code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def sync(self): """Update the state of the index.""" for vehicle_id, vehicle in self._vehicles.items(): v_index = self._controlled_by["vehicle_id"] == vehicle_id entity = _ControlEntity(*self._controlled_by[v_index][0]) self._controlled_by[v_index] = tuple( entity._replace(position=vehicle.position) )
Update the state of the index.
sync
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def teardown(self, renderer: RendererBase): """Clean up resources, resetting the index.""" self._controlled_by = VehicleIndex._build_empty_controlled_by() for vehicle in self._vehicles.values(): vehicle.teardown(renderer=renderer, exclude_chassis=True) self._vehicles = {} self._controller_states = {} self._2id_to_id = {}
Clean up resources, resetting the index.
teardown
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def start_agent_observation( self, sim: SMARTS, vehicle_id: str, agent_id: str, agent_interface: AgentInterface, plan: "plan.Plan", boid: bool = False, initialize_sensors: bool = True, ): """Associate an agent to a vehicle. Set up any needed sensor requirements.""" b_vehicle_id, b_agent_id = _2id(vehicle_id), _2id(agent_id) self._2id_to_id[b_agent_id] = agent_id vehicle = self._vehicles[b_vehicle_id] sim.sensor_manager.add_sensor_state( vehicle.id, SensorState( agent_interface.max_episode_steps, plan_frame=plan.frame(), ), ) if initialize_sensors: Vehicle.attach_sensors_to_vehicle( sim.sensor_manager, sim, vehicle, agent_interface ) self._controller_states[b_vehicle_id] = ControllerState.from_action_space( agent_interface.action, vehicle.pose, sim ) v_index = self._controlled_by["vehicle_id"] == b_vehicle_id entity = _ControlEntity(*self._controlled_by[v_index][0]) self._controlled_by[v_index] = tuple( entity._replace(shadower_id=b_agent_id, is_boid=boid) ) # XXX: We are not giving the vehicle a chassis here but rather later # when we switch_to_agent_control. This means when control that requires # a chassis comes online, it needs to appropriately initialize # chassis-specific states, such as tire rotation. return vehicle
Associate an agent to a vehicle. Set up any needed sensor requirements.
start_agent_observation
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def switch_control_to_agent( self, sim: SMARTS, vehicle_id: str, agent_id: str, boid: bool = False, hijacking: bool = False, recreate: bool = False, agent_interface: Optional[AgentInterface] = None, ): """Give control of the specified vehicle to the specified agent. Args: sim: An instance of a SMARTS simulation. vehicle_id: The id of the vehicle to associate. agent_id: The id of the agent to associate. boid: If the agent is acting as a boid agent controlling multiple vehicles. hijacking: If the vehicle has been taken over from another controlling owner. recreate: If the vehicle should be destroyed and regenerated. agent_interface: The agent interface for sensor requirements. """ self._log.debug("Switching control of '%s' to '%s'", vehicle_id, agent_id) b_vehicle_id, b_agent_id = _2id(vehicle_id), _2id(agent_id) if recreate: # XXX: Recreate is presently broken for bubbles because it impacts the # sumo traffic sim sync(...) logic in how it detects a vehicle as # being hijacked vs joining. Presently it's still used for trapping. return self._switch_control_to_agent_recreate( sim, b_vehicle_id, b_agent_id, boid, hijacking ) vehicle = self._vehicles[b_vehicle_id] chassis = None if agent_interface and agent_interface.action in sim.dynamic_action_spaces: vehicle_definition = self._vehicle_definitions.load_vehicle_definition( agent_interface.vehicle_class ) chassis = AckermannChassis( pose=vehicle.pose, bullet_client=sim.bc, vehicle_dynamics_filepath=vehicle_definition.get("dynamics_model"), tire_parameters_filepath=vehicle_definition.get("tire_params"), friction_map=sim.scenario.surface_patches, controller_parameters=self._vehicle_definitions.controller_params_for_vehicle_class( agent_interface.vehicle_class ), chassis_parameters=self._vehicle_definitions.chassis_params_for_vehicle_class( agent_interface.vehicle_class ), initial_speed=vehicle.speed, ) else: chassis = BoxChassis( pose=vehicle.pose, speed=vehicle.speed, dimensions=vehicle.state.dimensions, bullet_client=sim.bc, ) vehicle.swap_chassis(chassis) v_index = self._controlled_by["vehicle_id"] == b_vehicle_id entity = _ControlEntity(*self._controlled_by[v_index][0]) role = ActorRole.SocialAgent if hijacking else ActorRole.EgoAgent self._controlled_by[v_index] = tuple( entity._replace( role=role, owner_id=b_agent_id, shadower_id=b"", is_boid=boid, is_hijacked=hijacking, ) ) return vehicle
Give control of the specified vehicle to the specified agent. Args: sim: An instance of a SMARTS simulation. vehicle_id: The id of the vehicle to associate. agent_id: The id of the agent to associate. boid: If the agent is acting as a boid agent controlling multiple vehicles. hijacking: If the vehicle has been taken over from another controlling owner. recreate: If the vehicle should be destroyed and regenerated. agent_interface: The agent interface for sensor requirements.
switch_control_to_agent
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def stop_shadowing(self, shadower_id: str, vehicle_id: Optional[str] = None): """Ends the shadowing by an a shadowing observer. Args: shadower_id (str): Removes this shadowing observer from all vehicles. vehicle_id (str, optional): If given this method removes shadowing from a specific vehicle. Defaults to None. """ shadower_id = _2id(shadower_id) v_index = self._controlled_by["shadower_id"] == shadower_id if vehicle_id: b_vehicle_id = _2id(vehicle_id) # This multiplication finds overlap of "shadower_id" and "vehicle_id" v_index = (self._controlled_by["vehicle_id"] == b_vehicle_id) * v_index for entity in self._controlled_by[v_index]: entity = _ControlEntity(*entity) self._controlled_by[v_index] = tuple(entity._replace(shadower_id=b""))
Ends the shadowing by an a shadowing observer. Args: shadower_id (str): Removes this shadowing observer from all vehicles. vehicle_id (str, optional): If given this method removes shadowing from a specific vehicle. Defaults to None.
stop_shadowing
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def stop_agent_observation(self, vehicle_id: str) -> Vehicle: """Strip all sensors from a vehicle and stop all owners from watching the vehicle.""" b_vehicle_id = _2id(vehicle_id) vehicle = self._vehicles[b_vehicle_id] v_index = self._controlled_by["vehicle_id"] == b_vehicle_id entity = self._controlled_by[v_index][0] entity = _ControlEntity(*entity) self._controlled_by[v_index] = tuple(entity._replace(shadower_id=b"")) return vehicle
Strip all sensors from a vehicle and stop all owners from watching the vehicle.
stop_agent_observation
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def relinquish_agent_control( self, sim: SMARTS, vehicle_id: str, road_map: RoadMap ) -> Tuple[VehicleState, Optional[RoadMap.Route]]: """Give control of the vehicle back to its original controller.""" self._log.debug(f"Relinquishing agent control v_id={vehicle_id}") v_id = _2id(vehicle_id) ss = sim.sensor_manager.sensor_state_for_actor_id(vehicle_id) route = ss.get_plan(road_map).route if ss else None vehicle = self.stop_agent_observation(vehicle_id) # pytype: disable=attribute-error Vehicle.detach_all_sensors_from_vehicle(vehicle) # pytype: enable=attribute-error sim.sensor_manager.remove_actor_sensors_by_actor_id(vehicle_id) sim.sensor_manager.remove_sensor_state_by_actor_id(vehicle_id) vehicle = self._vehicles[v_id] box_chassis = BoxChassis( pose=vehicle.chassis.pose, speed=vehicle.chassis.speed, dimensions=vehicle.chassis.dimensions, bullet_client=sim.bc, ) vehicle.swap_chassis(box_chassis) v_index = self._controlled_by["vehicle_id"] == v_id entity = self._controlled_by[v_index][0] entity = _ControlEntity(*entity) self._controlled_by[v_index] = tuple( entity._replace( role=ActorRole.Social, owner_id=b"", shadower_id=b"", is_boid=False, is_hijacked=False, ) ) return vehicle.state, route
Give control of the vehicle back to its original controller.
