code
stringlengths
11
173k
docstring
stringlengths
2
593k
func_name
stringlengths
2
189
language
stringclasses
1 value
repo
stringclasses
833 values
path
stringlengths
11
294
url
stringlengths
60
339
license
stringclasses
4 values
public ROCBinary(int thresholdSteps, boolean rocRemoveRedundantPts) { this.thresholdSteps = thresholdSteps; this.rocRemoveRedundantPts = rocRemoveRedundantPts; }
@param thresholdSteps Number of threshold steps to use for the ROC calculation. If set to 0: use exact calculation @param rocRemoveRedundantPts Usually set to true. If true, remove any redundant points from ROC and P-R curves
private::ROCBinary
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public int numLabels() { if (underlying == null) { return -1; } return underlying.length; }
Returns the number of labels - (i.e., size of the prediction/labels arrays) - if known. Returns -1 otherwise
private::numLabels
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public long getCountActualPositive(int outputNum) { assertIndex(outputNum); return underlying[outputNum].getCountActualPositive(); }
Get the actual positive count (accounting for any masking) for the specified output/column @param outputNum Index of the output (0 to {@link #numLabels()}-1)
private::getCountActualPositive
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public long getCountActualNegative(int outputNum) { assertIndex(outputNum); return underlying[outputNum].getCountActualNegative(); }
Get the actual negative count (accounting for any masking) for the specified output/column @param outputNum Index of the output (0 to {@link #numLabels()}-1)
private::getCountActualNegative
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public ROC getROC(int outputNum){ assertIndex(outputNum); return underlying[outputNum]; }
Get the ROC object for the specific column @param outputNum Column (output number) @return The underlying ROC object for this specific column
private::getROC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public RocCurve getRocCurve(int outputNum) { assertIndex(outputNum); return underlying[outputNum].getRocCurve(); }
Get the ROC curve for the specified output @param outputNum Number of the output to get the ROC curve for @return ROC curve
private::getRocCurve
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public PrecisionRecallCurve getPrecisionRecallCurve(int outputNum) { assertIndex(outputNum); return underlying[outputNum].getPrecisionRecallCurve(); }
Get the Precision-Recall curve for the specified output @param outputNum Number of the output to get the P-R curve for @return Precision recall curve
private::getPrecisionRecallCurve
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public double calculateAverageAuc() { double ret = 0.0; for (int i = 0; i < numLabels(); i++) { ret += calculateAUC(i); } return ret / (double) numLabels(); }
Macro-average AUC for all outcomes @return the (macro-)average AUC for all outcomes.
private::calculateAverageAuc
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public double calculateAverageAUCPR(){ double ret = 0.0; for (int i = 0; i < numLabels(); i++) { ret += calculateAUCPR(i); } return ret / (double) numLabels(); }
@return the (macro-)average AUPRC (area under precision recall curve)
private::calculateAverageAUCPR
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public double calculateAUC(int outputNum) { assertIndex(outputNum); return underlying[outputNum].calculateAUC(); }
Calculate the AUC - Area Under (ROC) Curve<br> Utilizes trapezoidal integration internally @param outputNum Output number to calculate AUC for @return AUC
private::calculateAUC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public double calculateAUCPR(int outputNum) { assertIndex(outputNum); return underlying[outputNum].calculateAUCPR(); }
Calculate the AUCPR - Area Under Curve - Precision Recall<br> Utilizes trapezoidal integration internally @param outputNum Output number to calculate AUCPR for @return AUCPR
private::calculateAUCPR
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public void setLabelNames(List<String> labels) { if (labels == null) { this.labels = null; return; } this.labels = new ArrayList<>(labels); }
Set the label names, for printing via {@link #stats()}
private::setLabelNames
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCBinary.java
Apache-2.0
public RocCurve getRocCurve(int classIdx) { assertIndex(classIdx); return underlying[classIdx].getRocCurve(); }
Get the (one vs. all) ROC curve for the specified class @param classIdx Class index to get the ROC curve for @return ROC curve for the given class
private::getRocCurve
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
Apache-2.0
public PrecisionRecallCurve getPrecisionRecallCurve(int classIdx) { assertIndex(classIdx); return underlying[classIdx].getPrecisionRecallCurve(); }
Get the (one vs. all) Precision-Recall curve for the specified class @param classIdx Class to get the P-R curve for @return Precision recall curve for the given class
private::getPrecisionRecallCurve
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
Apache-2.0
public double calculateAUC(int classIdx) { assertIndex(classIdx); return underlying[classIdx].calculateAUC(); }
Calculate the AUC - Area Under ROC Curve<br> Utilizes trapezoidal integration internally @return AUC
private::calculateAUC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
Apache-2.0
public double calculateAUCPR(int classIdx) { assertIndex(classIdx); return underlying[classIdx].calculateAUCPR(); }
Calculate the AUPRC - Area Under Curve Precision Recall <br> Utilizes trapezoidal integration internally @return AUC
private::calculateAUCPR
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
Apache-2.0
public double calculateAverageAUC() { assertIndex(0); double sum = 0.0; for (int i = 0; i < underlying.length; i++) { sum += calculateAUC(i); } return sum / underlying.length; }
Calculate the macro-average (one-vs-all) AUC for all classes
private::calculateAverageAUC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
Apache-2.0
public double calculateAverageAUCPR() { double sum = 0.0; for (int i = 0; i < underlying.length; i++) { sum += calculateAUCPR(i); } return sum / underlying.length; }
Calculate the macro-average (one-vs-all) AUCPR (area under precision recall curve) for all classes
private::calculateAverageAUCPR
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROCMultiClass.java
Apache-2.0
public EvaluationBinary(INDArray decisionThreshold) { if (decisionThreshold != null) { if (!decisionThreshold.isRowVectorOrScalar()) { throw new IllegalArgumentException( "Decision threshold array must be a row vector; got array with shape " + Arrays.toString(decisionThreshold.shape())); } if (decisionThreshold.minNumber().doubleValue() < 0.0) { throw new IllegalArgumentException("Invalid decision threshold array: minimum value is less than 0"); } if (decisionThreshold.maxNumber().doubleValue() > 1.0) { throw new IllegalArgumentException( "invalid decision threshold array: maximum value is greater than 1.0"); } this.decisionThreshold = decisionThreshold; } }
Create an EvaulationBinary instance with an optional decision threshold array. @param decisionThreshold Decision threshold for each output; may be null. Should be a row vector with length equal to the number of outputs, with values in range 0 to 1. An array of 0.5 values is equivalent to the default (no manually specified decision threshold).
