code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def __init__( self, max_workers: int | None = None, is_async: bool = False, extra_dataset_patterns: dict[str, dict[str, Any]] | None = None, ): """ Instantiates the runner by creating a Manager. Args: max_workers: Number of worker processes to spawn. If not set, calculated automatically based on the pipeline configuration and CPU core count. On windows machines, the max_workers value cannot be larger than 61 and will be set to min(61, max_workers). is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. extra_dataset_patterns: Extra dataset factory patterns to be added to the catalog during the run. This is used to set the default datasets to SharedMemoryDataset for `ParallelRunner`. Raises: ValueError: bad parameters passed """ default_dataset_pattern = {"{default}": {"type": "SharedMemoryDataset"}} self._extra_dataset_patterns = extra_dataset_patterns or default_dataset_pattern super().__init__( is_async=is_async, extra_dataset_patterns=self._extra_dataset_patterns ) self._manager = ParallelRunnerManager() self._manager.start() self._max_workers = self._validate_max_workers(max_workers)
Instantiates the runner by creating a Manager. Args: max_workers: Number of worker processes to spawn. If not set, calculated automatically based on the pipeline configuration and CPU core count. On windows machines, the max_workers value cannot be larger than 61 and will be set to min(61, max_workers). is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. extra_dataset_patterns: Extra dataset factory patterns to be added to the catalog during the run. This is used to set the default datasets to SharedMemoryDataset for `ParallelRunner`. Raises: ValueError: bad parameters passed
__init__
python
kedro-org/kedro
kedro/runner/parallel_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/parallel_runner.py
Apache-2.0
def _validate_nodes(cls, nodes: Iterable[Node]) -> None: """Ensure all tasks are serialisable.""" unserialisable = [] for node in nodes: try: ForkingPickler.dumps(node) except (AttributeError, PicklingError): unserialisable.append(node) if unserialisable: raise AttributeError( f"The following nodes cannot be serialised: {sorted(unserialisable)}\n" f"In order to utilize multiprocessing you need to make sure all nodes " f"are serialisable, i.e. nodes should not include lambda " f"functions, nested functions, closures, etc.\nIf you " f"are using custom decorators ensure they are correctly decorated using " f"functools.wraps()." )
Ensure all tasks are serialisable.
_validate_nodes
python
kedro-org/kedro
kedro/runner/parallel_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/parallel_runner.py
Apache-2.0
def _validate_catalog(cls, catalog: CatalogProtocol, pipeline: Pipeline) -> None: """Ensure that all datasets are serialisable and that we do not have any non proxied memory datasets being used as outputs as their content will not be synchronized across threads. """ datasets = catalog._datasets unserialisable = [] for name, dataset in datasets.items(): if getattr(dataset, "_SINGLE_PROCESS", False): # SKIP_IF_NO_SPARK unserialisable.append(name) continue try: ForkingPickler.dumps(dataset) except (AttributeError, PicklingError): unserialisable.append(name) if unserialisable: raise AttributeError( f"The following datasets cannot be used with multiprocessing: " f"{sorted(unserialisable)}\nIn order to utilize multiprocessing you " f"need to make sure all datasets are serialisable, i.e. datasets " f"should not make use of lambda functions, nested functions, closures " f"etc.\nIf you are using custom decorators ensure they are correctly " f"decorated using functools.wraps()." ) memory_datasets = [] for name, dataset in datasets.items(): if ( name in pipeline.all_outputs() and isinstance(dataset, MemoryDataset) and not isinstance(dataset, BaseProxy) ): memory_datasets.append(name) if memory_datasets: raise AttributeError( f"The following datasets are memory datasets: " f"{sorted(memory_datasets)}\n" f"ParallelRunner does not support output to externally created " f"MemoryDatasets" )
Ensure that all datasets are serialisable and that we do not have any non proxied memory datasets being used as outputs as their content will not be synchronized across threads.
_validate_catalog
python
kedro-org/kedro
kedro/runner/parallel_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/parallel_runner.py
Apache-2.0
def _get_required_workers_count(self, pipeline: Pipeline) -> int: """ Calculate the max number of processes required for the pipeline, limit to the number of CPU cores. """ # Number of nodes is a safe upper-bound estimate. # It's also safe to reduce it by the number of layers minus one, # because each layer means some nodes depend on other nodes # and they can not run in parallel. # It might be not a perfect solution, but good enough and simple. required_processes = len(pipeline.nodes) - len(pipeline.grouped_nodes) + 1 return min(required_processes, self._max_workers)
Calculate the max number of processes required for the pipeline, limit to the number of CPU cores.
_get_required_workers_count
python
kedro-org/kedro
kedro/runner/parallel_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/parallel_runner.py
Apache-2.0
def _run( self, pipeline: Pipeline, catalog: CatalogProtocol, hook_manager: PluginManager | None = None, session_id: str | None = None, ) -> None: """The method implementing parallel pipeline running. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. Raises: AttributeError: When the provided pipeline is not suitable for parallel execution. RuntimeError: If the runner is unable to schedule the execution of all pipeline nodes. Exception: In case of any downstream node failure. """ if not self._is_async: self._logger.info( "Using synchronous mode for loading and saving data. Use the --async flag " "for potential performance gains. https://docs.kedro.org/en/stable/nodes_and_pipelines/run_a_pipeline.html#load-and-save-asynchronously" ) super()._run( pipeline=pipeline, catalog=catalog, session_id=session_id, )
The method implementing parallel pipeline running. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. Raises: AttributeError: When the provided pipeline is not suitable for parallel execution. RuntimeError: If the runner is unable to schedule the execution of all pipeline nodes. Exception: In case of any downstream node failure.
_run
python
kedro-org/kedro
kedro/runner/parallel_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/parallel_runner.py
Apache-2.0
def __call__(self) -> Node: """Make the class instance callable by ProcessPoolExecutor.""" return self.execute()
Make the class instance callable by ProcessPoolExecutor.
__call__
python
kedro-org/kedro
kedro/runner/task.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/task.py
Apache-2.0
def _run_node_synchronization( package_name: str | None = None, logging_config: dict[str, Any] | None = None, ) -> Any: """Run a single `Node` with inputs from and outputs to the `catalog`. A ``PluginManager`` instance is created in each subprocess because the ``PluginManager`` can't be serialised. Args: package_name: The name of the project Python package. logging_config: A dictionary containing logging configuration. Returns: The node argument. """ if multiprocessing.get_start_method() == "spawn" and package_name: Task._bootstrap_subprocess(package_name, logging_config) hook_manager = _create_hook_manager() _register_hooks(hook_manager, settings.HOOKS) _register_hooks_entry_points(hook_manager, settings.DISABLE_HOOKS_FOR_PLUGINS) return hook_manager
Run a single `Node` with inputs from and outputs to the `catalog`. A ``PluginManager`` instance is created in each subprocess because the ``PluginManager`` can't be serialised. Args: package_name: The name of the project Python package. logging_config: A dictionary containing logging configuration. Returns: The node argument.
_run_node_synchronization
python
kedro-org/kedro
kedro/runner/task.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/task.py
Apache-2.0
def _synchronous_dataset_load( dataset_name: str, node: Node, catalog: CatalogProtocol, hook_manager: PluginManager, ) -> Any: """Minimal wrapper to ensure Hooks are run synchronously within an asynchronous dataset load.""" hook_manager.hook.before_dataset_loaded(dataset_name=dataset_name, node=node) return_ds = catalog.load(dataset_name) hook_manager.hook.after_dataset_loaded( dataset_name=dataset_name, data=return_ds, node=node ) return return_ds
Minimal wrapper to ensure Hooks are run synchronously within an asynchronous dataset load.
_synchronous_dataset_load
python
kedro-org/kedro
kedro/runner/task.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/task.py
Apache-2.0
def __init__( self, is_async: bool = False, extra_dataset_patterns: dict[str, dict[str, Any]] | None = None, ): """Instantiates the runner class. Args: is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. extra_dataset_patterns: Extra dataset factory patterns to be added to the catalog during the run. This is used to set the default datasets to MemoryDataset for `SequentialRunner`. """ default_dataset_pattern = {"{default}": {"type": "MemoryDataset"}} self._extra_dataset_patterns = extra_dataset_patterns or default_dataset_pattern super().__init__( is_async=is_async, extra_dataset_patterns=self._extra_dataset_patterns )
Instantiates the runner class. Args: is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. extra_dataset_patterns: Extra dataset factory patterns to be added to the catalog during the run. This is used to set the default datasets to MemoryDataset for `SequentialRunner`.
