code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def add_config_path(path):
"""Select config parser by file extension and add path into parser.
"""
if not os.path.isfile(path):
warnings.warn("Config file does not exist: {path}".format(path=path))
return False
# select parser by file extension
default_parser = _get_default_parser()
_base, ext = os.path.splitext(path)
if ext and ext[1:] in PARSERS:
parser = ext[1:]
else:
parser = default_parser
parser_class = PARSERS[parser]
_check_parser(parser_class, parser)
if parser != default_parser:
msg = (
"Config for {added} parser added, but used {used} parser. "
"Set up right parser via env var: "
"export LUIGI_CONFIG_PARSER={added}"
)
warnings.warn(msg.format(added=parser, used=default_parser))
# add config path to parser
parser_class.add_config_path(path)
return True | Select config parser by file extension and add path into parser. | add_config_path | python | spotify/luigi | luigi/configuration/core.py | https://github.com/spotify/luigi/blob/master/luigi/configuration/core.py | Apache-2.0 |
def _get_with_default(self, method, section, option, default, expected_type=None, **kwargs):
"""
Gets the value of the section/option using method.
Returns default if value is not found.
Raises an exception if the default value is not None and doesn't match the expected_type.
"""
try:
try:
# Underscore-style is the recommended configuration style
option = option.replace('-', '_')
return method(self, section, option, **kwargs)
except (NoOptionError, NoSectionError):
# Support dash-style option names (with deprecation warning).
option_alias = option.replace('_', '-')
value = method(self, section, option_alias, **kwargs)
warn = 'Configuration [{s}] {o} (with dashes) should be avoided. Please use underscores: {u}.'.format(
s=section, o=option_alias, u=option)
warnings.warn(warn, DeprecationWarning)
return value
except (NoOptionError, NoSectionError):
if default is LuigiConfigParser.NO_DEFAULT:
raise
if expected_type is not None and default is not None and \
not isinstance(default, expected_type):
raise
return default | Gets the value of the section/option using method.
Returns default if value is not found.
Raises an exception if the default value is not None and doesn't match the expected_type. | _get_with_default | python | spotify/luigi | luigi/configuration/cfg_parser.py | https://github.com/spotify/luigi/blob/master/luigi/configuration/cfg_parser.py | Apache-2.0 |
def has_option(self, section, option):
"""modified has_option
Check for the existence of a given option in a given section. If the
specified 'section' is None or an empty string, DEFAULT is assumed. If
the specified 'section' does not exist, returns False.
"""
# Underscore-style is the recommended configuration style
option = option.replace('-', '_')
if ConfigParser.has_option(self, section, option):
return True
# Support dash-style option names (with deprecation warning).
option_alias = option.replace('_', '-')
if ConfigParser.has_option(self, section, option_alias):
warn = 'Configuration [{s}] {o} (with dashes) should be avoided. Please use underscores: {u}.'.format(
s=section, o=option_alias, u=option)
warnings.warn(warn, DeprecationWarning)
return True
return False | modified has_option
Check for the existence of a given option in a given section. If the
specified 'section' is None or an empty string, DEFAULT is assumed. If
the specified 'section' does not exist, returns False. | has_option | python | spotify/luigi | luigi/configuration/cfg_parser.py | https://github.com/spotify/luigi/blob/master/luigi/configuration/cfg_parser.py | Apache-2.0 |
def _fetch_json(self):
"""Returns the json representation of the dep graph"""
print("Fetching from url: " + self.graph_url)
resp = urlopen(self.graph_url).read()
return json.loads(resp.decode('utf-8')) | Returns the json representation of the dep graph | _fetch_json | python | spotify/luigi | luigi/tools/luigi_grep.py | https://github.com/spotify/luigi/blob/master/luigi/tools/luigi_grep.py | Apache-2.0 |
def prefix_search(self, job_name_prefix):
"""Searches for jobs matching the given ``job_name_prefix``."""
json = self._fetch_json()
jobs = json['response']
for job in jobs:
if job.startswith(job_name_prefix):
yield self._build_results(jobs, job) | Searches for jobs matching the given ``job_name_prefix``. | prefix_search | python | spotify/luigi | luigi/tools/luigi_grep.py | https://github.com/spotify/luigi/blob/master/luigi/tools/luigi_grep.py | Apache-2.0 |
def status_search(self, status):
"""Searches for jobs matching the given ``status``."""
json = self._fetch_json()
jobs = json['response']
for job in jobs:
job_info = jobs[job]
if job_info['status'].lower() == status.lower():
yield self._build_results(jobs, job) | Searches for jobs matching the given ``status``. | status_search | python | spotify/luigi | luigi/tools/luigi_grep.py | https://github.com/spotify/luigi/blob/master/luigi/tools/luigi_grep.py | Apache-2.0 |
def of_cls(self):
"""
DONT USE. Will be deleted soon. Use ``self.of``!
"""
if isinstance(self.of, str):
warnings.warn('When using Range programatically, dont pass "of" param as string!')
return Register.get_task_cls(self.of)
return self.of | DONT USE. Will be deleted soon. Use ``self.of``! | of_cls | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def datetime_to_parameters(self, dt):
"""
Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter
"""
raise NotImplementedError | Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter | datetime_to_parameters | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def parameters_to_datetime(self, p):
"""
Given a dictionary of parameters, will extract the ranged task parameter value
"""
raise NotImplementedError | Given a dictionary of parameters, will extract the ranged task parameter value | parameters_to_datetime | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def moving_start(self, now):
"""
Returns a datetime from which to ensure contiguousness in the case when
start is None or unfeasibly far back.
"""
raise NotImplementedError | Returns a datetime from which to ensure contiguousness in the case when
start is None or unfeasibly far back. | moving_start | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def moving_stop(self, now):
"""
Returns a datetime till which to ensure contiguousness in the case when
stop is None or unfeasibly far forward.
"""
raise NotImplementedError | Returns a datetime till which to ensure contiguousness in the case when
stop is None or unfeasibly far forward. | moving_stop | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def finite_datetimes(self, finite_start, finite_stop):
"""
Returns the individual datetimes in interval [finite_start, finite_stop)
for which task completeness should be required, as a sorted list.
"""
raise NotImplementedError | Returns the individual datetimes in interval [finite_start, finite_stop)
for which task completeness should be required, as a sorted list. | finite_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def _emit_metrics(self, missing_datetimes, finite_start, finite_stop):
"""
For consistent metrics one should consider the entire range, but
it is open (infinite) if stop or start is None.
Hence make do with metrics respective to the finite simplification.
"""
datetimes = self.finite_datetimes(
finite_start if self.start is None else min(finite_start, self.parameter_to_datetime(self.start)),
finite_stop if self.stop is None else max(finite_stop, self.parameter_to_datetime(self.stop)))
delay_in_jobs = len(datetimes) - datetimes.index(missing_datetimes[0]) if datetimes and missing_datetimes else 0
self.trigger_event(RangeEvent.DELAY, self.of_cls.task_family, delay_in_jobs)
expected_count = len(datetimes)
complete_count = expected_count - len(missing_datetimes)
self.trigger_event(RangeEvent.COMPLETE_COUNT, self.of_cls.task_family, complete_count)
self.trigger_event(RangeEvent.COMPLETE_FRACTION, self.of_cls.task_family, float(complete_count) / expected_count if expected_count else 1) | For consistent metrics one should consider the entire range, but
it is open (infinite) if stop or start is None.
