code
stringlengths 11
173k
| docstring
stringlengths 2
593k
| func_name
stringlengths 2
189
| language
stringclasses 1
value | repo
stringclasses 833
values | path
stringlengths 11
294
| url
stringlengths 60
339
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
public static Integer[] removeIndex(Integer[] data, int index) {
if (data == null)
return null;
if (data.length < 1)
return data;
int len = data.length;
Integer[] result = new Integer[len - 1];
System.arraycopy(data, 0, result, 0, index);
System.arraycopy(data, index + 1, result, index, len - index - 1);
return result;
} |
Returns the array with the item in index
removed, if the array is empty it will return the array itself
@param data the data to remove data from
@param index the index of the item to remove
@return a copy of the array with the removed item,
or the array itself if empty
| ArrayUtil::removeIndex | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStridesFortran(int[] shape, int startNum) {
if (shape.length == 2 && (shape[0] == 1 || shape[1] == 1)) {
int[] ret = new int[2];
Arrays.fill(ret, startNum);
return ret;
}
int dimensions = shape.length;
int[] stride = new int[dimensions];
int st = startNum;
for (int j = 0; j < stride.length; j++) {
stride[j] = st;
st *= shape[j];
}
return stride;
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@param startNum the start number for the strides
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStridesFortran | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStridesFortran(int[] shape) {
return calcStridesFortran(shape, 1);
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStridesFortran | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStrides(int[] shape, int startValue) {
if (shape.length == 2 && (shape[0] == 1 || shape[1] == 1)) {
int[] ret = new int[2];
Arrays.fill(ret, startValue);
return ret;
}
int dimensions = shape.length;
int[] stride = new int[dimensions];
int st = startValue;
for (int j = dimensions - 1; j >= 0; j--) {
stride[j] = st;
st *= shape[j];
}
return stride;
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@param startValue the startValue for the strides
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStrides | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean isInverse(int[] first, int[] second) {
int backWardCount = second.length - 1;
for (int i = 0; i < first.length; i++) {
if (first[i] != second[backWardCount--])
return false;
}
return true;
} |
Returns true if the given
two arrays are reverse copies of each other
@param first
@param second
@return
| ArrayUtil::isInverse | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int nonOneStride(int[] arr) {
for (int i = 0; i < arr.length; i++)
if (arr[i] != 1)
return arr[i];
return 1;
} |
For use with row vectors to ensure consistent strides
with varying offsets
@param arr the array to get the stride for
@return the stride
| ArrayUtil::nonOneStride | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] reverseCopy(int[] e) {
if (e.length < 1)
return e;
int[] copy = new int[e.length];
for (int i = 0; i <= e.length / 2; i++) {
int temp = e[i];
copy[i] = e[e.length - i - 1];
copy[e.length - i - 1] = temp;
}
return copy;
} |
Create a backwards copy of the given array
@param e the array to createComplex a reverse clone of
@return the reversed copy
| ArrayUtil::reverseCopy | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static void multiplyBy(int[] arr, int mult) {
for (int i = 0; i < arr.length; i++)
arr[i] *= mult;
} |
Multiply the given array
by the given scalar
@param arr the array to multily
@param mult the scalar to multiply by
| ArrayUtil::multiplyBy | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static void reverse(int[] e) {
for (int i = 0; i <= e.length / 2; i++) {
int temp = e[i];
e[i] = e[e.length - i - 1];
e[e.length - i - 1] = temp;
}
} |
Reverse the passed in array in place
@param e the array to reverse
| ArrayUtil::reverse | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] flatten(double[][] arr) {
if(arr.length == 0 || arr[0].length == 0 )
return new double[0];
double[] ret = new double[arr.length * arr[0].length];
int count = 0;
for (int i = 0; i < arr.length; i++) {
System.arraycopy(arr[i], 0, ret, count, arr[i].length);
count += arr[i].length;
}
return ret;
} |
Convert a 2darray in to a flat
array (row wise)
@param arr the array to flatten
@return a flattened representation of the array
| ArrayUtil::flatten | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[][] toDouble(int[][] arr) {
double[][] ret = new double[arr.length][arr[0].length];
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[i].length; j++)
ret[i][j] = arr[i][j];
}
return ret;
} |
Cast an int array to a double array
@param arr the array to cast
@return the elements of this
array cast as an int
| ArrayUtil::toDouble | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] combineFloat(List<float[]> nums) {
int length = 0;
for (int i = 0; i < nums.size(); i++)
length += nums.get(i).length;
float[] ret = new float[length];
int count = 0;
for (float[] i : nums) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a applyTransformToDestination of int arrays in to one flat int array
@param nums the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combineFloat | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] combine(List<float[]> nums) {
int length = 0;
for (int i = 0; i < nums.size(); i++)
length += nums.get(i).length;
float[] ret = new float[length];
int count = 0;
for (float[] i : nums) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of int arrays in to one flat int array
@param nums the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] combine(float[]... ints) {
int length = 0;
for (int i = 0; i < ints.length; i++)
length += ints[i].length;
double[] ret = new double[length];
int count = 0;
for (float[] i : ints) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of int arrays in to one flat int array
@param ints the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] combine(long[]... ints) {
int length = 0;
for (int i = 0; i < ints.length; i++)
length += ints[i].length;
long[] ret = new long[length];
int count = 0;
for (long[] i : ints) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of long arrays in to one flat long array
@param ints the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] flattenDoubleArray(Object doubleArray) {
if (doubleArray instanceof double[])
return (double[]) doubleArray;
LinkedList<Object> stack = new LinkedList<>();
stack.push(doubleArray);
int[] shape = arrayShape(doubleArray);
int length = ArrayUtil.prod(shape);
double[] flat = new double[length];
int count = 0;
while (!stack.isEmpty()) {
Object current = stack.pop();
if (current instanceof double[]) {
double[] arr = (double[]) current;
for (int i = 0; i < arr.length; i++)
flat[count++] = arr[i];
} else if (current instanceof Object[]) {
Object[] o = (Object[]) current;
for (int i = o.length - 1; i >= 0; i--)
stack.push(o[i]);
} else
throw new IllegalArgumentException("Base array is not double[]");
}
if (count != flat.length)
throw new IllegalArgumentException("Fewer elements than expected. Array is ragged?");
return flat;
} | Convert an arbitrary-dimensional rectangular double array to flat vector.<br>
Can pass double[], double[][], double[][][], etc.
| ArrayUtil::flattenDoubleArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] flattenFloatArray(Object floatArray) {
if (floatArray instanceof float[])
return (float[]) floatArray;
LinkedList<Object> stack = new LinkedList<>();
stack.push(floatArray);
int[] shape = arrayShape(floatArray);
int length = ArrayUtil.prod(shape);
float[] flat = new float[length];
int count = 0;
while (!stack.isEmpty()) {
Object current = stack.pop();
if (current instanceof float[]) {
float[] arr = (float[]) current;
for (int i = 0; i < arr.length; i++)
flat[count++] = arr[i];
} else if (current instanceof Object[]) {
Object[] o = (Object[]) current;
for (int i = o.length - 1; i >= 0; i--)
stack.push(o[i]);
} else
throw new IllegalArgumentException("Base array is not float[]");
}
if (count != flat.length)
throw new IllegalArgumentException("Fewer elements than expected. Array is ragged?");
return flat;
} | Convert an arbitrary-dimensional rectangular float array to flat vector.<br>
Can pass float[], float[][], float[][][], etc.
| ArrayUtil::flattenFloatArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] arrayShape(Object array) {
return arrayShape(array, false);
} | Calculate the shape of an arbitrary multi-dimensional array. Assumes:<br>
(a) array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
(b) First elements have > 0 length. So array[0].length > 0, array[0][0].length > 0, etc.<br>
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
| ArrayUtil::arrayShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] arrayShape(Object array, boolean allowSize0Dims) {
int nDimensions = 0;
Class<?> c = array.getClass().getComponentType();
while (c != null) {
nDimensions++;
c = c.getComponentType();
}
int[] shape = new int[nDimensions];
Object current = array;
for (int i = 0; i < shape.length - 1; i++) {
shape[i] = ((Object[]) current).length;
if(shape[i] == 0){
if(allowSize0Dims){
return shape;
}
throw new IllegalStateException("Cannot calculate array shape: Array has size 0 for dimension " + i );
}
current = ((Object[]) current)[0];
}
if (current instanceof Object[]) {
shape[shape.length - 1] = ((Object[]) current).length;
} else if (current instanceof double[]) {
shape[shape.length - 1] = ((double[]) current).length;
} else if (current instanceof float[]) {
shape[shape.length - 1] = ((float[]) current).length;
} else if (current instanceof long[]) {
shape[shape.length - 1] = ((long[]) current).length;
} else if (current instanceof int[]) {
shape[shape.length - 1] = ((int[]) current).length;
} else if (current instanceof byte[]) {
shape[shape.length - 1] = ((byte[]) current).length;
} else if (current instanceof char[]) {
shape[shape.length - 1] = ((char[]) current).length;
} else if (current instanceof boolean[]) {
shape[shape.length - 1] = ((boolean[]) current).length;
} else if (current instanceof short[]) {
shape[shape.length - 1] = ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type"); //Should never happen
return shape;
} | Calculate the shape of an arbitrary multi-dimensional array.<br>
Note that the method assumes the array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
Note also that if allowSize0Dims is true, any elements are length 0, all subsequent dimensions will be reported as 0.
i.e., a double[3][0][2] would be reported as shape [3,0,0]. If allowSize0Dims is false, an exception will be thrown for this case instead.