__init__
python
kedro-org/kedro
kedro/runner/sequential_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/sequential_runner.py
Apache-2.0
def _run( self, pipeline: Pipeline, catalog: CatalogProtocol, hook_manager: PluginManager | None = None, session_id: str | None = None, ) -> None: """The method implementing sequential pipeline running. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. Raises: Exception: in case of any downstream node failure. """ if not self._is_async: self._logger.info( "Using synchronous mode for loading and saving data. Use the --async flag " "for potential performance gains. https://docs.kedro.org/en/stable/nodes_and_pipelines/run_a_pipeline.html#load-and-save-asynchronously" ) super()._run( pipeline=pipeline, catalog=catalog, hook_manager=hook_manager, session_id=session_id, )
The method implementing sequential pipeline running. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. Raises: Exception: in case of any downstream node failure.
_run
python
kedro-org/kedro
kedro/runner/sequential_runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/sequential_runner.py
Apache-2.0
def __init__( self, is_async: bool = False, extra_dataset_patterns: dict[str, dict[str, Any]] | None = None, ): """Instantiates the runner class. Args: is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. extra_dataset_patterns: Extra dataset factory patterns to be added to the catalog during the run. This is used to set the default datasets on the Runner instances. """ self._is_async = is_async self._extra_dataset_patterns = extra_dataset_patterns
Instantiates the runner class. Args: is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. extra_dataset_patterns: Extra dataset factory patterns to be added to the catalog during the run. This is used to set the default datasets on the Runner instances.
__init__
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def run( self, pipeline: Pipeline, catalog: CatalogProtocol, hook_manager: PluginManager | None = None, session_id: str | None = None, ) -> dict[str, Any]: """Run the ``Pipeline`` using the datasets provided by ``catalog`` and save results back to the same objects. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. Raises: ValueError: Raised when ``Pipeline`` inputs cannot be satisfied. Returns: Any node outputs that cannot be processed by the catalog. These are returned in a dictionary, where the keys are defined by the node outputs. """ # Check which datasets used in the pipeline are in the catalog or match # a pattern in the catalog, not including extra dataset patterns # Run a warm-up to materialize all datasets in the catalog before run warmed_up_ds = [] for ds in pipeline.datasets(): if ds in catalog: warmed_up_ds.append(ds) _ = catalog._get_dataset(ds) # Check if there are any input datasets that aren't in the catalog and # don't match a pattern in the catalog. unsatisfied = pipeline.inputs() - set(warmed_up_ds) if unsatisfied: raise ValueError( f"Pipeline input(s) {unsatisfied} not found in the {catalog.__class__.__name__}" ) # Register the default dataset pattern with the catalog # TODO: replace with catalog.config_resolver.add_runtime_patterns() when removing old catalog catalog = catalog.shallow_copy( extra_dataset_patterns=self._extra_dataset_patterns ) hook_or_null_manager = hook_manager or _NullPluginManager() # Check which datasets used in the pipeline are in the catalog or match # a pattern in the catalog, including added extra_dataset_patterns registered_ds = [ds for ds in pipeline.datasets() if ds in catalog] if self._is_async: self._logger.info( "Asynchronous mode is enabled for loading and saving data" ) self._run(pipeline, catalog, hook_or_null_manager, session_id) # type: ignore[arg-type] self._logger.info("Pipeline execution completed successfully.") # Identify MemoryDataset in the catalog memory_datasets = { ds_name for ds_name, ds in catalog._datasets.items() if isinstance(ds, MemoryDataset) or isinstance(ds, SharedMemoryDataset) } # Check if there's any output datasets that aren't in the catalog and don't match a pattern # in the catalog and include MemoryDataset. free_outputs = pipeline.outputs() - (set(registered_ds) - memory_datasets) run_output = {ds_name: catalog.load(ds_name) for ds_name in free_outputs} # Remove runtime patterns after run, so they do not affect further runs if self._extra_dataset_patterns: catalog.config_resolver.remove_runtime_patterns( self._extra_dataset_patterns ) return run_output
Run the ``Pipeline`` using the datasets provided by ``catalog`` and save results back to the same objects. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. Raises: ValueError: Raised when ``Pipeline`` inputs cannot be satisfied. Returns: Any node outputs that cannot be processed by the catalog. These are returned in a dictionary, where the keys are defined by the node outputs.
run
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def run_only_missing( self, pipeline: Pipeline, catalog: CatalogProtocol, hook_manager: PluginManager ) -> dict[str, Any]: """Run only the missing outputs from the ``Pipeline`` using the datasets provided by ``catalog``, and save results back to the same objects. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. Raises: ValueError: Raised when ``Pipeline`` inputs cannot be satisfied. Returns: Any node outputs that cannot be processed by the catalog. These are returned in a dictionary, where the keys are defined by the node outputs. """ free_outputs = pipeline.outputs() - set(catalog.list()) missing = {ds for ds in catalog.list() if not catalog.exists(ds)} to_build = free_outputs | missing to_rerun = pipeline.only_nodes_with_outputs(*to_build) + pipeline.from_inputs( *to_build ) # We also need any missing datasets that are required to run the # `to_rerun` pipeline, including any chains of missing datasets. unregistered_ds = pipeline.datasets() - set(catalog.list()) output_to_unregistered = pipeline.only_nodes_with_outputs(*unregistered_ds) input_from_unregistered = to_rerun.inputs() & unregistered_ds to_rerun += output_to_unregistered.to_outputs(*input_from_unregistered) return self.run(to_rerun, catalog, hook_manager)
Run only the missing outputs from the ``Pipeline`` using the datasets provided by ``catalog``, and save results back to the same objects. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. Raises: ValueError: Raised when ``Pipeline`` inputs cannot be satisfied. Returns: Any node outputs that cannot be processed by the catalog. These are returned in a dictionary, where the keys are defined by the node outputs.
run_only_missing
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _get_executor(self, max_workers: int) -> Executor | None: """Abstract method to provide the correct executor (e.g., ThreadPoolExecutor, ProcessPoolExecutor or None if running sequentially).""" pass
Abstract method to provide the correct executor (e.g., ThreadPoolExecutor, ProcessPoolExecutor or None if running sequentially).
_get_executor
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _run( self, pipeline: Pipeline, catalog: CatalogProtocol, hook_manager: PluginManager | None = None, session_id: str | None = None, ) -> None: """The abstract interface for running pipelines, assuming that the inputs have already been checked and normalized by run(). This contains the Common pipeline execution logic using an executor. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session. """ nodes = pipeline.nodes self._validate_catalog(catalog, pipeline) self._validate_nodes(nodes) self._set_manager_datasets(catalog, pipeline) load_counts = Counter(chain.from_iterable(n.inputs for n in pipeline.nodes)) node_dependencies = pipeline.node_dependencies todo_nodes = set(node_dependencies.keys()) done_nodes: set[Node] = set() futures = set() done = None max_workers = self._get_required_workers_count(pipeline) pool = self._get_executor(max_workers) if pool is None: for exec_index, node in enumerate(nodes): try: Task( node=node, catalog=catalog, hook_manager=hook_manager, is_async=self._is_async, session_id=session_id, ).execute() done_nodes.add(node) except Exception: self._suggest_resume_scenario(pipeline, done_nodes, catalog) raise self._logger.info("Completed node: %s", node.name) self._logger.info( "Completed %d out of %d tasks", len(done_nodes), len(nodes) ) self._release_datasets(node, catalog, load_counts, pipeline) return # Exit early since everything runs sequentially with pool as executor: while True: ready = {n for n in todo_nodes if node_dependencies[n] <= done_nodes} todo_nodes -= ready for node in ready: task = Task( node=node, catalog=catalog, hook_manager=hook_manager, is_async=self._is_async, session_id=session_id, ) if isinstance(executor, ProcessPoolExecutor): task.parallel = True futures.add(executor.submit(task)) if not futures: if todo_nodes: self._raise_runtime_error(todo_nodes, done_nodes, ready, done) break done, futures = wait(futures, return_when=FIRST_COMPLETED) for future in done: try: node = future.result() except Exception: self._suggest_resume_scenario(pipeline, done_nodes, catalog) raise done_nodes.add(node) self._logger.info("Completed node: %s", node.name) self._logger.info( "Completed %d out of %d tasks", len(done_nodes), len(nodes) ) self._release_datasets(node, catalog, load_counts, pipeline)
The abstract interface for running pipelines, assuming that the inputs have already been checked and normalized by run(). This contains the Common pipeline execution logic using an executor. Args: pipeline: The ``Pipeline`` to run. catalog: An implemented instance of ``CatalogProtocol`` from which to fetch data. hook_manager: The ``PluginManager`` to activate hooks. session_id: The id of the session.
