code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
182
| url
stringlengths 46
251
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def isInDomain(xy):
"""Used for filter to check if point is in the domain"""
u = (xy[0]-x)/self.h
return np.all((u >= self.domain[0]) & (u <= self.domain[1])) | Used for filter to check if point is in the domain | in_domain.isInDomain | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def in_domain(self, xs, ys, x):
"""
Returns the filtered (xs, ys) based on the Kernel domain centred on x
"""
# Disable black-list functions: filter used for speed instead of
# list-comprehension
# pylint: disable-msg=W0141
def isInDomain(xy):
"""Used for filter to check if point is in the domain"""
u = (xy[0]-x)/self.h
return np.all((u >= self.domain[0]) & (u <= self.domain[1]))
if self.domain is None:
return (xs, ys)
else:
filtered = lfilter(isInDomain, lzip(xs, ys))
if len(filtered) > 0:
xs, ys = lzip(*filtered)
return (xs, ys)
else:
return ([], []) | Returns the filtered (xs, ys) based on the Kernel domain centred on x | in_domain | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def density(self, xs, x):
"""Returns the kernel density estimate for point x based on x-values
xs
"""
xs = np.asarray(xs)
n = len(xs) # before in_domain?
if self.weights is not None:
xs, weights = self.in_domain( xs, self.weights, x )
else:
xs = self.in_domain( xs, xs, x )[0]
xs = np.asarray(xs)
#print 'len(xs)', len(xs), x
if xs.ndim == 1:
xs = xs[:,None]
if len(xs)>0:
h = self.h
if self.weights is not None:
w = 1 / h * np.sum(self((xs-x)/h).T * weights, axis=1)
else:
w = 1. / (h * n) * np.sum(self((xs-x)/h), axis=0)
return w
else:
return np.nan | Returns the kernel density estimate for point x based on x-values
xs | density | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def density_var(self, density, nobs):
"""approximate pointwise variance for kernel density
not verified
Parameters
----------
density : array_lie
pdf of the kernel density
nobs : int
number of observations used in the KDE estimation
Returns
-------
kde_var : ndarray
estimated variance of the density estimate
Notes
-----
This uses the asymptotic normal approximation to the distribution of
the density estimate.
"""
return np.asarray(density) * self.L2Norm / self.h / nobs | approximate pointwise variance for kernel density
not verified
Parameters
----------
density : array_lie
pdf of the kernel density
nobs : int
number of observations used in the KDE estimation
Returns
-------
kde_var : ndarray
estimated variance of the density estimate
Notes
-----
This uses the asymptotic normal approximation to the distribution of
the density estimate. | density_var | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def density_confint(self, density, nobs, alpha=0.05):
"""approximate pointwise confidence interval for kernel density
The confidence interval is centered at the estimated density and
ignores the bias of the density estimate.
not verified
Parameters
----------
density : array_lie
pdf of the kernel density
nobs : int
number of observations used in the KDE estimation
Returns
-------
conf_int : ndarray
estimated confidence interval of the density estimate, lower bound
in first column and upper bound in second column
Notes
-----
This uses the asymptotic normal approximation to the distribution of
the density estimate. The lower bound can be negative for density
values close to zero.
"""
from scipy import stats
crit = stats.norm.isf(alpha / 2.)
density = np.asarray(density)
half_width = crit * np.sqrt(self.density_var(density, nobs))
conf_int = np.column_stack((density - half_width, density + half_width))
return conf_int | approximate pointwise confidence interval for kernel density
The confidence interval is centered at the estimated density and
ignores the bias of the density estimate.
not verified
Parameters
----------
density : array_lie
pdf of the kernel density
nobs : int
number of observations used in the KDE estimation
Returns
-------
conf_int : ndarray
estimated confidence interval of the density estimate, lower bound
in first column and upper bound in second column
Notes
-----
This uses the asymptotic normal approximation to the distribution of
the density estimate. The lower bound can be negative for density
values close to zero. | density_confint | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def smooth(self, xs, ys, x):
"""Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs)>0:
w = np.sum(self((xs-x)/self.h))
#TODO: change the below to broadcasting when shape is sorted
v = np.sum([yy*self((xx-x)/self.h) for xx, yy in zip(xs, ys)])
return v / w
else:
return np.nan | Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user. | smooth | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def smoothvar(self, xs, ys, x):
"""Returns the kernel smoothing estimate of the variance at point x.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs])
sqresid = square( subtract(ys, fittedvals) )
w = np.sum(self((xs-x)/self.h))
v = np.sum([rr*self((xx-x)/self.h) for xx, rr in zip(xs, sqresid)])
return v / w
else:
return np.nan | Returns the kernel smoothing estimate of the variance at point x. | smoothvar | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def smoothconf(self, xs, ys, x, alpha=0.05):
"""Returns the kernel smoothing estimate with confidence 1sigma bounds
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs])
#fittedvals = self.smooth(xs, ys, x) # x or xs in Haerdle
sqresid = square(
subtract(ys, fittedvals)
)
w = np.sum(self((xs-x)/self.h))
#var = sqresid.sum() / (len(sqresid) - 0) # nonlocal var ? JP just trying
v = np.sum([rr*self((xx-x)/self.h) for xx, rr in zip(xs, sqresid)])
var = v / w
sd = np.sqrt(var)
K = self.L2Norm
yhat = self.smooth(xs, ys, x)
from scipy import stats
crit = stats.norm.isf(alpha / 2)
err = crit * sd * np.sqrt(K) / np.sqrt(w * self.h * self.norm_const)
return (yhat - err, yhat, yhat + err)
else:
return (np.nan, np.nan, np.nan) | Returns the kernel smoothing estimate with confidence 1sigma bounds | smoothconf | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def L2Norm(self):
"""Returns the integral of the square of the kernal from -inf to inf"""
if self._L2Norm is None:
def L2Func(x):
return (self.norm_const * self._shape(x)) ** 2
if self.domain is None:
self._L2Norm = scipy.integrate.quad(L2Func, -inf, inf)[0]
else:
self._L2Norm = scipy.integrate.quad(L2Func, self.domain[0],
self.domain[1])[0]
return self._L2Norm | Returns the integral of the square of the kernal from -inf to inf | L2Norm | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def norm_const(self):
"""
Normalising constant for kernel (integral from -inf to inf)
"""
if self._normconst is None:
if self.domain is None:
quadres = scipy.integrate.quad(self._shape, -inf, inf)
else:
quadres = scipy.integrate.quad(self._shape, self.domain[0],
self.domain[1])
self._normconst = 1.0/(quadres[0])
return self._normconst | Normalising constant for kernel (integral from -inf to inf) | norm_const | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def kernel_var(self):
"""Returns the second moment of the kernel"""
if self._kernel_var is None:
def func(x):
return x ** 2 * self.norm_const * self._shape(x)
if self.domain is None:
self._kernel_var = scipy.integrate.quad(func, -inf, inf)[0]
else:
self._kernel_var = scipy.integrate.quad(func, self.domain[0],
self.domain[1])[0]
return self._kernel_var | Returns the second moment of the kernel | kernel_var | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def normal_reference_constant(self):
"""
Constant used for silverman normal reference asymtotic bandwidth
calculation.
C = 2((pi^(1/2)*(nu!)^3 R(k))/(2nu(2nu)!kap_nu(k)^2))^(1/(2nu+1))
nu = kernel order
kap_nu = nu'th moment of kernel
R = kernel roughness (square of L^2 norm)
Note: L2Norm property returns square of norm.
"""
nu = self._order
if not nu == 2:
msg = "Only implemented for second order kernels"
raise NotImplementedError(msg)
if self._normal_reference_constant is None:
C = np.pi**(.5) * factorial(nu)**3 * self.L2Norm
C /= (2 * nu * factorial(2 * nu) * self.moments(nu)**2)
C = 2*C**(1.0/(2*nu+1))
self._normal_reference_constant = C
return self._normal_reference_constant | Constant used for silverman normal reference asymtotic bandwidth
calculation.
C = 2((pi^(1/2)*(nu!)^3 R(k))/(2nu(2nu)!kap_nu(k)^2))^(1/(2nu+1))
nu = kernel order
kap_nu = nu'th moment of kernel
R = kernel roughness (square of L^2 norm)
Note: L2Norm property returns square of norm. | normal_reference_constant | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def weight(self, x):
"""This returns the normalised weight at distance x"""
return self.norm_const*self._shape(x) | This returns the normalised weight at distance x | weight | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def smooth(self, xs, ys, x):
"""Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
Special implementation optimized for Biweight.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
w = np.sum(square(subtract(1, square(divide(subtract(xs, x),
self.h)))))
v = np.sum(multiply(ys, square(subtract(1, square(divide(
subtract(xs, x), self.h))))))
return v / w
else:
return np.nan | Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
Special implementation optimized for Biweight. | smooth | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def smooth(self, xs, ys, x):
"""Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
Special implementation optimized for Gaussian.
"""
w = np.sum(exp(multiply(square(divide(subtract(xs, x),
self.h)),-0.5)))
v = np.sum(multiply(ys, exp(multiply(square(divide(subtract(xs, x),
self.h)), -0.5))))
return v/w | Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
Special implementation optimized for Gaussian. | smooth | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kernels.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py | BSD-3-Clause |
def _compute_covariance_(self):
'''not used'''
self.inv_cov = np.linalg.inv(self.covariance)
self._norm_factor = np.sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.n | not used | _compute_covariance_ | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/kdecovclass.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kdecovclass.py | BSD-3-Clause |
def predict(self, x):
"""
Returns the kernel smoothed prediction at x
If x is a real number then a single value is returned.
Otherwise an attempt is made to cast x to numpy.ndarray and an array of
corresponding y-points is returned.
"""
if np.size(x) == 1: # if isinstance(x, numbers.Real):
return self.Kernel.smooth(self.x, self.y, x)
else:
return np.array([self.Kernel.smooth(self.x, self.y, xx) for xx
in np.array(x)]) | Returns the kernel smoothed prediction at x
If x is a real number then a single value is returned.
Otherwise an attempt is made to cast x to numpy.ndarray and an array of
corresponding y-points is returned. | predict | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py | BSD-3-Clause |
def conf(self, x):
"""
Returns the fitted curve and 1-sigma upper and lower point-wise
confidence.
These bounds are based on variance only, and do not include the bias.
If the bandwidth is much larger than the curvature of the underlying
function then the bias could be large.
x is the points on which you want to evaluate the fit and the errors.
Alternatively if x is specified as a positive integer, then the fit and
confidence bands points will be returned after every
xth sample point - so they are closer together where the data
is denser.
"""
if isinstance(x, int):
sorted_x = np.sort(np.array(self.x))
confx = sorted_x[::x]
conffit = self.conf(confx)
return (confx, conffit)
else:
return np.array([self.Kernel.smoothconf(self.x, self.y, xx)
for xx in x]) | Returns the fitted curve and 1-sigma upper and lower point-wise
confidence.
These bounds are based on variance only, and do not include the bias.
If the bandwidth is much larger than the curvature of the underlying
function then the bias could be large.
x is the points on which you want to evaluate the fit and the errors.
Alternatively if x is specified as a positive integer, then the fit and
confidence bands points will be returned after every
xth sample point - so they are closer together where the data
is denser. | conf | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py | BSD-3-Clause |
def df_fit(self):
'''alias of df_model for backwards compatibility
'''
return self.df_model() | alias of df_model for backwards compatibility | df_fit | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py | BSD-3-Clause |
def df_model(self):
"""
Degrees of freedom used in the fit.
"""
return self.order + 1 | Degrees of freedom used in the fit. | df_model | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py | BSD-3-Clause |
def smooth(self,*args, **kwds):
'''alias for fit, for backwards compatibility,
do we need it with different behavior than fit?
'''
return self.fit(*args, **kwds) | alias for fit, for backwards compatibility,
do we need it with different behavior than fit? | smooth | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py | BSD-3-Clause |
def df_resid(self):
"""
Residual degrees of freedom from last fit.