JsonDeserialize::EvaluationBinary
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public EvaluationBinary(int size, Integer rocBinarySteps) { countTruePositive = new int[size]; countFalsePositive = new int[size]; countTrueNegative = new int[size]; countFalseNegative = new int[size]; if (rocBinarySteps != null) { rocBinary = new ROCBinary(rocBinarySteps); } }
This constructor allows for ROC to be calculated in addition to the standard evaluation metrics, when the rocBinarySteps arg is non-null. See {@link ROCBinary} for more details @param size Number of outputs @param rocBinarySteps Constructor arg for {@link ROCBinary#ROCBinary(int)}
JsonDeserialize::EvaluationBinary
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public int totalCount(int outputNum) { assertIndex(outputNum); return countTruePositive[outputNum] + countTrueNegative[outputNum] + countFalseNegative[outputNum] + countFalsePositive[outputNum]; }
Get the total number of values for the specified column, accounting for any masking
JsonDeserialize::totalCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public int truePositives(int outputNum) { assertIndex(outputNum); return countTruePositive[outputNum]; }
Get the true positives count for the specified output
JsonDeserialize::truePositives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public int trueNegatives(int outputNum) { assertIndex(outputNum); return countTrueNegative[outputNum]; }
Get the true negatives count for the specified output
JsonDeserialize::trueNegatives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public int falsePositives(int outputNum) { assertIndex(outputNum); return countFalsePositive[outputNum]; }
Get the false positives count for the specified output
JsonDeserialize::falsePositives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public int falseNegatives(int outputNum) { assertIndex(outputNum); return countFalseNegative[outputNum]; }
Get the false negatives count for the specified output
JsonDeserialize::falseNegatives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double accuracy(int outputNum) { assertIndex(outputNum); return (countTruePositive[outputNum] + countTrueNegative[outputNum]) / (double) totalCount(outputNum); }
Get the accuracy for the specified output
JsonDeserialize::accuracy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double precision(int outputNum) { assertIndex(outputNum); //double precision = tp / (double) (tp + fp); return countTruePositive[outputNum] / (double) (countTruePositive[outputNum] + countFalsePositive[outputNum]); }
Get the precision (tp / (tp + fp)) for the specified output
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double recall(int outputNum) { assertIndex(outputNum); return countTruePositive[outputNum] / (double) (countTruePositive[outputNum] + countFalseNegative[outputNum]); }
Get the recall (tp / (tp + fn)) for the specified output
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double fBeta(double beta, int outputNum) { assertIndex(outputNum); double precision = precision(outputNum); double recall = recall(outputNum); return EvaluationUtils.fBeta(beta, precision, recall); }
Calculate the F-beta value for the given output @param beta Beta value to use @param outputNum Output number @return F-beta for the given output
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double f1(int outputNum) { return fBeta(1.0, outputNum); }
Get the F1 score for the specified output
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double matthewsCorrelation(int outputNum) { assertIndex(outputNum); return EvaluationUtils.matthewsCorrelation(truePositives(outputNum), falsePositives(outputNum), falseNegatives(outputNum), trueNegatives(outputNum)); }
Calculate the Matthews correlation coefficient for the specified output @param outputNum Output number @return Matthews correlation coefficient
JsonDeserialize::matthewsCorrelation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double averageMatthewsCorrelation() { double ret = 0.0; for (int i = 0; i < numLabels(); i++) { ret += matthewsCorrelation(i); } ret /= (double) numLabels(); return ret; }
Macro average of the Matthews correlation coefficient (MCC) (see {@link #matthewsCorrelation(int)}) for all labels. @return The macro average of the MCC for all labels.
JsonDeserialize::averageMatthewsCorrelation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double gMeasure(int output) { double precision = precision(output); double recall = recall(output); return EvaluationUtils.gMeasure(precision, recall); }
Calculate the macro average G-measure for the given output @param output The specified output @return The macro average of the G-measure for the specified output
JsonDeserialize::gMeasure
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double averageGMeasure() { double ret = 0.0; for (int i = 0; i < numLabels(); i++) { ret += gMeasure(i); } ret /= (double) numLabels(); return ret; }
Average G-measure (see {@link #gMeasure(int)}) for all labels. @return The G-measure for all labels.