_run
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _suggest_resume_scenario( self, pipeline: Pipeline, done_nodes: Iterable[Node], catalog: CatalogProtocol, ) -> None: """ Suggest a command to the user to resume a run after it fails. The run should be started from the point closest to the failure for which persisted input exists. Args: pipeline: the ``Pipeline`` of the run. done_nodes: the ``Node``s that executed successfully. catalog: an implemented instance of ``CatalogProtocol`` of the run. """ remaining_nodes = set(pipeline.nodes) - set(done_nodes) postfix = "" if done_nodes: start_node_names = _find_nodes_to_resume_from( pipeline=pipeline, unfinished_nodes=remaining_nodes, catalog=catalog, ) start_nodes_str = ",".join(sorted(start_node_names)) postfix += f' --from-nodes "{start_nodes_str}"' if not postfix: self._logger.warning( "No nodes ran. Repeat the previous command to attempt a new run." ) else: self._logger.warning( f"There are {len(remaining_nodes)} nodes that have not run.\n" "You can resume the pipeline run from the nearest nodes with " "persisted inputs by adding the following " f"argument to your previous command:\n{postfix}" )
Suggest a command to the user to resume a run after it fails. The run should be started from the point closest to the failure for which persisted input exists. Args: pipeline: the ``Pipeline`` of the run. done_nodes: the ``Node``s that executed successfully. catalog: an implemented instance of ``CatalogProtocol`` of the run.
_suggest_resume_scenario
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _release_datasets( node: Node, catalog: CatalogProtocol, load_counts: dict, pipeline: Pipeline ) -> None: """Decrement dataset load counts and release any datasets we've finished with""" for dataset in node.inputs: load_counts[dataset] -= 1 if load_counts[dataset] < 1 and dataset not in pipeline.inputs(): catalog.release(dataset) for dataset in node.outputs: if load_counts[dataset] < 1 and dataset not in pipeline.outputs(): catalog.release(dataset)
Decrement dataset load counts and release any datasets we've finished with
_release_datasets
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _validate_max_workers(cls, max_workers: int | None) -> int: """ Validates and returns the number of workers. Sets to os.cpu_count() or 1 if max_workers is None, and limits max_workers to 61 on Windows. Args: max_workers: Desired number of workers. If None, defaults to os.cpu_count() or 1. Returns: A valid number of workers to use. Raises: ValueError: If max_workers is set and is not positive. """ if max_workers is None: max_workers = os.cpu_count() or 1 if sys.platform == "win32": max_workers = min(_MAX_WINDOWS_WORKERS, max_workers) elif max_workers <= 0: raise ValueError("max_workers should be positive") return max_workers
Validates and returns the number of workers. Sets to os.cpu_count() or 1 if max_workers is None, and limits max_workers to 61 on Windows. Args: max_workers: Desired number of workers. If None, defaults to os.cpu_count() or 1. Returns: A valid number of workers to use. Raises: ValueError: If max_workers is set and is not positive.
_validate_max_workers
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _find_nodes_to_resume_from( pipeline: Pipeline, unfinished_nodes: Collection[Node], catalog: CatalogProtocol ) -> set[str]: """Given a collection of unfinished nodes in a pipeline using a certain catalog, find the node names to pass to pipeline.from_nodes() to cover all unfinished nodes, including any additional nodes that should be re-run if their outputs are not persisted. Args: pipeline: the ``Pipeline`` to find starting nodes for. unfinished_nodes: collection of ``Node``s that have not finished yet catalog: an implemented instance of ``CatalogProtocol`` of the run. Returns: Set of node names to pass to pipeline.from_nodes() to continue the run. """ nodes_to_be_run = _find_all_nodes_for_resumed_pipeline( pipeline, unfinished_nodes, catalog ) # Find which of the remaining nodes would need to run first (in topo sort) persistent_ancestors = _find_initial_node_group(pipeline, nodes_to_be_run) return {n.name for n in persistent_ancestors}
Given a collection of unfinished nodes in a pipeline using a certain catalog, find the node names to pass to pipeline.from_nodes() to cover all unfinished nodes, including any additional nodes that should be re-run if their outputs are not persisted. Args: pipeline: the ``Pipeline`` to find starting nodes for. unfinished_nodes: collection of ``Node``s that have not finished yet catalog: an implemented instance of ``CatalogProtocol`` of the run. Returns: Set of node names to pass to pipeline.from_nodes() to continue the run.
_find_nodes_to_resume_from
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _find_all_nodes_for_resumed_pipeline( pipeline: Pipeline, unfinished_nodes: Iterable[Node], catalog: CatalogProtocol ) -> set[Node]: """Breadth-first search approach to finding the complete set of ``Node``s which need to run to cover all unfinished nodes, including any additional nodes that should be re-run if their outputs are not persisted. Args: pipeline: the ``Pipeline`` to analyze. unfinished_nodes: the iterable of ``Node``s which have not finished yet. catalog: an implemented instance of ``CatalogProtocol`` of the run. Returns: A set containing all input unfinished ``Node``s and all remaining ``Node``s that need to run in case their outputs are not persisted. """ nodes_to_run = set(unfinished_nodes) initial_nodes = _nodes_with_external_inputs(unfinished_nodes) queue, visited = deque(initial_nodes), set(initial_nodes) while queue: current_node = queue.popleft() nodes_to_run.add(current_node) # Look for parent nodes which produce non-persistent inputs (if those exist) non_persistent_inputs = _enumerate_non_persistent_inputs(current_node, catalog) for node in _enumerate_nodes_with_outputs(pipeline, non_persistent_inputs): if node in visited: continue visited.add(node) queue.append(node) # Make sure no downstream tasks are skipped nodes_to_run = set(pipeline.from_nodes(*(n.name for n in nodes_to_run)).nodes) return nodes_to_run
Breadth-first search approach to finding the complete set of ``Node``s which need to run to cover all unfinished nodes, including any additional nodes that should be re-run if their outputs are not persisted. Args: pipeline: the ``Pipeline`` to analyze. unfinished_nodes: the iterable of ``Node``s which have not finished yet. catalog: an implemented instance of ``CatalogProtocol`` of the run. Returns: A set containing all input unfinished ``Node``s and all remaining ``Node``s that need to run in case their outputs are not persisted.
_find_all_nodes_for_resumed_pipeline
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _nodes_with_external_inputs(nodes_of_interest: Iterable[Node]) -> set[Node]: """For given ``Node``s , find their subset which depends on external inputs of the ``Pipeline`` they constitute. External inputs are pipeline inputs not produced by other ``Node``s in the ``Pipeline``. Args: nodes_of_interest: the ``Node``s to analyze. Returns: A set of ``Node``s that depend on external inputs of nodes of interest. """ p_nodes_of_interest = Pipeline(nodes_of_interest) p_nodes_with_external_inputs = p_nodes_of_interest.only_nodes_with_inputs( *p_nodes_of_interest.inputs() ) return set(p_nodes_with_external_inputs.nodes)
For given ``Node``s , find their subset which depends on external inputs of the ``Pipeline`` they constitute. External inputs are pipeline inputs not produced by other ``Node``s in the ``Pipeline``. Args: nodes_of_interest: the ``Node``s to analyze. Returns: A set of ``Node``s that depend on external inputs of nodes of interest.
_nodes_with_external_inputs
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _enumerate_non_persistent_inputs(node: Node, catalog: CatalogProtocol) -> set[str]: """Enumerate non-persistent input datasets of a ``Node``. Args: node: the ``Node`` to check the inputs of. catalog: an implemented instance of ``CatalogProtocol`` of the run. Returns: Set of names of non-persistent inputs of given ``Node``. """ # We use _datasets because they pertain parameter name format catalog_datasets = catalog._datasets non_persistent_inputs: set[str] = set() for node_input in node.inputs: if node_input.startswith("params:"): continue if ( node_input not in catalog_datasets or catalog_datasets[node_input]._EPHEMERAL ): non_persistent_inputs.add(node_input) return non_persistent_inputs
Enumerate non-persistent input datasets of a ``Node``. Args: node: the ``Node`` to check the inputs of. catalog: an implemented instance of ``CatalogProtocol`` of the run. Returns: Set of names of non-persistent inputs of given ``Node``.
_enumerate_non_persistent_inputs
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _enumerate_nodes_with_outputs( pipeline: Pipeline, outputs: Collection[str] ) -> list[Node]: """For given outputs, returns a list containing nodes that generate them in the given ``Pipeline``. Args: pipeline: the ``Pipeline`` to search for nodes in. outputs: the dataset names to find source nodes for. Returns: A list of all ``Node``s that are producing ``outputs``. """ parent_pipeline = pipeline.only_nodes_with_outputs(*outputs) return parent_pipeline.nodes
For given outputs, returns a list containing nodes that generate them in the given ``Pipeline``. Args: pipeline: the ``Pipeline`` to search for nodes in. outputs: the dataset names to find source nodes for. Returns: A list of all ``Node``s that are producing ``outputs``.