"""
return self.N - self.order - 1 | Residual degrees of freedom from last fit. | df_resid | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py | BSD-3-Clause |
def fg1(x):
'''Fan and Gijbels example function 1
'''
return x + 2 * np.exp(-16 * x**2) | Fan and Gijbels example function 1 | fg1 | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/dgp_examples.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py | BSD-3-Clause |
def fg1eu(x):
'''Eubank similar to Fan and Gijbels example function 1
'''
return x + 0.5 * np.exp(-50 * (x - 0.5)**2) | Eubank similar to Fan and Gijbels example function 1 | fg1eu | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/dgp_examples.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py | BSD-3-Clause |
def fg2(x):
'''Fan and Gijbels example function 2
'''
return np.sin(2 * x) + 2 * np.exp(-16 * x**2) | Fan and Gijbels example function 2 | fg2 | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/dgp_examples.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py | BSD-3-Clause |
def func1(x):
'''made up example with sin, square
'''
return np.sin(x * 5) / x + 2. * x - 1. * x**2 | made up example with sin, square | func1 | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/dgp_examples.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py | BSD-3-Clause |
def plot(self, scatter=True, ax=None):
'''plot the mean function and optionally the scatter of the sample
Parameters
----------
scatter : bool
If true, then add scatterpoints of sample to plot.
ax : None or matplotlib axis instance
If None, then a matplotlib.pyplot figure is created, otherwise
the given axis, ax, is used.
Returns
-------
Figure
This is either the created figure instance or the one associated
with ax if ax is given.
'''
if ax is None:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
if scatter:
ax.plot(self.x, self.y, 'o', alpha=0.5)
xx = np.linspace(self.x.min(), self.x.max(), 100)
ax.plot(xx, self.func(xx), lw=2, color='b', label='dgp mean')
return ax.figure | plot the mean function and optionally the scatter of the sample
Parameters
----------
scatter : bool
If true, then add scatterpoints of sample to plot.
ax : None or matplotlib axis instance
If None, then a matplotlib.pyplot figure is created, otherwise
the given axis, ax, is used.
Returns
-------
Figure
This is either the created figure instance or the one associated
with ax if ax is given. | plot | python | statsmodels/statsmodels | statsmodels/sandbox/nonparametric/dgp_examples.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py | BSD-3-Clause |
def mcarma22(niter=10, nsample=1000, ar=None, ma=None, sig=0.5):
'''run Monte Carlo for ARMA(2,2)
DGP parameters currently hard coded
also sample size `nsample`
was not a self contained function, used instances from outer scope
now corrected
'''
#nsample = 1000
#ar = [1.0, 0, 0]
if ar is None:
ar = [1.0, -0.55, -0.1]
#ma = [1.0, 0, 0]
if ma is None:
ma = [1.0, 0.3, 0.2]
results = []
results_bse = []
for _ in range(niter):
y2 = arma_generate_sample(ar,ma,nsample+1000, sig)[-nsample:]
y2 -= y2.mean()
arest2 = Arma(y2)
rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,2))
results.append(rhohat2a)
err2a = arest2.geterrors(rhohat2a)
sige2a = np.sqrt(np.dot(err2a,err2a)/nsample)
#print('sige2a', sige2a,
#print('cov_x2a.shape', cov_x2a.shape
#results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a)))
if cov_x2a is not None:
results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a)))
else:
results_bse.append(np.nan + np.zeros_like(rhohat2a))
return np.r_[ar[1:], ma[1:]], np.array(results), np.array(results_bse) | run Monte Carlo for ARMA(2,2)
DGP parameters currently hard coded
also sample size `nsample`
was not a self contained function, used instances from outer scope
now corrected | mcarma22 | python | statsmodels/statsmodels | statsmodels/sandbox/mcevaluate/arma.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/mcevaluate/arma.py | BSD-3-Clause |
def __init__(self, n):
"""
Leave-One-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = cross_val.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [ True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [ True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2]
"""
self.n = n | Leave-One-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = cross_val.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [ True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [ True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2] | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/tools/cross_val.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py | BSD-3-Clause |
def __init__(self, n, p):
"""
Leave-P-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
p: int
Size test sets
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 3, 4]
>>> lpo = cross_val.LeavePOut(4, 2)
>>> for train_index, test_index in lpo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [ True True False False]
TRAIN: [False True False True] TEST: [ True False True False]
TRAIN: [False True True False] TEST: [ True False False True]
TRAIN: [ True False False True] TEST: [False True True False]
TRAIN: [ True False True False] TEST: [False True False True]
TRAIN: [ True True False False] TEST: [False False True True]
"""
self.n = n
self.p = p | Leave-P-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
p: int
Size test sets
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 3, 4]
>>> lpo = cross_val.LeavePOut(4, 2)
>>> for train_index, test_index in lpo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [ True True False False]
TRAIN: [False True False True] TEST: [ True False True False]
TRAIN: [False True True False] TEST: [ True False False True]
TRAIN: [ True False False True] TEST: [False True True False]
TRAIN: [ True False True False] TEST: [False True False True]
TRAIN: [ True True False False] TEST: [False False True True] | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/tools/cross_val.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py | BSD-3-Clause |
def __init__(self, n, k):
"""
K-Folds cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
k: int
number of folds
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [1, 2], [3, 4]]
>>> y = [1, 2, 3, 4]
>>> kf = cross_val.KFold(4, k=2)
>>> for train_index, test_index in kf:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [ True True False False]
TRAIN: [ True True False False] TEST: [False False True True]
Notes
-----
All the folds have size trunc(n/k), the last one has the complementary
"""
assert k>0, ValueError('cannot have k below 1')
assert k<n, ValueError('cannot have k=%d greater than %d'% (k, n))
self.n = n
self.k = k | K-Folds cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
k: int
number of folds
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [1, 2], [3, 4]]
>>> y = [1, 2, 3, 4]
>>> kf = cross_val.KFold(4, k=2)
>>> for train_index, test_index in kf:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [ True True False False]
TRAIN: [ True True False False] TEST: [False False True True]
Notes
-----
All the folds have size trunc(n/k), the last one has the complementary | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/tools/cross_val.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py | BSD-3-Clause |
def __init__(self, labels):
"""
Leave-One-Label_Out cross validation:
Provides train/test indexes to split data in train test sets
Parameters
----------
labels : list
List of labels
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 1, 2]
>>> labels = [1, 1, 2, 2]
>>> lol = cross_val.LeaveOneLabelOut(labels)
>>> for train_index, test_index in lol:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, \
test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False False True True] TEST: [ True True False False]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]
TRAIN: [ True True False False] TEST: [False False True True]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]
"""
self.labels = labels | Leave-One-Label_Out cross validation:
Provides train/test indexes to split data in train test sets
Parameters
----------
labels : list
List of labels
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 1, 2]
>>> labels = [1, 1, 2, 2]
>>> lol = cross_val.LeaveOneLabelOut(labels)
>>> for train_index, test_index in lol:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, \
test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False False True True] TEST: [ True True False False]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]
TRAIN: [ True True False False] TEST: [False False True True]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2] | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/tools/cross_val.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py | BSD-3-Clause |
def split(train_indexes, test_indexes, *args):
"""
For each arg return a train and test subsets defined by indexes provided
in train_indexes and test_indexes
"""
ret = []
for arg in args:
arg = np.asanyarray(arg)
arg_train = arg[train_indexes]
arg_test = arg[test_indexes]
ret.append(arg_train)
ret.append(arg_test)
return ret | For each arg return a train and test subsets defined by indexes provided
in train_indexes and test_indexes | split | python | statsmodels/statsmodels | statsmodels/sandbox/tools/cross_val.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py | BSD-3-Clause |
def __init__(self, n, k=1, start=None, kall=True, return_slice=True):
"""
KStepAhead cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
k : int
number of steps ahead
start : int
initial size of data for fitting
kall : bool
if true. all values for up to k-step ahead are included in the test index.
If false, then only the k-th step ahead value is returnd
Notes
-----
I do not think this is really useful, because it can be done with
a very simple loop instead.
Useful as a plugin, but it could return slices instead for faster array access.
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = cross_val.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [ True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [ True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2]
"""
self.n = n
self.k = k
if start is None:
start = int(np.trunc(n*0.25)) # pick something arbitrary
self.start = start
self.kall = kall
self.return_slice = return_slice | KStepAhead cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
k : int
number of steps ahead
start : int
initial size of data for fitting
kall : bool
if true. all values for up to k-step ahead are included in the test index.
If false, then only the k-th step ahead value is returnd
Notes
-----
I do not think this is really useful, because it can be done with
a very simple loop instead.
Useful as a plugin, but it could return slices instead for faster array access.
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = cross_val.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [ True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [ True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2] | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/tools/cross_val.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py | BSD-3-Clause |
def pca(data, keepdim=0, normalize=0, demean=True):
'''principal components with eigenvector decomposition
similar to princomp in matlab
Parameters
----------
data : ndarray, 2d
data with observations by rows and variables in columns
keepdim : int
number of eigenvectors to keep
if keepdim is zero, then all eigenvectors are included
normalize : bool
if true, then eigenvectors are normalized by sqrt of eigenvalues
demean : bool
if true, then the column mean is subtracted from the data
Returns
-------
xreduced : ndarray, 2d, (nobs, nvars)
projection of the data x on the kept eigenvectors
factors : ndarray, 2d, (nobs, nfactors)
factor matrix, given by np.dot(x, evecs)
evals : ndarray, 2d, (nobs, nfactors)
eigenvalues
evecs : ndarray, 2d, (nobs, nfactors)
eigenvectors, normalized if normalize is true
Notes
-----
See Also
--------
pcasvd : principal component analysis using svd
'''
x = np.array(data)
#make copy so original does not change, maybe not necessary anymore
if demean:
m = x.mean(0)
else:
m = np.zeros(x.shape[1])
x -= m
# Covariance matrix
xcov = np.cov(x, rowvar=0)
# Compute eigenvalues and sort into descending order
evals, evecs = np.linalg.eig(xcov)
indices = np.argsort(evals)
indices = indices[::-1]
evecs = evecs[:,indices]
evals = evals[indices]
if keepdim > 0 and keepdim < x.shape[1]:
evecs = evecs[:,:keepdim]
evals = evals[:keepdim]
if normalize:
#for i in range(shape(evecs)[1]):
# evecs[:,i] / linalg.norm(evecs[:,i]) * sqrt(evals[i])
evecs = evecs/np.sqrt(evals) #np.sqrt(np.dot(evecs.T, evecs) * evals)
# get factor matrix
#x = np.dot(evecs.T, x.T)
factors = np.dot(x, evecs)
# get original data from reduced number of components
#xreduced = np.dot(evecs.T, factors) + m
#print x.shape, factors.shape, evecs.shape, m.shape
xreduced = np.dot(factors, evecs.T) + m
return xreduced, factors, evals, evecs | principal components with eigenvector decomposition
similar to princomp in matlab
Parameters
----------
data : ndarray, 2d
data with observations by rows and variables in columns
keepdim : int
number of eigenvectors to keep
if keepdim is zero, then all eigenvectors are included
normalize : bool
if true, then eigenvectors are normalized by sqrt of eigenvalues
demean : bool
if true, then the column mean is subtracted from the data
Returns
-------
xreduced : ndarray, 2d, (nobs, nvars)
projection of the data x on the kept eigenvectors
factors : ndarray, 2d, (nobs, nfactors)
factor matrix, given by np.dot(x, evecs)
evals : ndarray, 2d, (nobs, nfactors)
eigenvalues
evecs : ndarray, 2d, (nobs, nfactors)
eigenvectors, normalized if normalize is true
Notes
-----
See Also
--------
pcasvd : principal component analysis using svd | pca | python | statsmodels/statsmodels | statsmodels/sandbox/tools/tools_pca.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/tools_pca.py | BSD-3-Clause |
def pcasvd(data, keepdim=0, demean=True):
'''principal components with svd
Parameters
----------
data : ndarray, 2d
data with observations by rows and variables in columns
keepdim : int
number of eigenvectors to keep
if keepdim is zero, then all eigenvectors are included
demean : bool
if true, then the column mean is subtracted from the data
Returns
-------
xreduced : ndarray, 2d, (nobs, nvars)
projection of the data x on the kept eigenvectors
factors : ndarray, 2d, (nobs, nfactors)
factor matrix, given by np.dot(x, evecs)
evals : ndarray, 2d, (nobs, nfactors)
eigenvalues
evecs : ndarray, 2d, (nobs, nfactors)
eigenvectors, normalized if normalize is true
See Also
--------
pca : principal component analysis using eigenvector decomposition
Notes
-----
This does not have yet the normalize option of pca.