JsonDeserialize::averageGMeasure
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double falsePositiveRate(int classLabel) { assertIndex(classLabel); return falsePositiveRate(classLabel, DEFAULT_EDGE_VALUE); }
Returns the false positive rate for a given label @param classLabel the label @return fpr as a double
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double falsePositiveRate(int classLabel, double edgeCase) { double fpCount = falsePositives(classLabel); double tnCount = trueNegatives(classLabel); return EvaluationUtils.falsePositiveRate((long) fpCount, (long) tnCount, edgeCase); }
Returns the false positive rate for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return fpr as a double
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double falseNegativeRate(Integer classLabel) { return falseNegativeRate(classLabel, DEFAULT_EDGE_VALUE); }
Returns the false negative rate for a given label @param classLabel the label @return fnr as a double
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double falseNegativeRate(Integer classLabel, double edgeCase) { double fnCount = falseNegatives(classLabel); double tpCount = truePositives(classLabel); return EvaluationUtils.falseNegativeRate((long) fnCount, (long) tpCount, edgeCase); }
Returns the false negative rate for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return fnr as a double
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public ROCBinary getROCBinary() { return rocBinary; }
Returns the {@link ROCBinary} instance, if present
JsonDeserialize::getROCBinary
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double averageFalseAlarmRate() { double ret = 0.0; for (int i = 0; i < numLabels(); i++) { ret += falseAlarmRate(i); } ret /= (double) numLabels(); return ret; }
Average False Alarm Rate (FAR) (see {@link #falseAlarmRate(int)}) for all labels. @return The FAR for all labels.
JsonDeserialize::averageFalseAlarmRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double falseAlarmRate(int outputNum) { assertIndex(outputNum); return (falsePositiveRate(outputNum) + falseNegativeRate(outputNum)) / 2.0; }
False Alarm Rate (FAR) reflects rate of misclassified to classified records <a href="http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw">http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw</a><br> @param outputNum Class index to calculate False Alarm Rate (FAR) @return The FAR for the outcomes
JsonDeserialize::falseAlarmRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public String stats() { return stats(DEFAULT_PRECISION); }
Get a String representation of the EvaluationBinary class, using the default precision
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public String stats(int printPrecision) { StringBuilder sb = new StringBuilder(); //Report: Accuracy, precision, recall, F1. Then: confusion matrix int maxLabelsLength = 15; if (labels != null) { for (String s : labels) { maxLabelsLength = Math.max(s.length(), maxLabelsLength); } } String subPattern = "%-12." + printPrecision + "f"; String pattern = "%-" + (maxLabelsLength + 5) + "s" //Label + subPattern + subPattern + subPattern + subPattern //Accuracy, f1, precision, recall + "%-8d%-7d%-7d%-7d%-7d"; //Total count, TP, TN, FP, FN String patternHeader = "%-" + (maxLabelsLength + 5) + "s%-12s%-12s%-12s%-12s%-8s%-7s%-7s%-7s%-7s"; List<String> headerNames = Arrays.asList("Label", "Accuracy", "F1", "Precision", "Recall", "Total", "TP", "TN", "FP", "FN"); if (rocBinary != null) { patternHeader += "%-12s"; pattern += subPattern; headerNames = new ArrayList<>(headerNames); headerNames.add("AUC"); } String header = String.format(patternHeader, headerNames.toArray()); sb.append(header); if (countTrueNegative != null) { for (int i = 0; i < countTrueNegative.length; i++) { int totalCount = totalCount(i); double acc = accuracy(i); double f1 = f1(i); double precision = precision(i); double recall = recall(i); String label = (labels == null ? String.valueOf(i) : labels.get(i)); List<Object> args = Arrays.<Object>asList(label, acc, f1, precision, recall, totalCount, truePositives(i), trueNegatives(i), falsePositives(i), falseNegatives(i)); if (rocBinary != null) { args = new ArrayList<>(args); args.add(rocBinary.calculateAUC(i)); } sb.append("\n").append(String.format(pattern, args.toArray())); } if (decisionThreshold != null) { sb.append("\nPer-output decision thresholds: ") .append(Arrays.toString(decisionThreshold.dup().data().asFloat())); } } else { //Empty evaluation sb.append("\n-- No Data --\n"); } return sb.toString(); }
Get a String representation of the EvaluationBinary class, using the specified precision @param printPrecision The precision (number of decimal places) for the accuracy, f1, etc.
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public double scoreForMetric(Metric metric, int outputNum){ switch (metric){ case ACCURACY: return accuracy(outputNum); case F1: return f1(outputNum); case PRECISION: return precision(outputNum); case RECALL: return recall(outputNum); case GMEASURE: return gMeasure(outputNum); case MCC: return matthewsCorrelation(outputNum); case FAR: return falseAlarmRate(outputNum); default: throw new IllegalStateException("Unknown metric: " + metric); } }
Calculate specific metric (see {@link Metric}) for a given label. @param metric The Metric to calculate. @param outputNum Class index to calculate. @return Calculated metric.
