code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def _validate_inputs_outputs(
inputs: Set[str], outputs: Set[str], pipe: Pipeline
) -> None:
"""Safeguards to ensure that:
- parameters are not specified under inputs
- inputs are only free inputs
- outputs do not contain free inputs
"""
inputs = {_strip_transcoding(k) for k in inputs}
outputs = {_strip_transcoding(k) for k in outputs}
if any(_is_parameter(i) for i in inputs):
raise ModularPipelineError(
"Parameters should be specified in the 'parameters' argument"
)
free_inputs = {_strip_transcoding(i) for i in pipe.inputs()}
if not inputs <= free_inputs:
raise ModularPipelineError(
"Inputs must not be outputs from another node in the same pipeline"
)
if outputs & free_inputs:
raise ModularPipelineError(
"All outputs must be generated by some node within the pipeline"
) | Safeguards to ensure that:
- parameters are not specified under inputs
- inputs are only free inputs
- outputs do not contain free inputs | _validate_inputs_outputs | python | kedro-org/kedro | kedro/pipeline/modular_pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/modular_pipeline.py | Apache-2.0 |
def _validate_datasets_exist(
inputs: Set[str],
outputs: Set[str],
parameters: Set[str],
pipe: Pipeline,
) -> None:
"""Validate that inputs, parameters and outputs map correctly onto the provided nodes."""
inputs = {_strip_transcoding(k) for k in inputs}
outputs = {_strip_transcoding(k) for k in outputs}
existing = {_strip_transcoding(ds) for ds in pipe.datasets()}
non_existent = (inputs | outputs | parameters) - existing
if non_existent:
sorted_non_existent = sorted(non_existent)
possible_matches = []
for non_existent_input in sorted_non_existent:
possible_matches += difflib.get_close_matches(non_existent_input, existing)
error_msg = f"Failed to map datasets and/or parameters onto the nodes provided: {', '.join(sorted_non_existent)}"
suggestions = (
f" - did you mean one of these instead: {', '.join(possible_matches)}"
if possible_matches
else ""
)
raise ModularPipelineError(error_msg + suggestions) | Validate that inputs, parameters and outputs map correctly onto the provided nodes. | _validate_datasets_exist | python | kedro-org/kedro | kedro/pipeline/modular_pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/modular_pipeline.py | Apache-2.0 |
def _get_dataset_names_mapping(
names: str | set[str] | dict[str, str] | None = None,
) -> dict[str, str]:
"""Take a name or a collection of dataset names
and turn it into a mapping from the old dataset names to the provided ones if necessary.
Args:
names: A dataset name or collection of dataset names.
When str or set[str] is provided, the listed names will stay
the same as they are named in the provided pipeline.
When dict[str, str] is provided, current names will be
mapped to new names in the resultant pipeline.
Returns:
A dictionary that maps the old dataset names to the provided ones.
Examples:
>>> _get_dataset_names_mapping("dataset_name")
{"dataset_name": "dataset_name"} # a str name will stay the same
>>> _get_dataset_names_mapping(set(["ds_1", "ds_2"]))
{"ds_1": "ds_1", "ds_2": "ds_2"} # a set[str] of names will stay the same
>>> _get_dataset_names_mapping({"ds_1": "new_ds_1_name"})
{"ds_1": "new_ds_1_name"} # a dict[str, str] of names will map key to value
"""
if names is None:
return {}
if isinstance(names, str):
return {names: names}
if isinstance(names, dict):
return copy.deepcopy(names)
return {item: item for item in names} | Take a name or a collection of dataset names
and turn it into a mapping from the old dataset names to the provided ones if necessary.
Args:
names: A dataset name or collection of dataset names.
When str or set[str] is provided, the listed names will stay
the same as they are named in the provided pipeline.
When dict[str, str] is provided, current names will be
mapped to new names in the resultant pipeline.
Returns:
A dictionary that maps the old dataset names to the provided ones.
Examples:
>>> _get_dataset_names_mapping("dataset_name")
{"dataset_name": "dataset_name"} # a str name will stay the same
>>> _get_dataset_names_mapping(set(["ds_1", "ds_2"]))
{"ds_1": "ds_1", "ds_2": "ds_2"} # a set[str] of names will stay the same
>>> _get_dataset_names_mapping({"ds_1": "new_ds_1_name"})
{"ds_1": "new_ds_1_name"} # a dict[str, str] of names will map key to value | _get_dataset_names_mapping | python | kedro-org/kedro | kedro/pipeline/modular_pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/modular_pipeline.py | Apache-2.0 |
def _normalize_param_name(name: str) -> str:
"""Make sure that a param name has a `params:` prefix before passing to the node"""
return name if name.startswith("params:") else f"params:{name}" | Make sure that a param name has a `params:` prefix before passing to the node | _normalize_param_name | python | kedro-org/kedro | kedro/pipeline/modular_pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/modular_pipeline.py | Apache-2.0 |
def _get_param_names_mapping(
names: str | set[str] | dict[str, str] | None = None,
) -> dict[str, str]:
"""Take a parameter or a collection of parameter names
and turn it into a mapping from existing parameter names to new ones if necessary.
It follows the same rule as `_get_dataset_names_mapping` and
prefixes the keys on the resultant dictionary with `params:` to comply with node's syntax.
Args:
names: A parameter name or collection of parameter names.
When str or set[str] is provided, the listed names will stay
the same as they are named in the provided pipeline.
When dict[str, str] is provided, current names will be
mapped to new names in the resultant pipeline.
Returns:
A dictionary that maps the old parameter names to the provided ones.
Examples:
>>> _get_param_names_mapping("param_name")
{"params:param_name": "params:param_name"} # a str name will stay the same
>>> _get_param_names_mapping(set(["param_1", "param_2"]))
# a set[str] of names will stay the same
{"params:param_1": "params:param_1", "params:param_2": "params:param_2"}
>>> _get_param_names_mapping({"param_1": "new_name_for_param_1"})
# a dict[str, str] of names will map key to valu
{"params:param_1": "params:new_name_for_param_1"}
"""
params = {}
for name, new_name in _get_dataset_names_mapping(names).items():
if _is_all_parameters(name):
params[name] = name # don't map parameters into params:parameters
else:
param_name = _normalize_param_name(name)
param_new_name = _normalize_param_name(new_name)
params[param_name] = param_new_name
return params | Take a parameter or a collection of parameter names
and turn it into a mapping from existing parameter names to new ones if necessary.
It follows the same rule as `_get_dataset_names_mapping` and
prefixes the keys on the resultant dictionary with `params:` to comply with node's syntax.
Args:
names: A parameter name or collection of parameter names.
When str or set[str] is provided, the listed names will stay
the same as they are named in the provided pipeline.
When dict[str, str] is provided, current names will be
mapped to new names in the resultant pipeline.
Returns:
A dictionary that maps the old parameter names to the provided ones.
Examples:
>>> _get_param_names_mapping("param_name")
{"params:param_name": "params:param_name"} # a str name will stay the same
>>> _get_param_names_mapping(set(["param_1", "param_2"]))
# a set[str] of names will stay the same
{"params:param_1": "params:param_1", "params:param_2": "params:param_2"}
>>> _get_param_names_mapping({"param_1": "new_name_for_param_1"})
# a dict[str, str] of names will map key to valu
{"params:param_1": "params:new_name_for_param_1"} | _get_param_names_mapping | python | kedro-org/kedro | kedro/pipeline/modular_pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/modular_pipeline.py | Apache-2.0 |
def __init__( # noqa: PLR0913
self,
func: Callable,
inputs: str | list[str] | dict[str, str] | None,
outputs: str | list[str] | dict[str, str] | None,
*,
name: str | None = None,
tags: str | Iterable[str] | None = None,
confirms: str | list[str] | None = None,
namespace: str | None = None,
):
"""Create a node in the pipeline by providing a function to be called
along with variable names for inputs and/or outputs.
Args:
func: A function that corresponds to the node logic.
The function should have at least one input or output.
inputs: The name or the list of the names of variables used as
inputs to the function. The number of names should match
the number of arguments in the definition of the provided
function. When dict[str, str] is provided, variable names
will be mapped to function argument names.
outputs: The name or the list of the names of variables used
as outputs of the function. The number of names should match
the number of outputs returned by the provided function.
When dict[str, str] is provided, variable names will be mapped
to the named outputs the function returns.
name: Optional node name to be used when displaying the node in
logs or any other visualisations. Valid node name must contain
only letters, digits, hyphens, underscores and/or fullstops.
tags: Optional set of tags to be applied to the node. Valid node tag must
contain only letters, digits, hyphens, underscores and/or fullstops.
confirms: Optional name or the list of the names of the datasets
that should be confirmed. This will result in calling
``confirm()`` method of the corresponding dataset instance.
Specified dataset names do not necessarily need to be present
in the node ``inputs`` or ``outputs``.
namespace: Optional node namespace.
Raises:
ValueError: Raised in the following cases:
a) When the provided arguments do not conform to
the format suggested by the type hint of the argument.
b) When the node produces multiple outputs with the same name.
c) When an input has the same name as an output.
d) When the given node name violates the requirements:
it must contain only letters, digits, hyphens, underscores
and/or fullstops.
"""
if not callable(func):
raise ValueError(
_node_error_message(
f"first argument must be a function, not '{type(func).__name__}'."
)
)
if inputs and not isinstance(inputs, (list, dict, str)):
raise ValueError(
_node_error_message(
f"'inputs' type must be one of [String, List, Dict, None], "
f"not '{type(inputs).__name__}'."
)
)
for _input in _to_list(inputs):
if not isinstance(_input, str):
raise ValueError(
_node_error_message(
f"names of variables used as inputs to the function "
f"must be of 'String' type, but {_input} from {inputs} "
f"is '{type(_input)}'."
)
)
if outputs and not isinstance(outputs, (list, dict, str)):
raise ValueError(
_node_error_message(
f"'outputs' type must be one of [String, List, Dict, None], "
f"not '{type(outputs).__name__}'."
)
)
for _output in _to_list(outputs):
if not isinstance(_output, str):
raise ValueError(
_node_error_message(
f"names of variables used as outputs of the function "
f"must be of 'String' type, but {_output} from {outputs} "
f"is '{type(_output)}'."
)
)
if not inputs and not outputs:
raise ValueError(
_node_error_message("it must have some 'inputs' or 'outputs'.")
)
self._validate_inputs(func, inputs)
self._func = func
self._inputs = inputs
# The type of _outputs is picked up as possibly being None, however the checks above prevent that
# ever being the case. Mypy doesn't get that though, so it complains about the assignment of outputs to
# _outputs with different types.
self._outputs: str | list[str] | dict[str, str] = outputs # type: ignore[assignment]
if name and not re.match(r"[\w\.-]+$", name):
raise ValueError(
f"'{name}' is not a valid node name. It must contain only "
f"letters, digits, hyphens, underscores and/or fullstops."
)
self._name = name
self._namespace = namespace
self._tags = set(_to_list(tags))
for tag in self._tags:
if not re.match(r"[\w\.-]+$", tag):
raise ValueError(
f"'{tag}' is not a valid node tag. It must contain only "
f"letters, digits, hyphens, underscores and/or fullstops."
)
self._validate_unique_outputs()
self._validate_inputs_dif_than_outputs()
self._confirms = confirms | Create a node in the pipeline by providing a function to be called
along with variable names for inputs and/or outputs.
Args:
func: A function that corresponds to the node logic.
The function should have at least one input or output.
inputs: The name or the list of the names of variables used as
inputs to the function. The number of names should match
the number of arguments in the definition of the provided
function. When dict[str, str] is provided, variable names
will be mapped to function argument names.
outputs: The name or the list of the names of variables used
as outputs of the function. The number of names should match
the number of outputs returned by the provided function.
When dict[str, str] is provided, variable names will be mapped
to the named outputs the function returns.
name: Optional node name to be used when displaying the node in
logs or any other visualisations. Valid node name must contain
only letters, digits, hyphens, underscores and/or fullstops.
tags: Optional set of tags to be applied to the node. Valid node tag must
contain only letters, digits, hyphens, underscores and/or fullstops.
confirms: Optional name or the list of the names of the datasets
that should be confirmed. This will result in calling
``confirm()`` method of the corresponding dataset instance.