'''
nobs, nvars = data.shape
#print nobs, nvars, keepdim
x = np.array(data)
#make copy so original does not change
if demean:
m = x.mean(0)
else:
m = 0
## if keepdim == 0:
## keepdim = nvars
## "print reassigning keepdim to max", keepdim
x -= m
U, s, v = np.linalg.svd(x.T, full_matrices=1)
factors = np.dot(U.T, x.T).T #princomps
if keepdim:
xreduced = np.dot(factors[:,:keepdim], U[:,:keepdim].T) + m
else:
xreduced = data
keepdim = nvars
"print reassigning keepdim to max", keepdim
# s = evals, U = evecs
# no idea why denominator for s is with minus 1
evals = s**2/(x.shape[0]-1)
#print keepdim
return xreduced, factors[:,:keepdim], evals[:keepdim], U[:,:keepdim] #, v | principal components with svd
Parameters
----------
data : ndarray, 2d
data with observations by rows and variables in columns
keepdim : int
number of eigenvectors to keep
if keepdim is zero, then all eigenvectors are included
demean : bool
if true, then the column mean is subtracted from the data
Returns
-------
xreduced : ndarray, 2d, (nobs, nvars)
projection of the data x on the kept eigenvectors
factors : ndarray, 2d, (nobs, nfactors)
factor matrix, given by np.dot(x, evecs)
evals : ndarray, 2d, (nobs, nfactors)
eigenvalues
evecs : ndarray, 2d, (nobs, nfactors)
eigenvectors, normalized if normalize is true
See Also
--------
pca : principal component analysis using eigenvector decomposition
Notes
-----
This does not have yet the normalize option of pca. | pcasvd | python | statsmodels/statsmodels | statsmodels/sandbox/tools/tools_pca.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/tools_pca.py | BSD-3-Clause |
def run(self, nrepl, statindices=None, dgpargs=[], statsargs=[]):
'''run the actual Monte Carlo and save results
Parameters
----------
nrepl : int
number of Monte Carlo repetitions
statindices : None or list of integers
determines which values of the return of the statistic
functions are stored in the Monte Carlo. Default None
means the entire return. If statindices is a list of
integers, then it will be used as index into the return.
dgpargs : tuple
optional parameters for the DGP
statsargs : tuple
optional parameters for the statistics function
Returns
-------
None, all results are attached
'''
self.nrepl = nrepl
self.statindices = statindices
self.dgpargs = dgpargs
self.statsargs = statsargs
dgp = self.dgp
statfun = self.statistic # name ?
#introspect len of return of statfun,
#possible problems with ndim>1, check ValueError
mcres0 = statfun(dgp(*dgpargs), *statsargs)
self.nreturn = nreturns = len(np.ravel(mcres0))
#single return statistic
if statindices is None:
#self.nreturn = nreturns = 1
mcres = np.zeros(nrepl)
mcres[0] = mcres0
for ii in range(1, nrepl-1, nreturns):
x = dgp(*dgpargs) #(1e-4+np.random.randn(nobs)).cumsum()
#should I ravel?
mcres[ii] = statfun(x, *statsargs)
#more than one return statistic
else:
self.nreturn = nreturns = len(statindices)
self.mcres = mcres = np.zeros((nrepl, nreturns))
mcres[0] = [mcres0[i] for i in statindices]
for ii in range(1, nrepl-1):
x = dgp(*dgpargs) #(1e-4+np.random.randn(nobs)).cumsum()
ret = statfun(x, *statsargs)
mcres[ii] = [ret[i] for i in statindices]
self.mcres = mcres | run the actual Monte Carlo and save results
Parameters
----------
nrepl : int
number of Monte Carlo repetitions
statindices : None or list of integers
determines which values of the return of the statistic
functions are stored in the Monte Carlo. Default None
means the entire return. If statindices is a list of
integers, then it will be used as index into the return.
dgpargs : tuple
optional parameters for the DGP
statsargs : tuple
optional parameters for the statistics function
Returns
-------
None, all results are attached | run | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def histogram(self, idx=None, critval=None):
'''calculate histogram values
does not do any plotting
I do not remember what I wanted here, looks similar to the new cdf
method, but this also does a binned pdf (self.histo)
'''
if self.mcres.ndim == 2:
if idx is not None:
mcres = self.mcres[:,idx]
else:
raise ValueError('currently only 1 statistic at a time')
else:
mcres = self.mcres
if critval is None:
histo = np.histogram(mcres, bins=10)
else:
if not critval[0] == -np.inf:
bins=np.r_[-np.inf, critval, np.inf]
if not critval[0] == -np.inf:
bins=np.r_[bins, np.inf]
histo = np.histogram(mcres,
bins=np.r_[-np.inf, critval, np.inf])
self.histo = histo
self.cumhisto = np.cumsum(histo[0])*1./self.nrepl
self.cumhistoreversed = np.cumsum(histo[0][::-1])[::-1]*1./self.nrepl
return histo, self.cumhisto, self.cumhistoreversed | calculate histogram values
does not do any plotting
I do not remember what I wanted here, looks similar to the new cdf
method, but this also does a binned pdf (self.histo) | histogram | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def quantiles(self, idx=None, frac=[0.01, 0.025, 0.05, 0.1, 0.975]):
'''calculate quantiles of Monte Carlo results
similar to ppf
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
Defines which quantiles should be calculated. For example a frac
of 0.1 finds the 10% quantile, x such that cdf(x)=0.1
Returns
-------
frac : ndarray
same values as input, TODO: I should drop this again ?
quantiles : ndarray, (len(frac), len(idx))
the quantiles with frac in rows and idx variables in columns
Notes
-----
rename to ppf ? make frac required
change sequence idx, frac
'''
if self.mcres.ndim == 2:
if idx is not None:
self.mcres[:,idx]
else:
raise ValueError('currently only 1 statistic at a time')
else:
pass
self.frac = frac = np.asarray(frac)
mc_sorted = self.get_mc_sorted()[:,idx]
return frac, mc_sorted[(self.nrepl*frac).astype(int)] | calculate quantiles of Monte Carlo results
similar to ppf
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
Defines which quantiles should be calculated. For example a frac
of 0.1 finds the 10% quantile, x such that cdf(x)=0.1
Returns
-------
frac : ndarray
same values as input, TODO: I should drop this again ?
quantiles : ndarray, (len(frac), len(idx))
the quantiles with frac in rows and idx variables in columns
Notes
-----
rename to ppf ? make frac required
change sequence idx, frac | quantiles | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def cdf(self, x, idx=None):
'''calculate cumulative probabilities of Monte Carlo results
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
Defines which quantiles should be calculated. For example a frac
of 0.1 finds the 10% quantile, x such that cdf(x)=0.1
Returns
-------
x : ndarray
same as input, TODO: I should drop this again ?
probs : ndarray, (len(x), len(idx))
the quantiles with frac in rows and idx variables in columns
'''
idx = np.atleast_1d(idx).tolist() #assure iterable, use list ?
# if self.mcres.ndim == 2:
# if not idx is None:
# mcres = self.mcres[:,idx]
# else:
# raise ValueError('currently only 1 statistic at a time')
# else:
# mcres = self.mcres
mc_sorted = self.get_mc_sorted()
x = np.asarray(x)
#TODO:autodetect or explicit option ?
if x.ndim > 1 and x.shape[1]==len(idx):
use_xi = True
else:
use_xi = False
x_ = x #alias
probs = []
for i,ix in enumerate(idx):
if use_xi:
x_ = x[:,i]
probs.append(np.searchsorted(mc_sorted[:,ix], x_)/float(self.nrepl))
probs = np.asarray(probs).T
return x, probs | calculate cumulative probabilities of Monte Carlo results
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
Defines which quantiles should be calculated. For example a frac
of 0.1 finds the 10% quantile, x such that cdf(x)=0.1
Returns
-------
x : ndarray
same as input, TODO: I should drop this again ?
probs : ndarray, (len(x), len(idx))
the quantiles with frac in rows and idx variables in columns | cdf | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def plot_hist(self, idx, distpdf=None, bins=50, ax=None, kwds=None):
'''plot the histogram against a reference distribution
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
distpdf : callable
probability density function of reference distribution
bins : {int, array_like}
used unchanged for matplotlibs hist call
ax : TODO: not implemented yet
kwds : None or tuple of dicts
extra keyword options to the calls to the matplotlib functions,
first dictionary is for his, second dictionary for plot of the
reference distribution
Returns
-------
None
'''
if kwds is None:
kwds = ({},{})
if self.mcres.ndim == 2:
if idx is not None:
mcres = self.mcres[:,idx]
else:
raise ValueError('currently only 1 statistic at a time')
else:
mcres = self.mcres
lsp = np.linspace(mcres.min(), mcres.max(), 100)
import matplotlib.pyplot as plt
#I do not want to figure this out now
# if ax=None:
# fig = plt.figure()
# ax = fig.addaxis()
plt.figure()
plt.hist(mcres, bins=bins, normed=True, **kwds[0])
plt.plot(lsp, distpdf(lsp), 'r', **kwds[1]) | plot the histogram against a reference distribution
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
distpdf : callable
probability density function of reference distribution
bins : {int, array_like}
used unchanged for matplotlibs hist call
ax : TODO: not implemented yet
kwds : None or tuple of dicts
extra keyword options to the calls to the matplotlib functions,
first dictionary is for his, second dictionary for plot of the
reference distribution
Returns
-------
None | plot_hist | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def summary_quantiles(self, idx, distppf, frac=[0.01, 0.025, 0.05, 0.1, 0.975],
varnames=None, title=None):
'''summary table for quantiles (critical values)
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
distppf : callable
probability density function of reference distribution
TODO: use `crit` values instead or additional, see summary_cdf
frac : array_like, float
probabilities for which
varnames : None, or list of strings
optional list of variable names, same length as idx
Returns
-------
table : instance of SimpleTable
use `print(table` to see results
'''
idx = np.atleast_1d(idx) #assure iterable, use list ?
quant, mcq = self.quantiles(idx, frac=frac)
#not sure whether this will work with single quantile
#crit = stats.chi2([2,4]).ppf(np.atleast_2d(quant).T)
crit = distppf(np.atleast_2d(quant).T)
mml=[]
for i, ix in enumerate(idx): #TODO: hardcoded 2 ?
mml.extend([mcq[:,i], crit[:,i]])
#mmlar = np.column_stack(mml)
mmlar = np.column_stack([quant] + mml)
#print(mmlar.shape
if title:
title = title +' Quantiles (critical values)'
else:
title='Quantiles (critical values)'
#TODO use stub instead
if varnames is None:
varnames = ['var%d' % i for i in range(mmlar.shape[1]//2)]
headers = ['\nprob'] + [f'{i}\n{t}' for i in varnames for t in ['mc', 'dist']]
return SimpleTable(mmlar,
txt_fmt={'data_fmts': ["%#6.3f"]+["%#10.4f"]*(mmlar.shape[1]-1)},
title=title,
headers=headers) | summary table for quantiles (critical values)
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
distppf : callable
probability density function of reference distribution
TODO: use `crit` values instead or additional, see summary_cdf
frac : array_like, float
probabilities for which
varnames : None, or list of strings
optional list of variable names, same length as idx
Returns
-------
table : instance of SimpleTable
use `print(table` to see results | summary_quantiles | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def summary_cdf(self, idx, frac, crit, varnames=None, title=None):
'''summary table for cumulative density function
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
probabilities for which
crit : array_like
values for which cdf is calculated
varnames : None, or list of strings
optional list of variable names, same length as idx
Returns
-------
table : instance of SimpleTable
use `print(table` to see results
'''
idx = np.atleast_1d(idx) #assure iterable, use list ?