_enumerate_nodes_with_outputs
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _find_initial_node_group(pipeline: Pipeline, nodes: Iterable[Node]) -> list[Node]: """Given a collection of ``Node``s in a ``Pipeline``, find the initial group of ``Node``s to be run (in topological order). This can be used to define a sub-pipeline with the smallest possible set of nodes to pass to --from-nodes. Args: pipeline: the ``Pipeline`` to search for initial ``Node``s in. nodes: the ``Node``s to find initial group for. Returns: A list of initial ``Node``s to run given inputs (in topological order). """ node_names = {n.name for n in nodes} if len(node_names) == 0: return [] sub_pipeline = pipeline.only_nodes(*node_names) initial_nodes = sub_pipeline.grouped_nodes[0] return initial_nodes
Given a collection of ``Node``s in a ``Pipeline``, find the initial group of ``Node``s to be run (in topological order). This can be used to define a sub-pipeline with the smallest possible set of nodes to pass to --from-nodes. Args: pipeline: the ``Pipeline`` to search for initial ``Node``s in. nodes: the ``Node``s to find initial group for. Returns: A list of initial ``Node``s to run given inputs (in topological order).
_find_initial_node_group
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def run_node( node: Node, catalog: CatalogProtocol, hook_manager: PluginManager, is_async: bool = False, session_id: str | None = None, ) -> Node: """Run a single `Node` with inputs from and outputs to the `catalog`. Args: node: The ``Node`` to run. catalog: An implemented instance of ``CatalogProtocol`` containing the node's inputs and outputs. hook_manager: The ``PluginManager`` to activate hooks. is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. session_id: The session id of the pipeline run. Raises: ValueError: Raised if is_async is set to True for nodes wrapping generator functions. Returns: The node argument. """ warnings.warn( "`run_node()` has been deprecated and will be removed in Kedro 0.20.0", KedroDeprecationWarning, ) if is_async and inspect.isgeneratorfunction(node.func): raise ValueError( f"Async data loading and saving does not work with " f"nodes wrapping generator functions. Please make " f"sure you don't use `yield` anywhere " f"in node {node!s}." ) task = Task( node=node, catalog=catalog, hook_manager=hook_manager, is_async=is_async, session_id=session_id, ) node = task.execute() return node
Run a single `Node` with inputs from and outputs to the `catalog`. Args: node: The ``Node`` to run. catalog: An implemented instance of ``CatalogProtocol`` containing the node's inputs and outputs. hook_manager: The ``PluginManager`` to activate hooks. is_async: If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False. session_id: The session id of the pipeline run. Raises: ValueError: Raised if is_async is set to True for nodes wrapping generator functions. Returns: The node argument.
run_node
python
kedro-org/kedro
kedro/runner/runner.py
https://github.com/kedro-org/kedro/blob/master/kedro/runner/runner.py
Apache-2.0
def _uninstall_existing_build() -> None: """Uninstall an existing build with the same name as the build to install.""" api_client = _get_api_client() library_api = LibrariesApi(api_client) libraries = [ {"whl": f"{DBFS_UPLOAD_PATH.absolute_path}/{_get_build_file_path().name}"} ] library_api.uninstall_libraries(CLUSTER_ID, libraries) logging.info("Triggered uninstall of Kedro wheel file on %s", CLUSTER_ID)
Uninstall an existing build with the same name as the build to install.
_uninstall_existing_build
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def _restart_cluster_if_running() -> None: """Restart a Databricks cluster if it is currently running, otherwise no-op.""" api_client = _get_api_client() cluster_api = ClusterApi(api_client) if cluster_api.get_cluster(CLUSTER_ID)["state"] == "TERMINATED": logging.info( "Cluster %s is not currently running. Launch it manually to apply" "changes", CLUSTER_ID, ) return logging.info("Cluster %s is being restarted to apply changes.", CLUSTER_ID) cluster_api.restart_cluster(CLUSTER_ID)
Restart a Databricks cluster if it is currently running, otherwise no-op.
_restart_cluster_if_running
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def _upload_build_to_dbfs() -> None: """Upload the wheel file at the given path to DBFS.""" api_client = _get_api_client() dbfs_api = DbfsApi(api_client) src_path = str(_get_build_file_path()) dbfs_api.put_file( src_path, DbfsPath(f"{DBFS_UPLOAD_PATH.absolute_path}/{_get_build_file_path().name}"), overwrite=True, ) logging.info("Uploaded Kedro wheel file to %s")
Upload the wheel file at the given path to DBFS.
_upload_build_to_dbfs
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def _install_build() -> None: """Install Kedro on the target cluster using the uploaded wheel file""" api_client = _get_api_client() library_api = LibrariesApi(api_client) libraries = [ {"whl": f"{DBFS_UPLOAD_PATH.absolute_path}/{_get_build_file_path().name}"} ] library_api.install_libraries(CLUSTER_ID, libraries) logging.info("Triggered install of Kedro wheel file on %s", CLUSTER_ID)
Install Kedro on the target cluster using the uploaded wheel file
_install_build
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def _get_api_client() -> ApiClient: """Create an ApiClient object using the config""" config = get_config() if config.is_valid_with_token: return ApiClient(host=config.host, token=config.token) return ApiClient(user=config.username, password=config.password, host=config.host)
Create an ApiClient object using the config
_get_api_client
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def _get_build_file_path() -> Path: """Get the path of the whl file to install. If multiple whl files are found, return the file with the highest version number. """ dist_path = Path(__file__).resolve().parent.parent / "dist" whl_files = list(dist_path.glob("*.whl")) whl_files.sort() try: return whl_files[-1] except IndexError: raise ValueError("No wheel files found in dist directory.")
Get the path of the whl file to install. If multiple whl files are found, return the file with the highest version number.
_get_build_file_path
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def main() -> None: """Main entry point for the script.""" _uninstall_existing_build() _restart_cluster_if_running() _upload_build_to_dbfs() _install_build()
Main entry point for the script.
main
python
kedro-org/kedro
tools/databricks_build.py
https://github.com/kedro-org/kedro/blob/master/tools/databricks_build.py
Apache-2.0
def autolink_replacements(what: str) -> list[tuple[str, str, str]]: """ Create a list containing replacement tuples of the form: (``regex``, ``replacement``, ``obj``) for all classes and methods which are imported in ``KEDRO_MODULES`` ``__init__.py`` files. The ``replacement`` is a reStructuredText link to their documentation. For example, if the docstring reads: This LambdaDataset loads and saves ... Then the word ``LambdaDataset``, will be replaced by :class:`~kedro.io.LambdaDataset` Works for plural as well, e.g: These ``LambdaDataset``s load and save Will convert to: These :class:`kedro.io.LambdaDataset` load and save Args: what: The objects to create replacement tuples for. Possible values ["class", "func"]. Returns: A list of tuples: (regex, replacement, obj), for all "what" objects imported in __init__.py files of ``KEDRO_MODULES``. """ replacements = [] suggestions = [] for module in KEDRO_MODULES: if what == "class": objects = get_classes(module) elif what == "func": objects = get_functions(module) # Look for recognised class names/function names which are # surrounded by double back-ticks if what == "class": # first do plural only for classes replacements += [ ( rf"``{obj}``s", f":{what}:`~{module}.{obj}`\\\\s", obj, ) for obj in objects ] # singular replacements += [ (rf"``{obj}``", f":{what}:`~{module}.{obj}`", obj) for obj in objects ] # Look for recognised class names/function names which are NOT # surrounded by double back-ticks, so that we can log these in the # terminal if what == "class": # first do plural only for classes suggestions += [ (rf"(?<!\w|`){obj}s(?!\w|`{{2}})", f"``{obj}``s", obj) for obj in objects ] # then singular suggestions += [ (rf"(?<!\w|`){obj}(?!\w|`{{2}})", f"``{obj}``", obj) for obj in objects ] return replacements, suggestions
Create a list containing replacement tuples of the form: (``regex``, ``replacement``, ``obj``) for all classes and methods which are imported in ``KEDRO_MODULES`` ``__init__.py`` files. The ``replacement`` is a reStructuredText link to their documentation. For example, if the docstring reads: This LambdaDataset loads and saves ... Then the word ``LambdaDataset``, will be replaced by :class:`~kedro.io.LambdaDataset` Works for plural as well, e.g: These ``LambdaDataset``s load and save Will convert to: These :class:`kedro.io.LambdaDataset` load and save Args: what: The objects to create replacement tuples for. Possible values ["class", "func"]. Returns: A list of tuples: (regex, replacement, obj), for all "what" objects imported in __init__.py files of ``KEDRO_MODULES``.