Specified dataset names do not necessarily need to be present
in the node ``inputs`` or ``outputs``.
namespace: Optional node namespace.
Raises:
ValueError: Raised in the following cases:
a) When the provided arguments do not conform to
the format suggested by the type hint of the argument.
b) When the node produces multiple outputs with the same name.
c) When an input has the same name as an output.
d) When the given node name violates the requirements:
it must contain only letters, digits, hyphens, underscores
and/or fullstops. | __init__ | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def _copy(self, **overwrite_params: Any) -> Node:
"""
Helper function to copy the node, replacing some values.
"""
params = {
"func": self._func,
"inputs": self._inputs,
"outputs": self._outputs,
"name": self._name,
"namespace": self._namespace,
"tags": self._tags,
"confirms": self._confirms,
}
params.update(overwrite_params)
return Node(**params) # type: ignore[arg-type] | Helper function to copy the node, replacing some values. | _copy | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def func(self) -> Callable:
"""Exposes the underlying function of the node.
Returns:
Return the underlying function of the node.
"""
return self._func | Exposes the underlying function of the node.
Returns:
Return the underlying function of the node. | func | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def func(self, func: Callable) -> None:
"""Sets the underlying function of the node.
Useful if user wants to decorate the function in a node's Hook implementation.
Args:
func: The new function for node's execution.
"""
self._func = func | Sets the underlying function of the node.
Useful if user wants to decorate the function in a node's Hook implementation.
Args:
func: The new function for node's execution. | func | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def tags(self) -> set[str]:
"""Return the tags assigned to the node.
Returns:
Return the set of all assigned tags to the node.
"""
return set(self._tags) | Return the tags assigned to the node.
Returns:
Return the set of all assigned tags to the node. | tags | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def tag(self, tags: str | Iterable[str]) -> Node:
"""Create a new ``Node`` which is an exact copy of the current one,
but with more tags added to it.
Args:
tags: The tags to be added to the new node.
Returns:
A copy of the current ``Node`` object with the tags added.
"""
return self._copy(tags=self.tags | set(_to_list(tags))) | Create a new ``Node`` which is an exact copy of the current one,
but with more tags added to it.
Args:
tags: The tags to be added to the new node.
Returns:
A copy of the current ``Node`` object with the tags added. | tag | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def name(self) -> str:
"""Node's name.
Returns:
Node's name if provided or the name of its function.
"""
node_name = self._name or str(self)
if self.namespace:
return f"{self.namespace}.{node_name}"
return node_name | Node's name.
Returns:
Node's name if provided or the name of its function. | name | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def short_name(self) -> str:
"""Node's name.
Returns:
Returns a short, user-friendly name that is not guaranteed to be unique.
The namespace is stripped out of the node name.
"""
if self._name:
return self._name
return self._func_name.replace("_", " ").title() | Node's name.
Returns:
Returns a short, user-friendly name that is not guaranteed to be unique.
The namespace is stripped out of the node name. | short_name | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def namespace(self) -> str | None:
"""Node's namespace.
Returns:
String representing node's namespace, typically from outer to inner scopes.
"""
return self._namespace | Node's namespace.
Returns:
String representing node's namespace, typically from outer to inner scopes. | namespace | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def inputs(self) -> list[str]:
"""Return node inputs as a list, in the order required to bind them properly to
the node's function.
Returns:
Node input names as a list.
"""
if isinstance(self._inputs, dict):
return _dict_inputs_to_list(self._func, self._inputs)
return _to_list(self._inputs) | Return node inputs as a list, in the order required to bind them properly to
the node's function.
Returns:
Node input names as a list. | inputs | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def outputs(self) -> list[str]:
"""Return node outputs as a list preserving the original order
if possible.
Returns:
Node output names as a list.
"""
return _to_list(self._outputs) | Return node outputs as a list preserving the original order
if possible.
Returns:
Node output names as a list. | outputs | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def confirms(self) -> list[str]:
"""Return dataset names to confirm as a list.
Returns:
Dataset names to confirm as a list.
"""
return _to_list(self._confirms) | Return dataset names to confirm as a list.
Returns:
Dataset names to confirm as a list. | confirms | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def run(self, inputs: dict[str, Any] | None = None) -> dict[str, Any]:
"""Run this node using the provided inputs and return its results
in a dictionary.
Args:
inputs: Dictionary of inputs as specified at the creation of
the node.
Raises:
ValueError: In the following cases:
a) The node function inputs are incompatible with the node
input definition.
Example 1: node definition input is a list of 2
DataFrames, whereas only 1 was provided or 2 different ones
were provided.
b) The node function outputs are incompatible with the node
output definition.
Example 1: node function definition is a dictionary,
whereas function returns a list.
Example 2: node definition output is a list of 5
strings, whereas the function returns a list of 4 objects.
Exception: Any exception thrown during execution of the node.
Returns:
All produced node outputs are returned in a dictionary, where the
keys are defined by the node outputs.
"""
self._logger.info("Running node: %s", str(self))
outputs = None
if not (inputs is None or isinstance(inputs, dict)):
raise ValueError(
f"Node.run() expects a dictionary or None, "
f"but got {type(inputs)} instead"
)
try:
inputs = {} if inputs is None else inputs
if not self._inputs:
outputs = self._run_with_no_inputs(inputs)
elif isinstance(self._inputs, str):
outputs = self._run_with_one_input(inputs, self._inputs)
elif isinstance(self._inputs, list):
outputs = self._run_with_list(inputs, self._inputs)
elif isinstance(self._inputs, dict):
outputs = self._run_with_dict(inputs, self._inputs)
return self._outputs_to_dictionary(outputs)
# purposely catch all exceptions
except Exception as exc:
self._logger.error(
"Node %s failed with error: \n%s",
str(self),
str(exc),
extra={"markup": True},
)
raise exc | Run this node using the provided inputs and return its results
in a dictionary.
Args:
inputs: Dictionary of inputs as specified at the creation of
the node.
Raises:
ValueError: In the following cases:
a) The node function inputs are incompatible with the node
input definition.
Example 1: node definition input is a list of 2
DataFrames, whereas only 1 was provided or 2 different ones
were provided.
b) The node function outputs are incompatible with the node
output definition.
Example 1: node function definition is a dictionary,
whereas function returns a list.
Example 2: node definition output is a list of 5
strings, whereas the function returns a list of 4 objects.
Exception: Any exception thrown during execution of the node.
Returns:
All produced node outputs are returned in a dictionary, where the
keys are defined by the node outputs. | run | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def node( # noqa: PLR0913
func: Callable,
inputs: str | list[str] | dict[str, str] | None,
outputs: str | list[str] | dict[str, str] | None,
*,
name: str | None = None,
tags: str | Iterable[str] | None = None,
confirms: str | list[str] | None = None,
namespace: str | None = None,
) -> Node:
"""Create a node in the pipeline by providing a function to be called
along with variable names for inputs and/or outputs.
Args:
func: A function that corresponds to the node logic. The function
should have at least one input or output.
inputs: The name or the list of the names of variables used as inputs
to the function. The number of names should match the number of
arguments in the definition of the provided function. When
dict[str, str] is provided, variable names will be mapped to
function argument names.
outputs: The name or the list of the names of variables used as outputs
to the function. The number of names should match the number of
outputs returned by the provided function. When dict[str, str]
is provided, variable names will be mapped to the named outputs the
function returns.
name: Optional node name to be used when displaying the node in logs or
any other visualisations.
tags: Optional set of tags to be applied to the node.
confirms: Optional name or the list of the names of the datasets
that should be confirmed. This will result in calling ``confirm()``
method of the corresponding dataset instance. Specified dataset
names do not necessarily need to be present in the node ``inputs``
or ``outputs``.
namespace: Optional node namespace.
Returns:
A Node object with mapped inputs, outputs and function.
Example:
::
>>> import pandas as pd
>>> import numpy as np
>>>
>>> def clean_data(cars: pd.DataFrame,
>>> boats: pd.DataFrame) -> dict[str, pd.DataFrame]:
>>> return dict(cars_df=cars.dropna(), boats_df=boats.dropna())
>>>
>>> def halve_dataframe(data: pd.DataFrame) -> List[pd.DataFrame]:
>>> return np.array_split(data, 2)
>>>
>>> nodes = [
>>> node(clean_data,
>>> inputs=['cars2017', 'boats2017'],
>>> outputs=dict(cars_df='clean_cars2017',
>>> boats_df='clean_boats2017')),
>>> node(halve_dataframe,
>>> 'clean_cars2017',
>>> ['train_cars2017', 'test_cars2017']),
>>> node(halve_dataframe,
>>> dict(data='clean_boats2017'),
>>> ['train_boats2017', 'test_boats2017'])
>>> ]
"""
return Node(
func,
inputs,
outputs,
name=name,
tags=tags,
confirms=confirms,
namespace=namespace,
) | Create a node in the pipeline by providing a function to be called
along with variable names for inputs and/or outputs.
Args:
func: A function that corresponds to the node logic. The function
should have at least one input or output.
inputs: The name or the list of the names of variables used as inputs
to the function. The number of names should match the number of
arguments in the definition of the provided function. When
dict[str, str] is provided, variable names will be mapped to
function argument names.
outputs: The name or the list of the names of variables used as outputs
to the function. The number of names should match the number of
outputs returned by the provided function. When dict[str, str]
is provided, variable names will be mapped to the named outputs the
function returns.
name: Optional node name to be used when displaying the node in logs or
any other visualisations.
tags: Optional set of tags to be applied to the node.
confirms: Optional name or the list of the names of the datasets
that should be confirmed. This will result in calling ``confirm()``
method of the corresponding dataset instance. Specified dataset
names do not necessarily need to be present in the node ``inputs``
or ``outputs``.
namespace: Optional node namespace.
Returns:
A Node object with mapped inputs, outputs and function.
Example:
::
>>> import pandas as pd
>>> import numpy as np
>>>
>>> def clean_data(cars: pd.DataFrame,
>>> boats: pd.DataFrame) -> dict[str, pd.DataFrame]:
>>> return dict(cars_df=cars.dropna(), boats_df=boats.dropna())
>>>
>>> def halve_dataframe(data: pd.DataFrame) -> List[pd.DataFrame]:
>>> return np.array_split(data, 2)
>>>
>>> nodes = [
>>> node(clean_data,
>>> inputs=['cars2017', 'boats2017'],
>>> outputs=dict(cars_df='clean_cars2017',
>>> boats_df='clean_boats2017')),
>>> node(halve_dataframe,
>>> 'clean_cars2017',
>>> ['train_cars2017', 'test_cars2017']),
>>> node(halve_dataframe,
>>> dict(data='clean_boats2017'),
>>> ['train_boats2017', 'test_boats2017'])
>>> ] | node | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def _dict_inputs_to_list(
func: Callable[[Any], Any], inputs: dict[str, str]
) -> list[str]:
"""Convert a dict representation of the node inputs to a list, ensuring
the appropriate order for binding them to the node's function.
"""
sig = inspect.signature(func, follow_wrapped=False).bind(**inputs)
return [*sig.args, *sig.kwargs.values()] | Convert a dict representation of the node inputs to a list, ensuring
the appropriate order for binding them to the node's function. | _dict_inputs_to_list | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def _to_list(element: str | Iterable[str] | dict[str, str] | None) -> list[str]:
"""Make a list out of node inputs/outputs.
Returns:
list[str]: Node input/output names as a list to standardise.
"""
if element is None:
return []
if isinstance(element, str):
return [element]
if isinstance(element, dict):
return list(element.values())
return list(element) | Make a list out of node inputs/outputs.
Returns:
list[str]: Node input/output names as a list to standardise. | _to_list | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def _get_readable_func_name(func: Callable) -> str:
"""Get a user-friendly readable name of the function provided.
Returns:
str: readable name of the provided callable func.
"""
if hasattr(func, "__name__"):
return func.__name__
name = repr(func)
if "functools.partial" in name:
name = "<partial>"
return name | Get a user-friendly readable name of the function provided.
