMatrix using construct_domain
Parameters
==========
nrows: number of rows
ncols: number of columns
rows: list of lists
Returns
=======
DomainMatrix containing elements of rows
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.abc import x, y, z
>>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
>>> A
DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
See Also
========
sympy.polys.constructor.construct_domain, from_dict_sympy
"""
assert len(rows) == nrows
assert all(len(row) == ncols for row in rows)
items_sympy = [_sympify(item) for row in rows for item in row]
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]
return DomainMatrix(domain_rows, (nrows, ncols), domain)
@classmethod
def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs):
"""
Parameters
==========
nrows: number of rows
ncols: number of cols
elemsdict: dict of dicts containing non-zero elements of the DomainMatrix
Returns
=======
DomainMatrix containing elements of elemsdict
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.abc import x,y,z
>>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}}
>>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
>>> A
DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
See Also
========
from_list_sympy
"""
if not all(0 <= r < nrows for r in elemsdict):
raise DMBadInputError("Row out of range")
if not all(0 <= c < ncols for row in elemsdict.values() for c in row):
raise DMBadInputError("Column out of range")
items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()]
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
idx = 0
items_dict = {}
for i, row in elemsdict.items():
items_dict[i] = {}
for j in row:
items_dict[i][j] = items_domain[idx]
idx += 1
return DomainMatrix(items_dict, (nrows, ncols), domain)
@classmethod
def from_Matrix(cls, M, fmt='sparse',**kwargs):
r"""
Convert Matrix to DomainMatrix
Parameters
==========
M: Matrix
Returns
=======
Returns DomainMatrix with identical elements as M
Examples
========
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> M = Matrix([
... [1.0, 3.4],
... [2.4, 1]])
>>> A = DomainMatrix.from_Matrix(M)
>>> A
DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)
We can keep internal representation as ddm using fmt='dense'
>>> from sympy import Matrix, QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
>>> A.rep
[[1/2, 3/4], [0, 0]]
See Also
========
Matrix
"""
if fmt == 'dense':
return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)
return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)
@classmethod
def get_domain(cls, items_sympy, **kwargs):
K, items_K = construct_domain(items_sympy, **kwargs)
return K, items_K
def copy(self):
return self.from_rep(self.rep.copy())
def convert_to(self, K):
r"""
Change the domain of DomainMatrix to desired domain or field
Parameters
==========
K : Represents the desired domain or field.
Alternatively, ``None`` may be passed, in which case this method
just returns a copy of this DomainMatrix.
Returns
=======
DomainMatrix
DomainMatrix with the desired domain or field
Examples
========
>>> from sympy import ZZ, ZZ_I
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.convert_to(ZZ_I)
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
"""
if K is None:
return self.copy()
return self.from_rep(self.rep.convert_to(K))
def to_sympy(self):
return self.convert_to(EXRAW)
def to_field(self):
r"""
Returns a DomainMatrix with the appropriate field
Returns
=======
DomainMatrix
DomainMatrix with the appropriate field
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_field()
DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
"""
K = self.domain.get_field()
return self.convert_to(K)
def to_sparse(self):
"""
Return a sparse DomainMatrix representation of *self*.
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
>>> A.rep
[[1, 0], [0, 2]]
>>> B = A.to_sparse()
>>> B.rep
{0: {0: 1}, 1: {1: 2}}
"""
if self.rep.fmt == 'sparse':
return self
return self.from_rep(SDM.from_ddm(self.rep))
def to_dense(self):
"""
Return a dense DomainMatrix representation of *self*.
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
>>> A.rep
{0: {0: 1}, 1: {1: 2}}
>>> B = A.to_dense()
>>> B.rep
[[1, 0], [0, 2]]
"""
if self.rep.fmt == 'dense':
return self
return self.from_rep(SDM.to_ddm(self.rep))
@classmethod
def _unify_domain(cls, *matrices):
"""Convert matrices to a common domain"""
domains = {matrix.domain for matrix in matrices}
if len(domains) == 1:
return matrices
domain = reduce(lambda x, y: x.unify(y), domains)
return tuple(matrix.convert_to(domain) for matrix in matrices)
@classmethod
def _unify_fmt(cls, *matrices, fmt=None):
"""Convert matrices to the same format.
If all matrices have the same format, then return unmodified.
Otherwise convert both to the preferred format given as *fmt* which
should be 'dense' or 'sparse'.
"""
formats = {matrix.rep.fmt for matrix in matrices}
if len(formats) == 1:
return matrices
if fmt == 'sparse':
return tuple(matrix.to_sparse() for matrix in matrices)
elif fmt == 'dense':
return tuple(matrix.to_dense() for matrix in matrices)
else:
raise ValueError("fmt should be 'sparse' or 'dense'")
def unify(self, *others, fmt=None):
"""
Unifies the domains and the format of self and other
matrices.
Parameters
==========
others : DomainMatrix
fmt: string 'dense', 'sparse' or `None` (default)
The preferred format to convert to if self and other are not
already in the same format. If `None` or not specified then no
conversion if performed.
Returns
=======
Tuple[DomainMatrix]
Matrices with unified domain and format
Examples
========
Unify the domain of DomainMatrix that have different domains:
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
>>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
>>> Aq, Bq = A.unify(B)
>>> Aq
DomainMatrix([[1, 2]], (1, 2), QQ)
>>> Bq
DomainMatrix([[1/2, 2]], (1, 2), QQ)
Unify the format (dense or sparse):
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
>>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
>>> B.rep
{0: {0: 1}}
>>> A2, B2 = A.unify(B, fmt='dense')
>>> B2.rep
[[1, 0], [0, 0]]
See Also
========
convert_to, to_dense, to_sparse
"""
matrices = (self,) + others
matrices = DomainMatrix._unify_domain(*matrices)
if fmt is not None:
matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt)
return matrices
def to_Matrix(self):
r"""
Convert DomainMatrix to Matrix
Returns
=======
Matrix
MutableDenseMatrix for the DomainMatrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_Matrix()
Matrix([
[1, 2],
[3, 4]])
See Also
========
from_Matrix
"""
from sympy.matrices.dense import MutableDenseMatrix
elemlist = self.rep.to_list()
elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row]
return MutableDenseMatrix(*self.shape, elements_sympy)
def to_list(self):
return self.rep.to_list()
def to_list_flat(self):
return self.rep.to_list_flat()
def to_dok(self):
return self.rep.to_dok()
def __repr__(self):
return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)
def transpose(self):
"""Matrix transpose of ``self``"""
return self.from_rep(self.rep.transpose())
def flat(self):
rows, cols = self.shape
return [self[i,j].element for i in range(rows) for j in range(cols)]
@property
def is_zero_matrix(self):
return self.rep.is_zero_matrix()
@property
def is_upper(self):
"""
Says whether this matrix is upper-triangular. True can be returned
even if the matrix is not square.
"""
return self.rep.is_upper()
@property
def is_lower(self):
"""
Says whether this matrix is lower-triangular. True can be returned
even if the matrix is not square.
"""
return self.rep.is_lower()
@property
def is_square(self):
return self.shape[0] == self.shape[1]
def rank(self):
rref, pivots = self.rref()
return len(pivots)
def hstack(A, *B):
r"""Horizontally stack the given matrices.
Parameters
==========
B: DomainMatrix
Matrices to stack horizontally.
Returns
=======
DomainMatrix
DomainMatrix by stacking horizontally.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.hstack(B)
DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.hstack(B, C)
DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)
See Also
========
unify
"""
A, *B = A.unify(*B, fmt='dense')
return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))
def vstack(A, *B):
r"""Vertically stack the given matrices.
Parameters
==========
B: DomainMatrix
Matrices to stack vertically.
Returns
=======
DomainMatrix
DomainMatrix by stacking vertically.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.vstack(B)
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.vstack(B, C)
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)
See Also
========
unify
"""
A, *B = A.unify(*B, fmt='dense')
return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))
def applyfunc(self, func, domain=None):
if domain is None:
domain = self.domain
return self.from_rep(self.rep.applyfunc(func, domain))
def __add__(A, B):
if not isinstance(B, DomainMatrix):
return NotImplemented
A, B = A.unify(B, fmt='dense')
return A.add(B)
def __sub__(A, B):
if not isinstance(B, DomainMatrix):
return NotImplemented
A, B = A.unify(B, fmt='dense')
return A.sub(B)
def __neg__(A):
return A.neg()
def __mul__(A, B):
"""A * B"""
if isinstance(B, DomainMatrix):
A, B = A.unify(B, fmt='dense')
return A.matmul(B)
elif B in A.domain:
return A.scalarmul(B)
elif isinstance(B, DomainScalar):
A, B = A.unify(B)
return A.scalarmul(B.element)
else:
return NotImplemented
def __rmul__(A, B):
if B in A.domain:
return A.rscalarmul(B)
elif isinstance(B, DomainScalar):
A, B = A.unify(B)
return A.rscalarmul(B.element)
else:
return NotImplemented
def __pow__(A, n):
"""A ** n"""
if not isinstance(n, int):
return NotImplemented
return A.pow(n)
def _check(a, op, b, ashape, bshape):
if a.domain != b.domain:
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
raise DMDomainError(msg)
if ashape != bshape:
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
raise DMShapeError(msg)
if a.rep.fmt != b.rep.fmt:
msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt)
raise DMFormatError(msg)
def add(A, B):
r"""
Adds two DomainMatrix matrices of the same Domain
Parameters
==========
A, B: DomainMatrix
matrices to add
Returns
=======
DomainMatrix
DomainMatrix after Addition
Raises
======
DMShapeError
If the dimensions of the two DomainMatrix are not equal
ValueError
If the domain of the two DomainMatrix are not same
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(4), ZZ(3)],
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.add(B)
DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
See Also
========
sub, matmul
"""
A._check('+', B, A.shape, B.shape)
return A.from_rep(A.rep.add(B.rep))
def sub(A, B):
r"""
Subtracts two DomainMatrix matrices of the same Domain
Parameters
==========
A, B: DomainMatrix
matrices to subtract
Returns
=======
DomainMatrix
DomainMatrix after Subtraction
Raises
======
DMShapeError
If the dimensions of the two DomainMatrix are not equal
ValueError
If the domain of the two DomainMatrix are not same
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(4), ZZ(3)],
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.sub(B)
DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)
See Also
========
add, matmul
"""
A._check('-', B, A.shape, B.shape)
return A.from_rep(A.rep.sub(B.rep))
def neg(A):
r"""
Returns the negative of DomainMatrix
Parameters
==========
A : Represents a DomainMatrix
Returns
=======
DomainMatrix
DomainMatrix after Negation
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.neg()
DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)
"""
return A.from_rep(A.rep.neg())
def mul(A, b):
r"""
Performs term by term multiplication for the second DomainMatrix
w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are
list of DomainMatrix matrices created after term by term multiplication.
Parameters
==========
A, B: DomainMatrix
matrices to multiply term-wise
Returns
=======
DomainMatrix
DomainMatrix after term by term multiplication
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.mul(B)
DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ),
DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)],
[DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ),
DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ)
See Also
========
matmul
"""
return A.from_rep(A.rep.mul(b))
def rmul(A, b):
return A.from_rep(A.rep.rmul(b))
def matmul(A, B):
r"""
Performs matrix multiplication of two DomainMatrix matrices
Parameters
==========
A, B: DomainMatrix
to multiply
Returns
=======
DomainMatrix
DomainMatrix after multiplication
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.matmul(B)
DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
See Also
========
mul, pow, add, sub
"""
A._check('*', B, A.shape[1], B.shape[0])
return A.from_rep(A.rep.matmul(B.rep))
def _scalarmul(A, lamda, reverse):
if lamda == A.domain.zero:
return DomainMatrix.zeros(A.shape, A.domain)
elif lamda == A.domain.one:
return A.copy()
elif reverse:
return A.rmul(lamda)
else:
return A.mul(lamda)
def scalarmul(A, lamda):
return A._scalarmul(lamda, reverse=False)
def rscalarmul(A, lamda):
return A._scalarmul(lamda, reverse=True)
def mul_elementwise(A, B):
assert A.domain == B.domain
return A.from_rep(A.rep.mul_elementwise(B.rep))
def __truediv__(A, lamda):
""" Method for Scalar Division"""
if isinstance(lamda, int) or ZZ.of_type(lamda):
lamda = DomainScalar(ZZ(lamda), ZZ)
if not isinstance(lamda, DomainScalar):
return NotImplemented
A, lamda = A.to_field().unify(lamda)
if lamda.element == lamda.domain.zero:
raise ZeroDivisionError
if lamda.element == lamda.domain.one:
return A.to_field()
return A.mul(1 / lamda.element)
def pow(A, n):
r"""
Computes A**n
Parameters
==========
A : DomainMatrix
n : exponent for A
Returns
=======
DomainMatrix
DomainMatrix on computing A**n
Raises
======
NotImplementedError
if n is negative.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.pow(2)
DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)
See Also
========
matmul
"""
nrows, ncols = A.shape
if nrows != ncols:
raise DMNonSquareMatrixError('Power of a nonsquare matrix')
if n < 0:
raise NotImplementedError('Negative powers')
elif n == 0:
return A.eye(nrows, A.domain)
elif n == 1:
return A
elif n % 2 == 1:
return A * A**(n - 1)
else:
sqrtAn = A ** (n // 2)
return sqrtAn * sqrtAn
def scc(self):
"""Compute the strongly connected components of a DomainMatrix
Explanation
===========
A square matrix can be considered as the adjacency matrix for a
directed graph where the row and column indices are the vertices. In
this graph if there is an edge from vertex ``i`` to vertex ``j`` if
``M[i, j]`` is nonzero. This routine computes the strongly connected
components of that graph which are subsets of the rows and columns that
are connected by some nonzero element of the matrix. The strongly
connected components are useful because many operations such as the
determinant can be computed by working with the submatrices
corresponding to each component.
Examples
========
Find the strongly connected components of a matrix:
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
... [ZZ(0), ZZ(3), ZZ(0)],
... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
>>> M.scc()
[[1], [0, 2]]
Compute the determinant from the components:
>>> MM = M.to_Matrix()
>>> MM
Matrix([
[1, 0, 2],
[0, 3, 0],
[4, 6, 5]])
>>> MM[[1], [1]]
Matrix([[3]])
>>> MM[[0, 2], [0, 2]]
Matrix([
[1, 2],
[4, 5]])
>>> MM.det()
-9
>>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det()
-9
The components are given in reverse topological order and represent a
permutation of the rows and columns that will bring the matrix into
block lower-triangular form:
>>> MM[[1, 0, 2], [1, 0, 2]]
Matrix([
[3, 0, 0],
[0, 1, 2],
[6, 4, 5]])
Returns
=======
List of lists of integers
Each list represents a strongly connected component.
See also
========
sympy.matrices.matrices.MatrixBase.strongly_connected_components
sympy.utilities.iterables.strongly_connected_components
"""
rows, cols = self.shape
assert rows == cols
return self.rep.scc()
def rref(self):
r"""
Returns reduced-row echelon form and list of pivots for the DomainMatrix
Returns
=======
(DomainMatrix, list)
reduced-row echelon form and list of pivots for the DomainMatrix
Raises
======
ValueError
If the domain of DomainMatrix not a Field
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(2), QQ(-1), QQ(0)],
... [QQ(-1), QQ(2), QQ(-1)],
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> rref_matrix, rref_pivots = A.rref()
>>> rref_matrix
DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
>>> rref_pivots
(0, 1, 2)
See Also
========
convert_to, lu
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
rref_ddm, pivots = self.rep.rref()
return self.from_rep(rref_ddm), tuple(pivots)
def columnspace(self):
r"""
Returns the columnspace for the DomainMatrix
Returns
=======
DomainMatrix
The columns of this matrix form a basis for the columnspace.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.columnspace()
DomainMatrix([[1], [2]], (2, 1), QQ)
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
rref, pivots = self.rref()
rows, cols = self.shape
return self.extract(range(rows), pivots)
def rowspace(self):
r"""
Returns the rowspace for the DomainMatrix
Returns
=======
DomainMatrix
The rows of this matrix form a basis for the rowspace.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.rowspace()
DomainMatrix([[1, -1]], (1, 2), QQ)
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
rref, pivots = self.rref()
rows, cols = self.shape
return self.extract(range(len(pivots)), range(cols))
def nullspace(self):
r"""
Returns the nullspace for the DomainMatrix
Returns
=======
DomainMatrix
The rows of this matrix form a basis for the nullspace.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.nullspace()
DomainMatrix([[1, 1]], (1, 2), QQ)
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
return self.from_rep(self.rep.nullspace()[0])
def inv(self):
r"""
Finds the inverse of the DomainMatrix if exists
Returns
=======
DomainMatrix
DomainMatrix after inverse
Raises
======
ValueError
If the domain of DomainMatrix not a Field
DMNonSquareMatrixError
If the DomainMatrix is not a not Square DomainMatrix
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(2), QQ(-1), QQ(0)],
... [QQ(-1), QQ(2), QQ(-1)],
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> A.inv()
DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)
See Also
========
neg
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
m, n = self.shape
if m != n:
raise DMNonSquareMatrixError
inv = self.rep.inv()
return self.from_rep(inv)
def det(self):
r"""
Returns the determinant of a Square DomainMatrix
Returns
=======
S.Complexes
determinant of Square DomainMatrix
Raises
======
ValueError
If the domain of DomainMatrix not a Field
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.det()
-2
"""
m, n = self.shape
if m != n:
raise DMNonSquareMatrixError
return self.rep.det()
def lu(self):
r"""
Returns Lower and Upper decomposition of the DomainMatrix
Returns
=======
(L, U, exchange)
L, U are Lower and Upper decomposition of the DomainMatrix,
exchange is the list of indices of rows exchanged in the decomposition.
Raises
======
ValueError
If the domain of DomainMatrix not a Field
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.lu()
(DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), [])
See Also
========
lu_solve
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
L, U, swaps = self.rep.lu()
return self.from_rep(L), self.from_rep(U), swaps
def lu_solve(self, rhs):
r"""
Solver for DomainMatrix x in the A*x = B
Parameters
==========
rhs : DomainMatrix B
Returns
=======
DomainMatrix
x in A*x = B
Raises
======
DMShapeError
If the DomainMatrix A and rhs have different number of rows
ValueError
If the domain of DomainMatrix A not a Field
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(2)],
... [QQ(3), QQ(4)]], (2, 2), QQ)
>>> B = DomainMatrix([
... [QQ(1), QQ(1)],
... [QQ(0), QQ(1)]], (2, 2), QQ)
>>> A.lu_solve(B)
DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)
See Also
========
lu
"""
if self.shape[0] != rhs.shape[0]:
raise DMShapeError("Shape")
if not self.domain.is_Field:
raise DMNotAField('Not a field')
sol = self.rep.lu_solve(rhs.rep)
return self.from_rep(sol)
def _solve(A, b):
# XXX: Not sure about this method or its signature. It is just created
# because it is needed by the holonomic module.
if A.shape[0] != b.shape[0]:
raise DMShapeError("Shape")
if A.domain != b.domain or not A.domain.is_Field:
raise DMNotAField('Not a field')
Aaug = A.hstack(b)
Arref, pivots = Aaug.rref()
particular = Arref.from_rep(Arref.rep.particular())
nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace()
nullspace = Arref.from_rep(nullspace_rep)
return particular, nullspace
def charpoly(self):
r"""
Returns the coefficients of the characteristic polynomial
of the DomainMatrix. These elements will be domain elements.
The domain of the elements will be same as domain of the DomainMatrix.
Returns
=======
list
coefficients of the characteristic polynomial
Raises
======
DMNonSquareMatrixError
If the DomainMatrix is not a not Square DomainMatrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.charpoly()
[1, -5, -2]
"""
m, n = self.shape
if m != n:
raise DMNonSquareMatrixError("not square")
return self.rep.charpoly()
@classmethod
def eye(cls, shape, domain):
r"""
Return identity matrix of size n
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.eye(3, QQ)
DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
"""
if isinstance(shape, int):
shape = (shape, shape)
return cls.from_rep(SDM.eye(shape, domain))
@classmethod
def diag(cls, diagonal, domain, shape=None):
r"""
Return diagonal matrix with entries from ``diagonal``.
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import ZZ
>>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
"""
if shape is None:
N = len(diagonal)
shape = (N, N)
return cls.from_rep(SDM.diag(diagonal, domain, shape))
@classmethod
def zeros(cls, shape, domain, *, fmt='sparse'):
"""Returns a zero DomainMatrix of size shape, belonging to the specified domain
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.zeros((2, 3), QQ)
DomainMatrix({}, (2, 3), QQ)
"""
return cls.from_rep(SDM.zeros(shape, domain))
@classmethod
def ones(cls, shape, domain):
"""Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.ones((2,3), QQ)
DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)
"""
return cls.from_rep(DDM.ones(shape, domain))
def __eq__(A, B):
r"""
Checks for two DomainMatrix matrices to be equal or not
Parameters
==========
A, B: DomainMatrix
to check equality
Returns
=======
Boolean
True for equal, else False
Raises
======
NotImplementedError
If B is not a DomainMatrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.__eq__(A)
True
>>> A.__eq__(B)
False
"""
if not isinstance(A, type(B)):
return NotImplemented
return A.domain == B.domain and A.rep == B.rep
def unify_eq(A, B):
if A.shape != B.shape:
return False
if A.domain != B.domain:
A, B = A.unify(B)
return A == B
|
0f6c803b30adf3476677b84ffe5d80eda6964bc32dc3b44292a03df4becc7172 | from sympy.core.numbers import (Float, Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
from sympy.sets import EmptySet
from sympy.simplify.simplify import simplify
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
Point2D, Line2D)
from sympy.geometry.line import Undecidable
from sympy.geometry.polygon import _asa as asa
from sympy.utilities.iterables import cartes
from sympy.testing.pytest import raises, warns
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
k = Symbol('k', real=True)
x1 = Symbol('x1', real=True)
y1 = Symbol('y1', real=True)
t = Symbol('t', real=True)
a, b = symbols('a,b', real=True)
m = symbols('m', real=True)
def test_object_from_equation():
from sympy.abc import x, y, a, b
assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + 5 * y + 1) == Line2D(
Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
assert Line(3*a + b + 18, x="a", y="b") == Line2D(
Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
assert Line(Eq(3*a + b, -18), x="a", y=b) == Line2D(
Point2D(0, -18), Point2D(1, -21))
# issue 22361
assert Line(x - 1) == Line2D(Point2D(1, 0), Point2D(1, 1))
assert Line(2*x - 2, y=x) == Line2D(Point2D(0, 1), Point2D(1, 1))
assert Line(y) == Line2D(Point2D(0, 0), Point2D(1, 0))
assert Line(2*y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
assert Line(y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
raises(ValueError, lambda: Line(x / y))
raises(ValueError, lambda: Line(a / b, x='a', y='b'))
raises(ValueError, lambda: Line(y / x))
raises(ValueError, lambda: Line(b / a, x='a', y='b'))
raises(ValueError, lambda: Line((x + 1)**2 + y))
def feq(a, b):
"""Test if two floating point values are 'equal'."""
t_float = Float("1.0E-10")
return -t_float < a - b < t_float
def test_angle_between():
a = Point(1, 2, 3, 4)
b = a.orthogonal_direction
o = a.origin
assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
assert Line(a, o).angle_between(Line(b, o)) == pi / 2
z = Point3D(0, 0, 0)
assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
Line3D(z, Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
# direction of points is used to determine angle
assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
Line3D(Point3D(5, 0, 0), z)) == acos(-sqrt(3) / 3)
def test_closing_angle():
a = Ray((0, 0), angle=0)
b = Ray((1, 2), angle=pi/2)
assert a.closing_angle(b) == -pi/2
assert b.closing_angle(a) == pi/2
assert a.closing_angle(a) == 0
def test_smallest_angle():
a = Line(Point(1, 1), Point(1, 2))
b = Line(Point(1, 1),Point(2, 3))
assert a.smallest_angle_between(b) == acos(2*sqrt(5)/5)
def test_svg():
a = Line(Point(1, 1),Point(1, 2))
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,1.00000000000000 L 1.00000000000000,2.00000000000000" marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
a = Segment(Point(1, 0),Point(1, 1))
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,0 L 1.00000000000000,1.00000000000000" />'
a = Ray(Point(2, 3), Point(3, 5))
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 2.00000000000000,3.00000000000000 L 3.00000000000000,5.00000000000000" marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
def test_arbitrary_point():
l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
l2 = Line(Point(x1, x1), Point(y1, y1))
assert l2.arbitrary_point() in l2
assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
Point(t + 1, t + 1)
assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
Point3D(S.Half, S.Half, S.Half)
assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
def test_are_concurrent_2d():
l1 = Line(Point(0, 0), Point(1, 1))
l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.are_concurrent(l1) is False
assert Line.are_concurrent(l1, l2)
assert Line.are_concurrent(l1, l1, l1, l2)
assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1)))
assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
def test_are_concurrent_3d():
p1 = Point3D(0, 0, 0)
l1 = Line(p1, Point3D(1, 1, 1))
parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
assert Line3D.are_concurrent(l1) is False
assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
assert Line3D.are_concurrent(parallel_1, parallel_2) is False
def test_arguments():
"""Functions accepting `Point` objects in `geometry`
should also accept tuples, lists, and generators and
automatically convert them to points."""
from sympy.utilities.iterables import subsets
singles2d = ((1, 2), [1, 3], Point(1, 5))
doubles2d = subsets(singles2d, 2)
l2d = Line(Point2D(1, 2), Point2D(2, 3))
singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
doubles3d = subsets(singles3d, 2)
l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
doubles4d = subsets(singles4d, 2)
l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
# test 2D
test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
'projection', 'intersection']
for p in doubles2d:
Line2D(*p)
for func in test_single:
for p in singles2d:
getattr(l2d, func)(p)
# test 3D
for p in doubles3d:
Line3D(*p)
for func in test_single:
for p in singles3d:
getattr(l3d, func)(p)
# test 4D
for p in doubles4d:
Line(*p)
for func in test_single:
for p in singles4d:
getattr(l4d, func)(p)
def test_basic_properties_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p10 = Point(2000, 2000)
p_r3 = Ray(p1, p2).random_point()
p_r4 = Ray(p2, p1).random_point()
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
l4 = Line(p1, Point(1, 0))
r1 = Ray(p1, Point(0, 1))
r2 = Ray(Point(0, 1), p1)
s1 = Segment(p1, p10)
p_s1 = s1.random_point()
assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2)
assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
assert Line(p1, p2) == Line(p1, p2)
assert Line(p1, p2) != Line(p2, p1)
assert l1 != Line(Point(x1, x1), Point(y1, y1))
assert l1 != l3
assert Line(p1, p10) != Line(p10, p1)
assert Line(p1, p10) != p1
assert p1 in l1 # is p1 on the line l1?
assert p1 not in l3
assert s1 in Line(p1, p10)
assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero
assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity
assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity
assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero
assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity
assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity
assert (r1 in s1) is False
assert Segment(p1, p2) in s1
assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
assert l1.slope == 1
assert l3.slope is oo
assert l4.slope == 0
assert Line(p1, Point(0, 1)).slope is oo
assert Line(r1.source, r1.random_point()).slope == r1.slope
assert Line(r2.source, r2.random_point()).slope == r2.slope
assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
assert l4.coefficients == (0, 1, 0)
assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
# issue 7963
r = Ray((0, 0), angle=x)
assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
for ind in range(0, 5):
assert l3.random_point() in l3
assert p_r3.x >= p1.x and p_r3.y >= p1.y
assert p_r4.x <= p2.x and p_r4.y <= p2.y
assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
assert hash(s1) != hash(Segment(p10, p1))
assert s1.plot_interval() == [t, 0, 1]
assert Line(p1, p10).plot_interval() == [t, -5, 5]
assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_basic_properties_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
p5 = Point3D(x1, 1 + x1, 1)
l1 = Line3D(p1, p2)
l3 = Line3D(p3, p5)
r1 = Ray3D(p1, Point3D(-1, 5, 0))
r3 = Ray3D(p1, p2)
s1 = Segment3D(p1, p2)
assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).direction_cosine == [1, 0, 0]
assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
assert Line3D(p1, p2) != Line3D(p2, p1)
assert l1 != l3
assert l1 != Line3D(p3, Point3D(y1, y1, y1))
assert r3 != r1
assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).xdirection == S.Infinity
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).ydirection == S.Infinity
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).zdirection == S.Infinity
assert Ray3D(Point3D(0, 0, 0), Point3D(-2, 2, 2)).xdirection == S.NegativeInfinity
assert Ray3D(Point3D(0, 0, 0), Point3D(2, -2, 2)).ydirection == S.NegativeInfinity
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, -2)).zdirection == S.NegativeInfinity
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 2, 2)).xdirection == S.Zero
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 0, 2)).ydirection == S.Zero
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 0)).zdirection == S.Zero
assert p1 in l1
assert p1 not in l3
assert l1.direction_ratio == [1, 1, 1]
assert s1.midpoint == Point3D(S.Half, S.Half, S.Half)
# Test zdirection
assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
def test_contains():
p1 = Point(0, 0)
r = Ray(p1, Point(4, 4))
r1 = Ray3D(p1, Point3D(0, 0, -1))
r2 = Ray3D(p1, Point3D(0, 1, 0))
r3 = Ray3D(p1, Point3D(0, 0, 1))
l = Line(Point(0, 1), Point(3, 4))
# Segment contains
assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
# Line contains
assert l.contains(Point(0, 1)) is True
assert l.contains((0, 1)) is True
assert l.contains((0, 0)) is False
# Ray contains
assert r.contains(p1) is True
assert r.contains((1, 1)) is True
assert r.contains((1, 3)) is False
assert r.contains(Segment((1, 1), (2, 2))) is True
assert r.contains(Segment((1, 2), (2, 5))) is False
assert r.contains(Ray((2, 2), (3, 3))) is True
assert r.contains(Ray((2, 2), (3, 5))) is False
assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
assert r2.contains(Point3D(0, 0, 0)) is True
assert r3.contains(Point3D(0, 0, 0)) is True
assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
with warns(UserWarning, test_stacklevel=False):
assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
with warns(UserWarning, test_stacklevel=False):
assert r3.contains(Point(1.0, 1.0)) is False
def test_contains_nonreal_symbols():
u, v, w, z = symbols('u, v, w, z')
l = Segment(Point(u, w), Point(v, z))
p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3)
assert l.contains(p)
def test_distance_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
half = S.Half
s1 = Segment(Point(0, 0), Point(1, 1))
s2 = Segment(Point(half, half), Point(1, 0))
r = Ray(p1, p2)
assert s1.distance(Point(0, 0)) == 0
assert s1.distance((0, 0)) == 0
assert s2.distance(Point(0, 0)) == 2 ** half / 2
assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
assert Line(p1, p2).distance(Point(2, 2)) == 0
assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
assert Line((0, 0), (0, 1)).distance(p1) == 0
assert Line((0, 0), (0, 1)).distance(p2) == 1
assert Line((0, 0), (1, 0)).distance(p1) == 0
assert Line((0, 0), (1, 0)).distance(p2) == 1
assert r.distance(Point(-1, -1)) == sqrt(2)
assert r.distance(Point(1, 1)) == 0
assert r.distance(Point(-1, 1)) == sqrt(2)
assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
assert r.distance((1, 1)) == 0
def test_dimension_normalization():
with warns(UserWarning, test_stacklevel=False):
assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
def test_distance_3d():
p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1))
r = Ray3D(p1, p2)
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
# Line to point
assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
assert Line3D(p1, p2).distance((2, 2, 2)) == 0
assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
# Ray to point
assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
assert r.distance(Point3D(1, 1, 1)) == 0
assert r.distance((-1, -1, -1)) == sqrt(3)
assert r.distance((1, 1, 1)) == 0
assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
def test_equals():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line((0, 5), slope=m)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0)))
assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half)))
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_equation():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
assert Line(p1, Point(0, 1)).equation() == x
assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
assert Line(p2, Point(2, 1)).equation() == y - 1
assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
).equation() == (-x + y, -x + z)
assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
).equation() == (-x + y - 1, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
).equation() == (x - 1, -y + z - 1)
assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
).equation() == (y - 2, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
).equation() == (-x + y - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
).equation() == (x - 1, y - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
).equation() == (x - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
).equation() == (y - 2, z - 3)
def test_intersection_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(x1, x1)
p4 = Point(y1, y1)
l1 = Line(p1, p2)
l3 = Line(Point(0, 0), Point(3, 4))
r1 = Ray(Point(1, 1), Point(2, 2))
r2 = Ray(Point(0, 0), Point(3, 4))
r4 = Ray(p1, p2)
r6 = Ray(Point(0, 1), Point(1, 2))
r7 = Ray(Point(0.5, 0.5), Point(1, 1))
s1 = Segment(p1, p2)
s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
s3 = Segment(Point(0, 0), Point(3, 4))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point(x1, 1 + x1)) == []
assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
assert intersection(l3, l3) == [l3]
assert intersection(l3, r2) == [r2]
assert intersection(l3, s3) == [s3]
assert intersection(s3, l3) == [s3]
assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
assert intersection(r2, l3) == [r2]
assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
assert r4.intersection(s2) == [s2]
assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert r4.intersection(Ray(p2, p1)) == [s1]
assert Ray(p2, p1).intersection(r6) == []
assert r4.intersection(r7) == r7.intersection(r4) == [r7]
assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
[Segment(Point(0, 0), Point(0, 1))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((1, 0), (2, 0)).intersection(
Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
assert s1.intersection(s2) == [s2]
assert s2.intersection(s1) == [s2]
assert asa(120, 8, 52) == \
Triangle(
Point(0, 0),
Point(8, 0),
Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
# This test is disabled because it hangs after rref changes which simplify
# intermediate results and return a different representation from when the
# test was written.
# # 16628 - this should be fast
# p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
# p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
# 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
# /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
# + 1991998000*sqrt(630547164901) + 1622561172902000),
# (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
# 90004251917891999 +
# 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
# + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
# 8112805864510000))
# p2 = Point2D(Rational(497, 10), Rational(-497, 10))
# p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
# l = Line(p0, p1)
# s = Segment(p2, p3)
# n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
# 9803028531*sqrt(630547164901) +
# 33200*sqrt(255775022850776494562626))
# d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
# 630547164901) + sqrt(255775022850776494562626)
# assert intersection(l, s) == [
# Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
def test_line_intersection():
# see also test_issue_11238 in test_matrices.py
x0 = tan(pi*Rational(13, 45))
x1 = sqrt(3)
x2 = x0**2
x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
def test_intersection_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
l1 = Line3D(p1, p2)
l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
assert intersection(l2, r2) == [r2]
assert intersection(l2, s1) == [s1]
assert intersection(r2, l2) == [r2]
assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
== [Point3D(0, 0, 0)]
assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
[Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(s1, r2) == [s1]
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
[Point3D(2, 2, 1)]
assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
[Point3D(t, t)]
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
def test_is_parallel():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
l2 = Line(Point(x1, x1), Point(y1, y1))
l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(p1, p2).parallel_line(p3.args) == \
Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
def test_is_perpendicular():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line(Point(x1, x1), Point(y1, y1))
l1_1 = Line(p1, Point(-x1, x1))
# 2D
assert Line.is_perpendicular(l1, l1_1)
assert Line.is_perpendicular(l1, l2) is False
p = l1.random_point()
assert l1.perpendicular_segment(p) == p
# 3D
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
def test_is_similar():
p1 = Point(2000, 2000)
p2 = p1.scale(2, 2)
r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
r2 = Ray(Point(0, 0), Point(0, 1))
s1 = Segment(Point(0, 0), p1)
assert s1.is_similar(Segment(p1, p2))
assert s1.is_similar(r2) is False
assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
def test_length():
s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
assert Line(Point(0, 0), Point(1, 1)).length is oo
assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo
def test_projection():
p1 = Point(0, 0)
p2 = Point3D(0, 0, 0)
p3 = Point(-x1, x1)
l1 = Line(p1, Point(1, 1))
l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
l3 = Line3D(p2, Point3D(1, 1, 1))
r1 = Ray(Point(1, 1), Point(2, 2))
s1 = Segment(Point2D(0, 0), Point2D(0, 1))
s2 = Segment(Point2D(1, 0), Point2D(2, 1/2))
assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
assert s2.projection(s1) == EmptySet
assert l1.projection(p3) == p1
assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
assert l1.projection(Ray(p1, Point(-1, 1))) == p1
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
def test_perpendicular_line():
# 3d - requires a particular orthogonal to be selected
p1, p2, p3 = Point(0, 0, 0), Point(2, 3, 4), Point(-2, 2, 0)
l = Line(p1, p2)
p = l.perpendicular_line(p3)
assert p.p1 == p3
assert p.p2 in l
# 2d - does not require special selection
p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
l = Line(p1, p2)
p = l.perpendicular_line(p3)
assert p.p1 == p3
# p is directed from l to p3
assert p.direction.unit == (p3 - l.projection(p3)).unit
def test_perpendicular_bisector():
s1 = Segment(Point(0, 0), Point(1, 1))
aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2)))
on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint
assert s1.perpendicular_bisector().equals(aline)
assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
def test_raises():
d, e = symbols('a,b', real=True)
s = Segment((d, 0), (e, 0))
raises(TypeError, lambda: Line((1, 1), 1))
raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
raises(Undecidable, lambda: Point(2 * d, 0) in s)
raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
raises(TypeError, lambda: Line3D((1, 1), 1))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
raises(TypeError, lambda: Ray((1, 1), 1))
raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
.projection(Circle(Point(0, 0), 1)))
def test_ray_generation():
assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
Point(2, 1 + tan(4.02 * pi)))
assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
def test_issue_7814():
circle = Circle(Point(x, 0), y)
line = Line(Point(k, z), slope=0)
_s = sqrt((y - z)*(y + z))
assert line.intersection(circle) == [Point2D(x + _s, z), Point2D(x - _s, z)]
def test_issue_2941():
def _check():
for f, g in cartes(*[(Line, Ray, Segment)] * 2):
l1 = f(a, b)
l2 = g(c, d)
assert l1.intersection(l2) == l2.intersection(l1)
# intersect at end point
c, d = (-2, -2), (-2, 0)
a, b = (0, 0), (1, 1)
_check()
# midline intersection
c, d = (-2, -3), (-2, 0)
_check()
def test_parameter_value():
t = Symbol('t')
p1, p2 = Point(0, 1), Point(5, 6)
l = Line(p1, p2)
assert l.parameter_value((5, 6), t) == {t: 1}
raises(ValueError, lambda: l.parameter_value((0, 0), t))
def test_bisectors():
r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
bisections = r1.bisectors(r2)
assert bisections == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)),
Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
ans = [Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)),
Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1))]
l1 = (0, 0, 0), (0, 0, 1)
l2 = (0, 0), (1, 0)
for a, b in cartes((Line, Segment, Ray), repeat=2):
assert a(*l1).bisectors(b(*l2)) == ans
def test_issue_8615():
a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0))
b = Line3D(Point3D(6, -1, 19/10), Point3D(6, -1, 0))
assert a.intersection(b) == [Point3D(6, -1, 0)]
def test_issue_12598():
r1 = Ray(Point(0, 1), Point(0.98, 0.79).n(2))
r2 = Ray(Point(0, 0), Point(0.71, 0.71).n(2))
assert str(r1.intersection(r2)[0]) == 'Point2D(0.82, 0.82)'
l1 = Line((0, 0), (1, 1))
l2 = Segment((-1, 1), (0, -1)).n(2)
assert str(l1.intersection(l2)[0]) == 'Point2D(-0.33, -0.33)'
l2 = Segment((-1, 1), (-1/2, 1/2)).n(2)
assert not l1.intersection(l2)
|
503da005f8d84671dca8a624f8985ec7c74ea3134fae869dc75e78bde8efb41e | from sympy.core.expr import Expr
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.matrices.dense import Matrix
from sympy.printing.pretty.stringpict import prettyForm
from sympy.core.containers import Tuple
from sympy.utilities.iterables import is_sequence
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.matrixutils import (
numpy_ndarray, scipy_sparse_matrix,
to_sympy, to_numpy, to_scipy_sparse
)
__all__ = [
'QuantumError',
'QExpr'
]
#-----------------------------------------------------------------------------
# Error handling
#-----------------------------------------------------------------------------
class QuantumError(Exception):
pass
def _qsympify_sequence(seq):
"""Convert elements of a sequence to standard form.
This is like sympify, but it performs special logic for arguments passed
to QExpr. The following conversions are done:
* (list, tuple, Tuple) => _qsympify_sequence each element and convert
sequence to a Tuple.
* basestring => Symbol
* Matrix => Matrix
* other => sympify
Strings are passed to Symbol, not sympify to make sure that variables like
'pi' are kept as Symbols, not the SymPy built-in number subclasses.
Examples
========
>>> from sympy.physics.quantum.qexpr import _qsympify_sequence
>>> _qsympify_sequence((1,2,[3,4,[1,]]))
(1, 2, (3, 4, (1,)))
"""
return tuple(__qsympify_sequence_helper(seq))
def __qsympify_sequence_helper(seq):
"""
Helper function for _qsympify_sequence
This function does the actual work.
"""
#base case. If not a list, do Sympification
if not is_sequence(seq):
if isinstance(seq, Matrix):
return seq
elif isinstance(seq, str):
return Symbol(seq)
else:
return sympify(seq)
# base condition, when seq is QExpr and also
# is iterable.
if isinstance(seq, QExpr):
return seq
#if list, recurse on each item in the list
result = [__qsympify_sequence_helper(item) for item in seq]
return Tuple(*result)
#-----------------------------------------------------------------------------
# Basic Quantum Expression from which all objects descend
#-----------------------------------------------------------------------------
class QExpr(Expr):
"""A base class for all quantum object like operators and states."""
# In sympy, slots are for instance attributes that are computed
# dynamically by the __new__ method. They are not part of args, but they
# derive from args.
# The Hilbert space a quantum Object belongs to.
__slots__ = ('hilbert_space', )
is_commutative = False
# The separator used in printing the label.
_label_separator = ''
@property
def free_symbols(self):
return {self}
def __new__(cls, *args, **kwargs):
"""Construct a new quantum object.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
quantum object. For a state, this will be its symbol or its
set of quantum numbers.
Examples
========
>>> from sympy.physics.quantum.qexpr import QExpr
>>> q = QExpr(0)
>>> q
0
>>> q.label
(0,)
>>> q.hilbert_space
H
>>> q.args
(0,)
>>> q.is_commutative
False
"""
# First compute args and call Expr.__new__ to create the instance
args = cls._eval_args(args, **kwargs)
if len(args) == 0:
args = cls._eval_args(tuple(cls.default_args()), **kwargs)
inst = Expr.__new__(cls, *args)
# Now set the slots on the instance
inst.hilbert_space = cls._eval_hilbert_space(args)
return inst
@classmethod
def _new_rawargs(cls, hilbert_space, *args, **old_assumptions):
"""Create new instance of this class with hilbert_space and args.
This is used to bypass the more complex logic in the ``__new__``
method in cases where you already have the exact ``hilbert_space``
and ``args``. This should be used when you are positive these
arguments are valid, in their final, proper form and want to optimize
the creation of the object.
"""
obj = Expr.__new__(cls, *args, **old_assumptions)
obj.hilbert_space = hilbert_space
return obj
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def label(self):
"""The label is the unique set of identifiers for the object.
Usually, this will include all of the information about the state
*except* the time (in the case of time-dependent objects).
This must be a tuple, rather than a Tuple.
"""
if len(self.args) == 0: # If there is no label specified, return the default
return self._eval_args(list(self.default_args()))
else:
return self.args
@property
def is_symbolic(self):
return True
@classmethod
def default_args(self):
"""If no arguments are specified, then this will return a default set
of arguments to be run through the constructor.
NOTE: Any classes that override this MUST return a tuple of arguments.
Should be overridden by subclasses to specify the default arguments for kets and operators
"""
raise NotImplementedError("No default arguments for this class!")
#-------------------------------------------------------------------------
# _eval_* methods
#-------------------------------------------------------------------------
def _eval_adjoint(self):
obj = Expr._eval_adjoint(self)
if obj is None:
obj = Expr.__new__(Dagger, self)
if isinstance(obj, QExpr):
obj.hilbert_space = self.hilbert_space
return obj
@classmethod
def _eval_args(cls, args):
"""Process the args passed to the __new__ method.
This simply runs args through _qsympify_sequence.
"""
return _qsympify_sequence(args)
@classmethod
def _eval_hilbert_space(cls, args):
"""Compute the Hilbert space instance from the args.
"""
from sympy.physics.quantum.hilbert import HilbertSpace
return HilbertSpace()
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
# Utilities for printing: these operate on raw SymPy objects
def _print_sequence(self, seq, sep, printer, *args):
result = []
for item in seq:
result.append(printer._print(item, *args))
return sep.join(result)
def _print_sequence_pretty(self, seq, sep, printer, *args):
pform = printer._print(seq[0], *args)
for item in seq[1:]:
pform = prettyForm(*pform.right(sep))
pform = prettyForm(*pform.right(printer._print(item, *args)))
return pform
# Utilities for printing: these operate prettyForm objects
def _print_subscript_pretty(self, a, b):
top = prettyForm(*b.left(' '*a.width()))
bot = prettyForm(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_superscript_pretty(self, a, b):
return a**b
def _print_parens_pretty(self, pform, left='(', right=')'):
return prettyForm(*pform.parens(left=left, right=right))
# Printing of labels (i.e. args)
def _print_label(self, printer, *args):
"""Prints the label of the QExpr
This method prints self.label, using self._label_separator to separate
the elements. This method should not be overridden, instead, override
_print_contents to change printing behavior.
"""
return self._print_sequence(
self.label, self._label_separator, printer, *args
)
def _print_label_repr(self, printer, *args):
return self._print_sequence(
self.label, ',', printer, *args
)
def _print_label_pretty(self, printer, *args):
return self._print_sequence_pretty(
self.label, self._label_separator, printer, *args
)
def _print_label_latex(self, printer, *args):
return self._print_sequence(
self.label, self._label_separator, printer, *args
)
# Printing of contents (default to label)
def _print_contents(self, printer, *args):
"""Printer for contents of QExpr
Handles the printing of any unique identifying contents of a QExpr to
print as its contents, such as any variables or quantum numbers. The
default is to print the label, which is almost always the args. This
should not include printing of any brackets or parentheses.
"""
return self._print_label(printer, *args)
def _print_contents_pretty(self, printer, *args):
return self._print_label_pretty(printer, *args)
def _print_contents_latex(self, printer, *args):
return self._print_label_latex(printer, *args)
# Main printing methods
def _sympystr(self, printer, *args):
"""Default printing behavior of QExpr objects
Handles the default printing of a QExpr. To add other things to the
printing of the object, such as an operator name to operators or
brackets to states, the class should override the _print/_pretty/_latex
functions directly and make calls to _print_contents where appropriate.
This allows things like InnerProduct to easily control its printing the
printing of contents.
"""
return self._print_contents(printer, *args)
def _sympyrepr(self, printer, *args):
classname = self.__class__.__name__
label = self._print_label_repr(printer, *args)
return '%s(%s)' % (classname, label)
def _pretty(self, printer, *args):
pform = self._print_contents_pretty(printer, *args)
return pform
def _latex(self, printer, *args):
return self._print_contents_latex(printer, *args)
#-------------------------------------------------------------------------
# Represent
#-------------------------------------------------------------------------
def _represent_default_basis(self, **options):
raise NotImplementedError('This object does not have a default basis')
def _represent(self, *, basis=None, **options):
"""Represent this object in a given basis.
This method dispatches to the actual methods that perform the
representation. Subclases of QExpr should define various methods to
determine how the object will be represented in various bases. The
format of these methods is::
def _represent_BasisName(self, basis, **options):
Thus to define how a quantum object is represented in the basis of
the operator Position, you would define::
def _represent_Position(self, basis, **options):
Usually, basis object will be instances of Operator subclasses, but
there is a chance we will relax this in the future to accommodate other
types of basis sets that are not associated with an operator.
If the ``format`` option is given it can be ("sympy", "numpy",
"scipy.sparse"). This will ensure that any matrices that result from
representing the object are returned in the appropriate matrix format.
Parameters
==========
basis : Operator
The Operator whose basis functions will be used as the basis for
representation.
options : dict
A dictionary of key/value pairs that give options and hints for
the representation, such as the number of basis functions to
be used.
"""
if basis is None:
result = self._represent_default_basis(**options)
else:
result = dispatch_method(self, '_represent', basis, **options)
# If we get a matrix representation, convert it to the right format.
format = options.get('format', 'sympy')
result = self._format_represent(result, format)
return result
def _format_represent(self, result, format):
if format == 'sympy' and not isinstance(result, Matrix):
return to_sympy(result)
elif format == 'numpy' and not isinstance(result, numpy_ndarray):
return to_numpy(result)
elif format == 'scipy.sparse' and \
not isinstance(result, scipy_sparse_matrix):
return to_scipy_sparse(result)
return result
def split_commutative_parts(e):
"""Split into commutative and non-commutative parts."""
c_part, nc_part = e.args_cnc()
c_part = list(c_part)
return c_part, nc_part
def split_qexpr_parts(e):
"""Split an expression into Expr and noncommutative QExpr parts."""
expr_part = []
qexpr_part = []
for arg in e.args:
if not isinstance(arg, QExpr):
expr_part.append(arg)
else:
qexpr_part.append(arg)
return expr_part, qexpr_part
def dispatch_method(self, basename, arg, **options):
"""Dispatch a method to the proper handlers."""
method_name = '%s_%s' % (basename, arg.__class__.__name__)
if hasattr(self, method_name):
f = getattr(self, method_name)
# This can raise and we will allow it to propagate.
result = f(arg, **options)
if result is not None:
return result
raise NotImplementedError(
"%s.%s cannot handle: %r" %
(self.__class__.__name__, basename, arg)
)
|
6135a3f9ac265b0f8e65043ac27fc7c6b4e7992bb41ef85dd5327145553ad8b2 | from sympy.core.backend import sympify
from sympy.physics.vector import Point, ReferenceFrame, Dyadic
from sympy.utilities.exceptions import sympy_deprecation_warning
__all__ = ['RigidBody']
class RigidBody:
"""An idealized rigid body.
Explanation
===========
This is essentially a container which holds the various components which
describe a rigid body: a name, mass, center of mass, reference frame, and
inertia.
All of these need to be supplied on creation, but can be changed
afterwards.
Attributes
==========
name : string
The body's name.
masscenter : Point
The point which represents the center of mass of the rigid body.
frame : ReferenceFrame
The ReferenceFrame which the rigid body is fixed in.
mass : Sympifyable
The body's mass.
inertia : (Dyadic, Point)
The body's inertia about a point; stored in a tuple as shown above.
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody
>>> from sympy.physics.mechanics import outer
>>> m = Symbol('m')
>>> A = ReferenceFrame('A')
>>> P = Point('P')
>>> I = outer (A.x, A.x)
>>> inertia_tuple = (I, P)
>>> B = RigidBody('B', P, A, m, inertia_tuple)
>>> # Or you could change them afterwards
>>> m2 = Symbol('m2')
>>> B.mass = m2
"""
def __init__(self, name, masscenter, frame, mass, inertia):
if not isinstance(name, str):
raise TypeError('Supply a valid name.')
self._name = name
self.masscenter = masscenter
self.mass = mass
self.frame = frame
self.inertia = inertia
self.potential_energy = 0
def __str__(self):
return self._name
def __repr__(self):
return self.__str__()
@property
def frame(self):
"""The ReferenceFrame fixed to the body."""
return self._frame
@frame.setter
def frame(self, F):
if not isinstance(F, ReferenceFrame):
raise TypeError("RigidBody frame must be a ReferenceFrame object.")
self._frame = F
@property
def masscenter(self):
"""The body's center of mass."""
return self._masscenter
@masscenter.setter
def masscenter(self, p):
if not isinstance(p, Point):
raise TypeError("RigidBody center of mass must be a Point object.")
self._masscenter = p
@property
def mass(self):
"""The body's mass."""
return self._mass
@mass.setter
def mass(self, m):
self._mass = sympify(m)
@property
def inertia(self):
"""The body's inertia about a point; stored as (Dyadic, Point)."""
return (self._inertia, self._inertia_point)
@inertia.setter
def inertia(self, I):
if not isinstance(I[0], Dyadic):
raise TypeError("RigidBody inertia must be a Dyadic object.")
if not isinstance(I[1], Point):
raise TypeError("RigidBody inertia must be about a Point.")
self._inertia = I[0]
self._inertia_point = I[1]
# have I S/O, want I S/S*
# I S/O = I S/S* + I S*/O; I S/S* = I S/O - I S*/O
# I_S/S* = I_S/O - I_S*/O
from sympy.physics.mechanics.functions import inertia_of_point_mass
I_Ss_O = inertia_of_point_mass(self.mass,
self.masscenter.pos_from(I[1]),
self.frame)
self._central_inertia = I[0] - I_Ss_O
@property
def central_inertia(self):
"""The body's central inertia dyadic."""
return self._central_inertia
@central_inertia.setter
def central_inertia(self, I):
if not isinstance(I, Dyadic):
raise TypeError("RigidBody inertia must be a Dyadic object.")
self.inertia = (I, self.masscenter)
def linear_momentum(self, frame):
""" Linear momentum of the rigid body.
Explanation
===========
The linear momentum L, of a rigid body B, with respect to frame N is
given by:
L = M * v*
where M is the mass of the rigid body and v* is the velocity of
the mass center of B in the frame, N.
Parameters
==========
frame : ReferenceFrame
The frame in which linear momentum is desired.
Examples
========
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> M, v = dynamicsymbols('M v')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> I = outer (N.x, N.x)
>>> Inertia_tuple = (I, P)
>>> B = RigidBody('B', P, N, M, Inertia_tuple)
>>> B.linear_momentum(N)
M*v*N.x
"""
return self.mass * self.masscenter.vel(frame)
def angular_momentum(self, point, frame):
"""Returns the angular momentum of the rigid body about a point in the
given frame.
Explanation
===========
The angular momentum H of a rigid body B about some point O in a frame
N is given by:
``H = dot(I, w) + cross(r, M * v)``
where I is the central inertia dyadic of B, w is the angular velocity
of body B in the frame, N, r is the position vector from point O to the
mass center of B, and v is the velocity of the mass center in the
frame, N.
Parameters
==========
point : Point
The point about which angular momentum is desired.
frame : ReferenceFrame
The frame in which angular momentum is desired.
Examples
========
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> M, v, r, omega = dynamicsymbols('M v r omega')
>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, 1 * N.x)
>>> I = outer(b.x, b.x)
>>> B = RigidBody('B', P, b, M, (I, P))
>>> B.angular_momentum(P, N)
omega*b.x
"""
I = self.central_inertia
w = self.frame.ang_vel_in(frame)
m = self.mass
r = self.masscenter.pos_from(point)
v = self.masscenter.vel(frame)
return I.dot(w) + r.cross(m * v)
def kinetic_energy(self, frame):
"""Kinetic energy of the rigid body.
Explanation
===========
The kinetic energy, T, of a rigid body, B, is given by:
``T = 1/2 * (dot(dot(I, w), w) + dot(m * v, v))``
where I and m are the central inertia dyadic and mass of rigid body B,
respectively, omega is the body's angular velocity and v is the
velocity of the body's mass center in the supplied ReferenceFrame.
Parameters
==========
frame : ReferenceFrame
The RigidBody's angular velocity and the velocity of it's mass
center are typically defined with respect to an inertial frame but
any relevant frame in which the velocities are known can be supplied.
Examples
========
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody
>>> from sympy import symbols
>>> M, v, r, omega = symbols('M v r omega')
>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> I = outer (b.x, b.x)
>>> inertia_tuple = (I, P)
>>> B = RigidBody('B', P, b, M, inertia_tuple)
>>> B.kinetic_energy(N)
M*v**2/2 + omega**2/2
"""
rotational_KE = (self.frame.ang_vel_in(frame) & (self.central_inertia &
self.frame.ang_vel_in(frame)) / sympify(2))
translational_KE = (self.mass * (self.masscenter.vel(frame) &
self.masscenter.vel(frame)) / sympify(2))
return rotational_KE + translational_KE
@property
def potential_energy(self):
"""The potential energy of the RigidBody.
Examples
========
>>> from sympy.physics.mechanics import RigidBody, Point, outer, ReferenceFrame
>>> from sympy import symbols
>>> M, g, h = symbols('M g h')
>>> b = ReferenceFrame('b')
>>> P = Point('P')
>>> I = outer (b.x, b.x)
>>> Inertia_tuple = (I, P)
>>> B = RigidBody('B', P, b, M, Inertia_tuple)
>>> B.potential_energy = M * g * h
>>> B.potential_energy
M*g*h
"""
return self._pe
@potential_energy.setter
def potential_energy(self, scalar):
"""Used to set the potential energy of this RigidBody.
Parameters
==========
scalar: Sympifyable
The potential energy (a scalar) of the RigidBody.
Examples
========
>>> from sympy.physics.mechanics import Point, outer
>>> from sympy.physics.mechanics import RigidBody, ReferenceFrame
>>> from sympy import symbols
>>> b = ReferenceFrame('b')
>>> M, g, h = symbols('M g h')
>>> P = Point('P')
>>> I = outer (b.x, b.x)
>>> Inertia_tuple = (I, P)
>>> B = RigidBody('B', P, b, M, Inertia_tuple)
>>> B.potential_energy = M * g * h
"""
self._pe = sympify(scalar)
def set_potential_energy(self, scalar):
sympy_deprecation_warning(
"""
The sympy.physics.mechanics.RigidBody.set_potential_energy()
method is deprecated. Instead use
B.potential_energy = scalar
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-set-potential-energy",
)
self.potential_energy = scalar
def parallel_axis(self, point, frame=None):
"""Returns the inertia dyadic of the body with respect to another
point.
Parameters
==========
point : sympy.physics.vector.Point
The point to express the inertia dyadic about.
frame : sympy.physics.vector.ReferenceFrame
The reference frame used to construct the dyadic.
Returns
=======
inertia : sympy.physics.vector.Dyadic
The inertia dyadic of the rigid body expressed about the provided
point.
"""
# circular import issue
from sympy.physics.mechanics.functions import inertia_of_point_mass
if frame is None:
frame = self.frame
return self.central_inertia + inertia_of_point_mass(
self.mass, self.masscenter.pos_from(point), frame)
|
853048f3077bca59d1811d61ad6f9783da538851c136003a8f93167d324ccdd5 | # coding=utf-8
from abc import ABC, abstractmethod
from sympy.core.backend import pi, AppliedUndef, Derivative, Matrix
from sympy.physics.mechanics.body import Body
from sympy.physics.mechanics.functions import _validate_coordinates
from sympy.physics.vector import (Vector, dynamicsymbols, cross, Point,
ReferenceFrame)
from sympy.utilities.iterables import iterable
from sympy.utilities.exceptions import sympy_deprecation_warning
__all__ = ['Joint', 'PinJoint', 'PrismaticJoint', 'CylindricalJoint',
'PlanarJoint', 'SphericalJoint', 'WeldJoint']
class Joint(ABC):
"""Abstract base class for all specific joints.