autolink_replacements
python
kedro-org/kedro
docs/source/conf.py
https://github.com/kedro-org/kedro/blob/master/docs/source/conf.py
Apache-2.0
def log_suggestions(lines: list[str], name: str): """Use the ``suggestions`` list to log in the terminal places where the developer has forgotten to surround with double back-ticks class name/function name references. Args: lines: The docstring lines. name: The name of the object whose docstring is contained in lines. """ title_printed = False for i in range(len(lines)): if ">>>" in lines[i]: continue for existing, replacement, obj in suggestions: new = re.sub(existing, rf"{replacement}", lines[i]) if new == lines[i]: continue if ":rtype:" in lines[i] or ":type " in lines[i]: continue if not title_printed: secho("-" * 50 + "\n" + name + ":\n" + "-" * 50, fg="blue") title_printed = True print( "[" + str(i) + "] " + re.sub(existing, rf"{style(obj, fg='magenta')}", lines[i]) ) print( "[" + str(i) + "] " + re.sub(existing, rf"``{style(obj, fg='green')}``", lines[i]) ) if title_printed: print("\n")
Use the ``suggestions`` list to log in the terminal places where the developer has forgotten to surround with double back-ticks class name/function name references. Args: lines: The docstring lines. name: The name of the object whose docstring is contained in lines.
log_suggestions
python
kedro-org/kedro
docs/source/conf.py
https://github.com/kedro-org/kedro/blob/master/docs/source/conf.py
Apache-2.0
def linkcode_resolve(domain, info): """Resolve a GitHub URL corresponding to a Python object.""" if domain != 'py': return None try: mod = sys.modules[info['module']] obj = mod for attr in info['fullname'].split('.'): obj = getattr(obj, attr) obj = inspect.unwrap(obj) filename = inspect.getsourcefile(obj) source, lineno = inspect.getsourcelines(obj) relpath = os.path.relpath(filename, start=os.path.dirname( kedro.__file__)) return 'https://github.com/kedro-org/kedro/blob/main/kedro/%s#L%d#L%d' % ( relpath, lineno, lineno + len(source) - 1 ) except (KeyError, ImportError, AttributeError, TypeError, OSError, ValueError): return None
Resolve a GitHub URL corresponding to a Python object.
linkcode_resolve
python
kedro-org/kedro
docs/source/conf.py
https://github.com/kedro-org/kedro/blob/master/docs/source/conf.py
Apache-2.0
def before_all(context): """Environment preparation before other cli tests are run. Installs (core) kedro by running pip in the top level directory. """ context = _setup_minimal_env(context) context = _install_project_requirements(context)
Environment preparation before other cli tests are run. Installs (core) kedro by running pip in the top level directory.
before_all
python
kedro-org/kedro
features/environment.py
https://github.com/kedro-org/kedro/blob/master/features/environment.py
Apache-2.0
def _create_new_venv() -> Path: """Create a new venv. Returns: path to created venv """ # Create venv venv_dir = _create_tmp_dir() venv.main([str(venv_dir)]) return venv_dir
Create a new venv. Returns: path to created venv
_create_new_venv
python
kedro-org/kedro
features/environment.py
https://github.com/kedro-org/kedro/blob/master/features/environment.py
Apache-2.0
def _create_tmp_dir() -> Path: """Create a temp directory and add it to _PATHS_TO_REMOVE""" tmp_dir = Path(tempfile.mkdtemp()).resolve() _PATHS_TO_REMOVE.add(tmp_dir) return tmp_dir
Create a temp directory and add it to _PATHS_TO_REMOVE
_create_tmp_dir
python
kedro-org/kedro
features/environment.py
https://github.com/kedro-org/kedro/blob/master/features/environment.py
Apache-2.0
def _check_service_up(context: behave.runner.Context, url: str, string: str): """Check that a service is running and responding appropriately. Args: context: Test context. url: Url that is to be read. string: The string to be checked. """ response = requests.get(url, timeout=1.0) response.raise_for_status() data = response.text assert string in data assert context.result.poll() is None
Check that a service is running and responding appropriately. Args: context: Test context. url: Url that is to be read. string: The string to be checked.
_check_service_up
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def create_config_file(context): """Behave step to create a temporary config file (given the existing temp directory) and store it in the context. """ context.config_file = context.temp_dir / "config.yml" context.project_name = "project-dummy" context.root_project_dir = context.temp_dir / context.project_name context.package_name = context.project_name.replace("-", "_") config = { "project_name": context.project_name, "repo_name": context.project_name, "output_dir": str(context.temp_dir), "python_package": context.package_name, } with context.config_file.open("w") as config_file: yaml.dump(config, config_file, default_flow_style=False)
Behave step to create a temporary config file (given the existing temp directory) and store it in the context.
create_config_file
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def create_config_file_without_starter(context): """Behave step to create a temporary config file (given the existing temp directory) and store it in the context. """ context.config_file = context.temp_dir / "config.yml" context.project_name = "project-dummy" context.root_project_dir = context.temp_dir / context.project_name context.package_name = context.project_name.replace("-", "_") config = { "tools": "lint, test, log, docs, data", "project_name": context.project_name, "example_pipeline": "no", "repo_name": context.project_name, "output_dir": str(context.temp_dir), "python_package": context.package_name, } with context.config_file.open("w") as config_file: yaml.dump(config, config_file, default_flow_style=False)
Behave step to create a temporary config file (given the existing temp directory) and store it in the context.
create_config_file_without_starter
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def create_config_file_with_tools(context, tools): """Behave step to create a temporary config file (given the existing temp directory) and store it in the context. It takes a custom tools list and sets example prompt to `n`. """ context.config_file = context.temp_dir / "config.yml" context.project_name = "project-dummy" context.root_project_dir = context.temp_dir / context.project_name context.package_name = context.project_name.replace("-", "_") config = { "tools": tools, "example_pipeline": "n", "project_name": context.project_name, "repo_name": context.project_name, "output_dir": str(context.temp_dir), "python_package": context.package_name, } with context.config_file.open("w") as config_file: yaml.dump(config, config_file, default_flow_style=False)
Behave step to create a temporary config file (given the existing temp directory) and store it in the context. It takes a custom tools list and sets example prompt to `n`.
create_config_file_with_tools
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def pip_install_dependencies(context): """Install project dependencies using pip.""" reqs_path = "requirements.txt" res = run( [context.pip, "install", "-r", reqs_path], env=context.env, cwd=str(context.root_project_dir), ) if res.returncode != OK_EXIT_CODE: print(res.stdout) print(res.stderr) assert False
Install project dependencies using pip.
pip_install_dependencies
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def install_project_package_via_pip(context): """Install a python package using pip.""" dist_dir = context.root_project_dir / "dist" (whl_file,) = dist_dir.glob("*.whl") run([context.pip, "install", str(whl_file)], env=context.env)
Install a python package using pip.
install_project_package_via_pip
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def install_test_plugin(context): """Install a python package using pip.""" plugin_dir = Path(__file__).parent / "test_plugin" res = run([context.pip, "install", "-e", str(plugin_dir)], env=context.env) assert res.returncode == OK_EXIT_CODE, res
Install a python package using pip.
install_test_plugin
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def disable_plugin_hooks(context, plugin): """Set `disable_hooks_for_plugins` in `settings.py`.""" settings_path = ( context.root_project_dir / "src" / context.package_name / "settings.py" ) to_add = f"""\nDISABLE_HOOKS_FOR_PLUGINS = ("{plugin}",)""" with settings_path.open("a") as settings_file: settings_file.write(to_add)
Set `disable_hooks_for_plugins` in `settings.py`.
disable_plugin_hooks
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def use_omegaconfigloader(context): """Set `config_loader_class` in `settings.py`.""" settings_path = ( context.root_project_dir / "src" / context.package_name / "settings.py" ) to_add = """\nfrom kedro.config import OmegaConfigLoader \nCONFIG_LOADER_CLASS = OmegaConfigLoader""" with settings_path.open("a") as settings_file: settings_file.write(to_add)
Set `config_loader_class` in `settings.py`.
use_omegaconfigloader
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def init_git_repo(context): """Init git repo""" with util.chdir(context.root_project_dir): check_run("git init") check_run("git config user.name 'Tester'") check_run("git config user.email '[email protected]'")
Init git repo
init_git_repo
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def add_test_jupyter_nb(context): """Create a test jupyter notebook using TEST_JUPYTER_ORG.""" with open( str(context.root_project_dir / "notebooks" / "hello_world.ipynb"), "w", encoding="utf-8", ) as test_nb_fh: test_nb_fh.write(TEST_JUPYTER_ORG)
Create a test jupyter notebook using TEST_JUPYTER_ORG.
add_test_jupyter_nb
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def create_project_with_starter(context, starter): """Behave step to run kedro new given the config I previously created.""" if starter == "default": starter = Path(__file__).parent / "test_starter" args = [ context.kedro, "new", "-c", str(context.config_file), "--starter", str(starter), ] res = run( args, env=context.env, cwd=context.temp_dir, ) assert res.returncode == OK_EXIT_CODE, res
Behave step to run kedro new given the config I previously created.
create_project_with_starter
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def create_project_without_starter(context): """Behave step to run kedro new given the config I previously created.""" res = run( [context.kedro, "new", "-c", str(context.config_file)], env=context.env, cwd=context.temp_dir, ) assert res.returncode == OK_EXIT_CODE, res # prevent telemetry from prompting for input during e2e tests telemetry_file = context.root_project_dir / ".telemetry" telemetry_file.write_text("consent: false", encoding="utf-8")
Behave step to run kedro new given the config I previously created.
create_project_without_starter
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def add_proj_dir_to_staging(context): """Add root project dir to staging""" with util.chdir(context.root_project_dir): check_run("git add .")