Returns:
str: readable name of the provided callable func. | _get_readable_func_name | python | kedro-org/kedro | kedro/pipeline/node.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/node.py | Apache-2.0 |
def __init__(
self,
nodes: Iterable[Node | Pipeline],
*,
tags: str | Iterable[str] | None = None,
):
"""Initialise ``Pipeline`` with a list of ``Node`` instances.
Args:
nodes: The iterable of nodes the ``Pipeline`` will be made of. If you
provide pipelines among the list of nodes, those pipelines will
be expanded and all their nodes will become part of this
new pipeline.
tags: Optional set of tags to be applied to all the pipeline nodes.
Raises:
ValueError:
When an empty list of nodes is provided, or when not all
nodes have unique names.
CircularDependencyError:
When visiting all the nodes is not
possible due to the existence of a circular dependency.
OutputNotUniqueError:
When multiple ``Node`` instances produce the same output.
ConfirmNotUniqueError:
When multiple ``Node`` instances attempt to confirm the same
dataset.
Example:
::
>>> from kedro.pipeline import Pipeline
>>> from kedro.pipeline import node
>>>
>>> # In the following scenario first_ds and second_ds
>>> # are datasets provided by io. Pipeline will pass these
>>> # datasets to first_node function and provides the result
>>> # to the second_node as input.
>>>
>>> def first_node(first_ds, second_ds):
>>> return dict(third_ds=first_ds+second_ds)
>>>
>>> def second_node(third_ds):
>>> return third_ds
>>>
>>> pipeline = Pipeline([
>>> node(first_node, ['first_ds', 'second_ds'], ['third_ds']),
>>> node(second_node, dict(third_ds='third_ds'), 'fourth_ds')])
>>>
>>> pipeline.describe()
>>>
"""
if nodes is None:
raise ValueError(
"'nodes' argument of 'Pipeline' is None. It must be an "
"iterable of nodes and/or pipelines instead."
)
nodes_list = list(nodes) # in case it's a generator
_validate_duplicate_nodes(nodes_list)
nodes_chain = list(
chain.from_iterable(
[[n] if isinstance(n, Node) else n.nodes for n in nodes_list]
)
)
_validate_transcoded_inputs_outputs(nodes_chain)
_tags = set(_to_list(tags))
if _tags:
tagged_nodes = [n.tag(_tags) for n in nodes_chain]
else:
tagged_nodes = nodes_chain
self._nodes_by_name = {node.name: node for node in tagged_nodes}
_validate_unique_outputs(tagged_nodes)
_validate_unique_confirms(tagged_nodes)
# input -> nodes with input
self._nodes_by_input: dict[str, set[Node]] = defaultdict(set)
for node in tagged_nodes:
for input_ in node.inputs:
self._nodes_by_input[_strip_transcoding(input_)].add(node)
# output -> node with output
self._nodes_by_output: dict[str, Node] = {}
for node in tagged_nodes:
for output in node.outputs:
self._nodes_by_output[_strip_transcoding(output)] = node
self._nodes = tagged_nodes
self._toposorter = TopologicalSorter(self.node_dependencies)
# test for circular dependencies without executing the toposort for efficiency
try:
self._toposorter.prepare()
except CycleError as exc:
loop = list(set(exc.args[1]))
message = f"Circular dependencies exist among the following {len(loop)} item(s): {loop}"
raise CircularDependencyError(message) from exc
self._toposorted_nodes: list[Node] = []
self._toposorted_groups: list[list[Node]] = [] | Initialise ``Pipeline`` with a list of ``Node`` instances.
Args:
nodes: The iterable of nodes the ``Pipeline`` will be made of. If you
provide pipelines among the list of nodes, those pipelines will
be expanded and all their nodes will become part of this
new pipeline.
tags: Optional set of tags to be applied to all the pipeline nodes.
Raises:
ValueError:
When an empty list of nodes is provided, or when not all
nodes have unique names.
CircularDependencyError:
When visiting all the nodes is not
possible due to the existence of a circular dependency.
OutputNotUniqueError:
When multiple ``Node`` instances produce the same output.
ConfirmNotUniqueError:
When multiple ``Node`` instances attempt to confirm the same
dataset.
Example:
::
>>> from kedro.pipeline import Pipeline
>>> from kedro.pipeline import node
>>>
>>> # In the following scenario first_ds and second_ds
>>> # are datasets provided by io. Pipeline will pass these
>>> # datasets to first_node function and provides the result
>>> # to the second_node as input.
>>>
>>> def first_node(first_ds, second_ds):
>>> return dict(third_ds=first_ds+second_ds)
>>>
>>> def second_node(third_ds):
>>> return third_ds
>>>
>>> pipeline = Pipeline([
>>> node(first_node, ['first_ds', 'second_ds'], ['third_ds']),
>>> node(second_node, dict(third_ds='third_ds'), 'fourth_ds')])
>>>
>>> pipeline.describe()
>>> | __init__ | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def __repr__(self) -> str: # pragma: no cover
"""Pipeline ([node1, ..., node10 ...], name='pipeline_name')"""
max_nodes_to_display = 10
nodes_reprs = [repr(node) for node in self.nodes[:max_nodes_to_display]]
if len(self.nodes) > max_nodes_to_display:
nodes_reprs.append("...")
sep = ",\n"
nodes_reprs_str = f"[\n{sep.join(nodes_reprs)}\n]" if nodes_reprs else "[]"
constructor_repr = f"({nodes_reprs_str})"
return f"{self.__class__.__name__}{constructor_repr}" | Pipeline ([node1, ..., node10 ...], name='pipeline_name') | __repr__ | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def all_inputs(self) -> set[str]:
"""All inputs for all nodes in the pipeline.
Returns:
All node input names as a Set.
"""
return set.union(set(), *(node.inputs for node in self._nodes)) | All inputs for all nodes in the pipeline.
Returns:
All node input names as a Set. | all_inputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def all_outputs(self) -> set[str]:
"""All outputs of all nodes in the pipeline.
Returns:
All node outputs.
"""
return set.union(set(), *(node.outputs for node in self._nodes)) | All outputs of all nodes in the pipeline.
Returns:
All node outputs. | all_outputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def inputs(self) -> set[str]:
"""The names of free inputs that must be provided at runtime so that
the pipeline is runnable. Does not include intermediate inputs which
are produced and consumed by the inner pipeline nodes. Resolves
transcoded names where necessary.
Returns:
The set of free input names needed by the pipeline.
"""
return self._remove_intermediates(self.all_inputs()) | The names of free inputs that must be provided at runtime so that
the pipeline is runnable. Does not include intermediate inputs which
are produced and consumed by the inner pipeline nodes. Resolves
transcoded names where necessary.
Returns:
The set of free input names needed by the pipeline. | inputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def outputs(self) -> set[str]:
"""The names of outputs produced when the whole pipeline is run.
Does not include intermediate outputs that are consumed by
other pipeline nodes. Resolves transcoded names where necessary.
Returns:
The set of final pipeline outputs.
"""
return self._remove_intermediates(self.all_outputs()) | The names of outputs produced when the whole pipeline is run.
Does not include intermediate outputs that are consumed by
other pipeline nodes. Resolves transcoded names where necessary.
Returns:
The set of final pipeline outputs. | outputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def datasets(self) -> set[str]:
"""The names of all datasets used by the ``Pipeline``,
including inputs and outputs.
Returns:
The set of all pipeline datasets.
"""
return self.all_outputs() | self.all_inputs() | The names of all datasets used by the ``Pipeline``,
including inputs and outputs.
Returns:
The set of all pipeline datasets. | datasets | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def set_to_string(set_of_strings: set[str]) -> str:
"""Convert set to a string but return 'None' in case of an empty
set.
"""
return ", ".join(sorted(set_of_strings)) if set_of_strings else "None" | Convert set to a string but return 'None' in case of an empty
set. | describe.set_to_string | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def describe(self, names_only: bool = True) -> str:
"""Obtain the order of execution and expected free input variables in
a loggable pre-formatted string. The order of nodes matches the order
of execution given by the topological sort.
Args:
names_only: The flag to describe names_only pipeline with just
node names.
Example:
::
>>> pipeline = Pipeline([ ... ])
>>>
>>> logger = logging.getLogger(__name__)
>>>
>>> logger.info(pipeline.describe())
After invocation the following will be printed as an info level log
statement:
::
#### Pipeline execution order ####
Inputs: C, D
func1([C]) -> [A]
func2([D]) -> [B]
func3([A, D]) -> [E]
Outputs: B, E
##################################
Returns:
The pipeline description as a formatted string.
"""
def set_to_string(set_of_strings: set[str]) -> str:
"""Convert set to a string but return 'None' in case of an empty
set.
"""
return ", ".join(sorted(set_of_strings)) if set_of_strings else "None"
nodes_as_string = "\n".join(
node.name if names_only else str(node) for node in self.nodes
)
str_representation = (
"#### Pipeline execution order ####\n"
"Inputs: {0}\n\n"
"{1}\n\n"
"Outputs: {2}\n"
"##################################"
)
return str_representation.format(
set_to_string(self.inputs()), nodes_as_string, set_to_string(self.outputs())
) | Obtain the order of execution and expected free input variables in
a loggable pre-formatted string. The order of nodes matches the order
of execution given by the topological sort.
Args:
names_only: The flag to describe names_only pipeline with just
node names.
Example:
::
>>> pipeline = Pipeline([ ... ])
>>>
>>> logger = logging.getLogger(__name__)
>>>
>>> logger.info(pipeline.describe())
After invocation the following will be printed as an info level log
statement:
::
#### Pipeline execution order ####
Inputs: C, D
func1([C]) -> [A]
func2([D]) -> [B]
func3([A, D]) -> [E]
Outputs: B, E
##################################
Returns:
The pipeline description as a formatted string. | describe | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def node_dependencies(self) -> dict[Node, set[Node]]:
"""All dependencies of nodes where the first Node has a direct dependency on
the second Node.
Returns:
Dictionary where keys are nodes and values are sets made up of
their parent nodes. Independent nodes have this as empty sets.
"""
dependencies: dict[Node, set[Node]] = {node: set() for node in self._nodes}
for parent in self._nodes:
for output in parent.outputs:
for child in self._nodes_by_input[_strip_transcoding(output)]:
dependencies[child].add(parent)
return dependencies | All dependencies of nodes where the first Node has a direct dependency on
the second Node.
Returns:
Dictionary where keys are nodes and values are sets made up of
their parent nodes. Independent nodes have this as empty sets. | node_dependencies | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def nodes(self) -> list[Node]:
"""Return a list of the pipeline nodes in topological order, i.e. if
node A needs to be run before node B, it will appear earlier in the
list.
Returns:
The list of all pipeline nodes in topological order.
"""
if not self._toposorted_nodes:
self._toposorted_nodes = [n for group in self.grouped_nodes for n in group]
return list(self._toposorted_nodes) | Return a list of the pipeline nodes in topological order, i.e. if
node A needs to be run before node B, it will appear earlier in the
list.
Returns:
The list of all pipeline nodes in topological order. | nodes | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def grouped_nodes(self) -> list[list[Node]]:
"""Return a list of the pipeline nodes in topologically ordered groups,
i.e. if node A needs to be run before node B, it will appear in an
earlier group.
Returns:
The pipeline nodes in topologically ordered groups.
"""
if not self._toposorted_groups:
while self._toposorter:
group = sorted(self._toposorter.get_ready())
self._toposorted_groups.append(group)
self._toposorter.done(*group)
return [list(group) for group in self._toposorted_groups] | Return a list of the pipeline nodes in topologically ordered groups,
i.e. if node A needs to be run before node B, it will appear in an
earlier group.
Returns:
The pipeline nodes in topologically ordered groups. | grouped_nodes | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def grouped_nodes_by_namespace(self) -> dict[str, dict[str, Any]]:
"""Return a dictionary of the pipeline nodes grouped by namespace with
information about the nodes, their type, and dependencies. The structure of the dictionary is:
{'node_name/namespace_name' : {'name': 'node_name/namespace_name','type': 'namespace' or 'node','nodes': [list of nodes],'dependencies': [list of dependencies]}}
This property is intended to be used by deployment plugins to group nodes by namespace.