mml=[]
#TODO:need broadcasting in cdf
for i in range(len(idx)):
#print(i, mc1.cdf(crit[:,i], [idx[i]])[1].ravel()
mml.append(self.cdf(crit[:,i], [idx[i]])[1].ravel())
#mml = self.cdf(crit, idx)[1]
#mmlar = np.column_stack(mml)
#print(mml[0].shape, np.shape(frac)
mmlar = np.column_stack([frac] + mml)
#print(mmlar.shape
if title:
title = title +' Probabilites'
else:
title='Probabilities'
#TODO use stub instead
#headers = ['\nprob'] + ['var%d\n%s' % (i, t) for i in range(mmlar.shape[1]-1) for t in ['mc']]
if varnames is None:
varnames = ['var%d' % i for i in range(mmlar.shape[1]-1)]
headers = ['prob'] + varnames
return SimpleTable(mmlar,
txt_fmt={'data_fmts': ["%#6.3f"]+["%#10.4f"]*(np.array(mml).shape[1]-1)},
title=title,
headers=headers) | summary table for cumulative density function
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
probabilities for which
crit : array_like
values for which cdf is calculated
varnames : None, or list of strings
optional list of variable names, same length as idx
Returns
-------
table : instance of SimpleTable
use `print(table` to see results | summary_cdf | python | statsmodels/statsmodels | statsmodels/sandbox/tools/mctools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py | BSD-3-Clause |
def contrast_allpairs(nm):
'''contrast or restriction matrix for all pairs of nm variables
Parameters
----------
nm : int
Returns
-------
contr : ndarray, 2d, (nm*(nm-1)/2, nm)
contrast matrix for all pairwise comparisons
'''
contr = []
for i in range(nm):
for j in range(i+1, nm):
contr_row = np.zeros(nm)
contr_row[i] = 1
contr_row[j] = -1
contr.append(contr_row)
return np.array(contr) | contrast or restriction matrix for all pairs of nm variables
Parameters
----------
nm : int
Returns
-------
contr : ndarray, 2d, (nm*(nm-1)/2, nm)
contrast matrix for all pairwise comparisons | contrast_allpairs | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def contrast_all_one(nm):
'''contrast or restriction matrix for all against first comparison
Parameters
----------
nm : int
Returns
-------
contr : ndarray, 2d, (nm-1, nm)
contrast matrix for all against first comparisons
'''
contr = np.column_stack((np.ones(nm-1), -np.eye(nm-1)))
return contr | contrast or restriction matrix for all against first comparison
Parameters
----------
nm : int
Returns
-------
contr : ndarray, 2d, (nm-1, nm)
contrast matrix for all against first comparisons | contrast_all_one | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def contrast_diff_mean(nm):
'''contrast or restriction matrix for all against mean comparison
Parameters
----------
nm : int
Returns
-------
contr : ndarray, 2d, (nm-1, nm)
contrast matrix for all against mean comparisons
'''
return np.eye(nm) - np.ones((nm,nm))/nm | contrast or restriction matrix for all against mean comparison
Parameters
----------
nm : int
Returns
-------
contr : ndarray, 2d, (nm-1, nm)
contrast matrix for all against mean comparisons | contrast_diff_mean | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def contrast_product(names1, names2, intgroup1=None, intgroup2=None, pairs=False):
'''build contrast matrices for products of two categorical variables
this is an experimental script and should be converted to a class
Parameters
----------
names1, names2 : lists of strings
contains the list of level labels for each categorical variable
intgroup1, intgroup2 : ndarrays TODO: this part not tested, finished yet
categorical variable
Notes
-----
This creates a full rank matrix. It does not do all pairwise comparisons,
parameterization is using contrast_all_one to get differences with first
level.
? does contrast_all_pairs work as a plugin to get all pairs ?
'''
n1 = len(names1)
n2 = len(names2)
names_prod = [f'{i}_{j}' for i in names1 for j in names2]
ee1 = np.zeros((1,n1))
ee1[0,0] = 1
if not pairs:
dd = np.r_[ee1, -contrast_all_one(n1)]
else:
dd = np.r_[ee1, -contrast_allpairs(n1)]
contrast_prod = np.kron(dd[1:], np.eye(n2))
contrast_labels(contrast_prod, names_prod, reverse=True)
names_contrast_prod = [''.join([f'{signstr(c, noplus=True)}{v}'
for c,v in zip(row, names_prod)[::-1] if c != 0])
for row in contrast_prod]
ee2 = np.zeros((1,n2))
ee2[0,0] = 1
#dd2 = np.r_[ee2, -contrast_all_one(n2)]
if not pairs:
dd2 = np.r_[ee2, -contrast_all_one(n2)]
else:
dd2 = np.r_[ee2, -contrast_allpairs(n2)]
contrast_prod2 = np.kron(np.eye(n1), dd2[1:])
names_contrast_prod2 = [''.join([f'{signstr(c, noplus=True)}{v}'
for c,v in zip(row, names_prod)[::-1] if c != 0])
for row in contrast_prod2]
if (intgroup1 is not None) and (intgroup1 is not None):
d1, _ = dummy_1d(intgroup1)
d2, _ = dummy_1d(intgroup2)
dummy = dummy_product(d1, d2)
else:
dummy = None
return (names_prod, contrast_prod, names_contrast_prod,
contrast_prod2, names_contrast_prod2, dummy) | build contrast matrices for products of two categorical variables
this is an experimental script and should be converted to a class
Parameters
----------
names1, names2 : lists of strings
contains the list of level labels for each categorical variable
intgroup1, intgroup2 : ndarrays TODO: this part not tested, finished yet
categorical variable
Notes
-----
This creates a full rank matrix. It does not do all pairwise comparisons,
parameterization is using contrast_all_one to get differences with first
level.
? does contrast_all_pairs work as a plugin to get all pairs ? | contrast_product | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def dummy_1d(x, varname=None):
'''dummy variable for id integer groups
Parameters
----------
x : ndarray, 1d
categorical variable, requires integers if varname is None
varname : str
name of the variable used in labels for category levels
Returns
-------
dummy : ndarray, 2d
array of dummy variables, one column for each level of the
category (full set)
labels : list[str]
labels for the columns, i.e. levels of each category
Notes
-----
use tools.categorical instead for more more options
See Also
--------
statsmodels.tools.categorical
Examples
--------
>>> x = np.array(['F', 'F', 'M', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M'],
dtype='|S1')
>>> dummy_1d(x, varname='gender')
(array([[1, 0],
[1, 0],
[0, 1],
[0, 1],
[1, 0],
[1, 0],
[0, 1],
[0, 1],
[1, 0],
[1, 0],
[0, 1],
[0, 1]]), ['gender_F', 'gender_M'])
'''
if varname is None: #assumes integer
labels = ['level_%d' % i for i in range(x.max() + 1)]
return (x[:,None]==np.arange(x.max()+1)).astype(int), labels
else:
grouplabels = np.unique(x)
labels = [varname + '_%s' % str(i) for i in grouplabels]
return (x[:,None]==grouplabels).astype(int), labels | dummy variable for id integer groups
Parameters
----------
x : ndarray, 1d
categorical variable, requires integers if varname is None
varname : str
name of the variable used in labels for category levels
Returns
-------
dummy : ndarray, 2d
array of dummy variables, one column for each level of the
category (full set)
labels : list[str]
labels for the columns, i.e. levels of each category
Notes
-----
use tools.categorical instead for more more options
See Also
--------
statsmodels.tools.categorical
Examples
--------
>>> x = np.array(['F', 'F', 'M', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M'],
dtype='|S1')
>>> dummy_1d(x, varname='gender')
(array([[1, 0],
[1, 0],
[0, 1],
[0, 1],
[1, 0],
[1, 0],
[0, 1],
[0, 1],
[1, 0],
[1, 0],
[0, 1],
[0, 1]]), ['gender_F', 'gender_M']) | dummy_1d | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def dummy_product(d1, d2, method='full'):
'''dummy variable from product of two dummy variables
Parameters
----------
d1, d2 : ndarray
two dummy variables, assumes full set for methods 'drop-last'
and 'drop-first'
method : {'full', 'drop-last', 'drop-first'}
'full' returns the full product, encoding of intersection of
categories.
The drop methods provide a difference dummy encoding:
(constant, main effects, interaction effects). The first or last columns
of the dummy variable (i.e. levels) are dropped to get full rank
dummy matrix.
Returns
-------
dummy : ndarray
dummy variable for product, see method
'''
if method == 'full':
dd = (d1[:,:,None]*d2[:,None,:]).reshape(d1.shape[0],-1)
elif method == 'drop-last': #same as SAS transreg
d12rl = dummy_product(d1[:,:-1], d2[:,:-1])
dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,:-1], d2[:,:-1],d12rl))
#Note: dtype int should preserve dtype of d1 and d2
elif method == 'drop-first':
d12r = dummy_product(d1[:,1:], d2[:,1:])
dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,1:], d2[:,1:],d12r))
else:
raise ValueError('method not recognized')
return dd | dummy variable from product of two dummy variables
Parameters
----------
d1, d2 : ndarray
two dummy variables, assumes full set for methods 'drop-last'
and 'drop-first'
method : {'full', 'drop-last', 'drop-first'}
'full' returns the full product, encoding of intersection of
categories.
The drop methods provide a difference dummy encoding:
(constant, main effects, interaction effects). The first or last columns
of the dummy variable (i.e. levels) are dropped to get full rank
dummy matrix.
Returns
-------
dummy : ndarray
dummy variable for product, see method | dummy_product | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def dummy_limits(d):
'''start and endpoints of groups in a sorted dummy variable array
helper function for nested categories
Examples
--------
>>> d1 = np.array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
>>> dummy_limits(d1)
(array([0, 4, 8]), array([ 4, 8, 12]))
get group slices from an array
>>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))]
[array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])]
>>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))]
[array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])]
'''
nobs, nvars = d.shape
start1, col1 = np.nonzero(np.diff(d,axis=0)==1)
end1, col1_ = np.nonzero(np.diff(d,axis=0)==-1)
cc = np.arange(nvars)
#print(cc, np.r_[[0], col1], np.r_[col1_, [nvars-1]]
if ((not (np.r_[[0], col1] == cc).all())
or (not (np.r_[col1_, [nvars-1]] == cc).all())):
raise ValueError('dummy variable is not sorted')
start = np.r_[[0], start1+1]
end = np.r_[end1+1, [nobs]]
return start, end | start and endpoints of groups in a sorted dummy variable array
helper function for nested categories
Examples
--------
>>> d1 = np.array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
>>> dummy_limits(d1)
(array([0, 4, 8]), array([ 4, 8, 12]))
get group slices from an array
>>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))]
[array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])]
>>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))]
[array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])] | dummy_limits | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def dummy_nested(d1, d2, method='full'):
'''unfinished and incomplete mainly copy past dummy_product
dummy variable from product of two dummy variables
Parameters
----------
d1, d2 : ndarray
two dummy variables, d2 is assumed to be nested in d1
Assumes full set for methods 'drop-last' and 'drop-first'.
method : {'full', 'drop-last', 'drop-first'}
'full' returns the full product, which in this case is d2.
The drop methods provide an effects encoding:
(constant, main effects, subgroup effects). The first or last columns
of the dummy variable (i.e. levels) are dropped to get full rank
encoding.
Returns
-------
dummy : ndarray
dummy variable for product, see method
'''
if method == 'full':
return d2
start1, end1 = dummy_limits(d1)
start2, end2 = dummy_limits(d2)
first = np.in1d(start2, start1)
last = np.in1d(end2, end1)
equal = (first == last)
col_dropf = ~first*~equal
col_dropl = ~last*~equal
if method == 'drop-last':
dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,:-1], d2[:,col_dropl]))
#Note: dtype int should preserve dtype of d1 and d2
elif method == 'drop-first':
dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,1:], d2[:,col_dropf]))
else:
raise ValueError('method not recognized')
return dd, col_dropf, col_dropl | unfinished and incomplete mainly copy past dummy_product
dummy variable from product of two dummy variables
Parameters
----------
d1, d2 : ndarray
two dummy variables, d2 is assumed to be nested in d1
Assumes full set for methods 'drop-last' and 'drop-first'.
method : {'full', 'drop-last', 'drop-first'}
'full' returns the full product, which in this case is d2.
The drop methods provide an effects encoding:
(constant, main effects, subgroup effects). The first or last columns
of the dummy variable (i.e. levels) are dropped to get full rank
encoding.
Returns
-------
dummy : ndarray
dummy variable for product, see method | dummy_nested | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def __init__(self, d1, d2):
'''C such that d1 C = d2, with d1 = X, d2 = Z
should be (x, z) in arguments ?