JsonDeserialize::scoreForMetric
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/EvaluationBinary.java
Apache-2.0
public ConfusionMatrix(List<T> classes) { this.matrix = new ConcurrentHashMap<>(); this.classes = classes; }
Creates an empty confusion Matrix
ConfusionMatrix::ConfusionMatrix
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public ConfusionMatrix(ConfusionMatrix<T> other) { this(other.getClasses()); this.add(other); }
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
ConfusionMatrix::ConfusionMatrix
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public synchronized void add(T actual, T predicted) { add(actual, predicted, 1); }
Increments the entry specified by actual and predicted by one.
ConfusionMatrix::add
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public synchronized void add(T actual, T predicted, int count) { if (matrix.containsKey(actual)) { matrix.get(actual).add(predicted, count); } else { Multiset<T> counts = HashMultiset.create(); counts.add(predicted, count); matrix.put(actual, counts); } }
Increments the entry specified by actual and predicted by count.
ConfusionMatrix::add
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public synchronized void add(ConfusionMatrix<T> other) { for (T actual : other.matrix.keySet()) { Multiset<T> counts = other.matrix.get(actual); for (T predicted : counts.elementSet()) { int count = counts.count(predicted); this.add(actual, predicted, count); } } }
Adds the entries from another confusion matrix to this one.
ConfusionMatrix::add
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public List<T> getClasses() { if (classes == null) classes = new ArrayList<>(); return classes; }
Gives the applyTransformToDestination of all classes in the confusion matrix.
ConfusionMatrix::getClasses
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public synchronized int getCount(T actual, T predicted) { if (!matrix.containsKey(actual)) { return 0; } else { return matrix.get(actual).count(predicted); } }
Gives the count of the number of times the "predicted" class was predicted for the "actual" class.
ConfusionMatrix::getCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public synchronized int getPredictedTotal(T predicted) { int total = 0; for (T actual : classes) { total += getCount(actual, predicted); } return total; }
Computes the total number of times the class was predicted by the classifier.
ConfusionMatrix::getPredictedTotal
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public synchronized int getActualTotal(T actual) { if (!matrix.containsKey(actual)) { return 0; } else { int total = 0; for (T elem : matrix.get(actual).elementSet()) { total += matrix.get(actual).count(elem); } return total; } }
Computes the total number of times the class actually appeared in the data.
ConfusionMatrix::getActualTotal
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public String toCSV() { StringBuilder builder = new StringBuilder(); // Header Row builder.append(",,Predicted Class,\n"); // Predicted Classes Header Row builder.append(",,"); for (T predicted : classes) { builder.append(String.format("%s,", predicted)); } builder.append("Total\n"); // Data Rows String firstColumnLabel = "Actual Class,"; for (T actual : classes) { builder.append(firstColumnLabel); firstColumnLabel = ","; builder.append(String.format("%s,", actual)); for (T predicted : classes) { builder.append(getCount(actual, predicted)); builder.append(","); } // Actual Class Totals Column builder.append(getActualTotal(actual)); builder.append("\n"); } // Predicted Class Totals Row builder.append(",Total,"); for (T predicted : classes) { builder.append(getPredictedTotal(predicted)); builder.append(","); } builder.append("\n"); return builder.toString(); }
Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
ConfusionMatrix::toCSV
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public String toHTML() { StringBuilder builder = new StringBuilder(); int numClasses = classes.size(); // Header Row builder.append("<table>\n"); builder.append("<tr><th class=\"empty-space\" colspan=\"2\" rowspan=\"2\">"); builder.append(String.format("<th class=\"predicted-class-header\" colspan=\"%d\">Predicted Class</th></tr>%n", numClasses + 1)); // Predicted Classes Header Row builder.append("<tr>"); // builder.append("<th></th><th></th>"); for (T predicted : classes) { builder.append("<th class=\"predicted-class-header\">"); builder.append(predicted); builder.append("</th>"); } builder.append("<th class=\"predicted-class-header\">Total</th>"); builder.append("</tr>\n"); // Data Rows String firstColumnLabel = String.format( "<tr><th class=\"actual-class-header\" rowspan=\"%d\">Actual Class</th>", numClasses + 1); for (T actual : classes) { builder.append(firstColumnLabel); firstColumnLabel = "<tr>"; builder.append(String.format("<th class=\"actual-class-header\" >%s</th>", actual)); for (T predicted : classes) { builder.append("<td class=\"count-element\">"); builder.append(getCount(actual, predicted)); builder.append("</td>"); } // Actual Class Totals Column builder.append("<td class=\"count-element\">"); builder.append(getActualTotal(actual)); builder.append("</td>"); builder.append("</tr>\n"); } // Predicted Class Totals Row builder.append("<tr><th class=\"actual-class-header\">Total</th>"); for (T predicted : classes) { builder.append("<td class=\"count-element\">"); builder.append(getPredictedTotal(predicted)); builder.append("</td>"); } builder.append("<td class=\"empty-space\"></td>\n"); builder.append("</tr>\n"); builder.append("</table>\n"); return builder.toString(); }
Outputs Confusion Matrix in an HTML table. Cascading Style Sheets (CSS) can control the table's appearance by defining the empty-space, actual-count-header, predicted-class-header, and count-element classes. For example @return html string
ConfusionMatrix::toHTML
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ConfusionMatrix.java
Apache-2.0
public ROC(int thresholdSteps) { this(thresholdSteps, true); }
@param thresholdSteps Number of threshold steps to use for the ROC calculation. If set to 0: use exact calculation
Metric::ROC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
Apache-2.0