Hence make do with metrics respective to the finite simplification. | _emit_metrics | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def missing_datetimes(self, finite_datetimes):
"""
Override in subclasses to do bulk checks.
Returns a sorted list.
This is a conservative base implementation that brutally checks completeness, instance by instance.
Inadvisable as it may be slow.
"""
return [d for d in finite_datetimes if not self._instantiate_task_cls(self.datetime_to_parameter(d)).complete()] | Override in subclasses to do bulk checks.
Returns a sorted list.
This is a conservative base implementation that brutally checks completeness, instance by instance.
Inadvisable as it may be slow. | missing_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def _missing_datetimes(self, finite_datetimes):
"""
Backward compatible wrapper. Will be deleted eventually (stated on Dec 2015)
"""
try:
return self.missing_datetimes(finite_datetimes)
except TypeError as ex:
if 'missing_datetimes()' in repr(ex):
warnings.warn('In your Range* subclass, missing_datetimes() should only take 1 argument (see latest docs)')
return self.missing_datetimes(self.of_cls, finite_datetimes)
else:
raise | Backward compatible wrapper. Will be deleted eventually (stated on Dec 2015) | _missing_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def datetime_to_parameters(self, dt):
"""
Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter
"""
return self._task_parameters(dt.date()) | Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter | datetime_to_parameters | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def parameters_to_datetime(self, p):
"""
Given a dictionary of parameters, will extract the ranged task parameter value
"""
dt = p[self._param_name]
return datetime(dt.year, dt.month, dt.day) | Given a dictionary of parameters, will extract the ranged task parameter value | parameters_to_datetime | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def finite_datetimes(self, finite_start, finite_stop):
"""
Simply returns the points in time that correspond to turn of day.
"""
date_start = datetime(finite_start.year, finite_start.month, finite_start.day)
dates = []
for i in itertools.count():
t = date_start + timedelta(days=i)
if t >= finite_stop:
return dates
if t >= finite_start:
dates.append(t) | Simply returns the points in time that correspond to turn of day. | finite_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def datetime_to_parameters(self, dt):
"""
Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter
"""
return self._task_parameters(dt) | Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter | datetime_to_parameters | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def parameters_to_datetime(self, p):
"""
Given a dictionary of parameters, will extract the ranged task parameter value
"""
return p[self._param_name] | Given a dictionary of parameters, will extract the ranged task parameter value | parameters_to_datetime | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def finite_datetimes(self, finite_start, finite_stop):
"""
Simply returns the points in time that correspond to whole hours.
"""
datehour_start = datetime(finite_start.year, finite_start.month, finite_start.day, finite_start.hour)
datehours = []
for i in itertools.count():
t = datehour_start + timedelta(hours=i)
if t >= finite_stop:
return datehours
if t >= finite_start:
datehours.append(t) | Simply returns the points in time that correspond to whole hours. | finite_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def datetime_to_parameters(self, dt):
"""
Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter
"""
return self._task_parameters(dt) | Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter | datetime_to_parameters | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def parameters_to_datetime(self, p):
"""
Given a dictionary of parameters, will extract the ranged task parameter value
"""
dt = p[self._param_name]
return datetime(dt.year, dt.month, dt.day, dt.hour, dt.minute) | Given a dictionary of parameters, will extract the ranged task parameter value | parameters_to_datetime | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def finite_datetimes(self, finite_start, finite_stop):
"""
Simply returns the points in time that correspond to a whole number of minutes intervals.
"""
# Validate that the minutes_interval can divide 60 and it is greater than 0 and lesser than 60
if not (0 < self.minutes_interval < 60):
raise ParameterException('minutes-interval must be within 0..60')
if 60 % self.minutes_interval != 0:
raise ParameterException('minutes-interval does not evenly divide 60')
# start of a complete interval, e.g. 20:13 and the interval is 5 -> 20:10
start_minute = int(finite_start.minute/self.minutes_interval)*self.minutes_interval
datehour_start = datetime(
year=finite_start.year,
month=finite_start.month,
day=finite_start.day,
hour=finite_start.hour,
minute=start_minute)
datehours = []
for i in itertools.count():
t = datehour_start + timedelta(minutes=i*self.minutes_interval)
if t >= finite_stop:
return datehours
if t >= finite_start:
datehours.append(t) | Simply returns the points in time that correspond to a whole number of minutes intervals. | finite_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def digit_set_wildcard(chars):
"""
Makes a wildcard expression for the set, a bit readable, e.g. [1-5].
"""
chars = sorted(chars)
if len(chars) > 1 and ord(chars[-1]) - ord(chars[0]) == len(chars) - 1:
return '[%s-%s]' % (chars[0], chars[-1])
else:
return '[%s]' % ''.join(chars) | Makes a wildcard expression for the set, a bit readable, e.g. [1-5]. | _constrain_glob.digit_set_wildcard | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def _constrain_glob(glob, paths, limit=5):
"""
Tweaks glob into a list of more specific globs that together still cover paths and not too much extra.
Saves us minutes long listings for long dataset histories.
Specifically, in this implementation the leftmost occurrences of "[0-9]"
give rise to a few separate globs that each specialize the expression to
digits that actually occur in paths.
"""
def digit_set_wildcard(chars):
"""
Makes a wildcard expression for the set, a bit readable, e.g. [1-5].
"""
chars = sorted(chars)
if len(chars) > 1 and ord(chars[-1]) - ord(chars[0]) == len(chars) - 1:
return '[%s-%s]' % (chars[0], chars[-1])
else:
return '[%s]' % ''.join(chars)
current = {glob: paths}
while True:
pos = list(current.keys())[0].find('[0-9]')
if pos == -1:
# no wildcard expressions left to specialize in the glob
return list(current.keys())
char_sets = {}
for g, p in current.items():
char_sets[g] = sorted({path[pos] for path in p})
if sum(len(s) for s in char_sets.values()) > limit:
return [g.replace('[0-9]', digit_set_wildcard(char_sets[g]), 1) for g in current]
for g, s in char_sets.items():
for c in s:
new_glob = g.replace('[0-9]', c, 1)
new_paths = list(filter(lambda p: p[pos] == c, current[g]))
current[new_glob] = new_paths
del current[g] | Tweaks glob into a list of more specific globs that together still cover paths and not too much extra.
Saves us minutes long listings for long dataset histories.
Specifically, in this implementation the leftmost occurrences of "[0-9]"
give rise to a few separate globs that each specialize the expression to
digits that actually occur in paths. | _constrain_glob | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def _get_per_location_glob(tasks, outputs, regexes):
"""
Builds a glob listing existing output paths.
Esoteric reverse engineering, but worth it given that (compared to an
equivalent contiguousness guarantee by naive complete() checks)
requests to the filesystem are cut by orders of magnitude, and users
don't even have to retrofit existing tasks anyhow.
"""
paths = [o.path for o in outputs]
# naive, because some matches could be confused by numbers earlier
# in path, e.g. /foo/fifa2000k/bar/2000-12-31/00
matches = [r.search(p) for r, p in zip(regexes, paths)]
for m, p, t in zip(matches, paths, tasks):
if m is None:
raise NotImplementedError("Couldn't deduce datehour representation in output path %r of task %s" % (p, t))
n_groups = len(matches[0].groups())
# the most common position of every group is likely
# to be conclusive hit or miss
positions = [most_common((m.start(i), m.end(i)) for m in matches)[0] for i in range(1, n_groups + 1)]
glob = list(paths[0]) # FIXME sanity check that it's the same for all paths
for start, end in positions:
glob = glob[:start] + ['[0-9]'] * (end - start) + glob[end:]
# chop off the last path item
# (wouldn't need to if `hadoop fs -ls -d` equivalent were available)
return ''.join(glob).rsplit('/', 1)[0] | Builds a glob listing existing output paths.