'''
self.transf_matrix = np.linalg.lstsq(d1, d2, rcond=-1)[0]
self.invtransf_matrix = np.linalg.lstsq(d2, d1, rcond=-1)[0] | C such that d1 C = d2, with d1 = X, d2 = Z
should be (x, z) in arguments ? | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def dot_left(self, a):
''' b = C a
'''
return np.dot(self.transf_matrix, a) | b = C a | dot_left | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def dot_right(self, x):
''' z = x C
'''
return np.dot(x, self.transf_matrix) | z = x C | dot_right | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def inv_dot_left(self, b):
''' a = C^{-1} b
'''
return np.dot(self.invtransf_matrix, b) | a = C^{-1} b | inv_dot_left | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def inv_dot_right(self, z):
''' x = z C^{-1}
'''
return np.dot(z, self.invtransf_matrix) | x = z C^{-1} | inv_dot_right | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def groupmean_d(x, d):
'''groupmeans using dummy variables
Parameters
----------
x : array_like, ndim
data array, tested for 1,2 and 3 dimensions
d : ndarray, 1d
dummy variable, needs to have the same length
as x in axis 0.
Returns
-------
groupmeans : ndarray, ndim-1
means for each group along axis 0, the levels
of the groups are the last axis
Notes
-----
This will be memory intensive if there are many levels
in the categorical variable, i.e. many columns in the
dummy variable. In this case it is recommended to use
a more efficient version.
'''
x = np.asarray(x)
## if x.ndim == 1:
## nvars = 1
## else:
nvars = x.ndim + 1
sli = [slice(None)] + [None]*(nvars-2) + [slice(None)]
return (x[...,None] * d[sli]).sum(0)*1./d.sum(0) | groupmeans using dummy variables
Parameters
----------
x : array_like, ndim
data array, tested for 1,2 and 3 dimensions
d : ndarray, 1d
dummy variable, needs to have the same length
as x in axis 0.
Returns
-------
groupmeans : ndarray, ndim-1
means for each group along axis 0, the levels
of the groups are the last axis
Notes
-----
This will be memory intensive if there are many levels
in the categorical variable, i.e. many columns in the
dummy variable. In this case it is recommended to use
a more efficient version. | groupmean_d | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def r_nointer(self):
'''contrast/restriction matrix for no interaction
'''
nia = self.n_interaction
R_nointer = np.hstack((np.zeros((nia, self.nvars-nia)), np.eye(nia)))
#inter_direct = resols_full_dropf.tval[-nia:]
R_nointer_transf = self.transform.inv_dot_right(R_nointer)
self.R_nointer_transf = R_nointer_transf
return R_nointer_transf | contrast/restriction matrix for no interaction | r_nointer | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def ttest_interaction(self):
'''ttests for no-interaction terms are zero
'''
#use self.r_nointer instead
nia = self.n_interaction
R_nointer = np.hstack((np.zeros((nia, self.nvars-nia)), np.eye(nia)))
#inter_direct = resols_full_dropf.tval[-nia:]
R_nointer_transf = self.transform.inv_dot_right(R_nointer)
self.R_nointer_transf = R_nointer_transf
t_res = self.resols.t_test(R_nointer_transf)
return t_res | ttests for no-interaction terms are zero | ttest_interaction | python | statsmodels/statsmodels | statsmodels/sandbox/stats/contrast_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py | BSD-3-Clause |
def scoreatpercentile(data, percentile):
"""Return the score at the given percentile of the data.
Example:
>>> data = randn(100)
>>> scoreatpercentile(data, 50)
will return the median of sample `data`.
"""
per = np.array(percentile)
cdf = empiricalcdf(data)
interpolator = interpolate.interp1d(np.sort(cdf), np.sort(data))
return interpolator(per/100.) | Return the score at the given percentile of the data.
Example:
>>> data = randn(100)
>>> scoreatpercentile(data, 50)
will return the median of sample `data`. | scoreatpercentile | python | statsmodels/statsmodels | statsmodels/sandbox/stats/stats_dhuard.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py | BSD-3-Clause |
def percentileofscore(data, score):
"""Return the percentile-position of score relative to data.
score: Array of scores at which the percentile is computed.
Return percentiles (0-100).
Example
r = randn(50)
x = linspace(-2,2,100)
percentileofscore(r,x)
Raise an error if the score is outside the range of data.
"""
cdf = empiricalcdf(data)
interpolator = interpolate.interp1d(np.sort(data), np.sort(cdf))
return interpolator(score)*100. | Return the percentile-position of score relative to data.
score: Array of scores at which the percentile is computed.
Return percentiles (0-100).
Example
r = randn(50)
x = linspace(-2,2,100)
percentileofscore(r,x)
Raise an error if the score is outside the range of data. | percentileofscore | python | statsmodels/statsmodels | statsmodels/sandbox/stats/stats_dhuard.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py | BSD-3-Clause |
def empiricalcdf(data, method='Hazen'):
"""Return the empirical cdf.
Methods available:
Hazen: (i-0.5)/N
Weibull: i/(N+1)
Chegodayev: (i-.3)/(N+.4)
Cunnane: (i-.4)/(N+.2)
Gringorten: (i-.44)/(N+.12)
California: (i-1)/N
Where i goes from 1 to N.
"""
i = np.argsort(np.argsort(data)) + 1.
N = len(data)
method = method.lower()
if method == 'hazen':
cdf = (i-0.5)/N
elif method == 'weibull':
cdf = i/(N+1.)
elif method == 'california':
cdf = (i-1.)/N
elif method == 'chegodayev':
cdf = (i-.3)/(N+.4)
elif method == 'cunnane':
cdf = (i-.4)/(N+.2)
elif method == 'gringorten':
cdf = (i-.44)/(N+.12)
else:
raise ValueError('Unknown method. Choose among Weibull, Hazen,'
'Chegodayev, Cunnane, Gringorten and California.')
return cdf | Return the empirical cdf.
Methods available:
Hazen: (i-0.5)/N
Weibull: i/(N+1)
Chegodayev: (i-.3)/(N+.4)
Cunnane: (i-.4)/(N+.2)
Gringorten: (i-.44)/(N+.12)
California: (i-1)/N
Where i goes from 1 to N. | empiricalcdf | python | statsmodels/statsmodels | statsmodels/sandbox/stats/stats_dhuard.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py | BSD-3-Clause |
def cdf_emp(self, score):
'''
this is score in dh
'''
return self.cdfintp(score) | this is score in dh | cdf_emp | python | statsmodels/statsmodels | statsmodels/sandbox/stats/stats_dhuard.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py | BSD-3-Clause |
def optimize_binning(self, method='Freedman'):
"""Find the optimal number of bins and update the bin countaccordingly.
Available methods : Freedman
Scott
"""
nobs = len(self.data)
if method=='Freedman':
IQR = self.ppf_emp(0.75) - self.ppf_emp(0.25) # Interquantile range(75% -25%)
width = 2* IQR* nobs**(-1./3)
elif method=='Scott':
width = 3.49 * np.std(self.data) * nobs**(-1./3)
self.nbin = (np.ptp(self.binlimit)/width)
return self.nbin | Find the optimal number of bins and update the bin countaccordingly.
Available methods : Freedman
Scott | optimize_binning | python | statsmodels/statsmodels | statsmodels/sandbox/stats/stats_dhuard.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py | BSD-3-Clause |
def get_tukeyQcrit(k, df, alpha=0.05):
"""
return critical values for Tukey's HSD (Q)
Parameters
----------
k : int in {2, ..., 10}
number of tests
df : int
degrees of freedom of error term
alpha : {0.05, 0.01}
type 1 error, 1-confidence level
not enough error checking for limitations
"""
if alpha == 0.05:
intp = interpolate.interp1d(crows, cv005[:, k - 2])
elif alpha == 0.01:
intp = interpolate.interp1d(crows, cv001[:, k - 2])
else:
raise ValueError("only implemented for alpha equal to 0.01 and 0.05")
return intp(df) | return critical values for Tukey's HSD (Q)
Parameters
----------
k : int in {2, ..., 10}
number of tests
df : int
degrees of freedom of error term
alpha : {0.05, 0.01}
type 1 error, 1-confidence level
not enough error checking for limitations | get_tukeyQcrit | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def get_tukey_pvalue(k, df, q):
"""
return adjusted p-values for Tukey's HSD
Parameters
----------
k : int in {2, ..., 10}
number of tests
df : int
degrees of freedom of error term
q : scalar, array_like; q >= 0
quantile value of Studentized Range
"""
return studentized_range.sf(q, k, df) | return adjusted p-values for Tukey's HSD
Parameters
----------
k : int in {2, ..., 10}
number of tests
df : int
degrees of freedom of error term
q : scalar, array_like; q >= 0
quantile value of Studentized Range | get_tukey_pvalue | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def Tukeythreegene2(genes): # Performing the Tukey HSD post-hoc test for three genes
"""gend is a list, ie [first, second, third]"""
# qwb = xlrd.open_workbook('F:/Lab/bioinformatics/qcrittable.xls')
# opening the workbook containing the q crit table
# qwb.sheet_names()
# qcrittable = qwb.sheet_by_name(u'Sheet1')
means = []
stds = []
for gene in genes:
means.append(np.mean(gene))
std.append(np.std(gene)) # noqa:F821 See GH#5756
# firstmean = np.mean(first) #means of the three arrays
# secondmean = np.mean(second)
# thirdmean = np.mean(third)
# firststd = np.std(first) #standard deviations of the three arrays
# secondstd = np.std(second)
# thirdstd = np.std(third)
stds2 = []
for std in stds:
stds2.append(math.pow(std, 2)) | gend is a list, ie [first, second, third] | Tukeythreegene2 | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def maxzero(x):
"""find all up zero crossings and return the index of the highest
Not used anymore
>>> np.random.seed(12345)
>>> x = np.random.randn(8)
>>> x
array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057,
1.39340583, 0.09290788, 0.28174615])
>>> maxzero(x)
(4, array([1, 4]))
no up-zero-crossing at end
>>> np.random.seed(0)
>>> x = np.random.randn(8)
>>> x
array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799,
-0.97727788, 0.95008842, -0.15135721])
>>> maxzero(x)
(None, array([6]))
"""
x = np.asarray(x)
cond1 = x[:-1] < 0
cond2 = x[1:] > 0
# allzeros = np.nonzero(np.sign(x[:-1])*np.sign(x[1:]) <= 0)[0] + 1
allzeros = np.nonzero((cond1 & cond2) | (x[1:] == 0))[0] + 1
if x[-1] >= 0:
maxz = max(allzeros)
else:
maxz = None
return maxz, allzeros | find all up zero crossings and return the index of the highest
Not used anymore
>>> np.random.seed(12345)
>>> x = np.random.randn(8)
>>> x
array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057,
1.39340583, 0.09290788, 0.28174615])
>>> maxzero(x)
(4, array([1, 4]))
no up-zero-crossing at end
>>> np.random.seed(0)
>>> x = np.random.randn(8)
>>> x
array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799,
-0.97727788, 0.95008842, -0.15135721])
>>> maxzero(x)
(None, array([6])) | maxzero | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def maxzerodown(x):
"""find all up zero crossings and return the index of the highest
Not used anymore
>>> np.random.seed(12345)
>>> x = np.random.randn(8)
>>> x
array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057,
1.39340583, 0.09290788, 0.28174615])
>>> maxzero(x)
(4, array([1, 4]))
no up-zero-crossing at end
>>> np.random.seed(0)
>>> x = np.random.randn(8)
>>> x
array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799,
-0.97727788, 0.95008842, -0.15135721])
>>> maxzero(x)
(None, array([6]))
"""
x = np.asarray(x)
cond1 = x[:-1] > 0
cond2 = x[1:] < 0
# allzeros = np.nonzero(np.sign(x[:-1])*np.sign(x[1:]) <= 0)[0] + 1
allzeros = np.nonzero((cond1 & cond2) | (x[1:] == 0))[0] + 1
if x[-1] <= 0:
maxz = max(allzeros)
else:
maxz = None
return maxz, allzeros | find all up zero crossings and return the index of the highest
Not used anymore
>>> np.random.seed(12345)
>>> x = np.random.randn(8)
>>> x
array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057,
1.39340583, 0.09290788, 0.28174615])
>>> maxzero(x)
(4, array([1, 4]))
no up-zero-crossing at end
>>> np.random.seed(0)
>>> x = np.random.randn(8)
>>> x
array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799,
-0.97727788, 0.95008842, -0.15135721])
>>> maxzero(x)
(None, array([6])) | maxzerodown | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def rejectionline(n, alpha=0.5):
"""reference line for rejection in multiple tests
Not used anymore
from: section 3.2, page 60
"""
t = np.arange(n) / float(n)
frej = t / (t * (1 - alpha) + alpha)
return frej | reference line for rejection in multiple tests