Explanation
===========
A joint subtracts degrees of freedom from a body. This is the base class
for all specific joints and holds all common methods acting as an interface
for all joints. Custom joint can be created by inheriting Joint class and
defining all abstract functions.
The abstract methods are:
- ``_generate_coordinates``
- ``_generate_speeds``
- ``_orient_frames``
- ``_set_angular_velocity``
- ``_set_linear_velocity``
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates : iterable of dynamicsymbols, optional
Generalized coordinates of the joint.
speeds : iterable of dynamicsymbols, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Notes
=====
When providing a vector as the intermediate frame, a new intermediate frame
is created which aligns its X axis with the provided vector. This is done
with a single fixed rotation about a rotation axis. This rotation axis is
determined by taking the cross product of the ``body.x`` axis with the
provided vector. In the case where the provided vector is in the ``-body.x``
direction, the rotation is done about the ``body.y`` axis.
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_axis=None,
child_axis=None, parent_interframe=None, child_interframe=None,
parent_joint_pos=None, child_joint_pos=None):
if not isinstance(name, str):
raise TypeError('Supply a valid name.')
self._name = name
if not isinstance(parent, Body):
raise TypeError('Parent must be an instance of Body.')
self._parent = parent
if not isinstance(child, Body):
raise TypeError('Parent must be an instance of Body.')
self._child = child
self._coordinates = self._generate_coordinates(coordinates)
self._speeds = self._generate_speeds(speeds)
_validate_coordinates(self.coordinates, self.speeds)
self._kdes = self._generate_kdes()
self._parent_axis = self._axis(parent_axis, parent.frame)
self._child_axis = self._axis(child_axis, child.frame)
if parent_joint_pos is not None or child_joint_pos is not None:
sympy_deprecation_warning(
"""
The parent_joint_pos and child_joint_pos arguments for the Joint
classes are deprecated. Instead use parent_point and child_point.
""",
deprecated_since_version="1.12",
active_deprecations_target="deprecated-mechanics-joint-pos",
stacklevel=4
)
if parent_point is None:
parent_point = parent_joint_pos
if child_point is None:
child_point = child_joint_pos
self._parent_point = self._locate_joint_pos(parent, parent_point)
self._child_point = self._locate_joint_pos(child, child_point)
if parent_axis is not None or child_axis is not None:
sympy_deprecation_warning(
"""
The parent_axis and child_axis arguments for the Joint classes
are deprecated. Instead use parent_interframe, child_interframe.
""",
deprecated_since_version="1.12",
active_deprecations_target="deprecated-mechanics-joint-axis",
stacklevel=4
)
if parent_interframe is None:
parent_interframe = parent_axis
if child_interframe is None:
child_interframe = child_axis
self._parent_interframe = self._locate_joint_frame(parent,
parent_interframe)
self._child_interframe = self._locate_joint_frame(child,
child_interframe)
self._orient_frames()
self._set_angular_velocity()
self._set_linear_velocity()
def __str__(self):
return self.name
def __repr__(self):
return self.__str__()
@property
def name(self):
"""Name of the joint."""
return self._name
@property
def parent(self):
"""Parent body of Joint."""
return self._parent
@property
def child(self):
"""Child body of Joint."""
return self._child
@property
def coordinates(self):
"""Matrix of the joint's generalized coordinates."""
return self._coordinates
@property
def speeds(self):
"""Matrix of the joint's generalized speeds."""
return self._speeds
@property
def kdes(self):
"""Kinematical differential equations of the joint."""
return self._kdes
@property
def parent_axis(self):
"""The axis of parent frame."""
# Will be removed with `deprecated-mechanics-joint-axis`
return self._parent_axis
@property
def child_axis(self):
"""The axis of child frame."""
# Will be removed with `deprecated-mechanics-joint-axis`
return self._child_axis
@property
def parent_point(self):
"""Attachment point where the joint is fixed to the parent body."""
return self._parent_point
@property
def child_point(self):
"""Attachment point where the joint is fixed to the child body."""
return self._child_point
@property
def parent_interframe(self):
return self._parent_interframe
@property
def child_interframe(self):
return self._child_interframe
@abstractmethod
def _generate_coordinates(self, coordinates):
"""Generate Matrix of the joint's generalized coordinates."""
pass
@abstractmethod
def _generate_speeds(self, speeds):
"""Generate Matrix of the joint's generalized speeds."""
pass
@abstractmethod
def _orient_frames(self):
"""Orient frames as per the joint."""
pass
@abstractmethod
def _set_angular_velocity(self):
"""Set angular velocity of the joint related frames."""
pass
@abstractmethod
def _set_linear_velocity(self):
"""Set velocity of related points to the joint."""
pass
@staticmethod
def _to_vector(matrix, frame):
"""Converts a matrix to a vector in the given frame."""
return Vector([(matrix, frame)])
@staticmethod
def _axis(ax, *frames):
"""Check whether an axis is fixed in one of the frames."""
if ax is None:
ax = frames[0].x
return ax
if not isinstance(ax, Vector):
raise TypeError("Axis must be a Vector.")
ref_frame = None # Find a body in which the axis can be expressed
for frame in frames:
try:
ax.to_matrix(frame)
except ValueError:
pass
else:
ref_frame = frame
break
if ref_frame is None:
raise ValueError("Axis cannot be expressed in one of the body's "
"frames.")
if not ax.dt(ref_frame) == 0:
raise ValueError('Axis cannot be time-varying when viewed from the '
'associated body.')
return ax
@staticmethod
def _choose_rotation_axis(frame, axis):
components = axis.to_matrix(frame)
x, y, z = components[0], components[1], components[2]
if x != 0:
if y != 0:
if z != 0:
return cross(axis, frame.x)
if z != 0:
return frame.y
return frame.z
else:
if y != 0:
return frame.x
return frame.y
@staticmethod
def _create_aligned_interframe(frame, align_axis, frame_axis=None,
frame_name=None):
"""
Returns an intermediate frame, where the ``frame_axis`` defined in
``frame`` is aligned with ``axis``. By default this means that the X
axis will be aligned with ``axis``.
Parameters
==========
frame : Body or ReferenceFrame
The body or reference frame with respect to which the intermediate
frame is oriented.
align_axis : Vector
The vector with respect to which the intermediate frame will be
aligned.
frame_axis : Vector
The vector of the frame which should get aligned with ``axis``. The
default is the X axis of the frame.
frame_name : string
Name of the to be created intermediate frame. The default adds
"_int_frame" to the name of ``frame``.
Example
=======
An intermediate frame, where the X axis of the parent becomes aligned
with ``parent.y + parent.z`` can be created as follows:
>>> from sympy.physics.mechanics.joint import Joint
>>> from sympy.physics.mechanics import Body
>>> parent = Body('parent')
>>> parent_interframe = Joint._create_aligned_interframe(
... parent, parent.y + parent.z)
>>> parent_interframe
parent_int_frame
>>> parent.dcm(parent_interframe)
Matrix([
[ 0, -sqrt(2)/2, -sqrt(2)/2],
[sqrt(2)/2, 1/2, -1/2],
[sqrt(2)/2, -1/2, 1/2]])
>>> (parent.y + parent.z).express(parent_interframe)
sqrt(2)*parent_int_frame.x
Notes
=====
The direction cosine matrix between the given frame and intermediate
frame is formed using a simple rotation about an axis that is normal to
both ``align_axis`` and ``frame_axis``. In general, the normal axis is
formed by crossing the ``frame_axis`` with the ``align_axis``. The
exception is if the axes are parallel with opposite directions, in which
case the rotation vector is chosen using the rules in the following
table with the vectors expressed in the given frame:
.. list-table::
:header-rows: 1
* - ``align_axis``
- ``frame_axis``
- ``rotation_axis``
* - ``-x``
- ``x``
- ``z``
* - ``-y``
- ``y``
- ``x``
* - ``-z``
- ``z``
- ``y``
* - ``-x-y``
- ``x+y``
- ``z``
* - ``-y-z``
- ``y+z``
- ``x``
* - ``-x-z``
- ``x+z``
- ``y``
* - ``-x-y-z``
- ``x+y+z``
- ``(x+y+z) × x``
"""
if isinstance(frame, Body):
frame = frame.frame
if frame_axis is None:
frame_axis = frame.x
if frame_name is None:
if frame.name[-6:] == '_frame':
frame_name = f'{frame.name[:-6]}_int_frame'
else:
frame_name = f'{frame.name}_int_frame'
angle = frame_axis.angle_between(align_axis)
rotation_axis = cross(frame_axis, align_axis)
if rotation_axis == Vector(0) and angle == 0:
return frame
if angle == pi:
rotation_axis = Joint._choose_rotation_axis(frame, align_axis)
int_frame = ReferenceFrame(frame_name)
int_frame.orient_axis(frame, rotation_axis, angle)
int_frame.set_ang_vel(frame, 0 * rotation_axis)
return int_frame
def _generate_kdes(self):
"""Generate kinematical differential equations."""
kdes = []
t = dynamicsymbols._t
for i in range(len(self.coordinates)):
kdes.append(-self.coordinates[i].diff(t) + self.speeds[i])
return Matrix(kdes)
def _locate_joint_pos(self, body, joint_pos):
"""Returns the attachment point of a body."""
if joint_pos is None:
return body.masscenter
if not isinstance(joint_pos, (Point, Vector)):
raise TypeError('Attachment point must be a Point or Vector.')
if isinstance(joint_pos, Vector):
point_name = f'{self.name}_{body.name}_joint'
joint_pos = body.masscenter.locatenew(point_name, joint_pos)
if not joint_pos.pos_from(body.masscenter).dt(body.frame) == 0:
raise ValueError('Attachment point must be fixed to the associated '
'body.')
return joint_pos
def _locate_joint_frame(self, body, interframe):
"""Returns the attachment frame of a body."""
if interframe is None:
return body.frame
if isinstance(interframe, Vector):
interframe = Joint._create_aligned_interframe(
body, interframe,
frame_name=f'{self.name}_{body.name}_int_frame')
elif not isinstance(interframe, ReferenceFrame):
raise TypeError('Interframe must be a ReferenceFrame.')
if not interframe.ang_vel_in(body.frame) == 0:
raise ValueError(f'Interframe {interframe} is not fixed to body '
f'{body}.')
body.masscenter.set_vel(interframe, 0) # Fixate interframe to body
return interframe
def _fill_coordinate_list(self, coordinates, n_coords, label='q', offset=0,
number_single=False):
"""Helper method for _generate_coordinates and _generate_speeds.
Parameters
==========
coordinates : iterable
Iterable of coordinates or speeds that have been provided.
n_coords : Integer
Number of coordinates that should be returned.
label : String, optional
Coordinate type either 'q' (coordinates) or 'u' (speeds). The
Default is 'q'.
offset : Integer
Count offset when creating new dynamicsymbols. The default is 0.
number_single : Boolean
Boolean whether if n_coords == 1, number should still be used. The
default is False.
"""
def create_symbol(number):
if n_coords == 1 and not number_single:
return dynamicsymbols(f'{label}_{self.name}')
return dynamicsymbols(f'{label}{number}_{self.name}')
name = 'generalized coordinate' if label == 'q' else 'generalized speed'
generated_coordinates = []
if coordinates is None:
coordinates = []
elif not iterable(coordinates):
coordinates = [coordinates]
if not (len(coordinates) == 0 or len(coordinates) == n_coords):
raise ValueError(f'Expected {n_coords} {name}s, instead got '
f'{len(coordinates)} {name}s.')
# Supports more iterables, also Matrix
for i, coord in enumerate(coordinates):
if coord is None:
generated_coordinates.append(create_symbol(i + offset))
elif isinstance(coord, (AppliedUndef, Derivative)):
generated_coordinates.append(coord)
else:
raise TypeError(f'The {name} {coord} should have been a '
f'dynamicsymbol.')
for i in range(len(coordinates) + offset, n_coords + offset):
generated_coordinates.append(create_symbol(i))
return Matrix(generated_coordinates)
class PinJoint(Joint):
"""Pin (Revolute) Joint.
.. image:: PinJoint.svg
Explanation
===========
A pin joint is defined such that the joint rotation axis is fixed in both
the child and parent and the location of the joint is relative to the mass
center of each body. The child rotates an angle, θ, from the parent about
the rotation axis and has a simple angular speed, ω, relative to the
parent. The direction cosine matrix between the child interframe and
parent interframe is formed using a simple rotation about the joint axis.
The page on the joints framework gives a more detailed explanation of the
intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates : dynamicsymbol, optional
Generalized coordinates of the joint.
speeds : dynamicsymbol, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector
The axis about which the rotation occurs. Note that the components
of this axis are the same in the parent_interframe and child_interframe.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : Matrix
Matrix of the joint's generalized speeds. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
joint_axis : Vector
The axis about which the rotation occurs. Note that the components of
this axis are the same in the parent_interframe and child_interframe.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single pin joint is created from two bodies and has the following basic
attributes:
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PinJoint('PC', parent, child)
>>> joint
PinJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)]])
>>> joint.speeds
Matrix([[u_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q_PC(t)), sin(q_PC(t))],
[0, -sin(q_PC(t)), cos(q_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the pin joint, the kinematics of simple
double pendulum that rotates about the Z axis of each connected body can be
created as follows.
>>> from sympy import symbols, trigsimp
>>> from sympy.physics.mechanics import Body, PinJoint
>>> l1, l2 = symbols('l1 l2')
First create bodies to represent the fixed ceiling and one to represent
each pendulum bob.
>>> ceiling = Body('C')
>>> upper_bob = Body('U')
>>> lower_bob = Body('L')
The first joint will connect the upper bob to the ceiling by a distance of
``l1`` and the joint axis will be about the Z axis for each body.
>>> ceiling_joint = PinJoint('P1', ceiling, upper_bob,
... child_point=-l1*upper_bob.frame.x,
... joint_axis=ceiling.frame.z)
The second joint will connect the lower bob to the upper bob by a distance
of ``l2`` and the joint axis will also be about the Z axis for each body.
>>> pendulum_joint = PinJoint('P2', upper_bob, lower_bob,
... child_point=-l2*lower_bob.frame.x,
... joint_axis=upper_bob.frame.z)
Once the joints are established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of pendulum link relative
to the ceiling are found:
>>> upper_bob.frame.dcm(ceiling.frame)
Matrix([
[ cos(q_P1(t)), sin(q_P1(t)), 0],
[-sin(q_P1(t)), cos(q_P1(t)), 0],
[ 0, 0, 1]])
>>> trigsimp(lower_bob.frame.dcm(ceiling.frame))
Matrix([
[ cos(q_P1(t) + q_P2(t)), sin(q_P1(t) + q_P2(t)), 0],
[-sin(q_P1(t) + q_P2(t)), cos(q_P1(t) + q_P2(t)), 0],
[ 0, 0, 1]])
The position of the lower bob's masscenter is found with:
>>> lower_bob.masscenter.pos_from(ceiling.masscenter)
l1*U_frame.x + l2*L_frame.x
The angular velocities of the two pendulum links can be computed with
respect to the ceiling.
>>> upper_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z
>>> lower_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z + u_P2(t)*U_frame.z
And finally, the linear velocities of the two pendulum bobs can be computed
with respect to the ceiling.
>>> upper_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y
>>> lower_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y + l2*(u_P1(t) + u_P2(t))*L_frame.y
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_axis=None,
child_axis=None, parent_interframe=None, child_interframe=None,
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
self._joint_axis = joint_axis
super().__init__(name, parent, child, coordinates, speeds, parent_point,
child_point, parent_axis, child_axis,
parent_interframe, child_interframe, parent_joint_pos,
child_joint_pos)
def __str__(self):
return (f'PinJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis about which the child rotates with respect to the parent."""
return self._joint_axis
def _generate_coordinates(self, coordinate):
return self._fill_coordinate_list(coordinate, 1, 'q')
def _generate_speeds(self, speed):
return self._fill_coordinate_list(speed, 1, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, self.coordinates[0])
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, self.speeds[
0] * self.joint_axis.normalize())
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child.masscenter.v2pt_theory(self.parent_point,
self.parent.frame, self.child.frame)
class PrismaticJoint(Joint):
"""Prismatic (Sliding) Joint.
.. image:: PrismaticJoint.svg
Explanation
===========
It is defined such that the child body translates with respect to the parent
body along the body-fixed joint axis. The location of the joint is defined
by two points, one in each body, which coincide when the generalized
coordinate is zero. The direction cosine matrix between the
parent_interframe and child_interframe is the identity matrix. Therefore,
the direction cosine matrix between the parent and child frames is fully
defined by the definition of the intermediate frames. The page on the joints
framework gives a more detailed explanation of the intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates : dynamicsymbol, optional
Generalized coordinates of the joint. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : dynamicsymbol, optional
Generalized speeds of joint. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector
The axis along which the translation occurs. Note that the components
of this axis are the same in the parent_interframe and child_interframe.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single prismatic joint is created from two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import Body, PrismaticJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PrismaticJoint('PC', parent, child)
>>> joint
PrismaticJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)]])
>>> joint.speeds
Matrix([[u_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
0
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
q_PC(t)*P_frame.x
To further demonstrate the use of the prismatic joint, the kinematics of two
masses sliding, one moving relative to a fixed body and the other relative
to the moving body. about the X axis of each connected body can be created
as follows.
>>> from sympy.physics.mechanics import PrismaticJoint, Body
First create bodies to represent the fixed ceiling and one to represent
a particle.
>>> wall = Body('W')
>>> Part1 = Body('P1')
>>> Part2 = Body('P2')
The first joint will connect the particle to the ceiling and the
joint axis will be about the X axis for each body.
>>> J1 = PrismaticJoint('J1', wall, Part1)
The second joint will connect the second particle to the first particle
and the joint axis will also be about the X axis for each body.
>>> J2 = PrismaticJoint('J2', Part1, Part2)
Once the joint is established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of Part relative
to the ceiling are found:
>>> Part1.dcm(wall)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Part2.dcm(wall)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
The position of the particles' masscenter is found with:
>>> Part1.masscenter.pos_from(wall.masscenter)
q_J1(t)*W_frame.x
>>> Part2.masscenter.pos_from(wall.masscenter)
q_J1(t)*W_frame.x + q_J2(t)*P1_frame.x
The angular velocities of the two particle links can be computed with
respect to the ceiling.
>>> Part1.ang_vel_in(wall)
0
>>> Part2.ang_vel_in(wall)
0
And finally, the linear velocities of the two particles can be computed
with respect to the ceiling.
>>> Part1.masscenter_vel(wall)
u_J1(t)*W_frame.x
>>> Part2.masscenter.vel(wall.frame)
u_J1(t)*W_frame.x + Derivative(q_J2(t), t)*P1_frame.x
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_axis=None,
child_axis=None, parent_interframe=None, child_interframe=None,
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
self._joint_axis = joint_axis
super().__init__(name, parent, child, coordinates, speeds, parent_point,
child_point, parent_axis, child_axis,
parent_interframe, child_interframe, parent_joint_pos,
child_joint_pos)
def __str__(self):
return (f'PrismaticJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis along which the child translates with respect to the parent."""
return self._joint_axis
def _generate_coordinates(self, coordinate):
return self._fill_coordinate_list(coordinate, 1, 'q')
def _generate_speeds(self, speed):
return self._fill_coordinate_list(speed, 1, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, 0)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
def _set_linear_velocity(self):
axis = self.joint_axis.normalize()
self.child_point.set_pos(self.parent_point, self.coordinates[0] * axis)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child_point.set_vel(self.parent.frame, self.speeds[0] * axis)
self.child.masscenter.set_vel(self.parent.frame, self.speeds[0] * axis)
class CylindricalJoint(Joint):
"""Cylindrical Joint.
.. image:: CylindricalJoint.svg
:align: center
:width: 600
Explanation
===========
A cylindrical joint is defined such that the child body both rotates about
and translates along the body-fixed joint axis with respect to the parent
body. The joint axis is both the rotation axis and translation axis. The
location of the joint is defined by two points, one in each body, which
coincide when the generalized coordinate corresponding to the translation is
zero. The direction cosine matrix between the child interframe and parent
interframe is formed using a simple rotation about the joint axis. The page
on the joints framework gives a more detailed explanation of the
intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
rotation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default
value is ``dynamicsymbols(f'q0_{joint.name}')``.
translation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the translation distance. The
default value is ``dynamicsymbols(f'q1_{joint.name}')``.
rotation_speed : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default
value is ``dynamicsymbols(f'u0_{joint.name}')``.
translation_speed : dynamicsymbol, optional
Generalized speed corresponding to the translation velocity. The default
value is ``dynamicsymbols(f'u1_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector, optional
The rotation as well as translation axis. Note that the components of
this axis are the same in the parent_interframe and child_interframe.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
rotation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the rotation angle.
translation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the translation distance.
rotation_speed : dynamicsymbol
Generalized speed corresponding to the angular velocity.
translation_speed : dynamicsymbol
Generalized speed corresponding to the translation velocity.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
joint_axis : Vector
The axis of rotation and translation.
Examples
=========
A single cylindrical joint is created between two bodies and has the
following basic attributes:
>>> from sympy.physics.mechanics import Body, CylindricalJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = CylindricalJoint('PC', parent, child)
>>> joint
CylindricalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u0_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q0_PC(t)), sin(q0_PC(t))],
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.x
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.x
To further demonstrate the use of the cylindrical joint, the kinematics of
two cylindrical joints perpendicular to each other can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, CylindricalJoint
>>> r, l, w = symbols('r l w')
First create bodies to represent the fixed floor with a fixed pole on it.
The second body represents a freely moving tube around that pole. The third
body represents a solid flag freely translating along and rotating around
the Y axis of the tube.
>>> floor = Body('floor')
>>> tube = Body('tube')
>>> flag = Body('flag')
The first joint will connect the first tube to the floor with it translating
along and rotating around the Z axis of both bodies.
>>> floor_joint = CylindricalJoint('C1', floor, tube, joint_axis=floor.z)
The second joint will connect the tube perpendicular to the flag along the Y
axis of both the tube and the flag, with the joint located at a distance
``r`` from the tube's center of mass and a combination of the distances
``l`` and ``w`` from the flag's center of mass.
>>> flag_joint = CylindricalJoint('C2', tube, flag,
... parent_point=r * tube.y,
... child_point=-w * flag.y + l * flag.z,
... joint_axis=tube.y)
Once the joints are established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of both the body and the
flag relative to the floor are found:
>>> tube.dcm(floor)
Matrix([
[ cos(q0_C1(t)), sin(q0_C1(t)), 0],
[-sin(q0_C1(t)), cos(q0_C1(t)), 0],
[ 0, 0, 1]])
>>> flag.dcm(floor)
Matrix([
[cos(q0_C1(t))*cos(q0_C2(t)), sin(q0_C1(t))*cos(q0_C2(t)), -sin(q0_C2(t))],
[ -sin(q0_C1(t)), cos(q0_C1(t)), 0],
[sin(q0_C2(t))*cos(q0_C1(t)), sin(q0_C1(t))*sin(q0_C2(t)), cos(q0_C2(t))]])
The position of the flag's center of mass is found with:
>>> flag.masscenter.pos_from(floor.masscenter)
q1_C1(t)*floor_frame.z + (r + q1_C2(t))*tube_frame.y + w*flag_frame.y - l*flag_frame.z
The angular velocities of the two tubes can be computed with respect to the
floor.
>>> tube.ang_vel_in(floor)
u0_C1(t)*floor_frame.z
>>> flag.ang_vel_in(floor)
u0_C1(t)*floor_frame.z + u0_C2(t)*tube_frame.y
Finally, the linear velocities of the two tube centers of mass can be
computed with respect to the floor, while expressed in the tube's frame.
>>> tube.masscenter.vel(floor.frame).to_matrix(tube.frame)
Matrix([
[ 0],
[ 0],
[u1_C1(t)]])
>>> flag.masscenter.vel(floor.frame).to_matrix(tube.frame).simplify()
Matrix([
[-l*u0_C2(t)*cos(q0_C2(t)) - r*u0_C1(t) - w*u0_C1(t) - q1_C2(t)*u0_C1(t)],
[ -l*u0_C1(t)*sin(q0_C2(t)) + Derivative(q1_C2(t), t)],
[ l*u0_C2(t)*sin(q0_C2(t)) + u1_C1(t)]])
"""
def __init__(self, name, parent, child, rotation_coordinate=None,
translation_coordinate=None, rotation_speed=None,
translation_speed=None, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None,
joint_axis=None):
self._joint_axis = joint_axis
coordinates = (rotation_coordinate, translation_coordinate)
speeds = (rotation_speed, translation_speed)
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'CylindricalJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis about and along which the rotation and translation occurs."""
return self._joint_axis
@property
def rotation_coordinate(self):
"""Generalized coordinate corresponding to the rotation angle."""
return self.coordinates[0]
@property
def translation_coordinate(self):
"""Generalized coordinate corresponding to the translation distance."""
return self.coordinates[1]
@property
def rotation_speed(self):
"""Generalized speed corresponding to the angular velocity."""
return self.speeds[0]
@property
def translation_speed(self):
"""Generalized speed corresponding to the translation velocity."""
return self.speeds[1]
def _generate_coordinates(self, coordinates):
return self._fill_coordinate_list(coordinates, 2, 'q')
def _generate_speeds(self, speeds):
return self._fill_coordinate_list(speeds, 2, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, self.rotation_coordinate)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(
self.parent_interframe,
self.rotation_speed * self.joint_axis.normalize())
def _set_linear_velocity(self):
self.child_point.set_pos(
self.parent_point,
self.translation_coordinate * self.joint_axis.normalize())
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child_point.set_vel(
self.parent.frame,
self.translation_speed * self.joint_axis.normalize())
self.child.masscenter.v2pt_theory(self.child_point, self.parent.frame,
self.child_interframe)
class PlanarJoint(Joint):
"""Planar Joint.
.. image:: PlanarJoint.svg
:align: center
:width: 800
Explanation
===========
A planar joint is defined such that the child body translates over a fixed
plane of the parent body as well as rotate about the rotation axis, which
is perpendicular to that plane. The origin of this plane is the
``parent_point`` and the plane is spanned by two nonparallel planar vectors.
The location of the ``child_point`` is based on the planar vectors
($\\vec{v}_1$, $\\vec{v}_2$) and generalized coordinates ($q_1$, $q_2$),
i.e. $\\vec{r} = q_1 \\hat{v}_1 + q_2 \\hat{v}_2$. The direction cosine
matrix between the ``child_interframe`` and ``parent_interframe`` is formed
using a simple rotation ($q_0$) about the rotation axis.
In order to simplify the definition of the ``PlanarJoint``, the
``rotation_axis`` and ``planar_vectors`` are set to be the unit vectors of
the ``parent_interframe`` according to the table below. This ensures that
you can only define these vectors by creating a separate frame and supplying
that as the interframe. If you however would only like to supply the normals
of the plane with respect to the parent and child bodies, then you can also
supply those to the ``parent_interframe`` and ``child_interframe``
arguments. An example of both of these cases is in the examples section
below and the page on the joints framework provides a more detailed
explanation of the intermediate frames.
.. list-table::
* - ``rotation_axis``
- ``parent_interframe.x``
* - ``planar_vectors[0]``
- ``parent_interframe.y``
* - ``planar_vectors[1]``
- ``parent_interframe.z``
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
rotation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default
value is ``dynamicsymbols(f'q0_{joint.name}')``.
planar_coordinates : iterable of dynamicsymbols, optional
Two generalized coordinates used for the planar translation. The default
value is ``dynamicsymbols(f'q1_{joint.name} q2_{joint.name}')``.
rotation_speed : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default
value is ``dynamicsymbols(f'u0_{joint.name}')``.
planar_speeds : dynamicsymbols, optional
Two generalized speeds used for the planar translation velocity. The
default value is ``dynamicsymbols(f'u1_{joint.name} u2_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
rotation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the rotation angle.
planar_coordinates : Matrix
Two generalized coordinates used for the planar translation.
rotation_speed : dynamicsymbol
Generalized speed corresponding to the angular velocity.
planar_speeds : Matrix
Two generalized speeds used for the planar translation velocity.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
rotation_axis : Vector
The axis about which the rotation occurs.
planar_vectors : list
The vectors that describe the planar translation directions.
Examples
=========
A single planar joint is created between two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import Body, PlanarJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PlanarJoint('PC', parent, child)
>>> joint
PlanarJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.rotation_axis
P_frame.x
>>> joint.planar_vectors
[P_frame.y, P_frame.z]
>>> joint.rotation_coordinate
q0_PC(t)
>>> joint.planar_coordinates
Matrix([
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.rotation_speed
u0_PC(t)
>>> joint.planar_speeds
Matrix([
[u1_PC(t)],
[u2_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)],
[u2_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u0_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q0_PC(t)), sin(q0_PC(t))],
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.y + q2_PC(t)*P_frame.z
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.y + u2_PC(t)*P_frame.z
To further demonstrate the use of the planar joint, the kinematics of a
block sliding on a slope, can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import PlanarJoint, Body, ReferenceFrame
>>> a, d, h = symbols('a d h')
First create bodies to represent the slope and the block.
>>> ground = Body('G')
>>> block = Body('B')
To define the slope you can either define the plane by specifying the
``planar_vectors`` or/and the ``rotation_axis``. However it is advisable to
create a rotated intermediate frame, so that the ``parent_vectors`` and
``rotation_axis`` will be the unit vectors of this intermediate frame.
>>> slope = ReferenceFrame('A')
>>> slope.orient_axis(ground.frame, ground.y, a)
The planar joint can be created using these bodies and intermediate frame.
We can specify the origin of the slope to be ``d`` above the slope's center
of mass and the block's center of mass to be a distance ``h`` above the
slope's surface. Note that we can specify the normal of the plane using the
rotation axis argument.
>>> joint = PlanarJoint('PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, parent_interframe=slope)
Once the joint is established the kinematics of the bodies can be accessed.
First the ``rotation_axis``, which is normal to the plane and the
``plane_vectors``, can be found.
>>> joint.rotation_axis
A.x
>>> joint.planar_vectors
[A.y, A.z]
The direction cosine matrix of the block with respect to the ground can be
found with:
>>> block.dcm(ground)
Matrix([
[ cos(a), 0, -sin(a)],
[sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
The angular velocity of the block can be computed with respect to the
ground.
>>> block.ang_vel_in(ground)
u0_PC(t)*A.x
The position of the block's center of mass can be found with:
>>> block.masscenter.pos_from(ground.masscenter)
d*G_frame.x + h*B_frame.x + q1_PC(t)*A.y + q2_PC(t)*A.z
Finally, the linear velocity of the block's center of mass can be
computed with respect to the ground.
>>> block.masscenter.vel(ground.frame)
u1_PC(t)*A.y + u2_PC(t)*A.z
In some cases it could be your preference to only define the normals of the
plane with respect to both bodies. This can most easily be done by supplying
vectors to the ``interframe`` arguments. What will happen in this case is
that an interframe will be created with its ``x`` axis aligned with the
provided vector. For a further explanation of how this is done see the notes
of the ``Joint`` class. In the code below, the above example (with the block
on the slope) is recreated by supplying vectors to the interframe arguments.
Note that the previously described option is however more computationally
efficient, because the algorithm now has to compute the rotation angle
between the provided vector and the 'x' axis.
>>> from sympy import symbols, cos, sin
>>> from sympy.physics.mechanics import PlanarJoint, Body
>>> a, d, h = symbols('a d h')
>>> ground = Body('G')
>>> block = Body('B')
>>> joint = PlanarJoint(
... 'PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, child_interframe=block.x,
... parent_interframe=cos(a) * ground.x + sin(a) * ground.z)
>>> block.dcm(ground).simplify()
Matrix([
[ cos(a), 0, sin(a)],
[-sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[-sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
"""
def __init__(self, name, parent, child, rotation_coordinate=None,
planar_coordinates=None, rotation_speed=None,
planar_speeds=None, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None):
# A ready to merge implementation of setting the planar_vectors and
# rotation_axis was added and removed in PR #24046
coordinates = (rotation_coordinate, planar_coordinates)
speeds = (rotation_speed, planar_speeds)
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'PlanarJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def rotation_coordinate(self):
"""Generalized coordinate corresponding to the rotation angle."""
return self.coordinates[0]
@property
def planar_coordinates(self):
"""Two generalized coordinates used for the planar translation."""
return self.coordinates[1:, 0]
@property
def rotation_speed(self):
"""Generalized speed corresponding to the angular velocity."""
return self.speeds[0]
@property
def planar_speeds(self):
"""Two generalized speeds used for the planar translation velocity."""
return self.speeds[1:, 0]
@property
def rotation_axis(self):
"""The axis about which the rotation occurs."""
return self.parent_interframe.x
@property
def planar_vectors(self):
"""The vectors that describe the planar translation directions."""
return [self.parent_interframe.y, self.parent_interframe.z]
def _generate_coordinates(self, coordinates):
rotation_speed = self._fill_coordinate_list(coordinates[0], 1, 'q',
number_single=True)
planar_speeds = self._fill_coordinate_list(coordinates[1], 2, 'q', 1)
return rotation_speed.col_join(planar_speeds)
def _generate_speeds(self, speeds):
rotation_speed = self._fill_coordinate_list(speeds[0], 1, 'u',
number_single=True)
planar_speeds = self._fill_coordinate_list(speeds[1], 2, 'u', 1)
return rotation_speed.col_join(planar_speeds)
def _orient_frames(self):
self.child_interframe.orient_axis(
self.parent_interframe, self.rotation_axis,
self.rotation_coordinate)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(
self.parent_interframe,
self.rotation_speed * self.rotation_axis)
def _set_linear_velocity(self):
self.child_point.set_pos(
self.parent_point,
self.planar_coordinates[0] * self.planar_vectors[0] +
self.planar_coordinates[1] * self.planar_vectors[1])
self.parent_point.set_vel(self.parent_interframe, 0)
self.child_point.set_vel(self.child_interframe, 0)
self.child_point.set_vel(
self.parent.frame, self.planar_speeds[0] * self.planar_vectors[0] +
self.planar_speeds[1] * self.planar_vectors[1])
self.child.masscenter.v2pt_theory(self.child_point, self.parent.frame,
self.child.frame)
class SphericalJoint(Joint):
"""Spherical (Ball-and-Socket) Joint.
.. image:: SphericalJoint.svg
:align: center
:width: 600
Explanation
===========
A spherical joint is defined such that the child body is free to rotate in
any direction, without allowing a translation of the ``child_point``. As can
also be seen in the image, the ``parent_point`` and ``child_point`` are
fixed on top of each other, i.e. the ``joint_point``. This rotation is
defined using the :func:`parent_interframe.orient(child_interframe,
rot_type, amounts, rot_order)
<sympy.physics.vector.frame.ReferenceFrame.orient>` method. The default
rotation consists of three relative rotations, i.e. body-fixed rotations.
Based on the direction cosine matrix following from these rotations, the
angular velocity is computed based on the generalized coordinates and
generalized speeds.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates: iterable of dynamicsymbols, optional
Generalized coordinates of the joint.
speeds : iterable of dynamicsymbols, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
rot_type : str, optional
The method used to generate the direction cosine matrix. Supported
methods are:
- ``'Body'``: three successive rotations about new intermediate axes,
also called "Euler and Tait-Bryan angles"
- ``'Space'``: three successive rotations about the parent frames' unit
vectors
The default method is ``'Body'``.
amounts :
Expressions defining the rotation angles or direction cosine matrix.
These must match the ``rot_type``. See examples below for details. The
input types are:
- ``'Body'``: 3-tuple of expressions, symbols, or functions
- ``'Space'``: 3-tuple of expressions, symbols, or functions
The default amounts are the given ``coordinates``.
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
``'123'`` and integer ``123`` are equivalent, for example. Required for
``'Body'`` and ``'Space'``. The default value is ``123``.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single spherical joint is created from two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import Body, SphericalJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = SphericalJoint('PC', parent, child)
>>> joint
SphericalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_interframe
P_frame
>>> joint.child_interframe
C_frame
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)],
[u2_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame).to_matrix(child.frame)
Matrix([
[ u0_PC(t)*cos(q1_PC(t))*cos(q2_PC(t)) + u1_PC(t)*sin(q2_PC(t))],
[-u0_PC(t)*sin(q2_PC(t))*cos(q1_PC(t)) + u1_PC(t)*cos(q2_PC(t))],
[ u0_PC(t)*sin(q1_PC(t)) + u2_PC(t)]])
>>> child.frame.x.to_matrix(parent.frame)
Matrix([
[ cos(q1_PC(t))*cos(q2_PC(t))],
[sin(q0_PC(t))*sin(q1_PC(t))*cos(q2_PC(t)) + sin(q2_PC(t))*cos(q0_PC(t))],
[sin(q0_PC(t))*sin(q2_PC(t)) - sin(q1_PC(t))*cos(q0_PC(t))*cos(q2_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the spherical joint, the kinematics of a
spherical joint with a ZXZ rotation can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, SphericalJoint
>>> l1 = symbols('l1')
First create bodies to represent the fixed floor and a pendulum bob.
>>> floor = Body('F')
>>> bob = Body('B')
The joint will connect the bob to the floor, with the joint located at a
distance of ``l1`` from the child's center of mass and the rotation set to a
body-fixed ZXZ rotation.
>>> joint = SphericalJoint('S', floor, bob, child_point=l1 * bob.y,
... rot_type='body', rot_order='ZXZ')
Now that the joint is established, the kinematics of the connected body can
be accessed.
The position of the bob's masscenter is found with:
>>> bob.masscenter.pos_from(floor.masscenter)
- l1*B_frame.y
The angular velocities of the pendulum link can be computed with respect to
the floor.
>>> bob.frame.ang_vel_in(floor.frame).to_matrix(
... floor.frame).simplify()
Matrix([
[u1_S(t)*cos(q0_S(t)) + u2_S(t)*sin(q0_S(t))*sin(q1_S(t))],
[u1_S(t)*sin(q0_S(t)) - u2_S(t)*sin(q1_S(t))*cos(q0_S(t))],
[ u0_S(t) + u2_S(t)*cos(q1_S(t))]])
Finally, the linear velocity of the bob's center of mass can be computed.
>>> bob.masscenter.vel(floor.frame).to_matrix(bob.frame)
Matrix([
[ l1*(u0_S(t)*cos(q1_S(t)) + u2_S(t))],
[ 0],
[-l1*(u0_S(t)*sin(q1_S(t))*sin(q2_S(t)) + u1_S(t)*cos(q2_S(t)))]])
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_interframe=None,
child_interframe=None, rot_type='BODY', amounts=None,
rot_order=123):
self._rot_type = rot_type
self._amounts = amounts
self._rot_order = rot_order
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'SphericalJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
def _generate_coordinates(self, coordinates):
return self._fill_coordinate_list(coordinates, 3, 'q')
def _generate_speeds(self, speeds):
return self._fill_coordinate_list(speeds, len(self.coordinates), 'u')
def _orient_frames(self):
supported_rot_types = ('BODY', 'SPACE')
if self._rot_type.upper() not in supported_rot_types:
raise NotImplementedError(
f'Rotation type "{self._rot_type}" is not implemented. '
f'Implemented rotation types are: {supported_rot_types}')
amounts = self.coordinates if self._amounts is None else self._amounts
self.child_interframe.orient(self.parent_interframe, self._rot_type,
amounts, self._rot_order)
def _set_angular_velocity(self):
t = dynamicsymbols._t
vel = self.child_interframe.ang_vel_in(self.parent_interframe).xreplace(
{q.diff(t): u for q, u in zip(self.coordinates, self.speeds)}
)
self.child_interframe.set_ang_vel(self.parent_interframe, vel)
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child.masscenter.v2pt_theory(self.parent_point, self.parent.frame,
self.child.frame)
class WeldJoint(Joint):
"""Weld Joint.
.. image:: WeldJoint.svg
:align: center
:width: 500
Explanation
===========
A weld joint is defined such that there is no relative motion between the
child and parent bodies. The direction cosine matrix between the attachment
frame (``parent_interframe`` and ``child_interframe``) is the identity
matrix and the attachment points (``parent_point`` and ``child_point``) are
coincident. The page on the joints framework gives a more detailed
explanation of the intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : Matrix
Matrix of the joint's generalized speeds. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single weld joint is created from two bodies and has the following basic
attributes:
>>> from sympy.physics.mechanics import Body, WeldJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = WeldJoint('PC', parent, child)
>>> joint
WeldJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.coordinates
Matrix(0, 0, [])
>>> joint.speeds
Matrix(0, 0, [])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
0
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the weld joint, two relatively-fixed
bodies rotated by a quarter turn about the Y axis can be created as follows:
>>> from sympy import symbols, pi
>>> from sympy.physics.mechanics import ReferenceFrame, Body, WeldJoint
>>> l1, l2 = symbols('l1 l2')
First create the bodies to represent the parent and rotated child body.
>>> parent = Body('P')
>>> child = Body('C')
Next the intermediate frame specifying the fixed rotation with respect to
the parent can be created.
>>> rotated_frame = ReferenceFrame('Pr')
>>> rotated_frame.orient_axis(parent.frame, parent.y, pi / 2)
The weld between the parent body and child body is located at a distance
``l1`` from the parent's center of mass in the X direction and ``l2`` from
the child's center of mass in the child's negative X direction.
>>> weld = WeldJoint('weld', parent, child, parent_point=l1 * parent.x,
... child_point=-l2 * child.x,
... parent_interframe=rotated_frame)
Now that the joint has been established, the kinematics of the bodies can be
accessed. The direction cosine matrix of the child body with respect to the
parent can be found:
>>> child.dcm(parent)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
As can also been seen from the direction cosine matrix, the parent X axis is
aligned with the child's Z axis:
>>> parent.x == child.z
True
The position of the child's center of mass with respect to the parent's
center of mass can be found with:
>>> child.masscenter.pos_from(parent.masscenter)
l1*P_frame.x + l2*C_frame.x
The angular velocity of the child with respect to the parent is 0 as one
would expect.
>>> child.ang_vel_in(parent)
0
"""
def __init__(self, name, parent, child, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None):
super().__init__(name, parent, child, [], [], parent_point,
child_point, parent_interframe=parent_interframe,
child_interframe=child_interframe)
self._kdes = Matrix(1, 0, []).T # Removes stackability problems #10770
def __str__(self):
return (f'WeldJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
def _generate_coordinates(self, coordinate):
return Matrix()
def _generate_speeds(self, speed):
return Matrix()
def _orient_frames(self):
self.child_interframe.orient_axis(self.parent_interframe,
self.parent_interframe.x, 0)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child.masscenter.set_vel(self.parent.frame, 0)
|
d7d5677c22ad5f0388c043cfd61a45c019e6462a320b0a54b41bb7e01ff16e89 | from sympy.physics.mechanics import (Body, Lagrangian, KanesMethod, LagrangesMethod,
RigidBody, Particle)
from sympy.physics.mechanics.method import _Methods
from sympy.core.backend import Matrix
__all__ = ['JointsMethod']
class JointsMethod(_Methods):
"""Method for formulating the equations of motion using a set of interconnected bodies with joints.
Parameters
==========
newtonion : Body or ReferenceFrame
The newtonion(inertial) frame.
*joints : Joint
The joints in the system
Attributes
==========
q, u : iterable
Iterable of the generalized coordinates and speeds
bodies : iterable
Iterable of Body objects in the system.
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
mass_matrix : Matrix, shape(n, n)
The system's mass matrix
forcing : Matrix, shape(n, 1)
The system's forcing vector
mass_matrix_full : Matrix, shape(2*n, 2*n)
The "mass matrix" for the u's and q's
forcing_full : Matrix, shape(2*n, 1)
The "forcing vector" for the u's and q's
method : KanesMethod or Lagrange's method
Method's object.
kdes : iterable
Iterable of kde in they system.
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, JointsMethod, PrismaticJoint
>>> from sympy.physics.vector import dynamicsymbols
>>> c, k = symbols('c k')
>>> x, v = dynamicsymbols('x v')
>>> wall = Body('W')
>>> body = Body('B')
>>> J = PrismaticJoint('J', wall, body, coordinates=x, speeds=v)
>>> wall.apply_force(c*v*wall.x, reaction_body=body)
>>> wall.apply_force(k*x*wall.x, reaction_body=body)
>>> method = JointsMethod(wall, J)
>>> method.form_eoms()
Matrix([[-B_mass*Derivative(v(t), t) - c*v(t) - k*x(t)]])
>>> M = method.mass_matrix_full
>>> F = method.forcing_full
>>> rhs = M.LUsolve(F)
>>> rhs
Matrix([
[ v(t)],
[(-c*v(t) - k*x(t))/B_mass]])
Notes
=====
``JointsMethod`` currently only works with systems that do not have any
configuration or motion constraints.
"""
def __init__(self, newtonion, *joints):
if isinstance(newtonion, Body):
self.frame = newtonion.frame
else:
self.frame = newtonion
self._joints = joints
self._bodies = self._generate_bodylist()
self._loads = self._generate_loadlist()
self._q = self._generate_q()
self._u = self._generate_u()
self._kdes = self._generate_kdes()
self._method = None
@property
def bodies(self):
"""List of bodies in they system."""
return self._bodies
@property
def loads(self):
"""List of loads on the system."""
return self._loads
@property
def q(self):
"""List of the generalized coordinates."""
return self._q
@property
def u(self):
"""List of the generalized speeds."""
return self._u
@property
def kdes(self):
"""List of the generalized coordinates."""
return self._kdes
@property
def forcing_full(self):
"""The "forcing vector" for the u's and q's."""
return self.method.forcing_full
@property
def mass_matrix_full(self):
"""The "mass matrix" for the u's and q's."""
return self.method.mass_matrix_full
@property
def mass_matrix(self):
"""The system's mass matrix."""
return self.method.mass_matrix
@property
def forcing(self):
"""The system's forcing vector."""
return self.method.forcing
@property
def method(self):
"""Object of method used to form equations of systems."""
return self._method
def _generate_bodylist(self):
bodies = []
for joint in self._joints:
if joint.child not in bodies:
bodies.append(joint.child)
if joint.parent not in bodies:
bodies.append(joint.parent)
return bodies
def _generate_loadlist(self):
load_list = []
for body in self.bodies:
load_list.extend(body.loads)
return load_list
def _generate_q(self):
q_ind = []
for joint in self._joints:
for coordinate in joint.coordinates:
if coordinate in q_ind:
raise ValueError('Coordinates of joints should be unique.')
q_ind.append(coordinate)
return Matrix(q_ind)
def _generate_u(self):
u_ind = []
for joint in self._joints:
for speed in joint.speeds:
if speed in u_ind:
raise ValueError('Speeds of joints should be unique.')
u_ind.append(speed)
return Matrix(u_ind)
def _generate_kdes(self):
kd_ind = Matrix(1, 0, []).T
for joint in self._joints:
kd_ind = kd_ind.col_join(joint.kdes)
return kd_ind
def _convert_bodies(self):
# Convert `Body` to `Particle` and `RigidBody`
bodylist = []
for body in self.bodies:
if body.is_rigidbody:
rb = RigidBody(body.name, body.masscenter, body.frame, body.mass,
(body.central_inertia, body.masscenter))
rb.potential_energy = body.potential_energy
bodylist.append(rb)
else:
part = Particle(body.name, body.masscenter, body.mass)
part.potential_energy = body.potential_energy
bodylist.append(part)
return bodylist
def form_eoms(self, method=KanesMethod):
"""Method to form system's equation of motions.
Parameters
==========
method : Class
Class name of method.
Returns
========
Matrix
Vector of equations of motions.
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
>>> from sympy import S, symbols
>>> from sympy.physics.mechanics import LagrangesMethod, dynamicsymbols, Body
>>> from sympy.physics.mechanics import PrismaticJoint, JointsMethod
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> wall = Body('W')
>>> part = Body('P', mass=m)
>>> part.potential_energy = k * q**2 / S(2)
>>> J = PrismaticJoint('J', wall, part, coordinates=q, speeds=qd)
>>> wall.apply_force(b * qd * wall.x, reaction_body=part)
>>> method = JointsMethod(wall, J)
>>> method.form_eoms(LagrangesMethod)
Matrix([[b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t, 2))]])
We can also solve for the states using the 'rhs' method.
>>> method.rhs()
Matrix([
[ Derivative(q(t), t)],
[(-b*Derivative(q(t), t) - k*q(t))/m]])
"""
bodylist = self._convert_bodies()
if issubclass(method, LagrangesMethod): #LagrangesMethod or similar
L = Lagrangian(self.frame, *bodylist)
self._method = method(L, self.q, self.loads, bodylist, self.frame)
else: #KanesMethod or similar
self._method = method(self.frame, q_ind=self.q, u_ind=self.u, kd_eqs=self.kdes,
forcelist=self.loads, bodies=bodylist)
soln = self.method._form_eoms()
return soln
def rhs(self, inv_method=None):
"""Returns equations that can be solved numerically.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
Returns
========
Matrix
Numerically solvable equations.
See Also
========
sympy.physics.mechanics.kane.KanesMethod.rhs():
KanesMethod's rhs function.
sympy.physics.mechanics.lagrange.LagrangesMethod.rhs():
LagrangesMethod's rhs function.
"""
return self.method.rhs(inv_method=inv_method)
|
17ea4fbdc99fc5d69c671488c2769727e5bd2ac9481270b0ee58c22e5c559386 | from sympy.core.backend import sympify
from sympy.physics.vector import Point
from sympy.utilities.exceptions import sympy_deprecation_warning
__all__ = ['Particle']
class Particle:
"""A particle.
Explanation
===========
Particles have a non-zero mass and lack spatial extension; they take up no
space.
Values need to be supplied on initialization, but can be changed later.
Parameters
==========
name : str
Name of particle
point : Point
A physics/mechanics Point which represents the position, velocity, and
acceleration of this Particle
mass : sympifyable
A SymPy expression representing the Particle's mass
Examples
========
>>> from sympy.physics.mechanics import Particle, Point
>>> from sympy import Symbol
>>> po = Point('po')
>>> m = Symbol('m')
>>> pa = Particle('pa', po, m)
>>> # Or you could change these later
>>> pa.mass = m
>>> pa.point = po
"""
def __init__(self, name, point, mass):
if not isinstance(name, str):
raise TypeError('Supply a valid name.')
self._name = name
self.mass = mass
self.point = point
self.potential_energy = 0
def __str__(self):
return self._name
def __repr__(self):
return self.__str__()
@property
def mass(self):
"""Mass of the particle."""
return self._mass
@mass.setter
def mass(self, value):
self._mass = sympify(value)
@property
def point(self):
"""Point of the particle."""
return self._point
@point.setter
def point(self, p):
if not isinstance(p, Point):
raise TypeError("Particle point attribute must be a Point object.")
self._point = p
def linear_momentum(self, frame):
"""Linear momentum of the particle.
Explanation
===========
The linear momentum L, of a particle P, with respect to frame N is
given by:
L = m * v
where m is the mass of the particle, and v is the velocity of the
particle in the frame N.
Parameters
==========
frame : ReferenceFrame
The frame in which linear momentum is desired.
Examples
========
>>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> m, v = dynamicsymbols('m v')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> A = Particle('A', P, m)
>>> P.set_vel(N, v * N.x)
>>> A.linear_momentum(N)
m*v*N.x
"""
return self.mass * self.point.vel(frame)
def angular_momentum(self, point, frame):
"""Angular momentum of the particle about the point.
Explanation
===========
The angular momentum H, about some point O of a particle, P, is given
by:
``H = cross(r, m * v)``
where r is the position vector from point O to the particle P, m is
the mass of the particle, and v is the velocity of the particle in
the inertial frame, N.
Parameters
==========
point : Point
The point about which angular momentum of the particle is desired.
frame : ReferenceFrame
The frame in which angular momentum is desired.
Examples
========
>>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> m, v, r = dynamicsymbols('m v r')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> A = O.locatenew('A', r * N.x)
>>> P = Particle('P', A, m)
>>> P.point.set_vel(N, v * N.y)
>>> P.angular_momentum(O, N)
m*r*v*N.z
"""
return self.point.pos_from(point) ^ (self.mass * self.point.vel(frame))
def kinetic_energy(self, frame):
"""Kinetic energy of the particle.
Explanation
===========
The kinetic energy, T, of a particle, P, is given by:
``T = 1/2 (dot(m * v, v))``
where m is the mass of particle P, and v is the velocity of the
particle in the supplied ReferenceFrame.
Parameters
==========
frame : ReferenceFrame
The Particle's velocity is typically defined with respect to
an inertial frame but any relevant frame in which the velocity is
known can be supplied.
Examples
========
>>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
>>> from sympy import symbols
>>> m, v, r = symbols('m v r')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> P = Particle('P', O, m)
>>> P.point.set_vel(N, v * N.y)
>>> P.kinetic_energy(N)
m*v**2/2
"""
return (self.mass / sympify(2) * self.point.vel(frame) &
self.point.vel(frame))
@property
def potential_energy(self):
"""The potential energy of the Particle.
Examples
========
>>> from sympy.physics.mechanics import Particle, Point
>>> from sympy import symbols
>>> m, g, h = symbols('m g h')
>>> O = Point('O')
>>> P = Particle('P', O, m)
>>> P.potential_energy = m * g * h
>>> P.potential_energy
g*h*m
"""
return self._pe
@potential_energy.setter
def potential_energy(self, scalar):
"""Used to set the potential energy of the Particle.
Parameters
==========
scalar : Sympifyable
The potential energy (a scalar) of the Particle.
Examples
========
>>> from sympy.physics.mechanics import Particle, Point
>>> from sympy import symbols
>>> m, g, h = symbols('m g h')
>>> O = Point('O')
>>> P = Particle('P', O, m)
>>> P.potential_energy = m * g * h
"""
self._pe = sympify(scalar)
def set_potential_energy(self, scalar):
sympy_deprecation_warning(
"""
The sympy.physics.mechanics.Particle.set_potential_energy()
method is deprecated. Instead use
P.potential_energy = scalar
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-set-potential-energy",
)
self.potential_energy = scalar
def parallel_axis(self, point, frame):
"""Returns an inertia dyadic of the particle with respect to another
point and frame.
Parameters
==========
point : sympy.physics.vector.Point
The point to express the inertia dyadic about.
frame : sympy.physics.vector.ReferenceFrame
The reference frame used to construct the dyadic.
Returns
=======
inertia : sympy.physics.vector.Dyadic
The inertia dyadic of the particle expressed about the provided
point and frame.
"""
# circular import issue
from sympy.physics.mechanics import inertia_of_point_mass
return inertia_of_point_mass(self.mass, self.point.pos_from(point),
frame)
|
59124fb307aa83737cb11cb7ae7dcc1cd2c90542420e2477076f6685f1dce713 | # isort:skip_file
"""
Dimensional analysis and unit systems.
This module defines dimension/unit systems and physical quantities. It is
based on a group-theoretical construction where dimensions are represented as
vectors (coefficients being the exponents), and units are defined as a dimension
to which we added a scale.
Quantities are built from a factor and a unit, and are the basic objects that
one will use when doing computations.
All objects except systems and prefixes can be used in SymPy expressions.
Note that as part of a CAS, various objects do not combine automatically
under operations.
Details about the implementation can be found in the documentation, and we
will not repeat all the explanations we gave there concerning our approach.
Ideas about future developments can be found on the `Github wiki
<https://github.com/sympy/sympy/wiki/Unit-systems>`_, and you should consult
this page if you are willing to help.
Useful functions:
- ``find_unit``: easily lookup pre-defined units.
- ``convert_to(expr, newunit)``: converts an expression into the same
expression expressed in another unit.
"""
from .dimensions import Dimension, DimensionSystem
from .unitsystem import UnitSystem
from .util import convert_to
from .quantities import Quantity
from .definitions.dimension_definitions import (
amount_of_substance, acceleration, action, area,
capacitance, charge, conductance, current, energy,
force, frequency, impedance, inductance, length,
luminous_intensity, magnetic_density,
magnetic_flux, mass, momentum, power, pressure, temperature, time,
velocity, voltage, volume
)
Unit = Quantity
speed = velocity
luminosity = luminous_intensity
magnetic_flux_density = magnetic_density
amount = amount_of_substance
from .prefixes import (
# 10-power based:
yotta,
zetta,
exa,
peta,
tera,
giga,
mega,
kilo,
hecto,
deca,
deci,
centi,
milli,
micro,
nano,
pico,
femto,
atto,
zepto,
yocto,
# 2-power based:
kibi,
mebi,
gibi,
tebi,
pebi,
exbi,
)
from .definitions import (
percent, percents,
permille,
rad, radian, radians,
deg, degree, degrees,
sr, steradian, steradians,
mil, angular_mil, angular_mils,
m, meter, meters,
kg, kilogram, kilograms,
s, second, seconds,
A, ampere, amperes,
K, kelvin, kelvins,
mol, mole, moles,
cd, candela, candelas,
g, gram, grams,
mg, milligram, milligrams,
ug, microgram, micrograms,
t, tonne, metric_ton,
newton, newtons, N,
joule, joules, J,
watt, watts, W,
pascal, pascals, Pa, pa,
hertz, hz, Hz,
coulomb, coulombs, C,
volt, volts, v, V,
ohm, ohms,
siemens, S, mho, mhos,
farad, farads, F,
henry, henrys, H,
tesla, teslas, T,
weber, webers, Wb, wb,
optical_power, dioptre, D,
lux, lx,
katal, kat,
gray, Gy,
becquerel, Bq,
km, kilometer, kilometers,
dm, decimeter, decimeters,
cm, centimeter, centimeters,
mm, millimeter, millimeters,
um, micrometer, micrometers, micron, microns,
nm, nanometer, nanometers,
pm, picometer, picometers,
ft, foot, feet,
inch, inches,
yd, yard, yards,
mi, mile, miles,
nmi, nautical_mile, nautical_miles,
ha, hectare,
l, L, liter, liters,
dl, dL, deciliter, deciliters,
cl, cL, centiliter, centiliters,
ml, mL, milliliter, milliliters,
ms, millisecond, milliseconds,
us, microsecond, microseconds,
ns, nanosecond, nanoseconds,
ps, picosecond, picoseconds,
minute, minutes,
h, hour, hours,
day, days,
anomalistic_year, anomalistic_years,
sidereal_year, sidereal_years,
tropical_year, tropical_years,
common_year, common_years,
julian_year, julian_years,
draconic_year, draconic_years,
gaussian_year, gaussian_years,
full_moon_cycle, full_moon_cycles,
year, years,
G, gravitational_constant,
c, speed_of_light,
elementary_charge,
hbar,
planck,
eV, electronvolt, electronvolts,
avogadro_number,
avogadro, avogadro_constant,
boltzmann, boltzmann_constant,
stefan, stefan_boltzmann_constant,
R, molar_gas_constant,
faraday_constant,
josephson_constant,
von_klitzing_constant,
Da, dalton, amu, amus, atomic_mass_unit, atomic_mass_constant,
me, electron_rest_mass,
gee, gees, acceleration_due_to_gravity,
u0, magnetic_constant, vacuum_permeability,
e0, electric_constant, vacuum_permittivity,
Z0, vacuum_impedance,
coulomb_constant, electric_force_constant,
atmosphere, atmospheres, atm,
kPa,
bar, bars,
pound, pounds,
psi,
dHg0,
mmHg, torr,
mmu, mmus, milli_mass_unit,
quart, quarts,
ly, lightyear, lightyears,
au, astronomical_unit, astronomical_units,
planck_mass,
planck_time,
planck_temperature,
planck_length,
planck_charge,
planck_area,
planck_volume,
planck_momentum,
planck_energy,
planck_force,
planck_power,
planck_density,
planck_energy_density,
planck_intensity,
planck_angular_frequency,
planck_pressure,
planck_current,
planck_voltage,
planck_impedance,
planck_acceleration,
bit, bits,
byte,
kibibyte, kibibytes,
mebibyte, mebibytes,
gibibyte, gibibytes,
tebibyte, tebibytes,
pebibyte, pebibytes,
exbibyte, exbibytes,
)
from .systems import (
mks, mksa, si
)
def find_unit(quantity, unit_system="SI"):
"""
Return a list of matching units or dimension names.