Esoteric reverse engineering, but worth it given that (compared to an
equivalent contiguousness guarantee by naive complete() checks)
requests to the filesystem are cut by orders of magnitude, and users
don't even have to retrofit existing tasks anyhow. | _get_per_location_glob | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def _get_filesystems_and_globs(datetime_to_task, datetime_to_re):
"""
Yields a (filesystem, glob) tuple per every output location of task.
The task can have one or several FileSystemTarget outputs.
For convenience, the task can be a luigi.WrapperTask,
in which case outputs of all its dependencies are considered.
"""
# probe some scattered datetimes unlikely to all occur in paths, other than by being sincere datetime parameter's representations
# TODO limit to [self.start, self.stop) so messages are less confusing? Done trivially it can kill correctness
sample_datetimes = [datetime(y, m, d, h) for y in range(2000, 2050, 10) for m in range(1, 4) for d in range(5, 8) for h in range(21, 24)]
regexes = [re.compile(datetime_to_re(d)) for d in sample_datetimes]
sample_tasks = [datetime_to_task(d) for d in sample_datetimes]
sample_outputs = [flatten_output(t) for t in sample_tasks]
for o, t in zip(sample_outputs, sample_tasks):
if len(o) != len(sample_outputs[0]):
raise NotImplementedError("Outputs must be consistent over time, sorry; was %r for %r and %r for %r" % (o, t, sample_outputs[0], sample_tasks[0]))
# TODO fall back on requiring last couple of days? to avoid astonishing blocking when changes like that are deployed
# erm, actually it's not hard to test entire hours_back..hours_forward and split into consistent subranges FIXME?
for target in o:
if not isinstance(target, FileSystemTarget):
raise NotImplementedError("Output targets must be instances of FileSystemTarget; was %r for %r" % (target, t))
for o in zip(*sample_outputs): # transposed, so here we're iterating over logical outputs, not datetimes
glob = _get_per_location_glob(sample_tasks, o, regexes)
yield o[0].fs, glob | Yields a (filesystem, glob) tuple per every output location of task.
The task can have one or several FileSystemTarget outputs.
For convenience, the task can be a luigi.WrapperTask,
in which case outputs of all its dependencies are considered. | _get_filesystems_and_globs | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def _list_existing(filesystem, glob, paths):
"""
Get all the paths that do in fact exist. Returns a set of all existing paths.
Takes a luigi.target.FileSystem object, a str which represents a glob and
a list of strings representing paths.
"""
globs = _constrain_glob(glob, paths)
time_start = time.time()
listing = []
for g in sorted(globs):
logger.debug('Listing %s', g)
if filesystem.exists(g):
listing.extend(filesystem.listdir(g))
logger.debug('%d %s listings took %f s to return %d items',
len(globs), filesystem.__class__.__name__, time.time() - time_start, len(listing))
return set(listing) | Get all the paths that do in fact exist. Returns a set of all existing paths.
Takes a luigi.target.FileSystem object, a str which represents a glob and
a list of strings representing paths. | _list_existing | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def infer_bulk_complete_from_fs(datetimes, datetime_to_task, datetime_to_re):
"""
Efficiently determines missing datetimes by filesystem listing.
The current implementation works for the common case of a task writing
output to a ``FileSystemTarget`` whose path is built using strftime with
format like '...%Y...%m...%d...%H...', without custom ``complete()`` or
``exists()``.
(Eventually Luigi could have ranges of completion as first-class citizens.
Then this listing business could be factored away/be provided for
explicitly in target API or some kind of a history server.)
"""
filesystems_and_globs_by_location = _get_filesystems_and_globs(datetime_to_task, datetime_to_re)
paths_by_datetime = [[o.path for o in flatten_output(datetime_to_task(d))] for d in datetimes]
listing = set()
for (f, g), p in zip(filesystems_and_globs_by_location, zip(*paths_by_datetime)): # transposed, so here we're iterating over logical outputs, not datetimes
listing |= _list_existing(f, g, p)
# quickly learn everything that's missing
missing_datetimes = []
for d, p in zip(datetimes, paths_by_datetime):
if not set(p) <= listing:
missing_datetimes.append(d)
return missing_datetimes | Efficiently determines missing datetimes by filesystem listing.
The current implementation works for the common case of a task writing
output to a ``FileSystemTarget`` whose path is built using strftime with
format like '...%Y...%m...%d...%H...', without custom ``complete()`` or
``exists()``.
(Eventually Luigi could have ranges of completion as first-class citizens.
Then this listing business could be factored away/be provided for
explicitly in target API or some kind of a history server.) | infer_bulk_complete_from_fs | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def datetime_to_parameters(self, dt):
"""
Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter
"""
return self._task_parameters(dt.date()) | Given a date-time, will produce a dictionary of of-params combined with the ranged task parameter | datetime_to_parameters | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def parameters_to_datetime(self, p):
"""
Given a dictionary of parameters, will extract the ranged task parameter value
"""
dt = p[self._param_name]
return datetime(dt.year, dt.month, 1) | Given a dictionary of parameters, will extract the ranged task parameter value | parameters_to_datetime | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def finite_datetimes(self, finite_start, finite_stop):
"""
Simply returns the points in time that correspond to turn of month.
"""
start_date = self._align(finite_start)
aligned_stop = self._align(finite_stop)
dates = []
for m in itertools.count():
t = start_date + relativedelta(months=m)
if t >= aligned_stop:
return dates
if t >= finite_start:
dates.append(t) | Simply returns the points in time that correspond to turn of month. | finite_datetimes | python | spotify/luigi | luigi/tools/range.py | https://github.com/spotify/luigi/blob/master/luigi/tools/range.py | Apache-2.0 |
def print_tree(task, indent='', last=True):
'''
Return a string representation of the tasks, their statuses/parameters in a dependency tree format
'''
# dont bother printing out warnings about tasks with no output
with warnings.catch_warnings():
warnings.filterwarnings(action='ignore', message='Task .* without outputs has no custom complete\\(\\) method')
is_task_complete = task.complete()
is_complete = (bcolors.OKGREEN + 'COMPLETE' if is_task_complete else bcolors.OKBLUE + 'PENDING') + bcolors.ENDC
name = task.__class__.__name__
params = task.to_str_params(only_significant=True)
result = '\n' + indent
if (last):
result += '└─--'
indent += ' '
else:
result += '|---'
indent += '| '
result += '[{0}-{1} ({2})]'.format(name, params, is_complete)
children = flatten(task.requires())
for index, child in enumerate(children):
result += print_tree(child, indent, (index+1) == len(children))
return result | Return a string representation of the tasks, their statuses/parameters in a dependency tree format | print_tree | python | spotify/luigi | luigi/tools/deps_tree.py | https://github.com/spotify/luigi/blob/master/luigi/tools/deps_tree.py | Apache-2.0 |
def find_deps(task, upstream_task_family):
'''
Finds all dependencies that start with the given task and have a path
to upstream_task_family
Returns all deps on all paths between task and upstream
'''
return {t for t in dfs_paths(task, upstream_task_family)} | Finds all dependencies that start with the given task and have a path
to upstream_task_family
Returns all deps on all paths between task and upstream | find_deps | python | spotify/luigi | luigi/tools/deps.py | https://github.com/spotify/luigi/blob/master/luigi/tools/deps.py | Apache-2.0 |
def find_deps_cli():
'''
Finds all tasks on all paths from provided CLI task
'''
cmdline_args = sys.argv[1:]
with CmdlineParser.global_instance(cmdline_args) as cp:
return find_deps(cp.get_task_obj(), upstream().family) | Finds all tasks on all paths from provided CLI task | find_deps_cli | python | spotify/luigi | luigi/tools/deps.py | https://github.com/spotify/luigi/blob/master/luigi/tools/deps.py | Apache-2.0 |
def get_task_output_description(task_output):
'''
Returns a task's output as a string
'''
output_description = "n/a"
if isinstance(task_output, RemoteTarget):
output_description = "[SSH] {0}:{1}".format(task_output._fs.remote_context.host, task_output.path)
elif isinstance(task_output, S3Target):
output_description = "[S3] {0}".format(task_output.path)
elif isinstance(task_output, FileSystemTarget):
output_description = "[FileSystem] {0}".format(task_output.path)
elif isinstance(task_output, PostgresTarget):
output_description = "[DB] {0}:{1}".format(task_output.host, task_output.table)
else:
output_description = "to be determined"
return output_description | Returns a task's output as a string | get_task_output_description | python | spotify/luigi | luigi/tools/deps.py | https://github.com/spotify/luigi/blob/master/luigi/tools/deps.py | Apache-2.0 |
def Popen(self, cmd, **kwargs):
"""
Remote Popen.