relinquish_agent_control
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def attach_sensors_to_vehicle( self, sim: SMARTS, vehicle_id: str, agent_interface: AgentInterface, plan: "plan.Plan", ): """Attach sensors as per the agent interface requirements to the specified vehicle.""" b_vehicle_id = _2id(vehicle_id) vehicle = self._vehicles[b_vehicle_id] Vehicle.attach_sensors_to_vehicle( sim.sensor_manager, sim, vehicle, agent_interface, ) sim.sensor_manager.add_sensor_state( vehicle.id, SensorState( agent_interface.max_episode_steps, plan_frame=plan.frame(), ), ) self._controller_states[b_vehicle_id] = ControllerState.from_action_space( agent_interface.action, vehicle.pose, sim )
Attach sensors as per the agent interface requirements to the specified vehicle.
attach_sensors_to_vehicle
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def _build_agent_vehicle( cls, sim: SMARTS, vehicle_id: str, action: Optional[ActionSpaceType], vehicle_type: str, vehicle_class: str, mission: plan.NavigationMission, vehicle_dynamics_filepath: Optional[str], tire_filepath: str, visual_model_filepath: str, trainable: bool, surface_patches: Sequence[Dict[str, Any]], initial_speed: Optional[float] = None, ) -> Vehicle: """Create a new vehicle and set up sensors and planning information as required by the ego agent. """ chassis_dims = Vehicle.agent_vehicle_dims(mission, default=vehicle_type) start = mission.start if start.from_front_bumper: start_pose = Pose.from_front_bumper( front_bumper_position=np.array(start.position[:2]), heading=start.heading, length=chassis_dims.length, ) else: start_pose = Pose.from_center(start.position, start.heading) vehicle_color = SceneColors.Agent if trainable else SceneColors.SocialAgent controller_parameters = ( sim.vehicle_index._vehicle_definitions.controller_params_for_vehicle_class( vehicle_class ) ) chassis_parameters = ( sim.vehicle_index._vehicle_definitions.chassis_params_for_vehicle_class( vehicle_class ) ) chassis = None if action in sim.dynamic_action_spaces: if mission.vehicle_spec: logger = logging.getLogger(cls.__name__) logger.warning( "setting vehicle dimensions on a AckermannChassis not yet supported" ) chassis = AckermannChassis( pose=start_pose, bullet_client=sim.bc, vehicle_dynamics_filepath=vehicle_dynamics_filepath, tire_parameters_filepath=tire_filepath, friction_map=surface_patches, controller_parameters=controller_parameters, chassis_parameters=chassis_parameters, initial_speed=initial_speed, ) else: chassis = BoxChassis( pose=start_pose, speed=initial_speed, dimensions=chassis_dims, bullet_client=sim.bc, ) vehicle = Vehicle( id=vehicle_id, chassis=chassis, color=vehicle_color, vehicle_config_type=vehicle_type, vehicle_class=vehicle_class, visual_model_filepath=visual_model_filepath, ) return vehicle
Create a new vehicle and set up sensors and planning information as required by the ego agent.
_build_agent_vehicle
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def build_agent_vehicle( self, sim: SMARTS, agent_id: str, agent_interface: AgentInterface, plan: "plan.Plan", trainable: bool, initial_speed: Optional[float] = None, boid: bool = False, *, vehicle_id: Optional[str] = None, ) -> Vehicle: """Build an entirely new vehicle for an agent.""" vehicle_definition = self._vehicle_definitions.load_vehicle_definition( agent_interface.vehicle_class ) vehicle = VehicleIndex._build_agent_vehicle( sim=sim, vehicle_id=vehicle_id or agent_id, action=agent_interface.action, vehicle_type=vehicle_definition.get("type"), vehicle_class=agent_interface.vehicle_class, mission=plan.mission, vehicle_dynamics_filepath=vehicle_definition.get("dynamics_model"), tire_filepath=vehicle_definition.get("tire_params"), visual_model_filepath=vehicle_definition.get("visual_model"), trainable=trainable, surface_patches=sim.scenario.surface_patches, initial_speed=initial_speed, ) sensor_state = SensorState(agent_interface.max_episode_steps, plan.frame()) controller_state = ControllerState.from_action_space( agent_interface.action, vehicle.pose, sim ) self._enfranchise_agent( sim, agent_id, agent_interface, vehicle, controller_state, sensor_state, boid, hijacking=False, ) return vehicle
Build an entirely new vehicle for an agent.
build_agent_vehicle
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def _build_social_vehicle( sim: SMARTS, vehicle_id: str, vehicle_state: VehicleState ) -> Vehicle: """Create a new unassociated vehicle.""" dims = Dimensions.copy_with_defaults( vehicle_state.dimensions, VEHICLE_CONFIGS[vehicle_state.vehicle_config_type].dimensions, ) chassis = BoxChassis( pose=vehicle_state.pose, speed=vehicle_state.speed, dimensions=dims, bullet_client=sim.bc, ) return Vehicle( id=vehicle_id, chassis=chassis, vehicle_config_type=vehicle_state.vehicle_config_type, visual_model_filepath=None, )
Create a new unassociated vehicle.
_build_social_vehicle
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def build_social_vehicle( self, sim: SMARTS, vehicle_state: VehicleState, owner_id: str, vehicle_id: Optional[str] = None, ) -> Vehicle: """Build an entirely new vehicle for a social agent.""" if vehicle_id is None: vehicle_id = gen_id() vehicle = VehicleIndex._build_social_vehicle( sim, vehicle_id, vehicle_state, ) b_vehicle_id, b_owner_id = _2id(vehicle_id), _2id(owner_id) if owner_id else b"" if sim.is_rendering: vehicle.create_renderer_node(sim.renderer_ref) sim.renderer.begin_rendering_vehicle(vehicle.id, is_agent=False) self._vehicles[b_vehicle_id] = vehicle self._2id_to_id[b_vehicle_id] = vehicle.id role = vehicle_state.role assert role not in ( ActorRole.EgoAgent, ActorRole.SocialAgent, ), f"role={role} from {vehicle_state.source}" entity = _ControlEntity( vehicle_id=b_vehicle_id, owner_id=b_owner_id, role=role, shadower_id=b"", is_boid=False, is_hijacked=False, position=np.asarray(vehicle.position), ) self._controlled_by = np.insert(self._controlled_by, 0, tuple(entity)) return vehicle
Build an entirely new vehicle for a social agent.
build_social_vehicle
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def begin_rendering_vehicles(self, renderer: RendererBase): """Render vehicles using the specified renderer.""" agent_vehicle_ids = self.agent_vehicle_ids() for vehicle in self._vehicles.values(): if vehicle.create_renderer_node(renderer): is_agent = vehicle.id in agent_vehicle_ids renderer.begin_rendering_vehicle(vehicle.id, is_agent)
Render vehicles using the specified renderer.
begin_rendering_vehicles
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def controller_state_for_vehicle_id(self, vehicle_id: str) -> ControllerState: """Retrieve the controller state of the given vehicle.""" return self._controller_states[_2id(vehicle_id)]
Retrieve the controller state of the given vehicle.
controller_state_for_vehicle_id
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def load_vehicle_definitions_list(self, vehicle_definitions_filepath: str): """Loads in a list of vehicle definitions.""" self._vehicle_definitions = resources.load_vehicle_definitions_list( vehicle_definitions_filepath )
Loads in a list of vehicle definitions.
load_vehicle_definitions_list
python
huawei-noah/SMARTS
smarts/core/vehicle_index.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/vehicle_index.py
MIT
def origin(self): """The center of the emission point of the lidar lasers.""" return self._origin
The center of the emission point of the lidar lasers.
origin
python
huawei-noah/SMARTS
smarts/core/lidar.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/lidar.py
MIT
def compute_point_cloud( self, bullet_client ) -> Tuple[List[np.ndarray], List[int], List[Tuple[np.ndarray, np.ndarray]]]: """Generate a point cloud. Returns: Point cloud of 3D points, a list of hit objects, a list of rays fired. """ rays = self._compute_rays() point_cloud, hits = self._trace_rays(rays, bullet_client) # point_cloud = self._apply_noise(point_cloud) assert ( len(point_cloud) == len(hits) == len(rays) == len(self._static_lidar_noise) ) return point_cloud, hits, rays
Generate a point cloud. Returns: Point cloud of 3D points, a list of hit objects, a list of rays fired.