- If ``quantity`` is a string -- units/dimensions containing the string
`quantity`.
- If ``quantity`` is a unit or dimension -- units having matching base
units or dimensions.
Examples
========
>>> from sympy.physics import units as u
>>> u.find_unit('charge')
['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
>>> u.find_unit(u.charge)
['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
>>> u.find_unit("ampere")
['ampere', 'amperes']
>>> u.find_unit('volt')
['volt', 'volts', 'electronvolt', 'electronvolts', 'planck_voltage']
>>> u.find_unit(u.inch**3)[:9]
['L', 'l', 'cL', 'cl', 'dL', 'dl', 'mL', 'ml', 'liter']
"""
unit_system = UnitSystem.get_unit_system(unit_system)
import sympy.physics.units as u
rv = []
if isinstance(quantity, str):
rv = [i for i in dir(u) if quantity in i and isinstance(getattr(u, i), Quantity)]
dim = getattr(u, quantity)
if isinstance(dim, Dimension):
rv.extend(find_unit(dim))
else:
for i in sorted(dir(u)):
other = getattr(u, i)
if not isinstance(other, Quantity):
continue
if isinstance(quantity, Quantity):
if quantity.dimension == other.dimension:
rv.append(str(i))
elif isinstance(quantity, Dimension):
if other.dimension == quantity:
rv.append(str(i))
elif other.dimension == Dimension(unit_system.get_dimensional_expr(quantity)):
rv.append(str(i))
return sorted(set(rv), key=lambda x: (len(x), x))
# NOTE: the old units module had additional variables:
# 'density', 'illuminance', 'resistance'.
# They were not dimensions, but units (old Unit class).
__all__ = [
'Dimension', 'DimensionSystem',
'UnitSystem',
'convert_to',
'Quantity',
'amount_of_substance', 'acceleration', 'action', 'area',
'capacitance', 'charge', 'conductance', 'current', 'energy',
'force', 'frequency', 'impedance', 'inductance', 'length',
'luminous_intensity', 'magnetic_density',
'magnetic_flux', 'mass', 'momentum', 'power', 'pressure', 'temperature', 'time',
'velocity', 'voltage', 'volume',
'Unit',
'speed',
'luminosity',
'magnetic_flux_density',
'amount',
'yotta',
'zetta',
'exa',
'peta',
'tera',
'giga',
'mega',
'kilo',
'hecto',
'deca',
'deci',
'centi',
'milli',
'micro',
'nano',
'pico',
'femto',
'atto',
'zepto',
'yocto',
'kibi',
'mebi',
'gibi',
'tebi',
'pebi',
'exbi',
'percent', 'percents',
'permille',
'rad', 'radian', 'radians',
'deg', 'degree', 'degrees',
'sr', 'steradian', 'steradians',
'mil', 'angular_mil', 'angular_mils',
'm', 'meter', 'meters',
'kg', 'kilogram', 'kilograms',
's', 'second', 'seconds',
'A', 'ampere', 'amperes',
'K', 'kelvin', 'kelvins',
'mol', 'mole', 'moles',
'cd', 'candela', 'candelas',
'g', 'gram', 'grams',
'mg', 'milligram', 'milligrams',
'ug', 'microgram', 'micrograms',
't', 'tonne', 'metric_ton',
'newton', 'newtons', 'N',
'joule', 'joules', 'J',
'watt', 'watts', 'W',
'pascal', 'pascals', 'Pa', 'pa',
'hertz', 'hz', 'Hz',
'coulomb', 'coulombs', 'C',
'volt', 'volts', 'v', 'V',
'ohm', 'ohms',
'siemens', 'S', 'mho', 'mhos',
'farad', 'farads', 'F',
'henry', 'henrys', 'H',
'tesla', 'teslas', 'T',
'weber', 'webers', 'Wb', 'wb',
'optical_power', 'dioptre', 'D',
'lux', 'lx',
'katal', 'kat',
'gray', 'Gy',
'becquerel', 'Bq',
'km', 'kilometer', 'kilometers',
'dm', 'decimeter', 'decimeters',
'cm', 'centimeter', 'centimeters',
'mm', 'millimeter', 'millimeters',
'um', 'micrometer', 'micrometers', 'micron', 'microns',
'nm', 'nanometer', 'nanometers',
'pm', 'picometer', 'picometers',
'ft', 'foot', 'feet',
'inch', 'inches',
'yd', 'yard', 'yards',
'mi', 'mile', 'miles',
'nmi', 'nautical_mile', 'nautical_miles',
'ha', 'hectare',
'l', 'L', 'liter', 'liters',
'dl', 'dL', 'deciliter', 'deciliters',
'cl', 'cL', 'centiliter', 'centiliters',
'ml', 'mL', 'milliliter', 'milliliters',
'ms', 'millisecond', 'milliseconds',
'us', 'microsecond', 'microseconds',
'ns', 'nanosecond', 'nanoseconds',
'ps', 'picosecond', 'picoseconds',
'minute', 'minutes',
'h', 'hour', 'hours',
'day', 'days',
'anomalistic_year', 'anomalistic_years',
'sidereal_year', 'sidereal_years',
'tropical_year', 'tropical_years',
'common_year', 'common_years',
'julian_year', 'julian_years',
'draconic_year', 'draconic_years',
'gaussian_year', 'gaussian_years',
'full_moon_cycle', 'full_moon_cycles',
'year', 'years',
'G', 'gravitational_constant',
'c', 'speed_of_light',
'elementary_charge',
'hbar',
'planck',
'eV', 'electronvolt', 'electronvolts',
'avogadro_number',
'avogadro', 'avogadro_constant',
'boltzmann', 'boltzmann_constant',
'stefan', 'stefan_boltzmann_constant',
'R', 'molar_gas_constant',
'faraday_constant',
'josephson_constant',
'von_klitzing_constant',
'Da', 'dalton', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant',
'me', 'electron_rest_mass',
'gee', 'gees', 'acceleration_due_to_gravity',
'u0', 'magnetic_constant', 'vacuum_permeability',
'e0', 'electric_constant', 'vacuum_permittivity',
'Z0', 'vacuum_impedance',
'coulomb_constant', 'electric_force_constant',
'atmosphere', 'atmospheres', 'atm',
'kPa',
'bar', 'bars',
'pound', 'pounds',
'psi',
'dHg0',
'mmHg', 'torr',
'mmu', 'mmus', 'milli_mass_unit',
'quart', 'quarts',
'ly', 'lightyear', 'lightyears',
'au', 'astronomical_unit', 'astronomical_units',
'planck_mass',
'planck_time',
'planck_temperature',
'planck_length',
'planck_charge',
'planck_area',
'planck_volume',
'planck_momentum',
'planck_energy',
'planck_force',
'planck_power',
'planck_density',
'planck_energy_density',
'planck_intensity',
'planck_angular_frequency',
'planck_pressure',
'planck_current',
'planck_voltage',
'planck_impedance',
'planck_acceleration',
'bit', 'bits',
'byte',
'kibibyte', 'kibibytes',
'mebibyte', 'mebibytes',
'gibibyte', 'gibibytes',
'tebibyte', 'tebibytes',
'pebibyte', 'pebibytes',
'exbibyte', 'exbibytes',
'mks', 'mksa', 'si',
]
|
af9136df50942e6b1210ced187bcdf7133ee47ce7f5f40b0442554fe70ec7a4d | """
Physical quantities.
"""
from sympy.core.expr import AtomicExpr
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.physics.units.dimensions import _QuantityMapper
from sympy.physics.units.prefixes import Prefix
class Quantity(AtomicExpr):
"""
Physical quantity: can be a unit of measure, a constant or a generic quantity.
"""
is_commutative = True
is_real = True
is_number = False
is_nonzero = True
is_physical_constant = False
_diff_wrt = True
def __new__(cls, name, abbrev=None,
latex_repr=None, pretty_unicode_repr=None,
pretty_ascii_repr=None, mathml_presentation_repr=None,
is_prefixed=False,
**assumptions):
if not isinstance(name, Symbol):
name = Symbol(name)
if abbrev is None:
abbrev = name
elif isinstance(abbrev, str):
abbrev = Symbol(abbrev)
# HACK: These are here purely for type checking. They actually get assigned below.
cls._is_prefixed = is_prefixed
obj = AtomicExpr.__new__(cls, name, abbrev)
obj._name = name
obj._abbrev = abbrev
obj._latex_repr = latex_repr
obj._unicode_repr = pretty_unicode_repr
obj._ascii_repr = pretty_ascii_repr
obj._mathml_repr = mathml_presentation_repr
obj._is_prefixed = is_prefixed
return obj
def set_global_dimension(self, dimension):
_QuantityMapper._quantity_dimension_global[self] = dimension
def set_global_relative_scale_factor(self, scale_factor, reference_quantity):
"""
Setting a scale factor that is valid across all unit system.
"""
from sympy.physics.units import UnitSystem
scale_factor = sympify(scale_factor)
if isinstance(scale_factor, Prefix):
self._is_prefixed = True
# replace all prefixes by their ratio to canonical units:
scale_factor = scale_factor.replace(
lambda x: isinstance(x, Prefix),
lambda x: x.scale_factor
)
scale_factor = sympify(scale_factor)
UnitSystem._quantity_scale_factors_global[self] = (scale_factor, reference_quantity)
UnitSystem._quantity_dimensional_equivalence_map_global[self] = reference_quantity
@property
def name(self):
return self._name
@property
def dimension(self):
from sympy.physics.units import UnitSystem
unit_system = UnitSystem.get_default_unit_system()
return unit_system.get_quantity_dimension(self)
@property
def abbrev(self):
"""
Symbol representing the unit name.
Prepend the abbreviation with the prefix symbol if it is defines.
"""
return self._abbrev
@property
def scale_factor(self):
"""
Overall magnitude of the quantity as compared to the canonical units.
"""
from sympy.physics.units import UnitSystem
unit_system = UnitSystem.get_default_unit_system()
return unit_system.get_quantity_scale_factor(self)
def _eval_is_positive(self):
return True
def _eval_is_constant(self):
return True
def _eval_Abs(self):
return self
def _eval_subs(self, old, new):
if isinstance(new, Quantity) and self != old:
return self
def _latex(self, printer):
if self._latex_repr:
return self._latex_repr
else:
return r'\text{{{}}}'.format(self.args[1] \
if len(self.args) >= 2 else self.args[0])
def convert_to(self, other, unit_system="SI"):
"""
Convert the quantity to another quantity of same dimensions.
Examples
========
>>> from sympy.physics.units import speed_of_light, meter, second
>>> speed_of_light
speed_of_light
>>> speed_of_light.convert_to(meter/second)
299792458*meter/second
>>> from sympy.physics.units import liter
>>> liter.convert_to(meter**3)
meter**3/1000
"""
from .util import convert_to
return convert_to(self, other, unit_system)
@property
def free_symbols(self):
"""Return free symbols from quantity."""
return set()
@property
def is_prefixed(self):
"""Whether or not the quantity is prefixed. Eg. `kilogram` is prefixed, but `gram` is not."""
return self._is_prefixed
class PhysicalConstant(Quantity):
"""Represents a physical constant, eg. `speed_of_light` or `avogadro_constant`."""
is_physical_constant = True
|
7b8fdec8f0e05ea23ec1a881a5a7bb3c36b6a703b9fd4f7f88a83b2e64007f33 | """
This module can be used to solve 2D beam bending problems with
singularity functions in mechanics.
"""
from sympy.core import S, Symbol, diff, symbols
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.relational import Eq
from sympy.core.sympify import sympify
from sympy.solvers import linsolve
from sympy.solvers.ode.ode import dsolve
from sympy.solvers.solvers import solve
from sympy.printing import sstr
from sympy.functions import SingularityFunction, Piecewise, factorial
from sympy.integrals import integrate
from sympy.series import limit
from sympy.plotting import plot, PlotGrid
from sympy.geometry.entity import GeometryEntity
from sympy.external import import_module
from sympy.sets.sets import Interval
from sympy.utilities.lambdify import lambdify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import iterable
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
class Beam:
"""
A Beam is a structural element that is capable of withstanding load
primarily by resisting against bending. Beams are characterized by
their cross sectional profile(Second moment of area), their length
and their material.
.. note::
A consistent sign convention must be used while solving a beam
bending problem; the results will
automatically follow the chosen sign convention. However, the
chosen sign convention must respect the rule that, on the positive
side of beam's axis (in respect to current section), a loading force
giving positive shear yields a negative moment, as below (the
curved arrow shows the positive moment and rotation):
.. image:: allowed-sign-conventions.png
Examples
========
There is a beam of length 4 meters. A constant distributed load of 6 N/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. The deflection of the beam at the end is restricted.
Using the sign convention of downwards forces being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(4, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)
>>> b.bc_deflection = [(0, 0), (4, 0)]
>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}
>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
>>> b.shear_force()
3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0)
>>> b.bending_moment()
3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1)
>>> b.slope()
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
>>> b.deflection()
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
>>> b.deflection().rewrite(Piecewise)
(7*x - Piecewise((x**3, x > 0), (0, True))/2
- 3*Piecewise(((x - 4)**3, x > 4), (0, True))/2
+ Piecewise(((x - 2)**4, x > 2), (0, True))/4)/(E*I)
Calculate the support reactions for a fully symbolic beam of length L.
There are two simple supports below the beam, one at the starting point
and another at the ending point of the beam. The deflection of the beam
at the end is restricted. The beam is loaded with:
* a downward point load P1 applied at L/4
* an upward point load P2 applied at L/8
* a counterclockwise moment M1 applied at L/2
* a clockwise moment M2 applied at 3*L/4
* a distributed constant load q1, applied downward, starting from L/2
up to 3*L/4
* a distributed constant load q2, applied upward, starting from 3*L/4
up to L
No assumptions are needed for symbolic loads. However, defining a positive
length will help the algorithm to compute the solution.
>>> E, I = symbols('E, I')
>>> L = symbols("L", positive=True)
>>> P1, P2, M1, M2, q1, q2 = symbols("P1, P2, M1, M2, q1, q2")
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(L, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, L, -1)
>>> b.apply_load(P1, L/4, -1)
>>> b.apply_load(-P2, L/8, -1)
>>> b.apply_load(M1, L/2, -2)
>>> b.apply_load(-M2, 3*L/4, -2)
>>> b.apply_load(q1, L/2, 0, 3*L/4)
>>> b.apply_load(-q2, 3*L/4, 0, L)
>>> b.bc_deflection = [(0, 0), (L, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> print(b.reaction_loads[R1])
(-3*L**2*q1 + L**2*q2 - 24*L*P1 + 28*L*P2 - 32*M1 + 32*M2)/(32*L)
>>> print(b.reaction_loads[R2])
(-5*L**2*q1 + 7*L**2*q2 - 8*L*P1 + 4*L*P2 + 32*M1 - 32*M2)/(32*L)
"""
def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material. It can
also be a continuous function of position along the beam.
second_moment : Sympifyable or Geometry object
Describes the cross-section of the beam via a SymPy expression
representing the Beam's second moment of area. It is a geometrical
property of an area which reflects how its points are distributed
with respect to its neutral axis. It can also be a continuous
function of position along the beam. Alternatively ``second_moment``
can be a shape object such as a ``Polygon`` from the geometry module
representing the shape of the cross-section of the beam. In such cases,
it is assumed that the x-axis of the shape object is aligned with the
bending axis of the beam. The second moment of area will be computed
from the shape object internally.
area : Symbol/float
Represents the cross-section area of beam
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
base_char : String, optional
A String that will be used as base character to generate sequential
symbols for integration constants in cases where boundary conditions
are not sufficient to solve them.
"""
self.length = length
self.elastic_modulus = elastic_modulus
if isinstance(second_moment, GeometryEntity):
self.cross_section = second_moment
else:
self.cross_section = None
self.second_moment = second_moment
self.variable = variable
self._base_char = base_char
self._boundary_conditions = {'deflection': [], 'slope': []}
self._load = 0
self.area = area
self._applied_supports = []
self._support_as_loads = []
self._applied_loads = []
self._reaction_loads = {}
self._ild_reactions = {}
self._ild_shear = 0
self._ild_moment = 0
# _original_load is a copy of _load equations with unsubstituted reaction
# forces. It is used for calculating reaction forces in case of I.L.D.
self._original_load = 0
self._composite_type = None
self._hinge_position = None
def __str__(self):
shape_description = self._cross_section if self._cross_section else self._second_moment
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description))
return str_sol
@property
def reaction_loads(self):
""" Returns the reaction forces in a dictionary."""
return self._reaction_loads
@property
def ild_shear(self):
""" Returns the I.L.D. shear equation."""
return self._ild_shear
@property
def ild_reactions(self):
""" Returns the I.L.D. reaction forces in a dictionary."""
return self._ild_reactions
@property
def ild_moment(self):
""" Returns the I.L.D. moment equation."""
return self._ild_moment
@property
def length(self):
"""Length of the Beam."""
return self._length
@length.setter
def length(self, l):
self._length = sympify(l)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def variable(self):
"""
A symbol that can be used as a variable along the length of the beam
while representing load distribution, shear force curve, bending
moment, slope curve and the deflection curve. By default, it is set
to ``Symbol('x')``, but this property is mutable.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I, A = symbols('E, I, A')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable
x
>>> b.variable = y
>>> b.variable
y
>>> b = Beam(4, E, I, A, z)
>>> b.variable
z
"""
return self._variable
@variable.setter
def variable(self, v):
if isinstance(v, Symbol):
self._variable = v
else:
raise TypeError("""The variable should be a Symbol object.""")
@property
def elastic_modulus(self):
"""Young's Modulus of the Beam. """
return self._elastic_modulus
@elastic_modulus.setter
def elastic_modulus(self, e):
self._elastic_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
self._cross_section = None
if isinstance(i, GeometryEntity):
raise ValueError("To update cross-section geometry use `cross_section` attribute")
else:
self._second_moment = sympify(i)
@property
def cross_section(self):
"""Cross-section of the beam"""
return self._cross_section
@cross_section.setter
def cross_section(self, s):
if s:
self._second_moment = s.second_moment_of_area()[0]
self._cross_section = s
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has three keywords namely moment, slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value).
Examples
========
There is a beam of length 4 meters. The bending moment at 0 should be 4
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
deflection should be 2 at 0.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
Here the deflection of the beam should be ``2`` at ``0``.
Similarly, the slope of the beam should be ``1`` at ``0``.
"""
return self._boundary_conditions
@property
def bc_slope(self):
return self._boundary_conditions['slope']
@bc_slope.setter
def bc_slope(self, s_bcs):
self._boundary_conditions['slope'] = s_bcs
@property
def bc_deflection(self):
return self._boundary_conditions['deflection']
@bc_deflection.setter
def bc_deflection(self, d_bcs):
self._boundary_conditions['deflection'] = d_bcs
def join(self, beam, via="fixed"):
"""
This method joins two beams to make a new composite beam system.
Passed Beam class instance is attached to the right end of calling
object. This method can be used to form beams having Discontinuous
values of Elastic modulus or Second moment.
Parameters
==========
beam : Beam class object
The Beam object which would be connected to the right of calling
object.
via : String
States the way two Beam object would get connected
- For axially fixed Beams, via="fixed"
- For Beams connected via hinge, via="hinge"
Examples
========
There is a cantilever beam of length 4 meters. For first 2 meters
its moment of inertia is `1.5*I` and `I` for the other end.
A pointload of magnitude 4 N is applied from the top at its free end.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
>>> b.slope()
(-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
- 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
+ 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
new_length = self.length + beam.length
if self.second_moment != beam.second_moment:
new_second_moment = Piecewise((self.second_moment, x<=self.length),
(beam.second_moment, x<=new_length))
else:
new_second_moment = self.second_moment
if via == "fixed":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "fixed"
return new_beam
if via == "hinge":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "hinge"
new_beam._hinge_position = self.length
return new_beam
def apply_support(self, loc, type="fixed"):
"""
This method applies support to a particular beam object.
Parameters
==========
loc : Sympifyable
Location of point at which support is applied.
type : String
Determines type of Beam support applied. To apply support structure
with
- zero degree of freedom, type = "fixed"
- one degree of freedom, type = "pin"
- two degrees of freedom, type = "roller"
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_support(30, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
loc = sympify(loc)
self._applied_supports.append((loc, type))
if type in ("pin", "roller"):
reaction_load = Symbol('R_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.bc_deflection.append((loc, 0))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.apply_load(reaction_moment, loc, -2)
self.bc_deflection.append((loc, 0))
self.bc_slope.append((loc, 0))
self._support_as_loads.append((reaction_moment, loc, -2, None))
self._support_as_loads.append((reaction_load, loc, -1, None))
def apply_load(self, value, start, order, end=None):
"""
This method adds up the loads given to a particular beam object.
Parameters
==========
value : Sympifyable
The value inserted should have the units [Force/(Distance**(n+1)]
where n is the order of applied load.
Units for applied loads:
- For moments, unit = kN*m
- For point loads, unit = kN
- For constant distributed load, unit = kN/m
- For ramp loads, unit = kN/m/m
- For parabolic ramp loads, unit = kN/m/m/m
- ... so on.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order = -2
- For point loads, order =-1
- For constant distributed load, order = 0
- For ramp loads, order = 1
- For parabolic ramp loads, order = 2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
self._applied_loads.append((value, start, order, end))
self._load += value*SingularityFunction(x, start, order)
self._original_load += value*SingularityFunction(x, start, order)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="apply")
def remove_load(self, value, start, order, end=None):
"""
This method removes a particular load present on the beam object.
Returns a ValueError if the load passed as an argument is not
present on the beam.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order= -2
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
>>> b.remove_load(-2, 2, 2, end = 3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if (value, start, order, end) in self._applied_loads:
self._load -= value*SingularityFunction(x, start, order)
self._original_load -= value*SingularityFunction(x, start, order)
self._applied_loads.remove((value, start, order, end))
else:
msg = "No such load distribution exists on the beam object."
raise ValueError(msg)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="remove")
def _handle_end(self, x, value, start, order, end, type):
"""
This functions handles the optional `end` value in the
`apply_load` and `remove_load` functions. When the value
of end is not NULL, this function will be executed.
"""
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value*x**order
if type == "apply":
# iterating for "apply_load" method
for i in range(0, order + 1):
self._load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
elif type == "remove":
# iterating for "remove_load" method
for i in range(0, order + 1):
self._load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
@property
def load(self):
"""
Returns a Singularity Function expression which represents
the load distribution curve of the Beam object.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 3 meters away from the
starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
"""
return self._load
@property
def applied_loads(self):
"""
Returns a list of all loads applied on the beam object.
Each load in the list is a tuple of form (value, start, order, end).
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point. Another pointload of magnitude 5 N
is applied at same position.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
"""
return self._applied_loads
def _solve_hinge_beams(self, *reactions):
"""Method to find integration constants and reactional variables in a
composite beam connected via hinge.
This method resolves the composite Beam into its sub-beams and then
equations of shear force, bending moment, slope and deflection are
evaluated for both of them separately. These equations are then solved
for unknown reactions and integration constants using the boundary
conditions applied on the Beam. Equal deflection of both sub-beams
at the hinge joint gives us another equation to solve the system.
Examples
========
A combined beam, with constant fkexural rigidity E*I, is formed by joining
a Beam of length 2*l to the right of another Beam of length l. The whole beam
is fixed at both of its both end. A point load of magnitude P is also applied
from the top at a distance of 2*l from starting point.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l=symbols('l', positive=True)
>>> b1=Beam(l, E, I)
>>> b2=Beam(2*l, E, I)
>>> b=b1.join(b2,"hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1,0,-1)
>>> b.apply_load(M1,0,-2)
>>> b.apply_load(P,2*l,-1)
>>> b.apply_load(A2,3*l,-1)
>>> b.apply_load(M2,3*l,-2)
>>> b.bc_slope=[(0,0), (3*l, 0)]
>>> b.bc_deflection=[(0,0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.slope()
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
>>> b.deflection()
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
"""
x = self.variable
l = self._hinge_position
E = self._elastic_modulus
I = self._second_moment
if isinstance(I, Piecewise):
I1 = I.args[0][0]
I2 = I.args[1][0]
else:
I1 = I2 = I
load_1 = 0 # Load equation on first segment of composite beam
load_2 = 0 # Load equation on second segment of composite beam
# Distributing load on both segments
for load in self.applied_loads:
if load[1] < l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
if load[2] == 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
elif load[2] > 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
elif load[1] == l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
elif load[1] > l:
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
if load[2] == 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
elif load[2] > 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
h = Symbol('h') # Force due to hinge
load_1 += h*SingularityFunction(x, l, -1)
load_2 -= h*SingularityFunction(x, 0, -1)
eq = []
shear_1 = integrate(load_1, x)
shear_curve_1 = limit(shear_1, x, l)
eq.append(shear_curve_1)
bending_1 = integrate(shear_1, x)
moment_curve_1 = limit(bending_1, x, l)
eq.append(moment_curve_1)
shear_2 = integrate(load_2, x)
shear_curve_2 = limit(shear_2, x, self.length - l)
eq.append(shear_curve_2)
bending_2 = integrate(shear_2, x)
moment_curve_2 = limit(bending_2, x, self.length - l)
eq.append(moment_curve_2)
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1)
def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
for position, value in self.bc_slope:
if position<l:
eq.append(slope_1.subs(x, position) - value)
else:
eq.append(slope_2.subs(x, position - l) - value)
for position, value in self.bc_deflection:
if position<l:
eq.append(def_1.subs(x, position) - value)
else:
eq.append(def_2.subs(x, position - l) - value)
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
reaction_values = list(constants[0])[5:]
self._reaction_loads = dict(zip(reactions, reaction_values))
self._load = self._load.subs(self._reaction_loads)
# Substituting constants and reactional load and moments with their corresponding values
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
def solve_for_reaction_loads(self, *reactions):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
"""
if self._composite_type == "hinge":
return self._solve_hinge_beams(*reactions)
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(self.shear_force(), x, l)
moment_curve = limit(self.bending_moment(), x, l)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(self.bending_moment(), x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
self._reaction_loads = dict(zip(reactions, solution))
self._load = self._load.subs(self._reaction_loads)
def shear_force(self):
"""
Returns a Singularity Function expression which represents
the shear force curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
"""
x = self.variable
return -integrate(self.load, x)
def max_shear_force(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
shear_curve = self.shear_force()
x = self.variable
terms = shear_curve.args
singularity = [] # Points at which shear function changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of shear force
shear_values = [] # List of values of shear force in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(shear_slope, x)
val = []
for point in points:
val.append(abs(shear_curve.subs(x, point)))
points.extend([singularity[i-1], s])
val += [abs(limit(shear_curve, x, singularity[i-1], '+')), abs(limit(shear_curve, x, s, '-'))]
max_shear = max(val)
shear_values.append(max_shear)
intervals.append(points[val.index(max_shear)])
# If shear force in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as
# solve can't represent Interval solutions.
except NotImplementedError:
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
final_shear = limit(shear_curve, x, s, '-')
# If shear_curve has a constant slope(it is a line).
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
shear_values.extend([initial_shear, final_shear])
intervals.extend([singularity[i-1], s])
else: # shear_curve has same value in whole Interval
shear_values.append(final_shear)
intervals.append(Interval(singularity[i-1], s))
shear_values = list(map(abs, shear_values))
maximum_shear = max(shear_values)
point = intervals[shear_values.index(maximum_shear)]
return (point, maximum_shear)
def bending_moment(self):
"""
Returns a Singularity Function expression which represents
the bending moment curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.bending_moment()
8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
"""
x = self.variable
return integrate(self.shear_force(), x)
def max_bmoment(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
bending_curve = self.bending_moment()
x = self.variable
terms = bending_curve.args
singularity = [] # Points at which bending moment changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of bending moment
moment_values = [] # List of values of bending moment in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(moment_slope, x)
val = []
for point in points:
val.append(abs(bending_curve.subs(x, point)))
points.extend([singularity[i-1], s])
val += [abs(limit(bending_curve, x, singularity[i-1], '+')), abs(limit(bending_curve, x, s, '-'))]
max_moment = max(val)
moment_values.append(max_moment)
intervals.append(points[val.index(max_moment)])
# If bending moment in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as solve
# can't represent Interval solutions.
except NotImplementedError:
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
final_moment = limit(bending_curve, x, s, '-')
# If bending_curve has a constant slope(it is a line).
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
moment_values.extend([initial_moment, final_moment])
intervals.extend([singularity[i-1], s])
else: # bending_curve has same value in whole Interval
moment_values.append(final_moment)
intervals.append(Interval(singularity[i-1], s))
moment_values = list(map(abs, moment_values))
maximum_moment = max(moment_values)
point = intervals[moment_values.index(maximum_moment)]
return (point, maximum_moment)
def point_cflexure(self):
"""
Returns a Set of point(s) with zero bending moment and
where bending moment curve of the beam object changes
its sign from negative to positive or vice versa.
Examples
========
There is is 10 meter long overhanging beam. There are
two simple supports below the beam. One at the start
and another one at a distance of 6 meters from the start.
Point loads of magnitude 10KN and 20KN are applied at
2 meters and 4 meters from start respectively. A Uniformly
distribute load of magnitude of magnitude 3KN/m is also
applied on top starting from 6 meters away from starting
point till end.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]
"""
# To restrict the range within length of the Beam
moment_curve = Piecewise((float("nan"), self.variable<=0),
(self.bending_moment(), self.variable<self.length),
(float("nan"), True))
points = solve(moment_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
return points
def slope(self):
"""
Returns a Singularity Function expression which represents
the slope the elastic curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_slope
if not self._boundary_conditions['slope']:
return diff(self.deflection(), x)
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
slope = 0
prev_slope = 0
prev_end = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
if i != len(args) - 1:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
return slope
C3 = Symbol('C3')
slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3
bc_eqs = []
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C3))
slope_curve = slope_curve.subs({C3: constants[0][0]})
return slope_curve
def deflection(self):
"""
Returns a Singularity Function expression which represents
the elastic curve or deflection of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.deflection()
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_deflection
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
constants = symbols(base_char + '3:5')
return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
elif not self._boundary_conditions['deflection']:
base_char = self._base_char
constant = symbols(base_char + '4')
return integrate(self.slope(), x) + constant
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
C3, C4 = symbols(base_char + '3:5') # Integration constants
slope_curve = -integrate(self.bending_moment(), x) + C3
deflection_curve = integrate(slope_curve, x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, (C3, C4)))
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
return S.One/(E*I)*deflection_curve
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
C4 = Symbol('C4')
deflection_curve = integrate(self.slope(), x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C4))
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
return deflection_curve
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
in a Beam object.
"""
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope(), self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
deflection_curve = self.deflection()
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
if len(deflections) != 0:
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
else:
return None
def shear_stress(self):
"""
Returns an expression representing the Shear Stress
curve of the Beam object.
"""
return self.shear_force()/self._area
def plot_shear_stress(self, subs=None):
"""
Returns a plot of shear stress present in the beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters and area of cross section 2 square
meters. A constant distributed load of 10 KN/m is applied from half of
the beam till the end. There are two simple supports below the beam,
one at the starting point and another at the ending point of the beam.
A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6), 2)
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_stress()
Plot object containing:
[0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0)
- 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0)
+ 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_stress = self.shear_stress()
x = self.variable
length = self.length
if subs is None:
subs = {}
for sym in shear_stress.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
# Returns Plot of Shear Stress
return plot (shear_stress.subs(subs), (x, 0, length),
title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$',
line_color='r')
def plot_shear_force(self, subs=None):
"""
Returns a plot for Shear force present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0)
- 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0)
+ 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_force = self.shear_force()
if subs is None:
subs = {}
for sym in shear_force.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
def plot_bending_moment(self, subs=None):
"""
Returns a plot for Bending moment present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_bending_moment()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1)
- 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1)
+ 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
"""
bending_moment = self.bending_moment()
if subs is None:
subs = {}
for sym in bending_moment.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
def plot_slope(self, subs=None):
"""
Returns a plot for slope of deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
"""
slope = self.slope()
if subs is None:
subs = {}
for sym in slope.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
def plot_deflection(self, subs=None):
"""
Returns a plot for deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
Plot object containing:
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
for x over (0.0, 8.0)
"""
deflection = self.deflection()
if subs is None:
subs = {}
for sym in deflection.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection.subs(subs), (self.variable, 0, length),
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r')
def plot_loading_results(self, subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
"""
length = self.length
variable = self.variable
if subs is None:
subs = {}
for sym in self.deflection().atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
line_color='g', show=False)
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
line_color='b', show=False)
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
line_color='m', show=False)
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r', show=False)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _solve_for_ild_equations(self):
"""
Helper function for I.L.D. It takes the unsubstituted
copy of the load equation and uses it to calculate shear force and bending
moment equations.
"""
x = self.variable
shear_force = -integrate(self._original_load, x)
bending_moment = integrate(shear_force, x)
return shear_force, bending_moment
def solve_for_ild_reactions(self, value, *reactions):
"""
Determines the Influence Line Diagram equations for reaction
forces under the effect of a moving load.
Parameters
==========
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 10 meters. There are two simple supports
below the beam, one at the starting point and another at the ending
point of the beam. Calculate the I.L.D. equations for reaction forces
under the effect of a moving load of magnitude 1kN.
.. image:: ildreaction.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_10 = symbols('R_0, R_10')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(10, 'roller')
>>> b.solve_for_ild_reactions(1,R_0,R_10)
>>> b.ild_reactions
{R_0: x/10 - 1, R_10: -x/10}
"""
shear_force, bending_moment = self._solve_for_ild_equations()
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(shear_force, x, l) - value
moment_curve = limit(bending_moment, x, l) - value*(l-x)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(bending_moment, x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
# Determining the equations and solving them.
self._ild_reactions = dict(zip(reactions, solution))
def plot_ild_reactions(self, subs=None):
"""
Plots the Influence Line Diagram of Reaction Forces
under the effect of a moving load. This function
should be called after calling solve_for_ild_reactions().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 10 meters. A point load of magnitude 5KN
is also applied from top of the beam, at a distance of 4 meters
from the starting point. There are two simple supports below the
beam, located at the starting point and at a distance of 7 meters
from the starting point. Plot the I.L.D. equations for reactions
at both support points under the effect of a moving load
of magnitude 1kN.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_7 = symbols('R_0, R_7')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(7, 'roller')
>>> b.apply_load(5,4,-1)
>>> b.solve_for_ild_reactions(1,R_0,R_7)
>>> b.ild_reactions
{R_0: x/7 - 22/7, R_7: -x/7 - 20/7}
>>> b.plot_ild_reactions()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0)
"""
if not self._ild_reactions:
raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.")
x = self.variable
ildplots = []
if subs is None:
subs = {}
for reaction in self._ild_reactions:
for sym in self._ild_reactions[reaction].atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for reaction in self._ild_reactions:
ildplots.append(plot(self._ild_reactions[reaction].subs(subs),
(x, 0, self._length.subs(subs)), title='I.L.D. for Reactions',
xlabel=x, ylabel=reaction, line_color='blue', show=False))
return PlotGrid(len(ildplots), 1, *ildplots)
def solve_for_ild_shear(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for shear at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
"""
x = self.variable
l = self.length
shear_force, _ = self._solve_for_ild_equations()
shear_curve1 = value - limit(shear_force, x, distance)
shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value
for reaction in reactions:
shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction])
shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction])
shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance))
self._ild_shear = shear_eq
def plot_ild_shear(self,subs=None):
"""
Plots the Influence Line Diagram for Shear under the effect
of a moving load. This function should be called after
calling solve_for_ild_shear().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
>>> b.plot_ild_shear()
Plot object containing:
[0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_shear:
raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.")
x = self.variable
l = self._length
if subs is None:
subs = {}
for sym in self._ild_shear.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True)
def solve_for_ild_moment(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for moment at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
"""
x = self.variable
l = self.length
_, moment = self._solve_for_ild_equations()
moment_curve1 = value*(distance-x) - limit(moment, x, distance)
moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x)
for reaction in reactions:
moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction])
moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction])
moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance))
self._ild_moment = moment_eq
def plot_ild_moment(self,subs=None):
"""
Plots the Influence Line Diagram for Moment under the effect
of a moving load. This function should be called after
calling solve_for_ild_moment().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
>>> b.plot_ild_moment()
Plot object containing:
[0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_moment:
raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.")
x = self.variable
if subs is None:
subs = {}
for sym in self._ild_moment.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True)
@doctest_depends_on(modules=('numpy',))
def draw(self, pictorial=True):
"""
Returns a plot object representing the beam diagram of the beam.
.. note::
The user must be careful while entering load values.
The draw function assumes a sign convention which is used
for plotting loads.
Given a right handed coordinate system with XYZ coordinates,
the beam's length is assumed to be along the positive X axis.
The draw function recognizes positive loads(with n>-2) as loads
acting along negative Y direction and positive moments acting
along positive Z direction.
Parameters
==========
pictorial: Boolean (default=True)
Setting ``pictorial=True`` would simply create a pictorial (scaled) view
of the beam diagram not with the exact dimensions.
Although setting ``pictorial=False`` would create a beam diagram with
the exact dimensions on the plot
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> E, I = symbols('E, I')
>>> b = Beam(50, 20, 30)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(90, 5, 0, 23)
>>> b.apply_load(10, 30, 1, 50)
>>> b.apply_support(50, "pin")
>>> b.apply_support(0, "fixed")
>>> b.apply_support(20, "roller")
>>> p = b.draw()
>>> p
Plot object containing:
[0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0)
+ SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0)
- SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0)
[1]: cartesian line: 5 for x over (0.0, 50.0)
>>> p.show()
"""
if not numpy:
raise ImportError("To use this function numpy module is required")
x = self.variable
# checking whether length is an expression in terms of any Symbol.
if isinstance(self.length, Expr):
l = list(self.length.atoms(Symbol))
# assigning every Symbol a default value of 10
l = {i:10 for i in l}
length = self.length.subs(l)
else:
l = {}
length = self.length
height = length/10
rectangles = []
rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"})
annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l)
support_markers, support_rectangles = self._draw_supports(length, l)
rectangles += support_rectangles
markers += support_markers
sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length),
xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations,
markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False)
return sing_plot
def _draw_load(self, pictorial, length, l):
loads = list(set(self.applied_loads) - set(self._support_as_loads))
height = length/10
x = self.variable
annotations = []
markers = []
load_args = []
scaled_load = 0
load_args1 = []
scaled_load1 = 0
load_eq = 0 # For positive valued higher order loads
load_eq1 = 0 # For negative valued higher order loads
fill = None
plus = 0 # For positive valued higher order loads
minus = 0 # For negative valued higher order loads
for load in loads:
# check if the position of load is in terms of the beam length.
if l:
pos = load[1].subs(l)
else:
pos = load[1]
# point loads
if load[2] == -1:
if isinstance(load[0], Symbol) or load[0].is_negative:
annotations.append({'text':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')})
else:
annotations.append({'text':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')})
# moment loads
elif load[2] == -2:
if load[0].is_negative:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15})
else:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15})
# higher order loads
elif load[2] >= 0:
# `fill` will be assigned only when higher order loads are present
value, start, order, end = load
# Positive loads have their separate equations
if(value>0):
plus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load, Add):
load_args = scaled_load.args
else:
# when the load equation consists of only a single term
load_args = (scaled_load,)
load_eq = [i.subs(l) for i in load_args]
else:
if isinstance(self.load, Add):
load_args = self.load.args
else:
load_args = (self.load,)
load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq = Add(*load_eq)
# filling higher order loads with colour
expr = height + load_eq.rewrite(Piecewise)
y1 = lambdify(x, expr, 'numpy')
# For loads with negative value
else:
minus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load1 += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load1 -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load1, Add):
load_args1 = scaled_load1.args
else:
# when the load equation consists of only a single term
load_args1 = (scaled_load1,)
load_eq1 = [i.subs(l) for i in load_args1]
else:
if isinstance(self.load, Add):
load_args1 = self.load.args1
else:
load_args1 = (self.load,)
load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq1 = -Add(*load_eq1)-height
# filling higher order loads with colour
expr = height + load_eq1.rewrite(Piecewise)
y1_ = lambdify(x, expr, 'numpy')
y = numpy.arange(0, float(length), 0.001)
y2 = float(height)
if(plus == 1 and minus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'}
elif(plus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'}
else:
fill = {'x': y, 'y1': y1_(y), 'y2': y2, 'color':'darkkhaki'}
return annotations, markers, load_eq, load_eq1, fill
def _draw_supports(self, length, l):
height = float(length/10)
support_markers = []
support_rectangles = []
for support in self._applied_supports:
if l:
pos = support[0].subs(l)
else:
pos = support[0]
if support[1] == "pin":
support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"})
elif support[1] == "roller":
support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"})
elif support[1] == "fixed":
if pos == 0:
support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'})
else:
support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'})
return support_markers, support_rectangles
class Beam3D(Beam):
"""
This class handles loads applied in any direction of a 3D space along
with unequal values of Second moment along different axes.
.. note::
A consistent sign convention must be used while solving a beam
bending problem; the results will
automatically follow the chosen sign convention.
This class assumes that any kind of distributed load/moment is
applied through out the span of a beam.
Examples
========
There is a beam of l meters long. A constant distributed load of magnitude q
is applied along y-axis from start till the end of beam. A constant distributed
moment of magnitude m is also applied along z-axis from start till the end of beam.
Beam is fixed at both of its end. So, deflection of the beam at the both ends
is restricted.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect, factor
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> factor(b.slope())
[0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q
- 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))]
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q)
... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q))
... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2)
... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
True
References
==========
.. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
"""
def __init__(self, length, elastic_modulus, shear_modulus, second_moment,
area, variable=Symbol('x')):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material.
shear_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of rigidity.
It is a measure of rigidity of the Beam material.
second_moment : Sympifyable or list
A list of two elements having SymPy expression representing the
Beam's Second moment of area. First value represent Second moment
across y-axis and second across z-axis.
Single SymPy expression can be passed if both values are same
area : Sympifyable
A SymPy expression representing the Beam's cross-sectional area
in a plane perpendicular to length of the Beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
"""
super().__init__(length, elastic_modulus, second_moment, variable)
self.shear_modulus = shear_modulus
self.area = area
self._load_vector = [0, 0, 0]
self._moment_load_vector = [0, 0, 0]
self._torsion_moment = {}
self._load_Singularity = [0, 0, 0]
self._slope = [0, 0, 0]
self._deflection = [0, 0, 0]
self._angular_deflection = 0
@property
def shear_modulus(self):
"""Young's Modulus of the Beam. """
return self._shear_modulus
@shear_modulus.setter
def shear_modulus(self, e):
self._shear_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
if isinstance(i, list):
i = [sympify(x) for x in i]
self._second_moment = i
else:
self._second_moment = sympify(i)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def load_vector(self):
"""
Returns a three element list representing the load vector.
"""
return self._load_vector
@property
def moment_load_vector(self):
"""
Returns a three element list representing moment loads on Beam.
"""
return self._moment_load_vector
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has two keywords namely slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value). Further each value is a list corresponding to
slope or deflection(s) values along three axes at that location.
Examples
========
There is a beam of length 4 meters. The slope at 0 should be 4 along
the x-axis and 0 along others. At the other end of beam, deflection
along all the three axes should be zero.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
along y and z axis at ``0``.
"""
return self._boundary_conditions
def polar_moment(self):
"""
Returns the polar moment of area of the beam
about the X axis with respect to the centroid.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> b.polar_moment()
2*I
>>> I1 = [9, 15]
>>> b = Beam3D(l, E, G, I1, A)
>>> b.polar_moment()
24
"""
if not iterable(self.second_moment):
return 2*self.second_moment
return sum(self.second_moment)
def apply_load(self, value, start, order, dir="y"):
"""
This method adds up the force load to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
dir : String
Axis along which load is applied.
order : Integer
The order of the applied load.
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -1:
self._load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -1:
self._load_vector[1] += value
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
else:
if not order == -1:
self._load_vector[2] += value
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
def apply_moment_load(self, value, start, order, dir="y"):
"""
This method adds up the moment loads to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied moment.
dir : String
Axis along which moment is applied.
order : Integer
The order of the applied load.
- For point moments, order=-2
- For constant distributed moment, order=-1
- For ramp moments, order=0
- For parabolic ramp moments, order=1
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -2:
self._moment_load_vector[0] += value
else:
if start in list(self._torsion_moment):
self._torsion_moment[start] += value
else:
self._torsion_moment[start] = value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -2:
self._moment_load_vector[1] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
else:
if not order == -2:
self._moment_load_vector[2] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
def apply_support(self, loc, type="fixed"):
if type in ("pin", "roller"):
reaction_load = Symbol('R_'+str(loc))
self._reaction_loads[reaction_load] = reaction_load
self.bc_deflection.append((loc, [0, 0, 0]))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
self.bc_deflection.append((loc, [0, 0, 0]))
self.bc_slope.append((loc, [0, 0, 0]))
def solve_for_reaction_loads(self, *reaction):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. It it supported by rollers at
of its end. A constant distributed load of magnitude 8 N is applied
from start till its end along y-axis. Another linear load having
slope equal to 9 is applied along z-axis.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}
"""
x = self.variable
l = self.length
q = self._load_Singularity
shear_curves = [integrate(load, x) for load in q]
moment_curves = [integrate(shear, x) for shear in shear_curves]
for i in range(3):
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
if len(react) == 0:
continue
shear_curve = limit(shear_curves[i], x, l)
moment_curve = limit(moment_curves[i], x, l)
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
sol_dict = dict(zip(react, sol))
reaction_loads = self._reaction_loads
# Check if any of the evaluated reaction exists in another direction
# and if it exists then it should have same value.
for key in sol_dict:
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
raise ValueError("Ambiguous solution for %s in different directions." % key)
self._reaction_loads.update(sol_dict)
def shear_force(self):
"""
Returns a list of three expressions which represents the shear force
curve of the Beam object along all three axes.
"""
x = self.variable
q = self._load_vector
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
def axial_force(self):
"""
Returns expression of Axial shear force present inside the Beam object.
"""
return self.shear_force()[0]
def shear_stress(self):
"""
Returns a list of three expressions which represents the shear stress
curve of the Beam object along all three axes.
"""
return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area]
def axial_stress(self):
"""
Returns expression of Axial stress present inside the Beam object.
"""
return self.axial_force()/self._area
def bending_moment(self):
"""
Returns a list of three expressions which represents the bending moment
curve of the Beam object along all three axes.
"""
x = self.variable
m = self._moment_load_vector
shear = self.shear_force()
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
integrate(-m[2] - shear[1], x) ]
def torsional_moment(self):
"""
Returns expression of Torsional moment present inside the Beam object.
"""
return self.bending_moment()[0]
def solve_for_torsion(self):
"""
Solves for the angular deflection due to the torsional effects of
moments being applied in the x-direction i.e. out of or into the beam.
Here, a positive torque means the direction of the torque is positive
i.e. out of the beam along the beam-axis. Likewise, a negative torque
signifies a torque into the beam cross-section.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_moment_load(4, 4, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.solve_for_torsion()
>>> b.angular_deflection().subs(x, 3)
18/(G*I)
"""
x = self.variable
sum_moments = 0
for point in list(self._torsion_moment):
sum_moments += self._torsion_moment[point]
list(self._torsion_moment).sort()
pointsList = list(self._torsion_moment)
torque_diagram = Piecewise((sum_moments, x<=pointsList[0]), (0, x>=pointsList[0]))
for i in range(len(pointsList))[1:]:
sum_moments -= self._torsion_moment[pointsList[i-1]]
torque_diagram += Piecewise((0, x<=pointsList[i-1]), (sum_moments, x<=pointsList[i]), (0, x>=pointsList[i]))
integrated_torque_diagram = integrate(torque_diagram)
self._angular_deflection = integrated_torque_diagram/(self.shear_modulus*self.polar_moment())
def solve_slope_deflection(self):
x = self.variable
l = self.length
E = self.elastic_modulus
G = self.shear_modulus
I = self.second_moment
if isinstance(I, list):
I_y, I_z = I[0], I[1]
else:
I_y = I_z = I
A = self._area
load = self._load_vector
moment = self._moment_load_vector
defl = Function('defl')
theta = Function('theta')
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
# Solving constants originated from dsolve
C1 = Symbol('C1')
C2 = Symbol('C2')
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
slope_x = def_x.diff(x)
self._deflection[0] = def_x
self._slope[0] = slope_x
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
C_i = Symbol('C_i')
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
slope_z = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
self._slope[2] = slope_z.subs(C_i, constants[1])
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
slope_y = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
def_z = dsolve(Eq(eq2,0)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
self._slope[1] = slope_y.subs(C_i, constants[1])
def slope(self):
"""
Returns a three element list representing slope of deflection curve
along all the three axes.
"""
return self._slope
def deflection(self):
"""
Returns a three element list representing deflection curve along all
the three axes.
"""
return self._deflection
def angular_deflection(self):
"""
Returns a function in x depicting how the angular deflection, due to moments
in the x-axis on the beam, varies with x.
"""
return self._angular_deflection
def _plot_shear_force(self, dir, subs=None):
shear_force = self.shear_force()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_force[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color)
def plot_shear_force(self, dir="all", subs=None):
"""
Returns a plot for Shear force along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear force plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_force()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear force along x direction
if dir == "x":
Px = self._plot_shear_force('x', subs)
return Px.show()
# For shear force along y direction
elif dir == "y":
Py = self._plot_shear_force('y', subs)
return Py.show()
# For shear force along z direction
elif dir == "z":
Pz = self._plot_shear_force('z', subs)
return Pz.show()
# For shear force along all direction
else:
Px = self._plot_shear_force('x', subs)
Py = self._plot_shear_force('y', subs)
Pz = self._plot_shear_force('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_bending_moment(self, dir, subs=None):
bending_moment = self.bending_moment()
if dir == 'x':
dir_num = 0
color = 'g'
elif dir == 'y':
dir_num = 1
color = 'c'
elif dir == 'z':
dir_num = 2
color = 'm'
if subs is None:
subs = {}
for sym in bending_moment[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color)
def plot_bending_moment(self, dir="all", subs=None):
"""
Returns a plot for bending moment along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which bending moment plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_bending_moment()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: 2*x**3 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For bending moment along x direction
if dir == "x":
Px = self._plot_bending_moment('x', subs)
return Px.show()
# For bending moment along y direction
elif dir == "y":
Py = self._plot_bending_moment('y', subs)
return Py.show()
# For bending moment along z direction
elif dir == "z":
Pz = self._plot_bending_moment('z', subs)
return Pz.show()
# For bending moment along all direction
else:
Px = self._plot_bending_moment('x', subs)
Py = self._plot_bending_moment('y', subs)
Pz = self._plot_bending_moment('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_slope(self, dir, subs=None):
slope = self.slope()
if dir == 'x':
dir_num = 0
color = 'b'
elif dir == 'y':
dir_num = 1
color = 'm'
elif dir == 'z':
dir_num = 2
color = 'g'
if subs is None:
subs = {}
for sym in slope[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color)
def plot_slope(self, dir="all", subs=None):
"""
Returns a plot for Slope along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which Slope plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_slope()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For Slope along x direction
if dir == "x":
Px = self._plot_slope('x', subs)
return Px.show()
# For Slope along y direction
elif dir == "y":
Py = self._plot_slope('y', subs)
return Py.show()
# For Slope along z direction
elif dir == "z":
Pz = self._plot_slope('z', subs)
return Pz.show()
# For Slope along all direction
else:
Px = self._plot_slope('x', subs)
Py = self._plot_slope('y', subs)
Pz = self._plot_slope('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_deflection(self, dir, subs=None):
deflection = self.deflection()
if dir == 'x':
dir_num = 0
color = 'm'
elif dir == 'y':
dir_num = 1
color = 'r'
elif dir == 'z':
dir_num = 2
color = 'c'
if subs is None:
subs = {}
for sym in deflection[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color)
def plot_deflection(self, dir="all", subs=None):
"""
Returns a plot for Deflection along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which deflection plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_deflection()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For deflection along x direction
if dir == "x":
Px = self._plot_deflection('x', subs)
return Px.show()
# For deflection along y direction
elif dir == "y":
Py = self._plot_deflection('y', subs)
return Py.show()
# For deflection along z direction
elif dir == "z":
Pz = self._plot_deflection('z', subs)
return Pz.show()
# For deflection along all direction
else:
Px = self._plot_deflection('x', subs)
Py = self._plot_deflection('y', subs)
Pz = self._plot_deflection('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def plot_loading_results(self, dir='x', subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object along the direction specified.
Parameters
==========
dir : string (default : "x")
Direction along which plots are required.
If no direction is specified, plots along x-axis are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> subs = {E:40, G:21, I:100, A:25}
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_loading_results('y',subs)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[3]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
"""
dir = dir.lower()
if subs is None:
subs = {}
ax1 = self._plot_shear_force(dir, subs)
ax2 = self._plot_bending_moment(dir, subs)
ax3 = self._plot_slope(dir, subs)
ax4 = self._plot_deflection(dir, subs)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _plot_shear_stress(self, dir, subs=None):
shear_stress = self.shear_stress()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_stress[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color)
def plot_shear_stress(self, dir="all", subs=None):
"""
Returns a plot for Shear Stress along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear stress plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters and area of cross section 2 square
meters. It it supported by rollers at of its end. A linear load having
slope equal to 12 is applied along y-axis. A constant distributed load
of magnitude 15 N is applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, 2, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_stress()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -3*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x/2 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear stress along x direction
if dir == "x":
Px = self._plot_shear_stress('x', subs)
return Px.show()
# For shear stress along y direction
elif dir == "y":
Py = self._plot_shear_stress('y', subs)
return Py.show()
# For shear stress along z direction
elif dir == "z":
Pz = self._plot_shear_stress('z', subs)
return Pz.show()
# For shear stress along all direction
else:
Px = self._plot_shear_stress('x', subs)
Py = self._plot_shear_stress('y', subs)
Pz = self._plot_shear_stress('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _max_shear_force(self, dir):
"""
Helper function for max_shear_force().
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.shear_force()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
load_curve = Piecewise((float("nan"), self.variable<=0),
(self._load_vector[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(load_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self.length)
shear_curve = self.shear_force()[dir_num]
shear_values = [shear_curve.subs(self.variable, x) for x in points]
shear_values = list(map(abs, shear_values))
max_shear = max(shear_values)
return (points[shear_values.index(max_shear)], max_shear)
def max_shear_force(self):
"""
Returns point of max shear force and its corresponding shear value
along all directions in a Beam object as a list.
solve_for_reaction_loads() must be called before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_shear_force()
[(0, 0), (20, 2400), (20, 300)]
"""
max_shear = []
max_shear.append(self._max_shear_force('x'))
max_shear.append(self._max_shear_force('y'))
max_shear.append(self._max_shear_force('z'))
return max_shear
def _max_bending_moment(self, dir):
"""
Helper function for max_bending_moment().