"""
grouped_nodes: dict[str, dict[str, Any]] = defaultdict(dict)
for node in self.nodes:
key = node.namespace or node.name
if key not in grouped_nodes:
grouped_nodes[key] = {}
grouped_nodes[key]["name"] = key
grouped_nodes[key]["type"] = "namespace" if node.namespace else "node"
grouped_nodes[key]["nodes"] = []
grouped_nodes[key]["dependencies"] = set()
grouped_nodes[key]["nodes"].append(node)
dependencies = set()
for parent in self.node_dependencies[node]:
if parent.namespace and parent.namespace != key:
dependencies.add(parent.namespace)
elif parent.namespace and parent.namespace == key:
continue
else:
dependencies.add(parent.name)
grouped_nodes[key]["dependencies"].update(dependencies)
return grouped_nodes | Return a dictionary of the pipeline nodes grouped by namespace with
information about the nodes, their type, and dependencies. The structure of the dictionary is:
{'node_name/namespace_name' : {'name': 'node_name/namespace_name','type': 'namespace' or 'node','nodes': [list of nodes],'dependencies': [list of dependencies]}}
This property is intended to be used by deployment plugins to group nodes by namespace. | grouped_nodes_by_namespace | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def only_nodes(self, *node_names: str) -> Pipeline:
"""Create a new ``Pipeline`` which will contain only the specified
nodes by name.
Args:
*node_names: One or more node names. The returned ``Pipeline``
will only contain these nodes.
Raises:
ValueError: When some invalid node name is given.
Returns:
A new ``Pipeline``, containing only ``nodes``.
"""
unregistered_nodes = set(node_names) - set(self._nodes_by_name.keys())
if unregistered_nodes:
# check if unregistered nodes are available under namespace
namespaces = []
for unregistered_node in unregistered_nodes:
namespaces.extend(
[
node_name
for node_name in self._nodes_by_name.keys()
if node_name.endswith(f".{unregistered_node}")
]
)
if namespaces:
raise ValueError(
f"Pipeline does not contain nodes named {list(unregistered_nodes)}. "
f"Did you mean: {namespaces}?"
)
raise ValueError(
f"Pipeline does not contain nodes named {list(unregistered_nodes)}."
)
nodes = [self._nodes_by_name[name] for name in node_names]
return Pipeline(nodes) | Create a new ``Pipeline`` which will contain only the specified
nodes by name.
Args:
*node_names: One or more node names. The returned ``Pipeline``
will only contain these nodes.
Raises:
ValueError: When some invalid node name is given.
Returns:
A new ``Pipeline``, containing only ``nodes``. | only_nodes | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def only_nodes_with_namespace(self, node_namespace: str) -> Pipeline:
"""Creates a new ``Pipeline`` containing only nodes with the specified
namespace.
Args:
node_namespace: One node namespace.
Raises:
ValueError: When pipeline contains no nodes with the specified namespace.
Returns:
A new ``Pipeline`` containing nodes with the specified namespace.
"""
nodes = [
n
for n in self._nodes
if n.namespace and n.namespace.startswith(node_namespace)
]
if not nodes:
raise ValueError(
f"Pipeline does not contain nodes with namespace '{node_namespace}'"
)
return Pipeline(nodes) | Creates a new ``Pipeline`` containing only nodes with the specified
namespace.
Args:
node_namespace: One node namespace.
Raises:
ValueError: When pipeline contains no nodes with the specified namespace.
Returns:
A new ``Pipeline`` containing nodes with the specified namespace. | only_nodes_with_namespace | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def _get_nodes_with_inputs_transcode_compatible(
self, datasets: set[str]
) -> set[Node]:
"""Retrieves nodes that use the given `datasets` as inputs.
If provided a name, but no format, for a transcoded dataset, it
includes all nodes that use inputs with that name, otherwise it
matches to the fully-qualified name only (i.e. name@format).
Raises:
ValueError: if any of the given datasets do not exist in the
``Pipeline`` object
Returns:
Set of ``Nodes`` that use the given datasets as inputs.
"""
missing = sorted(
datasets - self.datasets() - self._transcode_compatible_names()
)
if missing:
raise ValueError(f"Pipeline does not contain datasets named {missing}")
relevant_nodes = set()
for input_ in datasets:
if _strip_transcoding(input_) == input_:
relevant_nodes.update(self._nodes_by_input[_strip_transcoding(input_)])
else:
for node_ in self._nodes_by_input[_strip_transcoding(input_)]:
if input_ in node_.inputs:
relevant_nodes.add(node_)
return relevant_nodes | Retrieves nodes that use the given `datasets` as inputs.
If provided a name, but no format, for a transcoded dataset, it
includes all nodes that use inputs with that name, otherwise it
matches to the fully-qualified name only (i.e. name@format).
Raises:
ValueError: if any of the given datasets do not exist in the
``Pipeline`` object
Returns:
Set of ``Nodes`` that use the given datasets as inputs. | _get_nodes_with_inputs_transcode_compatible | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def _get_nodes_with_outputs_transcode_compatible(
self, datasets: set[str]
) -> set[Node]:
"""Retrieves nodes that output to the given `datasets`.
If provided a name, but no format, for a transcoded dataset, it
includes the node that outputs to that name, otherwise it matches
to the fully-qualified name only (i.e. name@format).
Raises:
ValueError: if any of the given datasets do not exist in the
``Pipeline`` object
Returns:
Set of ``Nodes`` that output to the given datasets.
"""
missing = sorted(
datasets - self.datasets() - self._transcode_compatible_names()
)
if missing:
raise ValueError(f"Pipeline does not contain datasets named {missing}")
relevant_nodes = set()
for output in datasets:
if _strip_transcoding(output) in self._nodes_by_output:
node_with_output = self._nodes_by_output[_strip_transcoding(output)]
if (
_strip_transcoding(output) == output
or output in node_with_output.outputs
):
relevant_nodes.add(node_with_output)
return relevant_nodes | Retrieves nodes that output to the given `datasets`.
If provided a name, but no format, for a transcoded dataset, it
includes the node that outputs to that name, otherwise it matches
to the fully-qualified name only (i.e. name@format).
Raises:
ValueError: if any of the given datasets do not exist in the
``Pipeline`` object
Returns:
Set of ``Nodes`` that output to the given datasets. | _get_nodes_with_outputs_transcode_compatible | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def only_nodes_with_inputs(self, *inputs: str) -> Pipeline:
"""Create a new ``Pipeline`` object with the nodes which depend
directly on the provided inputs.
If provided a name, but no format, for a transcoded input, it
includes all the nodes that use inputs with that name, otherwise it
matches to the fully-qualified name only (i.e. name@format).
Args:
*inputs: A list of inputs which should be used as a starting
point of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given inputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the
nodes of the current one such that only nodes depending
directly on the provided inputs are being copied.
"""
starting = set(inputs)
nodes = self._get_nodes_with_inputs_transcode_compatible(starting)
return Pipeline(nodes) | Create a new ``Pipeline`` object with the nodes which depend
directly on the provided inputs.
If provided a name, but no format, for a transcoded input, it
includes all the nodes that use inputs with that name, otherwise it
matches to the fully-qualified name only (i.e. name@format).
Args:
*inputs: A list of inputs which should be used as a starting
point of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given inputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the
nodes of the current one such that only nodes depending
directly on the provided inputs are being copied. | only_nodes_with_inputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def from_inputs(self, *inputs: str) -> Pipeline:
"""Create a new ``Pipeline`` object with the nodes which depend
directly or transitively on the provided inputs.
If provided a name, but no format, for a transcoded input, it
includes all the nodes that use inputs with that name, otherwise it
matches to the fully-qualified name only (i.e. name@format).
Args:
*inputs: A list of inputs which should be used as a starting point
of the new ``Pipeline``
Raises:
ValueError: Raised when any of the given inputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the
nodes of the current one such that only nodes depending
directly or transitively on the provided inputs are being
copied.
"""
starting = set(inputs)
result: set[Node] = set()
next_nodes = self._get_nodes_with_inputs_transcode_compatible(starting)
while next_nodes:
result |= next_nodes
outputs = set(chain.from_iterable(node.outputs for node in next_nodes))
starting = outputs
next_nodes = set(
chain.from_iterable(
self._nodes_by_input[_strip_transcoding(input_)]
for input_ in starting
)
)
return Pipeline(result) | Create a new ``Pipeline`` object with the nodes which depend
directly or transitively on the provided inputs.
If provided a name, but no format, for a transcoded input, it
includes all the nodes that use inputs with that name, otherwise it
matches to the fully-qualified name only (i.e. name@format).
Args:
*inputs: A list of inputs which should be used as a starting point
of the new ``Pipeline``
Raises:
ValueError: Raised when any of the given inputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the
nodes of the current one such that only nodes depending
directly or transitively on the provided inputs are being
copied. | from_inputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def only_nodes_with_outputs(self, *outputs: str) -> Pipeline:
"""Create a new ``Pipeline`` object with the nodes which are directly
required to produce the provided outputs.
If provided a name, but no format, for a transcoded dataset, it
includes all the nodes that output to that name, otherwise it matches
to the fully-qualified name only (i.e. name@format).
Args:
*outputs: A list of outputs which should be the final outputs
of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given outputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of the
current one such that only nodes which are directly required to
produce the provided outputs are being copied.
"""
starting = set(outputs)
nodes = self._get_nodes_with_outputs_transcode_compatible(starting)
return Pipeline(nodes) | Create a new ``Pipeline`` object with the nodes which are directly
required to produce the provided outputs.
If provided a name, but no format, for a transcoded dataset, it
includes all the nodes that output to that name, otherwise it matches
to the fully-qualified name only (i.e. name@format).
Args:
*outputs: A list of outputs which should be the final outputs
of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given outputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of the
current one such that only nodes which are directly required to
produce the provided outputs are being copied. | only_nodes_with_outputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def to_outputs(self, *outputs: str) -> Pipeline:
"""Create a new ``Pipeline`` object with the nodes which are directly
or transitively required to produce the provided outputs.
If provided a name, but no format, for a transcoded dataset, it
includes all the nodes that output to that name, otherwise it matches
to the fully-qualified name only (i.e. name@format).
Args:
*outputs: A list of outputs which should be the final outputs of
the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given outputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of the
current one such that only nodes which are directly or transitively
required to produce the provided outputs are being copied.
"""
starting = set(outputs)
result: set[Node] = set()
next_nodes = self._get_nodes_with_outputs_transcode_compatible(starting)
while next_nodes:
result |= next_nodes
inputs = set(chain.from_iterable(node.inputs for node in next_nodes))
starting = inputs
next_nodes = {
self._nodes_by_output[_strip_transcoding(output)]
for output in starting
if _strip_transcoding(output) in self._nodes_by_output
}
return Pipeline(result) | Create a new ``Pipeline`` object with the nodes which are directly
or transitively required to produce the provided outputs.
If provided a name, but no format, for a transcoded dataset, it
includes all the nodes that output to that name, otherwise it matches
to the fully-qualified name only (i.e. name@format).
Args:
*outputs: A list of outputs which should be the final outputs of
the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given outputs do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of the
current one such that only nodes which are directly or transitively
required to produce the provided outputs are being copied. | to_outputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def from_nodes(self, *node_names: str) -> Pipeline:
"""Create a new ``Pipeline`` object with the nodes which depend
directly or transitively on the provided nodes.
Args:
*node_names: A list of node_names which should be used as a
starting point of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given names do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of
the current one such that only nodes depending directly or
transitively on the provided nodes are being copied.
"""
res = self.only_nodes(*node_names)
res += self.from_inputs(*map(_strip_transcoding, res.all_outputs()))
return res | Create a new ``Pipeline`` object with the nodes which depend
directly or transitively on the provided nodes.
Args:
*node_names: A list of node_names which should be used as a
starting point of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given names do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of
the current one such that only nodes depending directly or
transitively on the provided nodes are being copied. | from_nodes | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def to_nodes(self, *node_names: str) -> Pipeline:
"""Create a new ``Pipeline`` object with the nodes required directly
or transitively by the provided nodes.