Not used anymore
from: section 3.2, page 60 | rejectionline | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def fdrcorrection_bak(pvals, alpha=0.05, method="indep"):
"""Reject False discovery rate correction for pvalues
Old version, to be deleted
missing: methods that estimate fraction of true hypotheses
"""
from statsmodels.stats.multitest import _ecdf as ecdf
pvals = np.asarray(pvals)
pvals_sortind = np.argsort(pvals)
pvals_sorted = pvals[pvals_sortind]
pecdf = ecdf(pvals_sorted)
if method in ["i", "indep", "p", "poscorr"]:
rline = pvals_sorted / alpha
elif method in ["n", "negcorr"]:
cm = np.sum(1.0 / np.arange(1, len(pvals)))
rline = pvals_sorted / alpha * cm
elif method in ["g", "onegcorr"]: # what's this ? german diss
rline = pvals_sorted / (pvals_sorted * (1 - alpha) + alpha)
elif method in ["oth", "o2negcorr"]: # other invalid, cut-paste
cm = np.sum(np.arange(len(pvals)))
rline = pvals_sorted / alpha / cm
else:
raise ValueError("method not available")
reject = pecdf >= rline
if reject.any():
rejectmax = max(np.nonzero(reject)[0])
else:
rejectmax = 0
reject[:rejectmax] = True
return reject[pvals_sortind.argsort()] | Reject False discovery rate correction for pvalues
Old version, to be deleted
missing: methods that estimate fraction of true hypotheses | fdrcorrection_bak | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def mcfdr(nrepl=100, nobs=50, ntests=10, ntrue=6, mu=0.5, alpha=0.05, rho=0.0):
"""MonteCarlo to test fdrcorrection"""
from statsmodels.stats.multitest import fdrcorrection as fdrcorrection0
# Unused result, commented out
# ntests - ntrue
locs = np.array([0.0] * ntrue + [mu] * (ntests - ntrue))
results = []
for i in range(nrepl):
# rvs = locs + stats.norm.rvs(size=(nobs, ntests))
rvs = locs + randmvn(rho, size=(nobs, ntests))
tt, tpval = stats.ttest_1samp(rvs, 0)
res = fdrcorrection_bak(np.abs(tpval), alpha=alpha, method="i")
res0 = fdrcorrection0(np.abs(tpval), alpha=alpha)
# res and res0 give the same results
results.append(
[np.sum(res[:ntrue]), np.sum(res[ntrue:])]
+ [np.sum(res0[:ntrue]), np.sum(res0[ntrue:])]
+ res.tolist()
+ np.sort(tpval).tolist()
+ [np.sum(tpval[:ntrue] < alpha), np.sum(tpval[ntrue:] < alpha)]
+ [
np.sum(tpval[:ntrue] < alpha / ntests),
np.sum(tpval[ntrue:] < alpha / ntests),
]
)
return np.array(results) | MonteCarlo to test fdrcorrection | mcfdr | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def randmvn(rho, size=(1, 2), standardize=False):
"""create random draws from equi-correlated multivariate normal distribution
Parameters
----------
rho : float
correlation coefficient
size : tuple of int
size is interpreted (nobs, nvars) where each row
Returns
-------
rvs : ndarray
nobs by nvars where each row is a independent random draw of nvars-
dimensional correlated rvs
"""
nobs, nvars = size
if 0 < rho and rho < 1:
rvs = np.random.randn(nobs, nvars + 1)
rvs2 = rvs[:, :-1] * np.sqrt(1 - rho) + rvs[:, -1:] * np.sqrt(rho)
elif rho == 0:
rvs2 = np.random.randn(nobs, nvars)
elif rho < 0:
if rho < -1.0 / (nvars - 1):
raise ValueError("rho has to be larger than -1./(nvars-1)")
elif rho == -1.0 / (nvars - 1):
rho = -1.0 / (nvars - 1 + 1e-10) # barely positive definite
# use Cholesky
A = rho * np.ones((nvars, nvars)) + (1 - rho) * np.eye(nvars)
rvs2 = np.dot(np.random.randn(nobs, nvars), np.linalg.cholesky(A).T)
if standardize:
rvs2 = stats.zscore(rvs2)
return rvs2 | create random draws from equi-correlated multivariate normal distribution
Parameters
----------
rho : float
correlation coefficient
size : tuple of int
size is interpreted (nobs, nvars) where each row
Returns
-------
rvs : ndarray
nobs by nvars where each row is a independent random draw of nvars-
dimensional correlated rvs | randmvn | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def tiecorrect(xranks):
"""
should be equivalent of scipy.stats.tiecorrect
"""
# casting to int rounds down, but not relevant for this case
rankbincount = np.bincount(np.asarray(xranks, dtype=int))
nties = rankbincount[rankbincount > 1]
ntot = float(len(xranks))
tiecorrection = 1 - (nties**3 - nties).sum() / (ntot**3 - ntot)
return tiecorrection | should be equivalent of scipy.stats.tiecorrect | tiecorrect | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def __init__(self, x, useranks=False, uni=None, intlab=None):
"""descriptive statistics by groups
Parameters
----------
x : ndarray, 2d
first column data, second column group labels
useranks : bool
if true, then use ranks as data corresponding to the
scipy.stats.rankdata definition (start at 1, ties get mean)
uni, intlab : arrays (optional)
to avoid call to unique, these can be given as inputs
"""
self.x = np.asarray(x)
if intlab is None:
uni, intlab = np.unique(x[:, 1], return_inverse=True)
elif uni is None:
uni = np.unique(x[:, 1])
self.useranks = useranks
self.uni = uni
self.intlab = intlab
self.groupnobs = np.bincount(intlab)
# temporary until separated and made all lazy
self.runbasic(useranks=useranks) | descriptive statistics by groups
Parameters
----------
x : ndarray, 2d
first column data, second column group labels
useranks : bool
if true, then use ranks as data corresponding to the
scipy.stats.rankdata definition (start at 1, ties get mean)
uni, intlab : arrays (optional)
to avoid call to unique, these can be given as inputs | __init__ | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def runbasic_old(self, useranks=False):
"""runbasic_old"""
# check: refactoring screwed up case useranks=True
# groupxsum = np.bincount(intlab, weights=X[:,0])
# groupxmean = groupxsum * 1.0 / groupnobs
x = self.x
if useranks:
self.xx = x[:, 1].argsort().argsort() + 1 # rankraw
else:
self.xx = x[:, 0]
self.groupsum = groupranksum = np.bincount(self.intlab, weights=self.xx)
# print('groupranksum', groupranksum, groupranksum.shape, self.groupnobs.shape
# start at 1 for stats.rankdata :
self.groupmean = grouprankmean = groupranksum * 1.0 / self.groupnobs # + 1
self.groupmeanfilter = grouprankmean[self.intlab] | runbasic_old | runbasic_old | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def runbasic(self, useranks=False):
"""runbasic"""
# check: refactoring screwed up case useranks=True
# groupxsum = np.bincount(intlab, weights=X[:,0])
# groupxmean = groupxsum * 1.0 / groupnobs
x = self.x
if useranks:
xuni, xintlab = np.unique(x[:, 0], return_inverse=True)
ranksraw = x[:, 0].argsort().argsort() + 1 # rankraw
self.xx = GroupsStats(
np.column_stack([ranksraw, xintlab]), useranks=False
).groupmeanfilter
else:
self.xx = x[:, 0]
self.groupsum = groupranksum = np.bincount(self.intlab, weights=self.xx)
# print('groupranksum', groupranksum, groupranksum.shape, self.groupnobs.shape
# start at 1 for stats.rankdata :
self.groupmean = grouprankmean = groupranksum * 1.0 / self.groupnobs # + 1
self.groupmeanfilter = grouprankmean[self.intlab] | runbasic | runbasic | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def groupdemean(self):
"""groupdemean"""
return self.xx - self.groupmeanfilter | groupdemean | groupdemean | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def groupsswithin(self):
"""groupsswithin"""
xtmp = self.groupdemean()
return np.bincount(self.intlab, weights=xtmp**2) | groupsswithin | groupsswithin | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def groupvarwithin(self):
"""groupvarwithin"""
return self.groupsswithin() / (self.groupnobs - 1) # .sum() | groupvarwithin | groupvarwithin | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def summary(self):
"""Summary table that can be printed"""
return self._results_table | Summary table that can be printed | summary | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def summary_frame(self):
"""Summary DataFrame
The group columns are labeled as "group_t" and "group_c" with mean
difference defined as treatment minus control.
This should be less confusing than numeric labels group1 and group2.
Returns
-------
pandas.DataFrame
Notes
-----
The number of columns will likely increase in a future version of
statsmodels. Do not use numeric indices for the DataFrame in order
to be robust to the addition of columns.
"""
frame = pd.DataFrame({
"group_t": self.group_t,
"group_c": self.group_c,
"meandiff": self.meandiffs,
"p-adj": self.pvalues,
"lower": self.confint[:, 0],
"upper": self.confint[:, 1],
"reject": self.reject,
})
return frame | Summary DataFrame
The group columns are labeled as "group_t" and "group_c" with mean
difference defined as treatment minus control.
This should be less confusing than numeric labels group1 and group2.
Returns
-------
pandas.DataFrame
Notes
-----
The number of columns will likely increase in a future version of
statsmodels. Do not use numeric indices for the DataFrame in order
to be robust to the addition of columns. | summary_frame | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def _simultaneous_ci(self):
"""Compute simultaneous confidence intervals for comparison of means."""
q_crit_hsd = self._get_q_crit(hsd=True)
self.halfwidths = simultaneous_ci(
q_crit_hsd,
self.variance,
self._multicomp.groupstats.groupnobs,
self._multicomp.pairindices,
) | Compute simultaneous confidence intervals for comparison of means. | _simultaneous_ci | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def plot_simultaneous(
self, comparison_name=None, ax=None, figsize=(10, 6), xlabel=None, ylabel=None
):
"""Plot a universal confidence interval of each group mean
Visualize significant differences in a plot with one confidence
interval per group instead of all pairwise confidence intervals.
Parameters
----------
comparison_name : str, optional
if provided, plot_intervals will color code all groups that are
significantly different from the comparison_name red, and will
color code insignificant groups gray. Otherwise, all intervals will
just be plotted in black.
ax : matplotlib axis, optional
An axis handle on which to attach the plot.
figsize : tuple, optional
tuple for the size of the figure generated
xlabel : str, optional
Name to be displayed on x axis
ylabel : str, optional
Name to be displayed on y axis
Returns
-------
Figure
handle to figure object containing interval plots
Notes
-----
Multiple comparison tests are nice, but lack a good way to be
visualized. If you have, say, 6 groups, showing a graph of the means
between each group will require 15 confidence intervals.
Instead, we can visualize inter-group differences with a single
interval for each group mean. Hochberg et al. [1] first proposed this
idea and used Tukey's Q critical value to compute the interval widths.
Unlike plotting the differences in the means and their respective
confidence intervals, any two pairs can be compared for significance
by looking for overlap.
The derivation in Hochberg and Tamhane is under the equal variance
assumption. We use the same computation in the case of unequal
variances, however, with replacement of the common pooled variance
by the unequal estimates of the whithin group variances.
This provides a plot that looks more informative and plausible in the
case where there are large differences in variances. In the equal
sample size and equal variance case, the confidence intervals computed
by the two methods, equal and unequal variance, are very close to
each other in larger samples.
References
----------
.. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures.
Hoboken, NJ: John Wiley & Sons, 1987.
Examples
--------
>>> from statsmodels.examples.try_tukey_hsd import cylinders, cyl_labels
>>> from statsmodels.stats.multicomp import MultiComparison
>>> cardata = MultiComparison(cylinders, cyl_labels)
>>> results = cardata.tukeyhsd()
>>> results.plot_simultaneous()
<matplotlib.figure.Figure at 0x...>
This example shows an example plot comparing significant differences
in group means. Significant differences at the alpha=0.05 level can be
identified by intervals that do not overlap (i.e. USA vs Japan,
USA vs Germany).
>>> results.plot_simultaneous(comparison_name="USA")
<matplotlib.figure.Figure at 0x...>
Optionally provide one of the group names to color code the plot to
highlight group means different from comparison_name.