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.bending_moment()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
shear_curve = Piecewise((float("nan"), self.variable<=0),
(self.shear_force()[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(shear_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self.length)
bending_moment_curve = self.bending_moment()[dir_num]
bending_moments = [bending_moment_curve.subs(self.variable, x) for x in points]
bending_moments = list(map(abs, bending_moments))
max_bending_moment = max(bending_moments)
return (points[bending_moments.index(max_bending_moment)], max_bending_moment)
def max_bending_moment(self):
"""
Returns point of max bending moment and its corresponding bending moment value
along all directions in a Beam object as a list.
solve_for_reaction_loads() must be called before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_bending_moment()
[(0, 0), (20, 3000), (20, 16000)]
"""
max_bmoment = []
max_bmoment.append(self._max_bending_moment('x'))
max_bmoment.append(self._max_bending_moment('y'))
max_bmoment.append(self._max_bending_moment('z'))
return max_bmoment
max_bmoment = max_bending_moment
def _max_deflection(self, dir):
"""
Helper function for max_Deflection()
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.deflection()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope()[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self._length)
deflection_curve = self.deflection()[dir_num]
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
along all directions in a Beam object as a list.
solve_for_reaction_loads() and solve_slope_deflection() must be called
before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.max_deflection()
[(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)]
"""
max_def = []
max_def.append(self._max_deflection('x'))
max_def.append(self._max_deflection('y'))
max_def.append(self._max_deflection('z'))
return max_def
|
ac586dc95aebe1389f770c20abebde754f019de2cf6bfcd5714356a4702212f0 | from sympy import solve
from sympy.core.backend import (cos, expand, Matrix, sin, symbols, tan, sqrt, S,
zeros, eye)
from sympy.simplify.simplify import simplify
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
RigidBody, KanesMethod, inertia, Particle,
dot)
from sympy.testing.pytest import raises
from sympy.core.backend import USE_SYMENGINE
def test_invalid_coordinates():
# Simple pendulum, but use symbols instead of dynamicsymbols
l, m, g = symbols('l m g')
q, u = symbols('q u') # Generalized coordinate
kd = [q.diff(dynamicsymbols._t) - u]
N, O = ReferenceFrame('N'), Point('O')
O.set_vel(N, 0)
P = Particle('P', Point('P'), m)
P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y))
F = (P.point, -m * g * N.y)
raises(ValueError, lambda: KanesMethod(N, [q], [u], kd, bodies=[P],
forcelist=[F]))
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the KanesMethod docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
KM.kanes_equations(BL, FL)
assert KM.bodies == BL
assert KM.loads == FL
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
def test_two_dof():
# This is for a 2 d.o.f., 2 particle spring-mass-damper.
# The first coordinate is the displacement of the first particle, and the
# second is the relative displacement between the first and second
# particles. Speeds are defined as the time derivatives of the particles.
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
# Note we multiply the kinematic equation by an arbitrary factor
# to test the implicit vs explicit kinematics attribute
kd = [q1d/2 - u1/2, 2*q2d - 2*u2]
# Now we create the list of forces, then assign properties to each
# particle, then create a list of all particles.
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x)]
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = [pa1, pa2]
# Finally we create the KanesMethod object, specify the inertial frame,
# pass relevant information, and form Fr & Fr*. Then we calculate the mass
# matrix and forcing terms, and finally solve for the udots.
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
# Check that the explicit form is the default and kinematic mass matrix is identity
assert KM.explicit_kinematics
assert KM.mass_matrix_kin == eye(2)
# Check that for the implicit form the mass matrix is not identity
KM.explicit_kinematics = False
assert KM.mass_matrix_kin == Matrix([[S(1)/2, 0], [0, 2]])
# Check that whether using implicit or explicit kinematics the RHS
# equations are consistent with the matrix form
for explicit_kinematics in [False, True]:
KM.explicit_kinematics = explicit_kinematics
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
# Make sure an error is raised if nonlinear kinematic differential
# equations are supplied.
kd = [q1d - u1**2, sin(q2d) - cos(u2)]
raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2],
u_ind=[u1, u2], kd_eqs=kd))
def test_pend():
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, l, g = symbols('m l g')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
kd = [qd - u]
FL = [(P, m * g * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
rhs.simplify()
assert expand(rhs[0]) == expand(-g / l * sin(q))
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
def test_rolling_disc():
# Rolling Disc Example
# Here the rolling disc is formed from the contact point up, removing the
# need to introduce generalized speeds. Only 3 configuration and three
# speed variables are need to describe this system, along with the disc's
# mass and radius, and the local gravity (note that mass will drop out).
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
r, m, g = symbols('r m g')
# The kinematics are formed by a series of simple rotations. Each simple
# rotation creates a new frame, and the next rotation is defined by the new
# frame's basis vectors. This example uses a 3-1-2 series of rotations, or
# Z, X, Y series of rotations. Angular velocity for this is defined using
# the second frame's basis (the lean frame).
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
# This is the translational kinematics. We create a point with no velocity
# in N; this is the contact point between the disc and ground. Next we form
# the position vector from the contact point to the disc's center of mass.
# Finally we form the velocity and acceleration of the disc.
C = Point('C')
C.set_vel(N, 0)
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
# This is a simple way to form the inertia dyadic.
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
# Kinematic differential equations; how the generalized coordinate time
# derivatives relate to generalized speeds.
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
# Creation of the force list; it is the gravitational force at the mass
# center of the disc. Then we create the disc by assigning a Point to the
# center of mass attribute, a ReferenceFrame to the frame attribute, and mass
# and inertia. Then we form the body list.
ForceList = [(Dmc, - m * g * Y.z)]
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
BodyList = [BodyD]
# Finally we form the equations of motion, using the same steps we did
# before. Specify inertial frame, supply generalized speeds, supply
# kinematic differential equation dictionary, compute Fr from the force
# list and Fr* from the body list, compute the mass matrix and forcing
# terms, then solve for the u dots (time derivatives of the generalized
# speeds).
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
KM.kanes_equations(BodyList, ForceList)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
kdd = KM.kindiffdict()
rhs = rhs.subs(kdd)
rhs.simplify()
assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) +
4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1)
# This code tests our output vs. benchmark values. When r=g=m=1, the
# critical speed (where all eigenvalues of the linearized equations are 0)
# is 1 / sqrt(3) for the upright case.
A = KM.linearize(A_and_B=True)[0]
A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0})
import sympy
assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S.Zero: 6}
def test_aux():
# Same as above, except we have 2 auxiliary speeds for the ground contact
# point, which is known to be zero. In one case, we go through then
# substitute the aux. speeds in at the end (they are zero, as well as their
# derivative), in the other case, we use the built-in auxiliary speed part
# of KanesMethod. The equations from each should be the same.
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
u4d, u5d = dynamicsymbols('u4, u5', 1)
r, m, g = symbols('r m g')
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
C = Point('C')
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
Dmc.a2pt_theory(C, N, R)
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
BodyList = [BodyD]
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
kd_eqs=kd)
(fr, frstar) = KM.kanes_equations(BodyList, ForceList)
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
u_auxiliary=[u4, u5])
(fr2, frstar2) = KM2.kanes_equations(BodyList, ForceList)
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar.simplify()
frstar2.simplify()
assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
def test_parallel_axis():
# This is for a 2 dof inverted pendulum on a cart.
# This tests the parallel axis code in KanesMethod. The inertia of the
# pendulum is defined about the hinge, not about the center of mass.
# Defining the constants and knowns of the system
gravity = symbols('g')
k, ls = symbols('k ls')
a, mA, mC = symbols('a mA mC')
F = dynamicsymbols('F')
Ix, Iy, Iz = symbols('Ix Iy Iz')
# Declaring the Generalized coordinates and speeds
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
u1, u2 = dynamicsymbols('u1 u2')
u1d, u2d = dynamicsymbols('u1 u2', 1)
# Creating reference frames
N = ReferenceFrame('N')
A = ReferenceFrame('A')
A.orient(N, 'Axis', [-q2, N.z])
A.set_ang_vel(N, -u2 * N.z)
# Origin of Newtonian reference frame
O = Point('O')
# Creating and Locating the positions of the cart, C, and the
# center of mass of the pendulum, A
C = O.locatenew('C', q1 * N.x)
Ao = C.locatenew('Ao', a * A.y)
# Defining velocities of the points
O.set_vel(N, 0)
C.set_vel(N, u1 * N.x)
Ao.v2pt_theory(C, N, A)
Cart = Particle('Cart', C, mC)
Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))
# kinematical differential equations
kindiffs = [q1d - u1, q2d - u2]
bodyList = [Cart, Pendulum]
forceList = [(Ao, -N.y * gravity * mA),
(C, -N.y * gravity * mC),
(C, -N.x * k * (q1 - ls)),
(C, N.x * F)]
km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
(fr, frstar) = km.kanes_equations(bodyList, forceList)
mm = km.mass_matrix_full
assert mm[3, 3] == Iz
def test_input_format():
# 1 dof problem from test_one_dof
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
# test for input format kane.kanes_equations((body1, body2, particle1))
assert KM.kanes_equations(BL)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2))
assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None)
assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2))
assert KM.kanes_equations(BL)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body2), loads=[])
assert KM.kanes_equations(BL, [])[0] == Matrix([0])
# test for error raised when a wrong force list (in this case a string) is provided
raises(ValueError, lambda: KM._form_fr('bad input'))
# 1 dof problem from test_one_dof with FL & BL in instance
KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL)
assert KM.kanes_equations()[0] == Matrix([-c*u - k*q])
# 2 dof problem from test_two_dof
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x))
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = (pa1, pa2)
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
# test for input format
# kane.kanes_equations((body1, body2), (load1, load2))
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
def test_implicit_kinematics():
# Test that implicit kinematics can handle complicated
# equations that explicit form struggles with
# See https://github.com/sympy/sympy/issues/22626
# Inertial frame
NED = ReferenceFrame('NED')
NED_o = Point('NED_o')
NED_o.set_vel(NED, 0)
# body frame
q_att = dynamicsymbols('lambda_0:4', real=True)
B = NED.orientnew('B', 'Quaternion', q_att)
# Generalized coordinates
q_pos = dynamicsymbols('B_x:z')
B_cm = NED_o.locatenew('B_cm', q_pos[0]*B.x + q_pos[1]*B.y + q_pos[2]*B.z)
q_ind = q_att[1:] + q_pos
q_dep = [q_att[0]]
kinematic_eqs = []
# Generalized velocities
B_ang_vel = B.ang_vel_in(NED)
P, Q, R = dynamicsymbols('P Q R')
B.set_ang_vel(NED, P*B.x + Q*B.y + R*B.z)
B_ang_vel_kd = (B.ang_vel_in(NED) - B_ang_vel).simplify()
# Equating the two gives us the kinematic equation
kinematic_eqs += [
B_ang_vel_kd & B.x,
B_ang_vel_kd & B.y,
B_ang_vel_kd & B.z
]
B_cm_vel = B_cm.vel(NED)
U, V, W = dynamicsymbols('U V W')
B_cm.set_vel(NED, U*B.x + V*B.y + W*B.z)
# Compute the velocity of the point using the two methods
B_ref_vel_kd = (B_cm.vel(NED) - B_cm_vel)
# taking dot product with unit vectors to get kinematic equations
# relating body coordinates and velocities
# Note, there is a choice to dot with NED.xyz here. That makes
# the implicit form have some bigger terms but is still fine, the
# explicit form still struggles though
kinematic_eqs += [
B_ref_vel_kd & B.x,
B_ref_vel_kd & B.y,
B_ref_vel_kd & B.z,
]
u_ind = [U, V, W, P, Q, R]
# constraints
q_att_vec = Matrix(q_att)
config_cons = [(q_att_vec.T*q_att_vec)[0] - 1] #unit norm
kinematic_eqs = kinematic_eqs + [(q_att_vec.T * q_att_vec.diff())[0]]
try:
KM = KanesMethod(NED, q_ind, u_ind,
q_dependent= q_dep,
kd_eqs = kinematic_eqs,
configuration_constraints = config_cons,
velocity_constraints= [],
u_dependent= [], #no dependent speeds
u_auxiliary = [], # No auxiliary speeds
explicit_kinematics = False # implicit kinematics
)
except Exception as e:
# symengine struggles with these kinematic equations
if USE_SYMENGINE and 'Matrix is rank deficient' in str(e):
return
else:
raise e
# mass and inertia dyadic relative to CM
M_B = symbols('M_B')
J_B = inertia(B, *[S(f'J_B_{ax}')*(1 if ax[0] == ax[1] else -1)
for ax in ['xx', 'yy', 'zz', 'xy', 'yz', 'xz']])
J_B = J_B.subs({S('J_B_xy'): 0, S('J_B_yz'): 0})
RB = RigidBody('RB', B_cm, B, M_B, (J_B, B_cm))
rigid_bodies = [RB]
# Forces
force_list = [
#gravity pointing down
(RB.masscenter, RB.mass*S('g')*NED.z),
#generic forces and torques in body frame(inputs)
(RB.frame, dynamicsymbols('T_z')*B.z),
(RB.masscenter, dynamicsymbols('F_z')*B.z)
]
KM.kanes_equations(rigid_bodies, force_list)
# Expecting implicit form to be less than 5% of the flops
n_ops_implicit = sum(
[x.count_ops() for x in KM.forcing_full] +
[x.count_ops() for x in KM.mass_matrix_full]
)
# Save implicit kinematic matrices to use later
mass_matrix_kin_implicit = KM.mass_matrix_kin
forcing_kin_implicit = KM.forcing_kin
KM.explicit_kinematics = True
n_ops_explicit = sum(
[x.count_ops() for x in KM.forcing_full] +
[x.count_ops() for x in KM.mass_matrix_full]
)
forcing_kin_explicit = KM.forcing_kin
assert n_ops_implicit / n_ops_explicit < .05
# Ideally we would check that implicit and explicit equations give the same result as done in test_one_dof
# But the whole raison-d'etre of the implicit equations is to deal with problems such
# as this one where the explicit form is too complicated to handle, especially the angular part
# (i.e. tests would be too slow)
# Instead, we check that the kinematic equations are correct using more fundamental tests:
#
# (1) that we recover the kinematic equations we have provided
assert (mass_matrix_kin_implicit * KM.q.diff() - forcing_kin_implicit) == Matrix(kinematic_eqs)
# (2) that rate of quaternions matches what 'textbook' solutions give
# Note that we just use the explicit kinematics for the linear velocities
# as they are not as complicated as the angular ones
qdot_candidate = forcing_kin_explicit
quat_dot_textbook = Matrix([
[0, -P, -Q, -R],
[P, 0, R, -Q],
[Q, -R, 0, P],
[R, Q, -P, 0],
]) * q_att_vec / 2
# Again, if we don't use this "textbook" solution
# sympy will struggle to deal with the terms related to quaternion rates
# due to the number of operations involved
qdot_candidate[-1] = quat_dot_textbook[0] # lambda_0, note the [-1] as sympy's Kane puts the dependent coordinate last
qdot_candidate[0] = quat_dot_textbook[1] # lambda_1
qdot_candidate[1] = quat_dot_textbook[2] # lambda_2
qdot_candidate[2] = quat_dot_textbook[3] # lambda_3
# sub the config constraint in the candidate solution and compare to the implicit rhs
lambda_0_sol = solve(config_cons[0], q_att_vec[0])[1]
lhs_candidate = simplify(mass_matrix_kin_implicit * qdot_candidate).subs({q_att_vec[0]: lambda_0_sol})
assert lhs_candidate == forcing_kin_implicit
|
e0dc5fbe7a38bee8ad311d13f7a516b47f3e8d79e9d3479dbae60cc9f247c037 | from .unit_definitions import (
percent, percents,
permille,
rad, radian, radians,
deg, degree, degrees,
sr, steradian, steradians,
mil, angular_mil, angular_mils,
m, meter, meters,
kg, kilogram, kilograms,
s, second, seconds,
A, ampere, amperes,
K, kelvin, kelvins,
mol, mole, moles,
cd, candela, candelas,
g, gram, grams,
mg, milligram, milligrams,
ug, microgram, micrograms,
t, tonne, metric_ton,
newton, newtons, N,
joule, joules, J,
watt, watts, W,
pascal, pascals, Pa, pa,
hertz, hz, Hz,
coulomb, coulombs, C,
volt, volts, v, V,
ohm, ohms,
siemens, S, mho, mhos,
farad, farads, F,
henry, henrys, H,
tesla, teslas, T,
weber, webers, Wb, wb,
optical_power, dioptre, D,
lux, lx,
katal, kat,
gray, Gy,
becquerel, Bq,
km, kilometer, kilometers,
dm, decimeter, decimeters,
cm, centimeter, centimeters,
mm, millimeter, millimeters,
um, micrometer, micrometers, micron, microns,
nm, nanometer, nanometers,
pm, picometer, picometers,
ft, foot, feet,
inch, inches,
yd, yard, yards,
mi, mile, miles,
nmi, nautical_mile, nautical_miles,
ha, hectare,
l, L, liter, liters,
dl, dL, deciliter, deciliters,
cl, cL, centiliter, centiliters,
ml, mL, milliliter, milliliters,
ms, millisecond, milliseconds,
us, microsecond, microseconds,
ns, nanosecond, nanoseconds,
ps, picosecond, picoseconds,
minute, minutes,
h, hour, hours,
day, days,
anomalistic_year, anomalistic_years,
sidereal_year, sidereal_years,
tropical_year, tropical_years,
common_year, common_years,
julian_year, julian_years,
draconic_year, draconic_years,
gaussian_year, gaussian_years,
full_moon_cycle, full_moon_cycles,
year, years,
G, gravitational_constant,
c, speed_of_light,
elementary_charge,
hbar,
planck,
eV, electronvolt, electronvolts,
avogadro_number,
avogadro, avogadro_constant,
boltzmann, boltzmann_constant,
stefan, stefan_boltzmann_constant,
R, molar_gas_constant,
faraday_constant,
josephson_constant,
von_klitzing_constant,
Da, dalton, amu, amus, atomic_mass_unit, atomic_mass_constant,
me, electron_rest_mass,
gee, gees, acceleration_due_to_gravity,
u0, magnetic_constant, vacuum_permeability,
e0, electric_constant, vacuum_permittivity,
Z0, vacuum_impedance,
coulomb_constant, coulombs_constant, electric_force_constant,
atmosphere, atmospheres, atm,
kPa, kilopascal,
bar, bars,
pound, pounds,
psi,
dHg0,
mmHg, torr,
mmu, mmus, milli_mass_unit,
quart, quarts,
ly, lightyear, lightyears,
au, astronomical_unit, astronomical_units,
planck_mass,
planck_time,
planck_temperature,
planck_length,
planck_charge,
planck_area,
planck_volume,
planck_momentum,
planck_energy,
planck_force,
planck_power,
planck_density,
planck_energy_density,
planck_intensity,
planck_angular_frequency,
planck_pressure,
planck_current,
planck_voltage,
planck_impedance,
planck_acceleration,
bit, bits,
byte,
kibibyte, kibibytes,
mebibyte, mebibytes,
gibibyte, gibibytes,
tebibyte, tebibytes,
pebibyte, pebibytes,
exbibyte, exbibytes,
curie, rutherford
)
__all__ = [
'percent', 'percents',
'permille',
'rad', 'radian', 'radians',
'deg', 'degree', 'degrees',
'sr', 'steradian', 'steradians',
'mil', 'angular_mil', 'angular_mils',
'm', 'meter', 'meters',
'kg', 'kilogram', 'kilograms',
's', 'second', 'seconds',
'A', 'ampere', 'amperes',
'K', 'kelvin', 'kelvins',
'mol', 'mole', 'moles',
'cd', 'candela', 'candelas',
'g', 'gram', 'grams',
'mg', 'milligram', 'milligrams',
'ug', 'microgram', 'micrograms',
't', 'tonne', 'metric_ton',
'newton', 'newtons', 'N',
'joule', 'joules', 'J',
'watt', 'watts', 'W',
'pascal', 'pascals', 'Pa', 'pa',
'hertz', 'hz', 'Hz',
'coulomb', 'coulombs', 'C',
'volt', 'volts', 'v', 'V',
'ohm', 'ohms',
'siemens', 'S', 'mho', 'mhos',
'farad', 'farads', 'F',
'henry', 'henrys', 'H',
'tesla', 'teslas', 'T',
'weber', 'webers', 'Wb', 'wb',
'optical_power', 'dioptre', 'D',
'lux', 'lx',
'katal', 'kat',
'gray', 'Gy',
'becquerel', 'Bq',
'km', 'kilometer', 'kilometers',
'dm', 'decimeter', 'decimeters',
'cm', 'centimeter', 'centimeters',
'mm', 'millimeter', 'millimeters',
'um', 'micrometer', 'micrometers', 'micron', 'microns',
'nm', 'nanometer', 'nanometers',
'pm', 'picometer', 'picometers',
'ft', 'foot', 'feet',
'inch', 'inches',
'yd', 'yard', 'yards',
'mi', 'mile', 'miles',
'nmi', 'nautical_mile', 'nautical_miles',
'ha', 'hectare',
'l', 'L', 'liter', 'liters',
'dl', 'dL', 'deciliter', 'deciliters',
'cl', 'cL', 'centiliter', 'centiliters',
'ml', 'mL', 'milliliter', 'milliliters',
'ms', 'millisecond', 'milliseconds',
'us', 'microsecond', 'microseconds',
'ns', 'nanosecond', 'nanoseconds',
'ps', 'picosecond', 'picoseconds',
'minute', 'minutes',
'h', 'hour', 'hours',
'day', 'days',
'anomalistic_year', 'anomalistic_years',
'sidereal_year', 'sidereal_years',
'tropical_year', 'tropical_years',
'common_year', 'common_years',
'julian_year', 'julian_years',
'draconic_year', 'draconic_years',
'gaussian_year', 'gaussian_years',
'full_moon_cycle', 'full_moon_cycles',
'year', 'years',
'G', 'gravitational_constant',
'c', 'speed_of_light',
'elementary_charge',
'hbar',
'planck',
'eV', 'electronvolt', 'electronvolts',
'avogadro_number',
'avogadro', 'avogadro_constant',
'boltzmann', 'boltzmann_constant',
'stefan', 'stefan_boltzmann_constant',
'R', 'molar_gas_constant',
'faraday_constant',
'josephson_constant',
'von_klitzing_constant',
'Da', 'dalton', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant',
'me', 'electron_rest_mass',
'gee', 'gees', 'acceleration_due_to_gravity',
'u0', 'magnetic_constant', 'vacuum_permeability',
'e0', 'electric_constant', 'vacuum_permittivity',
'Z0', 'vacuum_impedance',
'coulomb_constant', 'coulombs_constant', 'electric_force_constant',
'atmosphere', 'atmospheres', 'atm',
'kPa', 'kilopascal',
'bar', 'bars',
'pound', 'pounds',
'psi',
'dHg0',
'mmHg', 'torr',
'mmu', 'mmus', 'milli_mass_unit',
'quart', 'quarts',
'ly', 'lightyear', 'lightyears',
'au', 'astronomical_unit', 'astronomical_units',
'planck_mass',
'planck_time',
'planck_temperature',
'planck_length',
'planck_charge',
'planck_area',
'planck_volume',
'planck_momentum',
'planck_energy',
'planck_force',
'planck_power',
'planck_density',
'planck_energy_density',
'planck_intensity',
'planck_angular_frequency',
'planck_pressure',
'planck_current',
'planck_voltage',
'planck_impedance',
'planck_acceleration',
'bit', 'bits',
'byte',
'kibibyte', 'kibibytes',
'mebibyte', 'mebibytes',
'gibibyte', 'gibibytes',
'tebibyte', 'tebibytes',
'pebibyte', 'pebibytes',
'exbibyte', 'exbibytes',
'curie', 'rutherford',
]
|
9383ae4a74de8bd8bed3d9da0feb4e93808dbc06b75fe84d02ef3c51714ff786 | from sympy.physics.units.definitions.dimension_definitions import current, temperature, amount_of_substance, \
luminous_intensity, angle, charge, voltage, impedance, conductance, capacitance, inductance, magnetic_density, \
magnetic_flux, information
from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S as S_singleton
from sympy.physics.units.prefixes import kilo, mega, milli, micro, deci, centi, nano, pico, kibi, mebi, gibi, tebi, pebi, exbi
from sympy.physics.units.quantities import PhysicalConstant, Quantity
One = S_singleton.One
#### UNITS ####
# Dimensionless:
percent = percents = Quantity("percent", latex_repr=r"\%")
percent.set_global_relative_scale_factor(Rational(1, 100), One)
permille = Quantity("permille")
permille.set_global_relative_scale_factor(Rational(1, 1000), One)
# Angular units (dimensionless)
rad = radian = radians = Quantity("radian", abbrev="rad")
radian.set_global_dimension(angle)
deg = degree = degrees = Quantity("degree", abbrev="deg", latex_repr=r"^\circ")
degree.set_global_relative_scale_factor(pi/180, radian)
sr = steradian = steradians = Quantity("steradian", abbrev="sr")
mil = angular_mil = angular_mils = Quantity("angular_mil", abbrev="mil")
# Base units:
m = meter = meters = Quantity("meter", abbrev="m")
# gram; used to define its prefixed units
g = gram = grams = Quantity("gram", abbrev="g")
# NOTE: the `kilogram` has scale factor 1000. In SI, kg is a base unit, but
# nonetheless we are trying to be compatible with the `kilo` prefix. In a
# similar manner, people using CGS or gaussian units could argue that the
# `centimeter` rather than `meter` is the fundamental unit for length, but the
# scale factor of `centimeter` will be kept as 1/100 to be compatible with the
# `centi` prefix. The current state of the code assumes SI unit dimensions, in
# the future this module will be modified in order to be unit system-neutral
# (that is, support all kinds of unit systems).
kg = kilogram = kilograms = Quantity("kilogram", abbrev="kg")
kg.set_global_relative_scale_factor(kilo, gram)
s = second = seconds = Quantity("second", abbrev="s")
A = ampere = amperes = Quantity("ampere", abbrev='A')
ampere.set_global_dimension(current)
K = kelvin = kelvins = Quantity("kelvin", abbrev='K')
kelvin.set_global_dimension(temperature)
mol = mole = moles = Quantity("mole", abbrev="mol")
mole.set_global_dimension(amount_of_substance)
cd = candela = candelas = Quantity("candela", abbrev="cd")
candela.set_global_dimension(luminous_intensity)
# derived units
newton = newtons = N = Quantity("newton", abbrev="N")
joule = joules = J = Quantity("joule", abbrev="J")
watt = watts = W = Quantity("watt", abbrev="W")
pascal = pascals = Pa = pa = Quantity("pascal", abbrev="Pa")
hertz = hz = Hz = Quantity("hertz", abbrev="Hz")
# CGS derived units:
dyne = Quantity("dyne")
dyne.set_global_relative_scale_factor(One/10**5, newton)
erg = Quantity("erg")
erg.set_global_relative_scale_factor(One/10**7, joule)
# MKSA extension to MKS: derived units
coulomb = coulombs = C = Quantity("coulomb", abbrev='C')
coulomb.set_global_dimension(charge)
volt = volts = v = V = Quantity("volt", abbrev='V')
volt.set_global_dimension(voltage)
ohm = ohms = Quantity("ohm", abbrev='ohm', latex_repr=r"\Omega")
ohm.set_global_dimension(impedance)
siemens = S = mho = mhos = Quantity("siemens", abbrev='S')
siemens.set_global_dimension(conductance)
farad = farads = F = Quantity("farad", abbrev='F')
farad.set_global_dimension(capacitance)
henry = henrys = H = Quantity("henry", abbrev='H')
henry.set_global_dimension(inductance)
tesla = teslas = T = Quantity("tesla", abbrev='T')
tesla.set_global_dimension(magnetic_density)
weber = webers = Wb = wb = Quantity("weber", abbrev='Wb')
weber.set_global_dimension(magnetic_flux)
# CGS units for electromagnetic quantities:
statampere = Quantity("statampere")
statcoulomb = statC = franklin = Quantity("statcoulomb", abbrev="statC")
statvolt = Quantity("statvolt")
gauss = Quantity("gauss")
maxwell = Quantity("maxwell")
debye = Quantity("debye")
oersted = Quantity("oersted")
# Other derived units:
optical_power = dioptre = diopter = D = Quantity("dioptre")
lux = lx = Quantity("lux", abbrev="lx")
# katal is the SI unit of catalytic activity
katal = kat = Quantity("katal", abbrev="kat")
# gray is the SI unit of absorbed dose
gray = Gy = Quantity("gray")
# becquerel is the SI unit of radioactivity
becquerel = Bq = Quantity("becquerel", abbrev="Bq")
# Common mass units
mg = milligram = milligrams = Quantity("milligram", abbrev="mg")
mg.set_global_relative_scale_factor(milli, gram)
ug = microgram = micrograms = Quantity("microgram", abbrev="ug", latex_repr=r"\mu\text{g}")
ug.set_global_relative_scale_factor(micro, gram)
# Atomic mass constant
Da = dalton = amu = amus = atomic_mass_unit = atomic_mass_constant = PhysicalConstant("atomic_mass_constant")
t = metric_ton = tonne = Quantity("tonne", abbrev="t")
tonne.set_global_relative_scale_factor(mega, gram)
# Electron rest mass
me = electron_rest_mass = Quantity("electron_rest_mass", abbrev="me")
# Common length units
km = kilometer = kilometers = Quantity("kilometer", abbrev="km")
km.set_global_relative_scale_factor(kilo, meter)
dm = decimeter = decimeters = Quantity("decimeter", abbrev="dm")
dm.set_global_relative_scale_factor(deci, meter)
cm = centimeter = centimeters = Quantity("centimeter", abbrev="cm")
cm.set_global_relative_scale_factor(centi, meter)
mm = millimeter = millimeters = Quantity("millimeter", abbrev="mm")
mm.set_global_relative_scale_factor(milli, meter)
um = micrometer = micrometers = micron = microns = \
Quantity("micrometer", abbrev="um", latex_repr=r'\mu\text{m}')
um.set_global_relative_scale_factor(micro, meter)
nm = nanometer = nanometers = Quantity("nanometer", abbrev="nm")
nm.set_global_relative_scale_factor(nano, meter)
pm = picometer = picometers = Quantity("picometer", abbrev="pm")
pm.set_global_relative_scale_factor(pico, meter)
ft = foot = feet = Quantity("foot", abbrev="ft")
ft.set_global_relative_scale_factor(Rational(3048, 10000), meter)
inch = inches = Quantity("inch")
inch.set_global_relative_scale_factor(Rational(1, 12), foot)
yd = yard = yards = Quantity("yard", abbrev="yd")
yd.set_global_relative_scale_factor(3, feet)
mi = mile = miles = Quantity("mile")
mi.set_global_relative_scale_factor(5280, feet)
nmi = nautical_mile = nautical_miles = Quantity("nautical_mile")
nmi.set_global_relative_scale_factor(6076, feet)
# Common volume and area units
ha = hectare = Quantity("hectare", abbrev="ha")
l = L = liter = liters = Quantity("liter")
dl = dL = deciliter = deciliters = Quantity("deciliter")
dl.set_global_relative_scale_factor(Rational(1, 10), liter)
cl = cL = centiliter = centiliters = Quantity("centiliter")
cl.set_global_relative_scale_factor(Rational(1, 100), liter)
ml = mL = milliliter = milliliters = Quantity("milliliter")
ml.set_global_relative_scale_factor(Rational(1, 1000), liter)
# Common time units
ms = millisecond = milliseconds = Quantity("millisecond", abbrev="ms")
millisecond.set_global_relative_scale_factor(milli, second)
us = microsecond = microseconds = Quantity("microsecond", abbrev="us", latex_repr=r'\mu\text{s}')
microsecond.set_global_relative_scale_factor(micro, second)
ns = nanosecond = nanoseconds = Quantity("nanosecond", abbrev="ns")
nanosecond.set_global_relative_scale_factor(nano, second)
ps = picosecond = picoseconds = Quantity("picosecond", abbrev="ps")
picosecond.set_global_relative_scale_factor(pico, second)
minute = minutes = Quantity("minute")
minute.set_global_relative_scale_factor(60, second)
h = hour = hours = Quantity("hour")
hour.set_global_relative_scale_factor(60, minute)
day = days = Quantity("day")
day.set_global_relative_scale_factor(24, hour)
anomalistic_year = anomalistic_years = Quantity("anomalistic_year")
anomalistic_year.set_global_relative_scale_factor(365.259636, day)
sidereal_year = sidereal_years = Quantity("sidereal_year")
sidereal_year.set_global_relative_scale_factor(31558149.540, seconds)
tropical_year = tropical_years = Quantity("tropical_year")
tropical_year.set_global_relative_scale_factor(365.24219, day)
common_year = common_years = Quantity("common_year")
common_year.set_global_relative_scale_factor(365, day)
julian_year = julian_years = Quantity("julian_year")
julian_year.set_global_relative_scale_factor((365 + One/4), day)
draconic_year = draconic_years = Quantity("draconic_year")
draconic_year.set_global_relative_scale_factor(346.62, day)
gaussian_year = gaussian_years = Quantity("gaussian_year")
gaussian_year.set_global_relative_scale_factor(365.2568983, day)
full_moon_cycle = full_moon_cycles = Quantity("full_moon_cycle")
full_moon_cycle.set_global_relative_scale_factor(411.78443029, day)
year = years = tropical_year
#### CONSTANTS ####
# Newton constant
G = gravitational_constant = PhysicalConstant("gravitational_constant", abbrev="G")
# speed of light
c = speed_of_light = PhysicalConstant("speed_of_light", abbrev="c")
# elementary charge
elementary_charge = PhysicalConstant("elementary_charge", abbrev="e")
# Planck constant
planck = PhysicalConstant("planck", abbrev="h")
# Reduced Planck constant
hbar = PhysicalConstant("hbar", abbrev="hbar")
# Electronvolt
eV = electronvolt = electronvolts = PhysicalConstant("electronvolt", abbrev="eV")
# Avogadro number
avogadro_number = PhysicalConstant("avogadro_number")
# Avogadro constant
avogadro = avogadro_constant = PhysicalConstant("avogadro_constant")
# Boltzmann constant
boltzmann = boltzmann_constant = PhysicalConstant("boltzmann_constant")
# Stefan-Boltzmann constant
stefan = stefan_boltzmann_constant = PhysicalConstant("stefan_boltzmann_constant")
# Molar gas constant
R = molar_gas_constant = PhysicalConstant("molar_gas_constant", abbrev="R")
# Faraday constant
faraday_constant = PhysicalConstant("faraday_constant")
# Josephson constant
josephson_constant = PhysicalConstant("josephson_constant", abbrev="K_j")
# Von Klitzing constant
von_klitzing_constant = PhysicalConstant("von_klitzing_constant", abbrev="R_k")
# Acceleration due to gravity (on the Earth surface)
gee = gees = acceleration_due_to_gravity = PhysicalConstant("acceleration_due_to_gravity", abbrev="g")
# magnetic constant:
u0 = magnetic_constant = vacuum_permeability = PhysicalConstant("magnetic_constant")
# electric constat:
e0 = electric_constant = vacuum_permittivity = PhysicalConstant("vacuum_permittivity")
# vacuum impedance:
Z0 = vacuum_impedance = PhysicalConstant("vacuum_impedance", abbrev='Z_0', latex_repr=r'Z_{0}')
# Coulomb's constant:
coulomb_constant = coulombs_constant = electric_force_constant = \
PhysicalConstant("coulomb_constant", abbrev="k_e")
atmosphere = atmospheres = atm = Quantity("atmosphere", abbrev="atm")
kPa = kilopascal = Quantity("kilopascal", abbrev="kPa")
kilopascal.set_global_relative_scale_factor(kilo, Pa)
bar = bars = Quantity("bar", abbrev="bar")
pound = pounds = Quantity("pound") # exact
psi = Quantity("psi")
dHg0 = 13.5951 # approx value at 0 C
mmHg = torr = Quantity("mmHg")
atmosphere.set_global_relative_scale_factor(101325, pascal)
bar.set_global_relative_scale_factor(100, kPa)
pound.set_global_relative_scale_factor(Rational(45359237, 100000000), kg)
mmu = mmus = milli_mass_unit = Quantity("milli_mass_unit")
quart = quarts = Quantity("quart")
# Other convenient units and magnitudes
ly = lightyear = lightyears = Quantity("lightyear", abbrev="ly")
au = astronomical_unit = astronomical_units = Quantity("astronomical_unit", abbrev="AU")
# Fundamental Planck units:
planck_mass = Quantity("planck_mass", abbrev="m_P", latex_repr=r'm_\text{P}')
planck_time = Quantity("planck_time", abbrev="t_P", latex_repr=r't_\text{P}')
planck_temperature = Quantity("planck_temperature", abbrev="T_P",
latex_repr=r'T_\text{P}')
planck_length = Quantity("planck_length", abbrev="l_P", latex_repr=r'l_\text{P}')
planck_charge = Quantity("planck_charge", abbrev="q_P", latex_repr=r'q_\text{P}')
# Derived Planck units:
planck_area = Quantity("planck_area")
planck_volume = Quantity("planck_volume")
planck_momentum = Quantity("planck_momentum")
planck_energy = Quantity("planck_energy", abbrev="E_P", latex_repr=r'E_\text{P}')
planck_force = Quantity("planck_force", abbrev="F_P", latex_repr=r'F_\text{P}')
planck_power = Quantity("planck_power", abbrev="P_P", latex_repr=r'P_\text{P}')
planck_density = Quantity("planck_density", abbrev="rho_P", latex_repr=r'\rho_\text{P}')
planck_energy_density = Quantity("planck_energy_density", abbrev="rho^E_P")
planck_intensity = Quantity("planck_intensity", abbrev="I_P", latex_repr=r'I_\text{P}')
planck_angular_frequency = Quantity("planck_angular_frequency", abbrev="omega_P",
latex_repr=r'\omega_\text{P}')
planck_pressure = Quantity("planck_pressure", abbrev="p_P", latex_repr=r'p_\text{P}')
planck_current = Quantity("planck_current", abbrev="I_P", latex_repr=r'I_\text{P}')
planck_voltage = Quantity("planck_voltage", abbrev="V_P", latex_repr=r'V_\text{P}')
planck_impedance = Quantity("planck_impedance", abbrev="Z_P", latex_repr=r'Z_\text{P}')
planck_acceleration = Quantity("planck_acceleration", abbrev="a_P",
latex_repr=r'a_\text{P}')
# Information theory units:
bit = bits = Quantity("bit")
bit.set_global_dimension(information)
byte = bytes = Quantity("byte")
kibibyte = kibibytes = Quantity("kibibyte")
mebibyte = mebibytes = Quantity("mebibyte")
gibibyte = gibibytes = Quantity("gibibyte")
tebibyte = tebibytes = Quantity("tebibyte")
pebibyte = pebibytes = Quantity("pebibyte")
exbibyte = exbibytes = Quantity("exbibyte")
byte.set_global_relative_scale_factor(8, bit)
kibibyte.set_global_relative_scale_factor(kibi, byte)
mebibyte.set_global_relative_scale_factor(mebi, byte)
gibibyte.set_global_relative_scale_factor(gibi, byte)
tebibyte.set_global_relative_scale_factor(tebi, byte)
pebibyte.set_global_relative_scale_factor(pebi, byte)
exbibyte.set_global_relative_scale_factor(exbi, byte)
# Older units for radioactivity
curie = Ci = Quantity("curie", abbrev="Ci")
rutherford = Rd = Quantity("rutherford", abbrev="Rd")
|
6013d4ba8bd6dfe2410d962e4ad5d745a0bc71fcc4dc49f72b9323372e692c99 | """
SI unit system.
Based on MKSA, which stands for "meter, kilogram, second, ampere".
Added kelvin, candela and mole.
"""
from __future__ import annotations
from sympy.physics.units import DimensionSystem, Dimension, dHg0
from sympy.physics.units.quantities import Quantity
from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.units.definitions.dimension_definitions import (
acceleration, action, current, impedance, length, mass, time, velocity,
amount_of_substance, temperature, information, frequency, force, pressure,
energy, power, charge, voltage, capacitance, conductance, magnetic_flux,
magnetic_density, inductance, luminous_intensity
)
from sympy.physics.units.definitions import (
kilogram, newton, second, meter, gram, cd, K, joule, watt, pascal, hertz,
coulomb, volt, ohm, siemens, farad, henry, tesla, weber, dioptre, lux,
katal, gray, becquerel, inch, liter, julian_year, gravitational_constant,
speed_of_light, elementary_charge, planck, hbar, electronvolt,
avogadro_number, avogadro_constant, boltzmann_constant, electron_rest_mass,
stefan_boltzmann_constant, Da, atomic_mass_constant, molar_gas_constant,
faraday_constant, josephson_constant, von_klitzing_constant,
acceleration_due_to_gravity, magnetic_constant, vacuum_permittivity,
vacuum_impedance, coulomb_constant, atmosphere, bar, pound, psi, mmHg,
milli_mass_unit, quart, lightyear, astronomical_unit, planck_mass,
planck_time, planck_temperature, planck_length, planck_charge, planck_area,
planck_volume, planck_momentum, planck_energy, planck_force, planck_power,
planck_density, planck_energy_density, planck_intensity,
planck_angular_frequency, planck_pressure, planck_current, planck_voltage,
planck_impedance, planck_acceleration, bit, byte, kibibyte, mebibyte,
gibibyte, tebibyte, pebibyte, exbibyte, curie, rutherford, radian, degree,
steradian, angular_mil, atomic_mass_unit, gee, kPa, ampere, u0, c, kelvin,
mol, mole, candela, m, kg, s, electric_constant, G, boltzmann
)
from sympy.physics.units.prefixes import PREFIXES, prefix_unit
from sympy.physics.units.systems.mksa import MKSA, dimsys_MKSA
derived_dims = (frequency, force, pressure, energy, power, charge, voltage,
capacitance, conductance, magnetic_flux,
magnetic_density, inductance, luminous_intensity)
base_dims = (amount_of_substance, luminous_intensity, temperature)
units = [mol, cd, K, lux, hertz, newton, pascal, joule, watt, coulomb, volt,
farad, ohm, siemens, weber, tesla, henry, candela, lux, becquerel,
gray, katal]
all_units: list[Quantity] = []
for u in units:
all_units.extend(prefix_unit(u, PREFIXES))
all_units.extend(units)
all_units.extend([mol, cd, K, lux])
dimsys_SI = dimsys_MKSA.extend(
[
# Dimensional dependencies for other base dimensions:
temperature,
amount_of_substance,
luminous_intensity,
])
dimsys_default = dimsys_SI.extend(
[information],
)
SI = MKSA.extend(base=(mol, cd, K), units=all_units, name='SI', dimension_system=dimsys_SI, derived_units={
power: watt,
magnetic_flux: weber,
time: second,
impedance: ohm,
pressure: pascal,
current: ampere,
voltage: volt,
length: meter,
frequency: hertz,
inductance: henry,
temperature: kelvin,
amount_of_substance: mole,
luminous_intensity: candela,
conductance: siemens,
mass: kilogram,
magnetic_density: tesla,
charge: coulomb,
force: newton,
capacitance: farad,
energy: joule,
velocity: meter/second,
})
One = S.One
SI.set_quantity_dimension(radian, One)
SI.set_quantity_scale_factor(ampere, One)
SI.set_quantity_scale_factor(kelvin, One)
SI.set_quantity_scale_factor(mole, One)
SI.set_quantity_scale_factor(candela, One)
# MKSA extension to MKS: derived units
SI.set_quantity_scale_factor(coulomb, One)
SI.set_quantity_scale_factor(volt, joule/coulomb)
SI.set_quantity_scale_factor(ohm, volt/ampere)
SI.set_quantity_scale_factor(siemens, ampere/volt)
SI.set_quantity_scale_factor(farad, coulomb/volt)
SI.set_quantity_scale_factor(henry, volt*second/ampere)
SI.set_quantity_scale_factor(tesla, volt*second/meter**2)
SI.set_quantity_scale_factor(weber, joule/ampere)
SI.set_quantity_dimension(lux, luminous_intensity / length ** 2)
SI.set_quantity_scale_factor(lux, steradian*candela/meter**2)
# katal is the SI unit of catalytic activity
SI.set_quantity_dimension(katal, amount_of_substance / time)
SI.set_quantity_scale_factor(katal, mol/second)
# gray is the SI unit of absorbed dose
SI.set_quantity_dimension(gray, energy / mass)
SI.set_quantity_scale_factor(gray, meter**2/second**2)
# becquerel is the SI unit of radioactivity
SI.set_quantity_dimension(becquerel, 1 / time)
SI.set_quantity_scale_factor(becquerel, 1/second)
#### CONSTANTS ####
# elementary charge
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(elementary_charge, charge)
SI.set_quantity_scale_factor(elementary_charge, 1.602176634e-19*coulomb)
# Electronvolt
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(electronvolt, energy)
SI.set_quantity_scale_factor(electronvolt, 1.602176634e-19*joule)
# Avogadro number
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(avogadro_number, One)
SI.set_quantity_scale_factor(avogadro_number, 6.02214076e23)
# Avogadro constant
SI.set_quantity_dimension(avogadro_constant, amount_of_substance ** -1)
SI.set_quantity_scale_factor(avogadro_constant, avogadro_number / mol)
# Boltzmann constant
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(boltzmann_constant, energy / temperature)
SI.set_quantity_scale_factor(boltzmann_constant, 1.380649e-23*joule/kelvin)
# Stefan-Boltzmann constant
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(stefan_boltzmann_constant, energy * time ** -1 * length ** -2 * temperature ** -4)
SI.set_quantity_scale_factor(stefan_boltzmann_constant, pi**2 * boltzmann_constant**4 / (60 * hbar**3 * speed_of_light ** 2))
# Atomic mass
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(atomic_mass_constant, mass)
SI.set_quantity_scale_factor(atomic_mass_constant, 1.66053906660e-24*gram)
# Molar gas constant
# REF: NIST SP 959 (June 2019)
SI.set_quantity_dimension(molar_gas_constant, energy / (temperature * amount_of_substance))
SI.set_quantity_scale_factor(molar_gas_constant, boltzmann_constant * avogadro_constant)
# Faraday constant
SI.set_quantity_dimension(faraday_constant, charge / amount_of_substance)
SI.set_quantity_scale_factor(faraday_constant, elementary_charge * avogadro_constant)
# Josephson constant
SI.set_quantity_dimension(josephson_constant, frequency / voltage)
SI.set_quantity_scale_factor(josephson_constant, 0.5 * planck / elementary_charge)
# Von Klitzing constant
SI.set_quantity_dimension(von_klitzing_constant, voltage / current)
SI.set_quantity_scale_factor(von_klitzing_constant, hbar / elementary_charge ** 2)
# Acceleration due to gravity (on the Earth surface)
SI.set_quantity_dimension(acceleration_due_to_gravity, acceleration)
SI.set_quantity_scale_factor(acceleration_due_to_gravity, 9.80665*meter/second**2)
# magnetic constant:
SI.set_quantity_dimension(magnetic_constant, force / current ** 2)
SI.set_quantity_scale_factor(magnetic_constant, 4*pi/10**7 * newton/ampere**2)
# electric constant:
SI.set_quantity_dimension(vacuum_permittivity, capacitance / length)
SI.set_quantity_scale_factor(vacuum_permittivity, 1/(u0 * c**2))
# vacuum impedance:
SI.set_quantity_dimension(vacuum_impedance, impedance)
SI.set_quantity_scale_factor(vacuum_impedance, u0 * c)
# Electron rest mass
SI.set_quantity_dimension(electron_rest_mass, mass)
SI.set_quantity_scale_factor(electron_rest_mass, 9.1093837015e-31*kilogram)
# Coulomb's constant:
SI.set_quantity_dimension(coulomb_constant, force * length ** 2 / charge ** 2)
SI.set_quantity_scale_factor(coulomb_constant, 1/(4*pi*vacuum_permittivity))
SI.set_quantity_dimension(psi, pressure)
SI.set_quantity_scale_factor(psi, pound * gee / inch ** 2)
SI.set_quantity_dimension(mmHg, pressure)
SI.set_quantity_scale_factor(mmHg, dHg0 * acceleration_due_to_gravity * kilogram / meter**2)
SI.set_quantity_dimension(milli_mass_unit, mass)
SI.set_quantity_scale_factor(milli_mass_unit, atomic_mass_unit/1000)
SI.set_quantity_dimension(quart, length ** 3)
SI.set_quantity_scale_factor(quart, Rational(231, 4) * inch**3)
# Other convenient units and magnitudes
SI.set_quantity_dimension(lightyear, length)
SI.set_quantity_scale_factor(lightyear, speed_of_light*julian_year)
SI.set_quantity_dimension(astronomical_unit, length)
SI.set_quantity_scale_factor(astronomical_unit, 149597870691*meter)
# Fundamental Planck units:
SI.set_quantity_dimension(planck_mass, mass)
SI.set_quantity_scale_factor(planck_mass, sqrt(hbar*speed_of_light/G))
SI.set_quantity_dimension(planck_time, time)
SI.set_quantity_scale_factor(planck_time, sqrt(hbar*G/speed_of_light**5))
SI.set_quantity_dimension(planck_temperature, temperature)
SI.set_quantity_scale_factor(planck_temperature, sqrt(hbar*speed_of_light**5/G/boltzmann**2))
SI.set_quantity_dimension(planck_length, length)
SI.set_quantity_scale_factor(planck_length, sqrt(hbar*G/speed_of_light**3))
SI.set_quantity_dimension(planck_charge, charge)
SI.set_quantity_scale_factor(planck_charge, sqrt(4*pi*electric_constant*hbar*speed_of_light))
# Derived Planck units:
SI.set_quantity_dimension(planck_area, length ** 2)
SI.set_quantity_scale_factor(planck_area, planck_length**2)
SI.set_quantity_dimension(planck_volume, length ** 3)
SI.set_quantity_scale_factor(planck_volume, planck_length**3)
SI.set_quantity_dimension(planck_momentum, mass * velocity)
SI.set_quantity_scale_factor(planck_momentum, planck_mass * speed_of_light)
SI.set_quantity_dimension(planck_energy, energy)
SI.set_quantity_scale_factor(planck_energy, planck_mass * speed_of_light**2)
SI.set_quantity_dimension(planck_force, force)
SI.set_quantity_scale_factor(planck_force, planck_energy / planck_length)
SI.set_quantity_dimension(planck_power, power)
SI.set_quantity_scale_factor(planck_power, planck_energy / planck_time)
SI.set_quantity_dimension(planck_density, mass / length ** 3)
SI.set_quantity_scale_factor(planck_density, planck_mass / planck_length**3)
SI.set_quantity_dimension(planck_energy_density, energy / length ** 3)
SI.set_quantity_scale_factor(planck_energy_density, planck_energy / planck_length**3)
SI.set_quantity_dimension(planck_intensity, mass * time ** (-3))
SI.set_quantity_scale_factor(planck_intensity, planck_energy_density * speed_of_light)
SI.set_quantity_dimension(planck_angular_frequency, 1 / time)
SI.set_quantity_scale_factor(planck_angular_frequency, 1 / planck_time)
SI.set_quantity_dimension(planck_pressure, pressure)
SI.set_quantity_scale_factor(planck_pressure, planck_force / planck_length**2)
SI.set_quantity_dimension(planck_current, current)
SI.set_quantity_scale_factor(planck_current, planck_charge / planck_time)
SI.set_quantity_dimension(planck_voltage, voltage)
SI.set_quantity_scale_factor(planck_voltage, planck_energy / planck_charge)
SI.set_quantity_dimension(planck_impedance, impedance)
SI.set_quantity_scale_factor(planck_impedance, planck_voltage / planck_current)
SI.set_quantity_dimension(planck_acceleration, acceleration)
SI.set_quantity_scale_factor(planck_acceleration, speed_of_light / planck_time)
# Older units for radioactivity
SI.set_quantity_dimension(curie, 1 / time)
SI.set_quantity_scale_factor(curie, 37000000000*becquerel)
SI.set_quantity_dimension(rutherford, 1 / time)
SI.set_quantity_scale_factor(rutherford, 1000000*becquerel)
# check that scale factors are the right SI dimensions:
for _scale_factor, _dimension in zip(
SI._quantity_scale_factors.values(),
SI._quantity_dimension_map.values()
):
dimex = SI.get_dimensional_expr(_scale_factor)
if dimex != 1:
# XXX: equivalent_dims is an instance method taking two arguments in
# addition to self so this can not work:
if not DimensionSystem.equivalent_dims(_dimension, Dimension(dimex)): # type: ignore
raise ValueError("quantity value and dimension mismatch")
del _scale_factor, _dimension
__all__ = [
'mmHg', 'atmosphere', 'inductance', 'newton', 'meter',
'vacuum_permittivity', 'pascal', 'magnetic_constant', 'voltage',
'angular_mil', 'luminous_intensity', 'all_units',
'julian_year', 'weber', 'exbibyte', 'liter',
'molar_gas_constant', 'faraday_constant', 'avogadro_constant',
'lightyear', 'planck_density', 'gee', 'mol', 'bit', 'gray',
'planck_momentum', 'bar', 'magnetic_density', 'prefix_unit', 'PREFIXES',
'planck_time', 'dimex', 'gram', 'candela', 'force', 'planck_intensity',
'energy', 'becquerel', 'planck_acceleration', 'speed_of_light',
'conductance', 'frequency', 'coulomb_constant', 'degree', 'lux', 'planck',
'current', 'planck_current', 'tebibyte', 'planck_power', 'MKSA', 'power',
'K', 'planck_volume', 'quart', 'pressure', 'amount_of_substance',
'joule', 'boltzmann_constant', 'Dimension', 'c', 'planck_force', 'length',
'watt', 'action', 'hbar', 'gibibyte', 'DimensionSystem', 'cd', 'volt',
'planck_charge', 'dioptre', 'vacuum_impedance', 'dimsys_default', 'farad',
'charge', 'gravitational_constant', 'temperature', 'u0', 'hertz',
'capacitance', 'tesla', 'steradian', 'planck_mass', 'josephson_constant',
'planck_area', 'stefan_boltzmann_constant', 'base_dims',
'astronomical_unit', 'radian', 'planck_voltage', 'impedance',
'planck_energy', 'Da', 'atomic_mass_constant', 'rutherford', 'second', 'inch',
'elementary_charge', 'SI', 'electronvolt', 'dimsys_SI', 'henry',
'planck_angular_frequency', 'ohm', 'pound', 'planck_pressure', 'G', 'psi',
'dHg0', 'von_klitzing_constant', 'planck_length', 'avogadro_number',
'mole', 'acceleration', 'information', 'planck_energy_density',
'mebibyte', 's', 'acceleration_due_to_gravity', 'electron_rest_mass',
'planck_temperature', 'units', 'mass', 'dimsys_MKSA', 'kelvin', 'kPa',
'boltzmann', 'milli_mass_unit', 'planck_impedance', 'electric_constant',
'derived_dims', 'kg', 'coulomb', 'siemens', 'byte', 'magnetic_flux',
'atomic_mass_unit', 'm', 'kibibyte', 'kilogram', 'One', 'curie', 'u',
'time', 'pebibyte', 'velocity', 'ampere', 'katal',
]
|
717682d2d2c1c21b8a6a6683f4dd10a07053d16b6f5aca50d9120246f73126e7 | import warnings
from sympy.core.add import Add
from sympy.core.function import (Function, diff)
from sympy.core.numbers import (Number, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.integrals.integrals import integrate
from sympy.physics.units import (amount_of_substance, area, convert_to, find_unit,
volume, kilometer, joule, molar_gas_constant,
vacuum_permittivity, elementary_charge, volt,
ohm)
from sympy.physics.units.definitions import (amu, au, centimeter, coulomb,
day, foot, grams, hour, inch, kg, km, m, meter, millimeter,
minute, quart, s, second, speed_of_light, bit,
byte, kibibyte, mebibyte, gibibyte, tebibyte, pebibyte, exbibyte,
kilogram, gravitational_constant, electron_rest_mass)
from sympy.physics.units.definitions.dimension_definitions import (
Dimension, charge, length, time, temperature, pressure,
energy, mass
)
from sympy.physics.units.prefixes import PREFIXES, kilo
from sympy.physics.units.quantities import PhysicalConstant, Quantity
from sympy.physics.units.systems import SI
from sympy.testing.pytest import raises
k = PREFIXES["k"]
def test_str_repr():
assert str(kg) == "kilogram"
def test_eq():
# simple test
assert 10*m == 10*m
assert 10*m != 10*s
def test_convert_to():
q = Quantity("q1")
q.set_global_relative_scale_factor(S(5000), meter)
assert q.convert_to(m) == 5000*m
assert speed_of_light.convert_to(m / s) == 299792458 * m / s
# TODO: eventually support this kind of conversion:
# assert (2*speed_of_light).convert_to(m / s) == 2 * 299792458 * m / s
assert day.convert_to(s) == 86400*s
# Wrong dimension to convert:
assert q.convert_to(s) == q
assert speed_of_light.convert_to(m) == speed_of_light
expr = joule*second
conv = convert_to(expr, joule)
assert conv == joule*second
def test_Quantity_definition():
q = Quantity("s10", abbrev="sabbr")
q.set_global_relative_scale_factor(10, second)
u = Quantity("u", abbrev="dam")
u.set_global_relative_scale_factor(10, meter)
km = Quantity("km")
km.set_global_relative_scale_factor(kilo, meter)
v = Quantity("u")
v.set_global_relative_scale_factor(5*kilo, meter)
assert q.scale_factor == 10
assert q.dimension == time
assert q.abbrev == Symbol("sabbr")
assert u.dimension == length
assert u.scale_factor == 10
assert u.abbrev == Symbol("dam")
assert km.scale_factor == 1000
assert km.func(*km.args) == km
assert km.func(*km.args).args == km.args
assert v.dimension == length
assert v.scale_factor == 5000
def test_abbrev():
u = Quantity("u")
u.set_global_relative_scale_factor(S.One, meter)
assert u.name == Symbol("u")
assert u.abbrev == Symbol("u")
u = Quantity("u", abbrev="om")
u.set_global_relative_scale_factor(S(2), meter)
assert u.name == Symbol("u")
assert u.abbrev == Symbol("om")
assert u.scale_factor == 2
assert isinstance(u.scale_factor, Number)
u = Quantity("u", abbrev="ikm")
u.set_global_relative_scale_factor(3*kilo, meter)
assert u.abbrev == Symbol("ikm")
assert u.scale_factor == 3000
def test_print():
u = Quantity("unitname", abbrev="dam")
assert repr(u) == "unitname"
assert str(u) == "unitname"
def test_Quantity_eq():
u = Quantity("u", abbrev="dam")
v = Quantity("v1")
assert u != v
v = Quantity("v2", abbrev="ds")
assert u != v
v = Quantity("v3", abbrev="dm")
assert u != v
def test_add_sub():
u = Quantity("u")
v = Quantity("v")
w = Quantity("w")
u.set_global_relative_scale_factor(S(10), meter)
v.set_global_relative_scale_factor(S(5), meter)
w.set_global_relative_scale_factor(S(2), second)
assert isinstance(u + v, Add)
assert (u + v.convert_to(u)) == (1 + S.Half)*u
# TODO: eventually add this:
# assert (u + v).convert_to(u) == (1 + S.Half)*u
assert isinstance(u - v, Add)
assert (u - v.convert_to(u)) == S.Half*u
# TODO: eventually add this:
# assert (u - v).convert_to(u) == S.Half*u
def test_quantity_abs():
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w3 = Quantity('v_w3')
v_w1.set_global_relative_scale_factor(1, meter/second)
v_w2.set_global_relative_scale_factor(1, meter/second)
v_w3.set_global_relative_scale_factor(1, meter/second)
expr = v_w3 - Abs(v_w1 - v_w2)
assert SI.get_dimensional_expr(v_w1) == (length/time).name
Dq = Dimension(SI.get_dimensional_expr(expr))
assert SI.get_dimension_system().get_dimensional_dependencies(Dq) == {
length: 1,
time: -1,
}
assert meter == sqrt(meter**2)
def test_check_unit_consistency():
u = Quantity("u")
v = Quantity("v")
w = Quantity("w")
u.set_global_relative_scale_factor(S(10), meter)
v.set_global_relative_scale_factor(S(5), meter)
w.set_global_relative_scale_factor(S(2), second)
def check_unit_consistency(expr):
SI._collect_factor_and_dimension(expr)
raises(ValueError, lambda: check_unit_consistency(u + w))
raises(ValueError, lambda: check_unit_consistency(u - w))
raises(ValueError, lambda: check_unit_consistency(u + 1))
raises(ValueError, lambda: check_unit_consistency(u - 1))
raises(ValueError, lambda: check_unit_consistency(1 - exp(u / w)))
def test_mul_div():
u = Quantity("u")
v = Quantity("v")
t = Quantity("t")
ut = Quantity("ut")
v2 = Quantity("v")
u.set_global_relative_scale_factor(S(10), meter)
v.set_global_relative_scale_factor(S(5), meter)
t.set_global_relative_scale_factor(S(2), second)
ut.set_global_relative_scale_factor(S(20), meter*second)
v2.set_global_relative_scale_factor(S(5), meter/second)
assert 1 / u == u**(-1)
assert u / 1 == u
v1 = u / t
v2 = v
# Pow only supports structural equality:
assert v1 != v2
assert v1 == v2.convert_to(v1)