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
| ArrayUtil::arrayShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int max(int[] in) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < in.length; i++)
if (in[i] > max)
max = in[i];
return max;
} | Calculate the shape of an arbitrary multi-dimensional array.<br>
Note that the method assumes the array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
Note also that if allowSize0Dims is true, any elements are length 0, all subsequent dimensions will be reported as 0.
i.e., a double[3][0][2] would be reported as shape [3,0,0]. If allowSize0Dims is false, an exception will be thrown for this case instead.
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
public static int[] arrayShape(Object array, boolean allowSize0Dims) {
int nDimensions = 0;
Class<?> c = array.getClass().getComponentType();
while (c != null) {
nDimensions++;
c = c.getComponentType();
}
int[] shape = new int[nDimensions];
Object current = array;
for (int i = 0; i < shape.length - 1; i++) {
shape[i] = ((Object[]) current).length;
if(shape[i] == 0){
if(allowSize0Dims){
return shape;
}
throw new IllegalStateException("Cannot calculate array shape: Array has size 0 for dimension " + i );
}
current = ((Object[]) current)[0];
}
if (current instanceof Object[]) {
shape[shape.length - 1] = ((Object[]) current).length;
} else if (current instanceof double[]) {
shape[shape.length - 1] = ((double[]) current).length;
} else if (current instanceof float[]) {
shape[shape.length - 1] = ((float[]) current).length;
} else if (current instanceof long[]) {
shape[shape.length - 1] = ((long[]) current).length;
} else if (current instanceof int[]) {
shape[shape.length - 1] = ((int[]) current).length;
} else if (current instanceof byte[]) {
shape[shape.length - 1] = ((byte[]) current).length;
} else if (current instanceof char[]) {
shape[shape.length - 1] = ((char[]) current).length;
} else if (current instanceof boolean[]) {
shape[shape.length - 1] = ((boolean[]) current).length;
} else if (current instanceof short[]) {
shape[shape.length - 1] = ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type"); //Should never happen
return shape;
}
/** Returns the maximum value in the array | ArrayUtil::max | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int min(int[] in) {
int min = Integer.MAX_VALUE;
for (int i = 0; i < in.length; i++)
if (in[i] < min)
min = in[i];
return min;
} | Calculate the shape of an arbitrary multi-dimensional array.<br>
Note that the method assumes the array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
Note also that if allowSize0Dims is true, any elements are length 0, all subsequent dimensions will be reported as 0.
i.e., a double[3][0][2] would be reported as shape [3,0,0]. If allowSize0Dims is false, an exception will be thrown for this case instead.
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
public static int[] arrayShape(Object array, boolean allowSize0Dims) {
int nDimensions = 0;
Class<?> c = array.getClass().getComponentType();
while (c != null) {
nDimensions++;
c = c.getComponentType();
}
int[] shape = new int[nDimensions];
Object current = array;
for (int i = 0; i < shape.length - 1; i++) {
shape[i] = ((Object[]) current).length;
if(shape[i] == 0){
if(allowSize0Dims){
return shape;
}
throw new IllegalStateException("Cannot calculate array shape: Array has size 0 for dimension " + i );
}
current = ((Object[]) current)[0];
}
if (current instanceof Object[]) {
shape[shape.length - 1] = ((Object[]) current).length;
} else if (current instanceof double[]) {
shape[shape.length - 1] = ((double[]) current).length;
} else if (current instanceof float[]) {
shape[shape.length - 1] = ((float[]) current).length;
} else if (current instanceof long[]) {
shape[shape.length - 1] = ((long[]) current).length;
} else if (current instanceof int[]) {
shape[shape.length - 1] = ((int[]) current).length;
} else if (current instanceof byte[]) {
shape[shape.length - 1] = ((byte[]) current).length;
} else if (current instanceof char[]) {
shape[shape.length - 1] = ((char[]) current).length;
} else if (current instanceof boolean[]) {
shape[shape.length - 1] = ((boolean[]) current).length;
} else if (current instanceof short[]) {
shape[shape.length - 1] = ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type"); //Should never happen
return shape;
}
/** Returns the maximum value in the array
public static int max(int[] in) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < in.length; i++)
if (in[i] > max)
max = in[i];
return max;
}
/** Returns the minimum value in the array | ArrayUtil::min | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int argMax(int[] in) {
int maxIdx = 0;
for (int i = 1; i < in.length; i++)
if (in[i] > in[maxIdx])
maxIdx = i;
return maxIdx;
} | Returns the index of the maximum value in the array.
* If two entries have same maximum value, index of the first one is returned. | ArrayUtil::argMax | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int argMin(int[] in) {
int minIdx = 0;
for (int i = 1; i < in.length; i++)
if (in[i] < in[minIdx])
minIdx = i;
return minIdx;
} | Returns the index of the minimum value in the array.
* If two entries have same minimum value, index of the first one is returned. | ArrayUtil::argMin | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int fromBoolean(boolean bool) {
return bool ? 1 : 0;
} |
Convert an int
@param bool
@return
| ArrayUtil::fromBoolean | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static <T> void assertNotRagged(T[] array){
Class<?> c = array.getClass().getComponentType();
int[] arrayShape = ArrayUtil.arrayShape(array, true);
int rank = arrayShape.length;
if(rank == 1){
//Rank 1 cannot be ragged
return;
}
if(rank >= 2){
for( int i = 1; i < arrayShape[0]; i++) {
Object subArray = array[i];
int len = arrayLength(subArray);
Preconditions.checkState(arrayShape[1] == len, "Ragged array detected: array[0].length=%s does not match array[%s].length=%s", arrayShape[1], i, len);
}
if(rank == 2)
return;
}
if(rank >= 3){
for( int i = 0; i < arrayShape[0]; i++) {
for( int j = 0; j < arrayShape[1]; j++) {
Object subArray = ((Object[][])array)[i][j];
int len = arrayLength(subArray);
Preconditions.checkState(arrayShape[2] == len, "Ragged array detected: array[0][0].length=%s does not match array[%s][%s].length=%s", arrayShape[2], i, j, len);
}
}
if(rank == 3)
return;
}
if(rank >= 4){
for( int i = 0; i < arrayShape[0]; i++) {
for( int j = 0; j<arrayShape[1]; j++) {
for( int k = 0; k < arrayShape[2]; k++) {
Object subArray = ((Object[][][])array)[i][j][k];
int len = arrayLength(subArray);
Preconditions.checkState(arrayShape[3] == len, "Ragged array detected: array[0][0][0].length=%s does not match array[%s][%s][%s].length=%s",
arrayShape[3], i, j, k, len);
}
}
}
}
} |
Assert that the specified array is not ragged (i.e., is rectangular).<br>
Can be used to check Object arrays with any number of dimensions (up to rank 4), or primitive arrays with rank 2 or higher<br>
An IllegalStateException is thrown if the array is ragged
@param array Array to check
| ArrayUtil::assertNotRagged | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int arrayLength(Object current){
if (current instanceof Object[]) {
return ((Object[]) current).length;
} else if (current instanceof double[]) {
return ((double[]) current).length;
} else if (current instanceof float[]) {
return ((float[]) current).length;
} else if (current instanceof long[]) {
return ((long[]) current).length;
} else if (current instanceof int[]) {
return ((int[]) current).length;
} else if (current instanceof byte[]) {
return ((byte[]) current).length;
} else if (current instanceof char[]) {
return ((char[]) current).length;
} else if (current instanceof boolean[]) {
return ((boolean[]) current).length;
} else if (current instanceof short[]) {
return ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type (or not an array): " + current.getClass()); //Should never happen
} |
Calculate the length of the object or primitive array. If
@param current
@return
| ArrayUtil::arrayLength | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] invertPermutation(int... input){
int[] target = new int[input.length];
for(int i = 0 ; i < input.length ; i++){
target[input[i]] = i;
}
return target;
} |
Compute the inverse permutation indices for a permutation operation<br>
Example: if input is [2, 0, 1] then output is [1, 2, 0]<br>
The idea is that x.permute(input).permute(invertPermutation(input)) == x
@param input 1D indices for permutation
@return 1D inverted permutation
| ArrayUtil::invertPermutation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] invertPermutation(long... input){
long[] target = new long[input.length];
for(int i = 0 ; i < input.length ; i++){
target[(int) input[i]] = i;
}
return target;
} |
@see #invertPermutation(int...)
@param input 1D indices for permutation
@return 1D inverted permutation
| ArrayUtil::invertPermutation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean isEmptyShape(long[] shape){
for( long l : shape){
if(l == 0)
return true;
}
return false;
} |
Is this shape an empty shape?
Shape is considered to be an empty shape if it contains any zeros.
Note: a length 0 shape is NOT considered empty (it's rank 0 scalar)
@param shape Shape to check
@return True if shape contains zeros
| ArrayUtil::isEmptyShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public Factorial() {
if (a.isEmpty()) {
a.add(BigInteger.ONE);
a.add(BigInteger.ONE);
}
} |
ctor().