"""
fig, ax1 = utils.create_mpl_ax(ax)
if figsize is not None:
fig.set_size_inches(figsize)
if getattr(self, "halfwidths", None) is None:
self._simultaneous_ci()
means = self._multicomp.groupstats.groupmean
sigidx = []
nsigidx = []
minrange = [means[i] - self.halfwidths[i] for i in range(len(means))]
maxrange = [means[i] + self.halfwidths[i] for i in range(len(means))]
if comparison_name is None:
ax1.errorbar(
means,
lrange(len(means)),
xerr=self.halfwidths,
marker="o",
linestyle="None",
color="k",
ecolor="k",
)
else:
if comparison_name not in self.groupsunique:
raise ValueError("comparison_name not found in group names.")
midx = np.where(self.groupsunique == comparison_name)[0][0]
for i in range(len(means)):
if self.groupsunique[i] == comparison_name:
continue
if (
min(maxrange[i], maxrange[midx]) - max(minrange[i], minrange[midx])
< 0
):
sigidx.append(i)
else:
nsigidx.append(i)
# Plot the main comparison
ax1.errorbar(
means[midx],
midx,
xerr=self.halfwidths[midx],
marker="o",
linestyle="None",
color="b",
ecolor="b",
)
ax1.plot(
[minrange[midx]] * 2,
[-1, self._multicomp.ngroups],
linestyle="--",
color="0.7",
)
ax1.plot(
[maxrange[midx]] * 2,
[-1, self._multicomp.ngroups],
linestyle="--",
color="0.7",
)
# Plot those that are significantly different
if len(sigidx) > 0:
ax1.errorbar(
means[sigidx],
sigidx,
xerr=self.halfwidths[sigidx],
marker="o",
linestyle="None",
color="r",
ecolor="r",
)
# Plot those that are not significantly different
if len(nsigidx) > 0:
ax1.errorbar(
means[nsigidx],
nsigidx,
xerr=self.halfwidths[nsigidx],
marker="o",
linestyle="None",
color="0.5",
ecolor="0.5",
)
ax1.set_title("Multiple Comparisons Between All Pairs (Tukey)")
r = np.max(maxrange) - np.min(minrange)
ax1.set_ylim([-1, self._multicomp.ngroups])
ax1.set_xlim([np.min(minrange) - r / 10.0, np.max(maxrange) + r / 10.0])
ylbls = [""] + self.groupsunique.astype(str).tolist() + [""]
ax1.set_yticks(np.arange(-1, len(means) + 1))
ax1.set_yticklabels(ylbls)
ax1.set_xlabel(xlabel if xlabel is not None else "")
ax1.set_ylabel(ylabel if ylabel is not None else "")
return fig | Plot a universal confidence interval of each group mean
Visualize significant differences in a plot with one confidence
interval per group instead of all pairwise confidence intervals.
Parameters
----------
comparison_name : str, optional
if provided, plot_intervals will color code all groups that are
significantly different from the comparison_name red, and will
color code insignificant groups gray. Otherwise, all intervals will
just be plotted in black.
ax : matplotlib axis, optional
An axis handle on which to attach the plot.
figsize : tuple, optional
tuple for the size of the figure generated
xlabel : str, optional
Name to be displayed on x axis
ylabel : str, optional
Name to be displayed on y axis
Returns
-------
Figure
handle to figure object containing interval plots
Notes
-----
Multiple comparison tests are nice, but lack a good way to be
visualized. If you have, say, 6 groups, showing a graph of the means
between each group will require 15 confidence intervals.
Instead, we can visualize inter-group differences with a single
interval for each group mean. Hochberg et al. [1] first proposed this
idea and used Tukey's Q critical value to compute the interval widths.
Unlike plotting the differences in the means and their respective
confidence intervals, any two pairs can be compared for significance
by looking for overlap.
The derivation in Hochberg and Tamhane is under the equal variance
assumption. We use the same computation in the case of unequal
variances, however, with replacement of the common pooled variance
by the unequal estimates of the whithin group variances.
This provides a plot that looks more informative and plausible in the
case where there are large differences in variances. In the equal
sample size and equal variance case, the confidence intervals computed
by the two methods, equal and unequal variance, are very close to
each other in larger samples.
References
----------
.. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures.
Hoboken, NJ: John Wiley & Sons, 1987.
Examples
--------
>>> from statsmodels.examples.try_tukey_hsd import cylinders, cyl_labels
>>> from statsmodels.stats.multicomp import MultiComparison
>>> cardata = MultiComparison(cylinders, cyl_labels)
>>> results = cardata.tukeyhsd()
>>> results.plot_simultaneous()
<matplotlib.figure.Figure at 0x...>
This example shows an example plot comparing significant differences
in group means. Significant differences at the alpha=0.05 level can be
identified by intervals that do not overlap (i.e. USA vs Japan,
USA vs Germany).
>>> results.plot_simultaneous(comparison_name="USA")
<matplotlib.figure.Figure at 0x...>
Optionally provide one of the group names to color code the plot to
highlight group means different from comparison_name. | plot_simultaneous | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def getranks(self):
"""convert data to rankdata and attach
This creates rankdata as it is used for non-parametric tests, where
in the case of ties the average rank is assigned.
"""
# bug: the next should use self.groupintlab instead of self.groups
# update: looks fixed
# self.ranks = GroupsStats(np.column_stack([self.data, self.groups]),
self.ranks = GroupsStats(
np.column_stack([self.data, self.groupintlab]), useranks=True
)
self.rankdata = self.ranks.groupmeanfilter | convert data to rankdata and attach
This creates rankdata as it is used for non-parametric tests, where
in the case of ties the average rank is assigned. | getranks | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def kruskal(self, pairs=None, multimethod="T"):
"""
pairwise comparison for kruskal-wallis test
This is just a reimplementation of scipy.stats.kruskal and does
not yet use a multiple comparison correction.
"""
self.getranks()
tot = self.nobs
meanranks = self.ranks.groupmean
groupnobs = self.ranks.groupnobs
# simultaneous/separate treatment of multiple tests
f = (tot * (tot + 1.0) / 12.0) / stats.tiecorrect(self.rankdata) # (xranks)
print("MultiComparison.kruskal")
for i, j in zip(*self.pairindices):
# pdiff = np.abs(mrs[i] - mrs[j])
pdiff = np.abs(meanranks[i] - meanranks[j])
se = np.sqrt(
f * np.sum(1.0 / groupnobs[[i, j]])
) # np.array([8,8]))) #Fixme groupnobs[[i,j]] ))
Q = pdiff / se
# TODO : print(statments, fix
print(i, j, pdiff, se, pdiff / se, pdiff / se > 2.6310)
print(stats.norm.sf(Q) * 2)
return stats.norm.sf(Q) * 2 | pairwise comparison for kruskal-wallis test
This is just a reimplementation of scipy.stats.kruskal and does
not yet use a multiple comparison correction. | kruskal | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def allpairtest(self, testfunc, alpha=0.05, method="bonf", pvalidx=1):
"""run a pairwise test on all pairs with multiple test correction
The statistical test given in testfunc is calculated for all pairs
and the p-values are adjusted by methods in multipletests. The p-value
correction is generic and based only on the p-values, and does not
take any special structure of the hypotheses into account.
Parameters
----------
testfunc : function
A test function for two (independent) samples. It is assumed that
the return value on position pvalidx is the p-value.
alpha : float
familywise error rate
method : str
This specifies the method for the p-value correction. Any method
of multipletests is possible.
pvalidx : int (default: 1)
position of the p-value in the return of testfunc
Returns
-------
sumtab : SimpleTable instance
summary table for printing
errors: TODO: check if this is still wrong, I think it's fixed.
results from multipletests are in different order
pval_corrected can be larger than 1 ???
"""
from statsmodels.stats.multitest import multipletests
res = []
for i, j in zip(*self.pairindices):
res.append(testfunc(self.datali[i], self.datali[j]))
res = np.array(res)
reject, pvals_corrected, alphacSidak, alphacBonf = multipletests(
res[:, pvalidx], alpha=alpha, method=method
)
# print(np.column_stack([res[:,0],res[:,1], reject, pvals_corrected])
i1, i2 = self.pairindices
if pvals_corrected is None:
resarr = np.array(
lzip(
self.groupsunique[i1],
self.groupsunique[i2],
np.round(res[:, 0], 4),
np.round(res[:, 1], 4),
reject,
),
dtype=[
("group1", object),
("group2", object),
("stat", float),
("pval", float),
("reject", np.bool_),
],
)
else:
resarr = np.array(
lzip(
self.groupsunique[i1],
self.groupsunique[i2],
np.round(res[:, 0], 4),
np.round(res[:, 1], 4),
np.round(pvals_corrected, 4),
reject,
),
dtype=[
("group1", object),
("group2", object),
("stat", float),
("pval", float),
("pval_corr", float),
("reject", np.bool_),
],
)
results_table = SimpleTable(resarr, headers=resarr.dtype.names)
results_table.title = "Test Multiple Comparison %s \n%s%4.2f method=%s" % (
testfunc.__name__,
"FWER=",
alpha,
method,
) + "\nalphacSidak=%4.2f, alphacBonf=%5.3f" % (alphacSidak, alphacBonf)
return (
results_table,
(res, reject, pvals_corrected, alphacSidak, alphacBonf),
resarr,
) | run a pairwise test on all pairs with multiple test correction
The statistical test given in testfunc is calculated for all pairs
and the p-values are adjusted by methods in multipletests. The p-value
correction is generic and based only on the p-values, and does not
take any special structure of the hypotheses into account.
Parameters
----------
testfunc : function
A test function for two (independent) samples. It is assumed that
the return value on position pvalidx is the p-value.
alpha : float
familywise error rate
method : str
This specifies the method for the p-value correction. Any method
of multipletests is possible.
pvalidx : int (default: 1)
position of the p-value in the return of testfunc
Returns
-------
sumtab : SimpleTable instance
summary table for printing
errors: TODO: check if this is still wrong, I think it's fixed.
results from multipletests are in different order
pval_corrected can be larger than 1 ??? | allpairtest | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def tukeyhsd(self, alpha=0.05, use_var='equal'):
"""
Tukey's range test to compare means of all pairs of groups
Parameters
----------
alpha : float, optional
Value of FWER at which to calculate HSD.
use_var : {"unequal", "equal"}
If ``use_var`` is "equal", then the Tukey-hsd pvalues are returned.
Tukey-hsd assumes that (within) variances are the same across groups.
If ``use_var`` is "unequal", then the Games-Howell pvalues are
returned. This uses Welch's t-test for unequal variances with
Satterthwait's corrected degrees of freedom for each pairwise
comparison.
Returns
-------
results : TukeyHSDResults instance
A results class containing relevant data and some post-hoc
calculations
Notes
-----
.. versionadded:: 0.15
` The `use_var` keyword and option for Games-Howell test.
"""
self.groupstats = GroupsStats(
np.column_stack([self.data, self.groupintlab]), useranks=False
)
gmeans = self.groupstats.groupmean
gnobs = self.groupstats.groupnobs
if use_var == 'unequal':
var_ = self.groupstats.groupvarwithin()
elif use_var == 'equal':
var_ = np.var(self.groupstats.groupdemean(), ddof=len(gmeans))
else:
raise ValueError('use_var should be "unequal" or "equal"')
# res contains: 0:(idx1, idx2), 1:reject, 2:meandiffs, 3: std_pairs,
# 4:confint, 5:q_crit, 6:df_total, 7:reject2, 8: pvals
res = tukeyhsd(gmeans, gnobs, var_, df=None, alpha=alpha, q_crit=None)
resarr = np.array(
lzip(
self.groupsunique[res[0][0]],
self.groupsunique[res[0][1]],
np.round(res[2], 4),
np.round(res[8], 4),
np.round(res[4][:, 0], 4),
np.round(res[4][:, 1], 4),
res[1],
),
dtype=[
("group1", object),
("group2", object),
("meandiff", float),
("p-adj", float),
("lower", float),
("upper", float),
("reject", np.bool_),
],
)
results_table = SimpleTable(resarr, headers=resarr.dtype.names)
results_table.title = (
"Multiple Comparison of Means - Tukey HSD, " + "FWER=%4.2f" % alpha
)
return TukeyHSDResults(
self, # mc_object, attached as _multicomp
results_table,
res[5], # q_crit, positional
reject=res[1],
meandiffs=res[2],
std_pairs=res[3],
confint=res[4],
df_total=res[6],
reject2=res[7],
variance=var_,
pvalues=res[8],
alpha=alpha,
group_t=self.groupsunique[res[0][1]],
group_c=self.groupsunique[res[0][0]],
) | Tukey's range test to compare means of all pairs of groups
Parameters
----------
alpha : float, optional
Value of FWER at which to calculate HSD.
use_var : {"unequal", "equal"}
If ``use_var`` is "equal", then the Tukey-hsd pvalues are returned.