# TODO: decide whether to allow such expression in the future
# (requires somehow manipulating the core).
# assert u / Quantity('l2', dimension=length, scale_factor=2) == 5
assert u * 1 == u
ut1 = u * t
ut2 = ut
# Mul only supports structural equality:
assert ut1 != ut2
assert ut1 == ut2.convert_to(ut1)
# Mul only supports structural equality:
lp1 = Quantity("lp1")
lp1.set_global_relative_scale_factor(S(2), 1/meter)
assert u * lp1 != 20
assert u**0 == 1
assert u**1 == u
# TODO: Pow only support structural equality:
u2 = Quantity("u2")
u3 = Quantity("u3")
u2.set_global_relative_scale_factor(S(100), meter**2)
u3.set_global_relative_scale_factor(Rational(1, 10), 1/meter)
assert u ** 2 != u2
assert u ** -1 != u3
assert u ** 2 == u2.convert_to(u)
assert u ** -1 == u3.convert_to(u)
def test_units():
assert convert_to((5*m/s * day) / km, 1) == 432
assert convert_to(foot / meter, meter) == Rational(3048, 10000)
# amu is a pure mass so mass/mass gives a number, not an amount (mol)
# TODO: need better simplification routine:
assert str(convert_to(grams/amu, grams).n(2)) == '6.0e+23'
# Light from the sun needs about 8.3 minutes to reach earth
t = (1*au / speed_of_light) / minute
# TODO: need a better way to simplify expressions containing units:
t = convert_to(convert_to(t, meter / minute), meter)
assert t.simplify() == Rational(49865956897, 5995849160)
# TODO: fix this, it should give `m` without `Abs`
assert sqrt(m**2) == m
assert (sqrt(m))**2 == m
t = Symbol('t')
assert integrate(t*m/s, (t, 1*s, 5*s)) == 12*m*s
assert (t * m/s).integrate((t, 1*s, 5*s)) == 12*m*s
def test_issue_quart():
assert convert_to(4 * quart / inch ** 3, meter) == 231
assert convert_to(4 * quart / inch ** 3, millimeter) == 231
def test_electron_rest_mass():
assert convert_to(electron_rest_mass, kilogram) == 9.1093837015e-31*kilogram
assert convert_to(electron_rest_mass, grams) == 9.1093837015e-28*grams
def test_issue_5565():
assert (m < s).is_Relational
def test_find_unit():
assert find_unit('coulomb') == ['coulomb', 'coulombs', 'coulomb_constant']
assert find_unit(coulomb) == ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
assert find_unit(charge) == ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
assert find_unit(inch) == [
'm', 'au', 'cm', 'dm', 'ft', 'km', 'ly', 'mi', 'mm', 'nm', 'pm', 'um',
'yd', 'nmi', 'feet', 'foot', 'inch', 'mile', 'yard', 'meter', 'miles',
'yards', 'inches', 'meters', 'micron', 'microns', 'decimeter',
'kilometer', 'lightyear', 'nanometer', 'picometer', 'centimeter',
'decimeters', 'kilometers', 'lightyears', 'micrometer', 'millimeter',
'nanometers', 'picometers', 'centimeters', 'micrometers',
'millimeters', 'nautical_mile', 'planck_length', 'nautical_miles', 'astronomical_unit',
'astronomical_units']
assert find_unit(inch**-1) == ['D', 'dioptre', 'optical_power']
assert find_unit(length**-1) == ['D', 'dioptre', 'optical_power']
assert find_unit(inch ** 2) == ['ha', 'hectare', 'planck_area']
assert find_unit(inch ** 3) == [
'L', 'l', 'cL', 'cl', 'dL', 'dl', 'mL', 'ml', 'liter', 'quart', 'liters', 'quarts',
'deciliter', 'centiliter', 'deciliters', 'milliliter',
'centiliters', 'milliliters', 'planck_volume']
assert find_unit('voltage') == ['V', 'v', 'volt', 'volts', 'planck_voltage']
assert find_unit(grams) == ['g', 't', 'Da', 'kg', 'me', 'mg', 'ug', 'amu', 'mmu', 'amus',
'gram', 'mmus', 'grams', 'pound', 'tonne', 'dalton', 'pounds',
'kilogram', 'kilograms', 'microgram', 'milligram', 'metric_ton',
'micrograms', 'milligrams', 'planck_mass', 'milli_mass_unit', 'atomic_mass_unit',
'electron_rest_mass', 'atomic_mass_constant']
def test_Quantity_derivative():
x = symbols("x")
assert diff(x*meter, x) == meter
assert diff(x**3*meter**2, x) == 3*x**2*meter**2
assert diff(meter, meter) == 1
assert diff(meter**2, meter) == 2*meter
def test_quantity_postprocessing():
q1 = Quantity('q1')
q2 = Quantity('q2')
SI.set_quantity_dimension(q1, length*pressure**2*temperature/time)
SI.set_quantity_dimension(q2, energy*pressure*temperature/(length**2*time))
assert q1 + q2
q = q1 + q2
Dq = Dimension(SI.get_dimensional_expr(q))
assert SI.get_dimension_system().get_dimensional_dependencies(Dq) == {
length: -1,
mass: 2,
temperature: 1,
time: -5,
}
def test_factor_and_dimension():
assert (3000, Dimension(1)) == SI._collect_factor_and_dimension(3000)
assert (1001, length) == SI._collect_factor_and_dimension(meter + km)
assert (2, length/time) == SI._collect_factor_and_dimension(
meter/second + 36*km/(10*hour))
x, y = symbols('x y')
assert (x + y/100, length) == SI._collect_factor_and_dimension(
x*m + y*centimeter)
cH = Quantity('cH')
SI.set_quantity_dimension(cH, amount_of_substance/volume)
pH = -log(cH)
assert (1, volume/amount_of_substance) == SI._collect_factor_and_dimension(
exp(pH))
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w1.set_global_relative_scale_factor(Rational(3, 2), meter/second)
v_w2.set_global_relative_scale_factor(2, meter/second)
expr = Abs(v_w1/2 - v_w2)
assert (Rational(5, 4), length/time) == \
SI._collect_factor_and_dimension(expr)
expr = Rational(5, 2)*second/meter*v_w1 - 3000
assert (-(2996 + Rational(1, 4)), Dimension(1)) == \
SI._collect_factor_and_dimension(expr)
expr = v_w1**(v_w2/v_w1)
assert ((Rational(3, 2))**Rational(4, 3), (length/time)**Rational(4, 3)) == \
SI._collect_factor_and_dimension(expr)
def test_dimensional_expr_of_derivative():
l = Quantity('l')
t = Quantity('t')
t1 = Quantity('t1')
l.set_global_relative_scale_factor(36, km)
t.set_global_relative_scale_factor(1, hour)
t1.set_global_relative_scale_factor(1, second)
x = Symbol('x')
y = Symbol('y')
f = Function('f')
dfdx = f(x, y).diff(x, y)
dl_dt = dfdx.subs({f(x, y): l, x: t, y: t1})
assert SI.get_dimensional_expr(dl_dt) ==\
SI.get_dimensional_expr(l / t / t1) ==\
Symbol("length")/Symbol("time")**2
assert SI._collect_factor_and_dimension(dl_dt) ==\
SI._collect_factor_and_dimension(l / t / t1) ==\
(10, length/time**2)
def test_get_dimensional_expr_with_function():
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w1.set_global_relative_scale_factor(1, meter/second)
v_w2.set_global_relative_scale_factor(1, meter/second)
assert SI.get_dimensional_expr(sin(v_w1)) == \
sin(SI.get_dimensional_expr(v_w1))
assert SI.get_dimensional_expr(sin(v_w1/v_w2)) == 1
def test_binary_information():
assert convert_to(kibibyte, byte) == 1024*byte
assert convert_to(mebibyte, byte) == 1024**2*byte
assert convert_to(gibibyte, byte) == 1024**3*byte
assert convert_to(tebibyte, byte) == 1024**4*byte
assert convert_to(pebibyte, byte) == 1024**5*byte
assert convert_to(exbibyte, byte) == 1024**6*byte
assert kibibyte.convert_to(bit) == 8*1024*bit
assert byte.convert_to(bit) == 8*bit
a = 10*kibibyte*hour
assert convert_to(a, byte) == 10240*byte*hour
assert convert_to(a, minute) == 600*kibibyte*minute
assert convert_to(a, [byte, minute]) == 614400*byte*minute
def test_conversion_with_2_nonstandard_dimensions():
good_grade = Quantity("good_grade")
kilo_good_grade = Quantity("kilo_good_grade")
centi_good_grade = Quantity("centi_good_grade")
kilo_good_grade.set_global_relative_scale_factor(1000, good_grade)
centi_good_grade.set_global_relative_scale_factor(S.One/10**5, kilo_good_grade)
charity_points = Quantity("charity_points")
milli_charity_points = Quantity("milli_charity_points")
missions = Quantity("missions")
milli_charity_points.set_global_relative_scale_factor(S.One/1000, charity_points)
missions.set_global_relative_scale_factor(251, charity_points)
assert convert_to(
kilo_good_grade*milli_charity_points*millimeter,
[centi_good_grade, missions, centimeter]
) == S.One * 10**5 / (251*1000) / 10 * centi_good_grade*missions*centimeter
def test_eval_subs():
energy, mass, force = symbols('energy mass force')
expr1 = energy/mass
units = {energy: kilogram*meter**2/second**2, mass: kilogram}
assert expr1.subs(units) == meter**2/second**2
expr2 = force/mass
units = {force:gravitational_constant*kilogram**2/meter**2, mass:kilogram}
assert expr2.subs(units) == gravitational_constant*kilogram/meter**2
def test_issue_14932():
assert (log(inch) - log(2)).simplify() == log(inch/2)
assert (log(inch) - log(foot)).simplify() == -log(12)
p = symbols('p', positive=True)
assert (log(inch) - log(p)).simplify() == log(inch/p)
def test_issue_14547():
# the root issue is that an argument with dimensions should
# not raise an error when the `arg - 1` calculation is
# performed in the assumptions system
from sympy.physics.units import foot, inch
from sympy.core.relational import Eq
assert log(foot).is_zero is None
assert log(foot).is_positive is None
assert log(foot).is_nonnegative is None
assert log(foot).is_negative is None
assert log(foot).is_algebraic is None
assert log(foot).is_rational is None
# doesn't raise error
assert Eq(log(foot), log(inch)) is not None # might be False or unevaluated
x = Symbol('x')
e = foot + x
assert e.is_Add and set(e.args) == {foot, x}
e = foot + 1
assert e.is_Add and set(e.args) == {foot, 1}
def test_issue_22164():
warnings.simplefilter("error")
dm = Quantity("dm")
SI.set_quantity_dimension(dm, length)
SI.set_quantity_scale_factor(dm, 1)
bad_exp = Quantity("bad_exp")
SI.set_quantity_dimension(bad_exp, length)
SI.set_quantity_scale_factor(bad_exp, 1)
expr = dm ** bad_exp
# deprecation warning is not expected here
SI._collect_factor_and_dimension(expr)
def test_issue_22819():
from sympy.physics.units import tonne, gram, Da
from sympy.physics.units.systems.si import dimsys_SI
assert tonne.convert_to(gram) == 1000000*gram
assert dimsys_SI.get_dimensional_dependencies(area) == {length: 2}
assert Da.scale_factor == 1.66053906660000e-24
def test_issue_20288():
from sympy.core.numbers import E
from sympy.physics.units import energy
u = Quantity('u')
v = Quantity('v')
SI.set_quantity_dimension(u, energy)
SI.set_quantity_dimension(v, energy)
u.set_global_relative_scale_factor(1, joule)
v.set_global_relative_scale_factor(1, joule)
expr = 1 + exp(u**2/v**2)
assert SI._collect_factor_and_dimension(expr) == (1 + E, Dimension(1))
def test_issue_24062():
from sympy.core.numbers import E
from sympy.physics.units import impedance, capacitance, time, ohm, farad, second
R = Quantity('R')
C = Quantity('C')
T = Quantity('T')
SI.set_quantity_dimension(R, impedance)
SI.set_quantity_dimension(C, capacitance)
SI.set_quantity_dimension(T, time)
R.set_global_relative_scale_factor(1, ohm)
C.set_global_relative_scale_factor(1, farad)
T.set_global_relative_scale_factor(1, second)
expr = T / (R * C)
dim = SI._collect_factor_and_dimension(expr)[1]
assert SI.get_dimension_system().is_dimensionless(dim)
exp_expr = 1 + exp(expr)
assert SI._collect_factor_and_dimension(exp_expr) == (1 + E, Dimension(1))
def test_issue_24211():
from sympy.physics.units import time, velocity, acceleration, second, meter
V1 = Quantity('V1')
SI.set_quantity_dimension(V1, velocity)
SI.set_quantity_scale_factor(V1, 1 * meter / second)
A1 = Quantity('A1')
SI.set_quantity_dimension(A1, acceleration)
SI.set_quantity_scale_factor(A1, 1 * meter / second**2)
T1 = Quantity('T1')
SI.set_quantity_dimension(T1, time)
SI.set_quantity_scale_factor(T1, 1 * second)
expr = A1*T1 + V1
# should not throw ValueError here
SI._collect_factor_and_dimension(expr)
def test_prefixed_property():
assert not meter.is_prefixed
assert not joule.is_prefixed
assert not day.is_prefixed
assert not second.is_prefixed
assert not volt.is_prefixed
assert not ohm.is_prefixed
assert centimeter.is_prefixed
assert kilometer.is_prefixed
assert kilogram.is_prefixed
assert pebibyte.is_prefixed
def test_physics_constant():
from sympy.physics.units import definitions
for name in dir(definitions):
quantity = getattr(definitions, name)
if not isinstance(quantity, Quantity):
continue
if name.endswith('_constant'):
assert isinstance(quantity, PhysicalConstant), f"{quantity} must be PhysicalConstant, but is {type(quantity)}"
assert quantity.is_physical_constant, f"{name} is not marked as physics constant when it should be"
for const in [gravitational_constant, molar_gas_constant, vacuum_permittivity, speed_of_light, elementary_charge]:
assert isinstance(const, PhysicalConstant), f"{const} must be PhysicalConstant, but is {type(const)}"
assert const.is_physical_constant, f"{const} is not marked as physics constant when it should be"
assert not meter.is_physical_constant
assert not joule.is_physical_constant
|
b14c7fac284d4d614a3cdc15976f7a4173be778fb27a60c99e4107162b25b267 | from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
from sympy import I
def test_printing_TensMul():
R3 = TensorIndexType('R3', dim=3)
p, q = tensor_indices("p q", R3)
K = TensorHead("K", [R3])
assert repr(2*K(p)) == "2*K(p)"
assert repr(-K(p)) == "-K(p)"
assert repr(-2*K(p)*K(q)) == "-2*K(p)*K(q)"
assert repr(-I*K(p)) == "-I*K(p)"
assert repr(I*K(p)) == "I*K(p)"
|
f71bd8061c45266d36d0e8550ca5888fe9b53c6b64bc7170b55ee22faed27542 | from sympy.assumptions import Q
from sympy.core.expr import Expr
from sympy.core.add import Add
from sympy.core.function import Function
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.core.numbers import I, Integer, oo, pi, Rational
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import (ShapeError, NonSquareMatrixError,
_MinimalMatrix, _CastableMatrix, MatrixShaping, MatrixProperties,
MatrixOperations, MatrixArithmetic, MatrixSpecial, MatrixKind)
from sympy.matrices.matrices import MatrixCalculus
from sympy.matrices import (Matrix, diag, eye,
matrix_multiply_elementwise, ones, zeros, SparseMatrix, banded,
MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix,
ImmutableSparseMatrix)
from sympy.polys.polytools import Poly
from sympy.utilities.iterables import flatten
from sympy.testing.pytest import raises, XFAIL
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray as Array
from sympy.abc import x, y, z
# classes to test the basic matrix classes
class ShapingOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixShaping):
pass
def eye_Shaping(n):
return ShapingOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Shaping(n):
return ShapingOnlyMatrix(n, n, lambda i, j: 0)
class PropertiesOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixProperties):
pass
def eye_Properties(n):
return PropertiesOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Properties(n):
return PropertiesOnlyMatrix(n, n, lambda i, j: 0)
class OperationsOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixOperations):
pass
def eye_Operations(n):
return OperationsOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Operations(n):
return OperationsOnlyMatrix(n, n, lambda i, j: 0)
class ArithmeticOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixArithmetic):
pass
def eye_Arithmetic(n):
return ArithmeticOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Arithmetic(n):
return ArithmeticOnlyMatrix(n, n, lambda i, j: 0)
class SpecialOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixSpecial):
pass
class CalculusOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixCalculus):
pass
def test__MinimalMatrix():
x = _MinimalMatrix(2, 3, [1, 2, 3, 4, 5, 6])
assert x.rows == 2
assert x.cols == 3
assert x[2] == 3
assert x[1, 1] == 5
assert list(x) == [1, 2, 3, 4, 5, 6]
assert list(x[1, :]) == [4, 5, 6]
assert list(x[:, 1]) == [2, 5]
assert list(x[:, :]) == list(x)
assert x[:, :] == x
assert _MinimalMatrix(x) == x
assert _MinimalMatrix([[1, 2, 3], [4, 5, 6]]) == x
assert _MinimalMatrix(([1, 2, 3], [4, 5, 6])) == x
assert _MinimalMatrix([(1, 2, 3), (4, 5, 6)]) == x
assert _MinimalMatrix(((1, 2, 3), (4, 5, 6))) == x
assert not (_MinimalMatrix([[1, 2], [3, 4], [5, 6]]) == x)
def test_kind():
assert Matrix([[1, 2], [3, 4]]).kind == MatrixKind(NumberKind)
assert Matrix([[0, 0], [0, 0]]).kind == MatrixKind(NumberKind)
assert Matrix(0, 0, []).kind == MatrixKind(NumberKind)
assert Matrix([[x]]).kind == MatrixKind(NumberKind)
assert Matrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind)
assert SparseMatrix([[1]]).kind == MatrixKind(NumberKind)
assert SparseMatrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind)
# ShapingOnlyMatrix tests
def test_vec():
m = ShapingOnlyMatrix(2, 2, [1, 3, 2, 4])
m_vec = m.vec()
assert m_vec.cols == 1
for i in range(4):
assert m_vec[i] == i + 1
def test_todok():
a, b, c, d = symbols('a:d')
m1 = MutableDenseMatrix([[a, b], [c, d]])
m2 = ImmutableDenseMatrix([[a, b], [c, d]])
m3 = MutableSparseMatrix([[a, b], [c, d]])
m4 = ImmutableSparseMatrix([[a, b], [c, d]])
assert m1.todok() == m2.todok() == m3.todok() == m4.todok() == \
{(0, 0): a, (0, 1): b, (1, 0): c, (1, 1): d}
def test_tolist():
lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]]
flat_lst = [S.One, S.Half, x*y, S.Zero, x, y, z, x**2, y, -S.One, z*x, 3]
m = ShapingOnlyMatrix(3, 4, flat_lst)
assert m.tolist() == lst
def test_todod():
m = ShapingOnlyMatrix(3, 2, [[S.One, 0], [0, S.Half], [x, 0]])
dict = {0: {0: S.One}, 1: {1: S.Half}, 2: {0: x}}
assert m.todod() == dict
def test_row_col_del():
e = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
raises(IndexError, lambda: e.row_del(5))
raises(IndexError, lambda: e.row_del(-5))
raises(IndexError, lambda: e.col_del(5))
raises(IndexError, lambda: e.col_del(-5))
assert e.row_del(2) == e.row_del(-1) == Matrix([[1, 2, 3], [4, 5, 6]])
assert e.col_del(2) == e.col_del(-1) == Matrix([[1, 2], [4, 5], [7, 8]])
assert e.row_del(1) == e.row_del(-2) == Matrix([[1, 2, 3], [7, 8, 9]])
assert e.col_del(1) == e.col_del(-2) == Matrix([[1, 3], [4, 6], [7, 9]])
def test_get_diag_blocks1():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
assert a.get_diag_blocks() == [a]
assert b.get_diag_blocks() == [b]
assert c.get_diag_blocks() == [c]
def test_get_diag_blocks2():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
A, B, C, D = diag(a, b, b), diag(a, b, c), diag(a, c, b), diag(c, c, b)
A = ShapingOnlyMatrix(A.rows, A.cols, A)
B = ShapingOnlyMatrix(B.rows, B.cols, B)
C = ShapingOnlyMatrix(C.rows, C.cols, C)
D = ShapingOnlyMatrix(D.rows, D.cols, D)
assert A.get_diag_blocks() == [a, b, b]
assert B.get_diag_blocks() == [a, b, c]
assert C.get_diag_blocks() == [a, c, b]
assert D.get_diag_blocks() == [c, c, b]
def test_shape():
m = ShapingOnlyMatrix(1, 2, [0, 0])
assert m.shape == (1, 2)
def test_reshape():
m0 = eye_Shaping(3)
assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1))
m1 = ShapingOnlyMatrix(3, 4, lambda i, j: i + j)
assert m1.reshape(
4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)))
assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)))
def test_row_col():
m = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
assert m.row(0) == Matrix(1, 3, [1, 2, 3])
assert m.col(0) == Matrix(3, 1, [1, 4, 7])
def test_row_join():
assert eye_Shaping(3).row_join(Matrix([7, 7, 7])) == \
Matrix([[1, 0, 0, 7],
[0, 1, 0, 7],
[0, 0, 1, 7]])
def test_col_join():
assert eye_Shaping(3).col_join(Matrix([[7, 7, 7]])) == \
Matrix([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[7, 7, 7]])
def test_row_insert():
r4 = Matrix([[4, 4, 4]])
for i in range(-4, 5):
l = [1, 0, 0]
l.insert(i, 4)
assert flatten(eye_Shaping(3).row_insert(i, r4).col(0).tolist()) == l
def test_col_insert():
c4 = Matrix([4, 4, 4])
for i in range(-4, 5):
l = [0, 0, 0]
l.insert(i, 4)
assert flatten(zeros_Shaping(3).col_insert(i, c4).row(0).tolist()) == l
# issue 13643
assert eye_Shaping(6).col_insert(3, Matrix([[2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]])) == \
Matrix([[1, 0, 0, 2, 2, 0, 0, 0],
[0, 1, 0, 2, 2, 0, 0, 0],
[0, 0, 1, 2, 2, 0, 0, 0],
[0, 0, 0, 2, 2, 1, 0, 0],
[0, 0, 0, 2, 2, 0, 1, 0],
[0, 0, 0, 2, 2, 0, 0, 1]])
def test_extract():
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10])
assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11])
assert m.extract(range(4), range(3)) == m
raises(IndexError, lambda: m.extract([4], [0]))
raises(IndexError, lambda: m.extract([0], [3]))
def test_hstack():
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j)
assert m == m.hstack(m)
assert m.hstack(m, m, m) == ShapingOnlyMatrix.hstack(m, m, m) == Matrix([
[0, 1, 2, 0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5, 3, 4, 5],
[6, 7, 8, 6, 7, 8, 6, 7, 8],
[9, 10, 11, 9, 10, 11, 9, 10, 11]])
raises(ShapeError, lambda: m.hstack(m, m2))
assert Matrix.hstack() == Matrix()
# test regression #12938
M1 = Matrix.zeros(0, 0)
M2 = Matrix.zeros(0, 1)
M3 = Matrix.zeros(0, 2)
M4 = Matrix.zeros(0, 3)
m = ShapingOnlyMatrix.hstack(M1, M2, M3, M4)
assert m.rows == 0 and m.cols == 6
def test_vstack():
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j)
assert m == m.vstack(m)
assert m.vstack(m, m, m) == ShapingOnlyMatrix.vstack(m, m, m) == Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
raises(ShapeError, lambda: m.vstack(m, m2))
assert Matrix.vstack() == Matrix()
# PropertiesOnlyMatrix tests
def test_atoms():
m = PropertiesOnlyMatrix(2, 2, [1, 2, x, 1 - 1/x])
assert m.atoms() == {S.One, S(2), S.NegativeOne, x}
assert m.atoms(Symbol) == {x}
def test_free_symbols():
assert PropertiesOnlyMatrix([[x], [0]]).free_symbols == {x}
def test_has():
A = PropertiesOnlyMatrix(((x, y), (2, 3)))
assert A.has(x)
assert not A.has(z)
assert A.has(Symbol)
A = PropertiesOnlyMatrix(((2, y), (2, 3)))
assert not A.has(x)
def test_is_anti_symmetric():
x = symbols('x')
assert PropertiesOnlyMatrix(2, 1, [1, 2]).is_anti_symmetric() is False
m = PropertiesOnlyMatrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0])
assert m.is_anti_symmetric() is True
assert m.is_anti_symmetric(simplify=False) is False
assert m.is_anti_symmetric(simplify=lambda x: x) is False
m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in m])
assert m.is_anti_symmetric(simplify=False) is True
m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in [S.One] + list(m)[1:]])
assert m.is_anti_symmetric() is False
def test_diagonal_symmetrical():
m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0])
assert not m.is_diagonal()
assert m.is_symmetric()
assert m.is_symmetric(simplify=False)
m = PropertiesOnlyMatrix(2, 2, [1, 0, 0, 1])
assert m.is_diagonal()
m = PropertiesOnlyMatrix(3, 3, diag(1, 2, 3))
assert m.is_diagonal()
assert m.is_symmetric()
m = PropertiesOnlyMatrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3])
assert m == diag(1, 2, 3)
m = PropertiesOnlyMatrix(2, 3, zeros(2, 3))
assert not m.is_symmetric()
assert m.is_diagonal()
m = PropertiesOnlyMatrix(((5, 0), (0, 6), (0, 0)))
assert m.is_diagonal()
m = PropertiesOnlyMatrix(((5, 0, 0), (0, 6, 0)))
assert m.is_diagonal()
m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
assert m.is_symmetric()
assert not m.is_symmetric(simplify=False)
assert m.expand().is_symmetric(simplify=False)
def test_is_hermitian():
a = PropertiesOnlyMatrix([[1, I], [-I, 1]])
assert a.is_hermitian
a = PropertiesOnlyMatrix([[2*I, I], [-I, 1]])
assert a.is_hermitian is False
a = PropertiesOnlyMatrix([[x, I], [-I, 1]])
assert a.is_hermitian is None
a = PropertiesOnlyMatrix([[x, 1], [-I, 1]])
assert a.is_hermitian is False
def test_is_Identity():
assert eye_Properties(3).is_Identity
assert not PropertiesOnlyMatrix(zeros(3)).is_Identity
assert not PropertiesOnlyMatrix(ones(3)).is_Identity
# issue 6242
assert not PropertiesOnlyMatrix([[1, 0, 0]]).is_Identity
def test_is_symbolic():
a = PropertiesOnlyMatrix([[x, x], [x, x]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, 7, 8]])
assert a.is_symbolic() is False
a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, x, 8]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1, x, 3]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1, 2, 3]])
assert a.is_symbolic() is False
a = PropertiesOnlyMatrix([[1], [x], [3]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1], [2], [3]])
assert a.is_symbolic() is False
def test_is_upper():
a = PropertiesOnlyMatrix([[1, 2, 3]])
assert a.is_upper is True
a = PropertiesOnlyMatrix([[1], [2], [3]])
assert a.is_upper is False
def test_is_lower():
a = PropertiesOnlyMatrix([[1, 2, 3]])
assert a.is_lower is False
a = PropertiesOnlyMatrix([[1], [2], [3]])
assert a.is_lower is True
def test_is_square():
m = PropertiesOnlyMatrix([[1], [1]])
m2 = PropertiesOnlyMatrix([[2, 2], [2, 2]])
assert not m.is_square
assert m2.is_square
def test_is_symmetric():
m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0])
assert m.is_symmetric()
m = PropertiesOnlyMatrix(2, 2, [0, 1, 0, 1])
assert not m.is_symmetric()
def test_is_hessenberg():
A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]])
assert A.is_upper_hessenberg
A = PropertiesOnlyMatrix(3, 3, [3, 2, 0, 4, 4, 1, 1, 5, 2])
assert A.is_lower_hessenberg
A = PropertiesOnlyMatrix(3, 3, [3, 2, -1, 4, 4, 1, 1, 5, 2])
assert A.is_lower_hessenberg is False
assert A.is_upper_hessenberg is False
A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]])
assert not A.is_upper_hessenberg
def test_is_zero():
assert PropertiesOnlyMatrix(0, 0, []).is_zero_matrix
assert PropertiesOnlyMatrix([[0, 0], [0, 0]]).is_zero_matrix
assert PropertiesOnlyMatrix(zeros(3, 4)).is_zero_matrix
assert not PropertiesOnlyMatrix(eye(3)).is_zero_matrix
assert PropertiesOnlyMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
assert PropertiesOnlyMatrix([[x, 1], [0, 0]]).is_zero_matrix == False
a = Symbol('a', nonzero=True)
assert PropertiesOnlyMatrix([[a, 0], [0, 0]]).is_zero_matrix == False
def test_values():
assert set(PropertiesOnlyMatrix(2, 2, [0, 1, 2, 3]
).values()) == {1, 2, 3}
x = Symbol('x', real=True)
assert set(PropertiesOnlyMatrix(2, 2, [x, 0, 0, 1]
).values()) == {x, 1}
# OperationsOnlyMatrix tests
def test_applyfunc():
m0 = OperationsOnlyMatrix(eye(3))
assert m0.applyfunc(lambda x: 2*x) == eye(3)*2
assert m0.applyfunc(lambda x: 0) == zeros(3)
assert m0.applyfunc(lambda x: 1) == ones(3)
def test_adjoint():
dat = [[0, I], [1, 0]]
ans = OperationsOnlyMatrix([[0, 1], [-I, 0]])
assert ans.adjoint() == Matrix(dat)
def test_as_real_imag():
m1 = OperationsOnlyMatrix(2, 2, [1, 2, 3, 4])
m3 = OperationsOnlyMatrix(2, 2,
[1 + S.ImaginaryUnit, 2 + 2*S.ImaginaryUnit,
3 + 3*S.ImaginaryUnit, 4 + 4*S.ImaginaryUnit])
a, b = m3.as_real_imag()
assert a == m1
assert b == m1
def test_conjugate():
M = OperationsOnlyMatrix([[0, I, 5],
[1, 2, 0]])
assert M.T == Matrix([[0, 1],
[I, 2],
[5, 0]])
assert M.C == Matrix([[0, -I, 5],
[1, 2, 0]])
assert M.C == M.conjugate()
assert M.H == M.T.C
assert M.H == Matrix([[ 0, 1],
[-I, 2],
[ 5, 0]])
def test_doit():
a = OperationsOnlyMatrix([[Add(x, x, evaluate=False)]])
assert a[0] != 2*x
assert a.doit() == Matrix([[2*x]])
def test_evalf():
a = OperationsOnlyMatrix(2, 1, [sqrt(5), 6])
assert all(a.evalf()[i] == a[i].evalf() for i in range(2))
assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2))
assert all(a.n(2)[i] == a[i].n(2) for i in range(2))
def test_expand():
m0 = OperationsOnlyMatrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
# Test if expand() returns a matrix
m1 = m0.expand()
assert m1 == Matrix(
[[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])
a = Symbol('a', real=True)
assert OperationsOnlyMatrix(1, 1, [exp(I*a)]).expand(complex=True) == \
Matrix([cos(a) + I*sin(a)])
def test_refine():
m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)],
[sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]])
m1 = m0.refine(Q.real(x) & Q.real(y))
assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]])
m1 = m0.refine(Q.positive(x) & Q.positive(y))
assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]])
m1 = m0.refine(Q.negative(x) & Q.negative(y))
assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]])
def test_replace():
F, G = symbols('F, G', cls=Function)
K = OperationsOnlyMatrix(2, 2, lambda i, j: G(i+j))
M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j))
N = M.replace(F, G)
assert N == K
def test_replace_map():
F, G = symbols('F, G', cls=Function)
K = OperationsOnlyMatrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1) \
: G(1)}), (G(2), {F(2): G(2)})])
M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j))
N = M.replace(F, G, True)
assert N == K
def test_rot90():
A = Matrix([[1, 2], [3, 4]])
assert A == A.rot90(0) == A.rot90(4)
assert A.rot90(2) == A.rot90(-2) == A.rot90(6) == Matrix(((4, 3), (2, 1)))
assert A.rot90(3) == A.rot90(-1) == A.rot90(7) == Matrix(((2, 4), (1, 3)))
assert A.rot90() == A.rot90(-7) == A.rot90(-3) == Matrix(((3, 1), (4, 2)))
def test_simplify():
n = Symbol('n')
f = Function('f')
M = OperationsOnlyMatrix([[ 1/x + 1/y, (x + x*y) / x ],
[ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]])
assert M.simplify() == Matrix([[ (x + y)/(x * y), 1 + y ],
[ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]])
eq = (1 + x)**2
M = OperationsOnlyMatrix([[eq]])
assert M.simplify() == Matrix([[eq]])
assert M.simplify(ratio=oo) == Matrix([[eq.simplify(ratio=oo)]])
# https://github.com/sympy/sympy/issues/19353
m = Matrix([[30, 2], [3, 4]])
assert (1/(m.trace())).simplify() == Rational(1, 34)
def test_subs():
assert OperationsOnlyMatrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \
Matrix([[-1, 2], [-3, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \
Matrix([[-1, 2], [-3, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \
Matrix([[-1, 2], [-3, 4]])
assert OperationsOnlyMatrix([[x*y]]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \
Matrix([[(x - 1)*(y - 1)]])
def test_trace():
M = OperationsOnlyMatrix([[1, 0, 0],
[0, 5, 0],
[0, 0, 8]])
assert M.trace() == 14
def test_xreplace():
assert OperationsOnlyMatrix([[1, x], [x, 4]]).xreplace({x: 5}) == \
Matrix([[1, 5], [5, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \
Matrix([[-1, 2], [-3, 4]])
def test_permute():
a = OperationsOnlyMatrix(3, 4, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
raises(IndexError, lambda: a.permute([[0, 5]]))
raises(ValueError, lambda: a.permute(Symbol('x')))
b = a.permute_rows([[0, 2], [0, 1]])
assert a.permute([[0, 2], [0, 1]]) == b == Matrix([
[5, 6, 7, 8],
[9, 10, 11, 12],
[1, 2, 3, 4]])
b = a.permute_cols([[0, 2], [0, 1]])
assert a.permute([[0, 2], [0, 1]], orientation='cols') == b ==\
Matrix([
[ 2, 3, 1, 4],
[ 6, 7, 5, 8],
[10, 11, 9, 12]])
b = a.permute_cols([[0, 2], [0, 1]], direction='backward')
assert a.permute([[0, 2], [0, 1]], orientation='cols', direction='backward') == b ==\
Matrix([
[ 3, 1, 2, 4],
[ 7, 5, 6, 8],
[11, 9, 10, 12]])
assert a.permute([1, 2, 0, 3]) == Matrix([
[5, 6, 7, 8],
[9, 10, 11, 12],
[1, 2, 3, 4]])
from sympy.combinatorics import Permutation
assert a.permute(Permutation([1, 2, 0, 3])) == Matrix([
[5, 6, 7, 8],
[9, 10, 11, 12],
[1, 2, 3, 4]])
def test_upper_triangular():
A = OperationsOnlyMatrix([
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
])
R = A.upper_triangular(2)
assert R == OperationsOnlyMatrix([
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0],
[0, 0, 0, 0]
])
R = A.upper_triangular(-2)
assert R == OperationsOnlyMatrix([
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 1, 1, 1]
])
R = A.upper_triangular()
assert R == OperationsOnlyMatrix([
[1, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 0, 0, 1]
])
def test_lower_triangular():
A = OperationsOnlyMatrix([
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
])
L = A.lower_triangular()
assert L == ArithmeticOnlyMatrix([
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1]])
L = A.lower_triangular(2)
assert L == ArithmeticOnlyMatrix([
[1, 1, 1, 0],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
])
L = A.lower_triangular(-2)
assert L == ArithmeticOnlyMatrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 1, 0, 0]
])
# ArithmeticOnlyMatrix tests
def test_abs():
m = ArithmeticOnlyMatrix([[1, -2], [x, y]])
assert abs(m) == ArithmeticOnlyMatrix([[1, 2], [Abs(x), Abs(y)]])
def test_add():
m = ArithmeticOnlyMatrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
assert m + m == ArithmeticOnlyMatrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]])
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
raises(ShapeError, lambda: m + n)
def test_multiplication():
a = ArithmeticOnlyMatrix((
(1, 2),
(3, 1),
(0, 6),
))
b = ArithmeticOnlyMatrix((
(1, 2),
(3, 0),
))
raises(ShapeError, lambda: b*a)
raises(TypeError, lambda: a*{})
c = a*b
assert c[0, 0] == 7
assert c[0, 1] == 2
assert c[1, 0] == 6
assert c[1, 1] == 6
assert c[2, 0] == 18
assert c[2, 1] == 0
try:
eval('c = a @ b')
except SyntaxError:
pass
else:
assert c[0, 0] == 7
assert c[0, 1] == 2
assert c[1, 0] == 6
assert c[1, 1] == 6
assert c[2, 0] == 18
assert c[2, 1] == 0
h = a.multiply_elementwise(c)
assert h == matrix_multiply_elementwise(a, c)
assert h[0, 0] == 7
assert h[0, 1] == 4
assert h[1, 0] == 18
assert h[1, 1] == 6
assert h[2, 0] == 0
assert h[2, 1] == 0
raises(ShapeError, lambda: a.multiply_elementwise(b))
c = b * Symbol("x")
assert isinstance(c, ArithmeticOnlyMatrix)
assert c[0, 0] == x
assert c[0, 1] == 2*x
assert c[1, 0] == 3*x
assert c[1, 1] == 0
c2 = x * b
assert c == c2
c = 5 * b
assert isinstance(c, ArithmeticOnlyMatrix)
assert c[0, 0] == 5
assert c[0, 1] == 2*5
assert c[1, 0] == 3*5
assert c[1, 1] == 0
try:
eval('c = 5 @ b')
except SyntaxError:
pass
else:
assert isinstance(c, ArithmeticOnlyMatrix)
assert c[0, 0] == 5
assert c[0, 1] == 2*5
assert c[1, 0] == 3*5
assert c[1, 1] == 0
# https://github.com/sympy/sympy/issues/22353
A = Matrix(ones(3, 1))
_h = -Rational(1, 2)
B = Matrix([_h, _h, _h])
assert A.multiply_elementwise(B) == Matrix([
[_h],
[_h],
[_h]])
def test_matmul():
a = Matrix([[1, 2], [3, 4]])
assert a.__matmul__(2) == NotImplemented
assert a.__rmatmul__(2) == NotImplemented
#This is done this way because @ is only supported in Python 3.5+
#To check 2@a case
try:
eval('2 @ a')
except SyntaxError:
pass
except TypeError: #TypeError is raised in case of NotImplemented is returned
pass
#Check a@2 case
try:
eval('a @ 2')
except SyntaxError:
pass
except TypeError: #TypeError is raised in case of NotImplemented is returned
pass
def test_non_matmul():
"""
Test that if explicitly specified as non-matrix, mul reverts
to scalar multiplication.
"""
class foo(Expr):
is_Matrix=False
is_MatrixLike=False
shape = (1, 1)
A = Matrix([[1, 2], [3, 4]])
b = foo()
assert b*A == Matrix([[b, 2*b], [3*b, 4*b]])
assert A*b == Matrix([[b, 2*b], [3*b, 4*b]])
def test_power():
raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2)
A = ArithmeticOnlyMatrix([[2, 3], [4, 5]])
assert (A**5)[:] == (6140, 8097, 10796, 14237)
A = ArithmeticOnlyMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]])
assert (A**3)[:] == (290, 262, 251, 448, 440, 368, 702, 954, 433)
assert A**0 == eye(3)
assert A**1 == A
assert (ArithmeticOnlyMatrix([[2]]) ** 100)[0, 0] == 2**100
assert ArithmeticOnlyMatrix([[1, 2], [3, 4]])**Integer(2) == ArithmeticOnlyMatrix([[7, 10], [15, 22]])
A = Matrix([[1,2],[4,5]])
assert A.pow(20, method='cayley') == A.pow(20, method='multiply')
def test_neg():
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
assert -n == ArithmeticOnlyMatrix(1, 2, [-1, -2])
def test_sub():
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
assert n - n == ArithmeticOnlyMatrix(1, 2, [0, 0])
def test_div():
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
assert n/2 == ArithmeticOnlyMatrix(1, 2, [S.Half, S(2)/2])
# SpecialOnlyMatrix tests
def test_eye():
assert list(SpecialOnlyMatrix.eye(2, 2)) == [1, 0, 0, 1]
assert list(SpecialOnlyMatrix.eye(2)) == [1, 0, 0, 1]
assert type(SpecialOnlyMatrix.eye(2)) == SpecialOnlyMatrix
assert type(SpecialOnlyMatrix.eye(2, cls=Matrix)) == Matrix
def test_ones():
assert list(SpecialOnlyMatrix.ones(2, 2)) == [1, 1, 1, 1]
assert list(SpecialOnlyMatrix.ones(2)) == [1, 1, 1, 1]
assert SpecialOnlyMatrix.ones(2, 3) == Matrix([[1, 1, 1], [1, 1, 1]])
assert type(SpecialOnlyMatrix.ones(2)) == SpecialOnlyMatrix
assert type(SpecialOnlyMatrix.ones(2, cls=Matrix)) == Matrix
def test_zeros():
assert list(SpecialOnlyMatrix.zeros(2, 2)) == [0, 0, 0, 0]
assert list(SpecialOnlyMatrix.zeros(2)) == [0, 0, 0, 0]
assert SpecialOnlyMatrix.zeros(2, 3) == Matrix([[0, 0, 0], [0, 0, 0]])
assert type(SpecialOnlyMatrix.zeros(2)) == SpecialOnlyMatrix
assert type(SpecialOnlyMatrix.zeros(2, cls=Matrix)) == Matrix
def test_diag_make():
diag = SpecialOnlyMatrix.diag
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
assert diag(a, b, b) == Matrix([
[1, 2, 0, 0, 0, 0],
[2, 3, 0, 0, 0, 0],
[0, 0, 3, x, 0, 0],
[0, 0, y, 3, 0, 0],
[0, 0, 0, 0, 3, x],
[0, 0, 0, 0, y, 3],
])
assert diag(a, b, c) == Matrix([
[1, 2, 0, 0, 0, 0, 0],
[2, 3, 0, 0, 0, 0, 0],
[0, 0, 3, x, 0, 0, 0],
[0, 0, y, 3, 0, 0, 0],
[0, 0, 0, 0, 3, x, 3],
[0, 0, 0, 0, y, 3, z],
[0, 0, 0, 0, x, y, z],
])
assert diag(a, c, b) == Matrix([
[1, 2, 0, 0, 0, 0, 0],
[2, 3, 0, 0, 0, 0, 0],
[0, 0, 3, x, 3, 0, 0],
[0, 0, y, 3, z, 0, 0],
[0, 0, x, y, z, 0, 0],
[0, 0, 0, 0, 0, 3, x],
[0, 0, 0, 0, 0, y, 3],
])
a = Matrix([x, y, z])
b = Matrix([[1, 2], [3, 4]])
c = Matrix([[5, 6]])
# this "wandering diagonal" is what makes this
# a block diagonal where each block is independent
# of the others
assert diag(a, 7, b, c) == Matrix([
[x, 0, 0, 0, 0, 0],
[y, 0, 0, 0, 0, 0],
[z, 0, 0, 0, 0, 0],
[0, 7, 0, 0, 0, 0],
[0, 0, 1, 2, 0, 0],
[0, 0, 3, 4, 0, 0],
[0, 0, 0, 0, 5, 6]])
raises(ValueError, lambda: diag(a, 7, b, c, rows=5))
assert diag(1) == Matrix([[1]])
assert diag(1, rows=2) == Matrix([[1, 0], [0, 0]])
assert diag(1, cols=2) == Matrix([[1, 0], [0, 0]])
assert diag(1, rows=3, cols=2) == Matrix([[1, 0], [0, 0], [0, 0]])
assert diag(*[2, 3]) == Matrix([
[2, 0],
[0, 3]])
assert diag(Matrix([2, 3])) == Matrix([
[2],
[3]])
assert diag([1, [2, 3], 4], unpack=False) == \
diag([[1], [2, 3], [4]], unpack=False) == Matrix([
[1, 0],
[2, 3],
[4, 0]])
assert type(diag(1)) == SpecialOnlyMatrix
assert type(diag(1, cls=Matrix)) == Matrix
assert Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
assert Matrix.diag([1, 2, 3], unpack=False).shape == (3, 1)
assert Matrix.diag([[1, 2, 3]]).shape == (3, 1)
assert Matrix.diag([[1, 2, 3]], unpack=False).shape == (1, 3)
assert Matrix.diag([[[1, 2, 3]]]).shape == (1, 3)
# kerning can be used to move the starting point
assert Matrix.diag(ones(0, 2), 1, 2) == Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
assert Matrix.diag(ones(2, 0), 1, 2) == Matrix([
[0, 0],
[0, 0],
[1, 0],
[0, 2]])
def test_diagonal():
m = Matrix(3, 3, range(9))
d = m.diagonal()
assert d == m.diagonal(0)
assert tuple(d) == (0, 4, 8)
assert tuple(m.diagonal(1)) == (1, 5)
assert tuple(m.diagonal(-1)) == (3, 7)
assert tuple(m.diagonal(2)) == (2,)
assert type(m.diagonal()) == type(m)
s = SparseMatrix(3, 3, {(1, 1): 1})
assert type(s.diagonal()) == type(s)
assert type(m) != type(s)
raises(ValueError, lambda: m.diagonal(3))
raises(ValueError, lambda: m.diagonal(-3))
raises(ValueError, lambda: m.diagonal(pi))
M = ones(2, 3)
assert banded({i: list(M.diagonal(i))
for i in range(1-M.rows, M.cols)}) == M
def test_jordan_block():
assert SpecialOnlyMatrix.jordan_block(3, 2) == SpecialOnlyMatrix.jordan_block(3, eigenvalue=2) \
== SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) \
== SpecialOnlyMatrix.jordan_block(3, 2, band='upper') \
== SpecialOnlyMatrix.jordan_block(
size=3, eigenval=2, eigenvalue=2) \
== Matrix([
[2, 1, 0],
[0, 2, 1],
[0, 0, 2]])
assert SpecialOnlyMatrix.jordan_block(3, 2, band='lower') == Matrix([
[2, 0, 0],
[1, 2, 0],
[0, 1, 2]])
# missing eigenvalue
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(2))
# non-integral size
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(3.5, 2))
# size not specified
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(eigenvalue=2))
# inconsistent eigenvalue
raises(ValueError,
lambda: SpecialOnlyMatrix.jordan_block(
eigenvalue=2, eigenval=4))
# Using alias keyword
assert SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) == \
SpecialOnlyMatrix.jordan_block(size=3, eigenval=2)
def test_orthogonalize():
m = Matrix([[1, 2], [3, 4]])
assert m.orthogonalize(Matrix([[2], [1]])) == [Matrix([[2], [1]])]
assert m.orthogonalize(Matrix([[2], [1]]), normalize=True) == \
[Matrix([[2*sqrt(5)/5], [sqrt(5)/5]])]
assert m.orthogonalize(Matrix([[1], [2]]), Matrix([[-1], [4]])) == \
[Matrix([[1], [2]]), Matrix([[Rational(-12, 5)], [Rational(6, 5)]])]
assert m.orthogonalize(Matrix([[0], [0]]), Matrix([[-1], [4]])) == \
[Matrix([[-1], [4]])]
assert m.orthogonalize(Matrix([[0], [0]])) == []
n = Matrix([[9, 1, 9], [3, 6, 10], [8, 5, 2]])
vecs = [Matrix([[-5], [1]]), Matrix([[-5], [2]]), Matrix([[-5], [-2]])]
assert n.orthogonalize(*vecs) == \
[Matrix([[-5], [1]]), Matrix([[Rational(5, 26)], [Rational(25, 26)]])]
vecs = [Matrix([0, 0, 0]), Matrix([1, 2, 3]), Matrix([1, 4, 5])]
raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True))
vecs = [Matrix([1, 2, 3]), Matrix([4, 5, 6]), Matrix([7, 8, 9])]
raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True))
def test_wilkinson():
wminus, wplus = Matrix.wilkinson(1)
assert wminus == Matrix([
[-1, 1, 0],
[1, 0, 1],
[0, 1, 1]])
assert wplus == Matrix([
[1, 1, 0],
[1, 0, 1],
[0, 1, 1]])
wminus, wplus = Matrix.wilkinson(3)
assert wminus == Matrix([
[-3, 1, 0, 0, 0, 0, 0],
[1, -2, 1, 0, 0, 0, 0],
[0, 1, -1, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 1, 3]])
assert wplus == Matrix([
[3, 1, 0, 0, 0, 0, 0],
[1, 2, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 1, 3]])
# CalculusOnlyMatrix tests
@XFAIL
def test_diff():
x, y = symbols('x y')
m = CalculusOnlyMatrix(2, 1, [x, y])
# TODO: currently not working as ``_MinimalMatrix`` cannot be sympified:
assert m.diff(x) == Matrix(2, 1, [1, 0])
def test_integrate():
x, y = symbols('x y')
m = CalculusOnlyMatrix(2, 1, [x, y])
assert m.integrate(x) == Matrix(2, 1, [x**2/2, y*x])
def test_jacobian2():
rho, phi = symbols("rho,phi")
X = CalculusOnlyMatrix(3, 1, [rho*cos(phi), rho*sin(phi), rho**2])
Y = CalculusOnlyMatrix(2, 1, [rho, phi])
J = Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0],
])
assert X.jacobian(Y) == J
m = CalculusOnlyMatrix(2, 2, [1, 2, 3, 4])
m2 = CalculusOnlyMatrix(4, 1, [1, 2, 3, 4])
raises(TypeError, lambda: m.jacobian(Matrix([1, 2])))
raises(TypeError, lambda: m2.jacobian(m))
def test_limit():
x, y = symbols('x y')
m = CalculusOnlyMatrix(2, 1, [1/x, y])
assert m.limit(x, 5) == Matrix(2, 1, [Rational(1, 5), y])
def test_issue_13774():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
v = [1, 1, 1]
raises(TypeError, lambda: M*v)
raises(TypeError, lambda: v*M)
def test_companion():
x = Symbol('x')
y = Symbol('y')
raises(ValueError, lambda: Matrix.companion(1))
raises(ValueError, lambda: Matrix.companion(Poly([1], x)))
raises(ValueError, lambda: Matrix.companion(Poly([2, 1], x)))
raises(ValueError, lambda: Matrix.companion(Poly(x*y, [x, y])))
c0, c1, c2 = symbols('c0:3')
assert Matrix.companion(Poly([1, c0], x)) == Matrix([-c0])
assert Matrix.companion(Poly([1, c1, c0], x)) == \
Matrix([[0, -c0], [1, -c1]])
assert Matrix.companion(Poly([1, c2, c1, c0], x)) == \
Matrix([[0, 0, -c0], [1, 0, -c1], [0, 1, -c2]])
def test_issue_10589():
x, y, z = symbols("x, y z")
M1 = Matrix([x, y, z])
M1 = M1.subs(zip([x, y, z], [1, 2, 3]))
assert M1 == Matrix([[1], [2], [3]])
M2 = Matrix([[x, x, x, x, x], [x, x, x, x, x], [x, x, x, x, x]])
M2 = M2.subs(zip([x], [1]))
assert M2 == Matrix([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]])
def test_rmul_pr19860():
class Foo(ImmutableDenseMatrix):
_op_priority = MutableDenseMatrix._op_priority + 0.01
a = Matrix(2, 2, [1, 2, 3, 4])
b = Foo(2, 2, [1, 2, 3, 4])
# This would throw a RecursionError: maximum recursion depth
# since b always has higher priority even after a.as_mutable()
c = a*b
assert isinstance(c, Foo)
assert c == Matrix([[7, 10], [15, 22]])
def test_issue_18956():
A = Array([[1, 2], [3, 4]])
B = Matrix([[1,2],[3,4]])
raises(TypeError, lambda: B + A)
raises(TypeError, lambda: A + B)
def test__eq__():
class My(object):
def __iter__(self):
yield 1
yield 2
return
def __getitem__(self, i):
return list(self)[i]
a = Matrix(2, 1, [1, 2])
assert a != My()
class My_sympy(My):
def _sympy_(self):
return Matrix(self)
assert a == My_sympy()
|
c6bb9dd393dd8999c0451832c2c819a7f679efaade9251b7270b9eed1f9aa330 | import random
import concurrent.futures
from collections.abc import Hashable
from sympy.core.add import Add
from sympy.core.function import (Function, diff, expand)
from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.integrals.integrals import integrate
from sympy.polys.polytools import (Poly, PurePoly)
from sympy.printing.str import sstr
from sympy.sets.sets import FiniteSet
from sympy.simplify.simplify import (signsimp, simplify)
from sympy.simplify.trigsimp import trigsimp
from sympy.matrices.matrices import (ShapeError, MatrixError,
NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive,
_simplify)
from sympy.matrices import (
GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix,
SparseMatrix, casoratian, diag, eye, hessian,
matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2,
rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix,
MatrixSymbol, dotprodsimp, rot_ccw_axis1, rot_ccw_axis2, rot_ccw_axis3)
from sympy.matrices.utilities import _dotprodsimp_state
from sympy.core import Tuple, Wild
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.utilities.iterables import flatten, capture, iterable
from sympy.utilities.exceptions import ignore_warnings, SymPyDeprecationWarning
from sympy.testing.pytest import (raises, XFAIL, slow, skip,
warns_deprecated_sympy, warns)
from sympy.assumptions import Q
from sympy.tensor.array import Array
from sympy.matrices.expressions import MatPow
from sympy.external import import_module
from sympy.algebras import Quaternion
from sympy.abc import a, b, c, d, x, y, z, t
pyodide_js = import_module('pyodide_js')
# don't re-order this list
classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix)
def test_args():
for n, cls in enumerate(classes):
m = cls.zeros(3, 2)
# all should give back the same type of arguments, e.g. ints for shape
assert m.shape == (3, 2) and all(type(i) is int for i in m.shape)
assert m.rows == 3 and type(m.rows) is int
assert m.cols == 2 and type(m.cols) is int
if not n % 2:
assert type(m.flat()) in (list, tuple, Tuple)
else:
assert type(m.todok()) is dict
def test_deprecated_mat_smat():
for cls in Matrix, ImmutableMatrix:
m = cls.zeros(3, 2)
with warns_deprecated_sympy():
mat = m._mat
assert mat == m.flat()
for cls in SparseMatrix, ImmutableSparseMatrix:
m = cls.zeros(3, 2)
with warns_deprecated_sympy():
smat = m._smat
assert smat == m.todok()
def test_division():
v = Matrix(1, 2, [x, y])
assert v/z == Matrix(1, 2, [x/z, y/z])
def test_sum():
m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]])
n = Matrix(1, 2, [1, 2])
raises(ShapeError, lambda: m + n)
def test_abs():
m = Matrix(1, 2, [-3, x])
n = Matrix(1, 2, [3, Abs(x)])
assert abs(m) == n
def test_addition():
a = Matrix((
(1, 2),
(3, 1),
))
b = Matrix((
(1, 2),
(3, 0),
))
assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]])
def test_fancy_index_matrix():
for M in (Matrix, SparseMatrix):
a = M(3, 3, range(9))
assert a == a[:, :]
assert a[1, :] == Matrix(1, 3, [3, 4, 5])
assert a[:, 1] == Matrix([1, 4, 7])
assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]])
assert a[[0, 1], 2] == a[[0, 1], [2]]
assert a[2, [0, 1]] == a[[2], [0, 1]]
assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]])
assert a[0, 0] == 0
assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]])
assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]])
assert a[::2, 1] == a[[0, 2], 1]
assert a[1, ::2] == a[1, [0, 2]]
a = M(3, 3, range(9))
assert a[[0, 2, 1, 2, 1], :] == Matrix([
[0, 1, 2],
[6, 7, 8],
[3, 4, 5],
[6, 7, 8],
[3, 4, 5]])
assert a[:, [0,2,1,2,1]] == Matrix([
[0, 2, 1, 2, 1],
[3, 5, 4, 5, 4],
[6, 8, 7, 8, 7]])
a = SparseMatrix.zeros(3)
a[1, 2] = 2
a[0, 1] = 3
a[2, 0] = 4
assert a.extract([1, 1], [2]) == Matrix([
[2],
[2]])
assert a.extract([1, 0], [2, 2, 2]) == Matrix([
[2, 2, 2],
[0, 0, 0]])
assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([
[2, 0, 0, 0],
[0, 0, 3, 0],
[2, 0, 0, 0],
[0, 4, 0, 4]])
def test_multiplication():
a = Matrix((
(1, 2),
(3, 1),
(0, 6),
))
b = Matrix((
(1, 2),
(3, 0),
))
c = a*b
assert c[0, 0] == 7
assert c[0, 1] == 2
assert c[1, 0] == 6
assert c[1, 1] == 6
assert c[2, 0] == 18
assert c[2, 1] == 0
try:
eval('c = a @ b')
except SyntaxError:
pass
else:
assert c[0, 0] == 7
assert c[0, 1] == 2
assert c[1, 0] == 6
assert c[1, 1] == 6
assert c[2, 0] == 18
assert c[2, 1] == 0
h = matrix_multiply_elementwise(a, c)
assert h == a.multiply_elementwise(c)
assert h[0, 0] == 7
assert h[0, 1] == 4
assert h[1, 0] == 18
assert h[1, 1] == 6
assert h[2, 0] == 0
assert h[2, 1] == 0
raises(ShapeError, lambda: matrix_multiply_elementwise(a, b))
c = b * Symbol("x")
assert isinstance(c, Matrix)
assert c[0, 0] == x
assert c[0, 1] == 2*x
assert c[1, 0] == 3*x
assert c[1, 1] == 0
c2 = x * b
assert c == c2
c = 5 * b
assert isinstance(c, Matrix)
assert c[0, 0] == 5
assert c[0, 1] == 2*5
assert c[1, 0] == 3*5
assert c[1, 1] == 0
try:
eval('c = 5 @ b')
except SyntaxError:
pass
else:
assert isinstance(c, Matrix)
assert c[0, 0] == 5
assert c[0, 1] == 2*5
assert c[1, 0] == 3*5
assert c[1, 1] == 0
M = Matrix([[oo, 0], [0, oo]])
assert M ** 2 == M
M = Matrix([[oo, oo], [0, 0]])
assert M ** 2 == Matrix([[nan, nan], [nan, nan]])
def test_power():
raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2)
R = Rational
A = Matrix([[2, 3], [4, 5]])
assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2]
assert (A**5)[:] == [6140, 8097, 10796, 14237]
A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]])
assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433]
assert A**0 == eye(3)
assert A**1 == A
assert (Matrix([[2]]) ** 100)[0, 0] == 2**100
assert eye(2)**10000000 == eye(2)
assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]])
A = Matrix([[33, 24], [48, 57]])
assert (A**S.Half)[:] == [5, 2, 4, 7]
A = Matrix([[0, 4], [-1, 5]])
assert (A**S.Half)**2 == A
assert Matrix([[1, 0], [1, 1]])**S.Half == Matrix([[1, 0], [S.Half, 1]])
assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1.0, 0], [0.5, 1.0]])
from sympy.abc import n
assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]])
assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]])
assert Matrix([
[a**n, a**(n - 1)*n, (a**n*n**2 - a**n*n)/(2*a**2)],
[ 0, a**n, a**(n - 1)*n],
[ 0, 0, a**n]])
assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([
[a**n, a**(n-1)*n, 0],
[0, a**n, 0],
[0, 0, b**n]])
A = Matrix([[1, 0], [1, 7]])
assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3)
A = Matrix([[2]])
assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \
A._eval_pow_by_recursion(10)
# testing a matrix that cannot be jordan blocked issue 11766
m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]])
raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10)))
# test issue 11964
raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10)))
A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3
assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
raises(ValueError, lambda: A**2.1)
raises(ValueError, lambda: A**Rational(3, 2))
A = Matrix([[8, 1], [3, 2]])
assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]])
A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1
assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]])
A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2
assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]])
n = Symbol('n', integer=True)
assert isinstance(A**n, MatPow)
n = Symbol('n', integer=True, negative=True)
raises(ValueError, lambda: A**n)
n = Symbol('n', integer=True, nonnegative=True)
assert A**n == Matrix([
[KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1],
[ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)],
[ 0, 0, 1]])
assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]])
raises(ValueError, lambda: A**Rational(3, 2))
A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]])
assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]])
assert A**5.0 == A**5
A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]])
n = Symbol("n")
An = A**n
assert An.subs(n, 2).doit() == A**2
raises(ValueError, lambda: An.subs(n, -2).doit())
assert An * An == A**(2*n)
# concretizing behavior for non-integer and complex powers
A = Matrix([[0,0,0],[0,0,0],[0,0,0]])
n = Symbol('n', integer=True, positive=True)
assert A**n == A
n = Symbol('n', integer=True, nonnegative=True)
assert A**n == diag(0**n, 0**n, 0**n)
assert (A**n).subs(n, 0) == eye(3)
assert (A**n).subs(n, 1) == zeros(3)
A = Matrix ([[2,0,0],[0,2,0],[0,0,2]])
assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1)
assert A**I == diag (2**I, 2**I, 2**I)
A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]])
raises(ValueError, lambda: A**2.1)
raises(ValueError, lambda: A**I)
A = Matrix([[S.Half, S.Half], [S.Half, S.Half]])
assert A**S.Half == A
A = Matrix([[1, 1],[3, 3]])
assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]])
def test_issue_17247_expression_blowup_1():
M = Matrix([[1+x, 1-x], [1-x, 1+x]])
with dotprodsimp(True):
assert M.exp().expand() == Matrix([
[ (exp(2*x) + exp(2))/2, (-exp(2*x) + exp(2))/2],
[(-exp(2*x) + exp(2))/2, (exp(2*x) + exp(2))/2]])
def test_issue_17247_expression_blowup_2():
M = Matrix([[1+x, 1-x], [1-x, 1+x]])
with dotprodsimp(True):
P, J = M.jordan_form ()
assert P*J*P.inv()
def test_issue_17247_expression_blowup_3():
M = Matrix([[1+x, 1-x], [1-x, 1+x]])
with dotprodsimp(True):
assert M**100 == Matrix([
[633825300114114700748351602688*x**100 + 633825300114114700748351602688, 633825300114114700748351602688 - 633825300114114700748351602688*x**100],
[633825300114114700748351602688 - 633825300114114700748351602688*x**100, 633825300114114700748351602688*x**100 + 633825300114114700748351602688]])
def test_issue_17247_expression_blowup_4():
# This matrix takes extremely long on current master even with intermediate simplification so an abbreviated version is used. It is left here for test in case of future optimizations.