Add root project dir to staging
add_proj_dir_to_staging
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def commit_changes_to_git(context): """Commit changes to git""" with util.chdir(context.root_project_dir): check_run(f"git commit -m 'Change {time()}'")
Commit changes to git
commit_changes_to_git
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def exec_kedro_target(context, command): """Execute Kedro target.""" split_command = command.split() cmd = [context.kedro, *split_command] context.result = run(cmd, env=context.env, cwd=str(context.root_project_dir))
Execute Kedro target.
exec_kedro_target
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def exec_project(context): """Execute installed Kedro project target.""" cmd = [str(context.bin_dir / context.project_name)] # N.B.: prior to the introduction of load_package_context, this test was passing # accidentally because it was executing the installed project package at the # same directory as project root, so a lot of things were available on Path.cwd(). # We take care to delete with `delete_unnecessary_assets` to simulate the behaviour # of a installed package in a fresh environment. context.result = run(cmd, env=context.env, cwd=str(context.root_project_dir))
Execute installed Kedro project target.
exec_project
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def get_kedro_version(context): """Behave step to run `kedro -V`.""" res = run([context.kedro, "-V"], env=context.env, cwd=context.temp_dir) context.version_str = res.stdout assert context.version_str, res # check non-empty
Behave step to run `kedro -V`.
get_kedro_version
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def get_kedro_version_python(context): """Behave step to run `python -m kedro -V`.""" cmd = [context.python, "-m", "kedro", "-V"] context.version_str = run(cmd, env=context.env, cwd=context.temp_dir).stdout assert context.version_str # check non-empty
Behave step to run `python -m kedro -V`.
get_kedro_version_python
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def exec_notebook(context, command): """Execute Kedro Jupyter target.""" split_command = command.split() cmd = [context.kedro, "jupyter", *split_command] # Jupyter notebook forks a child process from a parent process, and # only kills the parent process when it is terminated context.result = ChildTerminatingPopen( cmd, env=context.env, cwd=str(context.root_project_dir), universal_newlines=True )
Execute Kedro Jupyter target.
exec_notebook
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def wait(context, timeout): """Wait for child process to terminate.""" context.result.wait(timeout)
Wait for child process to terminate.
wait
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def simulate_nb_execution(context): """Change test jupyter notebook to TEST_JUPYTER_AFTER_EXEC simulate that it was executed and output was saved. """ with open( str(context.root_project_dir / "notebooks" / "hello_world.ipynb"), "w", encoding="utf-8", ) as test_nb_fh: test_nb_fh.write(TEST_JUPYTER_AFTER_EXEC)
Change test jupyter notebook to TEST_JUPYTER_AFTER_EXEC simulate that it was executed and output was saved.
simulate_nb_execution
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def delete_notebooks_dir(context): """Delete notebooks directory in project""" with util.chdir(context.root_project_dir): shutil.rmtree("notebooks/")
Delete notebooks directory in project
delete_notebooks_dir
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def do_git_reset_hard(context): """Perform a hard git reset""" with util.chdir(context.root_project_dir): check_run("git reset --hard HEAD")
Perform a hard git reset
do_git_reset_hard
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def move_package(context: behave.runner.Context, new_source_dir): """Move the project package to a new directory.""" current_src_path = (context.root_project_dir / "src").resolve() new_src_path = (context.root_project_dir / new_source_dir).resolve() new_src_path.mkdir(exist_ok=True) shutil.move(str(current_src_path / context.package_name), str(new_src_path))
Move the project package to a new directory.
move_package
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def update_pyproject_toml(context: behave.runner.Context, new_source_dir): """Update `source_dir` in pyproject.toml file.""" pyproject_toml_path = context.root_project_dir / "pyproject.toml" content = toml.load(pyproject_toml_path) content["tool"]["kedro"]["source_dir"] = new_source_dir content_str = toml.dumps(content) pyproject_toml_path.write_text(content_str)
Update `source_dir` in pyproject.toml file.
update_pyproject_toml
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def update_kedro_req(context: behave.runner.Context): """Remove kedro as a standalone requirement.""" reqs_path = context.root_project_dir / "requirements.txt" if reqs_path.is_file(): old_reqs = reqs_path.read_text().splitlines() new_reqs = [] for req in old_reqs: if req.startswith("kedro") and Requirement(req).name.lower() == "kedro": # Do not include kedro as it's preinstalled in the environment pass else: new_reqs.append(req) new_reqs = "\n".join(new_reqs) assert old_reqs != new_reqs reqs_path.write_text(new_reqs)
Remove kedro as a standalone requirement.
update_kedro_req
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_kedro_version(context): """Behave step to check validity of the kedro version.""" CLI_flat_list = context.version_str.split() CLI_dictionary = { CLI_flat_list[i]: CLI_flat_list[i + 1] for i in range(0, len(CLI_flat_list) - 1, 2) } version_no = CLI_dictionary.get("version") assert version_no == kedro.__version__
Behave step to check validity of the kedro version.
check_kedro_version
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def is_created(name): """Check if path exists.""" return (context.root_project_dir / name).exists()
Check if path exists.
check_created_project_structure.is_created
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_created_project_structure(context): """Behave step to check the subdirectories created by kedro new.""" def is_created(name): """Check if path exists.""" return (context.root_project_dir / name).exists() for path in ("README.md", "src", "data"): assert is_created(path)
Behave step to check the subdirectories created by kedro new.
check_created_project_structure
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def is_created(name): """Check if path exists.""" return (context.root_project_dir / name).exists()
Check if path exists.
check_created_project_structure_from_tools.is_created
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_created_project_structure_from_tools(context, tools): """Behave step to check the subdirectories created by kedro new with tools.""" def is_created(name): """Check if path exists.""" return (context.root_project_dir / name).exists() # Base checks for any project for path in ["README.md", "src", "pyproject.toml", "requirements.txt"]: assert is_created(path), f"{path} does not exist" tools_list = ( tools.split(",") if tools != "all" else ["lint", "test", "log", "docs", "data", "pyspark", "viz"] ) if "lint" in tools_list: # lint tool pass # No files are added if "test" in tools_list: # test tool assert is_created("tests"), "tests directory does not exist" if "log" in tools_list: # log tool assert is_created("conf/logging.yml"), "logging configuration does not exist" if "docs" in tools_list: # docs tool assert is_created("docs"), "docs directory does not exist" if "data" in tools_list: # data tool assert is_created("data"), "data directory does not exist" if "pyspark" in tools_list: # PySpark tool assert is_created("conf/base/spark.yml"), "spark.yml does not exist" if "viz" in tools_list: # viz tool expected_reporting_path = Path( f"src/{context.package_name}/pipelines/reporting" ) assert is_created( expected_reporting_path ), "reporting pipeline directory does not exist"
Behave step to check the subdirectories created by kedro new with tools.
check_created_project_structure_from_tools
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_message_printed(context, msg): """Check that specified message is printed to stdout (can be a segment).""" if isinstance(context.result, ChildTerminatingPopen): stdout = context.result.stdout.read().decode() context.result.terminate() else: stdout = context.result.stdout clean_logs = util.clean_up_log(stdout) assert msg in clean_logs, ( "Expected the following message segment to be printed on stdout: " f"{msg},\nbut got {stdout}" )
Check that specified message is printed to stdout (can be a segment).
check_message_printed
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_message_not_printed(context, msg): """Check that specified message is not printed to stdout.""" if isinstance(context.result, ChildTerminatingPopen): stdout = context.result.stdout.read().decode() context.result.terminate() else: stdout = context.result.stdout assert msg not in stdout, ( "Expected the following message segment not to be printed on stdout: " f"{msg},\nbut got {stdout}" )
Check that specified message is not printed to stdout.