public ROC(int thresholdSteps, boolean rocRemoveRedundantPts) { this(thresholdSteps, rocRemoveRedundantPts, DEFAULT_EXACT_ALLOC_BLOCK_SIZE); }
@param thresholdSteps Number of threshold steps to use for the ROC calculation. If set to 0: use exact calculation @param rocRemoveRedundantPts Usually set to true. If true, remove any redundant points from ROC and P-R curves
Metric::ROC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
Apache-2.0
public ROC(int thresholdSteps, boolean rocRemoveRedundantPts, int exactAllocBlockSize) { if (thresholdSteps > 0) { this.thresholdSteps = thresholdSteps; double step = 1.0 / thresholdSteps; for (int i = 0; i <= thresholdSteps; i++) { double currThreshold = i * step; counts.put(currThreshold, new CountsForThreshold(currThreshold)); } isExact = false; } else { //Exact isExact = true; } this.rocRemoveRedundantPts = rocRemoveRedundantPts; this.exactAllocBlockSize = exactAllocBlockSize; }
@param thresholdSteps Number of threshold steps to use for the ROC calculation. If set to 0: use exact calculation @param rocRemoveRedundantPts Usually set to true. If true, remove any redundant points from ROC and P-R curves @param exactAllocBlockSize if using exact mode, the block size relocation. Users can likely use the default setting in almost all cases
Metric::ROC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
Apache-2.0
public Evaluation(int numClasses) { this(numClasses, (numClasses == 2 ? 1 : null)); }
The number of classes to account for in the evaluation @param numClasses the number of classes to account for in the evaluation
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(int numClasses, Integer binaryPositiveClass){ this(createLabels(numClasses), 1); if(binaryPositiveClass != null){ Preconditions.checkArgument(binaryPositiveClass == 0 || binaryPositiveClass == 1, "Only 0 and 1 are valid inputs for binaryPositiveClass; got " + binaryPositiveClass); Preconditions.checkArgument(numClasses == 2, "Cannot set binaryPositiveClass argument " + "when number of classes is not equal to 2 (got: numClasses=" + numClasses + ")"); } this.binaryPositiveClass = binaryPositiveClass; }
Constructor for specifying the number of classes, and optionally the positive class for binary classification. See Evaluation javadoc for more details on evaluation in the binary case @param numClasses The number of classes for the evaluation. Must be 2, if binaryPositiveClass is non-null @param binaryPositiveClass If non-null, the positive class (0 or 1).
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(List<String> labels) { this(labels, 1); }
The labels to include with the evaluation. This constructor can be used for generating labeled output rather than just numbers for the labels @param labels the labels to use for the output
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(Map<Integer, String> labels) { this(createLabelsFromMap(labels), 1); }
Use a map to generate labels Pass in a label index with the actual label you want to use for output @param labels a map of label index to label value
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(List<String> labels, int topN) { this.labelsList = labels; if (labels != null) { createConfusion(labels.size()); } this.topN = topN; if(labels != null && labels.size() == 2){ this.binaryPositiveClass = 1; } }
Constructor to use for top N accuracy @param labels Labels for the classes (may be null) @param topN Value to use for top N accuracy calculation (<=1: standard accuracy). Note that with top N accuracy, an example is considered 'correct' if the probability for the true class is one of the highest N values
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(double binaryDecisionThreshold) { this(binaryDecisionThreshold, 1); }
Create an evaluation instance with a custom binary decision threshold. Note that binary decision thresholds can only be used with binary classifiers.<br> Defaults to class 1 for the positive class - see class javadoc, and use {@link #Evaluation(double, Integer)} to change this. @param binaryDecisionThreshold Decision threshold to use for binary predictions
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(double binaryDecisionThreshold, @NonNull Integer binaryPositiveClass) { if(binaryPositiveClass != null){ Preconditions.checkArgument(binaryPositiveClass == 0 || binaryPositiveClass == 1, "Only 0 and 1 are valid inputs for binaryPositiveClass; got " + binaryPositiveClass); } this.binaryDecisionThreshold = binaryDecisionThreshold; this.topN = 1; this.binaryPositiveClass = binaryPositiveClass; }
Create an evaluation instance with a custom binary decision threshold. Note that binary decision thresholds can only be used with binary classifiers.<br> This constructor also allows the user to specify the positive class for binary classification. See class javadoc for more details. @param binaryDecisionThreshold Decision threshold to use for binary predictions
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(INDArray costArray) { this(null, costArray); }
Created evaluation instance with the specified cost array. A cost array can be used to bias the multi class predictions towards or away from certain classes. The predicted class is determined using argMax(cost * probability) instead of argMax(probability) when no cost array is present. @param costArray Row vector cost array. May be null
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(List<String> labels, INDArray costArray) { if (costArray != null && !costArray.isRowVectorOrScalar()) { throw new IllegalArgumentException("Invalid cost array: must be a row vector (got shape: " + Arrays.toString(costArray.shape()) + ")"); } if (costArray != null && costArray.minNumber().doubleValue() < 0.0) { throw new IllegalArgumentException("Invalid cost array: Cost array values must be positive"); } this.labelsList = labels; this.costArray = costArray == null ? null : costArray.castTo(DataType.FLOAT); this.topN = 1; }
Created evaluation instance with the specified cost array. A cost array can be used to bias the multi class predictions towards or away from certain classes. The predicted class is determined using argMax(cost * probability) instead of argMax(probability) when no cost array is present. @param labels Labels for the output classes. May be null @param costArray Row vector cost array. May be null