"""
prefixed_cmd = self._prepare_cmd(cmd)
return subprocess.Popen(prefixed_cmd, **kwargs) | Remote Popen. | Popen | python | spotify/luigi | luigi/contrib/ssh.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/ssh.py | Apache-2.0 |
def check_output(self, cmd):
"""
Execute a shell command remotely and return the output.
Simplified version of Popen when you only want the output as a string and detect any errors.
"""
p = self.Popen(cmd, stdout=subprocess.PIPE)
output, _ = p.communicate()
if p.returncode != 0:
raise RemoteCalledProcessError(p.returncode, cmd, self.host, output=output)
return output | Execute a shell command remotely and return the output.
Simplified version of Popen when you only want the output as a string and detect any errors. | check_output | python | spotify/luigi | luigi/contrib/ssh.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/ssh.py | Apache-2.0 |
def tunnel(self, local_port, remote_port=None, remote_host="localhost"):
"""
Open a tunnel between localhost:local_port and remote_host:remote_port via the host specified by this context.
Remember to close() the returned "tunnel" object in order to clean up
after yourself when you are done with the tunnel.
"""
tunnel_host = "{0}:{1}:{2}".format(local_port, remote_host, remote_port)
proc = self.Popen(
# cat so we can shut down gracefully by closing stdin
["-L", tunnel_host, "echo -n ready && cat"],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
)
# make sure to get the data so we know the connection is established
ready = proc.stdout.read(5)
assert ready == b"ready", "Didn't get ready from remote echo"
yield # user code executed here
proc.communicate()
assert proc.returncode == 0, "Tunnel process did an unclean exit (returncode %s)" % (proc.returncode,) | Open a tunnel between localhost:local_port and remote_host:remote_port via the host specified by this context.
Remember to close() the returned "tunnel" object in order to clean up
after yourself when you are done with the tunnel. | tunnel | python | spotify/luigi | luigi/contrib/ssh.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/ssh.py | Apache-2.0 |
def exists(self, path):
"""
Return `True` if file or directory at `path` exist, False otherwise.
"""
try:
self.remote_context.check_output(["test", "-e", path])
except subprocess.CalledProcessError as e:
if e.returncode == 1:
return False
else:
raise
return True | Return `True` if file or directory at `path` exist, False otherwise. | exists | python | spotify/luigi | luigi/contrib/ssh.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/ssh.py | Apache-2.0 |
def isdir(self, path):
"""
Return `True` if directory at `path` exist, False otherwise.
"""
try:
self.remote_context.check_output(["test", "-d", path])
except subprocess.CalledProcessError as e:
if e.returncode == 1:
return False
else:
raise
return True | Return `True` if directory at `path` exist, False otherwise. | isdir | python | spotify/luigi | luigi/contrib/ssh.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/ssh.py | Apache-2.0 |
def remove(self, path, recursive=True):
"""
Remove file or directory at location `path`.
"""
if recursive:
cmd = ["rm", "-r", path]
else:
cmd = ["rm", path]
self.remote_context.check_output(cmd) | Remove file or directory at location `path`. | remove | python | spotify/luigi | luigi/contrib/ssh.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/ssh.py | Apache-2.0 |
def __init__(self, host, database, user, password, table, update_id, **cnx_kwargs):
"""
Initializes a MySqlTarget instance.
:param host: MySql server address. Possibly a host:port string.
:type host: str
:param database: database name.
:type database: str
:param user: database user
:type user: str
:param password: password for specified user.
:type password: str
:param update_id: an identifier for this data set.
:type update_id: str
:param cnx_kwargs: optional params for mysql connector constructor.
See https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html.
"""
if ':' in host:
self.host, self.port = host.split(':')
self.port = int(self.port)
else:
self.host = host
self.port = 3306
self.database = database
self.user = user
self.password = password
self.table = table
self.update_id = update_id
self.cnx_kwargs = cnx_kwargs | Initializes a MySqlTarget instance.
:param host: MySql server address. Possibly a host:port string.
:type host: str
:param database: database name.
:type database: str
:param user: database user
:type user: str
:param password: password for specified user.
:type password: str
:param update_id: an identifier for this data set.
:type update_id: str
:param cnx_kwargs: optional params for mysql connector constructor.
See https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html. | __init__ | python | spotify/luigi | luigi/contrib/mysqldb.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/mysqldb.py | Apache-2.0 |
def touch(self, connection=None):
"""
Mark this update as complete.
IMPORTANT, If the marker table doesn't exist,
the connection transaction will be aborted and the connection reset.
Then the marker table will be created.
"""
self.create_marker_table()
if connection is None:
connection = self.connect()
connection.autocommit = True # if connection created here, we commit it here
connection.cursor().execute(
"""INSERT INTO {marker_table} (update_id, target_table)
VALUES (%s, %s)
ON DUPLICATE KEY UPDATE
update_id = VALUES(update_id)
""".format(marker_table=self.marker_table),
(self.update_id, self.table)
)
# make sure update is properly marked
assert self.exists(connection) | Mark this update as complete.
IMPORTANT, If the marker table doesn't exist,
the connection transaction will be aborted and the connection reset.
Then the marker table will be created. | touch | python | spotify/luigi | luigi/contrib/mysqldb.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/mysqldb.py | Apache-2.0 |
def create_marker_table(self):
"""
Create marker table if it doesn't exist.
Using a separate connection since the transaction might have to be reset.
"""
connection = self.connect(autocommit=True)
cursor = connection.cursor()
try:
cursor.execute(
""" CREATE TABLE {marker_table} (
id BIGINT(20) NOT NULL AUTO_INCREMENT,
update_id VARCHAR(128) NOT NULL,
target_table VARCHAR(128),
inserted TIMESTAMP DEFAULT NOW(),
PRIMARY KEY (update_id),
KEY id (id)
)
"""
.format(marker_table=self.marker_table)
)
except mysql.connector.Error as e:
if e.errno == errorcode.ER_TABLE_EXISTS_ERROR:
pass
else:
raise
connection.close() | Create marker table if it doesn't exist.