check_message_not_printed
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_error_message_printed(context, msg): """Check that specified message is printed to stderr (can be a segment).""" if isinstance(context.result, ChildTerminatingPopen): stderr = context.result.stderr.read().decode() context.result.terminate() else: stderr = context.result.stderr assert msg in stderr, ( "Expected the following message segment to be printed on stderr: " f"{msg},\nbut got {stderr}" )
Check that specified message is printed to stderr (can be a segment).
check_error_message_printed
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_additional_cell_added(context): """Check that an addiitonal cell has been added compared to notebook coded by TEST_JUPYTER_ORG. """ with open( str(context.root_project_dir / "notebooks" / "hello_world.ipynb"), encoding="utf-8", ) as test_nb_fh: context.nb_data = json.load(test_nb_fh) assert len(context.nb_data["cells"]) == 2 # noqa: PLR2004
Check that an addiitonal cell has been added compared to notebook coded by TEST_JUPYTER_ORG.
check_additional_cell_added
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_output_cells_empty(context): """Check that all cells contain empty output array.""" for cell in context.nb_data["cells"]: assert cell["outputs"] == []
Check that all cells contain empty output array.
check_output_cells_empty
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_jupyter_nb_proc_on_port(context: behave.runner.Context, port: int): """Check that jupyter notebook service is running on specified port. Args: context: Test context port: Port to check """ url = f"http://localhost:{port}" try: _check_service_up(context, url, "Jupyter Server") finally: context.result.terminate()
Check that jupyter notebook service is running on specified port. Args: context: Test context port: Port to check
check_jupyter_nb_proc_on_port
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_jupyter_lab_proc_on_port(context: behave.runner.Context, port: int): """Check that jupyter lab service is running on specified port. Args: context: Test context port: Port to check """ url = f"http://localhost:{port}" try: _check_service_up(context, url, '<a href="/lab"') finally: context.result.terminate()
Check that jupyter lab service is running on specified port. Args: context: Test context port: Port to check
check_jupyter_lab_proc_on_port
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_docs_generated(context: behave.runner.Context): """Check that new project docs are generated.""" index_html = ( context.root_project_dir / "docs" / "build" / "html" / "index.html" ).read_text("utf-8") project_repo = context.project_name.replace("-", "_") assert f"Welcome to project {project_repo}'s API docs!" in index_html, index_html
Check that new project docs are generated.
check_docs_generated
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def check_reqs_generated(context: behave.runner.Context): """Check that new project requirements are generated.""" reqs_path = context.root_project_dir / "requirements.lock" assert reqs_path.is_file() assert "This file is autogenerated by pip-compile" in reqs_path.read_text()
Check that new project requirements are generated.
check_reqs_generated
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def add_micropkg_to_pyproject_toml(context: behave.runner.Context): pyproject_toml_path = context.root_project_dir / "pyproject.toml" project_toml_str = textwrap.dedent( """ [tool.kedro.micropkg.package] "pipelines.data_science" = {alias = "ds"} """ ) with pyproject_toml_path.open(mode="a") as file: file.write(project_toml_str)
[tool.kedro.micropkg.package] "pipelines.data_science" = {alias = "ds"}
add_micropkg_to_pyproject_toml
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def exec_magic_command(context): """Execute Kedro target.""" cmd = [context.python, "ipython_script.py"] context.result = run( cmd, env=context.env, cwd=str(context.root_project_dir), print_output=True )
Execute Kedro target.
exec_magic_command
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def change_dir(context, dir): """Execute Kedro target.""" util.chdir(dir)
Execute Kedro target.
change_dir
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def pip_install_project_and_dev_dependencies(context): """Install project and its development dependencies using pip.""" _ = run( [context.pip, "install", ".[dev]"], env=context.env, cwd=str(context.root_project_dir), )
Install project and its development dependencies using pip.
pip_install_project_and_dev_dependencies
python
kedro-org/kedro
features/steps/cli_steps.py
https://github.com/kedro-org/kedro/blob/master/features/steps/cli_steps.py
Apache-2.0
def run( cmd: list | str, split: bool = True, print_output: bool = False, **kwargs: Any ) -> subprocess.CompletedProcess: """Run a shell command. Args: cmd: A command string, or a command followed by program arguments that will be submitted to Popen to run. split: Flag that splits command to provide as multiple *args to Popen. Default is True. print_output: If True will print previously captured stdout. Default is False. **kwargs: Extra options to pass to subprocess. Example: :: "ls" "ls -la" "chmod 754 local/file" Returns: Result with attributes args, returncode, stdout and stderr. """ if isinstance(cmd, str) and split: cmd = shlex.split(cmd) result = subprocess.run(cmd, input="", capture_output=True, **kwargs) # noqa: PLW1510, S603 result.stdout = result.stdout.decode("utf-8") result.stderr = result.stderr.decode("utf-8") if print_output: print(result.stdout) return result
Run a shell command. Args: cmd: A command string, or a command followed by program arguments that will be submitted to Popen to run. split: Flag that splits command to provide as multiple *args to Popen. Default is True. print_output: If True will print previously captured stdout. Default is False. **kwargs: Extra options to pass to subprocess. Example: :: "ls" "ls -la" "chmod 754 local/file" Returns: Result with attributes args, returncode, stdout and stderr.
run
python
kedro-org/kedro
features/steps/sh_run.py
https://github.com/kedro-org/kedro/blob/master/features/steps/sh_run.py
Apache-2.0
def check_run(cmd: list | str, print_output: bool = False) -> None: """ Run cmd using subprocess.check_call (throws error if non-zero value returned) Args: cmd: command to be run print_output: whether to print output """ if isinstance(cmd, str): split_cmd = shlex.split(cmd) else: split_cmd = cmd if print_output: subprocess.check_call(split_cmd) # noqa: S603 else: subprocess.check_call(split_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # noqa: S603
Run cmd using subprocess.check_call (throws error if non-zero value returned) Args: cmd: command to be run print_output: whether to print output
check_run
python
kedro-org/kedro
features/steps/sh_run.py
https://github.com/kedro-org/kedro/blob/master/features/steps/sh_run.py
Apache-2.0
def __init__(self, cmd: list[str], **kwargs) -> None: """ Initializer pipes stderr and stdout. Args: cmd: command to be run. **kwargs: keyword arguments such as env and cwd """ super().__init__( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, **kwargs )
Initializer pipes stderr and stdout. Args: cmd: command to be run. **kwargs: keyword arguments such as env and cwd
__init__
python
kedro-org/kedro
features/steps/sh_run.py
https://github.com/kedro-org/kedro/blob/master/features/steps/sh_run.py
Apache-2.0
def terminate(self) -> None: """Terminate process and children.""" try: proc = psutil.Process(self.pid) procs = [proc, *proc.children(recursive=True)] except psutil.NoSuchProcess: pass else: for proc in reversed(procs): try: proc.terminate() except psutil.NoSuchProcess: pass alive = psutil.wait_procs(procs, timeout=3)[1] for proc in alive: proc.kill()
Terminate process and children.
terminate
python
kedro-org/kedro
features/steps/sh_run.py
https://github.com/kedro-org/kedro/blob/master/features/steps/sh_run.py
Apache-2.0
def chdir(path: Path) -> Iterator: """Context manager to help execute code in a different directory. Args: path: directory to change to. Yields: None """ old_pwd = os.getcwd() os.chdir(str(path)) try: yield finally: os.chdir(old_pwd)
Context manager to help execute code in a different directory. Args: path: directory to change to. Yields: None
chdir
python
kedro-org/kedro
features/steps/util.py
https://github.com/kedro-org/kedro/blob/master/features/steps/util.py
Apache-2.0
def wait_for( func: Callable, timeout_: int = 10, print_error: bool = False, sleep_for: int = 1, **kwargs, ) -> Any: """Run specified function until it returns expected result until timeout. Args: func: Specified function. timeout_: Time out in seconds. Defaults to 10. print_error: whether any exceptions raised should be printed. Defaults to False. sleep_for: Execute func every specified number of seconds. Defaults to 1. **kwargs: Arguments to be passed to func. Raises: WaitForException: if func doesn't return expected result within the specified time. Returns: Function return. """ end = time() + timeout_ while time() <= end: try: result = func(**kwargs) return result except Exception as err: if print_error: print(err) sleep(sleep_for) raise WaitForException( f"func: {func}, didn't return within specified timeout: {timeout_}" )
Run specified function until it returns expected result until timeout. Args: func: Specified function. timeout_: Time out in seconds. Defaults to 10. print_error: whether any exceptions raised should be printed. Defaults to False. sleep_for: Execute func every specified number of seconds. Defaults to 1. **kwargs: Arguments to be passed to func. Raises: WaitForException: if func doesn't return expected result within the specified time. Returns: Function return.