# M = Matrix(S('''[
# [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256, 15/128 - 3*I/32, 19/256 + 551*I/1024],
# [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096, 129/256 - 549*I/512, 42533/16384 + 29103*I/8192],
# [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256],
# [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096],
# [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128],
# [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024],
# [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64],
# [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512],
# [ -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64],
# [ 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128],
# [ -4, 9 - 5*I, -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16],
# [ -2*I, 119/8 + 29*I/4, 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]'''))
# assert M**10 == Matrix([
# [ 7*(-221393644768594642173548179825793834595 - 1861633166167425978847110897013541127952*I)/9671406556917033397649408, 15*(31670992489131684885307005100073928751695 + 10329090958303458811115024718207404523808*I)/77371252455336267181195264, 7*(-3710978679372178839237291049477017392703 + 1377706064483132637295566581525806894169*I)/19342813113834066795298816, (9727707023582419994616144751727760051598 - 59261571067013123836477348473611225724433*I)/9671406556917033397649408, (31896723509506857062605551443641668183707 + 54643444538699269118869436271152084599580*I)/38685626227668133590597632, (-2024044860947539028275487595741003997397402 + 130959428791783397562960461903698670485863*I)/309485009821345068724781056, 3*(26190251453797590396533756519358368860907 - 27221191754180839338002754608545400941638*I)/77371252455336267181195264, (1154643595139959842768960128434994698330461 + 3385496216250226964322872072260446072295634*I)/618970019642690137449562112, 3*(-31849347263064464698310044805285774295286 - 11877437776464148281991240541742691164309*I)/77371252455336267181195264, (4661330392283532534549306589669150228040221 - 4171259766019818631067810706563064103956871*I)/1237940039285380274899124224, (9598353794289061833850770474812760144506 + 358027153990999990968244906482319780943983*I)/309485009821345068724781056, (-9755135335127734571547571921702373498554177 - 4837981372692695195747379349593041939686540*I)/2475880078570760549798248448],
# [(-379516731607474268954110071392894274962069 - 422272153179747548473724096872271700878296*I)/77371252455336267181195264, (41324748029613152354787280677832014263339501 - 12715121258662668420833935373453570749288074*I)/1237940039285380274899124224, (-339216903907423793947110742819264306542397 + 494174755147303922029979279454787373566517*I)/77371252455336267181195264, (-18121350839962855576667529908850640619878381 - 37413012454129786092962531597292531089199003*I)/1237940039285380274899124224, (2489661087330511608618880408199633556675926 + 1137821536550153872137379935240732287260863*I)/309485009821345068724781056, (-136644109701594123227587016790354220062972119 + 110130123468183660555391413889600443583585272*I)/4951760157141521099596496896, (1488043981274920070468141664150073426459593 - 9691968079933445130866371609614474474327650*I)/1237940039285380274899124224, 27*(4636797403026872518131756991410164760195942 + 3369103221138229204457272860484005850416533*I)/4951760157141521099596496896, (-8534279107365915284081669381642269800472363 + 2241118846262661434336333368511372725482742*I)/1237940039285380274899124224, (60923350128174260992536531692058086830950875 - 263673488093551053385865699805250505661590126*I)/9903520314283042199192993792, (18520943561240714459282253753348921824172569 + 24846649186468656345966986622110971925703604*I)/4951760157141521099596496896, (-232781130692604829085973604213529649638644431 + 35981505277760667933017117949103953338570617*I)/9903520314283042199192993792],
# [ (8742968295129404279528270438201520488950 + 3061473358639249112126847237482570858327*I)/4835703278458516698824704, (-245657313712011778432792959787098074935273 + 253113767861878869678042729088355086740856*I)/38685626227668133590597632, (1947031161734702327107371192008011621193 - 19462330079296259148177542369999791122762*I)/9671406556917033397649408, (552856485625209001527688949522750288619217 + 392928441196156725372494335248099016686580*I)/77371252455336267181195264, (-44542866621905323121630214897126343414629 + 3265340021421335059323962377647649632959*I)/19342813113834066795298816, (136272594005759723105646069956434264218730 - 330975364731707309489523680957584684763587*I)/38685626227668133590597632, (27392593965554149283318732469825168894401 + 75157071243800133880129376047131061115278*I)/38685626227668133590597632, 7*(-357821652913266734749960136017214096276154 - 45509144466378076475315751988405961498243*I)/309485009821345068724781056, (104485001373574280824835174390219397141149 - 99041000529599568255829489765415726168162*I)/77371252455336267181195264, (1198066993119982409323525798509037696321291 + 4249784165667887866939369628840569844519936*I)/618970019642690137449562112, (-114985392587849953209115599084503853611014 - 52510376847189529234864487459476242883449*I)/77371252455336267181195264, (6094620517051332877965959223269600650951573 - 4683469779240530439185019982269137976201163*I)/1237940039285380274899124224],
# [ (611292255597977285752123848828590587708323 - 216821743518546668382662964473055912169502*I)/77371252455336267181195264, (-1144023204575811464652692396337616594307487 + 12295317806312398617498029126807758490062855*I)/309485009821345068724781056, (-374093027769390002505693378578475235158281 - 573533923565898290299607461660384634333639*I)/77371252455336267181195264, (47405570632186659000138546955372796986832987 - 2837476058950808941605000274055970055096534*I)/1237940039285380274899124224, (-571573207393621076306216726219753090535121 + 533381457185823100878764749236639320783831*I)/77371252455336267181195264, (-7096548151856165056213543560958582513797519 - 24035731898756040059329175131592138642195366*I)/618970019642690137449562112, (2396762128833271142000266170154694033849225 + 1448501087375679588770230529017516492953051*I)/309485009821345068724781056, (-150609293845161968447166237242456473262037053 + 92581148080922977153207018003184520294188436*I)/4951760157141521099596496896, 5*(270278244730804315149356082977618054486347 - 1997830155222496880429743815321662710091562*I)/1237940039285380274899124224, (62978424789588828258068912690172109324360330 + 44803641177219298311493356929537007630129097*I)/2475880078570760549798248448, 19*(-451431106327656743945775812536216598712236 + 114924966793632084379437683991151177407937*I)/1237940039285380274899124224, (63417747628891221594106738815256002143915995 - 261508229397507037136324178612212080871150958*I)/9903520314283042199192993792],
# [ (-2144231934021288786200752920446633703357 + 2305614436009705803670842248131563850246*I)/1208925819614629174706176, (-90720949337459896266067589013987007078153 - 221951119475096403601562347412753844534569*I)/19342813113834066795298816, (11590973613116630788176337262688659880376 + 6514520676308992726483494976339330626159*I)/4835703278458516698824704, 3*(-131776217149000326618649542018343107657237 + 79095042939612668486212006406818285287004*I)/38685626227668133590597632, (10100577916793945997239221374025741184951 - 28631383488085522003281589065994018550748*I)/9671406556917033397649408, 67*(10090295594251078955008130473573667572549 + 10449901522697161049513326446427839676762*I)/77371252455336267181195264, (-54270981296988368730689531355811033930513 - 3413683117592637309471893510944045467443*I)/19342813113834066795298816, (440372322928679910536575560069973699181278 - 736603803202303189048085196176918214409081*I)/77371252455336267181195264, (33220374714789391132887731139763250155295 + 92055083048787219934030779066298919603554*I)/38685626227668133590597632, 5*(-594638554579967244348856981610805281527116 - 82309245323128933521987392165716076704057*I)/309485009821345068724781056, (128056368815300084550013708313312073721955 - 114619107488668120303579745393765245911404*I)/77371252455336267181195264, 21*(59839959255173222962789517794121843393573 + 241507883613676387255359616163487405826334*I)/618970019642690137449562112],
# [ (-13454485022325376674626653802541391955147 + 184471402121905621396582628515905949793486*I)/19342813113834066795298816, (-6158730123400322562149780662133074862437105 - 3416173052604643794120262081623703514107476*I)/154742504910672534362390528, (770558003844914708453618983120686116100419 - 127758381209767638635199674005029818518766*I)/77371252455336267181195264, (-4693005771813492267479835161596671660631703 + 12703585094750991389845384539501921531449948*I)/309485009821345068724781056, (-295028157441149027913545676461260860036601 - 841544569970643160358138082317324743450770*I)/77371252455336267181195264, (56716442796929448856312202561538574275502893 + 7216818824772560379753073185990186711454778*I)/1237940039285380274899124224, 15*(-87061038932753366532685677510172566368387 + 61306141156647596310941396434445461895538*I)/154742504910672534362390528, (-3455315109680781412178133042301025723909347 - 24969329563196972466388460746447646686670670*I)/618970019642690137449562112, (2453418854160886481106557323699250865361849 + 1497886802326243014471854112161398141242514*I)/309485009821345068724781056, (-151343224544252091980004429001205664193082173 + 90471883264187337053549090899816228846836628*I)/4951760157141521099596496896, (1652018205533026103358164026239417416432989 - 9959733619236515024261775397109724431400162*I)/1237940039285380274899124224, 3*(40676374242956907656984876692623172736522006 + 31023357083037817469535762230872667581366205*I)/4951760157141521099596496896],
# [ (-1226990509403328460274658603410696548387 - 4131739423109992672186585941938392788458*I)/1208925819614629174706176, (162392818524418973411975140074368079662703 + 23706194236915374831230612374344230400704*I)/9671406556917033397649408, (-3935678233089814180000602553655565621193 + 2283744757287145199688061892165659502483*I)/1208925819614629174706176, (-2400210250844254483454290806930306285131 - 315571356806370996069052930302295432758205*I)/19342813113834066795298816, (13365917938215281056563183751673390817910 + 15911483133819801118348625831132324863881*I)/4835703278458516698824704, 3*(-215950551370668982657516660700301003897855 + 51684341999223632631602864028309400489378*I)/38685626227668133590597632, (20886089946811765149439844691320027184765 - 30806277083146786592790625980769214361844*I)/9671406556917033397649408, (562180634592713285745940856221105667874855 + 1031543963988260765153550559766662245114916*I)/77371252455336267181195264, (-65820625814810177122941758625652476012867 - 12429918324787060890804395323920477537595*I)/19342813113834066795298816, (319147848192012911298771180196635859221089 - 402403304933906769233365689834404519960394*I)/38685626227668133590597632, (23035615120921026080284733394359587955057 + 115351677687031786114651452775242461310624*I)/38685626227668133590597632, (-3426830634881892756966440108592579264936130 - 1022954961164128745603407283836365128598559*I)/309485009821345068724781056],
# [ (-192574788060137531023716449082856117537757 - 69222967328876859586831013062387845780692*I)/19342813113834066795298816, (2736383768828013152914815341491629299773262 - 2773252698016291897599353862072533475408743*I)/77371252455336267181195264, (-23280005281223837717773057436155921656805 + 214784953368021840006305033048142888879224*I)/19342813113834066795298816, (-3035247484028969580570400133318947903462326 - 2195168903335435855621328554626336958674325*I)/77371252455336267181195264, (984552428291526892214541708637840971548653 - 64006622534521425620714598573494988589378*I)/77371252455336267181195264, (-3070650452470333005276715136041262898509903 + 7286424705750810474140953092161794621989080*I)/154742504910672534362390528, (-147848877109756404594659513386972921139270 - 416306113044186424749331418059456047650861*I)/38685626227668133590597632, (55272118474097814260289392337160619494260781 + 7494019668394781211907115583302403519488058*I)/1237940039285380274899124224, (-581537886583682322424771088996959213068864 + 542191617758465339135308203815256798407429*I)/77371252455336267181195264, (-6422548983676355789975736799494791970390991 - 23524183982209004826464749309156698827737702*I)/618970019642690137449562112, 7*(180747195387024536886923192475064903482083 + 84352527693562434817771649853047924991804*I)/154742504910672534362390528, (-135485179036717001055310712747643466592387031 + 102346575226653028836678855697782273460527608*I)/4951760157141521099596496896],
# [ (3384238362616083147067025892852431152105 + 156724444932584900214919898954874618256*I)/604462909807314587353088, (-59558300950677430189587207338385764871866 + 114427143574375271097298201388331237478857*I)/4835703278458516698824704, (-1356835789870635633517710130971800616227 - 7023484098542340388800213478357340875410*I)/1208925819614629174706176, (234884918567993750975181728413524549575881 + 79757294640629983786895695752733890213506*I)/9671406556917033397649408, (-7632732774935120473359202657160313866419 + 2905452608512927560554702228553291839465*I)/1208925819614629174706176, (52291747908702842344842889809762246649489 - 520996778817151392090736149644507525892649*I)/19342813113834066795298816, (17472406829219127839967951180375981717322 + 23464704213841582137898905375041819568669*I)/4835703278458516698824704, (-911026971811893092350229536132730760943307 + 150799318130900944080399439626714846752360*I)/38685626227668133590597632, (26234457233977042811089020440646443590687 - 45650293039576452023692126463683727692890*I)/9671406556917033397649408, 3*(288348388717468992528382586652654351121357 + 454526517721403048270274049572136109264668*I)/77371252455336267181195264, (-91583492367747094223295011999405657956347 - 12704691128268298435362255538069612411331*I)/19342813113834066795298816, (411208730251327843849027957710164064354221 - 569898526380691606955496789378230959965898*I)/38685626227668133590597632],
# [ (27127513117071487872628354831658811211795 - 37765296987901990355760582016892124833857*I)/4835703278458516698824704, (1741779916057680444272938534338833170625435 + 3083041729779495966997526404685535449810378*I)/77371252455336267181195264, 3*(-60642236251815783728374561836962709533401 - 24630301165439580049891518846174101510744*I)/19342813113834066795298816, 3*(445885207364591681637745678755008757483408 - 350948497734812895032502179455610024541643*I)/38685626227668133590597632, (-47373295621391195484367368282471381775684 + 219122969294089357477027867028071400054973*I)/19342813113834066795298816, (-2801565819673198722993348253876353741520438 - 2250142129822658548391697042460298703335701*I)/77371252455336267181195264, (801448252275607253266997552356128790317119 - 50890367688077858227059515894356594900558*I)/77371252455336267181195264, (-5082187758525931944557763799137987573501207 + 11610432359082071866576699236013484487676124*I)/309485009821345068724781056, (-328925127096560623794883760398247685166830 - 643447969697471610060622160899409680422019*I)/77371252455336267181195264, 15*(2954944669454003684028194956846659916299765 + 33434406416888505837444969347824812608566*I)/1237940039285380274899124224, (-415749104352001509942256567958449835766827 + 479330966144175743357171151440020955412219*I)/77371252455336267181195264, 3*(-4639987285852134369449873547637372282914255 - 11994411888966030153196659207284951579243273*I)/1237940039285380274899124224],
# [ (-478846096206269117345024348666145495601 + 1249092488629201351470551186322814883283*I)/302231454903657293676544, (-17749319421930878799354766626365926894989 - 18264580106418628161818752318217357231971*I)/1208925819614629174706176, (2801110795431528876849623279389579072819 + 363258850073786330770713557775566973248*I)/604462909807314587353088, (-59053496693129013745775512127095650616252 + 78143588734197260279248498898321500167517*I)/4835703278458516698824704, (-283186724922498212468162690097101115349 - 6443437753863179883794497936345437398276*I)/1208925819614629174706176, (188799118826748909206887165661384998787543 + 84274736720556630026311383931055307398820*I)/9671406556917033397649408, (-5482217151670072904078758141270295025989 + 1818284338672191024475557065444481298568*I)/1208925819614629174706176, (56564463395350195513805521309731217952281 - 360208541416798112109946262159695452898431*I)/19342813113834066795298816, 11*(1259539805728870739006416869463689438068 + 1409136581547898074455004171305324917387*I)/4835703278458516698824704, 5*(-123701190701414554945251071190688818343325 + 30997157322590424677294553832111902279712*I)/38685626227668133590597632, (16130917381301373033736295883982414239781 - 32752041297570919727145380131926943374516*I)/9671406556917033397649408, (650301385108223834347093740500375498354925 + 899526407681131828596801223402866051809258*I)/77371252455336267181195264],
# [ (9011388245256140876590294262420614839483 + 8167917972423946282513000869327525382672*I)/1208925819614629174706176, (-426393174084720190126376382194036323028924 + 180692224825757525982858693158209545430621*I)/9671406556917033397649408, (24588556702197802674765733448108154175535 - 45091766022876486566421953254051868331066*I)/4835703278458516698824704, (1872113939365285277373877183750416985089691 + 3030392393733212574744122057679633775773130*I)/77371252455336267181195264, (-222173405538046189185754954524429864167549 - 75193157893478637039381059488387511299116*I)/19342813113834066795298816, (2670821320766222522963689317316937579844558 - 2645837121493554383087981511645435472169191*I)/77371252455336267181195264, 5*(-2100110309556476773796963197283876204940 + 41957457246479840487980315496957337371937*I)/19342813113834066795298816, (-5733743755499084165382383818991531258980593 - 3328949988392698205198574824396695027195732*I)/154742504910672534362390528, (707827994365259025461378911159398206329247 - 265730616623227695108042528694302299777294*I)/77371252455336267181195264, (-1442501604682933002895864804409322823788319 + 11504137805563265043376405214378288793343879*I)/309485009821345068724781056, (-56130472299445561499538726459719629522285 - 61117552419727805035810982426639329818864*I)/9671406556917033397649408, (39053692321126079849054272431599539429908717 - 10209127700342570953247177602860848130710666*I)/1237940039285380274899124224]])
M = Matrix(S('''[
[ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512],
[ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64],
[ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128],
[ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16],
[ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M**10 == Matrix(S('''[
[ 7369525394972778926719607798014571861/604462909807314587353088 - 229284202061790301477392339912557559*I/151115727451828646838272, -19704281515163975949388435612632058035/1208925819614629174706176 + 14319858347987648723768698170712102887*I/302231454903657293676544, -3623281909451783042932142262164941211/604462909807314587353088 - 6039240602494288615094338643452320495*I/604462909807314587353088, 109260497799140408739847239685705357695/2417851639229258349412352 - 7427566006564572463236368211555511431*I/2417851639229258349412352, -16095803767674394244695716092817006641/2417851639229258349412352 + 10336681897356760057393429626719177583*I/1208925819614629174706176, -42207883340488041844332828574359769743/2417851639229258349412352 - 182332262671671273188016400290188468499*I/4835703278458516698824704],
[50566491050825573392726324995779608259/1208925819614629174706176 - 90047007594468146222002432884052362145*I/2417851639229258349412352, 74273703462900000967697427843983822011/1208925819614629174706176 + 265947522682943571171988741842776095421*I/1208925819614629174706176, -116900341394390200556829767923360888429/2417851639229258349412352 - 53153263356679268823910621474478756845*I/2417851639229258349412352, 195407378023867871243426523048612490249/1208925819614629174706176 - 1242417915995360200584837585002906728929*I/9671406556917033397649408, -863597594389821970177319682495878193/302231454903657293676544 + 476936100741548328800725360758734300481*I/9671406556917033397649408, -3154451590535653853562472176601754835575/19342813113834066795298816 - 232909875490506237386836489998407329215*I/2417851639229258349412352],
[ -1715444997702484578716037230949868543/302231454903657293676544 + 5009695651321306866158517287924120777*I/302231454903657293676544, -30551582497996879620371947949342101301/604462909807314587353088 - 7632518367986526187139161303331519629*I/151115727451828646838272, 312680739924495153190604170938220575/18889465931478580854784 - 108664334509328818765959789219208459*I/75557863725914323419136, -14693696966703036206178521686918865509/604462909807314587353088 + 72345386220900843930147151999899692401*I/1208925819614629174706176, -8218872496728882299722894680635296519/1208925819614629174706176 - 16776782833358893712645864791807664983*I/1208925819614629174706176, 143237839169380078671242929143670635137/2417851639229258349412352 + 2883817094806115974748882735218469447*I/2417851639229258349412352],
[ 3087979417831061365023111800749855987/151115727451828646838272 + 34441942370802869368851419102423997089*I/604462909807314587353088, -148309181940158040917731426845476175667/604462909807314587353088 - 263987151804109387844966835369350904919*I/9671406556917033397649408, 50259518594816377378747711930008883165/1208925819614629174706176 - 95713974916869240305450001443767979653*I/2417851639229258349412352, 153466447023875527996457943521467271119/2417851639229258349412352 + 517285524891117105834922278517084871349*I/2417851639229258349412352, -29184653615412989036678939366291205575/604462909807314587353088 - 27551322282526322041080173287022121083*I/1208925819614629174706176, 196404220110085511863671393922447671649/1208925819614629174706176 - 1204712019400186021982272049902206202145*I/9671406556917033397649408],
[ -2632581805949645784625606590600098779/151115727451828646838272 - 589957435912868015140272627522612771*I/37778931862957161709568, 26727850893953715274702844733506310247/302231454903657293676544 - 10825791956782128799168209600694020481*I/302231454903657293676544, -1036348763702366164044671908440791295/151115727451828646838272 + 3188624571414467767868303105288107375*I/151115727451828646838272, -36814959939970644875593411585393242449/604462909807314587353088 - 18457555789119782404850043842902832647*I/302231454903657293676544, 12454491297984637815063964572803058647/604462909807314587353088 - 340489532842249733975074349495329171*I/302231454903657293676544, -19547211751145597258386735573258916681/604462909807314587353088 + 87299583775782199663414539883938008933*I/1208925819614629174706176],
[ -40281994229560039213253423262678393183/604462909807314587353088 - 2939986850065527327299273003299736641*I/604462909807314587353088, 331940684638052085845743020267462794181/2417851639229258349412352 - 284574901963624403933361315517248458969*I/1208925819614629174706176, 6453843623051745485064693628073010961/302231454903657293676544 + 36062454107479732681350914931391590957*I/604462909807314587353088, -147665869053634695632880753646441962067/604462909807314587353088 - 305987938660447291246597544085345123927*I/9671406556917033397649408, 107821369195275772166593879711259469423/2417851639229258349412352 - 11645185518211204108659001435013326687*I/302231454903657293676544, 64121228424717666402009446088588091619/1208925819614629174706176 + 265557133337095047883844369272389762133*I/1208925819614629174706176]]'''))
def test_issue_17247_expression_blowup_5():
M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
with dotprodsimp(True):
assert M.charpoly('x') == PurePoly(x**6 + (-6 - 6*I)*x**5 + 36*I*x**4, x, domain='EX')
def test_issue_17247_expression_blowup_6():
M = Matrix(8, 8, [x+i for i in range (64)])
with dotprodsimp(True):
assert M.det('bareiss') == 0
def test_issue_17247_expression_blowup_7():
M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
with dotprodsimp(True):
assert M.det('berkowitz') == 0
def test_issue_17247_expression_blowup_8():
M = Matrix(8, 8, [x+i for i in range (64)])
with dotprodsimp(True):
assert M.det('lu') == 0
def test_issue_17247_expression_blowup_9():
M = Matrix(8, 8, [x+i for i in range (64)])
with dotprodsimp(True):
assert M.rref() == (Matrix([
[1, 0, -1, -2, -3, -4, -5, -6],
[0, 1, 2, 3, 4, 5, 6, 7],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1))
def test_issue_17247_expression_blowup_10():
M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
with dotprodsimp(True):
assert M.cofactor(0, 0) == 0
def test_issue_17247_expression_blowup_11():
M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
with dotprodsimp(True):
assert M.cofactor_matrix() == Matrix(6, 6, [0]*36)
def test_issue_17247_expression_blowup_12():
M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
with dotprodsimp(True):
assert M.eigenvals() == {6: 1, 6*I: 1, 0: 4}
def test_issue_17247_expression_blowup_13():
M = Matrix([
[ 0, 1 - x, x + 1, 1 - x],
[1 - x, x + 1, 0, x + 1],
[ 0, 1 - x, x + 1, 1 - x],
[ 0, 0, 1 - x, 0]])
ev = M.eigenvects()
assert ev[0] == (0, 2, [Matrix([0, -1, 0, 1])])
assert ev[1][0] == x - sqrt(2)*(x - 1) + 1
assert ev[1][1] == 1
assert ev[1][2][0].expand(deep=False, numer=True) == Matrix([
[(-x + sqrt(2)*(x - 1) - 1)/(x - 1)],
[-4*x/(x**2 - 2*x + 1) + (x + 1)*(x - sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)],
[(-x + sqrt(2)*(x - 1) - 1)/(x - 1)],
[1]
])
assert ev[2][0] == x + sqrt(2)*(x - 1) + 1
assert ev[2][1] == 1
assert ev[2][2][0].expand(deep=False, numer=True) == Matrix([
[(-x - sqrt(2)*(x - 1) - 1)/(x - 1)],
[-4*x/(x**2 - 2*x + 1) + (x + 1)*(x + sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)],
[(-x - sqrt(2)*(x - 1) - 1)/(x - 1)],
[1]
])
def test_issue_17247_expression_blowup_14():
M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4)
with dotprodsimp(True):
assert M.echelon_form() == Matrix([
[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x],
[ 0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x],
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0]])
def test_issue_17247_expression_blowup_15():
M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4)
with dotprodsimp(True):
assert M.rowspace() == [Matrix([[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x]]), Matrix([[0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x]])]
def test_issue_17247_expression_blowup_16():
M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4)
with dotprodsimp(True):
assert M.columnspace() == [Matrix([[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x]]), Matrix([[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1]])]
def test_issue_17247_expression_blowup_17():
M = Matrix(8, 8, [x+i for i in range (64)])
with dotprodsimp(True):
assert M.nullspace() == [
Matrix([[1],[-2],[1],[0],[0],[0],[0],[0]]),
Matrix([[2],[-3],[0],[1],[0],[0],[0],[0]]),
Matrix([[3],[-4],[0],[0],[1],[0],[0],[0]]),
Matrix([[4],[-5],[0],[0],[0],[1],[0],[0]]),
Matrix([[5],[-6],[0],[0],[0],[0],[1],[0]]),
Matrix([[6],[-7],[0],[0],[0],[0],[0],[1]])]
def test_issue_17247_expression_blowup_18():
M = Matrix(6, 6, ([1+x, 1-x]*3 + [1-x, 1+x]*3)*3)
with dotprodsimp(True):
assert not M.is_nilpotent()
def test_issue_17247_expression_blowup_19():
M = Matrix(S('''[
[ -3/4, 0, 1/4 + I/2, 0],
[ 0, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 1/2 - I, 0, 0, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert not M.is_diagonalizable()
def test_issue_17247_expression_blowup_20():
M = Matrix([
[x + 1, 1 - x, 0, 0],
[1 - x, x + 1, 0, x + 1],
[ 0, 1 - x, x + 1, 0],
[ 0, 0, 0, x + 1]])
with dotprodsimp(True):
assert M.diagonalize() == (Matrix([
[1, 1, 0, (x + 1)/(x - 1)],
[1, -1, 0, 0],
[1, 1, 1, 0],
[0, 0, 0, 1]]),
Matrix([
[2, 0, 0, 0],
[0, 2*x, 0, 0],
[0, 0, x + 1, 0],
[0, 0, 0, x + 1]]))
def test_issue_17247_expression_blowup_21():
M = Matrix(S('''[
[ -3/4, 45/32 - 37*I/16, 0, 0],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.inv(method='GE') == Matrix(S('''[
[-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
[4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
[-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
[0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
def test_issue_17247_expression_blowup_22():
M = Matrix(S('''[
[ -3/4, 45/32 - 37*I/16, 0, 0],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.inv(method='LU') == Matrix(S('''[
[-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
[4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
[-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
[0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
def test_issue_17247_expression_blowup_23():
M = Matrix(S('''[
[ -3/4, 45/32 - 37*I/16, 0, 0],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.inv(method='ADJ').expand() == Matrix(S('''[
[-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
[4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
[-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
[0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
def test_issue_17247_expression_blowup_24():
M = SparseMatrix(S('''[
[ -3/4, 45/32 - 37*I/16, 0, 0],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.inv(method='CH') == Matrix(S('''[
[-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
[4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
[-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
[0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
def test_issue_17247_expression_blowup_25():
M = SparseMatrix(S('''[
[ -3/4, 45/32 - 37*I/16, 0, 0],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.inv(method='LDL') == Matrix(S('''[
[-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
[4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
[-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
[0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
def test_issue_17247_expression_blowup_26():
M = Matrix(S('''[
[ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024],
[ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64],
[ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512],
[ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64],
[ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128],
[ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16],
[ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.rank() == 4
def test_issue_17247_expression_blowup_27():
M = Matrix([
[ 0, 1 - x, x + 1, 1 - x],
[1 - x, x + 1, 0, x + 1],
[ 0, 1 - x, x + 1, 1 - x],
[ 0, 0, 1 - x, 0]])
with dotprodsimp(True):
P, J = M.jordan_form()
assert P.expand() == Matrix(S('''[
[ 0, 4*x/(x**2 - 2*x + 1), -(-17*x**4 + 12*sqrt(2)*x**4 - 4*sqrt(2)*x**3 + 6*x**3 - 6*x - 4*sqrt(2)*x + 12*sqrt(2) + 17)/(-7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 + 8*x**3 - 2*x**2 + 8*x + 6*sqrt(2)*x - 5*sqrt(2) - 7), -(12*sqrt(2)*x**4 + 17*x**4 - 6*x**3 - 4*sqrt(2)*x**3 - 4*sqrt(2)*x + 6*x - 17 + 12*sqrt(2))/(7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 - 8*x**3 + 2*x**2 - 8*x + 6*sqrt(2)*x - 5*sqrt(2) + 7)],
[x - 1, x/(x - 1) + 1/(x - 1), (-7*x**3 + 5*sqrt(2)*x**3 - x**2 + sqrt(2)*x**2 - sqrt(2)*x - x - 5*sqrt(2) - 7)/(-3*x**3 + 2*sqrt(2)*x**3 - 2*sqrt(2)*x**2 + 3*x**2 + 2*sqrt(2)*x + 3*x - 3 - 2*sqrt(2)), (7*x**3 + 5*sqrt(2)*x**3 + x**2 + sqrt(2)*x**2 - sqrt(2)*x + x - 5*sqrt(2) + 7)/(2*sqrt(2)*x**3 + 3*x**3 - 3*x**2 - 2*sqrt(2)*x**2 - 3*x + 2*sqrt(2)*x - 2*sqrt(2) + 3)],
[ 0, 1, -(-3*x**2 + 2*sqrt(2)*x**2 + 2*x - 3 - 2*sqrt(2))/(-x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x + 1 + sqrt(2)), -(2*sqrt(2)*x**2 + 3*x**2 - 2*x - 2*sqrt(2) + 3)/(x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x - 1 + sqrt(2))],
[1 - x, 0, 1, 1]]''')).expand()
assert J == Matrix(S('''[
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, x - sqrt(2)*(x - 1) + 1, 0],
[0, 0, 0, x + sqrt(2)*(x - 1) + 1]]'''))
def test_issue_17247_expression_blowup_28():
M = Matrix(S('''[
[ -3/4, 45/32 - 37*I/16, 0, 0],
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
[ 0, 0, 0, -177/128 - 1369*I/128]]'''))
with dotprodsimp(True):
assert M.singular_values() == S('''[
sqrt(14609315/131072 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2),
sqrt(14609315/131072 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2),
sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2),
sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2)]''')
def test_issue_16823():
# This still needs to be fixed if not using dotprodsimp.
M = Matrix(S('''[
[1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I,15/128-3/32*I,19/256+551/1024*I],
[21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I,129/256-549/512*I,42533/16384+29103/8192*I],
[-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I],
[1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I],
[-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I],
[1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I],
[-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I],
[-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I],
[0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I],
[1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I],
[0,-4*I,0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I],
[0,1/4+1/2*I,1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I]]'''))
with dotprodsimp(True):
assert M.rank() == 8
def test_issue_18531():
# solve_linear_system still needs fixing but the rref works.
M = Matrix([
[1, 1, 1, 1, 1, 0, 1, 0, 0],
[1 + sqrt(2), -1 + sqrt(2), 1 - sqrt(2), -sqrt(2) - 1, 1, 1, -1, 1, 1],
[-5 + 2*sqrt(2), -5 - 2*sqrt(2), -5 - 2*sqrt(2), -5 + 2*sqrt(2), -7, 2, -7, -2, 0],
[-3*sqrt(2) - 1, 1 - 3*sqrt(2), -1 + 3*sqrt(2), 1 + 3*sqrt(2), -7, -5, 7, -5, 3],
[7 - 4*sqrt(2), 4*sqrt(2) + 7, 4*sqrt(2) + 7, 7 - 4*sqrt(2), 7, -12, 7, 12, 0],
[-1 + 3*sqrt(2), 1 + 3*sqrt(2), -3*sqrt(2) - 1, 1 - 3*sqrt(2), 7, -5, -7, -5, 3],
[-3 + 2*sqrt(2), -3 - 2*sqrt(2), -3 - 2*sqrt(2), -3 + 2*sqrt(2), -1, 2, -1, -2, 0],
[1 - sqrt(2), -sqrt(2) - 1, 1 + sqrt(2), -1 + sqrt(2), -1, 1, 1, 1, 1]
])
with dotprodsimp(True):
assert M.rref() == (Matrix([
[1, 0, 0, 0, 0, 0, 0, 0, 1/2],
[0, 1, 0, 0, 0, 0, 0, 0, -1/2],
[0, 0, 1, 0, 0, 0, 0, 0, 1/2],
[0, 0, 0, 1, 0, 0, 0, 0, -1/2],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, -1/2],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, -1/2]]), (0, 1, 2, 3, 4, 5, 6, 7))
def test_creation():
raises(ValueError, lambda: Matrix(5, 5, range(20)))
raises(ValueError, lambda: Matrix(5, -1, []))
raises(IndexError, lambda: Matrix((1, 2))[2])
with raises(IndexError):
Matrix((1, 2))[3] = 5
assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, [])
# anything used to be allowed in a matrix
with warns_deprecated_sympy():
assert Matrix([[[1], (2,)]]).tolist() == [[[1], (2,)]]
with warns_deprecated_sympy():
assert Matrix([[[1], (2,)]]).T.tolist() == [[[1]], [(2,)]]
M = Matrix([[0]])
with warns_deprecated_sympy():
M[0, 0] = S.EmptySet
a = Matrix([[x, 0], [0, 0]])
m = a
assert m.cols == m.rows
assert m.cols == 2
assert m[:] == [x, 0, 0, 0]
b = Matrix(2, 2, [x, 0, 0, 0])
m = b
assert m.cols == m.rows
assert m.cols == 2
assert m[:] == [x, 0, 0, 0]
assert a == b
assert Matrix(b) == b
c23 = Matrix(2, 3, range(1, 7))
c13 = Matrix(1, 3, range(7, 10))
c = Matrix([c23, c13])
assert c.cols == 3
assert c.rows == 3
assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9]
assert Matrix(eye(2)) == eye(2)
assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2))
assert ImmutableMatrix(c) == c.as_immutable()
assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable()
assert c is not Matrix(c)
dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]]
M = Matrix(dat)
assert M == Matrix([
[1, 1, 2, 2, 2],
[1, 1, 2, 2, 2],
[1, 1, 2, 2, 2],
[3, 3, 3, 4, 4],
[3, 3, 3, 4, 4]])
assert M.tolist() != dat
# keep block form if evaluate=False
assert Matrix(dat, evaluate=False).tolist() == dat
A = MatrixSymbol("A", 2, 2)
dat = [ones(2), A]
assert Matrix(dat) == Matrix([
[ 1, 1],
[ 1, 1],
[A[0, 0], A[0, 1]],
[A[1, 0], A[1, 1]]])
with warns_deprecated_sympy():
assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat]
# 0-dim tolerance
assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)])
raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)]))
raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)]))
# mix of Matrix and iterable
M = Matrix([[1, 2], [3, 4]])
M2 = Matrix([M, (5, 6)])
assert M2 == Matrix([[1, 2], [3, 4], [5, 6]])
def test_irregular_block():
assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([
[1, 2, 2, 2, 3, 3],
[1, 2, 2, 2, 3, 3],
[4, 2, 2, 2, 5, 5],
[6, 6, 7, 7, 5, 5]])
def test_tolist():
lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]]
m = Matrix(lst)
assert m.tolist() == lst
def test_as_mutable():
assert zeros(0, 3).as_mutable() == zeros(0, 3)
assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3))
assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0))
def test_slicing():
m0 = eye(4)
assert m0[:3, :3] == eye(3)
assert m0[2:4, 0:2] == zeros(2)
m1 = Matrix(3, 3, lambda i, j: i + j)
assert m1[0, :] == Matrix(1, 3, (0, 1, 2))
assert m1[1:3, 1] == Matrix(2, 1, (2, 3))
m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]])
assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15])
assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]])
def test_submatrix_assignment():
m = zeros(4)
m[2:4, 2:4] = eye(2)
assert m == Matrix(((0, 0, 0, 0),
(0, 0, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1)))
m[:2, :2] = eye(2)
assert m == eye(4)
m[:, 0] = Matrix(4, 1, (1, 2, 3, 4))
assert m == Matrix(((1, 0, 0, 0),
(2, 1, 0, 0),
(3, 0, 1, 0),
(4, 0, 0, 1)))
m[:, :] = zeros(4)
assert m == zeros(4)
m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)]
assert m == Matrix(((1, 2, 3, 4),
(5, 6, 7, 8),
(9, 10, 11, 12),
(13, 14, 15, 16)))
m[:2, 0] = [0, 0]
assert m == Matrix(((0, 2, 3, 4),
(0, 6, 7, 8),
(9, 10, 11, 12),
(13, 14, 15, 16)))
def test_extract():
m = Matrix(4, 3, lambda i, j: i*3 + j)
assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10])
assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11])
assert m.extract(range(4), range(3)) == m
raises(IndexError, lambda: m.extract([4], [0]))
raises(IndexError, lambda: m.extract([0], [3]))
def test_reshape():
m0 = eye(3)
assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1))
m1 = Matrix(3, 4, lambda i, j: i + j)
assert m1.reshape(
4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)))
assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)))
def test_applyfunc():
m0 = eye(3)
assert m0.applyfunc(lambda x: 2*x) == eye(3)*2
assert m0.applyfunc(lambda x: 0) == zeros(3)
def test_expand():
m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
# Test if expand() returns a matrix
m1 = m0.expand()
assert m1 == Matrix(
[[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])
a = Symbol('a', real=True)
assert Matrix([exp(I*a)]).expand(complex=True) == \
Matrix([cos(a) + I*sin(a)])
assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([
[1, 1, Rational(3, 2)],
[0, 1, -1],
[0, 0, 1]]
)
def test_refine():
m0 = Matrix([[Abs(x)**2, sqrt(x**2)],
[sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]])
m1 = m0.refine(Q.real(x) & Q.real(y))
assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]])
m1 = m0.refine(Q.positive(x) & Q.positive(y))
assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]])
m1 = m0.refine(Q.negative(x) & Q.negative(y))
assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]])
def test_random():
M = randMatrix(3, 3)
M = randMatrix(3, 3, seed=3)
assert M == randMatrix(3, 3, seed=3)
M = randMatrix(3, 4, 0, 150)
M = randMatrix(3, seed=4, symmetric=True)
assert M == randMatrix(3, seed=4, symmetric=True)
S = M.copy()
S.simplify()
assert S == M # doesn't fail when elements are Numbers, not int
rng = random.Random(4)
assert M == randMatrix(3, symmetric=True, prng=rng)
# Ensure symmetry
for size in (10, 11): # Test odd and even
for percent in (100, 70, 30):
M = randMatrix(size, symmetric=True, percent=percent, prng=rng)
assert M == M.T
M = randMatrix(10, min=1, percent=70)
zero_count = 0
for i in range(M.shape[0]):
for j in range(M.shape[1]):
if M[i, j] == 0:
zero_count += 1
assert zero_count == 30
def test_inverse():
A = eye(4)
assert A.inv() == eye(4)
assert A.inv(method="LU") == eye(4)
assert A.inv(method="ADJ") == eye(4)
assert A.inv(method="CH") == eye(4)
assert A.inv(method="LDL") == eye(4)
assert A.inv(method="QR") == eye(4)
A = Matrix([[2, 3, 5],
[3, 6, 2],
[8, 3, 6]])
Ainv = A.inv()
assert A*Ainv == eye(3)
assert A.inv(method="LU") == Ainv
assert A.inv(method="ADJ") == Ainv
assert A.inv(method="CH") == Ainv
assert A.inv(method="LDL") == Ainv
assert A.inv(method="QR") == Ainv
AA = Matrix([[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0],
[1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0],
[1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
[1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],
[1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1],
[0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1],
[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0],
[1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1],
[1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0],
[0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0],
[1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1],
[0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1],
[1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0]])
assert AA.inv(method="BLOCK") * AA == eye(AA.shape[0])
# test that immutability is not a problem
cls = ImmutableMatrix
m = cls([[48, 49, 31],
[ 9, 71, 94],
[59, 28, 65]])
assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split())
cls = ImmutableSparseMatrix
m = cls([[48, 49, 31],
[ 9, 71, 94],
[59, 28, 65]])
assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split())
def test_matrix_inverse_mod():
A = Matrix(2, 1, [1, 0])
raises(NonSquareMatrixError, lambda: A.inv_mod(2))
A = Matrix(2, 2, [1, 0, 0, 0])
raises(ValueError, lambda: A.inv_mod(2))
A = Matrix(2, 2, [1, 2, 3, 4])
Ai = Matrix(2, 2, [1, 1, 0, 1])
assert A.inv_mod(3) == Ai
A = Matrix(2, 2, [1, 0, 0, 1])
assert A.inv_mod(2) == A
A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
raises(ValueError, lambda: A.inv_mod(5))
A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1])
Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4])
assert A.inv_mod(9) == Ai
A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5])
Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1])
assert A.inv_mod(6) == Ai
A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5])
Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1])
assert A.inv_mod(7) == Ai
def test_jacobian_hessian():
L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y])
syms = [x, y]
assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]])
L = Matrix(1, 2, [x, x**2*y**3])
assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]])
f = x**2*y
syms = [x, y]
assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]])
f = x**2*y**3
assert hessian(f, syms) == \
Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]])
f = z + x*y**2
g = x**2 + 2*y**3
ans = Matrix([[0, 2*y],
[2*y, 2*x]])
assert ans == hessian(f, Matrix([x, y]))
assert ans == hessian(f, Matrix([x, y]).T)
assert hessian(f, (y, x), [g]) == Matrix([
[ 0, 6*y**2, 2*x],
[6*y**2, 2*x, 2*y],
[ 2*x, 2*y, 0]])
def test_wronskian():
assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2
assert wronskian([exp(x), exp(2*x)], x) == exp(3*x)
assert wronskian([exp(x), x], x) == exp(x) - x*exp(x)
assert wronskian([1, x, x**2], x) == 2
w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \
exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3
assert wronskian([exp(x), cos(x), x**3], x).expand() == w1
assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \
== w1
w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2
assert wronskian([sin(x), cos(x), x**3], x).expand() == w2
assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \
== w2
assert wronskian([], x) == 1
def test_subs():
assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]])
assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \
Matrix([[-1, 2], [-3, 4]])
assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \
Matrix([[-1, 2], [-3, 4]])
assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \
Matrix([[-1, 2], [-3, 4]])
assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \
Matrix([(x - 1)*(y - 1)])
for cls in classes:
assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2)
def test_xreplace():
assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \
Matrix([[1, 5], [5, 4]])
assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \
Matrix([[-1, 2], [-3, 4]])
for cls in classes:
assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2})
def test_simplify():
n = Symbol('n')
f = Function('f')
M = Matrix([[ 1/x + 1/y, (x + x*y) / x ],
[ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]])
M.simplify()
assert M == Matrix([[ (x + y)/(x * y), 1 + y ],
[ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]])
eq = (1 + x)**2
M = Matrix([[eq]])
M.simplify()
assert M == Matrix([[eq]])
M.simplify(ratio=oo)
assert M == Matrix([[eq.simplify(ratio=oo)]])
def test_transpose():
M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]])
assert M.T == Matrix( [ [1, 1],
[2, 2],
[3, 3],
[4, 4],
[5, 5],
[6, 6],
[7, 7],
[8, 8],
[9, 9],
[0, 0] ])
assert M.T.T == M
assert M.T == M.transpose()
def test_conjugate():
M = Matrix([[0, I, 5],
[1, 2, 0]])
assert M.T == Matrix([[0, 1],
[I, 2],
[5, 0]])
assert M.C == Matrix([[0, -I, 5],
[1, 2, 0]])
assert M.C == M.conjugate()
assert M.H == M.T.C
assert M.H == Matrix([[ 0, 1],
[-I, 2],
[ 5, 0]])
def test_conj_dirac():
raises(AttributeError, lambda: eye(3).D)
M = Matrix([[1, I, I, I],
[0, 1, I, I],
[0, 0, 1, I],
[0, 0, 0, 1]])
assert M.D == Matrix([[ 1, 0, 0, 0],
[-I, 1, 0, 0],
[-I, -I, -1, 0],
[-I, -I, I, -1]])
def test_trace():
M = Matrix([[1, 0, 0],
[0, 5, 0],
[0, 0, 8]])
assert M.trace() == 14
def test_shape():
M = Matrix([[x, 0, 0],
[0, y, 0]])
assert M.shape == (2, 3)
def test_col_row_op():
M = Matrix([[x, 0, 0],
[0, y, 0]])
M.row_op(1, lambda r, j: r + j + 1)
assert M == Matrix([[x, 0, 0],
[1, y + 2, 3]])
M.col_op(0, lambda c, j: c + y**j)
assert M == Matrix([[x + 1, 0, 0],
[1 + y, y + 2, 3]])
# neither row nor slice give copies that allow the original matrix to
# be changed
assert M.row(0) == Matrix([[x + 1, 0, 0]])
r1 = M.row(0)
r1[0] = 42
assert M[0, 0] == x + 1
r1 = M[0, :-1] # also testing negative slice
r1[0] = 42
assert M[0, 0] == x + 1
c1 = M.col(0)
assert c1 == Matrix([x + 1, 1 + y])
c1[0] = 0
assert M[0, 0] == x + 1
c1 = M[:, 0]
c1[0] = 42
assert M[0, 0] == x + 1
def test_zip_row_op():
for cls in classes[:2]: # XXX: immutable matrices don't support row ops
M = cls.eye(3)
M.zip_row_op(1, 0, lambda v, u: v + 2*u)
assert M == cls([[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
M = cls.eye(3)*2
M[0, 1] = -1
M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
assert M == cls([[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
def test_issue_3950():
m = Matrix([1, 2, 3])
a = Matrix([1, 2, 3])
b = Matrix([2, 2, 3])
assert not (m in [])
assert not (m in [1])
assert m != 1
assert m == a
assert m != b
def test_issue_3981():
class Index1:
def __index__(self):
return 1
class Index2:
def __index__(self):
return 2
index1 = Index1()
index2 = Index2()
m = Matrix([1, 2, 3])
assert m[index2] == 3
m[index2] = 5
assert m[2] == 5
m = Matrix([[1, 2, 3], [4, 5, 6]])
assert m[index1, index2] == 6
assert m[1, index2] == 6
assert m[index1, 2] == 6
m[index1, index2] = 4
assert m[1, 2] == 4
m[1, index2] = 6
assert m[1, 2] == 6
m[index1, 2] = 8
assert m[1, 2] == 8
def test_evalf():
a = Matrix([sqrt(5), 6])
assert all(a.evalf()[i] == a[i].evalf() for i in range(2))
assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2))
assert all(a.n(2)[i] == a[i].n(2) for i in range(2))
def test_is_symbolic():
a = Matrix([[x, x], [x, x]])
assert a.is_symbolic() is True
a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
assert a.is_symbolic() is False
a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]])
assert a.is_symbolic() is True
a = Matrix([[1, x, 3]])
assert a.is_symbolic() is True
a = Matrix([[1, 2, 3]])
assert a.is_symbolic() is False
a = Matrix([[1], [x], [3]])
assert a.is_symbolic() is True
a = Matrix([[1], [2], [3]])
assert a.is_symbolic() is False
def test_is_upper():
a = Matrix([[1, 2, 3]])
assert a.is_upper is True
a = Matrix([[1], [2], [3]])
assert a.is_upper is False
a = zeros(4, 2)
assert a.is_upper is True
def test_is_lower():
a = Matrix([[1, 2, 3]])
assert a.is_lower is False
a = Matrix([[1], [2], [3]])
assert a.is_lower is True
def test_is_nilpotent():
a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0])
assert a.is_nilpotent()
a = Matrix([[1, 0], [0, 1]])
assert not a.is_nilpotent()
a = Matrix([])
assert a.is_nilpotent()
def test_zeros_ones_fill():
n, m = 3, 5
a = zeros(n, m)
a.fill( 5 )
b = 5 * ones(n, m)
assert a == b
assert a.rows == b.rows == 3
assert a.cols == b.cols == 5
assert a.shape == b.shape == (3, 5)
assert zeros(2) == zeros(2, 2)
assert ones(2) == ones(2, 2)
assert zeros(2, 3) == Matrix(2, 3, [0]*6)
assert ones(2, 3) == Matrix(2, 3, [1]*6)
a.fill(0)
assert a == zeros(n, m)
def test_empty_zeros():
a = zeros(0)
assert a == Matrix()
a = zeros(0, 2)
assert a.rows == 0
assert a.cols == 2
a = zeros(2, 0)
assert a.rows == 2
assert a.cols == 0
def test_issue_3749():
a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]])
assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]])
assert Matrix([
[x, -x, x**2],
[exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \
Matrix([[oo, -oo, oo], [oo, 0, oo]])
assert Matrix([
[(exp(x) - 1)/x, 2*x + y*x, x**x ],
[1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \
Matrix([[1, 0, 1], [oo, 0, sin(1)]])
assert a.integrate(x) == Matrix([
[Rational(1, 3)*x**3, y*x**2/2],
[x**2*sin(y)/2, x**2*cos(y)/2]])
def test_inv_iszerofunc():
A = eye(4)
A.col_swap(0, 1)
for method in "GE", "LU":
assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \
A.inv(method="ADJ")
def test_jacobian_metrics():
rho, phi = symbols("rho,phi")
X = Matrix([rho*cos(phi), rho*sin(phi)])
Y = Matrix([rho, phi])
J = X.jacobian(Y)
assert J == X.jacobian(Y.T)
assert J == (X.T).jacobian(Y)
assert J == (X.T).jacobian(Y.T)
g = J.T*eye(J.shape[0])*J
g = g.applyfunc(trigsimp)
assert g == Matrix([[1, 0], [0, rho**2]])
def test_jacobian2():
rho, phi = symbols("rho,phi")
X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
Y = Matrix([rho, phi])
J = Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0],
])
assert X.jacobian(Y) == J
def test_issue_4564():
X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)])
Y = Matrix([x, y, z])
for i in range(1, 3):
for j in range(1, 3):
X_slice = X[:i, :]
Y_slice = Y[:j, :]
J = X_slice.jacobian(Y_slice)
assert J.rows == i
assert J.cols == j
for k in range(j):
assert J[:, k] == X_slice
def test_nonvectorJacobian():
X = Matrix([[exp(x + y + z), exp(x + y + z)],
[exp(x + y + z), exp(x + y + z)]])
raises(TypeError, lambda: X.jacobian(Matrix([x, y, z])))
X = X[0, :]
Y = Matrix([[x, y], [x, z]])
raises(TypeError, lambda: X.jacobian(Y))
raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ])))
def test_vec():
m = Matrix([[1, 3], [2, 4]])
m_vec = m.vec()
assert m_vec.cols == 1
for i in range(4):
assert m_vec[i] == i + 1
def test_vech():
m = Matrix([[1, 2], [2, 3]])
m_vech = m.vech()
assert m_vech.cols == 1
for i in range(3):
assert m_vech[i] == i + 1
m_vech = m.vech(diagonal=False)
assert m_vech[0] == 2
m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]])
m_vech = m.vech(diagonal=False)
assert m_vech[0] == y*x + x**2
m = Matrix([[1, x*(x + y)], [y*x, 1]])
m_vech = m.vech(diagonal=False, check_symmetry=False)
assert m_vech[0] == y*x
raises(ShapeError, lambda: Matrix([[1, 3]]).vech())
raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech())
raises(ShapeError, lambda: Matrix([[1, 3]]).vech())
raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech())
def test_diag():
# mostly tested in testcommonmatrix.py
assert diag([1, 2, 3]) == Matrix([1, 2, 3])
m = [1, 2, [3]]
raises(ValueError, lambda: diag(m))
assert diag(m, strict=False) == Matrix([1, 2, 3])
def test_get_diag_blocks1():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
assert a.get_diag_blocks() == [a]
assert b.get_diag_blocks() == [b]
assert c.get_diag_blocks() == [c]
def test_get_diag_blocks2():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
assert diag(a, b, b).get_diag_blocks() == [a, b, b]
assert diag(a, b, c).get_diag_blocks() == [a, b, c]
assert diag(a, c, b).get_diag_blocks() == [a, c, b]
assert diag(c, c, b).get_diag_blocks() == [c, c, b]
def test_inv_block():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
A = diag(a, b, b)
assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv())
A = diag(a, b, c)
assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv())
A = diag(a, c, b)
assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv())
A = diag(a, a, b, a, c, a)
assert A.inv(try_block_diag=True) == diag(
a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv())
assert A.inv(try_block_diag=True, method="ADJ") == diag(
a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"),
a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ"))
def test_creation_args():
"""
Check that matrix dimensions can be specified using any reasonable type
(see issue 4614).