Initialize the vector of the factorials with 0!=1 and 1!=1.
| Factorial::Factorial | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | Apache-2.0 |
public BigInteger at(int n) {
while (a.size() <= n) {
final int lastn = a.size() - 1;
final BigInteger nextn = BigInteger.valueOf(lastn + 1);
a.add(a.get(lastn).multiply(nextn));
}
return a.get(n);
} |
Compute the factorial of the non-negative integer.
@param n the argument to the factorial, non-negative.
@return the factorial of n.
| Factorial::at | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | Apache-2.0 |
public static boolean nameExistsInPath(String name) {
String path = System.getenv(PATH_ENV_VARIABLE);
String[] dirs = path.split(File.pathSeparator);
for (String dir : dirs) {
File dirFile = new File(dir);
if (!dirFile.exists())
continue;
if (dirFile.isFile() && dirFile.getName().equals(name))
return true;
else {
Iterator<File> files = FileUtils.iterateFiles(dirFile, null, false);
while (files.hasNext()) {
File curr = files.next();
if (curr.getName().equals(name))
return true;
}
}
}
return false;
} |
Check if a file exists in the path
@param name the name of the file
@return true if the name exists
false otherwise
| Paths::nameExistsInPath | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Paths.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Paths.java | Apache-2.0 |
protected void set(final int n, final Rational value) {
final int nindx = n / 2;
if (nindx < a.size()) {
a.set(nindx, value);
} else {
while (a.size() < nindx) {
a.add(Rational.ZERO);
}
a.add(value);
}
} |
Set a coefficient in the internal table.
@param n the zero-based index of the coefficient. n=0 for the constant term.
@param value the new value of the coefficient.
| Bernoulli::set | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | Apache-2.0 |
public Rational at(int n) {
if (n == 1) {
return (new Rational(-1, 2));
} else if (n % 2 != 0) {
return Rational.ZERO;
} else {
final int nindx = n / 2;
if (a.size() <= nindx) {
for (int i = 2 * a.size(); i <= n; i += 2) {
set(i, doubleSum(i));
}
}
return a.get(nindx);
}
} |
The Bernoulli number at the index provided.
@param n the index, non-negative.
@return the B_0=1 for n=0, B_1=-1/2 for n=1, B_2=1/6 for n=2 etc
| Bernoulli::at | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | Apache-2.0 |
public static StackTraceElement[] trimStackTrace(StackTraceElement[] stackTrace, List<StackTraceQuery> ignorePackages, List<StackTraceQuery> skipFullPatterns) {
if(skipFullPatterns != null && !skipFullPatterns.isEmpty()) {
if(StackTraceQuery.stackTraceFillsAnyCriteria(skipFullPatterns,stackTrace)) {
return new StackTraceElement[0];
}
}
if(ignorePackages != null && !ignorePackages.isEmpty()) {
StackTraceElement[] reverse = reverseCopy(stackTrace);
List<StackTraceElement> ret = new ArrayList<>();
//start backwards to find the index of the first non ignored package.
//we loop backwards to avoid typical unrelated boilerplate
//like unit tests or ide stack traces
int startingIndex = -1;
for(int i = 0; i < reverse.length; i++) {
if(!StackTraceQuery.stackTraceElementMatchesCriteria(ignorePackages,reverse[i],i)) {
startingIndex = i;
break;
}
}
//if we didn't find a match, just start at the beginning
if(startingIndex < 0) {
startingIndex = 0;
}
//loop backwards to present original stack trace
for(int i = reverse.length - 1; i >= startingIndex; i--) {
ret.add(reverse[i]);
}
return ret.toArray(new StackTraceElement[0]);
} else {
List<StackTraceElement> ret = new ArrayList<>();
for (StackTraceElement stackTraceElement : stackTrace) {
//note we break because it doesn't make sense to continue rendering when we've hit a package we should be ignoring.
//this allows a user to specify 1 namespace and ignore anything after it.
ret.add(stackTraceElement);
}
return ret.toArray(new StackTraceElement[0]);
}
} |
Returns a potentially reduced stacktrace
based on the namepsaces specified
in the ignore packages and
skipFullPatterns lists
@param stackTrace the stack trace to filter
@param ignorePackages the packages to ignore
@param skipFullPatterns the full patterns to skip
@return the filtered stack trace
| StackTraceUtils::trimStackTrace | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | Apache-2.0 |
public static String renderStackTrace(StackTraceElement[] stackTrace, List<StackTraceQuery> ignorePackages, List<StackTraceQuery> skipFullPatterns) {
StringBuilder stringBuilder = new StringBuilder();
StackTraceElement[] stackTrace1 = trimStackTrace(stackTrace,ignorePackages,skipFullPatterns);
for (StackTraceElement stackTraceElement : stackTrace1) {
stringBuilder.append(stackTraceElement.toString() + "\n");
}
return stringBuilder.toString();
} |
Get the current stack trace as a string.
@return
| StackTraceUtils::renderStackTrace | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | Apache-2.0 |
public static Set<StackTraceElement> parentOfInvocation(StackTraceElement[] elements, StackTraceElement pointOfOrigin, StackTraceElement pointOfInvocation) {
if(elements == null || elements.length < 1)
return null;
int pointOfInvocationIndex = -1;
for(int i = 0; i < elements.length; i++) {
if(elements[i].equals(pointOfInvocation)) {
pointOfInvocationIndex = i;
break;
}
}
if(pointOfInvocationIndex <= 0) {
return new HashSet<>(Arrays.asList(elements));
}
if(pointOfInvocationIndex < 0)
throw new IllegalArgumentException("Invalid stack trace. Point of invocation not found!");
int pointOfOriginIndex = -1;
Set<StackTraceElement> ret = new HashSet<>();
//loop backwards to find the first non nd4j class
for(int i = pointOfInvocationIndex + 1; i < elements.length; i++) {
StackTraceElement element = elements[i];
if(!StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationClasses,elements[i],i)
&& !StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationPatterns,elements[i],i) &&
!element.getClassName().equals(pointOfOrigin.getClassName()) && !element.getClassName().equals(pointOfInvocation.getClassName())) {
pointOfOriginIndex = i;
break;
}
}
if(pointOfOriginIndex < 0) {
return new HashSet<>(Arrays.asList(elements));
}
//this is what we'll call the "interesting parents", we need to index
//by multiple parents in order to capture the different parts of the stack tree that could be applicable.
for(int i = pointOfOriginIndex; i < elements.length; i++) {
StackTraceElement element = elements[i];
if(StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationClasses,elements[i],i)
|| StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationPatterns,elements[i],i) ||
element.getClassName().equals(pointOfOrigin.getClassName()) || element.getClassName().equals(pointOfInvocation.getClassName())) {
break;
}
ret.add(elements[i]);
}
return ret;
} |
Parent of invocation is an element of the stack trace
with a different class altogether.
The goal is to be able to segment what is calling a method within the same class.
@param elements the elements to get the parent of invocation for
@return
| StackTraceUtils::parentOfInvocation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | Apache-2.0 |
public static StackTraceElement[] callsFromClass(StackTraceElement[] elements, String className) {
if(elements == null || elements.length < 1)
return null;
List<StackTraceElement> ret = new ArrayList<>();
for(int i = 0; i < elements.length; i++) {
if(elements[i].getClassName().equals(className)) {
ret.add(elements[i]);
}
}
return ret.toArray(new StackTraceElement[0]);
} |
Calls from class is a method that returns
all stack trace elements that are from a given class.
@param elements the elements to get the calls from class for
@param className the class name to get the calls from
@return the stack trace elements from the given class
| StackTraceUtils::callsFromClass | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | Apache-2.0 |
public static StackTraceElement pointOfOrigin(StackTraceElement[] elements) {
if(elements == null || elements.length < 1)
return null;
int pointOfOriginIndex = 0;
//loop backwards to find the first non nd4j class
for(int i = elements.length - 1; i >= 0; i--) {
if(!StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationClasses,elements[i],i)
&& !StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationPatterns,elements[i],i)) {
pointOfOriginIndex = i;
break;
}
}
return elements[pointOfOriginIndex];
} |
Point of origin is the first non nd4j class in the stack trace.