wait_for
python
kedro-org/kedro
features/steps/util.py
https://github.com/kedro-org/kedro/blob/master/features/steps/util.py
Apache-2.0
def parse_csv(text: str) -> list[str]: """Parse comma separated **double quoted** strings in behave steps Args: text: double quoted comma separated string Returns: List of string tokens """ return re.findall(r"\"(.+?)\"\s*,?", text)
Parse comma separated **double quoted** strings in behave steps Args: text: double quoted comma separated string Returns: List of string tokens
parse_csv
python
kedro-org/kedro
features/steps/util.py
https://github.com/kedro-org/kedro/blob/master/features/steps/util.py
Apache-2.0
def clean_up_log(stdout: str) -> str: """ Cleans up log output by removing duplicate lines, extra whitespaces, and log levels (INFO, WARNING, ERROR) along with .py filenames. Args: stdout (str): The log output to be cleaned. Returns: str: Cleaned log output without unnecessary information. """ cleaned_lines = [] already_extracted = set() for line in stdout.split("\n"): if any(word in line for word in ["WARNING", "INFO", "ERROR"]): # Remove log levels and .py filenames cleaned_line = re.sub(r"\b(INFO|WARNING|ERROR)\b|\s+\w+\.py:\d+", "", line) cleaned_lines.append(cleaned_line.strip()) already_extracted.add(line) elif line not in already_extracted: cleaned_lines.append(line) cleaned_output = "\n".join(cleaned_lines) cleaned_output = re.sub(r"\s+", " ", cleaned_output) return cleaned_output.strip()
Cleans up log output by removing duplicate lines, extra whitespaces, and log levels (INFO, WARNING, ERROR) along with .py filenames. Args: stdout (str): The log output to be cleaned. Returns: str: Cleaned log output without unnecessary information.
clean_up_log
python
kedro-org/kedro
features/steps/util.py
https://github.com/kedro-org/kedro/blob/master/features/steps/util.py
Apache-2.0
def register_pipelines() -> dict[str, Pipeline]: """Register the project's pipelines. Returns: A mapping from pipeline names to ``Pipeline`` objects. """ pipelines = find_pipelines() pipelines["__default__"] = sum(pipelines.values()) pipelines["data_processing"] = pipeline( pipelines["data_engineering"], namespace="data_processing" ) return pipelines
Register the project's pipelines. Returns: A mapping from pipeline names to ``Pipeline`` objects.
register_pipelines
python
kedro-org/kedro
features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipeline_registry.py
https://github.com/kedro-org/kedro/blob/master/features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipeline_registry.py
Apache-2.0
def split_data(data: pd.DataFrame, example_test_data_ratio: float) -> dict[str, Any]: """Node for splitting the classical Iris dataset into training and test sets, each split into features and labels. The split ratio parameter is taken from conf/project/parameters.yml. The data and the parameters will be loaded and provided to your function automatically when the pipeline is executed and it is time to run this node. """ print("load_node executed successfully") data.columns = [ "sepal_length", "sepal_width", "petal_length", "petal_width", "target", ] classes = sorted(data["target"].unique()) # One-hot encoding for the target variable data = pd.get_dummies(data, columns=["target"], prefix="", prefix_sep="") # Shuffle all the data data = data.sample(frac=1).reset_index(drop=True) # Split to training and testing data n = data.shape[0] n_test = int(n * example_test_data_ratio) training_data = data.iloc[n_test:, :].reset_index(drop=True) test_data = data.iloc[:n_test, :].reset_index(drop=True) # Split the data to features and labels train_data_x = training_data.loc[:, "sepal_length":"petal_width"] train_data_y = training_data[classes] test_data_x = test_data.loc[:, "sepal_length":"petal_width"] test_data_y = test_data[classes] # When returning many variables, it is a good practice to give them names: return dict( train_x=train_data_x, train_y=train_data_y, test_x=test_data_x, test_y=test_data_y, )
Node for splitting the classical Iris dataset into training and test sets, each split into features and labels. The split ratio parameter is taken from conf/project/parameters.yml. The data and the parameters will be loaded and provided to your function automatically when the pipeline is executed and it is time to run this node.
split_data
python
kedro-org/kedro
features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_engineering/nodes.py
https://github.com/kedro-org/kedro/blob/master/features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_engineering/nodes.py
Apache-2.0
def train_model( train_x: pd.DataFrame, train_y: pd.DataFrame, parameters: dict[str, Any] ) -> np.ndarray: """Node for training a simple multi-class logistic regression model. The number of training iterations as well as the learning rate are taken from conf/project/parameters.yml. All of the data as well as the parameters will be provided to this function at the time of execution. """ num_iter = parameters["example_num_train_iter"] lr = parameters["example_learning_rate"] X = train_x.to_numpy() Y = train_y.to_numpy() # Add bias to the features bias = np.ones((X.shape[0], 1)) X = np.concatenate((bias, X), axis=1) weights = [] # Train one model for each class in Y for k in range(Y.shape[1]): # Initialise weights theta = np.zeros(X.shape[1]) y = Y[:, k] for _ in range(num_iter): z = np.dot(X, theta) h = _sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size theta -= lr * gradient # Save the weights for each model weights.append(theta) # Return a joint multi-class model with weights for all classes return np.vstack(weights).transpose()
Node for training a simple multi-class logistic regression model. The number of training iterations as well as the learning rate are taken from conf/project/parameters.yml. All of the data as well as the parameters will be provided to this function at the time of execution.
train_model
python
kedro-org/kedro
features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
https://github.com/kedro-org/kedro/blob/master/features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
Apache-2.0
def predict(model: np.ndarray, test_x: pd.DataFrame) -> np.ndarray: """Node for making predictions given a pre-trained model and a test set.""" X = test_x.to_numpy() # Add bias to the features bias = np.ones((X.shape[0], 1)) X = np.concatenate((bias, X), axis=1) # Predict "probabilities" for each class result = _sigmoid(np.dot(X, model)) # Return the index of the class with max probability for all samples return np.argmax(result, axis=1)
Node for making predictions given a pre-trained model and a test set.
predict
python
kedro-org/kedro
features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
https://github.com/kedro-org/kedro/blob/master/features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
Apache-2.0
def report_accuracy(predictions: np.ndarray, test_y: pd.DataFrame) -> None: """Node for reporting the accuracy of the predictions performed by the previous node. Notice that this function has no outputs, except logging. """ # Get true class index target = np.argmax(test_y.to_numpy(), axis=1) # Calculate accuracy of predictions accuracy = np.sum(predictions == target) / target.shape[0] # Log the accuracy of the model log = logging.getLogger(__name__) log.info("Model accuracy on test set: %0.2f%%", accuracy * 100)
Node for reporting the accuracy of the predictions performed by the previous node. Notice that this function has no outputs, except logging.
report_accuracy
python
kedro-org/kedro
features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
https://github.com/kedro-org/kedro/blob/master/features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
Apache-2.0
def _sigmoid(z): """A helper sigmoid function used by the training and the scoring nodes.""" return 1 / (1 + np.exp(-z))
A helper sigmoid function used by the training and the scoring nodes.
_sigmoid
python
kedro-org/kedro
features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
https://github.com/kedro-org/kedro/blob/master/features/steps/test_starter/{{ cookiecutter.repo_name }}/src/{{ cookiecutter.python_package }}/pipelines/data_science/nodes.py
Apache-2.0
def time_init(self): """Benchmark the time to initialize the catalog""" KedroDataCatalog.from_config(base_catalog)
Benchmark the time to initialize the catalog
time_init
python
kedro-org/kedro
kedro_benchmarks/benchmark_kedrodatacatalog.py
https://github.com/kedro-org/kedro/blob/master/kedro_benchmarks/benchmark_kedrodatacatalog.py
Apache-2.0
def time_contains(self): """Benchmark the time to check if a dataset exists""" for i in range(1,1001): f"dataset_{i}" in self.catalog
Benchmark the time to check if a dataset exists
time_contains
python
kedro-org/kedro
kedro_benchmarks/benchmark_kedrodatacatalog.py
https://github.com/kedro-org/kedro/blob/master/kedro_benchmarks/benchmark_kedrodatacatalog.py
Apache-2.0
def time_getitem(self): """Benchmark the time to get a dataset""" for i in range(1,1001): self.catalog[f"dataset_{i}"]
Benchmark the time to get a dataset
time_getitem
python
kedro-org/kedro
kedro_benchmarks/benchmark_kedrodatacatalog.py
https://github.com/kedro-org/kedro/blob/master/kedro_benchmarks/benchmark_kedrodatacatalog.py
Apache-2.0