Using a separate connection since the transaction might have to be reset. | create_marker_table | python | spotify/luigi | luigi/contrib/mysqldb.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/mysqldb.py | Apache-2.0 |
def rows(self):
"""
Return/yield tuples or lists corresponding to each row to be inserted.
"""
with self.input().open('r') as fobj:
for line in fobj:
yield line.strip('\n').split('\t') | Return/yield tuples or lists corresponding to each row to be inserted. | rows | python | spotify/luigi | luigi/contrib/mysqldb.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/mysqldb.py | Apache-2.0 |
def output(self):
"""
Returns a MySqlTarget representing the inserted dataset.
Normally you don't override this.
"""
return MySqlTarget(
host=self.host,
database=self.database,
user=self.user,
password=self.password,
table=self.table,
update_id=self.update_id
) | Returns a MySqlTarget representing the inserted dataset.
Normally you don't override this. | output | python | spotify/luigi | luigi/contrib/mysqldb.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/mysqldb.py | Apache-2.0 |
def run(self):
"""
Inserts data generated by rows() into target table.
If the target table doesn't exist, self.create_table will be called to attempt to create the table.
Normally you don't want to override this.
"""
if not (self.table and self.columns):
raise Exception("table and columns need to be specified")
connection = self.output().connect()
# attempt to copy the data into mysql
# if it fails because the target table doesn't exist
# try to create it by running self.create_table
for attempt in range(2):
try:
cursor = connection.cursor()
print("caling init copy...")
self.init_copy(connection)
self.copy(cursor)
self.post_copy(connection)
if self.enable_metadata_columns:
self.post_copy_metacolumns(cursor)
except Error as err:
if err.errno == errorcode.ER_NO_SUCH_TABLE and attempt == 0:
# if first attempt fails with "relation not found", try creating table
# logger.info("Creating table %s", self.table)
connection.reconnect()
self.create_table(connection)
else:
raise
else:
break
# mark as complete in same transaction
self.output().touch(connection)
connection.commit()
connection.close() | Inserts data generated by rows() into target table.
If the target table doesn't exist, self.create_table will be called to attempt to create the table.
Normally you don't want to override this. | run | python | spotify/luigi | luigi/contrib/mysqldb.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/mysqldb.py | Apache-2.0 |
def attach(*packages):
"""
Attach a python package to hadoop map reduce tarballs to make those packages available
on the hadoop cluster.
"""
_attached_packages.extend(packages) | Attach a python package to hadoop map reduce tarballs to make those packages available
on the hadoop cluster. | attach | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def create_packages_archive(packages, filename):
"""
Create a tar archive which will contain the files for the packages listed in packages.
"""
import tarfile
tar = tarfile.open(filename, "w")
def add(src, dst):
logger.debug('adding to tar: %s -> %s', src, dst)
tar.add(src, dst)
def add_files_for_package(sub_package_path, root_package_path, root_package_name):
for root, dirs, files in os.walk(sub_package_path):
if '.svn' in dirs:
dirs.remove('.svn')
for f in files:
if not f.endswith(".pyc") and not f.startswith("."):
add(dereference(root + "/" + f), root.replace(root_package_path, root_package_name) + "/" + f)
for package in packages:
# Put a submodule's entire package in the archive. This is the
# magic that usually packages everything you need without
# having to attach packages/modules explicitly
if not getattr(package, "__path__", None) and '.' in package.__name__:
package = __import__(package.__name__.rpartition('.')[0], None, None, 'non_empty')
n = package.__name__.replace(".", "/")
if getattr(package, "__path__", None):
# TODO: (BUG) picking only the first path does not
# properly deal with namespaced packages in different
# directories
p = package.__path__[0]
if p.endswith('.egg') and os.path.isfile(p):
raise 'egg files not supported!!!'
# Add the entire egg file
# p = p[:p.find('.egg') + 4]
# add(dereference(p), os.path.basename(p))
else:
# include __init__ files from parent projects
root = []
for parent in package.__name__.split('.')[0:-1]:
root.append(parent)
module_name = '.'.join(root)
directory = '/'.join(root)
add(dereference(__import__(module_name, None, None, 'non_empty').__path__[0] + "/__init__.py"),
directory + "/__init__.py")
add_files_for_package(p, p, n)
# include egg-info directories that are parallel:
for egg_info_path in glob.glob(p + '*.egg-info'):
logger.debug(
'Adding package metadata to archive for "%s" found at "%s"',
package.__name__,
egg_info_path
)
add_files_for_package(egg_info_path, p, n)
else:
f = package.__file__
if f.endswith("pyc"):
f = f[:-3] + "py"
if n.find(".") == -1:
add(dereference(f), os.path.basename(f))
else:
add(dereference(f), n + ".py")
tar.close() | Create a tar archive which will contain the files for the packages listed in packages. | create_packages_archive | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def flatten(sequence):
"""
A simple generator which flattens a sequence.
Only one level is flattened.
.. code-block:: python
(1, (2, 3), 4) -> (1, 2, 3, 4)
"""
for item in sequence:
if hasattr(item, "__iter__") and not isinstance(item, str) and not isinstance(item, bytes):
for i in item:
yield i
else:
yield item | A simple generator which flattens a sequence.
Only one level is flattened.
.. code-block:: python
(1, (2, 3), 4) -> (1, 2, 3, 4) | flatten | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def write_luigi_history(arglist, history):
"""
Writes history to a file in the job's output directory in JSON format.
Currently just for tracking the job ID in a configuration where
no history is stored in the output directory by Hadoop.
"""
history_filename = configuration.get_config().get('core', 'history-filename', '')
if history_filename and '-output' in arglist:
output_dir = arglist[arglist.index('-output') + 1]
f = luigi.contrib.hdfs.HdfsTarget(os.path.join(output_dir, history_filename)).open('w')
f.write(json.dumps(history))
f.close() | Writes history to a file in the job's output directory in JSON format.
Currently just for tracking the job ID in a configuration where
no history is stored in the output directory by Hadoop. | run_and_track_hadoop_job.write_luigi_history | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def fetch_task_failures(tracking_url):
"""
Uses mechanize to fetch the actual task logs from the task tracker.
This is highly opportunistic, and we might not succeed.
So we set a low timeout and hope it works.
If it does not, it's not the end of the world.
TODO: Yarn has a REST API that we should probably use instead:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WebServicesIntro.html
"""
import mechanize
timeout = 3.0
failures_url = tracking_url.replace('jobdetails.jsp', 'jobfailures.jsp') + '&cause=failed'
logger.debug('Fetching data from %s', failures_url)
b = mechanize.Browser()
b.open(failures_url, timeout=timeout)
links = list(b.links(text_regex='Last 4KB')) # For some reason text_regex='All' doesn't work... no idea why
links = random.sample(links, min(10, len(links))) # Fetch a random subset of all failed tasks, so not to be biased towards the early fails
error_text = []
for link in links:
task_url = link.url.replace('&start=-4097', '&start=-100000') # Increase the offset
logger.debug('Fetching data from %s', task_url)
b2 = mechanize.Browser()
try:
r = b2.open(task_url, timeout=timeout)
data = r.read()
except Exception as e:
logger.debug('Error fetching data from %s: %s', task_url, e)
continue
# Try to get the hex-encoded traceback back from the output
for exc in re.findall(r'luigi-exc-hex=[0-9a-f]+', data):
error_text.append('---------- %s:' % task_url)
error_text.append(exc.split('=')[-1].decode('hex'))
return '\n'.join(error_text) | Uses mechanize to fetch the actual task logs from the task tracker.