compute_point_cloud
python
huawei-noah/SMARTS
smarts/core/lidar.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/lidar.py
MIT
def from_flow(cls, flow: Dict[str, Any], owner: LocalTrafficProvider): """Factory to construct a _TrafficActor object from a flow dictionary.""" vclass = flow["vtype"]["vClass"] dimensions = VEHICLE_CONFIGS[vclass].dimensions vehicle_type = vclass if vclass != "passenger" else "car" new_actor = cls(flow, owner) new_actor._lane, new_actor._offset = new_actor._resolve_flow_pos( flow, "depart", dimensions ) position = new_actor._lane.from_lane_coord(RefLinePoint(s=new_actor._offset)) heading = vec_to_radians( new_actor._lane.vector_at_offset(new_actor._offset)[:2] ) init_speed = new_actor._resolve_flow_speed(flow) endless = "-endless" if flow.get("endless", False) else "" vehicle_id = f"{new_actor._vtype['id']}{endless}-{owner._actors_created}" new_actor._state = VehicleState( actor_id=vehicle_id, actor_type=vehicle_type, source=owner.source_str, role=ActorRole.Social, pose=Pose.from_center(position, Heading(heading)), dimensions=dimensions, vehicle_config_type=vclass, speed=init_speed, linear_acceleration=np.array((0.0, 0.0, 0.0)), ) new_actor._dest_lane, new_actor._dest_offset = new_actor._resolve_flow_pos( flow, "arrival", dimensions ) return new_actor
Factory to construct a _TrafficActor object from a flow dictionary.
from_flow
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def from_state( cls, state: VehicleState, owner: LocalTrafficProvider, route: Optional[RouteWithCache], ): """Factory to construct a _TrafficActor object from an existing VehiclState object.""" cur_lane = owner.road_map.nearest_lane(state.pose.point) assert ( cur_lane ), f"LocalTrafficProvider accepted a vehicle that's off road? pos={state.pose.point}" if not route or not route.roads: # initialize with a random route, which will probably be replaced route = owner.road_map.random_route(starting_road=cur_lane.road) route.add_to_cache() flow = dict() flow["vtype"] = dict() flow["route"] = route flow["arrivalLane"] = f"{cur_lane.index}" # XXX: assumption! flow["arrivalPos"] = "max" flow["departLane"] = f"{cur_lane.index}" # XXX: assumption! flow["departPos"] = "0" flow["endless"] = "endless" in state.actor_id # use default values for everything else in flow dict(s)... new_actor = _TrafficActor(flow, owner) new_actor.state = state new_actor._lane = cur_lane new_actor._offset = cur_lane.offset_along_lane(state.pose.point) new_actor._dest_lane, new_actor._dest_offset = new_actor._resolve_flow_pos( flow, "arrival", state.dimensions ) return new_actor
Factory to construct a _TrafficActor object from an existing VehiclState object.
from_state
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def state(self) -> VehicleState: """Returns the current VehicleState for this actor.""" return self._state
Returns the current VehicleState for this actor.
state
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def state(self, state: VehicleState): """Sets the current VehicleState for this actor.""" self._state = state self.bbox.cache_clear()
Sets the current VehicleState for this actor.
state
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def actor_id(self) -> str: """A unique id identifying this actor.""" return self._state.actor_id
A unique id identifying this actor.
actor_id
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def bump_id(self): """Changes the id of a teleporting vehicle.""" mm = re.match(r"([^_]+)(_(\d+))?$", self._state.actor_id) if mm: ver = int(mm.group(3)) if mm.group(3) else 0 self._state.actor_id = f"{mm.group(1)}_{ver + 1}"
Changes the id of a teleporting vehicle.
bump_id
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def route(self) -> RoadMap.Route: """The route this actor will attempt to take.""" return self._route
The route this actor will attempt to take.
route
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def update_route(self, route: RoadMap.Route): """Update the route (sequence of road_ids) this actor will attempt to take. A unique route_key is provided for referencing the route cache in the owner provider. """ self._route = route if isinstance(self._route, RouteWithCache): self._route.add_to_cache() self._dest_lane, self._dest_offset = self._resolve_flow_pos( self._flow, "arrival", self._state.dimensions ) self._route_ind = 0
Update the route (sequence of road_ids) this actor will attempt to take. A unique route_key is provided for referencing the route cache in the owner provider.
update_route
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def stay_put(self): """Tells this actor to stop acting and remain where it is indefinitely.""" if not self._stranded: self._logger.info(f"{self.actor_id} stranded") self._stranded = True self._state.speed = 0 self._state.linear_acceleration = None
Tells this actor to stop acting and remain where it is indefinitely.
stay_put
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def finished_route(self) -> bool: """Returns True if this vehicle has reached the end of its route.""" return self._done_with_route
Returns True if this vehicle has reached the end of its route.
finished_route
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def off_route(self) -> bool: """Returns True if this vehicle has left its route before it got to the end.""" return self._off_route
Returns True if this vehicle has left its route before it got to the end.
off_route
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def wrong_way(self) -> bool: """Returns True if this vehicle is currently going the wrong way in its lane.""" return self._wrong_way
Returns True if this vehicle is currently going the wrong way in its lane.
wrong_way
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def teleporting(self) -> bool: """Returns True if this vehicle is teleporting back to the beginning of its route on this step.""" return self._teleporting
Returns True if this vehicle is teleporting back to the beginning of its route on this step.
teleporting
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def lane(self) -> RoadMap.Lane: """Returns the current Lane object.""" return self._lane
Returns the current Lane object.
lane
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def road(self) -> RoadMap.Road: """Returns the current Road object.""" return self._lane.road
Returns the current Road object.
road
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def offset_along_lane(self) -> float: """Returns the current offset along the current Lane object.""" return self._offset
Returns the current offset along the current Lane object.
offset_along_lane
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def speed(self) -> float: """Returns the current speed.""" return self._state.speed
Returns the current speed.
speed
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def acceleration(self) -> float: """Returns the current (linear) acceleration.""" if self._state.linear_acceleration is None: return 0.0 return np.linalg.norm(self._state.linear_acceleration)
Returns the current (linear) acceleration.
acceleration
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def bbox(self, cushion_length: bool = False) -> Polygon: """Returns a bounding box around the vehicle.""" # note: lru_cache must be cleared whenever pose changes pos = self._state.pose.point dims = self._state.dimensions length_buffer = self._min_space_cush if cushion_length else 0 half_len = 0.5 * dims.length + length_buffer poly = shapely_box( pos.x - 0.5 * dims.width, pos.y - half_len, pos.x + 0.5 * dims.width, pos.y + half_len, ) return shapely_rotate(poly, self._state.pose.heading, use_radians=True)
Returns a bounding box around the vehicle.
bbox
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def stopped_at_features(self) -> List[str]: """If this vehicle is currently stopped at any features, returns their feature_ids, otherwise an empty list.""" return list(self._stopped_at_feat.keys())
If this vehicle is currently stopped at any features, returns their feature_ids, otherwise an empty list.
stopped_at_features
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def drive_time(self) -> float: """The amount of time this vehicle might drive in the target lane under present conditions.""" return min(self.ttc, self.adj_time_left)
The amount of time this vehicle might drive in the target lane under present conditions.
drive_time
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def width(self) -> float: """The width of this lane at its lane_coord.""" return self.lane.width_at_offset(self.lane_coord.s)[0]
The width of this lane at its lane_coord.
width
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def radius(self) -> float: """The radius of curvature of this lane at its lane_coord.""" # we round the offset in an attempt to reduce the unique hits on the LRU caches... rounded_offset = round(self.lane_coord.s) return self.lane.curvature_radius_at_offset( rounded_offset, lookahead=max(math.ceil(2 * self.width), 2) )
The radius of curvature of this lane at its lane_coord.
radius
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def crossing_time_at_speed( self, to_index: int, speed: float, acc: float = 0.0 ) -> float: """Returns how long it would take to cross from this lane to the lane indexed by to_index given our current speed and acceleration.""" angle_scale = self._angle_scale(to_index) return time_to_cover(angle_scale * self.width, speed, acc)
Returns how long it would take to cross from this lane to the lane indexed by to_index given our current speed and acceleration.
crossing_time_at_speed
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def exit_time(self, speed: float, to_index: int, acc: float = 0.0) -> float: """Returns how long it would take to drive into the to_index lane from this lane given our current speed and acceleration.""" ct = self.crossing_time_at_speed(to_index, speed, acc) t = self.lane_coord.t pm = (-1 if to_index >= self.lane.index else 1) * np.sign(t) angle_scale = self._angle_scale(to_index) return 0.5 * ct + pm * time_to_cover(angle_scale * abs(t), speed, acc)
Returns how long it would take to drive into the to_index lane from this lane given our current speed and acceleration.