Args:
*node_names: A list of node_names which should be used as an
end point of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given names do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of the
current one such that only nodes required directly or
transitively by the provided nodes are being copied.
"""
res = self.only_nodes(*node_names)
res += self.to_outputs(*map(_strip_transcoding, res.all_inputs()))
return res | Create a new ``Pipeline`` object with the nodes required directly
or transitively by the provided nodes.
Args:
*node_names: A list of node_names which should be used as an
end point of the new ``Pipeline``.
Raises:
ValueError: Raised when any of the given names do not exist in the
``Pipeline`` object.
Returns:
A new ``Pipeline`` object, containing a subset of the nodes of the
current one such that only nodes required directly or
transitively by the provided nodes are being copied. | to_nodes | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def only_nodes_with_tags(self, *tags: str) -> Pipeline:
"""Creates a new ``Pipeline`` object with the nodes which contain *any*
of the provided tags. The resulting ``Pipeline`` is empty if no tags
are provided.
Args:
*tags: A list of node tags which should be used to lookup
the nodes of the new ``Pipeline``.
Returns:
Pipeline: A new ``Pipeline`` object, containing a subset of the
nodes of the current one such that only nodes containing *any*
of the tags provided are being copied.
"""
unique_tags = set(tags)
nodes = [node for node in self._nodes if unique_tags & node.tags]
return Pipeline(nodes) | Creates a new ``Pipeline`` object with the nodes which contain *any*
of the provided tags. The resulting ``Pipeline`` is empty if no tags
are provided.
Args:
*tags: A list of node tags which should be used to lookup
the nodes of the new ``Pipeline``.
Returns:
Pipeline: A new ``Pipeline`` object, containing a subset of the
nodes of the current one such that only nodes containing *any*
of the tags provided are being copied. | only_nodes_with_tags | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def filter( # noqa: PLR0913
self,
tags: Iterable[str] | None = None,
from_nodes: Iterable[str] | None = None,
to_nodes: Iterable[str] | None = None,
node_names: Iterable[str] | None = None,
from_inputs: Iterable[str] | None = None,
to_outputs: Iterable[str] | None = None,
node_namespace: str | None = None,
) -> Pipeline:
"""Creates a new ``Pipeline`` object with the nodes that meet all of the
specified filtering conditions.
The new pipeline object is the intersection of pipelines that meet each
filtering condition. This is distinct from chaining multiple filters together.
Args:
tags: A list of node tags which should be used to lookup
the nodes of the new ``Pipeline``.
from_nodes: A list of node names which should be used as a
starting point of the new ``Pipeline``.
to_nodes: A list of node names which should be used as an
end point of the new ``Pipeline``.
node_names: A list of node names which should be selected for the
new ``Pipeline``.
from_inputs: A list of inputs which should be used as a starting point
of the new ``Pipeline``
to_outputs: A list of outputs which should be the final outputs of
the new ``Pipeline``.
node_namespace: One node namespace which should be used to select
nodes in the new ``Pipeline``.
Returns:
A new ``Pipeline`` object with nodes that meet all of the specified
filtering conditions.
Raises:
ValueError: The filtered ``Pipeline`` has no nodes.
Example:
::
>>> pipeline = Pipeline(
>>> [
>>> node(func, "A", "B", name="node1"),
>>> node(func, "B", "C", name="node2"),
>>> node(func, "C", "D", name="node3"),
>>> ]
>>> )
>>> pipeline.filter(node_names=["node1", "node3"], from_inputs=["A"])
>>> # Gives a new pipeline object containing node1 and node3.
"""
# Use [node_namespace] so only_nodes_with_namespace can follow the same
# *filter_args pattern as the other filtering methods, which all take iterables.
node_namespace_iterable = [node_namespace] if node_namespace else None
filter_methods = {
self.only_nodes_with_tags: tags,
self.from_nodes: from_nodes,
self.to_nodes: to_nodes,
self.only_nodes: node_names,
self.from_inputs: from_inputs,
self.to_outputs: to_outputs,
self.only_nodes_with_namespace: node_namespace_iterable,
}
subset_pipelines = {
filter_method(*filter_args) # type: ignore
for filter_method, filter_args in filter_methods.items()
if filter_args
}
# Intersect all the pipelines subsets. We apply each filter to the original
# pipeline object (self) rather than incrementally chaining filter methods
# together. Hence the order of filtering does not affect the outcome, and the
# resultant pipeline is unambiguously defined.
# If this were not the case then, for example,
# pipeline.filter(node_names=["node1", "node3"], from_inputs=["A"])
# would give different outcomes depending on the order of filter methods:
# only_nodes and then from_inputs would give node1, while only_nodes and then
# from_inputs would give node1 and node3.
filtered_pipeline = Pipeline(self._nodes)
for subset_pipeline in subset_pipelines:
filtered_pipeline &= subset_pipeline
if not filtered_pipeline.nodes:
raise ValueError(
"Pipeline contains no nodes after applying all provided filters. "
"Please ensure that at least one pipeline with nodes has been defined."
)
return filtered_pipeline | Creates a new ``Pipeline`` object with the nodes that meet all of the
specified filtering conditions.
The new pipeline object is the intersection of pipelines that meet each
filtering condition. This is distinct from chaining multiple filters together.
Args:
tags: A list of node tags which should be used to lookup
the nodes of the new ``Pipeline``.
from_nodes: A list of node names which should be used as a
starting point of the new ``Pipeline``.
to_nodes: A list of node names which should be used as an
end point of the new ``Pipeline``.
node_names: A list of node names which should be selected for the
new ``Pipeline``.
from_inputs: A list of inputs which should be used as a starting point
of the new ``Pipeline``
to_outputs: A list of outputs which should be the final outputs of
the new ``Pipeline``.
node_namespace: One node namespace which should be used to select
nodes in the new ``Pipeline``.
Returns:
A new ``Pipeline`` object with nodes that meet all of the specified
filtering conditions.
Raises:
ValueError: The filtered ``Pipeline`` has no nodes.
Example:
::
>>> pipeline = Pipeline(
>>> [
>>> node(func, "A", "B", name="node1"),
>>> node(func, "B", "C", name="node2"),
>>> node(func, "C", "D", name="node3"),
>>> ]
>>> )
>>> pipeline.filter(node_names=["node1", "node3"], from_inputs=["A"])
>>> # Gives a new pipeline object containing node1 and node3. | filter | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def tag(self, tags: str | Iterable[str]) -> Pipeline:
"""Tags all the nodes in the pipeline.
Args:
tags: The tags to be added to the nodes.
Returns:
New ``Pipeline`` object with nodes tagged.
"""
nodes = [n.tag(tags) for n in self._nodes]
return Pipeline(nodes) | Tags all the nodes in the pipeline.
Args:
tags: The tags to be added to the nodes.
Returns:
New ``Pipeline`` object with nodes tagged. | tag | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def to_json(self) -> str:
"""Return a json representation of the pipeline."""
transformed = [
{
"name": n.name,
"inputs": list(n.inputs),
"outputs": list(n.outputs),
"tags": list(n.tags),
}
for n in self._nodes
]
pipeline_versioned = {
"kedro_version": kedro.__version__,
"pipeline": transformed,
}
return json.dumps(pipeline_versioned) | Return a json representation of the pipeline. | to_json | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def _validate_transcoded_inputs_outputs(nodes: list[Node]) -> None:
"""Users should not be allowed to refer to a transcoded dataset both
with and without the separator.
"""
all_inputs_outputs = set(
chain(
chain.from_iterable(node.inputs for node in nodes),
chain.from_iterable(node.outputs for node in nodes),
)
)
invalid = set()
for dataset_name in all_inputs_outputs:
name = _strip_transcoding(dataset_name)
if name != dataset_name and name in all_inputs_outputs:
invalid.add(name)
if invalid:
raise ValueError(
f"The following datasets are used with transcoding, but "
f"were referenced without the separator: {', '.join(invalid)}.\n"
f"Please specify a transcoding option or "
f"rename the datasets."
) | Users should not be allowed to refer to a transcoded dataset both
with and without the separator. | _validate_transcoded_inputs_outputs | python | kedro-org/kedro | kedro/pipeline/pipeline.py | https://github.com/kedro-org/kedro/blob/master/kedro/pipeline/pipeline.py | Apache-2.0 |
def load_ipython_extension(ipython: InteractiveShell) -> None:
"""
Main entry point when %load_ext kedro.ipython is executed, either manually or
automatically through `kedro ipython` or `kedro jupyter lab/notebook`.
IPython will look for this function specifically.
See https://ipython.readthedocs.io/en/stable/config/extensions/index.html
"""
ipython.register_magic_function(func=magic_reload_kedro, magic_name="reload_kedro") # type: ignore[call-arg]
logger.info("Registered line magic '%reload_kedro'")
ipython.register_magic_function(func=magic_load_node, magic_name="load_node") # type: ignore[call-arg]
logger.info("Registered line magic '%load_node'")
if _find_kedro_project(Path.cwd()) is None:
logger.warning(
"Kedro extension was registered but couldn't find a Kedro project. "
"Make sure you run '%reload_kedro <project_root>'."
)
return
reload_kedro() | Main entry point when %load_ext kedro.ipython is executed, either manually or
automatically through `kedro ipython` or `kedro jupyter lab/notebook`.
IPython will look for this function specifically.
See https://ipython.readthedocs.io/en/stable/config/extensions/index.html | load_ipython_extension | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def magic_reload_kedro(
line: str,
local_ns: dict[str, Any] | None = None,
conf_source: str | None = None,
) -> None:
"""
The `%reload_kedro` IPython line magic.
See https://docs.kedro.org/en/stable/notebooks_and_ipython/kedro_and_notebooks.html#reload-kedro-line-magic
for more.
"""
args = parse_argstring(magic_reload_kedro, line)
reload_kedro(args.path, args.env, args.params, local_ns, args.conf_source) | The `%reload_kedro` IPython line magic.
See https://docs.kedro.org/en/stable/notebooks_and_ipython/kedro_and_notebooks.html#reload-kedro-line-magic
for more. | magic_reload_kedro | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def reload_kedro(
path: str | None = None,
env: str | None = None,
extra_params: dict[str, Any] | None = None,
local_namespace: dict[str, Any] | None = None,
conf_source: str | None = None,
) -> None: # pragma: no cover
"""Function that underlies the %reload_kedro Line magic. This should not be imported
or run directly but instead invoked through %reload_kedro."""
project_path = _resolve_project_path(path, local_namespace)
metadata = bootstrap_project(project_path)
_remove_cached_modules(metadata.package_name)
configure_project(metadata.package_name)
session = KedroSession.create(
project_path,
env=env,
extra_params=extra_params,
conf_source=conf_source,
)
context = session.load_context()
catalog = context.catalog
get_ipython().push( # type: ignore[no-untyped-call]
variables={
"context": context,
"catalog": catalog,
"session": session,
"pipelines": pipelines,
}
)
logger.info("Kedro project %s", str(metadata.project_name))
logger.info(
"Defined global variable 'context', 'session', 'catalog' and 'pipelines'"
)
for line_magic in load_entry_points("line_magic"):
register_line_magic(needs_local_scope(line_magic)) # type: ignore[no-untyped-call]
logger.info("Registered line magic '%s'", line_magic.__name__) # type: ignore[attr-defined] | Function that underlies the %reload_kedro Line magic. This should not be imported
or run directly but instead invoked through %reload_kedro. | reload_kedro | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _resolve_project_path(
path: str | None = None, local_namespace: dict[str, Any] | None = None
) -> Path:
"""
Resolve the project path to use with reload_kedro, updating or adding it
(in-place) to the local ipython Namespace (``local_namespace``) if necessary.
Arguments:
path: the path to use as a string object
local_namespace: Namespace with local variables of the scope where the line
magic is invoked in a dict.