This is highly opportunistic, and we might not succeed.
So we set a low timeout and hope it works.
If it does not, it's not the end of the world.
TODO: Yarn has a REST API that we should probably use instead:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WebServicesIntro.html | fetch_task_failures | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def _get_pool(self):
""" Protected method """
if self.pool:
return self.pool
if hadoop().pool:
return hadoop().pool | Protected method | _get_pool | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def init_local(self):
"""
Implement any work to setup any internal datastructure etc here.
You can add extra input using the requires_local/input_local methods.
Anything you set on the object will be pickled and available on the Hadoop nodes.
"""
pass | Implement any work to setup any internal datastructure etc here.
You can add extra input using the requires_local/input_local methods.
Anything you set on the object will be pickled and available on the Hadoop nodes. | init_local | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def requires_local(self):
"""
Default impl - override this method if you need any local input to be accessible in init().
"""
return [] | Default impl - override this method if you need any local input to be accessible in init(). | requires_local | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def job_runner(self):
# We recommend that you define a subclass, override this method and set up your own config
"""
Get the MapReduce runner for this job.
If all outputs are HdfsTargets, the DefaultHadoopJobRunner will be used.
Otherwise, the LocalJobRunner which streams all data through the local machine
will be used (great for testing).
"""
outputs = luigi.task.flatten(self.output())
for output in outputs:
if not isinstance(output, luigi.contrib.hdfs.HdfsTarget):
warnings.warn("Job is using one or more non-HdfsTarget outputs" +
" so it will be run in local mode")
return LocalJobRunner()
else:
return DefaultHadoopJobRunner() | Get the MapReduce runner for this job.
If all outputs are HdfsTargets, the DefaultHadoopJobRunner will be used.
Otherwise, the LocalJobRunner which streams all data through the local machine
will be used (great for testing). | job_runner | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def reader(self, input_stream):
"""
Reader is a method which iterates over input lines and outputs records.
The default implementation yields one argument containing the line for each line in the input."""
for line in input_stream:
yield line, | Reader is a method which iterates over input lines and outputs records.
The default implementation yields one argument containing the line for each line in the input. | reader | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def writer(self, outputs, stdout, stderr=sys.stderr):
"""
Writer format is a method which iterates over the output records
from the reducer and formats them for output.
The default implementation outputs tab separated items.
"""
for output in outputs:
try:
output = flatten(output)
if self.data_interchange_format == "json":
# Only dump one json string, and skip another one, maybe key or value.
output = filter(lambda x: x, output)
else:
# JSON is already serialized, so we put `self.serialize` in a else statement.
output = map(self.serialize, output)
print("\t".join(output), file=stdout)
except BaseException:
print(output, file=stderr)
raise | Writer format is a method which iterates over the output records
from the reducer and formats them for output.
The default implementation outputs tab separated items. | writer | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def mapper(self, item):
"""
Re-define to process an input item (usually a line of input data).
Defaults to identity mapper that sends all lines to the same reducer.
"""
yield None, item | Re-define to process an input item (usually a line of input data).
Defaults to identity mapper that sends all lines to the same reducer. | mapper | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def incr_counter(self, *args, **kwargs):
"""
Increments a Hadoop counter.
Since counters can be a bit slow to update, this batches the updates.
"""
threshold = kwargs.get("threshold", self.batch_counter_default)
if len(args) == 2:
# backwards compatibility with existing hadoop jobs
group_name, count = args
key = (group_name,)
else:
group, name, count = args
key = (group, name)
ct = self._counter_dict.get(key, 0)
ct += count
if ct >= threshold:
new_arg = list(key) + [ct]
self._incr_counter(*new_arg)
ct = 0
self._counter_dict[key] = ct | Increments a Hadoop counter.
Since counters can be a bit slow to update, this batches the updates. | incr_counter | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def _flush_batch_incr_counter(self):
"""
Increments any unflushed counter values.
"""
for key, count in self._counter_dict.items():
if count == 0:
continue
args = list(key) + [count]
self._incr_counter(*args)
self._counter_dict[key] = 0 | Increments any unflushed counter values. | _flush_batch_incr_counter | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def _incr_counter(self, *args):
"""
Increments a Hadoop counter.
Note that this seems to be a bit slow, ~1 ms
Don't overuse this function by updating very frequently.
"""
if len(args) == 2:
# backwards compatibility with existing hadoop jobs
group_name, count = args
print('reporter:counter:%s,%s' % (group_name, count), file=sys.stderr)
else:
group, name, count = args
print('reporter:counter:%s,%s,%s' % (group, name, count), file=sys.stderr) | Increments a Hadoop counter.
Note that this seems to be a bit slow, ~1 ms
Don't overuse this function by updating very frequently. | _incr_counter | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def extra_files(self):
"""
Can be overridden in subclass.
Each element is either a string, or a pair of two strings (src, dst).
* `src` can be a directory (in which case everything will be copied recursively).
* `dst` can include subdirectories (foo/bar/baz.txt etc)
Uses Hadoop's -files option so that the same file is reused across tasks.
"""
return [] | Can be overridden in subclass.
Each element is either a string, or a pair of two strings (src, dst).
* `src` can be a directory (in which case everything will be copied recursively).
* `dst` can include subdirectories (foo/bar/baz.txt etc)
Uses Hadoop's -files option so that the same file is reused across tasks. | extra_files | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def extra_streaming_arguments(self):
"""
Extra arguments to Hadoop command line.
Return here a list of (parameter, value) tuples.
"""
return [] | Extra arguments to Hadoop command line.
Return here a list of (parameter, value) tuples. | extra_streaming_arguments | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def extra_archives(self):
"""List of paths to archives """
return [] | List of paths to archives | extra_archives | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def dump(self, directory=''):
"""
Dump instance to file.
"""
with self.no_unpicklable_properties():
file_name = os.path.join(directory, 'job-instance.pickle')
if self.__module__ == '__main__':
d = pickle.dumps(self)
module_name = os.path.basename(sys.argv[0]).rsplit('.', 1)[0]
d = d.replace(b'(c__main__', "(c" + module_name)
open(file_name, "wb").write(d)
else:
pickle.dump(self, open(file_name, "wb")) | Dump instance to file. | dump | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def _map_input(self, input_stream):
"""
Iterate over input and call the mapper for each item.
If the job has a parser defined, the return values from the parser will
be passed as arguments to the mapper.
If the input is coded output from a previous run,
the arguments will be splitted in key and value.
"""
for record in self.reader(input_stream):
for output in self.mapper(*record):
yield output
if self.final_mapper != NotImplemented:
for output in self.final_mapper():
yield output
self._flush_batch_incr_counter() | Iterate over input and call the mapper for each item.
If the job has a parser defined, the return values from the parser will
be passed as arguments to the mapper.
If the input is coded output from a previous run,
the arguments will be splitted in key and value. | _map_input | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def _reduce_input(self, inputs, reducer, final=NotImplemented):
"""
Iterate over input, collect values with the same key, and call the reducer for each unique key.