exit_time
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def add_to_win( self, veh_id: str, bumper: int, fv_pos: np.ndarray, my_pos: np.ndarray, my_heading: float, dt: float, ) -> Tuple[float, float]: """Add a relative observation of veh_id over the last dt secs.""" bvec = fv_pos - my_pos fv_range = np.linalg.norm(bvec) rel_bearing = min_angles_difference_signed(vec_to_radians(bvec), my_heading) fv_win = self._junction_foes.setdefault( (veh_id, bumper), deque(maxlen=self._width) ) fv_win.append(self._RelativeVehInfo(fv_range, rel_bearing, my_heading, dt)) return rel_bearing, fv_range
Add a relative observation of veh_id over the last dt secs.
add_to_win
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def predict_crash_in(self, veh_id: str, bumper: int) -> float: """Estimate if and when I might collide with veh_id using the constant bearing, decreasing range (CBDR) techique, but attempting to correct for non-linearities.""" # CBDR is a good approximation at distance over time with # both vehicles behaving "steadily" (ideally, driving # straight at a constant speed). It breaks down, thankfully # in preictable ways, if these assumptions are violated. # # Range Dependency: # As range gets small, bearing can fluctuate more, but will also # tend to start to change steadily when on a collision course. # To overcome this here, we just make our "CB" computation # depend on range. # # When range is on the order of car length(s), the following might eventually # help with evasive maneuvers: # - for side impacts to me, the absolute value of the rel_bearing from my front bumper # will increase monotonically (and rapidly) just before impact, meanwhile the value # from my back bumper will decrease analogously. # - for side impacts to them, the rel_bearing to their front bumper from mine will change # signs just before impact, while abs(rel_bearing) to their back bumper will dramatically # reduce. # # Heading Changes: # - If we turn, we need to consider how this will change rel_bearing from our perspective. # Adding to the heading will increase apparent rel_bearing, but this instaneous change # should not count against CBDR, so we correct for it here. # - If they turn, we don't need to do anything (CBDR as implemented here still works # to predict collisions). # # (Relative) Acceleration: # - if there is a difference in our accelerations, rel_bearing for a collision course # will change quadratically in a complicated way. We don't try to mitigate this. window = self._junction_foes[(veh_id, bumper)] if len(window) <= 1: return math.inf prev_range, prev_bearing, prev_heading = None, None, None range_del = 0.0 bearing_del = 0.0 for rvi in window: if prev_range is not None: range_del += (rvi.dist - prev_range) / rvi.dt if prev_bearing is not None: bearing_del += ( min_angles_difference_signed(rvi.bearing, prev_bearing) + min_angles_difference_signed(rvi.heading, prev_heading) ) / rvi.dt prev_range = rvi.dist prev_bearing = rvi.bearing prev_heading = rvi.heading range_del /= len(window) - 1 bearing_del /= len(window) - 1 final_range = window[-1].dist # the exponent here was determined by trial and error if range_del < 0 and abs(bearing_del) < safe_division( math.pi, final_range**1.4 ): return safe_division(-final_range, range_del) return math.inf
Estimate if and when I might collide with veh_id using the constant bearing, decreasing range (CBDR) techique, but attempting to correct for non-linearities.
predict_crash_in
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def purge_unseen(self, seen: Set[str]): """Remove unseen vehicle IDs from this cache.""" self._junction_foes = { (sv, bumper): self._junction_foes[(sv, bumper)] for sv in seen for bumper in (False, True) if (sv, bumper) in self._junction_foes }
Remove unseen vehicle IDs from this cache.
purge_unseen
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def compute_next_state(self, dt: float): """Pre-computes the next state for this traffic actor.""" self._compute_lane_speeds() if math.isclose(self.speed, 0, abs_tol=1.5): self._current_impatience = min( MAX_IMPATIENCE, self._current_impatience + dt / self._time_to_impatience ) else: self._current_impatience = max( 0, self._current_impatience - dt / self._time_to_impatience ) self._pick_lane(dt) self._check_speed(dt) angular_velocity = self._angle_to_lane(dt) acceleration = self._compute_acceleration(dt) target_heading = self._state.pose.heading + angular_velocity * dt target_heading %= 2 * math.pi heading_vec = radians_to_vec(target_heading) self._next_linear_acceleration = dt * acceleration * heading_vec self._next_speed = self._state.speed + acceleration * dt if self._next_speed < 0: # don't go backwards self._next_speed = 0 dpos = heading_vec * self.speed * dt target_pos = self._state.pose.position + np.append(dpos, 0.0) self._next_pose = Pose.from_center(target_pos, Heading(target_heading))
Pre-computes the next state for this traffic actor.
compute_next_state
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def step(self, dt: float): """Updates to the pre-computed next state for this traffic actor.""" if self._stranded: return self._teleporting = False self._state.pose = self._next_pose self._state.speed = self._next_speed self._state.linear_acceleration = self._next_linear_acceleration self._state.updated = False prev_road_id = self._lane.road.road_id self.bbox.cache_clear() # if there's more than one lane near us (like in a junction) pick closest one that's in our route owner = self._owner() assert owner nls = owner.road_map.nearest_lanes( self._next_pose.point, radius=self._state.dimensions.length, include_junctions=True, ) if not nls: self._logger.warning( f"actor {self.actor_id} out-of-lane: {self._next_pose}" ) self._off_route = True if self._flow["endless"]: self._reroute() return self._lane = None best_ri_delta = None next_route_ind = None for nl, d in nls: try: next_route_ind = self._route.road_ids.index( nl.road.road_id, self._route_ind ) self._off_route = False ri_delta = next_route_ind - self._route_ind if ri_delta <= 1: self._lane = nl best_ri_delta = ri_delta break if best_ri_delta is None or ri_delta < best_ri_delta: self._lane = nl best_ri_delta = ri_delta except ValueError: pass if not self._lane: self._off_route = True self._lane = nls[0][0] self._logger.info( f"actor {self.actor_id} is off of its route. now in lane {self._lane.lane_id}." ) road_id = self._lane.road.road_id if road_id != prev_road_id: self._route_ind += 1 if best_ri_delta is None else best_ri_delta self._offset = self._lane.offset_along_lane(self._next_pose.point) if self._near_dest(): if self._lane == self._dest_lane: if self._flow["endless"]: self._reroute() else: self._done_with_route = True else: self._off_route = True self._logger.info( f"actor {self.actor_id} is beyond end of route in wrong lane ({self._lane.lane_id} instead of {self._dest_lane.lane_id})." )
Updates to the pre-computed next state for this traffic actor.
step
python
huawei-noah/SMARTS
smarts/core/local_traffic_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_traffic_provider.py
MIT
def find_mapfile_in_dir(map_dir: str) -> Tuple[MapType, str]: """Looks in a given directory for a supported map file.""" map_filename_type = { "map.net.xml": MapType.Sumo, "shifted_map-AUTOGEN.net.xml": MapType.Sumo, "map.xodr": MapType.Opendrive, } map_type = MapType.Unknown map_path = map_dir for f in os.listdir(map_dir): cand_map_type = map_filename_type.get(f) if cand_map_type is not None: return cand_map_type, os.path.join(map_dir, f) if f.endswith(".net.xml"): map_type = MapType.Sumo map_path = os.path.join(map_dir, f) elif f.endswith(".xodr"): map_type = MapType.Opendrive elif ".tfrecord" in f: map_type = MapType.Waymo map_path = os.path.join(map_dir, f) elif "log_map_archive" in f: map_type = MapType.Argoverse map_path = os.path.join(map_dir, f) return map_type, map_path
Looks in a given directory for a supported map file.
find_mapfile_in_dir
python
huawei-noah/SMARTS
smarts/core/default_map_builder.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/default_map_builder.py
MIT
def get_road_map(map_spec) -> Tuple[Optional[RoadMap], Optional[str]]: """@return a RoadMap object and a hash that uniquely identifies it. Changes to the hash should signify that the map is different enough that map-related caches should be reloaded. If possible, the RoadMap object may be cached here and re-used. """ assert map_spec, "A road map spec must be specified" assert map_spec.source, "A road map source must be specified" if os.path.isdir(map_spec.source): map_type, map_source = find_mapfile_in_dir(map_spec.source) else: map_type = MapType.Unknown map_source = map_spec.source if map_source.endswith(".net.xml"): map_type = MapType.Sumo elif map_source.endswith(".xodr"): map_type = MapType.Opendrive elif ".tfrecord" in map_source: map_type = MapType.Waymo if map_type == MapType.Sumo: from smarts.core.sumo_road_network import SumoRoadNetwork map_class = SumoRoadNetwork elif map_type == MapType.Opendrive: from smarts.core.utils.custom_exceptions import OpenDriveException try: from smarts.core.opendrive_road_network import OpenDriveRoadNetwork except ImportError: raise OpenDriveException.required_to("use OpenDRIVE maps") map_class = OpenDriveRoadNetwork elif map_type == MapType.Waymo: from smarts.core.waymo_map import WaymoMap map_class = WaymoMap elif map_type == MapType.Argoverse: try: from smarts.core.argoverse_map import ( ArgoverseMap, # pytype: disable=import-error ) except (ImportError, ModuleNotFoundError): print(sys.exc_info()) print( "Missing dependencies for Argoverse. Install them using the command `pip install -e .[argoverse]` at the source directory." ) return None, None map_class = ArgoverseMap else: warnings.warn( f"A map source for road surface generation can not be resolved from the given reference: `{map_spec.source}`.", category=UserWarning, ) return None, None if _existing_map: if isinstance(_existing_map.obj, map_class) and _existing_map.obj.is_same_map( map_spec ): return _existing_map.obj, _existing_map.map_hash _clear_cache() road_map = map_class.from_spec(map_spec) if road_map is None: return None, None if os.path.isfile(road_map.source): road_map_hash = file_md5_hash(road_map.source) else: road_map_hash = path2hash(road_map.source) _cache_result(map_spec, road_map, road_map_hash) return road_map, road_map_hash
@return a RoadMap object and a hash that uniquely identifies it. Changes to the hash should signify that the map is different enough that map-related caches should be reloaded. If possible, the RoadMap object may be cached here and re-used.