"""
if path:
project_path = Path(path).expanduser().resolve()
else:
if (
local_namespace
and local_namespace.get("context")
and hasattr(local_namespace["context"], "project_path")
):
project_path = local_namespace["context"].project_path
else:
project_path = _find_kedro_project(Path.cwd())
if project_path:
logger.info(
"Resolved project path as: %s.\nTo set a different path, run "
"'%%reload_kedro <project_root>'",
project_path,
)
if (
project_path
and local_namespace
and local_namespace.get("context")
and hasattr(local_namespace["context"], "project_path") # Avoid name collision
and project_path != local_namespace["context"].project_path
):
logger.info("Updating path to Kedro project: %s...", project_path)
return project_path | Resolve the project path to use with reload_kedro, updating or adding it
(in-place) to the local ipython Namespace (``local_namespace``) if necessary.
Arguments:
path: the path to use as a string object
local_namespace: Namespace with local variables of the scope where the line
magic is invoked in a dict. | _resolve_project_path | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _guess_run_environment() -> str: # pragma: no cover
"""Best effort to guess the IPython/Jupyter environment"""
# https://github.com/microsoft/vscode-jupyter/issues/7380
if os.environ.get("VSCODE_PID") or os.environ.get("VSCODE_CWD"):
return "vscode"
elif _is_databricks():
return "databricks"
elif hasattr(get_ipython(), "kernel"): # type: ignore[no-untyped-call]
# IPython terminal does not have this attribute
return "jupyter"
else:
return "ipython" | Best effort to guess the IPython/Jupyter environment | _guess_run_environment | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def magic_load_node(args: str) -> None:
"""The line magic %load_node <node_name>.
Currently, this feature is only available for Jupyter Notebook (>7.0), Jupyter Lab, IPython,
and VSCode Notebook. This line magic will generate code in multiple cells to load
datasets from `DataCatalog`, import relevant functions and modules, node function
definition and a function call. If generating code is not possible, it will print
the code instead.
"""
parameters = parse_argstring(magic_load_node, args)
node_name = parameters.node
cells = _load_node(node_name, pipelines)
run_environment = _guess_run_environment()
if run_environment in ("ipython", "vscode", "jupyter"):
# Combine multiple cells into one for IPython or VSCode or Jupyter
combined_cell = "\n\n".join(cells)
_create_cell_with_text(combined_cell)
else:
# For other environments or if detection fails, just print the cells
_print_cells(cells) | The line magic %load_node <node_name>.
Currently, this feature is only available for Jupyter Notebook (>7.0), Jupyter Lab, IPython,
and VSCode Notebook. This line magic will generate code in multiple cells to load
datasets from `DataCatalog`, import relevant functions and modules, node function
definition and a function call. If generating code is not possible, it will print
the code instead. | magic_load_node | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def input_params_dict(self) -> dict[str, str] | None:
"""A mapping of {variable name: dataset_name}"""
var_positional_arg_name = self._find_var_positional_arg()
inputs_params_dict = {}
for param, dataset_name in self.arguments.items():
if param == var_positional_arg_name:
# If the argument is *args, use the dataset name instead
for arg in dataset_name:
inputs_params_dict[arg] = arg
else:
inputs_params_dict[param] = dataset_name
return inputs_params_dict | A mapping of {variable name: dataset_name} | input_params_dict | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _find_var_positional_arg(self) -> str | None:
"""Find the name of the VAR_POSITIONAL argument( *args), if any."""
for k, v in self.signature.parameters.items():
if v.kind == inspect.Parameter.VAR_POSITIONAL:
return k
return None | Find the name of the VAR_POSITIONAL argument( *args), if any. | _find_var_positional_arg | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _create_cell_with_text(text: str) -> None:
"""Create a new cell with the provided text content."""
get_ipython().set_next_input(text) # type: ignore[no-untyped-call] | Create a new cell with the provided text content. | _create_cell_with_text | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _load_node(node_name: str, pipelines: _ProjectPipelines) -> list[str]:
"""Prepare the code to load dataset from catalog, import statements and function body.
Args:
node_name (str): The name of the node.
Returns:
list[str]: A list of string which is the generated code, each string represent a
notebook cell.
"""
warnings.warn(
"This is an experimental feature, only Jupyter Notebook (>7.0), Jupyter Lab, IPython, and VSCode Notebook "
"are supported. If you encounter unexpected behaviour or would like to suggest "
"feature enhancements, add it under this github issue https://github.com/kedro-org/kedro/issues/3580"
)
node = _find_node(node_name, pipelines)
node_func = node.func
imports_cell = _prepare_imports(node_func)
function_definition_cell = _prepare_function_body(node_func)
node_bound_arguments = _get_node_bound_arguments(node)
inputs_params_mapping = _prepare_node_inputs(node_bound_arguments)
node_inputs_cell = _format_node_inputs_text(inputs_params_mapping)
function_call_cell = _prepare_function_call(node_func, node_bound_arguments)
cells: list[str] = []
if node_inputs_cell:
cells.append(node_inputs_cell)
cells.append(imports_cell)
cells.append(function_definition_cell)
cells.append(function_call_cell)
return cells | Prepare the code to load dataset from catalog, import statements and function body.
Args:
node_name (str): The name of the node.
Returns:
list[str]: A list of string which is the generated code, each string represent a
notebook cell. | _load_node | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _prepare_imports(node_func: Callable) -> str:
"""Prepare the import statements for loading a node."""
python_file = inspect.getsourcefile(node_func)
logger.info(f"Loading node definition from {python_file}")
# Confirm source file was found
if python_file:
import_statement = []
with open(python_file) as file:
# Handle multiline imports, i.e.
# from lib import (
# a,
# b,
# c
# )
# This will not work with all edge cases but good enough with common cases that
# are formatted automatically by black, ruff etc.
inside_bracket = False
# Parse any line start with from or import statement
for _ in file.readlines():
line = _.strip()
if not inside_bracket:
# The common case
if line.startswith("from") or line.startswith("import"):
import_statement.append(line)
if line.endswith("("):
inside_bracket = True
# Inside multi-lines import, append everything.
else:
import_statement.append(line)
if line.endswith(")"):
inside_bracket = False
clean_imports = "\n".join(import_statement).strip()
return clean_imports
else:
raise FileNotFoundError(f"Could not find {node_func.__name__}") | Prepare the import statements for loading a node. | _prepare_imports | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def _prepare_function_call(
node_func: Callable, node_bound_arguments: _NodeBoundArguments
) -> str:
"""Prepare the text for the function call."""
func_name = node_func.__name__
args = node_bound_arguments.input_params_dict
kwargs = node_bound_arguments.kwargs
# Construct the statement of func_name(a=1,b=2,c=3)
args_str_literal = [f"{node_input}" for node_input in args] if args else []
kwargs_str_literal = [
f"{node_input}={dataset_name}" for node_input, dataset_name in kwargs.items()
]
func_params = ", ".join(args_str_literal + kwargs_str_literal)
body = f"""{func_name}({func_params})"""
return body | Prepare the text for the function call. | _prepare_function_call | python | kedro-org/kedro | kedro/ipython/__init__.py | https://github.com/kedro-org/kedro/blob/master/kedro/ipython/__init__.py | Apache-2.0 |
def from_config(
cls: type,
name: str,
config: dict[str, Any],
load_version: str | None = None,
save_version: str | None = None,
) -> AbstractDataset:
"""Create a dataset instance using the configuration provided.
Args:
name: Data set name.
config: Data set config dictionary.
load_version: Version string to be used for ``load`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
save_version: Version string to be used for ``save`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
Returns:
An instance of an ``AbstractDataset`` subclass.
Raises:
DatasetError: When the function fails to create the dataset
from its config.
"""
try:
class_obj, config = parse_dataset_definition(
config, load_version, save_version
)
except Exception as exc:
raise DatasetError(
f"An exception occurred when parsing config "
f"for dataset '{name}':\n{exc!s}"
) from exc
try:
dataset = class_obj(**config)
except TypeError as err:
raise DatasetError(
f"\n{err}.\nDataset '{name}' must only contain arguments valid for the "
f"constructor of '{class_obj.__module__}.{class_obj.__qualname__}'."
) from err
except Exception as err:
raise DatasetError(
f"\n{err}.\nFailed to instantiate dataset '{name}' "
f"of type '{class_obj.__module__}.{class_obj.__qualname__}'."
) from err
return dataset | Create a dataset instance using the configuration provided.
Args:
name: Data set name.
config: Data set config dictionary.
load_version: Version string to be used for ``load`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
save_version: Version string to be used for ``save`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
Returns:
An instance of an ``AbstractDataset`` subclass.
Raises:
DatasetError: When the function fails to create the dataset
from its config. | from_config | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def to_config(self) -> dict[str, Any]:
"""Converts the dataset instance into a dictionary-based configuration for
serialization. Ensures that any subclass-specific details are handled, with
additional logic for versioning and caching implemented for `CachedDataset`.
Adds a key for the dataset's type using its module and class name and
includes the initialization arguments.
For `CachedDataset` it extracts the underlying dataset's configuration,
handles the `versioned` flag and removes unnecessary metadata. It also
ensures the embedded dataset's configuration is appropriately flattened
or transformed.
If the dataset has a version key, it sets the `versioned` flag in the
configuration.
Removes the `metadata` key from the configuration if present.
Returns:
A dictionary containing the dataset's type and initialization arguments.
"""
return_config: dict[str, Any] = {
f"{TYPE_KEY}": f"{type(self).__module__}.{type(self).__name__}"
}
if self._init_args: # type: ignore[attr-defined]
self._init_args.pop("self", None) # type: ignore[attr-defined]
return_config.update(self._init_args) # type: ignore[attr-defined]
if type(self).__name__ == "CachedDataset":
cached_ds = return_config.pop("dataset")
cached_ds_return_config: dict[str, Any] = {}
if isinstance(cached_ds, dict):
cached_ds_return_config = cached_ds
elif isinstance(cached_ds, AbstractDataset):
cached_ds_return_config = cached_ds.to_config()
if VERSIONED_FLAG_KEY in cached_ds_return_config:
return_config[VERSIONED_FLAG_KEY] = cached_ds_return_config.pop(
VERSIONED_FLAG_KEY
)
# Pop metadata from configuration
cached_ds_return_config.pop("metadata", None)
return_config["dataset"] = cached_ds_return_config
# Set `versioned` key if version present in the dataset
if return_config.pop(VERSION_KEY, None):
return_config[VERSIONED_FLAG_KEY] = True
# Pop metadata from configuration
return_config.pop("metadata", None)
return return_config | Converts the dataset instance into a dictionary-based configuration for
serialization. Ensures that any subclass-specific details are handled, with
additional logic for versioning and caching implemented for `CachedDataset`.
Adds a key for the dataset's type using its module and class name and
includes the initialization arguments.
For `CachedDataset` it extracts the underlying dataset's configuration,
handles the `versioned` flag and removes unnecessary metadata. It also
ensures the embedded dataset's configuration is appropriately flattened
or transformed.
If the dataset has a version key, it sets the `versioned` flag in the
configuration.
Removes the `metadata` key from the configuration if present.
Returns:
A dictionary containing the dataset's type and initialization arguments. | to_config | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _to_str(obj: Any, is_root: bool = False) -> str:
"""Returns a string representation where
1. The root level (i.e. the Dataset.__init__ arguments) are
formatted like Dataset(key=value).
2. Dictionaries have the keys alphabetically sorted recursively.
3. None values are not shown.
"""
fmt = "{}={}" if is_root else "'{}': {}" # 1
if isinstance(obj, dict):
sorted_dict = sorted(obj.items(), key=lambda pair: str(pair[0])) # 2
text = ", ".join(
fmt.format(key, _to_str(value)) # 2
for key, value in sorted_dict
if value is not None # 3
)
return text if is_root else "{" + text + "}" # 1
# not a dictionary
return str(obj) | Returns a string representation where
1. The root level (i.e. the Dataset.__init__ arguments) are
formatted like Dataset(key=value).
2. Dictionaries have the keys alphabetically sorted recursively.
3. None values are not shown. | __str__._to_str | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def __str__(self) -> str:
# TODO: Replace with __repr__ implementation in 0.20.0 release.
def _to_str(obj: Any, is_root: bool = False) -> str:
"""Returns a string representation where
1. The root level (i.e. the Dataset.__init__ arguments) are
formatted like Dataset(key=value).