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public void eval(INDArray realOutcomes, INDArray guesses) { eval(realOutcomes, guesses, (List<Serializable>) null); }
Collects statistics on the real outcomes vs the guesses. This is for logistic outcome matrices. <p> Note that an IllegalArgumentException is thrown if the two passed in matrices aren't the same length. @param realOutcomes the real outcomes (labels - usually binary) @param guesses the guesses/prediction (usually a probability vector)
JsonDeserialize::eval
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public void eval(int predictedIdx, int actualIdx) { // Add the number of rows to numRowCounter numRowCounter++; // If confusion is null, then Evaluation is instantiated without providing the classes if (confusion == null) { throw new UnsupportedOperationException( "Cannot evaluate single example without initializing confusion matrix first"); } addToConfusion(actualIdx, predictedIdx); // If they are equal if (predictedIdx == actualIdx) { // Then add 1 to True Positive // (For a particular label) incrementTruePositives(predictedIdx); // And add 1 for each negative class that is accurately predicted (True Negative) //(For a particular label) for (Integer clazz : confusion().getClasses()) { if (clazz != predictedIdx) trueNegatives.incrementCount(clazz, 1.0f); } } else { // Otherwise the real label is predicted as negative (False Negative) incrementFalseNegatives(actualIdx); // Otherwise the prediction is predicted as falsely positive (False Positive) incrementFalsePositives(predictedIdx); // Otherwise true negatives for (Integer clazz : confusion().getClasses()) { if (clazz != predictedIdx && clazz != actualIdx) trueNegatives.incrementCount(clazz, 1.0f); } } }
Evaluate a single prediction (one prediction at a time) @param predictedIdx Index of class predicted by the network @param actualIdx Index of actual class
JsonDeserialize::eval
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String stats() { return stats(false); }
Report the classification statistics as a String @return Classification statistics as a String
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String stats(boolean suppressWarnings) { return stats(suppressWarnings, numClasses() <= CONFUSION_PRINT_MAX_CLASSES, numClasses() > CONFUSION_PRINT_MAX_CLASSES); }
Method to obtain the classification report as a String @param suppressWarnings whether or not to output warnings related to the evaluation results @return A (multi-line) String with accuracy, precision, recall, f1 score etc
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String stats(boolean suppressWarnings, boolean includeConfusion){ return stats(suppressWarnings, includeConfusion, false); }
Method to obtain the classification report as a String @param suppressWarnings whether or not to output warnings related to the evaluation results @param includeConfusion whether the confusion matrix should be included it the returned stats or not @return A (multi-line) String with accuracy, precision, recall, f1 score etc
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String confusionMatrix(){ int nClasses = numClasses(); if(confusion == null){ return "Confusion matrix: <no data>"; } //First: work out the maximum count List<Integer> classes = confusion.getClasses(); int maxCount = 1; for (Integer i : classes) { for (Integer j : classes) { int count = confusion().getCount(i, j); maxCount = Math.max(maxCount, count); } } maxCount = Math.max(maxCount, nClasses); //Include this as header might be bigger than actual values int numDigits = (int)Math.ceil(Math.log10(maxCount)); if(numDigits < 1) numDigits = 1; String digitFormat = "%" + (numDigits+1) + "d"; StringBuilder sb = new StringBuilder(); //Build header: for( int i=0; i<nClasses; i++ ){ sb.append(String.format(digitFormat, i)); } sb.append("\n"); int numDividerChars = (numDigits+1) * nClasses + 1; for( int i=0; i<numDividerChars; i++ ){ sb.append("-"); } sb.append("\n"); //Build each row: for( int actual=0; actual<nClasses; actual++){ String actualName = resolveLabelForClass(actual); for( int predicted=0; predicted<nClasses; predicted++){ int count = confusion.getCount(actual, predicted); sb.append(String.format(digitFormat, count)); } sb.append(" | ").append(actual).append(" = ").append(actualName).append("\n"); } sb.append("\nConfusion matrix format: Actual (rowClass) predicted as (columnClass) N times"); return sb.toString(); }
Get the confusion matrix as a String @return Confusion matrix as a String
JsonDeserialize::confusionMatrix
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision(Integer classLabel) { return precision(classLabel, DEFAULT_EDGE_VALUE); }
Returns the precision for a given class label @param classLabel the label @return the precision for the label
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision(Integer classLabel, double edgeCase) { Preconditions.checkState(numRowCounter > 0, "Cannot get precision: no evaluation has been performed"); double tpCount = truePositives.getCount(classLabel); double fpCount = falsePositives.getCount(classLabel); return EvaluationUtils.precision((long) tpCount, (long) fpCount, edgeCase); }
Returns the precision for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return the precision for the label
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision() { if(binaryPositiveClass != null && numClasses() == 2){ return precision(binaryPositiveClass); } return precision(EvaluationAveraging.Macro); }
Precision based on guesses so far.<br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged precision, equivalent to {@code precision(EvaluationAveraging.Macro)}<br> @return the total precision based on guesses so far
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get precision: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroPrecision = 0.0; int count = 0; for (int i = 0; i < nClasses; i++) { double thisClassPrec = precision(i, -1); if (thisClassPrec != -1) { macroPrecision += thisClassPrec; count++; } } macroPrecision /= count; return macroPrecision; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); } return EvaluationUtils.precision(tpCount, fpCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average precision for all classes. Can specify whether macro or micro averaging should be used NOTE: if any classes have tp=0 and fp=0, (precision=0/0) these are excluded from the average @param averaging Averaging method - macro or micro @return Average precision