get_road_map
python
huawei-noah/SMARTS
smarts/core/default_map_builder.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/default_map_builder.py
MIT
def exclusion_prefixes(self): """The blacklist of actor prefixes, used to ignore specific actors.""" return self._exclusion_prefixes
The blacklist of actor prefixes, used to ignore specific actors.
exclusion_prefixes
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def id(self): """The id of the underlying bubble.""" return self._bubble.id
The id of the underlying bubble.
id
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def actor(self) -> Union[SocialAgentActor, TrafficEngineActor]: """The actor that should replace the captured actor.""" return self._bubble.actor
The actor that should replace the captured actor.
actor
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def follow_actor_id(self) -> str: """A target actor that the bubble should remain at a fixed offset from.""" return self._bubble.follow_actor_id
A target actor that the bubble should remain at a fixed offset from.
follow_actor_id
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def follow_vehicle_id(self) -> str: """A target vehicle that the bubble should remain at a fixed offset from.""" return self._bubble.follow_vehicle_id
A target vehicle that the bubble should remain at a fixed offset from.
follow_vehicle_id
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def limit(self): """The maximum number of actors that the bubble can have captured at the same time.""" return self._limit
The maximum number of actors that the bubble can have captured at the same time.
limit
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def is_boid(self): """If the actors captured by the bubble should be controlled by a boid agent.""" return self._bubble.is_boid
If the actors captured by the bubble should be controlled by a boid agent.
is_boid
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def keep_alive(self): """If enabled, the social agent actor will be spawned upon first vehicle airlock and be reused for every subsequent vehicle entering the bubble until the episode is over. """ return self._bubble.keep_alive
If enabled, the social agent actor will be spawned upon first vehicle airlock and be reused for every subsequent vehicle entering the bubble until the episode is over.
keep_alive
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def airlock_condition(self) -> Condition: """Conditions under which this bubble will accept an agent.""" return self._airlock_condition
Conditions under which this bubble will accept an agent.
airlock_condition
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def active_condition(self) -> Condition: """Fast inclusions for the bubble.""" return self._active_condition
Fast inclusions for the bubble.
active_condition
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def geometry(self) -> Polygon: """The geometry of the managed bubble.""" return self._cached_inner_geometry
The geometry of the managed bubble.
geometry
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def airlock_geometry(self) -> Polygon: """The airlock geometry of the managed bubble.""" return self._cached_airlock_geometry
The airlock geometry of the managed bubble.
airlock_geometry
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def condition_passes( self, active_condition_requirements, ): """If the broadphase condition allows for this""" return ConditionState.TRUE in self.active_condition.evaluate( **active_condition_requirements )
If the broadphase condition allows for this
condition_passes
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def admissibility( self, vehicle_id: str, index: VehicleIndex, vehicle_ids_in_bubbles: Dict["Bubble", Set[str]], running_cursors: Set["Cursor"], ): """The vehicle_id we are querying for and the `other_vehicle_ids` _presently in this :class:`~smarts.sstudio.sstypes.bubble.Bubble`. """ for prefix in self.exclusion_prefixes: if vehicle_id.startswith(prefix): return False, False hijackable, shadowable = True, True if self._limit is not None: # Already hijacked (according to VehicleIndex) + to be hijacked (running cursors) current_hijacked_vehicle_ids = { v_id for v_id in vehicle_ids_in_bubbles[self] if index.vehicle_is_hijacked(v_id) } current_shadowed_vehicle_ids = { v_id for v_id in vehicle_ids_in_bubbles[self] if index.vehicle_is_shadowed(v_id) } vehicle_ids_by_bubble_state = ( BubbleManager._vehicle_ids_divided_by_bubble_state( frozenset(running_cursors) ) ) all_hijacked_vehicle_ids = ( current_hijacked_vehicle_ids | vehicle_ids_by_bubble_state[BubbleRelationState.InAirlock][self] ) - {vehicle_id} all_shadowed_vehicle_ids = ( current_shadowed_vehicle_ids | vehicle_ids_by_bubble_state[BubbleRelationState.InBubble][self] ) - {vehicle_id} hijackable = len(all_hijacked_vehicle_ids) < ( self._limit.hijack_limit or maxsize ) shadowable = len(all_shadowed_vehicle_ids) + len( all_hijacked_vehicle_ids ) < (self._limit.shadow_limit or maxsize) return hijackable, shadowable
The vehicle_id we are querying for and the `other_vehicle_ids` _presently in this :class:`~smarts.sstudio.sstypes.bubble.Bubble`.
admissibility
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def in_bubble_or_airlock_zone(self, position: Point): """Test if the position is within the bubble or airlock around the bubble.""" if not isinstance(position, Point): position = Point(position) in_airlock = position.within(self._cached_airlock_geometry) if not in_airlock: return False, False in_bubble = position.within(self._cached_inner_geometry) return in_bubble, in_airlock and not in_bubble
Test if the position is within the bubble or airlock around the bubble.
in_bubble_or_airlock_zone
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def is_traveling(self): """If the bubble is following an actor.""" return ( self._bubble.follow_actor_id is not None or self._bubble.follow_vehicle_id is not None )
If the bubble is following an actor.
is_traveling
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def move_to_follow_vehicle(self, vehicle: Vehicle): """Move the bubble to a pose relative to the given vehicle.""" if not vehicle.valid: return x, y, _ = vehicle.position def _transform(geom): centroid = geom.centroid # Bring back to origin geom = translate(geom, xoff=-centroid.x, yoff=-centroid.y) geom = rotate(geom, -self._bubble_heading, "centroid", use_radians=True) # Now apply new transformation in "vehicle coordinate space" geom = translate( geom, xoff=self._bubble.follow_offset[0], yoff=self._bubble.follow_offset[1], ) geom = rotate(geom, vehicle.heading, (0, 0), use_radians=True) geom = translate(geom, xoff=x, yoff=y) return geom self._cached_inner_geometry = _transform(self._cached_inner_geometry) self._cached_airlock_geometry = _transform(self._cached_airlock_geometry) self.centroid = [ self._cached_inner_geometry.centroid.x, self._cached_inner_geometry.centroid.y, ] self._bubble_heading = vehicle.heading
Move the bubble to a pose relative to the given vehicle.
move_to_follow_vehicle
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def for_removed( vehicle_id: str, bubble: Bubble, index: VehicleIndex, vehicle_ids_per_bubble: Dict[Bubble, Set[str]], ) -> "Cursor": """Generate a cursor for an inactive bubble. Args: vehicle (Vehicle): The vehicle that is to be tracked. bubble (Bubble): The bubble that the vehicle is interacting with. index (VehicleIndex): The vehicle index the vehicle is in. vehicle_ids_per_bubble (Dict[Bubble, Set[str]]): Bubbles associated with vehicle ids. running_cursors (Set["Cursor"]): A set of existing cursors. """ was_in_this_bubble = vehicle_id in vehicle_ids_per_bubble[bubble] is_hijacked, is_shadowed = index.vehicle_is_hijacked_or_shadowed(vehicle_id) transition = None if was_in_this_bubble and (is_shadowed or is_hijacked): transition = BubbleTransition.AirlockExited return Cursor( vehicle_id=vehicle_id, transition=transition, state=BubbleRelationState.WasInBubble, capture=BubbleCaptureState.Uncaptured, bubble=bubble, )
Generate a cursor for an inactive bubble. Args: vehicle (Vehicle): The vehicle that is to be tracked. bubble (Bubble): The bubble that the vehicle is interacting with. index (VehicleIndex): The vehicle index the vehicle is in. vehicle_ids_per_bubble (Dict[Bubble, Set[str]]): Bubbles associated with vehicle ids. running_cursors (Set["Cursor"]): A set of existing cursors.