@param elements the elements to get the point of origin for
@return
| StackTraceUtils::pointOfOrigin | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | Apache-2.0 |
public static StackTraceElement pointOfInvocation(StackTraceElement[] elements) {
if(elements == null || elements.length < 1)
return null;
int pointOfInvocationIndex = 0;
for(int i = 0; i < elements.length; i++) {
if(!StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationClasses,elements[i],i)
&& !StackTraceQuery.stackTraceElementMatchesCriteria(invalidPointOfInvocationPatterns,elements[i],i)) {
pointOfInvocationIndex = i;
break;
}
}
return elements[pointOfInvocationIndex];
} |
@param elements
@return
| StackTraceUtils::pointOfInvocation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/StackTraceUtils.java | Apache-2.0 |
public static int countLines(InputStream is) throws IOException {
try {
byte[] c = new byte[1024];
int count = 0;
int readChars = 0;
boolean empty = true;
while ((readChars = is.read(c)) != -1) {
empty = false;
for (int i = 0; i < readChars; ++i) {
if (c[i] == '\n') {
++count;
}
}
}
return (count == 0 && !empty) ? 1 : count;
} finally {
is.close();
}
} |
Count number of lines in a file
@param is
@return
@throws IOException
| InputStreamUtil::countLines | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/InputStreamUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/InputStreamUtil.java | Apache-2.0 |
public static int countLines(String filename) throws IOException {
FileInputStream fis = new FileInputStream(filename);
try {
return countLines(new BufferedInputStream(fis));
} finally {
fis.close();
}
} |
Count number of lines in a file
@param filename
@return
@throws IOException
| InputStreamUtil::countLines | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/InputStreamUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/InputStreamUtil.java | Apache-2.0 |
public static ObjectMapper getJsonMapper() {
return objectMapper;
} |
Get a single object mapper for use
with reading and writing json
@return
| ObjectMapperHolder::getJsonMapper | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/holder/ObjectMapperHolder.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/holder/ObjectMapperHolder.java | Apache-2.0 |
public static <K,V> Map<K,Pair<List<V>,List<V>>> cogroup(List<Pair<K,V>> left,List<Pair<K,V>> right) {
Map<K,Pair<List<V>,List<V>>> ret = new HashMap<>();
//group by key first to consolidate values
Map<K,List<V>> leftMap = groupByKey(left);
Map<K,List<V>> rightMap = groupByKey(right);
/**
* Iterate over each key in the list
* adding values to the left items
* as values are found in the list.
*/
for(Map.Entry<K,List<V>> entry : leftMap.entrySet()) {
K key = entry.getKey();
if(!ret.containsKey(key)) {
List<V> leftListPair = new ArrayList<>();
List<V> rightListPair = new ArrayList<>();
Pair<List<V>,List<V>> p = Pair.of(leftListPair,rightListPair);
ret.put(key,p);
}
Pair<List<V>,List<V>> p = ret.get(key);
p.getFirst().addAll(entry.getValue());
}
/**
* Iterate over each key in the list
* adding values to the right items
* as values are found in the list.
*/
for(Map.Entry<K,List<V>> entry : rightMap.entrySet()) {
K key = entry.getKey();
if(!ret.containsKey(key)) {
List<V> leftListPair = new ArrayList<>();
List<V> rightListPair = new ArrayList<>();
Pair<List<V>,List<V>> p = Pair.of(leftListPair,rightListPair);
ret.put(key,p);
}
Pair<List<V>,List<V>> p = ret.get(key);
p.getSecond().addAll(entry.getValue());
}
return ret;
} |
For each key in left and right, cogroup returns the list of values
as a pair for each value present in left as well as right.
@param left the left list of pairs to join
@param right the right list of pairs to join
@param <K> the key type
@param <V> the value type
@return a map of the list of values by key for each value in the left as well as the right
with each element in the pair representing the values in left and right respectively.
| FunctionalUtils::cogroup | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/function/FunctionalUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/function/FunctionalUtils.java | Apache-2.0 |
public static <K,V> Map<K,List<V>> groupByKey(List<Pair<K,V>> listInput) {
Map<K,List<V>> ret = new HashMap<>();
for(Pair<K,V> pair : listInput) {
List<V> currList = ret.get(pair.getFirst());
if(currList == null) {
currList = new ArrayList<>();
ret.put(pair.getFirst(),currList);
}
currList.add(pair.getSecond());
}
return ret;
} |
Group the input pairs by the key of each pair.
@param listInput the list of pairs to group
@param <K> the key type
@param <V> the value type
@return a map representing a grouping of the
keys by the given input key type and list of values
in the grouping.
| FunctionalUtils::groupByKey | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/function/FunctionalUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/function/FunctionalUtils.java | Apache-2.0 |
public static <K,V> List<Pair<K,V>> mapToPair(Map<K,V> map) {
List<Pair<K,V>> ret = new ArrayList<>(map.size());
for(Map.Entry<K,V> entry : map.entrySet()) {
ret.add(Pair.of(entry.getKey(),entry.getValue()));
}
return ret;
} |
Convert a map with a set of entries of type K for key
and V for value in to a list of {@link Pair}
@param map the map to collapse
@param <K> the key type
@param <V> the value type
@return the collapsed map as a {@link List}
| FunctionalUtils::mapToPair | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/function/FunctionalUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/function/FunctionalUtils.java | Apache-2.0 |
public static void checkArgument(boolean b) {
if (!b) {
throw new IllegalArgumentException();
}
} |
Check the specified boolean argument. Throws an IllegalArgumentException if {@code b} is false
@param b Argument to check
| Preconditions::checkArgument | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkArgument(boolean b, String message) {
if (!b) {
throwEx(message);
}
} |
Check the specified boolean argument. Throws an IllegalArgumentException with the specified message if {@code b} is false
@param b Argument to check
@param message Message for exception. May be null
| Preconditions::checkArgument | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkArgument(boolean b, String msg, int arg1) {
if (!b) {
throwEx(msg, arg1);
}
} |
See {@link #checkArgument(boolean, String, Object...)}
| Preconditions::checkArgument | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkArgument(boolean b, String message, Object... args) {
if (!b) {
throwEx(message, args);
}
} |
Check the specified boolean argument. Throws an IllegalArgumentException with the specified message if {@code b} is false.
Note that the message may specify argument locations using "%s" - for example,
{@code checkArgument(false, "Got %s values, expected %s", 3, "more"} would throw an IllegalArgumentException
with the message "Got 3 values, expected more"
@param b Argument to check
@param message Message for exception. May be null.
@param args Arguments to place in message
| Preconditions::checkArgument | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkState(boolean b) {
if (!b) {
throw new IllegalStateException();
}
} |
Check the specified boolean argument. Throws an IllegalStateException if {@code b} is false
@param b State to check
| Preconditions::checkState | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkState(boolean b, String message) {
if (!b) {
throwStateEx(message);
}
} |
Check the specified boolean argument. Throws an IllegalStateException with the specified message if {@code b} is false
@param b State to check
@param message Message for exception. May be null
| Preconditions::checkState | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkState(boolean b, String msg, int arg1) {
if (!b) {
throwStateEx(msg, arg1);
}
} |
See {@link #checkState(boolean, String, Object...)}
| Preconditions::checkState | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkState(boolean b, String message, Object... args) {
if (!b) {
throwStateEx(message, args);
}
} |
Check the specified boolean argument. Throws an IllegalStateException with the specified message if {@code b} is false.
Note that the message may specify argument locations using "%s" - for example,
{@code checkArgument(false, "Got %s values, expected %s", 3, "more"} would throw an IllegalStateException
with the message "Got 3 values, expected more"
@param b Argument to check
@param message Message for exception. May be null.
@param args Arguments to place in message
| Preconditions::checkState | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkNotNull(Object o) {
if (o == null) {
throw new NullPointerException();
}
} |
Check the specified boolean argument. Throws an NullPointerException if {@code o} is false
@param o Object to check
| Preconditions::checkNotNull | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkNotNull(Object o, String message) {
if (o == null) {
throwNullPointerEx(message);
}
} |
Check the specified boolean argument. Throws an NullPointerException with the specified message if {@code o} is false
@param o Object to check
@param message Message for exception. May be null
| Preconditions::checkNotNull | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkNotNull(Object o, String msg, int arg1) {
if (o == null) {
throwNullPointerEx(msg, arg1);
}
} |
See {@link #checkNotNull(Object, String, Object...)}
| Preconditions::checkNotNull | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static void checkNotNull(Object o, String message, Object... args) {
if (o == null) {
throwStateEx(message, args);
}
} |
Check the specified boolean argument. Throws an IllegalStateException with the specified message if {@code o} is false.
Note that the message may specify argument locations using "%s" - for example,
{@code checkArgument(false, "Got %s values, expected %s", 3, "more"} would throw an IllegalStateException
with the message "Got 3 values, expected more"
@param o Object to check
@param message Message for exception. May be null.