"""
for key, values in groupby(inputs, key=lambda x: self.internal_serialize(x[0])):
for output in reducer(self.deserialize(key), (v[1] for v in values)):
yield output
if final != NotImplemented:
for output in final():
yield output
self._flush_batch_incr_counter() | Iterate over input, collect values with the same key, and call the reducer for each unique key. | _reduce_input | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def run_mapper(self, stdin=sys.stdin, stdout=sys.stdout):
"""
Run the mapper on the hadoop node.
"""
self.init_hadoop()
self.init_mapper()
outputs = self._map_input((line[:-1] for line in stdin))
if self.reducer == NotImplemented:
self.writer(outputs, stdout)
else:
self.internal_writer(outputs, stdout) | Run the mapper on the hadoop node. | run_mapper | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def run_reducer(self, stdin=sys.stdin, stdout=sys.stdout):
"""
Run the reducer on the hadoop node.
"""
self.init_hadoop()
self.init_reducer()
outputs = self._reduce_input(self.internal_reader((line[:-1] for line in stdin)), self.reducer, self.final_reducer)
self.writer(outputs, stdout) | Run the reducer on the hadoop node. | run_reducer | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def internal_reader(self, input_stream):
"""
Reader which uses python eval on each part of a tab separated string.
Yields a tuple of python objects.
"""
for input_line in input_stream:
yield list(map(self.deserialize, input_line.split("\t"))) | Reader which uses python eval on each part of a tab separated string.
Yields a tuple of python objects. | internal_reader | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def internal_writer(self, outputs, stdout):
"""
Writer which outputs the python repr for each item.
"""
for output in outputs:
print("\t".join(map(self.internal_serialize, output)), file=stdout) | Writer which outputs the python repr for each item. | internal_writer | python | spotify/luigi | luigi/contrib/hadoop.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/hadoop.py | Apache-2.0 |
def __init__(self, host, port, db, update_id, password=None,
socket_timeout=None, expire=None):
"""
:param host: Redis server host
:type host: str
:param port: Redis server port
:type port: int
:param db: database index
:type db: int
:param update_id: an identifier for this data hash
:type update_id: str
:param password: a password to connect to the redis server
:type password: str
:param socket_timeout: client socket timeout
:type socket_timeout: int
:param expire: timeout before the target is deleted
:type expire: int
"""
self.host = host
self.port = port
self.db = db
self.password = password
self.socket_timeout = socket_timeout
self.update_id = update_id
self.expire = expire
self.redis_client = redis.StrictRedis(
host=self.host,
port=self.port,
password=self.password,
db=self.db,
socket_timeout=self.socket_timeout,
) | :param host: Redis server host
:type host: str
:param port: Redis server port
:type port: int
:param db: database index
:type db: int
:param update_id: an identifier for this data hash
:type update_id: str
:param password: a password to connect to the redis server
:type password: str
:param socket_timeout: client socket timeout
:type socket_timeout: int
:param expire: timeout before the target is deleted
:type expire: int | __init__ | python | spotify/luigi | luigi/contrib/redis_store.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/redis_store.py | Apache-2.0 |
def marker_key(self):
"""
Generate a key for the indicator hash.
"""
return '%s:%s' % (self.marker_prefix, self.update_id) | Generate a key for the indicator hash. | marker_key | python | spotify/luigi | luigi/contrib/redis_store.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/redis_store.py | Apache-2.0 |
def touch(self):
"""
Mark this update as complete.
We index the parameters `update_id` and `date`.
"""
marker_key = self.marker_key()
self.redis_client.hset(marker_key, 'update_id', self.update_id)
self.redis_client.hset(marker_key, 'date', datetime.datetime.now().isoformat())
if self.expire is not None:
self.redis_client.expire(marker_key, self.expire) | Mark this update as complete.
We index the parameters `update_id` and `date`. | touch | python | spotify/luigi | luigi/contrib/redis_store.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/redis_store.py | Apache-2.0 |
def exists(self):
"""
Test, if this task has been run.
"""
return self.redis_client.exists(self.marker_key()) == 1 | Test, if this task has been run. | exists | python | spotify/luigi | luigi/contrib/redis_store.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/redis_store.py | Apache-2.0 |
def dataflow_executable(self):
"""
Command representing the Dataflow executable to be run.
For example:
return ['java', 'com.spotify.luigi.MyClass', '-Xmx256m']
"""
pass | Command representing the Dataflow executable to be run.
For example:
return ['java', 'com.spotify.luigi.MyClass', '-Xmx256m'] | dataflow_executable | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def args(self):
"""
Extra String arguments that will be passed to your Dataflow job.
For example:
return ['--setup_file=setup.py']
"""
return [] | Extra String arguments that will be passed to your Dataflow job.
For example:
return ['--setup_file=setup.py'] | args | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def before_run(self):
"""
Hook that gets called right before the Dataflow job is launched.
Can be used to setup any temporary files/tables, validate input, etc.
"""
pass | Hook that gets called right before the Dataflow job is launched.
Can be used to setup any temporary files/tables, validate input, etc. | before_run | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def on_successful_run(self):
"""
Callback that gets called right after the Dataflow job has finished
successfully but before validate_output is run.
"""
pass | Callback that gets called right after the Dataflow job has finished
successfully but before validate_output is run. | on_successful_run | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def validate_output(self):
"""
Callback that can be used to validate your output before it is moved to
its final location. Returning false here will cause the job to fail, and
output to be removed instead of published.
"""
return True | Callback that can be used to validate your output before it is moved to
its final location. Returning false here will cause the job to fail, and
output to be removed instead of published. | validate_output | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def file_pattern(self):
"""
If one/some of the input target files are not in the pattern of part-*,
we can add the key of the required target and the correct file pattern
that should be appended in the command line here. If the input target key is not found
in this dict, the file pattern will be assumed to be part-* for that target.
:return A dictionary of overridden file pattern that is not part-* for the inputs
"""
return {} | If one/some of the input target files are not in the pattern of part-*,
we can add the key of the required target and the correct file pattern
that should be appended in the command line here. If the input target key is not found
in this dict, the file pattern will be assumed to be part-* for that target.
:return A dictionary of overridden file pattern that is not part-* for the inputs | file_pattern | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def on_successful_output_validation(self):
"""
Callback that gets called after the Dataflow job has finished
successfully if validate_output returns True.
"""
pass | Callback that gets called after the Dataflow job has finished
successfully if validate_output returns True. | on_successful_output_validation | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def cleanup_on_error(self, error):
"""
Callback that gets called after the Dataflow job has finished
unsuccessfully, or validate_output returns False.
"""
pass | Callback that gets called after the Dataflow job has finished
unsuccessfully, or validate_output returns False. | cleanup_on_error | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def _format_input_args(self):
"""
Parses the result(s) of self.input() into a string-serialized
key-value list passed to the Dataflow job. Valid inputs include:
return FooTarget()
return {"input1": FooTarget(), "input2": FooTarget2())
return ("input", FooTarget())
return [("input1", FooTarget()), ("input2": FooTarget2())]
return [FooTarget(), FooTarget2()]
Unlabeled input are passed in with under the default key "input".