for_removed
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def from_pos( position: Point, vehicle_id: str, bubble: Bubble, index: VehicleIndex, vehicle_ids_per_bubble: Dict[Bubble, Set[str]], running_cursors: Set["Cursor"], previous_cursor: Optional["Cursor"], is_hijack_admissible, is_airlock_admissible, ) -> "Cursor": """Generate a cursor. Args: position (Point): The shapely position of the vehicle. vehicle (Vehicle): The vehicle that is to be tracked. bubble (Bubble): The bubble that the vehicle is interacting with. index (VehicleIndex): The vehicle index the vehicle is in. vehicle_ids_per_bubble (Dict[Bubble, Set[str]]): Bubbles associated with vehicle ids. running_cursors (Set["Cursor"]): A set of existing cursors. """ in_bubble_zone, in_airlock_zone = bubble.in_bubble_or_airlock_zone(position) is_social = vehicle_id in index.social_vehicle_ids() was_in_this_bubble = vehicle_id in vehicle_ids_per_bubble[bubble] previous_capture = ( previous_cursor.capture if previous_cursor is not None else BubbleCaptureState.Uncaptured ) # XXX: When a traveling bubble disappears and an agent is airlocked or # hijacked. It remains in that state. # TODO: Depending on step size, we could potentially skip transitions (e.g. # go straight to relinquish w/o hijacking first). This may be solved by # time-based airlocking. For robust code we'll want to handle these # scenarios (e.g. hijacking if didn't airlock first) transition = None capture = previous_capture if ( is_social and previous_capture is BubbleCaptureState.Uncaptured and is_airlock_admissible and (in_airlock_zone or in_bubble_zone) ): # In this case a vehicle has just entered the airlock transition = BubbleTransition.AirlockEntered capture = BubbleCaptureState.Captured elif ( previous_capture is BubbleCaptureState.Captured and is_hijack_admissible and in_bubble_zone ): # In this case a vehicle has just entered the bubble transition = BubbleTransition.Entered capture = BubbleCaptureState.Controlled elif ( was_in_this_bubble and previous_capture is BubbleCaptureState.Controlled and in_airlock_zone ): # XXX: This may get called repeatedly because we don't actually change # any state when this happens. # In this case a vehicle has just exited the bubble transition = BubbleTransition.Exited elif ( was_in_this_bubble and previous_capture in {BubbleCaptureState.Controlled, BubbleCaptureState.Captured} and not (in_airlock_zone or in_bubble_zone) ): # In this case a vehicle has just exited the airlock around the bubble transition = BubbleTransition.AirlockExited capture = BubbleCaptureState.Uncaptured state = None if in_bubble_zone: state = BubbleRelationState.InBubble elif in_airlock_zone: state = BubbleRelationState.InAirlock return Cursor( vehicle_id=vehicle_id, transition=transition, capture=capture, state=state, bubble=bubble, )
Generate a cursor. Args: position (Point): The shapely position of the vehicle. vehicle (Vehicle): The vehicle that is to be tracked. bubble (Bubble): The bubble that the vehicle is interacting with. index (VehicleIndex): The vehicle index the vehicle is in. vehicle_ids_per_bubble (Dict[Bubble, Set[str]]): Bubbles associated with vehicle ids. running_cursors (Set["Cursor"]): A set of existing cursors.
from_pos
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def active_bubbles(self) -> Sequence[Bubble]: """A sequence of currently active bubbles.""" return self._active_bubbles
A sequence of currently active bubbles.
active_bubbles
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def vehicle_ids_per_bubble( self, ) -> Dict[Bubble, Set[str]]: """Bubbles associated with the vehicles they contain.""" vid = self._vehicle_ids_divided_by_bubble_state(frozenset(self._cursors)) return defaultdict( set, {**vid[BubbleRelationState.InBubble], **vid[BubbleRelationState.InAirlock]}, )
Bubbles associated with the vehicles they contain.
vehicle_ids_per_bubble
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def agent_ids_for_bubble(self, bubble: Bubble, sim) -> Set[str]: """Agents generated by this bubble.""" bubble_cursors = set(filter(lambda c: c.bubble == bubble, self._cursors)) agent_ids = set() for bc in bubble_cursors: if bc.state != BubbleRelationState.InBubble: continue agent_id = sim.vehicle_index.owner_id_from_vehicle_id(bc.vehicle_id) if agent_id is not None: agent_ids.add(agent_id) return agent_ids
Agents generated by this bubble.
agent_ids_for_bubble
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def step(self, sim): """Update the associations between bubbles, actors, and agents""" self._active_bubbles, _ = self._bubble_groups(sim) self._move_traveling_bubbles(sim) self._cursors = self._sync_cursors( self._last_vehicle_index, sim.vehicle_index, sim ) self._handle_transitions(sim, self._cursors) self._last_vehicle_index = deepcopy(sim.vehicle_index)
Update the associations between bubbles, actors, and agents
step
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def _airlock_social_vehicle_with_social_agent( self, sim, vehicle_id: str, social_agent_actor: SocialAgentActor, is_boid: bool, keep_alive: bool, ): """When airlocked. The social agent will receive observations and execute its policy, however it won't actually operate the vehicle's controller. """ assert isinstance( social_agent_actor, SocialAgentActor ), "This must be a social agent actor type." self._log.debug( f"Airlocked vehicle={vehicle_id} with actor={social_agent_actor}" ) if is_boid: agent_id = BubbleManager._make_boid_social_agent_id(social_agent_actor) else: agent_id = BubbleManager._make_social_agent_id(vehicle_id) social_agent = None if is_boid and keep_alive or agent_id in sim.agent_manager.social_agent_ids: # E.g. if agent is a boid and was being re-used interface = sim.agent_manager.agent_interface_for_agent_id(agent_id) else: social_agent = make_social_agent( locator=social_agent_actor.agent_locator, **social_agent_actor.policy_kwargs, ) interface = social_agent.interface self._prepare_sensors_for_agent_control( sim, vehicle_id, agent_id, interface, is_boid=is_boid ) if social_agent is None: return self._start_social_agent( sim, agent_id, social_agent, social_agent_actor, is_boid=is_boid, keep_alive=keep_alive, )
When airlocked. The social agent will receive observations and execute its policy, however it won't actually operate the vehicle's controller.
_airlock_social_vehicle_with_social_agent
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def _hijack_social_vehicle_with_social_agent( self, sim, vehicle_id: str, social_agent_actor: SocialAgentActor, is_boid: bool ): """Upon hijacking the social agent is now in control of the vehicle. It will initialize the vehicle chassis (and by extension the controller) with a "greatest common denominator" state; that is: what's available via the vehicle front-end common to both source and destination policies during airlock. """ assert isinstance( social_agent_actor, SocialAgentActor ), "This must be a social agent actor type." self._log.debug(f"Hijack vehicle={vehicle_id} with actor={social_agent_actor}") if is_boid: agent_id = BubbleManager._make_boid_social_agent_id(social_agent_actor) else: agent_id = BubbleManager._make_social_agent_id(vehicle_id) agent_interface = sim.agent_manager.agent_interface_for_agent_id(agent_id) vehicle = sim.vehicle_index.switch_control_to_agent( sim, vehicle_id, agent_id, boid=is_boid, hijacking=True, recreate=False, agent_interface=agent_interface, ) if vehicle: sim.create_vehicle_in_providers(vehicle, agent_id)
Upon hijacking the social agent is now in control of the vehicle. It will initialize the vehicle chassis (and by extension the controller) with a "greatest common denominator" state; that is: what's available via the vehicle front-end common to both source and destination policies during airlock.