@param args Arguments to place in message
| Preconditions::checkNotNull | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/base/Preconditions.java | Apache-2.0 |
public static FileBatch readFromZip(File file) throws IOException {
try (FileInputStream fis = new FileInputStream(file)) {
return readFromZip(fis);
}
} |
Read a FileBatch from the specified file. This method assumes the FileBatch was previously saved to
zip format using {@link #writeAsZip(File)} or {@link #writeAsZip(OutputStream)}
@param file File to read from
@return The loaded FileBatch
@throws IOException If an error occurs during reading
| FileBatch::readFromZip | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | Apache-2.0 |
public static FileBatch readFromZip(InputStream is) throws IOException {
String originalUris = null;
Map<Integer, byte[]> bytesMap = new HashMap<>();
try (ZipInputStream zis = new ZipInputStream(new BufferedInputStream(is))) {
ZipEntry ze;
while ((ze = zis.getNextEntry()) != null) {
String name = ze.getName();
byte[] bytes = IOUtils.toByteArray(zis);
if (name.equals(ORIGINAL_PATHS_FILENAME)) {
originalUris = new String(bytes, 0, bytes.length, StandardCharsets.UTF_8);
} else {
int idxSplit = name.indexOf("_");
int idxSplit2 = name.indexOf(".");
int fileIdx = Integer.parseInt(name.substring(idxSplit + 1, idxSplit2));
bytesMap.put(fileIdx, bytes);
}
}
}
List<byte[]> list = new ArrayList<>(bytesMap.size());
for (int i = 0; i < bytesMap.size(); i++) {
list.add(bytesMap.get(i));
}
List<String> origPaths = Arrays.asList(originalUris.split("\n"));
return new FileBatch(list, origPaths);
} |
Read a FileBatch from the specified input stream. This method assumes the FileBatch was previously saved to
zip format using {@link #writeAsZip(File)} or {@link #writeAsZip(OutputStream)}
@param is Input stream to read from
@return The loaded FileBatch
@throws IOException If an error occurs during reading
| FileBatch::readFromZip | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | Apache-2.0 |
public static FileBatch forFiles(File... files) throws IOException {
return forFiles(Arrays.asList(files));
} |
Create a FileBatch from the specified files
@param files Files to create the FileBatch from
@return The created FileBatch
@throws IOException If an error occurs during reading of the file content
| FileBatch::forFiles | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | Apache-2.0 |
public void writeAsZip(File f) throws IOException {
writeAsZip(new FileOutputStream(f));
} |
Write the FileBatch to the specified File, in zip file format
@param f File to write to
@throws IOException If an error occurs during writing
| FileBatch::writeAsZip | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | Apache-2.0 |
public void writeAsZip(OutputStream os) throws IOException {
try (ZipOutputStream zos = new ZipOutputStream(new BufferedOutputStream(os))) {
//Write original paths as a text file:
ZipEntry ze = new ZipEntry(ORIGINAL_PATHS_FILENAME);
String originalUrisJoined = StringUtils.join(originalUris, "\n"); //Java String.join is Java 8
zos.putNextEntry(ze);
zos.write(originalUrisJoined.getBytes(StandardCharsets.UTF_8));
for (int i = 0; i < fileBytes.size(); i++) {
String ext = FilenameUtils.getExtension(originalUris.get(i));
if (ext == null || ext.isEmpty())
ext = "bin";
String name = "file_" + i + "." + ext;
ze = new ZipEntry(name);
zos.putNextEntry(ze);
zos.write(fileBytes.get(i));
}
}
} |
@param os Write the FileBatch to the specified output stream, in zip file format
@throws IOException If an error occurs during writing
| FileBatch::writeAsZip | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/loader/FileBatch.java | Apache-2.0 |
public CompactHeapStringList(int reallocationBlockSizeBytes, int intReallocationBlockSizeBytes) {
this.reallocationBlockSizeBytes = reallocationBlockSizeBytes;
this.reallocationIntegerBlockSizeBytes = intReallocationBlockSizeBytes;
this.data = new char[this.reallocationBlockSizeBytes / 2];
this.offsetAndLength = new int[this.reallocationIntegerBlockSizeBytes / 4];
} |
@param reallocationBlockSizeBytes Number of bytes by which to increase the char[], when allocating a new storage array
@param intReallocationBlockSizeBytes Number of bytes by which to increase the int[], when allocating a new storage array
| CompactHeapStringList::CompactHeapStringList | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/CompactHeapStringList.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/CompactHeapStringList.java | Apache-2.0 |
public static <K, T, V> MultiDimensionalMap<K, T, V> newThreadSafeTreeBackedMap() {
return new MultiDimensionalMap<>(new ConcurrentSkipListMap<Pair<K, T>, V>());
} |
Thread safe sorted map implementation
@param <K>
@param <T>
@param <V>
@return
| MultiDimensionalMap::newThreadSafeTreeBackedMap | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | Apache-2.0 |
public static <K, T, V> MultiDimensionalMap<K, T, V> newThreadSafeHashBackedMap() {
return new MultiDimensionalMap<>(new ConcurrentHashMap<Pair<K, T>, V>());
} |
Thread safe hash map implementation
@param <K>
@param <T>
@param <V>
@return
| MultiDimensionalMap::newThreadSafeHashBackedMap | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | Apache-2.0 |
public static <K, T, V> MultiDimensionalMap<K, T, V> newHashBackedMap() {
return new MultiDimensionalMap<>(new HashMap<Pair<K, T>, V>());
} |
Thread safe hash map impl
@param <K>
@param <T>
@param <V>
@return
| MultiDimensionalMap::newHashBackedMap | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | Apache-2.0 |
public static <K, T, V> MultiDimensionalMap<K, T, V> newTreeBackedMap() {
return new MultiDimensionalMap<>(new TreeMap<Pair<K, T>, V>());
} |
Tree map implementation
@param <K>
@param <T>
@param <V>
@return
| MultiDimensionalMap::newTreeBackedMap | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/collection/MultiDimensionalMap.java | Apache-2.0 |
public File getTempFileFromArchive() throws IOException {
return getTempFileFromArchive(null);
} |
Get a temp file from the classpath.<br>
This is for resources where a file is needed and the classpath resource is in a jar file. The file is copied
to the default temporary directory, using {@link Files#createTempFile(String, String, FileAttribute[])}.
Consequently, the extracted file will have a different filename to the extracted one.
@return the temp file
@throws IOException If an error occurs when files are being copied
@see #getTempFileFromArchive(File)
| ClassPathResource::getTempFileFromArchive | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | Apache-2.0 |
public File getTempFileFromArchive(File rootDirectory) throws IOException {
InputStream is = getInputStream();
File tmpFile;
if(rootDirectory != null){
//Maintain original file names, as it's going in a directory...
tmpFile = new File(rootDirectory, FilenameUtils.getName(path));
} else {
tmpFile = Files.createTempFile(FilenameUtils.getName(path), "tmp").toFile();
}
tmpFile.deleteOnExit();
BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(tmpFile));
IOUtils.copy(is, bos);
bos.flush();
bos.close();
return tmpFile;
} |
Get a temp file from the classpath, and (optionally) place it in the specified directory<br>
Note that:<br>
- If the directory is not specified, the file is copied to the default temporary directory, using
{@link Files#createTempFile(String, String, FileAttribute[])}. Consequently, the extracted file will have a
different filename to the extracted one.<br>
- If the directory *is* specified, the file is copied directly - and the original filename is maintained
@param rootDirectory May be null. If non-null, copy to the specified directory
@return the temp file
@throws IOException If an error occurs when files are being copied
@see #getTempFileFromArchive(File)
| ClassPathResource::getTempFileFromArchive | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | Apache-2.0 |
public void copyDirectory(File destination) throws IOException {
Preconditions.checkState(destination.exists() && destination.isDirectory(), "Destination directory must exist and be a directory: %s", destination);
URL url = this.getUrl();
if (isJarURL(url)) {
/*
This is actually request for file, that's packed into jar. Probably the current one, but that doesn't matters.
*/
InputStream stream = null;
ZipFile zipFile = null;
try {
GetStreamFromZip getStreamFromZip = new GetStreamFromZip(url, path).invoke();
ZipEntry entry = getStreamFromZip.getEntry();
stream = getStreamFromZip.getStream();
zipFile = getStreamFromZip.getZipFile();
Preconditions.checkState(entry.isDirectory(), "Source must be a directory: %s", entry.getName());
String pathNoSlash = this.path;
if(pathNoSlash.endsWith("/") || pathNoSlash.endsWith("\\")){
pathNoSlash = pathNoSlash.substring(0, pathNoSlash.length()-1);
}
Enumeration<? extends ZipEntry> entries = zipFile.entries();
while(entries.hasMoreElements()){
ZipEntry e = entries.nextElement();
String name = e.getName();
if(name.startsWith(pathNoSlash) && name.length() > pathNoSlash.length() && (name.charAt(pathNoSlash.length()) == '/' || name.charAt(pathNoSlash.length()) == '\\')){ //second condition: to avoid "/dir/a/" and "/dir/abc/" both matching startsWith
String relativePath = name.substring(this.path.length());
File extractTo = new File(destination, relativePath);
if(e.isDirectory()){
extractTo.mkdirs();
} else {
try(BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(extractTo))){
InputStream is = getInputStream(name, clazz, classLoader);
IOUtils.copy(is, bos);
}
}
}
}
stream.close();
zipFile.close();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
if(stream != null)
IOUtils.closeQuietly(stream);
if(zipFile != null)
IOUtils.closeQuietly(zipFile);
}
} else {
File source;
try{
source = new File(url.toURI());
} catch (URISyntaxException e) {
throw new IOException("Error converting URL to a URI - path may be invalid? Path=" + url);
}
Preconditions.checkState(source.isDirectory(), "Source must be a directory: %s", source);
Preconditions.checkState(destination.exists() && destination.isDirectory(), "Destination must be a directory and must exist: %s", destination);
FileUtils.copyDirectory(source, destination);
}
} |
Extract the directory recursively to the specified location. Current ClassPathResource must point to
a directory.<br>
For example, if classpathresource points to "some/dir/", then the contents - not including the parent directory "dir" -
will be extracted or copied to the specified destination.<br>
@param destination Destination directory. Must exist
| ClassPathResource::copyDirectory | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | Apache-2.0 |
private URL extractActualUrl(URL jarUrl) throws MalformedURLException {
String urlFile = jarUrl.getFile();
int separatorIndex = urlFile.indexOf("!/");
if (separatorIndex != -1) {
String jarFile = urlFile.substring(0, separatorIndex);
try {
return new URL(jarFile);
} catch (MalformedURLException var5) {
if (!jarFile.startsWith("/")) {
jarFile = "/" + jarFile;
}
return new URL("file:" + jarFile);
}
} else {
return jarUrl;
}
} |
Extracts parent Jar URL from original ClassPath entry URL.