"""
raises(ValueError, lambda: zeros(3, -1))
raises(TypeError, lambda: zeros(1, 2, 3, 4))
assert zeros(int(3)) == zeros(3)
assert zeros(Integer(3)) == zeros(3)
raises(ValueError, lambda: zeros(3.))
assert eye(int(3)) == eye(3)
assert eye(Integer(3)) == eye(3)
raises(ValueError, lambda: eye(3.))
assert ones(int(3), Integer(4)) == ones(3, 4)
raises(TypeError, lambda: Matrix(5))
raises(TypeError, lambda: Matrix(1, 2))
raises(ValueError, lambda: Matrix([1, [2]]))
def test_diagonal_symmetrical():
m = Matrix(2, 2, [0, 1, 1, 0])
assert not m.is_diagonal()
assert m.is_symmetric()
assert m.is_symmetric(simplify=False)
m = Matrix(2, 2, [1, 0, 0, 1])
assert m.is_diagonal()
m = diag(1, 2, 3)
assert m.is_diagonal()
assert m.is_symmetric()
m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3])
assert m == diag(1, 2, 3)
m = Matrix(2, 3, zeros(2, 3))
assert not m.is_symmetric()
assert m.is_diagonal()
m = Matrix(((5, 0), (0, 6), (0, 0)))
assert m.is_diagonal()
m = Matrix(((5, 0, 0), (0, 6, 0)))
assert m.is_diagonal()
m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
assert m.is_symmetric()
assert not m.is_symmetric(simplify=False)
assert m.expand().is_symmetric(simplify=False)
def test_diagonalization():
m = Matrix([[1, 2+I], [2-I, 3]])
assert m.is_diagonalizable()
m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10])
assert not m.is_diagonalizable()
assert not m.is_symmetric()
raises(NonSquareMatrixError, lambda: m.diagonalize())
# diagonalizable
m = diag(1, 2, 3)
(P, D) = m.diagonalize()
assert P == eye(3)
assert D == m
m = Matrix(2, 2, [0, 1, 1, 0])
assert m.is_symmetric()
assert m.is_diagonalizable()
(P, D) = m.diagonalize()
assert P.inv() * m * P == D
m = Matrix(2, 2, [1, 0, 0, 3])
assert m.is_symmetric()
assert m.is_diagonalizable()
(P, D) = m.diagonalize()
assert P.inv() * m * P == D
assert P == eye(2)
assert D == m
m = Matrix(2, 2, [1, 1, 0, 0])
assert m.is_diagonalizable()
(P, D) = m.diagonalize()
assert P.inv() * m * P == D
m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
assert m.is_diagonalizable()
(P, D) = m.diagonalize()
assert P.inv() * m * P == D
for i in P:
assert i.as_numer_denom()[1] == 1
m = Matrix(2, 2, [1, 0, 0, 0])
assert m.is_diagonal()
assert m.is_diagonalizable()
(P, D) = m.diagonalize()
assert P.inv() * m * P == D
assert P == Matrix([[0, 1], [1, 0]])
# diagonalizable, complex only
m = Matrix(2, 2, [0, 1, -1, 0])
assert not m.is_diagonalizable(True)
raises(MatrixError, lambda: m.diagonalize(True))
assert m.is_diagonalizable()
(P, D) = m.diagonalize()
assert P.inv() * m * P == D
# not diagonalizable
m = Matrix(2, 2, [0, 1, 0, 0])
assert not m.is_diagonalizable()
raises(MatrixError, lambda: m.diagonalize())
m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4])
assert not m.is_diagonalizable()
raises(MatrixError, lambda: m.diagonalize())
# symbolic
a, b, c, d = symbols('a b c d')
m = Matrix(2, 2, [a, c, c, b])
assert m.is_symmetric()
assert m.is_diagonalizable()
def test_issue_15887():
# Mutable matrix should not use cache
a = MutableDenseMatrix([[0, 1], [1, 0]])
assert a.is_diagonalizable() is True
a[1, 0] = 0
assert a.is_diagonalizable() is False
a = MutableDenseMatrix([[0, 1], [1, 0]])
a.diagonalize()
a[1, 0] = 0
raises(MatrixError, lambda: a.diagonalize())
def test_jordan_form():
m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10])
raises(NonSquareMatrixError, lambda: m.jordan_form())
# diagonalizable
m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13])
Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1])
P, J = m.jordan_form()
assert Jmust == J
assert Jmust == m.diagonalize()[1]
# m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1])
# m.jordan_form() # very long
# m.jordan_form() #
# diagonalizable, complex only
# Jordan cells
# complexity: one of eigenvalues is zero
m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2])
# The blocks are ordered according to the value of their eigenvalues,
# in order to make the matrix compatible with .diagonalize()
Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2])
P, J = m.jordan_form()
assert Jmust == J
# complexity: all of eigenvalues are equal
m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6])
# Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1])
# same here see 1456ff
Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1])
P, J = m.jordan_form()
assert Jmust == J
# complexity: two of eigenvalues are zero
m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4])
Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1])
P, J = m.jordan_form()
assert Jmust == J
m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5])
Jmust = Matrix(4, 4, [2, 1, 0, 0,
0, 2, 0, 0,
0, 0, 2, 1,
0, 0, 0, 2]
)
P, J = m.jordan_form()
assert Jmust == J
m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4])
# Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2])
# same here see 1456ff
Jmust = Matrix(4, 4, [-2, 0, 0, 0,
0, 2, 1, 0,
0, 0, 2, 0,
0, 0, 0, 2])
P, J = m.jordan_form()
assert Jmust == J
m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2])
assert not m.is_diagonalizable()
Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4])
P, J = m.jordan_form()
assert Jmust == J
# checking for maximum precision to remain unchanged
m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)],
[Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]])
P, J = m.jordan_form()
for term in J.values():
if isinstance(term, Float):
assert term._prec == 110
def test_jordan_form_complex_issue_9274():
A = Matrix([[ 2, 4, 1, 0],
[-4, 2, 0, 1],
[ 0, 0, 2, 4],
[ 0, 0, -4, 2]])
p = 2 - 4*I;
q = 2 + 4*I;
Jmust1 = Matrix([[p, 1, 0, 0],
[0, p, 0, 0],
[0, 0, q, 1],
[0, 0, 0, q]])
Jmust2 = Matrix([[q, 1, 0, 0],
[0, q, 0, 0],
[0, 0, p, 1],
[0, 0, 0, p]])
P, J = A.jordan_form()
assert J == Jmust1 or J == Jmust2
assert simplify(P*J*P.inv()) == A
def test_issue_10220():
# two non-orthogonal Jordan blocks with eigenvalue 1
M = Matrix([[1, 0, 0, 1],
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1]])
P, J = M.jordan_form()
assert P == Matrix([[0, 1, 0, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]])
assert J == Matrix([
[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def test_jordan_form_issue_15858():
A = Matrix([
[1, 1, 1, 0],
[-2, -1, 0, -1],
[0, 0, -1, -1],
[0, 0, 2, 1]])
(P, J) = A.jordan_form()
assert P.expand() == Matrix([
[ -I, -I/2, I, I/2],
[-1 + I, 0, -1 - I, 0],
[ 0, -S(1)/2 - I/2, 0, -S(1)/2 + I/2],
[ 0, 1, 0, 1]])
assert J == Matrix([
[-I, 1, 0, 0],
[0, -I, 0, 0],
[0, 0, I, 1],
[0, 0, 0, I]])
def test_Matrix_berkowitz_charpoly():
UA, K_i, K_w = symbols('UA K_i K_w')
A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)],
[ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]])
charpoly = A.charpoly(x)
assert charpoly == \
Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x +
K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)')
assert type(charpoly) is PurePoly
A = Matrix([[1, 3], [2, 0]])
assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6)
A = Matrix([[1, 2], [x, 0]])
p = A.charpoly(x)
assert p.gen != x
assert p.as_expr().subs(p.gen, x) == x**2 - 3*x
def test_exp_jordan_block():
l = Symbol('lamda')
m = Matrix.jordan_block(1, l)
assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]])
m = Matrix.jordan_block(3, l)
assert m._eval_matrix_exp_jblock() == \
Matrix([
[exp(l), exp(l), exp(l)/2],
[0, exp(l), exp(l)],
[0, 0, exp(l)]])
def test_exp():
m = Matrix([[3, 4], [0, -2]])
m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]])
assert m.exp() == m_exp
assert exp(m) == m_exp
m = Matrix([[1, 0], [0, 1]])
assert m.exp() == Matrix([[E, 0], [0, E]])
assert exp(m) == Matrix([[E, 0], [0, E]])
m = Matrix([[1, -1], [1, 1]])
assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]])
def test_log():
l = Symbol('lamda')
m = Matrix.jordan_block(1, l)
assert m._eval_matrix_log_jblock() == Matrix([[log(l)]])
m = Matrix.jordan_block(4, l)
assert m._eval_matrix_log_jblock() == \
Matrix(
[
[log(l), 1/l, -1/(2*l**2), 1/(3*l**3)],
[0, log(l), 1/l, -1/(2*l**2)],
[0, 0, log(l), 1/l],
[0, 0, 0, log(l)]
]
)
m = Matrix(
[[0, 0, 1],
[0, 0, 0],
[-1, 0, 0]]
)
raises(MatrixError, lambda: m.log())
def test_has():
A = Matrix(((x, y), (2, 3)))
assert A.has(x)
assert not A.has(z)
assert A.has(Symbol)
A = A.subs(x, 2)
assert not A.has(x)
def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1():
# Test if matrices._find_reasonable_pivot_naive()
# finds a guaranteed non-zero pivot when the
# some of the candidate pivots are symbolic expressions.
# Keyword argument: simpfunc=None indicates that no simplifications
# should be performed during the search.
x = Symbol('x')
column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, S.Half])
pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\
_find_reasonable_pivot_naive(column)
assert pivot_val == S.Half
def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2():
# Test if matrices._find_reasonable_pivot_naive()
# finds a guaranteed non-zero pivot when the
# some of the candidate pivots are symbolic expressions.
# Keyword argument: simpfunc=_simplify indicates that the search
# should attempt to simplify candidate pivots.
x = Symbol('x')
column = Matrix(3, 1,
[x,
cos(x)**2+sin(x)**2+x**2,
cos(x)**2+sin(x)**2])
pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\
_find_reasonable_pivot_naive(column, simpfunc=_simplify)
assert pivot_val == 1
def test_find_reasonable_pivot_naive_simplifies():
# Test if matrices._find_reasonable_pivot_naive()
# simplifies candidate pivots, and reports
# their offsets correctly.
x = Symbol('x')
column = Matrix(3, 1,
[x,
cos(x)**2+sin(x)**2+x,
cos(x)**2+sin(x)**2])
pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\
_find_reasonable_pivot_naive(column, simpfunc=_simplify)
assert len(simplified) == 2
assert simplified[0][0] == 1
assert simplified[0][1] == 1+x
assert simplified[1][0] == 2
assert simplified[1][1] == 1
def test_errors():
raises(ValueError, lambda: Matrix([[1, 2], [1]]))
raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5])
raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2])
raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True))
raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6))
raises(ShapeError,
lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2])))
raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0,
1], set()))
raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv())
raises(ShapeError,
lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]])))
raises(
ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]])))
raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1,
2], [3, 4]])))
raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1,
2], [3, 4]])))
raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace())
raises(TypeError, lambda: Matrix([1]).applyfunc(1))
raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5))
raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5))
raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1))
raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1))
raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2])))
raises(ShapeError, lambda: Matrix([1, 2]).dot([]))
raises(TypeError, lambda: Matrix([1, 2]).dot('a'))
raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3]))
raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp())
raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized())
raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method'))
raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE())
raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE())
raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ())
raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ())
raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU())
raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent())
raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det())
raises(ValueError,
lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method'))
raises(ValueError,
lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8],
[9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function"))
raises(ValueError,
lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8],
[9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False))
raises(ValueError,
lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]])))
raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), []))
raises(ValueError, lambda: hessian(Symbol('x')**2, 'a'))
raises(IndexError, lambda: eye(3)[5, 2])
raises(IndexError, lambda: eye(3)[2, 5])
M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)))
raises(ValueError, lambda: M.det('method=LU_decomposition()'))
V = Matrix([[10, 10, 10]])
M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
raises(ValueError, lambda: M.row_insert(4.7, V))
M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
raises(ValueError, lambda: M.col_insert(-4.2, V))
def test_len():
assert len(Matrix()) == 0
assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2
assert len(Matrix(0, 2, lambda i, j: 0)) == \
len(Matrix(2, 0, lambda i, j: 0)) == 0
assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6
assert Matrix([1]) == Matrix([[1]])
assert not Matrix()
assert Matrix() == Matrix([])
def test_integrate():
A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2)))
assert A.integrate(x) == \
Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3)))
assert A.integrate(y) == \
Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2)))
def test_limit():
A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1)))
assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1)))
def test_diff():
A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1)))
assert isinstance(A.diff(x), type(A))
assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
A_imm = A.as_immutable()
assert isinstance(A_imm.diff(x), type(A_imm))
assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
def test_diff_by_matrix():
# Derive matrix by matrix:
A = MutableDenseMatrix([[x, y], [z, t]])
assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
A_imm = A.as_immutable()
assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
# Derive a constant matrix:
assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]])
B = ImmutableDenseMatrix([a, b])
assert A.diff(B) == Array.zeros(2, 1, 2, 2)
assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
# Test diff with tuples:
dB = B.diff([[a, b]])
assert dB.shape == (2, 2, 1)
assert dB == Array([[[1], [0]], [[0], [1]]])
f = Function("f")
fxyz = f(x, y, z)
assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)])
assert fxyz.diff(([x, y, z], 2)) == Array([
[fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)],
[fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)],
[fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)],
])
expr = sin(x)*exp(y)
assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)])
assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)])
assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)])
assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]])
# Test different notations:
assert fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0]
assert fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0]
assert fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)])
# Test scalar derived by matrix remains matrix:
res = x.diff(Matrix([[x, y]]))
assert isinstance(res, ImmutableDenseMatrix)
assert res == Matrix([[1, 0]])
res = (x**3).diff(Matrix([[x, y]]))
assert isinstance(res, ImmutableDenseMatrix)
assert res == Matrix([[3*x**2, 0]])
def test_getattr():
A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1)))
raises(AttributeError, lambda: A.nonexistantattribute)
assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
def test_hessenberg():
A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]])
assert A.is_upper_hessenberg
A = A.T
assert A.is_lower_hessenberg
A[0, -1] = 1
assert A.is_lower_hessenberg is False
A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]])
assert not A.is_upper_hessenberg
A = zeros(5, 2)
assert A.is_upper_hessenberg
def test_cholesky():
raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky())
raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky())
raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky())
raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky())
raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False))
assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([
[sqrt(5 + I), 0], [0, 1]])
A = Matrix(((1, 5), (5, 1)))
L = A.cholesky(hermitian=False)
assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]])
assert L*L.T == A
A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
L = A.cholesky()
assert L * L.T == A
assert L.is_lower
assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]])
A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11)))
assert A.cholesky().expand() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3)))
raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).cholesky())
raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky())
raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).cholesky())
raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).cholesky())
raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky(hermitian=False))
assert SparseMatrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([
[sqrt(5 + I), 0], [0, 1]])
A = SparseMatrix(((1, 5), (5, 1)))
L = A.cholesky(hermitian=False)
assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]])
assert L*L.T == A
A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
L = A.cholesky()
assert L * L.T == A
assert L.is_lower
assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]])
A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11)))
assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3)))
def test_matrix_norm():
# Vector Tests
# Test columns and symbols
x = Symbol('x', real=True)
v = Matrix([cos(x), sin(x)])
assert trigsimp(v.norm(2)) == 1
assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, Rational(1, 10))
# Test Rows
A = Matrix([[5, Rational(3, 2)]])
assert A.norm() == Pow(25 + Rational(9, 4), S.Half)
assert A.norm(oo) == max(A)
assert A.norm(-oo) == min(A)
# Matrix Tests
# Intuitive test
A = Matrix([[1, 1], [1, 1]])
assert A.norm(2) == 2
assert A.norm(-2) == 0
assert A.norm('frobenius') == 2
assert eye(10).norm(2) == eye(10).norm(-2) == 1
assert A.norm(oo) == 2
# Test with Symbols and more complex entries
A = Matrix([[3, y, y], [x, S.Half, -pi]])
assert (A.norm('fro')
== sqrt(Rational(37, 4) + 2*abs(y)**2 + pi**2 + x**2))
# Check non-square
A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]])
assert A.norm(2) == sqrt(Rational(389, 8) + sqrt(78665)/8)
assert A.norm(-2) is S.Zero
assert A.norm('frobenius') == sqrt(389)/2
# Test properties of matrix norms
# https://en.wikipedia.org/wiki/Matrix_norm#Definition
# Two matrices
A = Matrix([[1, 2], [3, 4]])
B = Matrix([[5, 5], [-2, 2]])
C = Matrix([[0, -I], [I, 0]])
D = Matrix([[1, 0], [0, -1]])
L = [A, B, C, D]
alpha = Symbol('alpha', real=True)
for order in ['fro', 2, -2]:
# Zero Check
assert zeros(3).norm(order) is S.Zero
# Check Triangle Inequality for all Pairs of Matrices
for X in L:
for Y in L:
dif = (X.norm(order) + Y.norm(order) -
(X + Y).norm(order))
assert (dif >= 0)
# Scalar multiplication linearity
for M in [A, B, C, D]:
dif = simplify((alpha*M).norm(order) -
abs(alpha) * M.norm(order))
assert dif == 0
# Test Properties of Vector Norms
# https://en.wikipedia.org/wiki/Vector_norm
# Two column vectors
a = Matrix([1, 1 - 1*I, -3])
b = Matrix([S.Half, 1*I, 1])
c = Matrix([-1, -1, -1])
d = Matrix([3, 2, I])
e = Matrix([Integer(1e2), Rational(1, 1e2), 1])
L = [a, b, c, d, e]
alpha = Symbol('alpha', real=True)
for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]:
# Zero Check
if order > 0:
assert Matrix([0, 0, 0]).norm(order) is S.Zero
# Triangle inequality on all pairs
if order >= 1: # Triangle InEq holds only for these norms
for X in L:
for Y in L:
dif = (X.norm(order) + Y.norm(order) -
(X + Y).norm(order))
assert simplify(dif >= 0) is S.true
# Linear to scalar multiplication
if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]:
for X in L:
dif = simplify((alpha*X).norm(order) -
(abs(alpha) * X.norm(order)))
assert dif == 0
# ord=1
M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6])
assert M.norm(1) == 13
def test_condition_number():
x = Symbol('x', real=True)
A = eye(3)
A[0, 0] = 10
A[2, 2] = Rational(1, 10)
assert A.condition_number() == 100
A[1, 1] = x
assert A.condition_number() == Max(10, Abs(x)) / Min(Rational(1, 10), Abs(x))
M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]])
Mc = M.condition_number()
assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in
[Rational(1, 5), S.Half, Rational(1, 10), pi/2, pi, pi*Rational(7, 4) ])
#issue 10782
assert Matrix([]).condition_number() == 0
def test_equality():
A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1)))
assert A == A[:, :]
assert not A != A[:, :]
assert not A == B
assert A != B
assert A != 10
assert not A == 10
# A SparseMatrix can be equal to a Matrix
C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
assert C == D
assert not C != D
def test_col_join():
assert eye(3).col_join(Matrix([[7, 7, 7]])) == \
Matrix([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[7, 7, 7]])
def test_row_insert():
r4 = Matrix([[4, 4, 4]])
for i in range(-4, 5):
l = [1, 0, 0]
l.insert(i, 4)
assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l
def test_col_insert():
c4 = Matrix([4, 4, 4])
for i in range(-4, 5):
l = [0, 0, 0]
l.insert(i, 4)
assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l
def test_normalized():
assert Matrix([3, 4]).normalized() == \
Matrix([Rational(3, 5), Rational(4, 5)])
# Zero vector trivial cases
assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0])
# Machine precision error truncation trivial cases
m = Matrix([0,0,1.e-100])
assert m.normalized(
iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero
) == Matrix([0, 0, 0])
def test_print_nonzero():
assert capture(lambda: eye(3).print_nonzero()) == \
'[X ]\n[ X ]\n[ X]\n'
assert capture(lambda: eye(3).print_nonzero('.')) == \
'[. ]\n[ . ]\n[ .]\n'
def test_zeros_eye():
assert Matrix.eye(3) == eye(3)
assert Matrix.zeros(3) == zeros(3)
assert ones(3, 4) == Matrix(3, 4, [1]*12)
i = Matrix([[1, 0], [0, 1]])
z = Matrix([[0, 0], [0, 0]])
for cls in classes:
m = cls.eye(2)
assert i == m # but m == i will fail if m is immutable
assert i == eye(2, cls=cls)
assert type(m) == cls
m = cls.zeros(2)
assert z == m
assert z == zeros(2, cls=cls)
assert type(m) == cls
def test_is_zero():
assert Matrix().is_zero_matrix
assert Matrix([[0, 0], [0, 0]]).is_zero_matrix
assert zeros(3, 4).is_zero_matrix
assert not eye(3).is_zero_matrix
assert Matrix([[x, 0], [0, 0]]).is_zero_matrix == None
assert SparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
assert Matrix([[x, 1], [0, 0]]).is_zero_matrix == False
a = Symbol('a', nonzero=True)
assert Matrix([[a, 0], [0, 0]]).is_zero_matrix == False
def test_rotation_matrices():
# This tests the rotation matrices by rotating about an axis and back.
theta = pi/3
r3_plus = rot_axis3(theta)
r3_minus = rot_axis3(-theta)
r2_plus = rot_axis2(theta)
r2_minus = rot_axis2(-theta)
r1_plus = rot_axis1(theta)
r1_minus = rot_axis1(-theta)
assert r3_minus*r3_plus*eye(3) == eye(3)
assert r2_minus*r2_plus*eye(3) == eye(3)
assert r1_minus*r1_plus*eye(3) == eye(3)
# Check the correctness of the trace of the rotation matrix
assert r1_plus.trace() == 1 + 2*cos(theta)
assert r2_plus.trace() == 1 + 2*cos(theta)
assert r3_plus.trace() == 1 + 2*cos(theta)
# Check that a rotation with zero angle doesn't change anything.
assert rot_axis1(0) == eye(3)
assert rot_axis2(0) == eye(3)
assert rot_axis3(0) == eye(3)
# Check left-hand convention
# see Issue #24529
q1 = Quaternion.from_axis_angle([1, 0, 0], pi / 2)
q2 = Quaternion.from_axis_angle([0, 1, 0], pi / 2)
q3 = Quaternion.from_axis_angle([0, 0, 1], pi / 2)
assert rot_axis1(- pi / 2) == q1.to_rotation_matrix()
assert rot_axis2(- pi / 2) == q2.to_rotation_matrix()
assert rot_axis3(- pi / 2) == q3.to_rotation_matrix()
# Check right-hand convention
assert rot_ccw_axis1(+ pi / 2) == q1.to_rotation_matrix()
assert rot_ccw_axis2(+ pi / 2) == q2.to_rotation_matrix()
assert rot_ccw_axis3(+ pi / 2) == q3.to_rotation_matrix()
def test_DeferredVector():
assert str(DeferredVector("vector")[4]) == "vector[4]"
assert sympify(DeferredVector("d")) == DeferredVector("d")
raises(IndexError, lambda: DeferredVector("d")[-1])
assert str(DeferredVector("d")) == "d"
assert repr(DeferredVector("test")) == "DeferredVector('test')"
def test_DeferredVector_not_iterable():
assert not iterable(DeferredVector('X'))
def test_DeferredVector_Matrix():
raises(TypeError, lambda: Matrix(DeferredVector("V")))
def test_GramSchmidt():
R = Rational
m1 = Matrix(1, 2, [1, 2])
m2 = Matrix(1, 2, [2, 3])
assert GramSchmidt([m1, m2]) == \
[Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])]
assert GramSchmidt([m1.T, m2.T]) == \
[Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])]
# from wikipedia
assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [
Matrix([3*sqrt(10)/10, sqrt(10)/10]),
Matrix([-sqrt(10)/10, 3*sqrt(10)/10])]
# https://github.com/sympy/sympy/issues/9488
L = FiniteSet(Matrix([1]))
assert GramSchmidt(L) == [Matrix([[1]])]
def test_casoratian():
assert casoratian([1, 2, 3, 4], 1) == 0
assert casoratian([1, 2, 3, 4], 1, zero=False) == 0
def test_zero_dimension_multiply():
assert (Matrix()*zeros(0, 3)).shape == (0, 3)
assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3)
assert zeros(0, 3)*zeros(3, 0) == Matrix()
def test_slice_issue_2884():
m = Matrix(2, 2, range(4))
assert m[1, :] == Matrix([[2, 3]])
assert m[-1, :] == Matrix([[2, 3]])
assert m[:, 1] == Matrix([[1, 3]]).T
assert m[:, -1] == Matrix([[1, 3]]).T
raises(IndexError, lambda: m[2, :])
raises(IndexError, lambda: m[2, 2])
def test_slice_issue_3401():
assert zeros(0, 3)[:, -1].shape == (0, 1)
assert zeros(3, 0)[0, :] == Matrix(1, 0, [])
def test_copyin():
s = zeros(3, 3)
s[3] = 1
assert s[:, 0] == Matrix([0, 1, 0])
assert s[3] == 1
assert s[3: 4] == [1]
s[1, 1] = 42
assert s[1, 1] == 42
assert s[1, 1:] == Matrix([[42, 0]])
s[1, 1:] = Matrix([[5, 6]])
assert s[1, :] == Matrix([[1, 5, 6]])
s[1, 1:] = [[42, 43]]
assert s[1, :] == Matrix([[1, 42, 43]])
s[0, 0] = 17
assert s[:, :1] == Matrix([17, 1, 0])
s[0, 0] = [1, 1, 1]
assert s[:, 0] == Matrix([1, 1, 1])
s[0, 0] = Matrix([1, 1, 1])
assert s[:, 0] == Matrix([1, 1, 1])
s[0, 0] = SparseMatrix([1, 1, 1])
assert s[:, 0] == Matrix([1, 1, 1])
def test_invertible_check():
# sometimes a singular matrix will have a pivot vector shorter than
# the number of rows in a matrix...
assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,))
raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv())
m = Matrix([
[-1, -1, 0],
[ x, 1, 1],
[ 1, x, -1],
])
assert len(m.rref()[1]) != m.rows
# in addition, unless simplify=True in the call to rref, the identity
# matrix will be returned even though m is not invertible
assert m.rref()[0] != eye(3)
assert m.rref(simplify=signsimp)[0] != eye(3)
raises(ValueError, lambda: m.inv(method="ADJ"))
raises(ValueError, lambda: m.inv(method="GE"))
raises(ValueError, lambda: m.inv(method="LU"))
def test_issue_3959():
x, y = symbols('x, y')
e = x*y
assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y
def test_issue_5964():
assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])'
def test_issue_7604():
x, y = symbols("x y")
assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \
'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])'
def test_is_Identity():
assert eye(3).is_Identity
assert eye(3).as_immutable().is_Identity
assert not zeros(3).is_Identity
assert not ones(3).is_Identity
# issue 6242
assert not Matrix([[1, 0, 0]]).is_Identity
# issue 8854
assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity
assert not SparseMatrix(2,3, range(6)).is_Identity
assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity
assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity
def test_dot():
assert ones(1, 3).dot(ones(3, 1)) == 3
assert ones(1, 3).dot([1, 1, 1]) == 3
assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14
assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I
assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I
assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I
assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I
assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I
assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I
assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5
assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5
raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test"))
def test_dual():
B_x, B_y, B_z, E_x, E_y, E_z = symbols(
'B_x B_y B_z E_x E_y E_z', real=True)
F = Matrix((
( 0, E_x, E_y, E_z),
(-E_x, 0, B_z, -B_y),
(-E_y, -B_z, 0, B_x),
(-E_z, B_y, -B_x, 0)
))
Fd = Matrix((
( 0, -B_x, -B_y, -B_z),
(B_x, 0, E_z, -E_y),
(B_y, -E_z, 0, E_x),
(B_z, E_y, -E_x, 0)
))
assert F.dual().equals(Fd)
assert eye(3).dual().equals(zeros(3))
assert F.dual().dual().equals(-F)
def test_anti_symmetric():
assert Matrix([1, 2]).is_anti_symmetric() is False
m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0])
assert m.is_anti_symmetric() is True
assert m.is_anti_symmetric(simplify=False) is False
assert m.is_anti_symmetric(simplify=lambda x: x) is False
# tweak to fail
m[2, 1] = -m[2, 1]
assert m.is_anti_symmetric() is False
# untweak
m[2, 1] = -m[2, 1]
m = m.expand()
assert m.is_anti_symmetric(simplify=False) is True
m[0, 0] = 1
assert m.is_anti_symmetric() is False
def test_normalize_sort_diogonalization():
A = Matrix(((1, 2), (2, 1)))
P, Q = A.diagonalize(normalize=True)
assert P*P.T == P.T*P == eye(P.cols)
P, Q = A.diagonalize(normalize=True, sort=True)
assert P*P.T == P.T*P == eye(P.cols)
assert P*Q*P.inv() == A
def test_issue_5321():
raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])]))
def test_issue_5320():
assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]
])
assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]
])
cls = SparseMatrix
assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]
])
def test_issue_11944():
A = Matrix([[1]])
AIm = sympify(A)
assert Matrix.hstack(AIm, A) == Matrix([[1, 1]])
assert Matrix.vstack(AIm, A) == Matrix([[1], [1]])
def test_cross():
a = [1, 2, 3]
b = [3, 4, 5]
col = Matrix([-2, 4, -2])
row = col.T
def test(M, ans):
assert ans == M
assert type(M) == cls
for cls in classes:
A = cls(a)
B = cls(b)
test(A.cross(B), col)
test(A.cross(B.T), col)
test(A.T.cross(B.T), row)
test(A.T.cross(B), row)
raises(ShapeError, lambda:
Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1])))
def test_hash():
for cls in classes[-2:]:
s = {cls.eye(1), cls.eye(1)}
assert len(s) == 1 and s.pop() == cls.eye(1)
# issue 3979
for cls in classes[:2]:
assert not isinstance(cls.eye(1), Hashable)
@XFAIL
def test_issue_3979():
# when this passes, delete this and change the [1:2]
# to [:2] in the test_hash above for issue 3979
cls = classes[0]
raises(AttributeError, lambda: hash(cls.eye(1)))
def test_adjoint():
dat = [[0, I], [1, 0]]
ans = Matrix([[0, 1], [-I, 0]])
for cls in classes:
assert ans == cls(dat).adjoint()
def test_simplify_immutable():
assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \
ImmutableMatrix([[1]])
def test_replace():
F, G = symbols('F, G', cls=Function)
K = Matrix(2, 2, lambda i, j: G(i+j))
M = Matrix(2, 2, lambda i, j: F(i+j))
N = M.replace(F, G)
assert N == K
def test_replace_map():
F, G = symbols('F, G', cls=Function)
with warns_deprecated_sympy():
K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}),
(G(1), {F(1): G(1)}), (G(2), {F(2): G(2)})])
M = Matrix(2, 2, lambda i, j: F(i+j))
with warns(SymPyDeprecationWarning, test_stacklevel=False):
N = M.replace(F, G, True)
assert N == K
def test_atoms():
m = Matrix([[1, 2], [x, 1 - 1/x]])
assert m.atoms() == {S.One,S(2),S.NegativeOne, x}
assert m.atoms(Symbol) == {x}
def test_pinv():
# Pseudoinverse of an invertible matrix is the inverse.
A1 = Matrix([[a, b], [c, d]])
assert simplify(A1.pinv(method="RD")) == simplify(A1.inv())
# Test the four properties of the pseudoinverse for various matrices.
As = [Matrix([[13, 104], [2212, 3], [-3, 5]]),
Matrix([[1, 7, 9], [11, 17, 19]]),
Matrix([a, b])]
for A in As:
A_pinv = A.pinv(method="RD")
AAp = A * A_pinv
ApA = A_pinv * A
assert simplify(AAp * A) == A
assert simplify(ApA * A_pinv) == A_pinv
assert AAp.H == AAp
assert ApA.H == ApA
# XXX Pinv with diagonalization makes expression too complicated.
for A in As:
A_pinv = simplify(A.pinv(method="ED"))
AAp = A * A_pinv
ApA = A_pinv * A
assert simplify(AAp * A) == A
assert simplify(ApA * A_pinv) == A_pinv
assert AAp.H == AAp
assert ApA.H == ApA
# XXX Computing pinv using diagonalization makes an expression that
# is too complicated to simplify.
# A1 = Matrix([[a, b], [c, d]])
# assert simplify(A1.pinv(method="ED")) == simplify(A1.inv())
# so this is tested numerically at a fixed random point
from sympy.core.numbers import comp
q = A1.pinv(method="ED")
w = A1.inv()
reps = {a: -73633, b: 11362, c: 55486, d: 62570}
assert all(
comp(i.n(), j.n())
for i, j in zip(q.subs(reps), w.subs(reps))
)
@slow
@XFAIL
def test_pinv_rank_deficient_when_diagonalization_fails():
# Test the four properties of the pseudoinverse for matrices when
# diagonalization of A.H*A fails.
As = [
Matrix([
[61, 89, 55, 20, 71, 0],
[62, 96, 85, 85, 16, 0],
[69, 56, 17, 4, 54, 0],
[10, 54, 91, 41, 71, 0],
[ 7, 30, 10, 48, 90, 0],
[0, 0, 0, 0, 0, 0]])
]
for A in As:
A_pinv = A.pinv(method="ED")
AAp = A * A_pinv
ApA = A_pinv * A
assert AAp.H == AAp
assert ApA.H == ApA
def test_issue_7201():
assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, [])
assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, [])
def test_free_symbols():
for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix:
assert M([[x], [0]]).free_symbols == {x}
def test_from_ndarray():
"""See issue 7465."""
try:
from numpy import array
except ImportError:
skip('NumPy must be available to test creating matrices from ndarrays')
assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3])
assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]])
assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \
Matrix([[1, 2, 3], [4, 5, 6]])
assert Matrix(array([x, y, z])) == Matrix([x, y, z])
raises(NotImplementedError,
lambda: Matrix(array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])))
assert Matrix([array([1, 2]), array([3, 4])]) == Matrix([[1, 2], [3, 4]])
assert Matrix([array([1, 2]), [3, 4]]) == Matrix([[1, 2], [3, 4]])
assert Matrix([array([]), array([])]) == Matrix([])
def test_17522_numpy():
from sympy.matrices.common import _matrixify
try:
from numpy import array, matrix
except ImportError:
skip('NumPy must be available to test indexing matrixified NumPy ndarrays and matrices')
m = _matrixify(array([[1, 2], [3, 4]]))
assert m[3] == 4
assert list(m) == [1, 2, 3, 4]
with ignore_warnings(PendingDeprecationWarning):
m = _matrixify(matrix([[1, 2], [3, 4]]))
assert m[3] == 4
assert list(m) == [1, 2, 3, 4]
def test_17522_mpmath():
from sympy.matrices.common import _matrixify
try:
from mpmath import matrix
except ImportError:
skip('mpmath must be available to test indexing matrixified mpmath matrices')
m = _matrixify(matrix([[1, 2], [3, 4]]))
assert m[3] == 4
assert list(m) == [1, 2, 3, 4]
def test_17522_scipy():
from sympy.matrices.common import _matrixify
try:
from scipy.sparse import csr_matrix
except ImportError:
skip('SciPy must be available to test indexing matrixified SciPy sparse matrices')
m = _matrixify(csr_matrix([[1, 2], [3, 4]]))
assert m[3] == 4
assert list(m) == [1, 2, 3, 4]
def test_hermitian():
a = Matrix([[1, I], [-I, 1]])
assert a.is_hermitian
a[0, 0] = 2*I
assert a.is_hermitian is False
a[0, 0] = x
assert a.is_hermitian is None
a[0, 1] = a[1, 0]*I
assert a.is_hermitian is False
def test_doit():
a = Matrix([[Add(x,x, evaluate=False)]])
assert a[0] != 2*x
assert a.doit() == Matrix([[2*x]])
def test_issue_9457_9467_9876():
# for row_del(index)
M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
M.row_del(1)
assert M == Matrix([[1, 2, 3], [3, 4, 5]])
N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
N.row_del(-2)
assert N == Matrix([[1, 2, 3], [3, 4, 5]])
O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]])
O.row_del(-1)
assert O == Matrix([[1, 2, 3], [5, 6, 7]])
P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
raises(IndexError, lambda: P.row_del(10))
Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
raises(IndexError, lambda: Q.row_del(-10))
# for col_del(index)
M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
M.col_del(1)
assert M == Matrix([[1, 3], [2, 4], [3, 5]])
N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
N.col_del(-2)
assert N == Matrix([[1, 3], [2, 4], [3, 5]])
P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
raises(IndexError, lambda: P.col_del(10))
Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
raises(IndexError, lambda: Q.col_del(-10))
def test_issue_9422():
x, y = symbols('x y', commutative=False)
a, b = symbols('a b')
M = eye(2)
M1 = Matrix(2, 2, [x, y, y, z])
assert y*x*M != x*y*M
assert b*a*M == a*b*M
assert x*M1 != M1*x
assert a*M1 == M1*a
assert y*x*M == Matrix([[y*x, 0], [0, y*x]])
def test_issue_10770():
M = Matrix([])
a = ['col_insert', 'row_join'], Matrix([9, 6, 3])
b = ['row_insert', 'col_join'], a[1].T
c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]])
for ops, m in (a, b, c):
for op in ops:
f = getattr(M, op)
new = f(m) if 'join' in op else f(42, m)
assert new == m and id(new) != id(m)
def test_issue_10658():
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
assert A.extract([0, 1, 2], [True, True, False]) == \
Matrix([[1, 2], [4, 5], [7, 8]])
assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]])
assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]])
assert A.extract([True, False, True], [0, 1, 2]) == \
Matrix([[1, 2, 3], [7, 8, 9]])
assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, [])
assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, [])
assert A.extract([True, False, True], [False, True, False]) == \
Matrix([[2], [8]])
def test_opportunistic_simplification():
# this test relates to issue #10718, #9480, #11434
# issue #9480
m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]])
assert m.rank() == 1
# issue #10781
m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]])
assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2)
# issue #11434
ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1')
m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]])
assert m.rank() == 4
def test_partial_pivoting():
# example from https://en.wikipedia.org/wiki/Pivot_element
# partial pivoting with back substitution gives a perfect result
# naive pivoting give an error ~1e-13, so anything better than
# 1e-15 is good
mm=Matrix([[0.003, 59.14, 59.17], [5.291, -6.13, 46.78]])
assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0],
[ 0, 1.0, 1.0]])).norm() < 1e-15
# issue #11549
m_mixed = Matrix([[6e-17, 1.0, 4],
[ -1.0, 0, 8],
[ 0, 0, 1]])
m_float = Matrix([[6e-17, 1.0, 4.],
[ -1.0, 0., 8.],
[ 0., 0., 1.]])
m_inv = Matrix([[ 0, -1.0, 8.0],
[1.0, 6.0e-17, -4.0],
[ 0, 0, 1]])
# this example is numerically unstable and involves a matrix with a norm >= 8,
# this comparing the difference of the results with 1e-15 is numerically sound.
assert (m_mixed.inv() - m_inv).norm() < 1e-15
assert (m_float.inv() - m_inv).norm() < 1e-15
def test_iszero_substitution():
""" When doing numerical computations, all elements that pass
the iszerofunc test should be set to numerically zero if they
aren't already. """
# Matrix from issue #9060
m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]])
m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0]
m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]])
m_diff = m_rref - m_correct
assert m_diff.norm() < 1e-15
# if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16
assert m_rref[2,2] == 0
def test_issue_11238():
from sympy.geometry.point import Point
xx = 8*tan(pi*Rational(13, 45))/(tan(pi*Rational(13, 45)) + sqrt(3))
yy = (-8*sqrt(3)*tan(pi*Rational(13, 45))**2 + 24*tan(pi*Rational(13, 45)))/(-3 + tan(pi*Rational(13, 45))**2)
p1 = Point(0, 0)
p2 = Point(1, -sqrt(3))
p0 = Point(xx,yy)
m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)])
m2 = Matrix([p1 - p0, p2 - p0])
m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)])
# This system has expressions which are zero and
# cannot be easily proved to be such, so without
# numerical testing, these assertions will fail.
Z = lambda x: abs(x.n()) < 1e-20
assert m1.rank(simplify=True, iszerofunc=Z) == 1
assert m2.rank(simplify=True, iszerofunc=Z) == 1
assert m3.rank(simplify=True, iszerofunc=Z) == 1
def test_as_real_imag():
m1 = Matrix(2,2,[1,2,3,4])
m2 = m1*S.ImaginaryUnit
m3 = m1 + m2
for kls in classes:
a,b = kls(m3).as_real_imag()
assert list(a) == list(m1)
assert list(b) == list(m1)
def test_deprecated():
# Maintain tests for deprecated functions. We must capture
# the deprecation warnings. When the deprecated functionality is
# removed, the corresponding tests should be removed.
m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2])
P, Jcells = m.jordan_cells()
assert Jcells[1] == Matrix(1, 1, [2])
assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2])
def test_issue_14489():
from sympy.core.mod import Mod
A = Matrix([-1, 1, 2])
B = Matrix([10, 20, -15])
assert Mod(A, 3) == Matrix([2, 1, 2])
assert Mod(B, 4) == Matrix([2, 0, 1])
def test_issue_14943():
# Test that __array__ accepts the optional dtype argument
try:
from numpy import array
except ImportError:
skip('NumPy must be available to test creating matrices from ndarrays')
M = Matrix([[1,2], [3,4]])
assert array(M, dtype=float).dtype.name == 'float64'
def test_case_6913():
m = MatrixSymbol('m', 1, 1)
a = Symbol("a")
a = m[0, 0]>0
assert str(a) == 'm[0, 0] > 0'
def test_issue_11948():
A = MatrixSymbol('A', 3, 3)
a = Wild('a')
assert A.match(a) == {a: A}
def test_gramschmidt_conjugate_dot():
vecs = [Matrix([1, I]), Matrix([1, -I])]
assert Matrix.orthogonalize(*vecs) == \
[Matrix([[1], [I]]), Matrix([[1], [-I]])]
vecs = [Matrix([1, I, 0]), Matrix([I, 0, -I])]
assert Matrix.orthogonalize(*vecs) == \
[Matrix([[1], [I], [0]]), Matrix([[I/2], [S(1)/2], [-I]])]
mat = Matrix([[1, I], [1, -I]])
Q, R = mat.QRdecomposition()
assert Q * Q.H == Matrix.eye(2)
def test_issue_8207():
a = Matrix(MatrixSymbol('a', 3, 1))
b = Matrix(MatrixSymbol('b', 3, 1))
c = a.dot(b)
d = diff(c, a[0, 0])
e = diff(d, a[0, 0])
assert d == b[0, 0]
assert e == 0
def test_func():
from sympy.simplify.simplify import nthroot
A = Matrix([[1, 2],[0, 3]])
assert A.analytic_func(sin(x*t), x) == Matrix([[sin(t), sin(3*t) - sin(t)], [0, sin(3*t)]])
A = Matrix([[2, 1],[1, 2]])
assert (pi * A / 6).analytic_func(cos(x), x) == Matrix([[sqrt(3)/4, -sqrt(3)/4], [-sqrt(3)/4, sqrt(3)/4]])
raises(ValueError, lambda : zeros(5).analytic_func(log(x), x))
raises(ValueError, lambda : (A*x).analytic_func(log(x), x))
A = Matrix([[0, -1, -2, 3], [0, -1, -2, 3], [0, 1, 0, -1], [0, 0, -1, 1]])
assert A.analytic_func(exp(x), x) == A.exp()
raises(ValueError, lambda : A.analytic_func(sqrt(x), x))
A = Matrix([[41, 12],[12, 34]])
assert simplify(A.analytic_func(sqrt(x), x)**2) == A
A = Matrix([[3, -12, 4], [-1, 0, -2], [-1, 5, -1]])
assert simplify(A.analytic_func(nthroot(x, 3), x)**3) == A
A = Matrix([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]])
assert A.analytic_func(exp(x), x) == A.exp()
A = Matrix([[0, 2, 1, 6], [0, 0, 1, 2], [0, 0, 0, 3], [0, 0, 0, 0]])
assert A.analytic_func(exp(x*t), x) == expand(simplify((A*t).exp()))
def test_issue_19809():
if pyodide_js:
skip("can't run on pyodide")
def f():
assert _dotprodsimp_state.state == None
m = Matrix([[1]])
m = m * m
return True
with dotprodsimp(True):
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(f)
assert future.result()
def test_issue_23276():
M = Matrix([x, y])
assert integrate(M, (x, 0, 1), (y, 0, 1)) == Matrix([
[1/2],
[1/2]])
|
c26b48079ab5fdc2699c7492b104f632313ac0974357546d66e7463b30c9986e | from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.matrices.common import NonSquareMatrixError
class Determinant(Expr):
"""Matrix Determinant
Represents the determinant of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Determinant, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Determinant(A)
Determinant(A)
>>> Determinant(eye(3)).doit()
1
"""
is_commutative = True
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("Input to Determinant, %s, not a matrix" % str(mat))
if mat.is_square is False:
raise NonSquareMatrixError("Det of a non-square matrix")
return Basic.__new__(cls, mat)
@property
def arg(self):
return self.args[0]
@property
def kind(self):
return self.arg.kind.element_kind
def doit(self, expand=False, **hints):
try:
return self.arg._eval_determinant()
except (AttributeError, NotImplementedError):
return self
def det(matexpr):
""" Matrix Determinant
Examples
========
>>> from sympy import MatrixSymbol, det, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> det(A)
Determinant(A)
>>> det(eye(3))
1
"""
return Determinant(matexpr).doit()
class Permanent(Expr):
"""Matrix Permanent
Represents the permanent of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Permanent, ones
>>> A = MatrixSymbol('A', 3, 3)
>>> Permanent(A)
Permanent(A)
>>> Permanent(ones(3, 3)).doit()
6
"""
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("Input to Permanent, %s, not a matrix" % str(mat))
return Basic.__new__(cls, mat)
@property
def arg(self):
return self.args[0]
def doit(self, expand=False, **hints):
try:
return self.arg.per()
except (AttributeError, NotImplementedError):
return self
def per(matexpr):
""" Matrix Permanent
Examples
========
>>> from sympy import MatrixSymbol, Matrix, per, ones
>>> A = MatrixSymbol('A', 3, 3)
>>> per(A)
Permanent(A)
>>> per(ones(5, 5))
120
>>> M = Matrix([1, 2, 5])
>>> per(M)
8
"""
return Permanent(matexpr).doit()
from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
def refine_Determinant(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine, det
>>> X = MatrixSymbol('X', 2, 2)
>>> det(X)
Determinant(X)
>>> with assuming(Q.orthogonal(X)):
... print(refine(det(X)))
1
"""
if ask(Q.orthogonal(expr.arg), assumptions):
return S.One
elif ask(Q.singular(expr.arg), assumptions):
return S.Zero
elif ask(Q.unit_triangular(expr.arg), assumptions):
return S.One
return expr
handlers_dict['Determinant'] = refine_Determinant
|
6494b3b9380acf4d7399bddd9e614a9fa02647a81777fe73118cc7924f1c176a | from sympy.core.sympify import _sympify
from sympy.core import S, Basic
from sympy.matrices.common import NonSquareMatrixError
from sympy.matrices.expressions.matpow import MatPow
class Inverse(MatPow):
"""
The multiplicative inverse of a matrix expression
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the inverse, use the ``.inverse()``
method of matrices.
Examples
========
>>> from sympy import MatrixSymbol, Inverse
>>> A = MatrixSymbol('A', 3, 3)
>>> B = MatrixSymbol('B', 3, 3)
>>> Inverse(A)
A**(-1)
>>> A.inverse() == Inverse(A)
True
>>> (A*B).inverse()
B**(-1)*A**(-1)
>>> Inverse(A*B)
(A*B)**(-1)
"""
is_Inverse = True
exp = S.NegativeOne
def __new__(cls, mat, exp=S.NegativeOne):
# exp is there to make it consistent with
# inverse.func(*inverse.args) == inverse
mat = _sympify(mat)
exp = _sympify(exp)
if not mat.is_Matrix:
raise TypeError("mat should be a matrix")
if mat.is_square is False:
raise NonSquareMatrixError("Inverse of non-square matrix %s" % mat)
return Basic.__new__(cls, mat, exp)
@property
def arg(self):
return self.args[0]
@property
def shape(self):
return self.arg.shape
def _eval_inverse(self):
return self.arg
def _eval_determinant(self):
from sympy.matrices.expressions.determinant import det
return 1/det(self.arg)
def doit(self, **hints):
if 'inv_expand' in hints and hints['inv_expand'] == False:
return self
arg = self.arg
if hints.get('deep', True):
arg = arg.doit(**hints)
return arg.inverse()
def _eval_derivative_matrix_lines(self, x):
arg = self.args[0]
lines = arg._eval_derivative_matrix_lines(x)
for line in lines:
line.first_pointer *= -self.T
line.second_pointer *= self
return lines
from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
def refine_Inverse(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine
>>> X = MatrixSymbol('X', 2, 2)
>>> X.I
X**(-1)
>>> with assuming(Q.orthogonal(X)):
... print(refine(X.I))
X.T
"""
if ask(Q.orthogonal(expr), assumptions):
return expr.arg.T
elif ask(Q.unitary(expr), assumptions):
return expr.arg.conjugate()
elif ask(Q.singular(expr), assumptions):
raise ValueError("Inverse of singular matrix %s" % expr.arg)
return expr
handlers_dict['Inverse'] = refine_Inverse
|
6dec0dc6912743459a5731f3a5581f17fe551dd04bae87b065b040c494ef1e01 | from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
from sympy.core import Basic, sympify, S
from sympy.core.mul import mul, Mul
from sympy.core.numbers import Number, Integer
from sympy.core.symbol import Dummy
from sympy.functions import adjoint
from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
do_one, new)
from sympy.matrices.common import NonInvertibleMatrixError
from sympy.matrices.matrices import MatrixBase
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.matrices.expressions._shape import validate_matmul_integer as validate
from .inverse import Inverse
from .matexpr import MatrixExpr
from .matpow import MatPow
from .transpose import transpose
from .permutation import PermutationMatrix
from .special import ZeroMatrix, Identity, GenericIdentity, OneMatrix
# XXX: MatMul should perhaps not subclass directly from Mul
class MatMul(MatrixExpr, Mul):
"""
A product of matrix expressions
Examples
========
>>> from sympy import MatMul, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatMul(A, B, C)
A*B*C
"""
is_MatMul = True
identity = GenericIdentity()
def __new__(cls, *args, evaluate=False, check=None, _sympify=True):
if not args:
return cls.identity
# This must be removed aggressively in the constructor to avoid
# TypeErrors from GenericIdentity().shape
args = list(filter(lambda i: cls.identity != i, args))
if _sympify:
args = list(map(sympify, args))
obj = Basic.__new__(cls, *args)
factor, matrices = obj.as_coeff_matrices()
if check is not None:
sympy_deprecation_warning(
"Passing check to MatMul is deprecated and the check argument will be removed in a future version.",
deprecated_since_version="1.11",
active_deprecations_target='remove-check-argument-from-matrix-operations')
if check is not False:
validate(*matrices)
if not matrices:
# Should it be
#
# return Basic.__neq__(cls, factor, GenericIdentity()) ?
return factor
if evaluate:
return cls._evaluate(obj)
return obj
@classmethod
def _evaluate(cls, expr):
return canonicalize(expr)
@property
def shape(self):
matrices = [arg for arg in self.args if arg.is_Matrix]
return (matrices[0].rows, matrices[-1].cols)
def _entry(self, i, j, expand=True, **kwargs):
# Avoid cyclic imports
from sympy.concrete.summations import Sum
from sympy.matrices.immutable import ImmutableMatrix
coeff, matrices = self.as_coeff_matrices()
if len(matrices) == 1: # situation like 2*X, matmul is just X
return coeff * matrices[0][i, j]
indices = [None]*(len(matrices) + 1)
ind_ranges = [None]*(len(matrices) - 1)
indices[0] = i
indices[-1] = j
def f():
counter = 1
while True:
yield Dummy("i_%i" % counter)
counter += 1
dummy_generator = kwargs.get("dummy_generator", f())
for i in range(1, len(matrices)):
indices[i] = next(dummy_generator)
for i, arg in enumerate(matrices[:-1]):
ind_ranges[i] = arg.shape[1] - 1
matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
expr_in_sum = Mul.fromiter(matrices)
if any(v.has(ImmutableMatrix) for v in matrices):
expand = True
result = coeff*Sum(
expr_in_sum,
*zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
)
# Don't waste time in result.doit() if the sum bounds are symbolic
if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
expand = False
return result.doit() if expand else result
def as_coeff_matrices(self):
scalars = [x for x in self.args if not x.is_Matrix]
matrices = [x for x in self.args if x.is_Matrix]
coeff = Mul(*scalars)
if coeff.is_commutative is False:
raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
return coeff, matrices
def as_coeff_mmul(self):
coeff, matrices = self.as_coeff_matrices()
return coeff, MatMul(*matrices)
def expand(self, **kwargs):
expanded = super(MatMul, self).expand(**kwargs)
return self._evaluate(expanded)
def _eval_transpose(self):
"""Transposition of matrix multiplication.
Notes
=====
The following rules are applied.
Transposition for matrix multiplied with another matrix:
`\\left(A B\\right)^{T} = B^{T} A^{T}`
Transposition for matrix multiplied with scalar:
`\\left(c A\\right)^{T} = c A^{T}`
References
==========
.. [1] https://en.wikipedia.org/wiki/Transpose
"""
coeff, matrices = self.as_coeff_matrices()
return MatMul(
coeff, *[transpose(arg) for arg in matrices[::-1]]).doit()
def _eval_adjoint(self):
return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
def _eval_trace(self):
factor, mmul = self.as_coeff_mmul()
if factor != 1:
from .trace import trace
return factor * trace(mmul.doit())
else:
raise NotImplementedError("Can't simplify any further")
def _eval_determinant(self):
from sympy.matrices.expressions.determinant import Determinant
factor, matrices = self.as_coeff_matrices()
square_matrices = only_squares(*matrices)
return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
def _eval_inverse(self):
if all(arg.is_square for arg in self.args if isinstance(arg, MatrixExpr)):
return MatMul(*(
arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
for arg in self.args[::-1]
)
).doit()
return Inverse(self)
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = tuple(arg.doit(**hints) for arg in self.args)
else:
args = self.args
# treat scalar*MatrixSymbol or scalar*MatPow separately
expr = canonicalize(MatMul(*args))
return expr
# Needed for partial compatibility with Mul
def args_cnc(self, cset=False, warn=True, **kwargs):
coeff_c = [x for x in self.args if x.is_commutative]
coeff_nc = [x for x in self.args if not x.is_commutative]
if cset:
clen = len(coeff_c)
coeff_c = set(coeff_c)
if clen and warn and len(coeff_c) != clen:
raise ValueError('repeated commutative arguments: %s' %
[ci for ci in coeff_c if list(self.args).count(ci) > 1])
return [coeff_c, coeff_nc]
def _eval_derivative_matrix_lines(self, x):
from .transpose import Transpose
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
lines = []
for ind in with_x_ind:
left_args = self.args[:ind]
right_args = self.args[ind+1:]
if right_args:
right_mat = MatMul.fromiter(right_args)
else:
right_mat = Identity(self.shape[1])
if left_args:
left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
else:
left_rev = Identity(self.shape[0])
d = self.args[ind]._eval_derivative_matrix_lines(x)
for i in d:
i.append_first(left_rev)
i.append_second(right_mat)
lines.append(i)
return lines
mul.register_handlerclass((Mul, MatMul), MatMul)
# Rules
def newmul(*args):
if args[0] == 1:
args = args[1:]
return new(MatMul, *args)
def any_zeros(mul):
if any(arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
for arg in mul.args):
matrices = [arg for arg in mul.args if arg.is_Matrix]
return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
return mul
def merge_explicit(matmul):
""" Merge explicit MatrixBase arguments
>>> from sympy import MatrixSymbol, Matrix, MatMul, pprint
>>> from sympy.matrices.expressions.matmul import merge_explicit
>>> A = MatrixSymbol('A', 2, 2)
>>> B = Matrix([[1, 1], [1, 1]])
>>> C = Matrix([[1, 2], [3, 4]])
>>> X = MatMul(A, B, C)
>>> pprint(X)
[1 1] [1 2]
A*[ ]*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[4 6]
A*[ ]
[4 6]
>>> X = MatMul(B, A, C)
>>> pprint(X)
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
"""
if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
return matmul
newargs = []
last = matmul.args[0]
for arg in matmul.args[1:]:
if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
last = last * arg
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
def remove_ids(mul):
""" Remove Identities from a MatMul
This is a modified version of sympy.strategies.rm_id.
This is necesssary because MatMul may contain both MatrixExprs and Exprs
as args.
See Also
========
sympy.strategies.rm_id
"""
# Separate Exprs from MatrixExprs in args
factor, mmul = mul.as_coeff_mmul()
# Apply standard rm_id for MatMuls
result = rm_id(lambda x: x.is_Identity is True)(mmul)
if result != mmul:
return newmul(factor, *result.args) # Recombine and return
else:
return mul
def factor_in_front(mul):
factor, matrices = mul.as_coeff_matrices()
if factor != 1:
return newmul(factor, *matrices)
return mul
def combine_powers(mul):
r"""Combine consecutive powers with the same base into one, e.g.
$$A \times A^2 \Rightarrow A^3$$
This also cancels out the possible matrix inverses using the
knowledgebase of :class:`~.Inverse`, e.g.,
$$ Y \times X \times X^{-1} \Rightarrow Y $$
"""
factor, args = mul.as_coeff_matrices()
new_args = [args[0]]
for i in range(1, len(args)):
A = new_args[-1]
B = args[i]
if isinstance(B, Inverse) and isinstance(B.arg, MatMul):
Bargs = B.arg.args
l = len(Bargs)
if list(Bargs) == new_args[-l:]:
new_args = new_args[:-l] + [Identity(B.shape[0])]
continue
if isinstance(A, Inverse) and isinstance(A.arg, MatMul):
Aargs = A.arg.args
l = len(Aargs)
if list(Aargs) == args[i:i+l]:
identity = Identity(A.shape[0])
new_args[-1] = identity
for j in range(i, i+l):
args[j] = identity
continue
if A.is_square == False or B.is_square == False:
new_args.append(B)
continue
if isinstance(A, MatPow):
A_base, A_exp = A.args
else:
A_base, A_exp = A, S.One
if isinstance(B, MatPow):
B_base, B_exp = B.args
else:
B_base, B_exp = B, S.One
if A_base == B_base:
new_exp = A_exp + B_exp
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
continue
elif not isinstance(B_base, MatrixBase):
try:
B_base_inv = B_base.inverse()
except NonInvertibleMatrixError:
B_base_inv = None
if B_base_inv is not None and A_base == B_base_inv:
new_exp = A_exp - B_exp
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
continue
new_args.append(B)
return newmul(factor, *new_args)
def combine_permutations(mul):
"""Refine products of permutation matrices as the products of cycles.