_hijack_social_vehicle_with_social_agent
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def teardown(self): """Clean up internal state.""" self._cursors = set() self._bubbles = []
Clean up internal state.
teardown
python
huawei-noah/SMARTS
smarts/core/bubble_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/bubble_manager.py
MIT
def sorted_keys(self) -> List[int]: """@return the keys in ascending order; only to be used after dict contents are final""" # if we want to add another dependency, it would probably be better to use SortedDict... return sorted(self.keys())
@return the keys in ascending order; only to be used after dict contents are final
sorted_keys
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def accum(self, pt: np.ndarray) -> float: """@return accumulated distance so far""" if self._last_pt is not None: self._d += np.linalg.norm(pt - self._last_pt) self._last_pt = pt return self._d
@return accumulated distance so far
_polyline_dists.accum
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def _polyline_dists(polyline) -> Tuple[np.ndarray, np.ndarray]: lane_pts = np.array([WaymoMap._map_pt_to_point(p) for p in polyline]) class _Accum: def __init__(self): self._d = 0.0 self._last_pt = None def accum(self, pt: np.ndarray) -> float: """@return accumulated distance so far""" if self._last_pt is not None: self._d += np.linalg.norm(pt - self._last_pt) self._last_pt = pt return self._d q = _Accum() dists = np.array([q.accum(pt) for pt in lane_pts]) return lane_pts, dists
@return accumulated distance so far
_polyline_dists
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def parse_source_to_scenario(source: str): """Read the dataset file and get the specified scenario""" dataset_path = source.split("#")[0] scenario_id = source.split("#")[1] # Reset cache if this is a new TFRecord file if not WaymoMap._tfrecord_path or WaymoMap._tfrecord_path != dataset_path: WaymoMap._tfrecord_path = dataset_path WaymoMap._tfrecord_generator = read_tfrecord_file(dataset_path) WaymoMap._scenario_cache = dict() parsed_scenario = WaymoMap._scenario_cache.get(scenario_id) if parsed_scenario: return parsed_scenario while True: record = next(WaymoMap._tfrecord_generator, None) if not record: raise ValueError( f"Dataset file does not contain scenario with id: {scenario_id}" ) parsed_scenario = scenario_pb2.Scenario() parsed_scenario.ParseFromString(bytes(record)) WaymoMap._scenario_cache[parsed_scenario.scenario_id] = parsed_scenario if parsed_scenario.scenario_id == scenario_id: return parsed_scenario
Read the dataset file and get the specified scenario
parse_source_to_scenario
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def from_spec(cls, map_spec: MapSpec): """Generate a road network from the given specification.""" if len(map_spec.source.split("#")) != 2: return None waymo_scenario = cls.parse_source_to_scenario(map_spec.source) assert waymo_scenario return cls(map_spec, waymo_scenario)
Generate a road network from the given specification.
from_spec
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def to_glb(self, glb_dir): """Build a `.glb` file for camera rendering and envision.""" polygons = [] for lane_id, lane in self._lanes.items(): metadata = { "road_id": lane.road.road_id, "lane_id": lane_id, "lane_index": lane.index, } polygons.append((lane.shape(), metadata)) lane_dividers = self._compute_traffic_dividers() map_glb = make_map_glb(polygons, self.bounding_box, lane_dividers, []) map_glb.write_glb(Path(glb_dir) / "map.glb") lane_lines_glb = make_road_line_glb(lane_dividers) lane_lines_glb.write_glb(Path(glb_dir) / "lane_lines.glb")
Build a `.glb` file for camera rendering and envision.
to_glb
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def update( self, lookahead: int, point: Point, filter_road_ids: tuple, llp, paths: List[List[Waypoint]], ): """Update the current cache if not already cached.""" if not self._match(lookahead, point, filter_road_ids): self.lookahead = lookahead self.point = point self.filter_road_ids = filter_road_ids self._starts = {} self._starts[llp.lp.lane.index] = paths
Update the current cache if not already cached.
update
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def query( self, lookahead: int, point: Point, filter_road_ids: tuple, llp, ) -> Optional[List[List[Waypoint]]]: """Attempt to find previously cached waypoints""" if self._match(lookahead, point, filter_road_ids): hit = self._starts.get(llp.lp.lane.index, None) if hit: # consider just returning all of them (not slicing)? return [path[: (lookahead + 1)] for path in hit] return None
Attempt to find previously cached waypoints
query
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def _waypoint_paths_along_route( self, point: Point, lookahead: int, route: Sequence[str] ) -> List[List[Waypoint]]: """finds the closest lane to vehicle's position that is on its route, then gets waypoint paths from all lanes in its road there.""" assert len(route) > 0, f"Expected at least 1 road in the route, got: {route}" closest_llp_on_each_route_road = [ self._lanepoints.closest_linked_lanepoint_on_road(point, road) for road in route ] closest_linked_lp = min( closest_llp_on_each_route_road, key=lambda l_lp: np.linalg.norm( vec_2d(l_lp.lp.pose.position) - vec_2d(point) ), ) closest_lane = closest_linked_lp.lp.lane waypoint_paths = [] for lane in closest_lane.road.lanes: waypoint_paths += lane._waypoint_paths_at(point, lookahead, route) return sorted(waypoint_paths, key=len, reverse=True)
finds the closest lane to vehicle's position that is on its route, then gets waypoint paths from all lanes in its road there.
_waypoint_paths_along_route
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def _equally_spaced_path( path: Sequence[LinkedLanePoint], point: Point, lp_spacing: float, ) -> List[Waypoint]: """given a list of LanePoints starting near point, return corresponding Waypoints that may not be evenly spaced (due to lane change) but start at point. """ continuous_variables = [ "positions_x", "positions_y", "headings", "lane_width", "speed_limit", "lane_offset", ] discrete_variables = ["lane_id", "lane_index"] ref_lanepoints_coordinates = { parameter: [] for parameter in (continuous_variables + discrete_variables) } for idx, lanepoint in enumerate(path): if lanepoint.is_inferred and 0 < idx < len(path) - 1: continue ref_lanepoints_coordinates["positions_x"].append( lanepoint.lp.pose.position[0] ) ref_lanepoints_coordinates["positions_y"].append( lanepoint.lp.pose.position[1] ) ref_lanepoints_coordinates["headings"].append( lanepoint.lp.pose.heading.as_bullet ) ref_lanepoints_coordinates["lane_id"].append(lanepoint.lp.lane.lane_id) ref_lanepoints_coordinates["lane_index"].append(lanepoint.lp.lane.index) ref_lanepoints_coordinates["lane_width"].append(lanepoint.lp.lane_width) ref_lanepoints_coordinates["lane_offset"].append( lanepoint.lp.lane.offset_along_lane(lanepoint.lp.pose.point) ) ref_lanepoints_coordinates["speed_limit"].append( lanepoint.lp.lane.speed_limit ) ref_lanepoints_coordinates["headings"] = inplace_unwrap( ref_lanepoints_coordinates["headings"] ) first_lp_heading = ref_lanepoints_coordinates["headings"][0] lp_position = path[0].lp.pose.point.as_np_array[:2] vehicle_pos = point.as_np_array[:2] heading_vec = radians_to_vec(first_lp_heading) projected_distant_lp_vehicle = np.inner( (vehicle_pos - lp_position), heading_vec ) ref_lanepoints_coordinates["positions_x"][0] = ( lp_position[0] + projected_distant_lp_vehicle * heading_vec[0] ) ref_lanepoints_coordinates["positions_y"][0] = ( lp_position[1] + projected_distant_lp_vehicle * heading_vec[1] ) cumulative_path_dist = np.cumsum( np.sqrt( np.ediff1d(ref_lanepoints_coordinates["positions_x"], to_begin=0) ** 2 + np.ediff1d(ref_lanepoints_coordinates["positions_y"], to_begin=0) ** 2 ) ) if len(cumulative_path_dist) <= lp_spacing: lp = path[0].lp return [ Waypoint( pos=lp.pose.position[:2], heading=lp.pose.heading, lane_width=lp.lane.width_at_offset(0)[0], speed_limit=lp.lane.speed_limit, lane_id=lp.lane.lane_id, lane_index=lp.lane.index, lane_offset=lp.lane.offset_along_lane(lp.pose.point), ) ] evenly_spaced_cumulative_path_dist = np.linspace( 0, cumulative_path_dist[-1], len(path) ) evenly_spaced_coordinates = {} for variable in continuous_variables: evenly_spaced_coordinates[variable] = np.interp( evenly_spaced_cumulative_path_dist, cumulative_path_dist, ref_lanepoints_coordinates[variable], ) for variable in discrete_variables: ref_coordinates = ref_lanepoints_coordinates[variable] evenly_spaced_coordinates[variable] = [] jdx = 0 for idx in range(len(path)): while ( jdx + 1 < len(cumulative_path_dist) and evenly_spaced_cumulative_path_dist[idx] > cumulative_path_dist[jdx + 1] ): jdx += 1 evenly_spaced_coordinates[variable].append(ref_coordinates[jdx]) evenly_spaced_coordinates[variable].append(ref_coordinates[-1]) waypoint_path = [] for idx in range(len(path)): waypoint_path.append( Waypoint( pos=np.array( [ evenly_spaced_coordinates["positions_x"][idx], evenly_spaced_coordinates["positions_y"][idx], ] ), heading=Heading(evenly_spaced_coordinates["headings"][idx]), lane_width=evenly_spaced_coordinates["lane_width"][idx], speed_limit=evenly_spaced_coordinates["speed_limit"][idx], lane_id=evenly_spaced_coordinates["lane_id"][idx], lane_index=evenly_spaced_coordinates["lane_index"][idx], lane_offset=evenly_spaced_coordinates["lane_offset"][idx], ) ) return waypoint_path
given a list of LanePoints starting near point, return corresponding Waypoints that may not be evenly spaced (due to lane change) but start at point.