2. Dictionaries have the keys alphabetically sorted recursively.
3. None values are not shown.
"""
fmt = "{}={}" if is_root else "'{}': {}" # 1
if isinstance(obj, dict):
sorted_dict = sorted(obj.items(), key=lambda pair: str(pair[0])) # 2
text = ", ".join(
fmt.format(key, _to_str(value)) # 2
for key, value in sorted_dict
if value is not None # 3
)
return text if is_root else "{" + text + "}" # 1
# not a dictionary
return str(obj)
return f"{type(self).__name__}({_to_str(self._describe(), True)})" | Returns a string representation where
1. The root level (i.e. the Dataset.__init__ arguments) are
formatted like Dataset(key=value).
2. Dictionaries have the keys alphabetically sorted recursively.
3. None values are not shown. | __str__ | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _load_wrapper(cls, load_func: Callable[[Self], _DO]) -> Callable[[Self], _DO]:
"""Decorate `load_func` with logging and error handling code."""
@wraps(load_func)
def load(self: Self) -> _DO:
self._logger.debug("Loading %s", str(self))
try:
return load_func(self)
except DatasetError:
raise
except Exception as exc:
# This exception handling is by design as the composed datasets
# can throw any type of exception.
message = f"Failed while loading data from dataset {self!s}.\n{exc!s}"
raise DatasetError(message) from exc
load.__annotations__["return"] = load_func.__annotations__.get("return")
load.__loadwrapped__ = True # type: ignore[attr-defined]
return load | Decorate `load_func` with logging and error handling code. | _load_wrapper | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _save_wrapper(
cls, save_func: Callable[[Self, _DI], None]
) -> Callable[[Self, _DI], None]:
"""Decorate `save_func` with logging and error handling code."""
@wraps(save_func)
def save(self: Self, data: _DI) -> None:
if data is None:
raise DatasetError("Saving 'None' to a 'Dataset' is not allowed")
try:
self._logger.debug("Saving %s", str(self))
save_func(self, data)
except (DatasetError, FileNotFoundError, NotADirectoryError):
raise
except Exception as exc:
message = f"Failed while saving data to dataset {self!s}.\n{exc!s}"
raise DatasetError(message) from exc
save.__annotations__["data"] = save_func.__annotations__.get("data", Any)
save.__annotations__["return"] = save_func.__annotations__.get("return")
save.__savewrapped__ = True # type: ignore[attr-defined]
return save | Decorate `save_func` with logging and error handling code. | _save_wrapper | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def new_init(self, *args, **kwargs) -> None: # type: ignore[no-untyped-def]
"""Executes the original __init__, then save the arguments used
to initialize the instance.
"""
# Call the original __init__ method
init_func(self, *args, **kwargs)
# Capture and save the arguments passed to the original __init__
self._init_args = getcallargs(init_func, self, *args, **kwargs) | Executes the original __init__, then save the arguments used
to initialize the instance. | __init_subclass__.new_init | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def __init_subclass__(cls, **kwargs: Any) -> None:
"""Customizes the behavior of subclasses of AbstractDataset during
their creation. This method is automatically invoked when a subclass
of AbstractDataset is defined.
Decorates the `load` and `save` methods provided by the class.
If `_load` or `_save` are defined, alias them as a prerequisite.
"""
# Save the original __init__ method of the subclass
init_func: Callable = cls.__init__
@wraps(init_func)
def new_init(self, *args, **kwargs) -> None: # type: ignore[no-untyped-def]
"""Executes the original __init__, then save the arguments used
to initialize the instance.
"""
# Call the original __init__ method
init_func(self, *args, **kwargs)
# Capture and save the arguments passed to the original __init__
self._init_args = getcallargs(init_func, self, *args, **kwargs)
# Replace the subclass's __init__ with the new_init
# A hook for subclasses to capture initialization arguments and save them
# in the AbstractDataset._init_args field
cls.__init__ = new_init # type: ignore[method-assign]
super().__init_subclass__(**kwargs)
if hasattr(cls, "_load") and not cls._load.__qualname__.startswith("Abstract"):
cls.load = cls._load # type: ignore[method-assign]
if hasattr(cls, "_save") and not cls._save.__qualname__.startswith("Abstract"):
cls.save = cls._save # type: ignore[method-assign]
if hasattr(cls, "load") and not cls.load.__qualname__.startswith("Abstract"):
cls.load = cls._load_wrapper( # type: ignore[assignment]
cls.load
if not getattr(cls.load, "__loadwrapped__", False)
else cls.load.__wrapped__ # type: ignore[attr-defined]
)
if hasattr(cls, "save") and not cls.save.__qualname__.startswith("Abstract"):
cls.save = cls._save_wrapper( # type: ignore[assignment]
cls.save
if not getattr(cls.save, "__savewrapped__", False)
else cls.save.__wrapped__ # type: ignore[attr-defined]
) | Customizes the behavior of subclasses of AbstractDataset during
their creation. This method is automatically invoked when a subclass
of AbstractDataset is defined.
Decorates the `load` and `save` methods provided by the class.
If `_load` or `_save` are defined, alias them as a prerequisite. | __init_subclass__ | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def load(self) -> _DO:
"""Loads data by delegation to the provided load method.
Returns:
Data returned by the provided load method.
Raises:
DatasetError: When underlying load method raises error.
"""
raise NotImplementedError(
f"'{self.__class__.__name__}' is a subclass of AbstractDataset and "
f"it must implement the 'load' method"
) | Loads data by delegation to the provided load method.
Returns:
Data returned by the provided load method.
Raises:
DatasetError: When underlying load method raises error. | load | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def save(self, data: _DI) -> None:
"""Saves data by delegation to the provided save method.
Args:
data: the value to be saved by provided save method.
Raises:
DatasetError: when underlying save method raises error.
FileNotFoundError: when save method got file instead of dir, on Windows.
NotADirectoryError: when save method got file instead of dir, on Unix.
"""
raise NotImplementedError(
f"'{self.__class__.__name__}' is a subclass of AbstractDataset and "
f"it must implement the 'save' method"
) | Saves data by delegation to the provided save method.
Args:
data: the value to be saved by provided save method.
Raises:
DatasetError: when underlying save method raises error.
FileNotFoundError: when save method got file instead of dir, on Windows.
NotADirectoryError: when save method got file instead of dir, on Unix. | save | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def exists(self) -> bool:
"""Checks whether a dataset's output already exists by calling
the provided _exists() method.
Returns:
Flag indicating whether the output already exists.
Raises:
DatasetError: when underlying exists method raises error.
"""
try:
self._logger.debug("Checking whether target of %s exists", str(self))
return self._exists()
except Exception as exc:
message = f"Failed during exists check for dataset {self!s}.\n{exc!s}"
raise DatasetError(message) from exc | Checks whether a dataset's output already exists by calling
the provided _exists() method.
Returns:
Flag indicating whether the output already exists.
Raises:
DatasetError: when underlying exists method raises error. | exists | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def release(self) -> None:
"""Release any cached data.
Raises:
DatasetError: when underlying release method raises error.
"""
try:
self._logger.debug("Releasing %s", str(self))
self._release()
except Exception as exc:
message = f"Failed during release for dataset {self!s}.\n{exc!s}"
raise DatasetError(message) from exc | Release any cached data.
Raises:
DatasetError: when underlying release method raises error. | release | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def generate_timestamp() -> str:
"""Generate the timestamp to be used by versioning.
Returns:
String representation of the current timestamp.
"""
current_ts = datetime.now(tz=timezone.utc).strftime(VERSION_FORMAT)
return current_ts[:-4] + current_ts[-1:] # Don't keep microseconds | Generate the timestamp to be used by versioning.
Returns:
String representation of the current timestamp. | generate_timestamp | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def parse_dataset_definition(
config: dict[str, Any],
load_version: str | None = None,
save_version: str | None = None,
) -> tuple[type[AbstractDataset], dict[str, Any]]:
"""Parse and instantiate a dataset class using the configuration provided.
Args:
config: Data set config dictionary. It *must* contain the `type` key
with fully qualified class name or the class object.
load_version: Version string to be used for ``load`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
save_version: Version string to be used for ``save`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
Raises:
DatasetError: If the function fails to parse the configuration provided.
Returns:
2-tuple: (Dataset class object, configuration dictionary)
"""
save_version = save_version or generate_timestamp()
config = copy.deepcopy(config)
# TODO: remove when removing old catalog as moved to KedroDataCatalog
if TYPE_KEY not in config:
raise DatasetError(
"'type' is missing from dataset catalog configuration."
"\nHint: If this catalog entry is intended for variable interpolation, "
"make sure that the top level key is preceded by an underscore."
)
dataset_type = config.pop(TYPE_KEY)
class_obj = None
if isinstance(dataset_type, str):
if len(dataset_type.strip(".")) != len(dataset_type):
raise DatasetError(
"'type' class path does not support relative "
"paths or paths ending with a dot."
)
class_paths = (prefix + dataset_type for prefix in _DEFAULT_PACKAGES)
for class_path in class_paths:
tmp = _load_obj(class_path)
if tmp is not None:
class_obj = tmp
break
else:
hint = (
"Hint: If you are trying to use a dataset from `kedro-datasets`, "
"make sure that the package is installed in your current environment. "
"You can do so by running `pip install kedro-datasets` or "
"`pip install kedro-datasets[<dataset-group>]` to install `kedro-datasets` along with "
"related dependencies for the specific dataset group."
)
raise DatasetError(
f"Class '{dataset_type}' not found, is this a typo?" f"\n{hint}"
)
if not class_obj:
class_obj = dataset_type
if not issubclass(class_obj, AbstractDataset):
raise DatasetError(
f"Dataset type '{class_obj.__module__}.{class_obj.__qualname__}' "
f"is invalid: all dataset types must extend 'AbstractDataset'."
)
if VERSION_KEY in config:
# remove "version" key so that it's not passed
# to the "unversioned" dataset constructor
message = (
"'%s' attribute removed from dataset configuration since it is a "
"reserved word and cannot be directly specified"
)
logging.getLogger(__name__).warning(message, VERSION_KEY)
del config[VERSION_KEY]
# dataset is either versioned explicitly by the user or versioned is set to true by default
# on the dataset
if config.pop(VERSIONED_FLAG_KEY, False) or getattr(
class_obj, VERSIONED_FLAG_KEY, False
):
config[VERSION_KEY] = Version(load_version, save_version)
return class_obj, config | Parse and instantiate a dataset class using the configuration provided.
Args:
config: Data set config dictionary. It *must* contain the `type` key
with fully qualified class name or the class object.
load_version: Version string to be used for ``load`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
save_version: Version string to be used for ``save`` operation if
the dataset is versioned. Has no effect on the dataset
if versioning was not enabled.
Raises:
DatasetError: If the function fails to parse the configuration provided.
Returns:
2-tuple: (Dataset class object, configuration dictionary) | parse_dataset_definition | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def __init__(
self,
filepath: PurePosixPath,
version: Version | None,
exists_function: Callable[[str], bool] | None = None,
glob_function: Callable[[str], list[str]] | None = None,
):
"""Creates a new instance of ``AbstractVersionedDataset``.
Args:
filepath: Filepath in POSIX format to a file.
version: If specified, should be an instance of
``kedro.io.core.Version``. If its ``load`` attribute is
None, the latest version will be loaded. If its ``save``
attribute is None, save version will be autogenerated.
exists_function: Function that is used for determining whether
a path exists in a filesystem.
glob_function: Function that is used for finding all paths
in a filesystem, which match a given pattern.
"""
self._filepath = filepath
self._version = version
self._exists_function = exists_function or _local_exists
self._glob_function = glob_function or iglob
# 1 entry for load version, 1 for save version
self._version_cache = Cache(maxsize=2) # type: Cache | Creates a new instance of ``AbstractVersionedDataset``.