"""
args = mul.args
l = len(args)
if l < 2:
return mul
result = [args[0]]
for i in range(1, l):
A = result[-1]
B = args[i]
if isinstance(A, PermutationMatrix) and \
isinstance(B, PermutationMatrix):
cycle_1 = A.args[0]
cycle_2 = B.args[0]
result[-1] = PermutationMatrix(cycle_1 * cycle_2)
else:
result.append(B)
return MatMul(*result)
def combine_one_matrices(mul):
"""
Combine products of OneMatrix
e.g. OneMatrix(2, 3) * OneMatrix(3, 4) -> 3 * OneMatrix(2, 4)
"""
factor, args = mul.as_coeff_matrices()
new_args = [args[0]]
for B in args[1:]:
A = new_args[-1]
if not isinstance(A, OneMatrix) or not isinstance(B, OneMatrix):
new_args.append(B)
continue
new_args.pop()
new_args.append(OneMatrix(A.shape[0], B.shape[1]))
factor *= A.shape[1]
return newmul(factor, *new_args)
def distribute_monom(mul):
"""
Simplify MatMul expressions but distributing
rational term to MatMul.
e.g. 2*(A+B) -> 2*A + 2*B
"""
args = mul.args
if len(args) == 2:
from .matadd import MatAdd
if args[0].is_MatAdd and args[1].is_Rational:
return MatAdd(*[MatMul(mat, args[1]).doit() for mat in args[0].args])
if args[1].is_MatAdd and args[0].is_Rational:
return MatAdd(*[MatMul(args[0], mat).doit() for mat in args[1].args])
return mul
rules = (
distribute_monom, any_zeros, remove_ids, combine_one_matrices, combine_powers, unpack, rm_id(lambda x: x == 1),
merge_explicit, factor_in_front, flatten, combine_permutations)
canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
def only_squares(*matrices):
"""factor matrices only if they are square"""
if matrices[0].rows != matrices[-1].cols:
raise RuntimeError("Invalid matrices being multiplied")
out = []
start = 0
for i, M in enumerate(matrices):
if M.cols == matrices[start].rows:
out.append(MatMul(*matrices[start:i+1]).doit())
start = i+1
return out
def refine_MatMul(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine
>>> X = MatrixSymbol('X', 2, 2)
>>> expr = X * X.T
>>> print(expr)
X*X.T
>>> with assuming(Q.orthogonal(X)):
... print(refine(expr))
I
"""
newargs = []
exprargs = []
for args in expr.args:
if args.is_Matrix:
exprargs.append(args)
else:
newargs.append(args)
last = exprargs[0]
for arg in exprargs[1:]:
if arg == last.T and ask(Q.orthogonal(arg), assumptions):
last = Identity(arg.shape[0])
elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
last = Identity(arg.shape[0])
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
handlers_dict['MatMul'] = refine_MatMul
|
805d1cb1c501bceb80cec19bccde9582430f4a0cffdbfdf04a197aec1e981a8f | from .matexpr import MatrixExpr
from .special import Identity
from sympy.core import S
from sympy.core.expr import ExprBuilder
from sympy.core.cache import cacheit
from sympy.core.power import Pow
from sympy.core.sympify import _sympify
from sympy.matrices import MatrixBase
from sympy.matrices.common import NonSquareMatrixError
class MatPow(MatrixExpr):
def __new__(cls, base, exp, evaluate=False, **options):
base = _sympify(base)
if not base.is_Matrix:
raise TypeError("MatPow base should be a matrix")
if base.is_square is False:
raise NonSquareMatrixError("Power of non-square matrix %s" % base)
exp = _sympify(exp)
obj = super().__new__(cls, base, exp)
if evaluate:
obj = obj.doit(deep=False)
return obj
@property
def base(self):
return self.args[0]
@property
def exp(self):
return self.args[1]
@property
def shape(self):
return self.base.shape
@cacheit
def _get_explicit_matrix(self):
return self.base.as_explicit()**self.exp
def _entry(self, i, j, **kwargs):
from sympy.matrices.expressions import MatMul
A = self.doit()
if isinstance(A, MatPow):
# We still have a MatPow, make an explicit MatMul out of it.
if A.exp.is_Integer and A.exp.is_positive:
A = MatMul(*[A.base for k in range(A.exp)])
elif not self._is_shape_symbolic():
return A._get_explicit_matrix()[i, j]
else:
# Leave the expression unevaluated:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
return A[i, j]
def doit(self, **hints):
if hints.get('deep', True):
base, exp = (arg.doit(**hints) for arg in self.args)
else:
base, exp = self.args
# combine all powers, e.g. (A ** 2) ** 3 -> A ** 6
while isinstance(base, MatPow):
exp *= base.args[1]
base = base.args[0]
if isinstance(base, MatrixBase):
# Delegate
return base ** exp
# Handle simple cases so that _eval_power() in MatrixExpr sub-classes can ignore them
if exp == S.One:
return base
if exp == S.Zero:
return Identity(base.rows)
if exp == S.NegativeOne:
from sympy.matrices.expressions import Inverse
return Inverse(base).doit(**hints)
eval_power = getattr(base, '_eval_power', None)
if eval_power is not None:
return eval_power(exp)
return MatPow(base, exp)
def _eval_transpose(self):
base, exp = self.args
return MatPow(base.T, exp)
def _eval_derivative(self, x):
return Pow._eval_derivative(self, x)
def _eval_derivative_matrix_lines(self, x):
from sympy.tensor.array.expressions.array_expressions import ArrayContraction
from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
from .matmul import MatMul
from .inverse import Inverse
exp = self.exp
if self.base.shape == (1, 1) and not exp.has(x):
lr = self.base._eval_derivative_matrix_lines(x)
for i in lr:
subexpr = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
Identity(1),
i._lines[0],
exp*self.base**(exp-1),
i._lines[1],
Identity(1),
]
),
(0, 3, 4), (5, 7, 8)
],
validator=ArrayContraction._validate
)
i._first_pointer_parent = subexpr.args[0].args
i._first_pointer_index = 0
i._second_pointer_parent = subexpr.args[0].args
i._second_pointer_index = 4
i._lines = [subexpr]
return lr
if (exp > 0) == True:
newexpr = MatMul.fromiter([self.base for i in range(exp)])
elif (exp == -1) == True:
return Inverse(self.base)._eval_derivative_matrix_lines(x)
elif (exp < 0) == True:
newexpr = MatMul.fromiter([Inverse(self.base) for i in range(-exp)])
elif (exp == 0) == True:
return self.doit()._eval_derivative_matrix_lines(x)
else:
raise NotImplementedError("cannot evaluate %s derived by %s" % (self, x))
return newexpr._eval_derivative_matrix_lines(x)
def _eval_inverse(self):
return MatPow(self.base, -self.exp)
|
e4d35e79b9fe059224e39308bfbc7a1d8c264f6fde3f153020ad9b177a31bfb5 | from sympy.core.relational import Eq
from sympy.core.expr import Expr
from sympy.core.numbers import Integer
from sympy.logic.boolalg import Boolean, And
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.common import ShapeError
from typing import Union
def is_matadd_valid(*args: MatrixExpr) -> Boolean:
"""Return the symbolic condition how ``MatAdd``, ``HadamardProduct``
makes sense.
Parameters
==========
args
The list of arguments of matrices to be tested for.
Examples
========
>>> from sympy import MatrixSymbol, symbols
>>> from sympy.matrices.expressions._shape import is_matadd_valid
>>> m, n, p, q = symbols('m n p q')
>>> A = MatrixSymbol('A', m, n)
>>> B = MatrixSymbol('B', p, q)
>>> is_matadd_valid(A, B)
Eq(m, p) & Eq(n, q)
"""
rows, cols = zip(*(arg.shape for arg in args))
return And(
*(Eq(i, j) for i, j in zip(rows[:-1], rows[1:])),
*(Eq(i, j) for i, j in zip(cols[:-1], cols[1:])),
)
def is_matmul_valid(*args: Union[MatrixExpr, Expr]) -> Boolean:
"""Return the symbolic condition how ``MatMul`` makes sense
Parameters
==========
args
The list of arguments of matrices and scalar expressions to be tested
for.
Examples
========
>>> from sympy import MatrixSymbol, symbols
>>> from sympy.matrices.expressions._shape import is_matmul_valid
>>> m, n, p, q = symbols('m n p q')
>>> A = MatrixSymbol('A', m, n)
>>> B = MatrixSymbol('B', p, q)
>>> is_matmul_valid(A, B)
Eq(n, p)
"""
rows, cols = zip(*(arg.shape for arg in args if isinstance(arg, MatrixExpr)))
return And(*(Eq(i, j) for i, j in zip(cols[:-1], rows[1:])))
def is_square(arg: MatrixExpr, /) -> Boolean:
"""Return the symbolic condition how the matrix is assumed to be square
Parameters
==========
arg
The matrix to be tested for.
Examples
========
>>> from sympy import MatrixSymbol, symbols
>>> from sympy.matrices.expressions._shape import is_square
>>> m, n = symbols('m n')
>>> A = MatrixSymbol('A', m, n)
>>> is_square(A)
Eq(m, n)
"""
return Eq(arg.rows, arg.cols)
def validate_matadd_integer(*args: MatrixExpr) -> None:
"""Validate matrix shape for addition only for integer values"""
rows, cols = zip(*map(lambda x: x.shape, args))
if len(set(filter(lambda x: isinstance(x, (int, Integer)), rows))) > 1:
raise ShapeError(f"Matrices have mismatching shape: {rows}")
if len(set(filter(lambda x: isinstance(x, (int, Integer)), cols))) > 1:
raise ShapeError(f"Matrices have mismatching shape: {cols}")
def validate_matmul_integer(*args: MatrixExpr) -> None:
"""Validate matrix shape for multiplication only for integer values"""
for A, B in zip(args[:-1], args[1:]):
i, j = A.cols, B.rows
if isinstance(i, (int, Integer)) and isinstance(j, (int, Integer)) and i != j:
raise ShapeError("Matrices are not aligned", i, j)
|
507d2c39cfd78511da5b9111c95547b4d4e599f1d8894751998cd78dc49b0b31 | from sympy.assumptions.ask import ask, Q
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.common import NonInvertibleMatrixError
from .matexpr import MatrixExpr
class ZeroMatrix(MatrixExpr):
"""The Matrix Zero 0 - additive identity
Examples
========
>>> from sympy import MatrixSymbol, ZeroMatrix
>>> A = MatrixSymbol('A', 3, 5)
>>> Z = ZeroMatrix(3, 5)
>>> A + Z
A
>>> Z*A.T
0
"""
is_ZeroMatrix = True
def __new__(cls, m, n):
m, n = _sympify(m), _sympify(n)
cls._check_dim(m)
cls._check_dim(n)
return super().__new__(cls, m, n)
@property
def shape(self):
return (self.args[0], self.args[1])
def _eval_power(self, exp):
# exp = -1, 0, 1 are already handled at this stage
if (exp < 0) == True:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
return self
def _eval_transpose(self):
return ZeroMatrix(self.cols, self.rows)
def _eval_adjoint(self):
return ZeroMatrix(self.cols, self.rows)
def _eval_trace(self):
return S.Zero
def _eval_determinant(self):
return S.Zero
def _eval_inverse(self):
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
def _eval_as_real_imag(self):
return (self, self)
def _eval_conjugate(self):
return self
def _entry(self, i, j, **kwargs):
return S.Zero
class GenericZeroMatrix(ZeroMatrix):
"""
A zero matrix without a specified shape
This exists primarily so MatAdd() with no arguments can return something
meaningful.
"""
def __new__(cls):
# super(ZeroMatrix, cls) instead of super(GenericZeroMatrix, cls)
# because ZeroMatrix.__new__ doesn't have the same signature
return super(ZeroMatrix, cls).__new__(cls)
@property
def rows(self):
raise TypeError("GenericZeroMatrix does not have a specified shape")
@property
def cols(self):
raise TypeError("GenericZeroMatrix does not have a specified shape")
@property
def shape(self):
raise TypeError("GenericZeroMatrix does not have a specified shape")
# Avoid Matrix.__eq__ which might call .shape
def __eq__(self, other):
return isinstance(other, GenericZeroMatrix)
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return super().__hash__()
class Identity(MatrixExpr):
"""The Matrix Identity I - multiplicative identity
Examples
========
>>> from sympy import Identity, MatrixSymbol
>>> A = MatrixSymbol('A', 3, 5)
>>> I = Identity(3)
>>> I*A
A
"""
is_Identity = True
def __new__(cls, n):
n = _sympify(n)
cls._check_dim(n)
return super().__new__(cls, n)
@property
def rows(self):
return self.args[0]
@property
def cols(self):
return self.args[0]
@property
def shape(self):
return (self.args[0], self.args[0])
@property
def is_square(self):
return True
def _eval_transpose(self):
return self
def _eval_trace(self):
return self.rows
def _eval_inverse(self):
return self
def _eval_as_real_imag(self):
return (self, ZeroMatrix(*self.shape))
def _eval_conjugate(self):
return self
def _eval_adjoint(self):
return self
def _entry(self, i, j, **kwargs):
eq = Eq(i, j)
if eq is S.true:
return S.One
elif eq is S.false:
return S.Zero
return KroneckerDelta(i, j, (0, self.cols-1))
def _eval_determinant(self):
return S.One
def _eval_power(self, exp):
return self
class GenericIdentity(Identity):
"""
An identity matrix without a specified shape
This exists primarily so MatMul() with no arguments can return something
meaningful.
"""
def __new__(cls):
# super(Identity, cls) instead of super(GenericIdentity, cls) because
# Identity.__new__ doesn't have the same signature
return super(Identity, cls).__new__(cls)
@property
def rows(self):
raise TypeError("GenericIdentity does not have a specified shape")
@property
def cols(self):
raise TypeError("GenericIdentity does not have a specified shape")
@property
def shape(self):
raise TypeError("GenericIdentity does not have a specified shape")
@property
def is_square(self):
return True
# Avoid Matrix.__eq__ which might call .shape
def __eq__(self, other):
return isinstance(other, GenericIdentity)
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return super().__hash__()
class OneMatrix(MatrixExpr):
"""
Matrix whose all entries are ones.
"""
def __new__(cls, m, n, evaluate=False):
m, n = _sympify(m), _sympify(n)
cls._check_dim(m)
cls._check_dim(n)
if evaluate:
condition = Eq(m, 1) & Eq(n, 1)
if condition == True:
return Identity(1)
obj = super().__new__(cls, m, n)
return obj
@property
def shape(self):
return self._args
@property
def is_Identity(self):
return self._is_1x1() == True
def as_explicit(self):
from sympy.matrices.immutable import ImmutableDenseMatrix
return ImmutableDenseMatrix.ones(*self.shape)
def doit(self, **hints):
args = self.args
if hints.get('deep', True):
args = [a.doit(**hints) for a in args]
return self.func(*args, evaluate=True)
def _eval_power(self, exp):
# exp = -1, 0, 1 are already handled at this stage
if self._is_1x1() == True:
return Identity(1)
if (exp < 0) == True:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
if ask(Q.integer(exp)):
return self.shape[0] ** (exp - 1) * OneMatrix(*self.shape)
return super()._eval_power(exp)
def _eval_transpose(self):
return OneMatrix(self.cols, self.rows)
def _eval_adjoint(self):
return OneMatrix(self.cols, self.rows)
def _eval_trace(self):
return S.One*self.rows
def _is_1x1(self):
"""Returns true if the matrix is known to be 1x1"""
shape = self.shape
return Eq(shape[0], 1) & Eq(shape[1], 1)
def _eval_determinant(self):
condition = self._is_1x1()
if condition == True:
return S.One
elif condition == False:
return S.Zero
else:
from sympy.matrices.expressions.determinant import Determinant
return Determinant(self)
def _eval_inverse(self):
condition = self._is_1x1()
if condition == True:
return Identity(1)
elif condition == False:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
else:
from .inverse import Inverse
return Inverse(self)
def _eval_as_real_imag(self):
return (self, ZeroMatrix(*self.shape))
def _eval_conjugate(self):
return self
def _entry(self, i, j, **kwargs):
return S.One
|
5f05904458f4d90ca80861b5b48f8bf1cbcb51e0387388eea63152e6b2903f4e | from __future__ import annotations
from functools import wraps
from sympy.core import S, Integer, Basic, Mul, Add
from sympy.core.assumptions import check_assumptions
from sympy.core.decorators import call_highest_priority
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.logic import FuzzyBool
from sympy.core.symbol import Str, Dummy, symbols, Symbol
from sympy.core.sympify import SympifyError, _sympify
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions import conjugate, adjoint
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.common import NonSquareMatrixError
from sympy.matrices.matrices import MatrixKind, MatrixBase
from sympy.multipledispatch import dispatch
from sympy.utilities.misc import filldedent
def _sympifyit(arg, retval=None):
# This version of _sympifyit sympifies MutableMatrix objects
def deco(func):
@wraps(func)
def __sympifyit_wrapper(a, b):
try:
b = _sympify(b)
return func(a, b)
except SympifyError:
return retval
return __sympifyit_wrapper
return deco
class MatrixExpr(Expr):
"""Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented
within a particular basis.
Examples
========
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).I * A * y
See Also
========
MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
"""
__slots__: tuple[str, ...] = ()
# Should not be considered iterable by the
# sympy.utilities.iterables.iterable function. Subclass that actually are
# iterable (i.e., explicit matrices) should set this to True.
_iterable = False
_op_priority = 11.0
is_Matrix: bool = True
is_MatrixExpr: bool = True
is_Identity: FuzzyBool = None
is_Inverse = False
is_Transpose = False
is_ZeroMatrix = False
is_MatAdd = False
is_MatMul = False
is_commutative = False
is_number = False
is_symbol = False
is_scalar = False
kind: MatrixKind = MatrixKind()
def __new__(cls, *args, **kwargs):
args = map(_sympify, args)
return Basic.__new__(cls, *args, **kwargs)
# The following is adapted from the core Expr object
@property
def shape(self) -> tuple[Expr, Expr]:
raise NotImplementedError
@property
def _add_handler(self):
return MatAdd
@property
def _mul_handler(self):
return MatMul
def __neg__(self):
return MatMul(S.NegativeOne, self).doit()
def __abs__(self):
raise NotImplementedError
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return MatAdd(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return MatAdd(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return MatAdd(self, -other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return MatAdd(other, -self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __matmul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmatmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return MatPow(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
raise NotImplementedError("Matrix Power not defined")
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * other**S.NegativeOne
@_sympifyit('other', NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
raise NotImplementedError()
#return MatMul(other, Pow(self, S.NegativeOne))
@property
def rows(self):
return self.shape[0]
@property
def cols(self):
return self.shape[1]
@property
def is_square(self) -> bool | None:
rows, cols = self.shape
if isinstance(rows, Integer) and isinstance(cols, Integer):
return rows == cols
if rows == cols:
return True
return None
def _eval_conjugate(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(Transpose(self))
def as_real_imag(self, deep=True, **hints):
return self._eval_as_real_imag()
def _eval_as_real_imag(self):
real = S.Half * (self + self._eval_conjugate())
im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit)
return (real, im)
def _eval_inverse(self):
return Inverse(self)
def _eval_determinant(self):
return Determinant(self)
def _eval_transpose(self):
return Transpose(self)
def _eval_power(self, exp):
"""
Override this in sub-classes to implement simplification of powers. The cases where the exponent
is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases.
"""
return MatPow(self, exp)
def _eval_simplify(self, **kwargs):
if self.is_Atom:
return self
else:
from sympy.simplify import simplify
return self.func(*[simplify(x, **kwargs) for x in self.args])
def _eval_adjoint(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(self)
def _eval_derivative_n_times(self, x, n):
return Basic._eval_derivative_n_times(self, x, n)
def _eval_derivative(self, x):
# `x` is a scalar:
if self.has(x):
# See if there are other methods using it:
return super()._eval_derivative(x)
else:
return ZeroMatrix(*self.shape)
@classmethod
def _check_dim(cls, dim):
"""Helper function to check invalid matrix dimensions"""
ok = check_assumptions(dim, integer=True, nonnegative=True)
if ok is False:
raise ValueError(
"The dimension specification {} should be "
"a nonnegative integer.".format(dim))
def _entry(self, i, j, **kwargs):
raise NotImplementedError(
"Indexing not implemented for %s" % self.__class__.__name__)
def adjoint(self):
return adjoint(self)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def conjugate(self):
return conjugate(self)
def transpose(self):
from sympy.matrices.expressions.transpose import transpose
return transpose(self)
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
def inverse(self):
if self.is_square is False:
raise NonSquareMatrixError('Inverse of non-square matrix')
return self._eval_inverse()
def inv(self):
return self.inverse()
def det(self):
from sympy.matrices.expressions.determinant import det
return det(self)
@property
def I(self):
return self.inverse()
def valid_index(self, i, j):
def is_valid(idx):
return isinstance(idx, (int, Integer, Symbol, Expr))
return (is_valid(i) and is_valid(j) and
(self.rows is None or
(i >= -self.rows) != False and (i < self.rows) != False) and
(j >= -self.cols) != False and (j < self.cols) != False)
def __getitem__(self, key):
if not isinstance(key, tuple) and isinstance(key, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, key, (0, None, 1))
if isinstance(key, tuple) and len(key) == 2:
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, i, j)
i, j = _sympify(i), _sympify(j)
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid indices (%s, %s)" % (i, j))
elif isinstance(key, (SYMPY_INTS, Integer)):
# row-wise decomposition of matrix
rows, cols = self.shape
# allow single indexing if number of columns is known
if not isinstance(cols, Integer):
raise IndexError(filldedent('''
Single indexing is only supported when the number
of columns is known.'''))
key = _sympify(key)
i = key // cols
j = key % cols
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid index %s" % key)
elif isinstance(key, (Symbol, Expr)):
raise IndexError(filldedent('''
Only integers may be used when addressing the matrix
with a single index.'''))
raise IndexError("Invalid index, wanted %s[i,j]" % self)
def _is_shape_symbolic(self) -> bool:
return (not isinstance(self.rows, (SYMPY_INTS, Integer))
or not isinstance(self.cols, (SYMPY_INTS, Integer)))
def as_explicit(self):
"""
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.as_explicit()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_mutable: returns mutable Matrix type
"""
if self._is_shape_symbolic():
raise ValueError(
'Matrix with symbolic shape '
'cannot be represented explicitly.')
from sympy.matrices.immutable import ImmutableDenseMatrix
return ImmutableDenseMatrix([[self[i, j]
for j in range(self.cols)]
for i in range(self.rows)])
def as_mutable(self):
"""
Returns a dense, mutable matrix with elements represented explicitly
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.shape
(3, 3)
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_explicit: returns ImmutableDenseMatrix
"""
return self.as_explicit().as_mutable()
def __array__(self):
from numpy import empty
a = empty(self.shape, dtype=object)
for i in range(self.rows):
for j in range(self.cols):
a[i, j] = self[i, j]
return a
def equals(self, other):
"""
Test elementwise equality between matrices, potentially of different
types
>>> from sympy import Identity, eye
>>> Identity(3).equals(eye(3))
True
"""
return self.as_explicit().equals(other)
def canonicalize(self):
return self
def as_coeff_mmul(self):
return S.One, MatMul(self)
@staticmethod
def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
r"""
Parse expression of matrices with explicitly summed indices into a
matrix expression without indices, if possible.
This transformation expressed in mathematical notation:
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
Optional parameter ``first_index``: specify which free index to use as
the index starting the expression.
Examples
========
>>> from sympy import MatrixSymbol, MatrixExpr, Sum
>>> from sympy.abc import i, j, k, l, N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A.T*B
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
Trace(A)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B.T*A.T
"""
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
first_indices = []
if first_index is not None:
first_indices.append(first_index)
if last_index is not None:
first_indices.append(last_index)
arr = convert_indexed_to_array(expr, first_indices=first_indices)
return convert_array_to_matrix(arr)
def applyfunc(self, func):
from .applyfunc import ElementwiseApplyFunction
return ElementwiseApplyFunction(func, self)
@dispatch(MatrixExpr, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return False
@dispatch(MatrixExpr, MatrixExpr) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if lhs.shape != rhs.shape:
return False
if (lhs - rhs).is_ZeroMatrix:
return True
def get_postprocessor(cls):
def _postprocessor(expr):
# To avoid circular imports, we can't have MatMul/MatAdd on the top level
mat_class = {Mul: MatMul, Add: MatAdd}[cls]
nonmatrices = []
matrices = []
for term in expr.args:
if isinstance(term, MatrixExpr):
matrices.append(term)
else:
nonmatrices.append(term)
if not matrices:
return cls._from_args(nonmatrices)
if nonmatrices:
if cls == Mul:
for i in range(len(matrices)):
if not matrices[i].is_MatrixExpr:
# If one of the matrices explicit, absorb the scalar into it
# (doit will combine all explicit matrices into one, so it
# doesn't matter which)
matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
nonmatrices = []
break
else:
# Maintain the ability to create Add(scalar, matrix) without
# raising an exception. That way different algorithms can
# replace matrix expressions with non-commutative symbols to
# manipulate them like non-commutative scalars.
return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
if mat_class == MatAdd:
return mat_class(*matrices).doit(deep=False)
return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
return _postprocessor
Basic._constructor_postprocessor_mapping[MatrixExpr] = {
"Mul": [get_postprocessor(Mul)],
"Add": [get_postprocessor(Add)],
}
def _matrix_derivative(expr, x, old_algorithm=False):
if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase):
# Do not use array expressions for explicit matrices:
old_algorithm = True
if old_algorithm:
return _matrix_derivative_old_algorithm(expr, x)
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
array_expr = convert_matrix_to_array(expr)
diff_array_expr = array_derive(array_expr, x)
diff_matrix_expr = convert_array_to_matrix(diff_array_expr)
return diff_matrix_expr
def _matrix_derivative_old_algorithm(expr, x):
from sympy.tensor.array.array_derivatives import ArrayDerivative
lines = expr._eval_derivative_matrix_lines(x)
parts = [i.build() for i in lines]
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
parts = [[convert_array_to_matrix(j) for j in i] for i in parts]
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return 1, 1
def get_rank(parts):
return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
ranks = [get_rank(i) for i in parts]
rank = ranks[0]
def contract_one_dims(parts):
if len(parts) == 1:
return parts[0]
else:
p1, p2 = parts[:2]
if p2.is_Matrix:
p2 = p2.T
if p1 == Identity(1):
pbase = p2
elif p2 == Identity(1):
pbase = p1
else:
pbase = p1*p2
if len(parts) == 2:
return pbase
else: # len(parts) > 2
if pbase.is_Matrix:
raise ValueError("")
return pbase*Mul.fromiter(parts[2:])
if rank <= 2:
return Add.fromiter([contract_one_dims(i) for i in parts])
return ArrayDerivative(expr, x)
class MatrixElement(Expr):
parent = property(lambda self: self.args[0])
i = property(lambda self: self.args[1])
j = property(lambda self: self.args[2])
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, n, m):
n, m = map(_sympify, (n, m))
from sympy.matrices.matrices import MatrixBase
if isinstance(name, str):
name = Symbol(name)
else:
if isinstance(name, MatrixBase):
if n.is_Integer and m.is_Integer:
return name[n, m]
name = _sympify(name) # change mutable into immutable
else:
name = _sympify(name)
if not isinstance(name.kind, MatrixKind):
raise TypeError("First argument of MatrixElement should be a matrix")
if not getattr(name, 'valid_index', lambda n, m: True)(n, m):
raise IndexError('indices out of range')
obj = Expr.__new__(cls, name, n, m)
return obj
@property
def symbol(self):
return self.args[0]
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
return args[0][args[1], args[2]]
@property
def indices(self):
return self.args[1:]
def _eval_derivative(self, v):
if not isinstance(v, MatrixElement):
from sympy.matrices.matrices import MatrixBase
if isinstance(self.parent, MatrixBase):
return self.parent.diff(v)[self.i, self.j]
return S.Zero
M = self.args[0]
m, n = self.parent.shape
if M == v.args[0]:
return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \
KroneckerDelta(self.args[2], v.args[2], (0, n-1))
if isinstance(M, Inverse):
from sympy.concrete.summations import Sum
i, j = self.args[1:]
i1, i2 = symbols("z1, z2", cls=Dummy)
Y = M.args[0]
r1, r2 = Y.shape
return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
if self.has(v.args[0]):
return None
return S.Zero
class MatrixSymbol(MatrixExpr):
"""Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
can be included in Matrix Expressions
Examples
========
>>> from sympy import MatrixSymbol, Identity
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
"""
is_commutative = False
is_symbol = True
_diff_wrt = True
def __new__(cls, name, n, m):
n, m = _sympify(n), _sympify(m)
cls._check_dim(m)
cls._check_dim(n)
if isinstance(name, str):
name = Str(name)
obj = Basic.__new__(cls, name, n, m)
return obj
@property
def shape(self):
return self.args[1], self.args[2]
@property
def name(self):
return self.args[0].name
def _entry(self, i, j, **kwargs):
return MatrixElement(self, i, j)
@property
def free_symbols(self):
return {self}
def _eval_simplify(self, **kwargs):
return self
def _eval_derivative(self, x):
# x is a scalar:
return ZeroMatrix(self.shape[0], self.shape[1])
def _eval_derivative_matrix_lines(self, x):
if self != x:
first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
return [_LeftRightArgs(
[first, second],
)]
else:
first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
return [_LeftRightArgs(
[first, second],
)]
def matrix_symbols(expr):
return [sym for sym in expr.free_symbols if sym.is_Matrix]
class _LeftRightArgs:
r"""
Helper class to compute matrix derivatives.
The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
matrix multiplications are created: the one contracted to `m` (first line),
and the one contracted to `n` (second line).
Transposition flips the side by which new matrices are connected to the
lines.
The trace connects the end of the two lines.
"""
def __init__(self, lines, higher=S.One):
self._lines = [i for i in lines]
self._first_pointer_parent = self._lines
self._first_pointer_index = 0
self._first_line_index = 0
self._second_pointer_parent = self._lines
self._second_pointer_index = 1
self._second_line_index = 1
self.higher = higher
@property
def first_pointer(self):
return self._first_pointer_parent[self._first_pointer_index]
@first_pointer.setter
def first_pointer(self, value):
self._first_pointer_parent[self._first_pointer_index] = value
@property
def second_pointer(self):
return self._second_pointer_parent[self._second_pointer_index]
@second_pointer.setter
def second_pointer(self, value):
self._second_pointer_parent[self._second_pointer_index] = value
def __repr__(self):
built = [self._build(i) for i in self._lines]
return "_LeftRightArgs(lines=%s, higher=%s)" % (
built,
self.higher,
)
def transpose(self):
self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
return self
@staticmethod
def _build(expr):
if isinstance(expr, ExprBuilder):
return expr.build()
if isinstance(expr, list):
if len(expr) == 1:
return expr[0]
else:
return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
else:
return expr
def build(self):
data = [self._build(i) for i in self._lines]
if self.higher != 1:
data += [self._build(self.higher)]
data = [i for i in data]
return data
def matrix_form(self):
if self.first != 1 and self.higher != 1:
raise ValueError("higher dimensional array cannot be represented")
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return (None, None)
if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
# Remove one-dimensional identity matrices:
# (this is needed by `a.diff(a)` where `a` is a vector)
if _get_shape(self.second) == (1, 1):
return self.first*self.second[0, 0]
if _get_shape(self.first) == (1, 1):
return self.first[1, 1]*self.second.T
raise ValueError("incompatible shapes")
if self.first != 1:
return self.first*self.second.T
else:
return self.higher
def rank(self):
"""
Number of dimensions different from trivial (warning: not related to
matrix rank).
"""
rank = 0
if self.first != 1:
rank += sum([i != 1 for i in self.first.shape])
if self.second != 1:
rank += sum([i != 1 for i in self.second.shape])
if self.higher != 1:
rank += 2
return rank
def _multiply_pointer(self, pointer, other):
from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
from ...tensor.array.expressions.array_expressions import ArrayContraction
subexpr = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
pointer,
other
]
),
(1, 2)
],
validator=ArrayContraction._validate
)
return subexpr
def append_first(self, other):
self.first_pointer *= other
def append_second(self, other):
self.second_pointer *= other
def _make_matrix(x):
from sympy.matrices.immutable import ImmutableDenseMatrix
if isinstance(x, MatrixExpr):
return x
return ImmutableDenseMatrix([[x]])
from .matmul import MatMul
from .matadd import MatAdd
from .matpow import MatPow
from .transpose import Transpose
from .inverse import Inverse
from .special import ZeroMatrix, Identity
from .determinant import Determinant
|
fc93eb0be16bb93e0dd92825e2141d8d38631457c7b071932ee6ef5389b7baf5 | """Implementation of the Kronecker product"""
from functools import reduce
from math import prod
from sympy.core import Mul, sympify
from sympy.functions import adjoint
from sympy.matrices.common import ShapeError
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.transpose import transpose
from sympy.matrices.expressions.special import Identity
from sympy.matrices.matrices import MatrixBase
from sympy.strategies import (
canon, condition, distribute, do_one, exhaust, flatten, typed, unpack)
from sympy.strategies.traverse import bottom_up
from sympy.utilities import sift
from .matadd import MatAdd
from .matmul import MatMul
from .matpow import MatPow
def kronecker_product(*matrices):
"""
The Kronecker product of two or more arguments.
This computes the explicit Kronecker product for subclasses of
``MatrixBase`` i.e. explicit matrices. Otherwise, a symbolic
``KroneckerProduct`` object is returned.
Examples
========
For ``MatrixSymbol`` arguments a ``KroneckerProduct`` object is returned.
Elements of this matrix can be obtained by indexing, or for MatrixSymbols
with known dimension the explicit matrix can be obtained with
``.as_explicit()``
>>> from sympy import kronecker_product, MatrixSymbol
>>> A = MatrixSymbol('A', 2, 2)
>>> B = MatrixSymbol('B', 2, 2)
>>> kronecker_product(A)
A
>>> kronecker_product(A, B)
KroneckerProduct(A, B)
>>> kronecker_product(A, B)[0, 1]
A[0, 0]*B[0, 1]
>>> kronecker_product(A, B).as_explicit()
Matrix([
[A[0, 0]*B[0, 0], A[0, 0]*B[0, 1], A[0, 1]*B[0, 0], A[0, 1]*B[0, 1]],
[A[0, 0]*B[1, 0], A[0, 0]*B[1, 1], A[0, 1]*B[1, 0], A[0, 1]*B[1, 1]],
[A[1, 0]*B[0, 0], A[1, 0]*B[0, 1], A[1, 1]*B[0, 0], A[1, 1]*B[0, 1]],
[A[1, 0]*B[1, 0], A[1, 0]*B[1, 1], A[1, 1]*B[1, 0], A[1, 1]*B[1, 1]]])
For explicit matrices the Kronecker product is returned as a Matrix
>>> from sympy import Matrix, kronecker_product
>>> sigma_x = Matrix([
... [0, 1],
... [1, 0]])
...
>>> Isigma_y = Matrix([
... [0, 1],
... [-1, 0]])
...
>>> kronecker_product(sigma_x, Isigma_y)
Matrix([
[ 0, 0, 0, 1],
[ 0, 0, -1, 0],
[ 0, 1, 0, 0],
[-1, 0, 0, 0]])
See Also
========
KroneckerProduct
"""
if not matrices:
raise TypeError("Empty Kronecker product is undefined")
if len(matrices) == 1:
return matrices[0]
else:
return KroneckerProduct(*matrices).doit()
class KroneckerProduct(MatrixExpr):
"""
The Kronecker product of two or more arguments.
The Kronecker product is a non-commutative product of matrices.
Given two matrices of dimension (m, n) and (s, t) it produces a matrix
of dimension (m s, n t).
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the product, use the function
``kronecker_product()`` or call the ``.doit()`` or ``.as_explicit()``
methods.
>>> from sympy import KroneckerProduct, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> isinstance(KroneckerProduct(A, B), KroneckerProduct)
True
"""
is_KroneckerProduct = True
def __new__(cls, *args, check=True):
args = list(map(sympify, args))
if all(a.is_Identity for a in args):
ret = Identity(prod(a.rows for a in args))
if all(isinstance(a, MatrixBase) for a in args):
return ret.as_explicit()
else:
return ret
if check:
validate(*args)
return super().__new__(cls, *args)
@property
def shape(self):
rows, cols = self.args[0].shape
for mat in self.args[1:]:
rows *= mat.rows
cols *= mat.cols
return (rows, cols)
def _entry(self, i, j, **kwargs):
result = 1
for mat in reversed(self.args):
i, m = divmod(i, mat.rows)
j, n = divmod(j, mat.cols)
result *= mat[m, n]
return result
def _eval_adjoint(self):
return KroneckerProduct(*list(map(adjoint, self.args))).doit()
def _eval_conjugate(self):
return KroneckerProduct(*[a.conjugate() for a in self.args]).doit()
def _eval_transpose(self):
return KroneckerProduct(*list(map(transpose, self.args))).doit()
def _eval_trace(self):
from .trace import trace
return Mul(*[trace(a) for a in self.args])
def _eval_determinant(self):
from .determinant import det, Determinant
if not all(a.is_square for a in self.args):
return Determinant(self)
m = self.rows
return Mul(*[det(a)**(m/a.rows) for a in self.args])
def _eval_inverse(self):
try:
return KroneckerProduct(*[a.inverse() for a in self.args])
except ShapeError:
from sympy.matrices.expressions.inverse import Inverse
return Inverse(self)
def structurally_equal(self, other):
'''Determine whether two matrices have the same Kronecker product structure
Examples
========
>>> from sympy import KroneckerProduct, MatrixSymbol, symbols
>>> m, n = symbols(r'm, n', integer=True)
>>> A = MatrixSymbol('A', m, m)
>>> B = MatrixSymbol('B', n, n)
>>> C = MatrixSymbol('C', m, m)
>>> D = MatrixSymbol('D', n, n)
>>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(C, D))
True
>>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(D, C))
False
>>> KroneckerProduct(A, B).structurally_equal(C)
False
'''
# Inspired by BlockMatrix
return (isinstance(other, KroneckerProduct)
and self.shape == other.shape
and len(self.args) == len(other.args)
and all(a.shape == b.shape for (a, b) in zip(self.args, other.args)))
def has_matching_shape(self, other):
'''Determine whether two matrices have the appropriate structure to bring matrix
multiplication inside the KroneckerProdut
Examples
========
>>> from sympy import KroneckerProduct, MatrixSymbol, symbols
>>> m, n = symbols(r'm, n', integer=True)
>>> A = MatrixSymbol('A', m, n)
>>> B = MatrixSymbol('B', n, m)
>>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(B, A))
True
>>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(A, B))
False
>>> KroneckerProduct(A, B).has_matching_shape(A)
False
'''
return (isinstance(other, KroneckerProduct)
and self.cols == other.rows
and len(self.args) == len(other.args)
and all(a.cols == b.rows for (a, b) in zip(self.args, other.args)))
def _eval_expand_kroneckerproduct(self, **hints):
return flatten(canon(typed({KroneckerProduct: distribute(KroneckerProduct, MatAdd)}))(self))
def _kronecker_add(self, other):
if self.structurally_equal(other):
return self.__class__(*[a + b for (a, b) in zip(self.args, other.args)])
else:
return self + other
def _kronecker_mul(self, other):
if self.has_matching_shape(other):
return self.__class__(*[a*b for (a, b) in zip(self.args, other.args)])
else:
return self * other
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
return canonicalize(KroneckerProduct(*args))
def validate(*args):
if not all(arg.is_Matrix for arg in args):
raise TypeError("Mix of Matrix and Scalar symbols")
# rules
def extract_commutative(kron):
c_part = []
nc_part = []
for arg in kron.args:
c, nc = arg.args_cnc()
c_part.extend(c)
nc_part.append(Mul._from_args(nc))
c_part = Mul(*c_part)
if c_part != 1:
return c_part*KroneckerProduct(*nc_part)
return kron
def matrix_kronecker_product(*matrices):
"""Compute the Kronecker product of a sequence of SymPy Matrices.
This is the standard Kronecker product of matrices [1].
Parameters
==========
matrices : tuple of MatrixBase instances
The matrices to take the Kronecker product of.
Returns
=======
matrix : MatrixBase
The Kronecker product matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.matrices.expressions.kronecker import (
... matrix_kronecker_product)
>>> m1 = Matrix([[1,2],[3,4]])
>>> m2 = Matrix([[1,0],[0,1]])
>>> matrix_kronecker_product(m1, m2)
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2],
[3, 0, 4, 0],
[0, 3, 0, 4]])
>>> matrix_kronecker_product(m2, m1)
Matrix([
[1, 2, 0, 0],
[3, 4, 0, 0],
[0, 0, 1, 2],
[0, 0, 3, 4]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Kronecker_product
"""
# Make sure we have a sequence of Matrices
if not all(isinstance(m, MatrixBase) for m in matrices):
raise TypeError(
'Sequence of Matrices expected, got: %s' % repr(matrices)
)
# Pull out the first element in the product.
matrix_expansion = matrices[-1]
# Do the kronecker product working from right to left.
for mat in reversed(matrices[:-1]):
rows = mat.rows
cols = mat.cols
# Go through each row appending kronecker product to.
# running matrix_expansion.
for i in range(rows):
start = matrix_expansion*mat[i*cols]
# Go through each column joining each item
for j in range(cols - 1):
start = start.row_join(
matrix_expansion*mat[i*cols + j + 1]
)
# If this is the first element, make it the start of the
# new row.
if i == 0:
next = start
else:
next = next.col_join(start)
matrix_expansion = next
MatrixClass = max(matrices, key=lambda M: M._class_priority).__class__
if isinstance(matrix_expansion, MatrixClass):
return matrix_expansion
else:
return MatrixClass(matrix_expansion)
def explicit_kronecker_product(kron):
# Make sure we have a sequence of Matrices
if not all(isinstance(m, MatrixBase) for m in kron.args):
return kron
return matrix_kronecker_product(*kron.args)
rules = (unpack,
explicit_kronecker_product,
flatten,
extract_commutative)
canonicalize = exhaust(condition(lambda x: isinstance(x, KroneckerProduct),
do_one(*rules)))
def _kronecker_dims_key(expr):
if isinstance(expr, KroneckerProduct):
return tuple(a.shape for a in expr.args)
else:
return (0,)
def kronecker_mat_add(expr):
args = sift(expr.args, _kronecker_dims_key)
nonkrons = args.pop((0,), None)
if not args:
return expr
krons = [reduce(lambda x, y: x._kronecker_add(y), group)
for group in args.values()]
if not nonkrons:
return MatAdd(*krons)
else:
return MatAdd(*krons) + nonkrons
def kronecker_mat_mul(expr):
# modified from block matrix code
factor, matrices = expr.as_coeff_matrices()
i = 0
while i < len(matrices) - 1:
A, B = matrices[i:i+2]
if isinstance(A, KroneckerProduct) and isinstance(B, KroneckerProduct):
matrices[i] = A._kronecker_mul(B)
matrices.pop(i+1)
else:
i += 1
return factor*MatMul(*matrices)
def kronecker_mat_pow(expr):
if isinstance(expr.base, KroneckerProduct) and all(a.is_square for a in expr.base.args):
return KroneckerProduct(*[MatPow(a, expr.exp) for a in expr.base.args])
else:
return expr
def combine_kronecker(expr):
"""Combine KronekeckerProduct with expression.
If possible write operations on KroneckerProducts of compatible shapes
as a single KroneckerProduct.
Examples
========
>>> from sympy.matrices.expressions import combine_kronecker
>>> from sympy import MatrixSymbol, KroneckerProduct, symbols
>>> m, n = symbols(r'm, n', integer=True)
>>> A = MatrixSymbol('A', m, n)
>>> B = MatrixSymbol('B', n, m)
>>> combine_kronecker(KroneckerProduct(A, B)*KroneckerProduct(B, A))
KroneckerProduct(A*B, B*A)
>>> combine_kronecker(KroneckerProduct(A, B)+KroneckerProduct(B.T, A.T))
KroneckerProduct(A + B.T, B + A.T)
>>> C = MatrixSymbol('C', n, n)
>>> D = MatrixSymbol('D', m, m)
>>> combine_kronecker(KroneckerProduct(C, D)**m)
KroneckerProduct(C**m, D**m)
"""
def haskron(expr):
return isinstance(expr, MatrixExpr) and expr.has(KroneckerProduct)
rule = exhaust(
bottom_up(exhaust(condition(haskron, typed(
{MatAdd: kronecker_mat_add,
MatMul: kronecker_mat_mul,
MatPow: kronecker_mat_pow})))))
result = rule(expr)
doit = getattr(result, 'doit', None)
if doit is not None:
return doit()
else:
return result
|
22a837c203bbb534d5646a35a9b5ca9fdf6a4ecb3ee739c05bafa52eb86e208b | from sympy.core.basic import Basic
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.common import NonSquareMatrixError
class Trace(Expr):
"""Matrix Trace
Represents the trace of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Trace, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
>>> Trace(eye(3))
Trace(Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]))
>>> Trace(eye(3)).simplify()
3
"""
is_Trace = True
is_commutative = True
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("input to Trace, %s, is not a matrix" % str(mat))
if mat.is_square is False:
raise NonSquareMatrixError("Trace of a non-square matrix")
return Basic.__new__(cls, mat)
def _eval_transpose(self):
return self
def _eval_derivative(self, v):
from sympy.concrete.summations import Sum
from .matexpr import MatrixElement
if isinstance(v, MatrixElement):
return self.rewrite(Sum).diff(v)
expr = self.doit()
if isinstance(expr, Trace):
# Avoid looping infinitely:
raise NotImplementedError
return expr._eval_derivative(v)
def _eval_derivative_matrix_lines(self, x):
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction
r = self.args[0]._eval_derivative_matrix_lines(x)
for lr in r:
if lr.higher == 1:
lr.higher = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
]
),
(1, 3),
],
validator=ArrayContraction._validate
)
else:
# This is not a matrix line:
lr.higher = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
lr.higher,
]
),
(1, 3), (0, 2)
]
)
lr._lines = [S.One, S.One]
lr._first_pointer_parent = lr._lines
lr._second_pointer_parent = lr._lines
lr._first_pointer_index = 0
lr._second_pointer_index = 1
return r
@property
def arg(self):
return self.args[0]
def doit(self, **hints):
if hints.get('deep', True):
arg = self.arg.doit(**hints)
try:
return arg._eval_trace()
except (AttributeError, NotImplementedError):
return Trace(arg)
else:
# _eval_trace would go too deep here
if isinstance(self.arg, MatrixBase):
return trace(self.arg)
else:
return Trace(self.arg)
def as_explicit(self):
return Trace(self.arg.as_explicit()).doit()
def _normalize(self):
# Normalization of trace of matrix products. Use transposition and
# cyclic properties of traces to make sure the arguments of the matrix
# product are sorted and the first argument is not a transposition.
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.transpose import Transpose
trace_arg = self.arg
if isinstance(trace_arg, MatMul):
def get_arg_key(x):
a = trace_arg.args[x]
if isinstance(a, Transpose):
a = a.arg
return default_sort_key(a)
indmin = min(range(len(trace_arg.args)), key=get_arg_key)
if isinstance(trace_arg.args[indmin], Transpose):
trace_arg = Transpose(trace_arg).doit()
indmin = min(range(len(trace_arg.args)), key=lambda x: default_sort_key(trace_arg.args[x]))
trace_arg = MatMul.fromiter(trace_arg.args[indmin:] + trace_arg.args[:indmin])
return Trace(trace_arg)
return self
def _eval_rewrite_as_Sum(self, expr, **kwargs):
from sympy.concrete.summations import Sum
i = uniquely_named_symbol('i', expr)
s = Sum(self.arg[i, i], (i, 0, self.arg.rows - 1))
return s.doit()
def trace(expr):
"""Trace of a Matrix. Sum of the diagonal elements.
Examples
========
>>> from sympy import trace, Symbol, MatrixSymbol, eye
>>> n = Symbol('n')
>>> X = MatrixSymbol('X', n, n) # A square matrix
>>> trace(2*X)
2*Trace(X)
>>> trace(eye(3))
3
"""
return Trace(expr).doit()
|
4bebd8d1116e57b5f27fa901c20422197267722ee3e60a7137c9dacd6d481b01 | from collections import Counter
from sympy.core import Mul, sympify
from sympy.core.add import Add
from sympy.core.expr import ExprBuilder
from sympy.core.sorting import default_sort_key
from sympy.functions.elementary.exponential import log
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions._shape import validate_matadd_integer as validate
from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix
from sympy.strategies import (
unpack, flatten, condition, exhaust, rm_id, sort
)
from sympy.utilities.exceptions import sympy_deprecation_warning
def hadamard_product(*matrices):
"""
Return the elementwise (aka Hadamard) product of matrices.
Examples
========
>>> from sympy import hadamard_product, MatrixSymbol
>>> A = MatrixSymbol('A', 2, 3)
>>> B = MatrixSymbol('B', 2, 3)
>>> hadamard_product(A)
A
>>> hadamard_product(A, B)
HadamardProduct(A, B)
>>> hadamard_product(A, B)[0, 1]
A[0, 1]*B[0, 1]
"""
if not matrices:
raise TypeError("Empty Hadamard product is undefined")
if len(matrices) == 1:
return matrices[0]
return HadamardProduct(*matrices).doit()
class HadamardProduct(MatrixExpr):
"""
Elementwise product of matrix expressions
Examples
========
Hadamard product for matrix symbols:
>>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> isinstance(hadamard_product(A, B), HadamardProduct)
True
Notes
=====
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the product, use the function
``hadamard_product()`` or ``HadamardProduct.doit``
"""
is_HadamardProduct = True
def __new__(cls, *args, evaluate=False, check=None):
args = list(map(sympify, args))
if len(args) == 0:
# We currently don't have a way to support one-matrices of generic dimensions:
raise ValueError("HadamardProduct needs at least one argument")
if not all(isinstance(arg, MatrixExpr) for arg in args):
raise TypeError("Mix of Matrix and Scalar symbols")
if check is not None:
sympy_deprecation_warning(
"Passing check to HadamardProduct is deprecated and the check argument will be removed in a future version.",
deprecated_since_version="1.11",
active_deprecations_target='remove-check-argument-from-matrix-operations')
if check is not False:
validate(*args)
obj = super().__new__(cls, *args)
if evaluate:
obj = obj.doit(deep=False)
return obj
@property
def shape(self):
return self.args[0].shape
def _entry(self, i, j, **kwargs):
return Mul(*[arg._entry(i, j, **kwargs) for arg in self.args])
def _eval_transpose(self):
from sympy.matrices.expressions.transpose import transpose
return HadamardProduct(*list(map(transpose, self.args)))
def doit(self, **hints):
expr = self.func(*(i.doit(**hints) for i in self.args))
# Check for explicit matrices:
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.immutable import ImmutableMatrix
explicit = [i for i in expr.args if isinstance(i, MatrixBase)]
if explicit:
remainder = [i for i in expr.args if i not in explicit]
expl_mat = ImmutableMatrix([
Mul.fromiter(i) for i in zip(*explicit)
]).reshape(*self.shape)
expr = HadamardProduct(*([expl_mat] + remainder))
return canonicalize(expr)
def _eval_derivative(self, x):
terms = []
args = list(self.args)
for i in range(len(args)):
factors = args[:i] + [args[i].diff(x)] + args[i+1:]
terms.append(hadamard_product(*factors))
return Add.fromiter(terms)
def _eval_derivative_matrix_lines(self, x):
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.matrices.expressions.matexpr import _make_matrix
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
lines = []
for ind in with_x_ind:
left_args = self.args[:ind]
right_args = self.args[ind+1:]
d = self.args[ind]._eval_derivative_matrix_lines(x)
hadam = hadamard_product(*(right_args + left_args))
diagonal = [(0, 2), (3, 4)]
diagonal = [e for j, e in enumerate(diagonal) if self.shape[j] != 1]
for i in d:
l1 = i._lines[i._first_line_index]
l2 = i._lines[i._second_line_index]
subexpr = ExprBuilder(
ArrayDiagonal,
[
ExprBuilder(
ArrayTensorProduct,
[
ExprBuilder(_make_matrix, [l1]),
hadam,
ExprBuilder(_make_matrix, [l2]),
]
),
*diagonal],
)
i._first_pointer_parent = subexpr.args[0].args[0].args
i._first_pointer_index = 0
i._second_pointer_parent = subexpr.args[0].args[2].args
i._second_pointer_index = 0
i._lines = [subexpr]
lines.append(i)
return lines
# TODO Implement algorithm for rewriting Hadamard product as diagonal matrix
# if matmul identy matrix is multiplied.
def canonicalize(x):
"""Canonicalize the Hadamard product ``x`` with mathematical properties.
Examples
========
>>> from sympy import MatrixSymbol, HadamardProduct
>>> from sympy import OneMatrix, ZeroMatrix
>>> from sympy.matrices.expressions.hadamard import canonicalize
>>> from sympy import init_printing
>>> init_printing(use_unicode=False)
>>> A = MatrixSymbol('A', 2, 2)
>>> B = MatrixSymbol('B', 2, 2)
>>> C = MatrixSymbol('C', 2, 2)
Hadamard product associativity:
>>> X = HadamardProduct(A, HadamardProduct(B, C))
>>> X
A.*(B.*C)
>>> canonicalize(X)
A.*B.*C
Hadamard product commutativity:
>>> X = HadamardProduct(A, B)
>>> Y = HadamardProduct(B, A)
>>> X
A.*B
>>> Y
B.*A
>>> canonicalize(X)
A.*B
>>> canonicalize(Y)
A.*B
Hadamard product identity:
>>> X = HadamardProduct(A, OneMatrix(2, 2))
>>> X
A.*1
>>> canonicalize(X)
A
Absorbing element of Hadamard product:
>>> X = HadamardProduct(A, ZeroMatrix(2, 2))
>>> X
A.*0
>>> canonicalize(X)
0
Rewriting to Hadamard Power
>>> X = HadamardProduct(A, A, A)
>>> X
A.*A.*A
>>> canonicalize(X)
.3
A
Notes
=====
As the Hadamard product is associative, nested products can be flattened.
The Hadamard product is commutative so that factors can be sorted for
canonical form.
A matrix of only ones is an identity for Hadamard product,
so every matrices of only ones can be removed.
Any zero matrix will make the whole product a zero matrix.
Duplicate elements can be collected and rewritten as HadamardPower
References
==========
.. [1] https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
"""
# Associativity
rule = condition(
lambda x: isinstance(x, HadamardProduct),
flatten
)
fun = exhaust(rule)
x = fun(x)
# Identity
fun = condition(
lambda x: isinstance(x, HadamardProduct),
rm_id(lambda x: isinstance(x, OneMatrix))
)
x = fun(x)
# Absorbing by Zero Matrix
def absorb(x):
if any(isinstance(c, ZeroMatrix) for c in x.args):
return ZeroMatrix(*x.shape)
else:
return x
fun = condition(
lambda x: isinstance(x, HadamardProduct),
absorb
)
x = fun(x)
# Rewriting with HadamardPower
if isinstance(x, HadamardProduct):
tally = Counter(x.args)
new_arg = []
for base, exp in tally.items():
if exp == 1:
new_arg.append(base)
else:
new_arg.append(HadamardPower(base, exp))
x = HadamardProduct(*new_arg)
# Commutativity
fun = condition(
lambda x: isinstance(x, HadamardProduct),
sort(default_sort_key)
)
x = fun(x)
# Unpacking
x = unpack(x)
return x
def hadamard_power(base, exp):
base = sympify(base)
exp = sympify(exp)
if exp == 1:
return base
if not base.is_Matrix:
return base**exp
if exp.is_Matrix:
raise ValueError("cannot raise expression to a matrix")
return HadamardPower(base, exp)
class HadamardPower(MatrixExpr):
r"""
Elementwise power of matrix expressions
Parameters
==========
base : scalar or matrix
exp : scalar or matrix
Notes
=====
There are four definitions for the hadamard power which can be used.
Let's consider `A, B` as `(m, n)` matrices, and `a, b` as scalars.
Matrix raised to a scalar exponent:
.. math::
A^{\circ b} = \begin{bmatrix}
A_{0, 0}^b & A_{0, 1}^b & \cdots & A_{0, n-1}^b \\
A_{1, 0}^b & A_{1, 1}^b & \cdots & A_{1, n-1}^b \\
\vdots & \vdots & \ddots & \vdots \\
A_{m-1, 0}^b & A_{m-1, 1}^b & \cdots & A_{m-1, n-1}^b
\end{bmatrix}
Scalar raised to a matrix exponent:
.. math::
a^{\circ B} = \begin{bmatrix}
a^{B_{0, 0}} & a^{B_{0, 1}} & \cdots & a^{B_{0, n-1}} \\
a^{B_{1, 0}} & a^{B_{1, 1}} & \cdots & a^{B_{1, n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
a^{B_{m-1, 0}} & a^{B_{m-1, 1}} & \cdots & a^{B_{m-1, n-1}}
\end{bmatrix}
Matrix raised to a matrix exponent:
.. math::
A^{\circ B} = \begin{bmatrix}
A_{0, 0}^{B_{0, 0}} & A_{0, 1}^{B_{0, 1}} &
\cdots & A_{0, n-1}^{B_{0, n-1}} \\
A_{1, 0}^{B_{1, 0}} & A_{1, 1}^{B_{1, 1}} &
\cdots & A_{1, n-1}^{B_{1, n-1}} \\
\vdots & \vdots &
\ddots & \vdots \\
A_{m-1, 0}^{B_{m-1, 0}} & A_{m-1, 1}^{B_{m-1, 1}} &
\cdots & A_{m-1, n-1}^{B_{m-1, n-1}}
\end{bmatrix}
Scalar raised to a scalar exponent:
.. math::
a^{\circ b} = a^b
"""
def __new__(cls, base, exp):
base = sympify(base)
exp = sympify(exp)
if base.is_scalar and exp.is_scalar:
return base ** exp
if isinstance(base, MatrixExpr) and isinstance(exp, MatrixExpr):
validate(base, exp)
obj = super().__new__(cls, base, exp)
return obj
@property
def base(self):
return self._args[0]
@property
def exp(self):
return self._args[1]
@property
def shape(self):
if self.base.is_Matrix:
return self.base.shape
return self.exp.shape
def _entry(self, i, j, **kwargs):
base = self.base
exp = self.exp
if base.is_Matrix:
a = base._entry(i, j, **kwargs)
elif base.is_scalar:
a = base
else:
raise ValueError(
'The base {} must be a scalar or a matrix.'.format(base))
if exp.is_Matrix:
b = exp._entry(i, j, **kwargs)
elif exp.is_scalar:
b = exp
else:
raise ValueError(
'The exponent {} must be a scalar or a matrix.'.format(exp))
return a ** b
def _eval_transpose(self):
from sympy.matrices.expressions.transpose import transpose
return HadamardPower(transpose(self.base), self.exp)
def _eval_derivative(self, x):
dexp = self.exp.diff(x)
logbase = self.base.applyfunc(log)
dlbase = logbase.diff(x)
return hadamard_product(
dexp*logbase + self.exp*dlbase,
self
)
def _eval_derivative_matrix_lines(self, x):
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
from sympy.matrices.expressions.matexpr import _make_matrix
lr = self.base._eval_derivative_matrix_lines(x)
for i in lr:
diagonal = [(1, 2), (3, 4)]
diagonal = [e for j, e in enumerate(diagonal) if self.base.shape[j] != 1]
l1 = i._lines[i._first_line_index]
l2 = i._lines[i._second_line_index]
subexpr = ExprBuilder(
ArrayDiagonal,
[
ExprBuilder(
ArrayTensorProduct,
[
ExprBuilder(_make_matrix, [l1]),
self.exp*hadamard_power(self.base, self.exp-1),
ExprBuilder(_make_matrix, [l2]),
]
),
*diagonal],
validator=ArrayDiagonal._validate
)
i._first_pointer_parent = subexpr.args[0].args[0].args
i._first_pointer_index = 0
i._first_line_index = 0
i._second_pointer_parent = subexpr.args[0].args[2].args
i._second_pointer_index = 0
i._second_line_index = 0
i._lines = [subexpr]
return lr
|
Subsets and Splits