_equally_spaced_path
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def _waypoints_starting_at_lanepoint( self, lanepoint: LinkedLanePoint, lookahead: int, filter_road_ids: tuple, point: Point, ) -> List[List[Waypoint]]: """computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.""" # The following acts sort of like lru_cache(1), but it allows # for lookahead to be <= to the cached value... cache_paths = self._waypoints_cache.query( lookahead, point, filter_road_ids, lanepoint ) if cache_paths: return cache_paths lanepoint_paths = self._lanepoints.paths_starting_at_lanepoint( lanepoint, lookahead, filter_road_ids ) result = [ WaymoMap._equally_spaced_path( path, point, self._map_spec.lanepoint_spacing, ) for path in lanepoint_paths ] self._waypoints_cache.update( lookahead, point, filter_road_ids, lanepoint, result ) return result
computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.
_waypoints_starting_at_lanepoint
python
huawei-noah/SMARTS
smarts/core/waymo_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/waymo_map.py
MIT
def merge(self, other: ProviderState): """Merge state with another provider's state.""" our_actors = {a.actor_id for a in self.actors} other_actors = {a.actor_id for a in other.actors} if not our_actors.isdisjoint(other_actors): overlap = our_actors & other_actors logging.warning( "multiple providers control the same actors: %s. " "Later added providers will take priority. ", overlap, ) logging.info( "Conflicting actor states: \n" "Previous: %s\n" "Later: %s\n", [(a.actor_id, a.source) for a in self.actors if a.actor_id in overlap], [(a.actor_id, a.source) for a in other.actors if a.actor_id in overlap], ) ## TODO: Properly harmonize these actor ids so that there is a priority and per actor source self.actors += filter(lambda a: a.actor_id not in our_actors, other.actors) self.dt = max(self.dt, other.dt, key=lambda x: x if x else 0)
Merge state with another provider's state.
merge
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def filter(self, actor_ids: Set[str]): """Filter actor states down to the given actors.""" provider_actor_ids = [a.actor_id for a in self.actors] for a_id in actor_ids: try: index = provider_actor_ids.index(a_id) del provider_actor_ids[index] del self.actors[index] except ValueError: continue
Filter actor states down to the given actors.
filter
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def intersects(self, actor_ids: Set[str]) -> bool: """Returns True if any of the actor_ids are contained in this ProviderState . Returns False for empty-set containment.""" provider_actor_ids = {a.actor_id for a in self.actors} intersection = actor_ids & provider_actor_ids return bool(intersection)
Returns True if any of the actor_ids are contained in this ProviderState . Returns False for empty-set containment.
intersects
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def replace_actor_type( self, updated_actors: List[ActorState], actor_state_type: type ): """Replaces all actors of the given type. Args: updated_actors (List[ActorState]): The actors to use as replacement. actor_type (str): The actor type to replace. """ self.actors = [ actor_state for actor_state in self.actors if not issubclass(actor_state.__class__, actor_state_type) ] + updated_actors
Replaces all actors of the given type. Args: updated_actors (List[ActorState]): The actors to use as replacement. actor_type (str): The actor type to replace.
replace_actor_type
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def provider_releases_actor( self, current_provider: Optional[Provider], state: ActorState ) -> Optional[Provider]: """The current provider gives up control over the specified actor. The manager finds a new Provider for the actor from among the Providers managed by this ProviderManager. If no provider accepts the actor the actor is removed from all providers. Returns: (Provider|None): A suitable new provider or `None` if a suitable one could not be found. """ new_provider, actor_provider_transition = self.provider_relinquishing_actor( current_provider=current_provider, state=state ) if new_provider is None or not self.transition_to_provider( new_provider=new_provider, actor_provider_transition=actor_provider_transition, ): logging.warning( "could not find a provider to assume control of vehicle %s with role=%s after being relinquished. removing it.", state.actor_id, state.role.name, ) self._stop_managing_with_providers(state.actor_id, None) self.provider_removing_actor(current_provider, state.actor_id) return new_provider
The current provider gives up control over the specified actor. The manager finds a new Provider for the actor from among the Providers managed by this ProviderManager. If no provider accepts the actor the actor is removed from all providers. Returns: (Provider|None): A suitable new provider or `None` if a suitable one could not be found.
provider_releases_actor
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def provider_relinquishing_actor( self, current_provider: Optional[Provider], state: ActorState ) -> Tuple[Optional[Provider], ActorProviderTransition]: """Find a new Provider for an actor from among the Providers managed by this ProviderManager. Returns: (Provider|None): A suitable new provider or `None` if a suitable one could not be found. """ raise NotImplementedError
Find a new Provider for an actor from among the Providers managed by this ProviderManager. Returns: (Provider|None): A suitable new provider or `None` if a suitable one could not be found.
provider_relinquishing_actor
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def provider_removing_actor(self, provider: Optional[Provider], actor_id: str): """Called by a Provider when it is removing an actor from the simulation. It means that the Provider is indicating that the actor no longer exists. This was added for convenience, but it isn't always necessary to be called.""" raise NotImplementedError
Called by a Provider when it is removing an actor from the simulation. It means that the Provider is indicating that the actor no longer exists. This was added for convenience, but it isn't always necessary to be called.
provider_removing_actor
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def provider_for_actor(self, actor_id: str) -> Optional[Provider]: """Find the provider that currently manages the given actor. Args: actor_id (str): The actor id to query. Returns: (Provider|None): The provider that manages this actor. """ raise NotImplementedError
Find the provider that currently manages the given actor. Args: actor_id (str): The actor id to query. Returns: (Provider|None): The provider that manages this actor.
provider_for_actor
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def transition_to_provider( self, new_provider: Provider, actor_provider_transition: ActorProviderTransition, ) -> Optional[Provider]: """Passes a released actor to a new provider. This depends on `provider_relinquishing_actor`. Args: new_provider (Provider): The provider to transition to. actor_provider_transition (ActorProviderTransition): The released actor information. Returns: (Provider|None): Returns the provider if successful else will return `None` on failure. """ if actor_provider_transition.current_provider is new_provider: return new_provider if new_provider.can_accept_actor(actor_provider_transition.actor_state): new_provider.add_actor( actor_provider_transition.actor_state, actor_provider_transition.current_provider, ) self._stop_managing_with_providers( actor_provider_transition.actor_state.actor_id, new_provider ) return new_provider return None
Passes a released actor to a new provider. This depends on `provider_relinquishing_actor`. Args: new_provider (Provider): The provider to transition to. actor_provider_transition (ActorProviderTransition): The released actor information. Returns: (Provider|None): Returns the provider if successful else will return `None` on failure.
transition_to_provider
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def providers(self) -> List["Provider"]: """The providers that are current managed by this provider manager.""" raise NotImplementedError
The providers that are current managed by this provider manager.
providers
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def recovery_flags(self) -> ProviderRecoveryFlags: """Flags specifying what this provider should do if it fails. (May be overridden by child classes.)""" return ( ProviderRecoveryFlags.EXPERIMENT_REQUIRED | ProviderRecoveryFlags.RELINQUISH_ACTORS )
Flags specifying what this provider should do if it fails. (May be overridden by child classes.)
recovery_flags
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def recovery_flags(self, flags: ProviderRecoveryFlags): """Setter to allow recovery flags to be changed.""" raise NotImplementedError
Setter to allow recovery flags to be changed.
recovery_flags
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def set_manager(self, manager: ProviderManager): """Indicate the manager that this provider should inform of all actor hand-offs.""" raise NotImplementedError
Indicate the manager that this provider should inform of all actor hand-offs.
set_manager
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT
def actions(self) -> Set[ActionSpaceType]: """The action spaces of the provider.""" raise NotImplementedError
The action spaces of the provider.
actions
python
huawei-noah/SMARTS
smarts/core/provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/provider.py
MIT