Args:
filepath: Filepath in POSIX format to a file.
version: If specified, should be an instance of
``kedro.io.core.Version``. If its ``load`` attribute is
None, the latest version will be loaded. If its ``save``
attribute is None, save version will be autogenerated.
exists_function: Function that is used for determining whether
a path exists in a filesystem.
glob_function: Function that is used for finding all paths
in a filesystem, which match a given pattern. | __init__ | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _fetch_latest_save_version(self) -> str:
"""Generate and cache the current save version"""
return generate_timestamp() | Generate and cache the current save version | _fetch_latest_save_version | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def resolve_load_version(self) -> str | None:
"""Compute the version the dataset should be loaded with."""
if not self._version:
return None
if self._version.load:
return self._version.load # type: ignore[no-any-return]
return self._fetch_latest_load_version() | Compute the version the dataset should be loaded with. | resolve_load_version | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def resolve_save_version(self) -> str | None:
"""Compute the version the dataset should be saved with."""
if not self._version:
return None
if self._version.save:
return self._version.save # type: ignore[no-any-return]
return self._fetch_latest_save_version() | Compute the version the dataset should be saved with. | resolve_save_version | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _save_wrapper(
cls, save_func: Callable[[Self, _DI], None]
) -> Callable[[Self, _DI], None]:
"""Decorate `save_func` with logging and error handling code."""
@wraps(save_func)
def save(self: Self, data: _DI) -> None:
self._version_cache.clear()
save_version = (
self.resolve_save_version()
) # Make sure last save version is set
try:
super()._save_wrapper(save_func)(self, data)
except (FileNotFoundError, NotADirectoryError) as err:
# FileNotFoundError raised in Win, NotADirectoryError raised in Unix
_default_version = "YYYY-MM-DDThh.mm.ss.sssZ"
raise DatasetError(
f"Cannot save versioned dataset '{self._filepath.name}' to "
f"'{self._filepath.parent.as_posix()}' because a file with the same "
f"name already exists in the directory. This is likely because "
f"versioning was enabled on a dataset already saved previously. Either "
f"remove '{self._filepath.name}' from the directory or manually "
f"convert it into a versioned dataset by placing it in a versioned "
f"directory (e.g. with default versioning format "
f"'{self._filepath.as_posix()}/{_default_version}/{self._filepath.name}"
f"')."
) from err
load_version = self.resolve_load_version()
if load_version != save_version:
warnings.warn(
_CONSISTENCY_WARNING.format(save_version, load_version, str(self))
)
self._version_cache.clear()
return save | Decorate `save_func` with logging and error handling code. | _save_wrapper | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def exists(self) -> bool:
"""Checks whether a dataset's output already exists by calling
the provided _exists() method.
Returns:
Flag indicating whether the output already exists.
Raises:
DatasetError: when underlying exists method raises error.
"""
self._logger.debug("Checking whether target of %s exists", str(self))
try:
return self._exists()
except VersionNotFoundError:
return False
except Exception as exc: # SKIP_IF_NO_SPARK
message = f"Failed during exists check for dataset {self!s}.\n{exc!s}"
raise DatasetError(message) from exc | Checks whether a dataset's output already exists by calling
the provided _exists() method.
Returns:
Flag indicating whether the output already exists.
Raises:
DatasetError: when underlying exists method raises error. | exists | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _parse_filepath(filepath: str) -> dict[str, str]:
"""Split filepath on protocol and path. Based on `fsspec.utils.infer_storage_options`.
Args:
filepath: Either local absolute file path or URL (s3://bucket/file.csv)
Returns:
Parsed filepath.
"""
if (
re.match(r"^[a-zA-Z]:[\\/]", filepath)
or re.match(r"^[a-zA-Z0-9]+://", filepath) is None
):
return {"protocol": "file", "path": filepath}
parsed_path = urlsplit(filepath)
protocol = parsed_path.scheme or "file"
if protocol in HTTP_PROTOCOLS:
return {"protocol": protocol, "path": filepath}
path = parsed_path.path
if protocol == "file":
windows_path = re.match(r"^/([a-zA-Z])[:|]([\\/].*)$", path)
if windows_path:
path = ":".join(windows_path.groups())
if parsed_path.query:
path = f"{path}?{parsed_path.query}"
if parsed_path.fragment:
path = f"{path}#{parsed_path.fragment}"
options = {"protocol": protocol, "path": path}
if parsed_path.netloc and protocol in CLOUD_PROTOCOLS:
host_with_port = parsed_path.netloc.rsplit("@", 1)[-1]
host = host_with_port.rsplit(":", 1)[0]
options["path"] = host + options["path"]
# - Azure Data Lake Storage Gen2 URIs can store the container name in the
# 'username' field of a URL (@ syntax), so we need to add it to the path
# - Oracle Cloud Infrastructure (OCI) Object Storage filesystem (ocifs) also
# uses the @ syntax for I/O operations: "oci://bucket@namespace/path_to_file"
if protocol in ["abfss", "oci"] and parsed_path.username:
options["path"] = parsed_path.username + "@" + options["path"]
return options | Split filepath on protocol and path. Based on `fsspec.utils.infer_storage_options`.
Args:
filepath: Either local absolute file path or URL (s3://bucket/file.csv)
Returns:
Parsed filepath. | _parse_filepath | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def get_protocol_and_path(
filepath: str | os.PathLike, version: Version | None = None
) -> tuple[str, str]:
"""Parses filepath on protocol and path.
.. warning::
Versioning is not supported for HTTP protocols.
Args:
filepath: raw filepath e.g.: ``gcs://bucket/test.json``.
version: instance of ``kedro.io.core.Version`` or None.
Returns:
Protocol and path.
Raises:
DatasetError: when protocol is http(s) and version is not None.
"""
options_dict = _parse_filepath(str(filepath))
path = options_dict["path"]
protocol = options_dict["protocol"]
if protocol in HTTP_PROTOCOLS:
if version is not None:
raise DatasetError(
"Versioning is not supported for HTTP protocols. "
"Please remove the `versioned` flag from the dataset configuration."
)
path = path.split(PROTOCOL_DELIMITER, 1)[-1]
return protocol, path | Parses filepath on protocol and path.
.. warning::
Versioning is not supported for HTTP protocols.
Args:
filepath: raw filepath e.g.: ``gcs://bucket/test.json``.
version: instance of ``kedro.io.core.Version`` or None.
Returns:
Protocol and path.
Raises:
DatasetError: when protocol is http(s) and version is not None. | get_protocol_and_path | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def get_filepath_str(raw_path: PurePath, protocol: str) -> str:
"""Returns filepath. Returns full filepath (with protocol) if protocol is HTTP(s).
Args:
raw_path: filepath without protocol.
protocol: protocol.
Returns:
Filepath string.
"""
path = raw_path.as_posix()
if protocol in HTTP_PROTOCOLS:
path = "".join((protocol, PROTOCOL_DELIMITER, path))
return path | Returns filepath. Returns full filepath (with protocol) if protocol is HTTP(s).
Args:
raw_path: filepath without protocol.
protocol: protocol.
Returns:
Filepath string. | get_filepath_str | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def validate_on_forbidden_chars(**kwargs: Any) -> None:
"""Validate that string values do not include white-spaces or ;"""
for key, value in kwargs.items():
if " " in value or ";" in value:
raise DatasetError(
f"Neither white-space nor semicolon are allowed in '{key}'."
) | Validate that string values do not include white-spaces or ; | validate_on_forbidden_chars | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def __contains__(self, ds_name: str) -> bool:
"""Check if a dataset is in the catalog."""
... | Check if a dataset is in the catalog. | __contains__ | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def config_resolver(self) -> CatalogConfigResolver:
"""Return a copy of the datasets dictionary."""
... | Return a copy of the datasets dictionary. | config_resolver | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def from_config(cls, catalog: dict[str, dict[str, Any]] | None) -> _C:
"""Create a catalog instance from configuration."""
... | Create a catalog instance from configuration. | from_config | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _get_dataset(
self,
dataset_name: str,
version: Any = None,
suggest: bool = True,
) -> AbstractDataset:
"""Retrieve a dataset by its name."""
... | Retrieve a dataset by its name. | _get_dataset | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def list(self, regex_search: str | None = None) -> list[str]:
"""List all dataset names registered in the catalog."""
... | List all dataset names registered in the catalog. | list | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def save(self, name: str, data: Any) -> None:
"""Save data to a registered dataset."""
... | Save data to a registered dataset. | save | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def load(self, name: str, version: str | None = None) -> Any:
"""Load data from a registered dataset."""
... | Load data from a registered dataset. | load | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def add(self, ds_name: str, dataset: Any, replace: bool = False) -> None:
"""Add a new dataset to the catalog."""
... | Add a new dataset to the catalog. | add | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def add_feed_dict(self, datasets: dict[str, Any], replace: bool = False) -> None:
"""Add datasets to the catalog using the data provided through the `feed_dict`."""
... | Add datasets to the catalog using the data provided through the `feed_dict`. | add_feed_dict | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def exists(self, name: str) -> bool:
"""Checks whether registered dataset exists by calling its `exists()` method."""
... | Checks whether registered dataset exists by calling its `exists()` method. | exists | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def release(self, name: str) -> None:
"""Release any cached data associated with a dataset."""
... | Release any cached data associated with a dataset. | release | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def confirm(self, name: str) -> None:
"""Confirm a dataset by its name."""
... | Confirm a dataset by its name. | confirm | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def shallow_copy(self, extra_dataset_patterns: Patterns | None = None) -> _C:
"""Returns a shallow copy of the current object."""
... | Returns a shallow copy of the current object. | shallow_copy | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
def _validate_versions(
datasets: dict[str, AbstractDataset] | None,
load_versions: dict[str, str],
save_version: str | None,
) -> tuple[dict[str, str], str | None]:
"""Validates and synchronises dataset versions for loading and saving.
Ensures consistency of dataset versions across a catalog, particularly
for versioned datasets. It updates load versions and validates that all
save versions are consistent.
Args:
datasets: A dictionary mapping dataset names to their instances.
if None, no validation occurs.
load_versions: A mapping between dataset names and versions
to load.
save_version: Version string to be used for ``save`` operations
by all datasets with versioning enabled.
Returns:
Updated ``load_versions`` with load versions specified in the ``datasets``
and resolved ``save_version``.
Raises:
VersionAlreadyExistsError: If a dataset's save version conflicts with
the catalog's save version.
"""
if not datasets:
return load_versions, save_version
cur_load_versions = load_versions.copy()
cur_save_version = save_version
for ds_name, ds in datasets.items():
# TODO: Move to kedro/io/kedro_data_catalog.py when removing DataCatalog
# TODO: Make it a protected static method for KedroDataCatalog
# TODO: Replace with isinstance(ds, CachedDataset) - current implementation avoids circular import
cur_ds = ds._dataset if ds.__class__.__name__ == "CachedDataset" else ds # type: ignore[attr-defined]
if isinstance(cur_ds, AbstractVersionedDataset) and cur_ds._version:
if cur_ds._version.load:
cur_load_versions[ds_name] = cur_ds._version.load
if cur_ds._version.save:
cur_save_version = cur_save_version or cur_ds._version.save
if cur_save_version != cur_ds._version.save:
raise VersionAlreadyExistsError(
f"Cannot add a dataset `{ds_name}` with `{cur_ds._version.save}` save version. "
f"Save version set for the catalog is `{cur_save_version}`"
f"All datasets in the catalog must have the same save version."
)
return cur_load_versions, cur_save_version | Validates and synchronises dataset versions for loading and saving.
Ensures consistency of dataset versions across a catalog, particularly
for versioned datasets. It updates load versions and validates that all
save versions are consistent.
Args:
datasets: A dictionary mapping dataset names to their instances.
if None, no validation occurs.
load_versions: A mapping between dataset names and versions
to load.
save_version: Version string to be used for ``save`` operations
by all datasets with versioning enabled.
Returns:
Updated ``load_versions`` with load versions specified in the ``datasets``
and resolved ``save_version``.
Raises:
VersionAlreadyExistsError: If a dataset's save version conflicts with
the catalog's save version. | _validate_versions | python | kedro-org/kedro | kedro/io/core.py | https://github.com/kedro-org/kedro/blob/master/kedro/io/core.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.