@param jarUrl Original URL of the resource
@return URL of the Jar file, containing requested resource
@throws MalformedURLException
| GetStreamFromZip::extractActualUrl | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/io/ClassPathResource.java | Apache-2.0 |
public static List<StackTraceQuery> ofClassPatterns(boolean regex, String... classes) {
List<StackTraceQuery> ret = new ArrayList<>();
for (String s : classes) {
if(regex) {
cachedPatterns.put(s, Pattern.compile(s));
}
ret.add(StackTraceQuery.builder()
.regexMatch(regex)
.className(s).build());
}
return ret;
} |
Create a list of queries
based on the fully qualified class name patterns.
@param regex
@param classes the classes to create queries for
@return the list of queries
| StackTraceQuery::ofClassPatterns | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQuery.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQuery.java | Apache-2.0 |
public static boolean stackTraceFillsAnyCriteria(List<StackTraceQuery> queries, StackTraceElement[] stackTrace) {
if(stackTrace == null)
return false;
if(queries == null)
return false;
for (int j = 0; j < stackTrace.length; j++) {
StackTraceElement line = stackTrace[j];
//parse line like this: org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer.backpropGradient(BidirectionalLayer.java:153)
if (stackTraceElementMatchesCriteria(queries, line, j)) return true;
}
return false;
} |
Returns true if the stack trace element matches the given criteria
@param queries the queries to match on
@param stackTrace the stack trace to match on
(note that the stack trace is in reverse order)
@return true if the stack trace element matches the given criteria
| StackTraceQuery::stackTraceFillsAnyCriteria | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQuery.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQuery.java | Apache-2.0 |
public static boolean stackTraceElementMatchesCriteria(List<StackTraceQuery> queries, StackTraceElement line, int j) {
if(queries == null || queries.isEmpty()) {
return false;
}
for (StackTraceQuery query : queries) {
//allow -1 on line number to mean any line number also allow methods that are unspecified to mean any method
//also check for the line count occurrence -1 means any
boolean classNameMatch = isClassNameMatch(query.getClassName(), query, line.getClassName());
//null or empty method name means any method name, depending on whether an exact match is required
//return we consider it a match
boolean methodNameMatch = isClassNameMatch(query.getMethodName(), query, line.getMethodName());
//< 0 line means any line number
boolean lineNumberMatch = query.getLineNumber() < 0 || query.getLineNumber() == line.getLineNumber();
//whether the user specifies if the match is within the stack trace depth. what this is for is
//to filter stack trace matches to a certain depth. for example, if you want to match a stack trace
//that occurs within a certain method, you can specify the depth of the stack trace to match on.
boolean matchesStackTraceDepth = (query.getOccursWithinLineCount() <= j || query.getOccursWithinLineCount() < 0);
boolean inLineRange = (query.getLineNumberBegin() <= line.getLineNumber() && query.getLineNumberEnd() >= line.getLineNumber()) || (query.getLineNumberBegin() < 0 && query.getLineNumberEnd() < 0);
if (classNameMatch
&& methodNameMatch
&& lineNumberMatch
&& inLineRange
&& matchesStackTraceDepth) {
return true;
}
}
return false;
} |
Returns true if the stack trace element matches the given criteria
@param queries the queries to match on
@param line the stack trace element to match on
@param j the index of the line
@return true if the stack trace element matches the given criteria
| StackTraceQuery::stackTraceElementMatchesCriteria | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQuery.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQuery.java | Apache-2.0 |
public boolean filter(StackTraceElement stackTraceElement) {
if (exclude != null && !exclude.isEmpty()) {
for (StackTraceQuery query : exclude) {
if (query.filter(stackTraceElement)) {
return true;
}
}
}
if (include != null && !include.isEmpty()) {
for (StackTraceQuery query : include) {
if (query.filter(stackTraceElement)) {
return false;
}
}
return false;
}
return false;
} |
Returns true if the stack trace element should be filtered
@param stackTraceElement the stack trace element to filter
@return true if the stack trace element should be filtered, false otherwise
| StackTraceQueryFilters::filter | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQueryFilters.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQueryFilters.java | Apache-2.0 |
public static boolean shouldFilter(StackTraceElement stackTraceElement[],
StackTraceQueryFilters stackTraceQueryFilters) {
if(stackTraceQueryFilters == null || stackTraceElement == null) {
return false;
}
for(StackTraceElement stackTraceElement1 : stackTraceElement) {
if(stackTraceElement1 == null)
continue;
if (stackTraceQueryFilters.filter(stackTraceElement1)) {
return true;
}
}
return false;
} |
Returns true if the stack trace element should be filtered
@param stackTraceElement the stack trace element to filter
@param stackTraceQueryFilters the filters to apply
@return true if the stack trace element should be filtered, false otherwise
| StackTraceQueryFilters::shouldFilter | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQueryFilters.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQueryFilters.java | Apache-2.0 |
public static boolean shouldFilter(StackTraceElement stackTraceElement,
StackTraceQueryFilters stackTraceQueryFilters) {
if(stackTraceQueryFilters == null || stackTraceElement == null)
return false;
return stackTraceQueryFilters.filter(stackTraceElement);
} |
Returns true if the stack trace element should be filtered
@param stackTraceElement the stack trace element to filter
@param stackTraceQueryFilters the filters to apply
@return
| StackTraceQueryFilters::shouldFilter | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQueryFilters.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceQueryFilters.java | Apache-2.0 |
public static StackTraceElement lookup(StackTraceLookupKey key) {
if(!cache.containsKey(key)) {
storeStackTrace(Thread.currentThread().getStackTrace());
}
return cache.get(key);
} |
Lookup a stack trace element by key.
Note you can also directly use {@link #lookup(String, String, int)}
This method is mainly for use cases where you have to deal with multiple stack traces and it could be verbose.
Note that when looking up stack traces sometimes user space code can be missing.
If a cache entry is missing, we'll attempt to cache the current thread's stack trace elements.
Since user input is not guaranteed to be valid, we don't just dynamically create stack trace entries.
If your stack trace is missing, ensure you call {@link #storeStackTrace(StackTraceElement[])}
on your calling thread.
Usually this should be a transparent process included in certain constructors related to
the Environment's NDArray logging being set to true.
@param key the key to lookup
| StackTraceElementCache::lookup | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | Apache-2.0 |
public static Map<StackTraceLookupKey,StackTraceElement> getCache() {
return cache;
} |
Get the cache
@return the cache
| StackTraceElementCache::getCache | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | Apache-2.0 |
public static void storeStackTrace(StackTraceElement[] stackTrace) {
if(stackTrace == null) {
return;
}
for (StackTraceElement stackTraceElement : stackTrace) {
if(stackTrace != null)
storeStackTraceElement(stackTraceElement);
}
} |
Store a stack trace in the cache
@param stackTrace the stack trace to store
| StackTraceElementCache::storeStackTrace | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | Apache-2.0 |
public static void storeStackTraceElement(StackTraceElement stackTraceElement) {
if(stackTraceElement == null) {
return;
}
StackTraceLookupKey key = StackTraceLookupKey.builder()
.className(stackTraceElement.getClassName())
.methodName(stackTraceElement.getMethodName())
.lineNumber(stackTraceElement.getLineNumber()).build();
cache.put(key,stackTraceElement);
} |
Store a stack trace element in the cache
@param stackTraceElement the stack trace element to store
| StackTraceElementCache::storeStackTraceElement | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | Apache-2.0 |
public static boolean containsKey(String className,String methodName,int lineNumber) {
StackTraceLookupKey key = StackTraceLookupKey.builder().className(className).methodName(methodName).lineNumber(lineNumber).build();
return cache.containsKey(key);
} |
Check if the cache contains a stack trace element
@param className the class name to check
@param methodName the method name to check
@param lineNumber the line number to check
@return
| StackTraceElementCache::containsKey | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | Apache-2.0 |
public static StackTraceElement lookup(String className,String methodName,int lineNumber) {
StackTraceLookupKey key = StackTraceLookupKey.builder().className(className).methodName(methodName).lineNumber(lineNumber).build();
return cache.get(key);
} |
Lookup a stack trace element by class name, method name, and line number
@param className the class name to check
@param methodName the method name to check
@param lineNumber the line number to check
@return the stack trace element if it exists, or null if it does not exist
| StackTraceElementCache::lookup | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/linalg/profiler/data/stacktrace/StackTraceElementCache.java | Apache-2.0 |
public static INDArray fromTensor(Tensor tensor) {
byte b = tensor.typeType();
int[] shape = new int[tensor.shapeLength()];
int[] stride = new int[tensor.stridesLength()];
for(int i = 0; i < shape.length; i++) {
shape[i] = (int) tensor.shape(i).size();
stride[i] = (int) tensor.strides(i);
}
int length = ArrayUtil.prod(shape);
Buffer buffer = tensor.data();
if(buffer == null) {
throw new ND4JIllegalStateException("Buffer was not serialized properly.");
}
//deduce element size
int elementSize = (int) buffer.length() / length;
//nd4j strides aren't based on element size
for(int i = 0; i < stride.length; i++) {
stride[i] /= elementSize;
}
DataType type = typeFromTensorType(b,elementSize);
DataBuffer dataBuffer = DataBufferStruct.createFromByteBuffer(tensor.getByteBuffer(),(int) tensor.data().offset(),type,length);
INDArray arr = Nd4j.create(dataBuffer,shape);
arr.setShapeAndStride(shape,stride);
return arr;
} |
Convert a {@link Tensor}
to an {@link INDArray}
@param tensor the input tensor
@return the equivalent {@link INDArray}
| ArrowSerde::fromTensor | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static Tensor toTensor(INDArray arr) {
FlatBufferBuilder bufferBuilder = new FlatBufferBuilder(1024);
long[] strides = getArrowStrides(arr);
int shapeOffset = createDims(bufferBuilder,arr);
int stridesOffset = Tensor.createStridesVector(bufferBuilder,strides);
Tensor.startTensor(bufferBuilder);
Tensor.addShape(bufferBuilder,shapeOffset);
Tensor.addStrides(bufferBuilder,stridesOffset);
int dataOffset = addDataForArr(bufferBuilder,arr);
Tensor.addData(bufferBuilder,dataOffset);
Tensor.addType(bufferBuilder,bufferBuilder.offset());
addTypeTypeRelativeToNDArray(bufferBuilder,arr);
int endTensor = Tensor.endTensor(bufferBuilder);
Tensor.finishTensorBuffer(bufferBuilder,endTensor);
return Tensor.getRootAsTensor(bufferBuilder.dataBuffer());
} |
Convert an {@link INDArray}
to an arrow {@link Tensor}
@param arr the array to convert
@return the equivalent {@link Tensor}
| ArrowSerde::toTensor | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static int addDataForArr(FlatBufferBuilder bufferBuilder, INDArray arr) {
DataBuffer toAdd = arr.isView() ? arr.dup().data() : arr.data();
int offset = DataBufferStruct.createDataBufferStruct(bufferBuilder,toAdd);
return Buffer.createBuffer(bufferBuilder,offset,toAdd.length() * toAdd.getElementSize());
} |
Create a {@link Buffer}
representing the location metadata of the actual data
contents for the ndarrays' {@link DataBuffer}
@param bufferBuilder the buffer builder in use
@param arr the array to add the underlying data for
@return the offset added
| ArrowSerde::addDataForArr | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static void addTypeTypeRelativeToNDArray(FlatBufferBuilder bufferBuilder,INDArray arr) {
switch(arr.data().dataType()) {
case LONG:
case INT:
Tensor.addTypeType(bufferBuilder,Type.Int);
break;
case FLOAT:
Tensor.addTypeType(bufferBuilder,Type.FloatingPoint);
break;
case DOUBLE:
Tensor.addTypeType(bufferBuilder,Type.Decimal);
break;
}
} |
Convert the given {@link INDArray}
data type to the proper data type for the tensor.