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averagePrecisionNumClassesExcluded() { return numClassesExcluded("precision"); }
When calculating the (macro) average precision, how many classes are excluded from the average due to no predictions - i.e., precision would be the edge case of 0/0 @return Number of classes excluded from the average precision
JsonDeserialize::averagePrecisionNumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averageRecallNumClassesExcluded() { return numClassesExcluded("recall"); }
When calculating the (macro) average Recall, how many classes are excluded from the average due to no predictions - i.e., recall would be the edge case of 0/0 @return Number of classes excluded from the average recall
JsonDeserialize::averageRecallNumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averageF1NumClassesExcluded() { return numClassesExcluded("f1"); }
When calculating the (macro) average F1, how many classes are excluded from the average due to no predictions - i.e., F1 would be calculated from a precision or recall of 0/0 @return Number of classes excluded from the average F1
JsonDeserialize::averageF1NumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averageFBetaNumClassesExcluded() { return numClassesExcluded("fbeta"); }
When calculating the (macro) average FBeta, how many classes are excluded from the average due to no predictions - i.e., FBeta would be calculated from a precision or recall of 0/0 @return Number of classes excluded from the average FBeta
JsonDeserialize::averageFBetaNumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall(int classLabel) { return recall(classLabel, DEFAULT_EDGE_VALUE); }
Returns the recall for a given label @param classLabel the label @return Recall rate as a double
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall(int classLabel, double edgeCase) { Preconditions.checkState(numRowCounter > 0, "Cannot get recall: no evaluation has been performed"); double tpCount = truePositives.getCount(classLabel); double fnCount = falseNegatives.getCount(classLabel); return EvaluationUtils.recall((long) tpCount, (long) fnCount, edgeCase); }
Returns the recall for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return Recall rate as a double
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall() { if(binaryPositiveClass != null && numClasses() == 2){ return recall(binaryPositiveClass); } return recall(EvaluationAveraging.Macro); }
Recall based on guesses so far<br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged recall, equivalent to {@code recall(EvaluationAveraging.Macro)}<br> @return the recall for the outcomes
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get recall: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroRecall = 0.0; int count = 0; for (int i = 0; i < nClasses; i++) { double thisClassRecall = recall(i, -1); if (thisClassRecall != -1) { macroRecall += thisClassRecall; count++; } } macroRecall /= count; return macroRecall; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fnCount += falseNegatives.getCount(i); } return EvaluationUtils.recall(tpCount, fnCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average recall for all classes - can specify whether macro or micro averaging should be used NOTE: if any classes have tp=0 and fn=0, (recall=0/0) these are excluded from the average @param averaging Averaging method - macro or micro @return Average recall
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falsePositiveRate() { if(binaryPositiveClass != null && numClasses() == 2){ return falsePositiveRate(binaryPositiveClass); } return falsePositiveRate(EvaluationAveraging.Macro); }
False positive rate based on guesses so far<br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged false positive rate, equivalent to {@code falsePositiveRate(EvaluationAveraging.Macro)}<br> @return the fpr for the outcomes
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falsePositiveRate(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get false positive rate: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroFPR = 0.0; for (int i = 0; i < nClasses; i++) { macroFPR += falsePositiveRate(i); } macroFPR /= nClasses; return macroFPR; } else if (averaging == EvaluationAveraging.Micro) { long fpCount = 0; long tnCount = 0; for (int i = 0; i < nClasses; i++) { fpCount += falsePositives.getCount(i); tnCount += trueNegatives.getCount(i); } return EvaluationUtils.falsePositiveRate(fpCount, tnCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average false positive rate across all classes. Can specify whether macro or micro averaging should be used @param averaging Averaging method - macro or micro @return Average false positive rate
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseNegativeRate() { if(binaryPositiveClass != null && numClasses() == 2){ return falseNegativeRate(binaryPositiveClass); } return falseNegativeRate(EvaluationAveraging.Macro); }
False negative rate based on guesses so far Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged false negative rate, equivalent to {@code falseNegativeRate(EvaluationAveraging.Macro)}<br> @return the fnr for the outcomes
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseNegativeRate(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get false negative rate: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroFNR = 0.0; for (int i = 0; i < nClasses; i++) { macroFNR += falseNegativeRate(i); } macroFNR /= nClasses; return macroFNR; } else if (averaging == EvaluationAveraging.Micro) { long fnCount = 0; long tnCount = 0; for (int i = 0; i < nClasses; i++) { fnCount += falseNegatives.getCount(i); tnCount += trueNegatives.getCount(i); } return EvaluationUtils.falseNegativeRate(fnCount, tnCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average false negative rate for all classes - can specify whether macro or micro averaging should be used @param averaging Averaging method - macro or micro @return Average false negative rate