"""
job_input = self.input()
if isinstance(job_input, luigi.Target):
job_input = {"input": job_input}
elif isinstance(job_input, tuple):
job_input = {job_input[0]: job_input[1]}
elif isinstance(job_input, list):
if all(isinstance(item, tuple) for item in job_input):
job_input = dict(job_input)
else:
job_input = {"input": job_input}
elif not isinstance(job_input, dict):
raise ValueError("Invalid job input requires(). Supported types: ["
"Target, tuple of (name, Target), "
"dict of (name: Target), list of Targets]")
if not isinstance(self.file_pattern(), dict):
raise ValueError('file_pattern() must return a dict type')
input_args = []
for (name, targets) in job_input.items():
uris = [
self.get_target_path(uri_target) for uri_target in luigi.task.flatten(targets)
]
if isinstance(targets, dict):
"""
If targets is a dict that means it had multiple outputs.
Make the input args in that case "<input key>-<task output key>"
"""
names = ["%s-%s" % (name, key) for key in targets.keys()]
else:
names = [name] * len(uris)
input_dict = {}
for (arg_name, uri) in zip(names, uris):
pattern = self.file_pattern().get(name, 'part-*')
input_value = input_dict.get(arg_name, [])
input_value.append(uri.rstrip('/') + '/' + pattern)
input_dict[arg_name] = input_value
for (key, paths) in input_dict.items():
input_args.append("--%s=%s" % (key, ','.join(paths)))
return input_args | Parses the result(s) of self.input() into a string-serialized
key-value list passed to the Dataflow job. Valid inputs include:
return FooTarget()
return {"input1": FooTarget(), "input2": FooTarget2())
return ("input", FooTarget())
return [("input1", FooTarget()), ("input2": FooTarget2())]
return [FooTarget(), FooTarget2()]
Unlabeled input are passed in with under the default key "input". | _format_input_args | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def _format_output_args(self):
"""
Parses the result(s) of self.output() into a string-serialized
key-value list passed to the Dataflow job. Valid outputs include:
return FooTarget()
return {"output1": FooTarget(), "output2": FooTarget2()}
Unlabeled outputs are passed in with under the default key "output".
"""
job_output = self.output()
if isinstance(job_output, luigi.Target):
job_output = {"output": job_output}
elif not isinstance(job_output, dict):
raise ValueError(
"Task output must be a Target or a dict from String to Target")
output_args = []
for (name, target) in job_output.items():
uri = self.get_target_path(target)
output_args.append("--%s=%s" % (name, uri))
return output_args | Parses the result(s) of self.output() into a string-serialized
key-value list passed to the Dataflow job. Valid outputs include:
return FooTarget()
return {"output1": FooTarget(), "output2": FooTarget2()}
Unlabeled outputs are passed in with under the default key "output". | _format_output_args | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def get_target_path(target):
"""
Given a luigi Target, determine a stringly typed path to pass as a
Dataflow job argument.
"""
if isinstance(target, luigi.LocalTarget) or isinstance(target, gcs.GCSTarget):
return target.path
elif isinstance(target, bigquery.BigQueryTarget):
return "{}:{}.{}".format(target.table.project_id, target.table.dataset_id, target.table.table_id)
else:
raise ValueError("Target %s not supported" % target) | Given a luigi Target, determine a stringly typed path to pass as a
Dataflow job argument. | get_target_path | python | spotify/luigi | luigi/contrib/beam_dataflow.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/beam_dataflow.py | Apache-2.0 |
def __init__(self, jobName, image, tasks):
"""
Initialize a Job with required fields.
:param jobName: Name for the job, need to be unique
:param image: URL pointing to the Docker image for all tasks in the job
:param tasks: List of taskRole, one task role at least
"""
self.jobName = jobName
self.image = image
if isinstance(tasks, list) and len(tasks) != 0:
self.taskRoles = tasks
else:
raise TypeError('you must specify one task at least.') | Initialize a Job with required fields.
:param jobName: Name for the job, need to be unique
:param image: URL pointing to the Docker image for all tasks in the job
:param tasks: List of taskRole, one task role at least | __init__ | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def __init__(self, label, begin_at=0, port_number=1):
"""
The Port definition for TaskRole
:param label: Label name for the port type, required
:param begin_at: The port to begin with in the port type, 0 for random selection, required
:param port_number: Number of ports for the specific type, required
"""
self.label = label
self.beginAt = begin_at
self.portNumber = port_number | The Port definition for TaskRole
:param label: Label name for the port type, required
:param begin_at: The port to begin with in the port type, 0 for random selection, required
:param port_number: Number of ports for the specific type, required | __init__ | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def __init__(self, name, command, taskNumber=1, cpuNumber=1, memoryMB=2048, shmMB=64, gpuNumber=0, portList=[]):
"""
The TaskRole of PAI
:param name: Name for the task role, need to be unique with other roles, required
:param command: Executable command for tasks in the task role, can not be empty, required
:param taskNumber: Number of tasks for the task role, no less than 1, required
:param cpuNumber: CPU number for one task in the task role, no less than 1, required
:param shmMB: Shared memory for one task in the task role, no more than memory size, required
:param memoryMB: Memory for one task in the task role, no less than 100, required
:param gpuNumber: GPU number for one task in the task role, no less than 0, required
:param portList: List of portType to use, optional
"""
self.name = name
self.command = command
self.taskNumber = taskNumber
self.cpuNumber = cpuNumber
self.memoryMB = memoryMB
self.shmMB = shmMB
self.gpuNumber = gpuNumber
self.portList = portList | The TaskRole of PAI
:param name: Name for the task role, need to be unique with other roles, required
:param command: Executable command for tasks in the task role, can not be empty, required
:param taskNumber: Number of tasks for the task role, no less than 1, required
:param cpuNumber: CPU number for one task in the task role, no less than 1, required
:param shmMB: Shared memory for one task in the task role, no more than memory size, required
:param memoryMB: Memory for one task in the task role, no less than 100, required
:param gpuNumber: GPU number for one task in the task role, no less than 0, required
:param portList: List of portType to use, optional | __init__ | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def name(self):
"""Name for the job, need to be unique, required"""
return 'SklearnExample' | Name for the job, need to be unique, required | name | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def image(self):
"""URL pointing to the Docker image for all tasks in the job, required"""
return 'openpai/pai.example.sklearn' | URL pointing to the Docker image for all tasks in the job, required | image | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def tasks(self):
"""List of taskRole, one task role at least, required"""
return [] | List of taskRole, one task role at least, required | tasks | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def auth_file_path(self):
"""Docker registry authentication file existing on HDFS, optional"""
return None | Docker registry authentication file existing on HDFS, optional | auth_file_path | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def data_dir(self):
"""Data directory existing on HDFS, optional"""
return None | Data directory existing on HDFS, optional | data_dir | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def code_dir(self):
"""Code directory existing on HDFS, should not contain any data and should be less than 200MB, optional"""
return None | Code directory existing on HDFS, should not contain any data and should be less than 200MB, optional | code_dir | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def output_dir(self):
"""Output directory on HDFS, $PAI_DEFAULT_FS_URI/$jobName/output will be used if not specified, optional"""
return '$PAI_DEFAULT_FS_URI/{0}/output'.format(self.name) | Output directory on HDFS, $PAI_DEFAULT_FS_URI/$jobName/output will be used if not specified, optional | output_dir | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
def virtual_cluster(self):
"""The virtual cluster job runs on. If omitted, the job will run on default virtual cluster, optional"""
return 'default' | The virtual cluster job runs on. If omitted, the job will run on default virtual cluster, optional | virtual_cluster | python | spotify/luigi | luigi/contrib/pai.py | https://github.com/spotify/luigi/blob/master/luigi/contrib/pai.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.