@param bufferBuilder the buffer builder in use
@param arr the array to conver tthe data type for
| ArrowSerde::addTypeTypeRelativeToNDArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static int createDims(FlatBufferBuilder bufferBuilder,INDArray arr) {
int[] tensorDimOffsets = new int[arr.rank()];
int[] nameOffset = new int[arr.rank()];
for(int i = 0; i < tensorDimOffsets.length; i++) {
nameOffset[i] = bufferBuilder.createString("");
tensorDimOffsets[i] = TensorDim.createTensorDim(bufferBuilder,arr.size(i),nameOffset[i]);
}
return Tensor.createShapeVector(bufferBuilder,tensorDimOffsets);
} |
Create the dimensions for the flatbuffer builder
@param bufferBuilder the buffer builder to use
@param arr the input array
@return
| ArrowSerde::createDims | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static long[] getArrowStrides(INDArray arr) {
long[] ret = new long[arr.rank()];
for(int i = 0; i < arr.rank(); i++) {
ret[i] = arr.stride(i) * arr.data().getElementSize();
}
return ret;
} |
Get the strides of this {@link INDArray}
multiplieed by the element size.
This is the {@link Tensor} and numpy format
@param arr the array to convert
@return
| ArrowSerde::getArrowStrides | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static DataType typeFromTensorType(byte type, int elementSize) {
if(type == Type.FloatingPoint) {
return DataType.FLOAT;
}
else if(type == Type.Decimal) {
return DataType.DOUBLE;
}
else if(type == Type.Int) {
if(elementSize == 4) {
return DataType.INT;
}
else if(elementSize == 8) {
return DataType.LONG;
}
}
else {
throw new IllegalArgumentException("Only valid types are Type.Decimal and Type.Int");
}
throw new IllegalArgumentException("Unable to determine data type");
} |
Create thee databuffer type frm the given type,
relative to the bytes in arrow in class:
{@link Type}
@param type the type to create the nd4j {@link DataType} from
@param elementSize the element size
@return the data buffer type
| ArrowSerde::typeFromTensorType | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/ArrowSerde.java | Apache-2.0 |
public static DataBuffer createFromByteBuffer(ByteBuffer bb, int bb_pos, DataType type, int length) {
bb.order(ByteOrder.LITTLE_ENDIAN);
int elementSize = DataTypeUtil.lengthForDtype(type);
DataBuffer ret = Nd4j.createBuffer(ByteBuffer.allocateDirect(length * elementSize),type,length);
switch(type) {
case DOUBLE:
for(int i = 0; i < ret.length(); i++) {
double doubleGet = bb.getDouble(bb.capacity() - bb_pos + (i * elementSize));
ret.put(i,doubleGet);
}
break;
case FLOAT:
for(int i = 0; i < ret.length(); i++) {
float floatGet = bb.getFloat(bb.capacity() - bb_pos + (i * elementSize));
ret.put(i,floatGet);
}
break;
case INT:
for(int i = 0; i < ret.length(); i++) {
int intGet = bb.getInt(bb.capacity() - bb_pos + (i * elementSize));
ret.put(i,intGet);
}
break;
case LONG:
for(int i = 0; i < ret.length(); i++) {
long longGet = bb.getLong(bb.capacity() - bb_pos + (i * elementSize));
ret.put(i,longGet);
}
break;
}
return ret;
} |
Create a {@link DataBuffer} from a
byte buffer. This is meant to be used with flatbuffers
@param bb the flat buffers buffer
@param bb_pos the position to start from
@param type the type of buffer to create
@param length the length of the buffer to create
@return the created databuffer
| DataBufferStruct::createFromByteBuffer | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/DataBufferStruct.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/DataBufferStruct.java | Apache-2.0 |
public static int createDataBufferStruct(FlatBufferBuilder bufferBuilder,DataBuffer create) {
bufferBuilder.prep(create.getElementSize(), (int) create.length() * create.getElementSize());
for(int i = (int) (create.length() - 1); i >= 0; i--) {
switch(create.dataType()) {
case DOUBLE:
double putDouble = create.getDouble(i);
bufferBuilder.putDouble(putDouble);
break;
case FLOAT:
float putFloat = create.getFloat(i);
bufferBuilder.putFloat(putFloat);
break;
case INT:
int putInt = create.getInt(i);
bufferBuilder.putInt(putInt);
break;
case LONG:
long putLong = create.getLong(i);
bufferBuilder.putLong(putLong);
}
}
return bufferBuilder.offset();
} |
Create a data buffer struct within
the passed in {@link FlatBufferBuilder}
@param bufferBuilder the existing flatbuffer
to use to serialize the {@link DataBuffer}
@param create the databuffer to serialize
@return an int representing the offset of the buffer
| DataBufferStruct::createDataBufferStruct | java | deeplearning4j/deeplearning4j | nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/DataBufferStruct.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-serde/nd4j-arrow/src/main/java/org/nd4j/arrow/DataBufferStruct.java | Apache-2.0 |
public static void recordGC(long currMemory) {
MemoryCounter.currMemory.set(currMemory);
} |
Record the current amount of memory used when a system.gc runs.
This {@link #currMemory} is meant to be sampled.