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseAlarmRate() { if(binaryPositiveClass != null && numClasses() == 2){ return (falsePositiveRate(binaryPositiveClass) + falseNegativeRate(binaryPositiveClass)) / 2.0; } return (falsePositiveRate() + falseNegativeRate()) / 2.0; }
False Alarm Rate (FAR) reflects rate of misclassified to classified records <a href="http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw">http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw</a><br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged false alarm rate) @return the fpr for the outcomes
JsonDeserialize::falseAlarmRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double f1(int classLabel) { return fBeta(1.0, classLabel); }
Calculate f1 score for a given class @param classLabel the label to calculate f1 for @return the f1 score for the given label
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double fBeta(double beta, int classLabel) { return fBeta(beta, classLabel, 0.0); }
Calculate the f_beta for a given class, where f_beta is defined as:<br> (1+beta^2) * (precision * recall) / (beta^2 * precision + recall).<br> F1 is a special case of f_beta, with beta=1.0 @param beta Beta value to use @param classLabel Class label @return F_beta
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double fBeta(double beta, int classLabel, double defaultValue) { Preconditions.checkState(numRowCounter > 0, "Cannot get fBeta score: no evaluation has been performed"); double precision = precision(classLabel, -1); double recall = recall(classLabel, -1); if (precision == -1 || recall == -1) { return defaultValue; } return EvaluationUtils.fBeta(beta, precision, recall); }
Calculate the f_beta for a given class, where f_beta is defined as:<br> (1+beta^2) * (precision * recall) / (beta^2 * precision + recall).<br> F1 is a special case of f_beta, with beta=1.0 @param beta Beta value to use @param classLabel Class label @param defaultValue Default value to use when precision or recall is undefined (0/0 for prec. or recall) @return F_beta
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double f1() { if(binaryPositiveClass != null && numClasses() == 2){ return f1(binaryPositiveClass); } return f1(EvaluationAveraging.Macro); }
Calculate the F1 score<br> F1 score is defined as:<br> TP: true positive<br> FP: False Positive<br> FN: False Negative<br> F1 score: 2 * TP / (2TP + FP + FN)<br> <br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged f1, equivalent to {@code f1(EvaluationAveraging.Macro)}<br> @return the f1 score or harmonic mean of precision and recall based on current guesses
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double f1(EvaluationAveraging averaging) { return fBeta(1.0, averaging); }
Calculate the average F1 score across all classes, using macro or micro averaging @param averaging Averaging method to use
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double fBeta(double beta, EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get fBeta score: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (nClasses == 2) { return EvaluationUtils.fBeta(beta, (long) truePositives.getCount(1), (long) falsePositives.getCount(1), (long) falseNegatives.getCount(1)); } if (averaging == EvaluationAveraging.Macro) { double macroFBeta = 0.0; int count = 0; for (int i = 0; i < nClasses; i++) { double thisFBeta = fBeta(beta, i, -1); if (thisFBeta != -1) { macroFBeta += thisFBeta; count++; } } macroFBeta /= count; return macroFBeta; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; long fnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); fnCount += falseNegatives.getCount(i); } return EvaluationUtils.fBeta(beta, tpCount, fpCount, fnCount); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average F_beta score across all classes, using macro or micro averaging @param beta Beta value to use @param averaging Averaging method to use
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double gMeasure(int output) { Preconditions.checkState(numRowCounter > 0, "Cannot get gMeasure: no evaluation has been performed"); double precision = precision(output); double recall = recall(output); return EvaluationUtils.gMeasure(precision, recall); }
Calculate the G-measure for the given output @param output The specified output @return The G-measure for the specified output
JsonDeserialize::gMeasure
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double gMeasure(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get gMeasure: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroGMeasure = 0.0; for (int i = 0; i < nClasses; i++) { macroGMeasure += gMeasure(i); } macroGMeasure /= nClasses; return macroGMeasure; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; long fnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); fnCount += falseNegatives.getCount(i); } double precision = EvaluationUtils.precision(tpCount, fpCount, DEFAULT_EDGE_VALUE); double recall = EvaluationUtils.recall(tpCount, fnCount, DEFAULT_EDGE_VALUE); return EvaluationUtils.gMeasure(precision, recall); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculates the average G measure for all outputs using micro or macro averaging @param averaging Averaging method to use @return Average G measure
JsonDeserialize::gMeasure
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double accuracy() { Preconditions.checkState(numRowCounter > 0, "Cannot get accuracy: no evaluation has been performed"); //Accuracy: sum the counts on the diagonal of the confusion matrix, divide by total int nClasses = confusion().getClasses().size(); int countCorrect = 0; for (int i = 0; i < nClasses; i++) { countCorrect += confusion().getCount(i, i); } return countCorrect / (double) getNumRowCounter(); }
Accuracy: (TP + TN) / (P + N) @return the accuracy of the guesses so far
JsonDeserialize::accuracy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double topNAccuracy() { if (topN <= 1) return accuracy(); if (topNTotalCount == 0) return 0.0; return topNCorrectCount / (double) topNTotalCount; }
Top N accuracy of the predictions so far. For top N = 1 (default), equivalent to {@link #accuracy()} @return Top N accuracy
JsonDeserialize::topNAccuracy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0