@param currMemory the current amount of memory used
| MemoryCounter::recordGC | java | deeplearning4j/deeplearning4j | nd4j/nd4j-profiler/src/main/java/org/nd4j/profiler/MemoryCounter.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-profiler/src/main/java/org/nd4j/profiler/MemoryCounter.java | Apache-2.0 |
public static DataType dataTypeForTvmType(DLDataType dataType) {
if(dataType.code() == kDLInt && dataType.bits() == 8) {
return INT8;
} else if(dataType.code() == kDLInt && dataType.bits() == 16) {
return INT16;
} else if(dataType.code() == kDLInt && dataType.bits() == 32) {
return INT32;
} else if(dataType.code() == kDLInt && dataType.bits() == 64) {
return INT64;
} else if(dataType.code() == kDLUInt && dataType.bits() == 8) {
return UINT8;
} else if(dataType.code() == kDLUInt && dataType.bits() == 16) {
return UINT16;
} else if(dataType.code() == kDLUInt && dataType.bits() == 32) {
return UINT32;
} else if(dataType.code() == kDLUInt && dataType.bits() == 64) {
return UINT64;
} else if(dataType.code() == kDLFloat && dataType.bits() == 16) {
return FLOAT16;
} else if(dataType.code() == kDLFloat && dataType.bits() == 32) {
return FLOAT;
} else if(dataType.code() == kDLFloat && dataType.bits() == 64) {
return DOUBLE;
} else if(dataType.code() == kDLBfloat && dataType.bits() == 16) {
return BFLOAT16;
} else
throw new IllegalArgumentException("Illegal data type code " + dataType.code() + " with bits " + dataType.bits());
} |
Return a {@link DataType}
for the tvm data type
@param dataType the equivalent nd4j data type
@return
| TVMUtils::dataTypeForTvmType | java | deeplearning4j/deeplearning4j | nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | Apache-2.0 |
public static DLDataType tvmTypeForDataType(DataType dataType) {
if(dataType == INT8) {
return new DLDataType().code((byte)kDLInt).bits((byte)8).lanes((short)1);
} else if(dataType == INT16) {
return new DLDataType().code((byte)kDLInt).bits((byte)16).lanes((short)1);
} else if(dataType == INT32) {
return new DLDataType().code((byte)kDLInt).bits((byte)32).lanes((short)1);
} else if(dataType == INT64) {
return new DLDataType().code((byte)kDLInt).bits((byte)64).lanes((short)1);
} else if(dataType == UINT8) {
return new DLDataType().code((byte)kDLUInt).bits((byte)8).lanes((short)1);
} else if(dataType == UINT16) {
return new DLDataType().code((byte)kDLUInt).bits((byte)16).lanes((short)1);
} else if(dataType == UINT32) {
return new DLDataType().code((byte)kDLUInt).bits((byte)32).lanes((short)1);
} else if(dataType == UINT64) {
return new DLDataType().code((byte)kDLUInt).bits((byte)64).lanes((short)1);
} else if(dataType == FLOAT16) {
return new DLDataType().code((byte)kDLFloat).bits((byte)16).lanes((short)1);
} else if(dataType == FLOAT) {
return new DLDataType().code((byte)kDLFloat).bits((byte)32).lanes((short)1);
} else if(dataType == DOUBLE) {
return new DLDataType().code((byte)kDLFloat).bits((byte)64).lanes((short)1);
} else if(dataType == BFLOAT16) {
return new DLDataType().code((byte)kDLBfloat).bits((byte)16).lanes((short)1);
} else
throw new IllegalArgumentException("Illegal data type " + dataType);
} |
Convert the tvm type for the given data type
@param dataType
@return
| TVMUtils::tvmTypeForDataType | java | deeplearning4j/deeplearning4j | nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | Apache-2.0 |
public static INDArray getArray(DLTensor value) {
DataType dataType = dataTypeForTvmType(value.dtype());
LongPointer shape = value.shape();
LongPointer stride = value.strides();
long[] shapeConvert;
if(shape != null) {
shapeConvert = new long[value.ndim()];
shape.get(shapeConvert);
} else {
shapeConvert = new long[]{1};
}
long[] strideConvert;
if(stride != null) {
strideConvert = new long[value.ndim()];
stride.get(strideConvert);
} else {
strideConvert = Nd4j.getStrides(shapeConvert);
}
long size = 1;
for (int i = 0; i < shapeConvert.length; i++) {
size *= shapeConvert[i];
}
size *= value.dtype().bits() / 8;
DataBuffer getBuffer = getDataBuffer(value,size);
Preconditions.checkState(dataType.equals(getBuffer.dataType()),"Data type must be equivalent as specified by the tvm metadata.");
return Nd4j.create(getBuffer,shapeConvert,strideConvert,0);
} |
Convert an tvm {@link DLTensor}
in to an {@link INDArray}
@param value the tensor to convert
@return
| TVMUtils::getArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | Apache-2.0 |
public static DLTensor getTensor(INDArray ndArray, DLDevice ctx) {
DLTensor ret = new DLTensor();
ret.data(ndArray.data().pointer());
ret.device(ctx);
ret.ndim(ndArray.rank());
ret.dtype(tvmTypeForDataType(ndArray.dataType()));
ret.shape(new LongPointer(ndArray.shape()));
ret.strides(new LongPointer(ndArray.stride()));
ret.byte_offset(ndArray.offset());
return ret;
} |
Get an tvm tensor from an ndarray.
@param ndArray the ndarray to get the value from
@param ctx the {@link DLDevice} to use.
@return
| TVMUtils::getTensor | java | deeplearning4j/deeplearning4j | nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | Apache-2.0 |
public static DataBuffer getDataBuffer(DLTensor tens, long size) {
DataBuffer buffer = null;
DataType type = dataTypeForTvmType(tens.dtype());
switch (type) {
case BYTE:
BytePointer pInt8 = new BytePointer(tens.data()).capacity(size);
Indexer int8Indexer = ByteIndexer.create(pInt8);
buffer = Nd4j.createBuffer(pInt8, type, size, int8Indexer);
break;
case SHORT:
ShortPointer pInt16 = new ShortPointer(tens.data()).capacity(size);
Indexer int16Indexer = ShortIndexer.create(pInt16);
buffer = Nd4j.createBuffer(pInt16, type, size, int16Indexer);
break;
case INT:
IntPointer pInt32 = new IntPointer(tens.data()).capacity(size);
Indexer int32Indexer = IntIndexer.create(pInt32);
buffer = Nd4j.createBuffer(pInt32, type, size, int32Indexer);
break;
case LONG:
LongPointer pInt64 = new LongPointer(tens.data()).capacity(size);
Indexer int64Indexer = LongIndexer.create(pInt64);
buffer = Nd4j.createBuffer(pInt64, type, size, int64Indexer);
break;
case UBYTE:
BytePointer pUint8 = new BytePointer(tens.data()).capacity(size);
Indexer uint8Indexer = UByteIndexer.create(pUint8);
buffer = Nd4j.createBuffer(pUint8, type, size, uint8Indexer);
break;
case UINT16:
ShortPointer pUint16 = new ShortPointer(tens.data()).capacity(size);
Indexer uint16Indexer = UShortIndexer.create(pUint16);
buffer = Nd4j.createBuffer(pUint16, type, size, uint16Indexer);
break;
case UINT32:
IntPointer pUint32 = new IntPointer(tens.data()).capacity(size);
Indexer uint32Indexer = UIntIndexer.create(pUint32);
buffer = Nd4j.createBuffer(pUint32, type, size, uint32Indexer);
break;
case UINT64:
LongPointer pUint64 = new LongPointer(tens.data()).capacity(size);
Indexer uint64Indexer = LongIndexer.create(pUint64);
buffer = Nd4j.createBuffer(pUint64, type, size, uint64Indexer);
break;
case HALF:
ShortPointer pFloat16 = new ShortPointer(tens.data()).capacity(size);
Indexer float16Indexer = HalfIndexer.create(pFloat16);
buffer = Nd4j.createBuffer(pFloat16, type, size, float16Indexer);
break;
case FLOAT:
FloatPointer pFloat = new FloatPointer(tens.data()).capacity(size);
FloatIndexer floatIndexer = FloatIndexer.create(pFloat);
buffer = Nd4j.createBuffer(pFloat, type, size, floatIndexer);
break;
case DOUBLE:
DoublePointer pDouble = new DoublePointer(tens.data()).capacity(size);
Indexer doubleIndexer = DoubleIndexer.create(pDouble);
buffer = Nd4j.createBuffer(pDouble, type, size, doubleIndexer);
break;
case BFLOAT16:
ShortPointer pBfloat16 = new ShortPointer(tens.data()).capacity(size);
Indexer bfloat16Indexer = Bfloat16Indexer.create(pBfloat16);
buffer = Nd4j.createBuffer(pBfloat16, type, size, bfloat16Indexer);
break;
default:
throw new RuntimeException("Unsupported data type encountered");
}
return buffer;
} |
Get the data buffer from the given value
@param tens the values to get
@return the equivalent data buffer
| TVMUtils::getDataBuffer | java | deeplearning4j/deeplearning4j | nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/util/TVMUtils.java | Apache-2.0 |
public Map<String,INDArray> exec(Map<String,INDArray> input) {
try (PointerScope scope = new PointerScope()) {
getNumInputs.CallPacked(new TVMArgs(values, codes, 0), rv);
long numInputNodes = rv.asLong();
getNumOutputs.CallPacked(new TVMArgs(values, codes, 0), rv);
long numOutputNodes = rv.asLong();
// set the right input
for (Map.Entry<String,INDArray> e : input.entrySet()) {
String name = e.getKey();
INDArray arr = e.getValue();
DLTensor inputTensor = getTensor(arr, ctx);
Preconditions.checkState(inputTensor != null,"Input must be a tensor.");
setter.apply(0, new BytePointer(name));
setter.apply(1, inputTensor);
setInput.CallPacked(new TVMArgs(values, codes, 2), rv);
}
// run the code
run.CallPacked(new TVMArgs(values, codes, 0), rv);
Map<String, INDArray> ret = new LinkedHashMap<>();
// get the output
for (int i = 0; i < numOutputNodes; i++) {
setter.apply(0, i);
getOutput.CallPacked(new TVMArgs(values, codes, 1), rv);
DLTensor outputTensor = rv.asDLTensor();
ret.put(Integer.toString(i), getArray(outputTensor));
}
return ret;
}
} |
Execute the {@link #run} function
using the given input {@link Map}
@param input the input map
@return a map of the names of the ndarrays
| TvmRunner::exec | java | deeplearning4j/deeplearning4j | nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/runner/TvmRunner.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-tvm/src/main/java/org/nd4j/tvm/runner/TvmRunner.java | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.