Tukey-hsd assumes that (within) variances are the same across groups.
If ``use_var`` is "unequal", then the Games-Howell pvalues are
returned. This uses Welch's t-test for unequal variances with
Satterthwait's corrected degrees of freedom for each pairwise
comparison.
Returns
-------
results : TukeyHSDResults instance
A results class containing relevant data and some post-hoc
calculations
Notes
-----
.. versionadded:: 0.15
` The `use_var` keyword and option for Games-Howell test. | tukeyhsd | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def rankdata(x):
"""rankdata, equivalent to scipy.stats.rankdata
just a different implementation, I have not yet compared speed
"""
uni, intlab = np.unique(x[:, 0], return_inverse=True)
groupnobs = np.bincount(intlab)
# Unused result, commented out
# groupxsum = np.bincount(intlab, weights=X[:, 0])
# groupxsum * 1.0 / groupnobs
rankraw = x[:, 0].argsort().argsort()
groupranksum = np.bincount(intlab, weights=rankraw)
# start at 1 for stats.rankdata :
grouprankmean = groupranksum * 1.0 / groupnobs + 1
return grouprankmean[intlab] | rankdata, equivalent to scipy.stats.rankdata
just a different implementation, I have not yet compared speed | rankdata | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def compare_ordered(vals, alpha):
"""simple ordered sequential comparison of means
vals : array_like
means or rankmeans for independent groups
incomplete, no return, not used yet
"""
vals = np.asarray(vals)
sortind = np.argsort(vals)
sortind.argsort()
ntests = len(vals)
# alphacSidak = 1 - np.power((1. - alphaf), 1./ntests)
# alphacBonf = alphaf / float(ntests)
v1, v2 = np.triu_indices(ntests, 1)
# v1,v2 have wrong sequence
for i in range(4):
for j in range(4, i, -1):
print(i, j) | simple ordered sequential comparison of means
vals : array_like
means or rankmeans for independent groups
incomplete, no return, not used yet | compare_ordered | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def varcorrection_unbalanced(nobs_all, srange=False):
"""correction factor for variance with unequal sample sizes
this is just a harmonic mean
Parameters
----------
nobs_all : array_like
The number of observations for each sample
srange : bool
if true, then the correction is divided by the number of samples
for the variance of the studentized range statistic
Returns
-------
correction : float
Correction factor for variance.
Notes
-----
variance correction factor is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1.
This needs to be multiplied by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken.
"""
nobs_all = np.asarray(nobs_all)
if not srange:
return (1.0 / nobs_all).sum()
else:
return (1.0 / nobs_all).sum() / len(nobs_all) | correction factor for variance with unequal sample sizes
this is just a harmonic mean
Parameters
----------
nobs_all : array_like
The number of observations for each sample
srange : bool
if true, then the correction is divided by the number of samples
for the variance of the studentized range statistic
Returns
-------
correction : float
Correction factor for variance.
Notes
-----
variance correction factor is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1.
This needs to be multiplied by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken. | varcorrection_unbalanced | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def varcorrection_pairs_unbalanced(nobs_all, srange=False):
"""correction factor for variance with unequal sample sizes for all pairs
this is just a harmonic mean
Parameters
----------
nobs_all : array_like
The number of observations for each sample
srange : bool
if true, then the correction is divided by 2 for the variance of
the studentized range statistic
Returns
-------
correction : ndarray
Correction factor for variance.
Notes
-----
variance correction factor is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1.
This needs to be multiplies by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken.
For the studentized range statistic, the resulting factor has to be
divided by 2.
"""
# TODO: test and replace with broadcasting
n1, n2 = np.meshgrid(nobs_all, nobs_all)
if not srange:
return 1.0 / n1 + 1.0 / n2
else:
return (1.0 / n1 + 1.0 / n2) / 2.0 | correction factor for variance with unequal sample sizes for all pairs
this is just a harmonic mean
Parameters
----------
nobs_all : array_like
The number of observations for each sample
srange : bool
if true, then the correction is divided by 2 for the variance of
the studentized range statistic
Returns
-------
correction : ndarray
Correction factor for variance.
Notes
-----
variance correction factor is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1.
This needs to be multiplies by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken.
For the studentized range statistic, the resulting factor has to be
divided by 2. | varcorrection_pairs_unbalanced | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def varcorrection_unequal(var_all, nobs_all, df_all):
"""return joint variance from samples with unequal variances and unequal
sample sizes
something is wrong
Parameters
----------
var_all : array_like
The variance for each sample
nobs_all : array_like
The number of observations for each sample
df_all : array_like
degrees of freedom for each sample
Returns
-------
varjoint : float
joint variance.
dfjoint : float
joint Satterthwait's degrees of freedom
Notes
-----
(copy, paste not correct)
variance is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1/n.
This needs to be multiplies by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken.
This is for variance of mean difference not of studentized range.
"""
var_all = np.asarray(var_all)
var_over_n = var_all * 1.0 / nobs_all # avoid integer division
varjoint = var_over_n.sum()
dfjoint = varjoint**2 / (var_over_n**2 * df_all).sum()
return varjoint, dfjoint | return joint variance from samples with unequal variances and unequal
sample sizes
something is wrong
Parameters
----------
var_all : array_like
The variance for each sample
nobs_all : array_like
The number of observations for each sample
df_all : array_like
degrees of freedom for each sample
Returns
-------
varjoint : float
joint variance.
dfjoint : float
joint Satterthwait's degrees of freedom
Notes
-----
(copy, paste not correct)
variance is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1/n.
This needs to be multiplies by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken.
This is for variance of mean difference not of studentized range. | varcorrection_unequal | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def varcorrection_pairs_unequal(var_all, nobs_all, df_all):
"""return joint variance from samples with unequal variances and unequal
sample sizes for all pairs
something is wrong
Parameters
----------
var_all : array_like
The variance for each sample
nobs_all : array_like
The number of observations for each sample
df_all : array_like
degrees of freedom for each sample
Returns
-------
varjoint : ndarray
joint variance.
dfjoint : ndarray
joint Satterthwait's degrees of freedom
Notes
-----
(copy, paste not correct)
variance is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1.
This needs to be multiplies by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken.
"""
# TODO: test and replace with broadcasting
v1, v2 = np.meshgrid(var_all, var_all)
n1, n2 = np.meshgrid(nobs_all, nobs_all)
df1, df2 = np.meshgrid(df_all, df_all)
varjoint = v1 / n1 + v2 / n2
dfjoint = varjoint**2 / ((v1 / n1) ** 2 / df1 + (v2 / n2) ** 2 / df2)
return varjoint, dfjoint | return joint variance from samples with unequal variances and unequal
sample sizes for all pairs
something is wrong
Parameters
----------
var_all : array_like
The variance for each sample
nobs_all : array_like
The number of observations for each sample
df_all : array_like
degrees of freedom for each sample
Returns
-------
varjoint : ndarray
joint variance.
dfjoint : ndarray
joint Satterthwait's degrees of freedom
Notes
-----
(copy, paste not correct)
variance is
1/k * sum_i 1/n_i
where k is the number of samples and summation is over i=0,...,k-1.
If all n_i are the same, then the correction factor is 1.
This needs to be multiplies by the joint variance estimate, means square
error, MSE. To obtain the correction factor for the standard deviation,
square root needs to be taken. | varcorrection_pairs_unequal | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def tukeyhsd(mean_all, nobs_all, var_all, df=None, alpha=0.05, q_crit=None):
"""simultaneous Tukey HSD
check: instead of sorting, I use absolute value of pairwise differences
in means. That's irrelevant for the test, but maybe reporting actual
differences would be better.
CHANGED: meandiffs are with sign, studentized range uses abs
q_crit added for testing
TODO: error in variance calculation when nobs_all is scalar, missing 1/n
"""
mean_all = np.asarray(mean_all)
# check if or when other ones need to be arrays
n_means = len(mean_all)
if df is None:
df = nobs_all - 1
if np.size(df) == 1: # assumes balanced samples with df = n - 1, n_i = n
df_total = n_means * df
df = np.ones(n_means) * df
else:
df_total = np.sum(df)
df_pairs_ = None
if (np.size(nobs_all) == 1) and (np.size(var_all) == 1):
# balanced sample sizes and homogenous variance
var_pairs = 1.0 * var_all / nobs_all * np.ones((n_means, n_means))
elif np.size(var_all) == 1:
# unequal sample sizes and homogenous variance
var_pairs = var_all * varcorrection_pairs_unbalanced(nobs_all, srange=True)
elif np.size(var_all) > 1:
var_pairs, df_pairs_ = varcorrection_pairs_unequal(var_all, nobs_all, df)
var_pairs /= 2.
# check division by two for studentized range
else:
raise ValueError("not supposed to be here")
# meandiffs_ = mean_all[:,None] - mean_all
meandiffs_ = mean_all - mean_all[:, None] # reverse sign, check with R example
std_pairs_ = np.sqrt(var_pairs)
# select all pairs from upper triangle of matrix
idx1, idx2 = np.triu_indices(n_means, 1)
meandiffs = meandiffs_[idx1, idx2]
std_pairs = std_pairs_[idx1, idx2]
if df_pairs_ is not None:
df_total = df_pairs_[idx1, idx2]
st_range = np.abs(meandiffs) / std_pairs # studentized range statistic
# df_total_ = np.maximum(df_total, 5) # TODO: smallest df in table
if q_crit is None:
q_crit = get_tukeyQcrit2(n_means, df_total, alpha=alpha)
pvalues = get_tukey_pvalue(n_means, df_total, st_range)
# we need pvalues to be atleast_1d for iteration. see #6132
pvalues = np.atleast_1d(pvalues)
reject = st_range > q_crit
crit_int = std_pairs * q_crit
reject2 = np.abs(meandiffs) > crit_int
confint = np.column_stack((meandiffs - crit_int, meandiffs + crit_int))
return (
(idx1, idx2),
reject,
meandiffs,
std_pairs,
confint,
q_crit,
df_total,
reject2,
pvalues,
) | simultaneous Tukey HSD
check: instead of sorting, I use absolute value of pairwise differences
in means. That's irrelevant for the test, but maybe reporting actual
differences would be better.
CHANGED: meandiffs are with sign, studentized range uses abs
q_crit added for testing
TODO: error in variance calculation when nobs_all is scalar, missing 1/n | tukeyhsd | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def simultaneous_ci(q_crit, var, groupnobs, pairindices=None):
"""Compute simultaneous confidence intervals for comparison of means.
q_crit value is generated from tukey hsd test. Variance is considered
across all groups. Returned halfwidths can be thought of as uncertainty
intervals around each group mean. They allow for simultaneous
comparison of pairwise significance among any pairs (by checking for
overlap)
Parameters
----------
q_crit : float
The Q critical value studentized range statistic from Tukey's HSD
var : float
The group variance
groupnobs : array_like object
Number of observations contained in each group.
pairindices : tuple of lists, optional
Indices corresponding to the upper triangle of matrix. Computed
here if not supplied
Returns
-------
halfwidths : ndarray
Half the width of each confidence interval for each group given in
groupnobs
See Also
--------
MultiComparison : statistics class providing significance tests
tukeyhsd : among other things, computes q_crit value
References
----------
.. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures.
Hoboken, NJ: John Wiley & Sons, 1987.)
"""
# Set initial variables
ng = len(groupnobs)
if pairindices is None:
pairindices = np.triu_indices(ng, 1)
# Compute dij for all pairwise comparisons ala hochberg p. 95
gvar = var / groupnobs
d12 = np.sqrt(gvar[pairindices[0]] + gvar[pairindices[1]])
# Create the full d matrix given all known dij vals
d = np.zeros((ng, ng))
d[pairindices] = d12
d = d + d.conj().T
# Compute the two global sums from hochberg eq 3.32
sum1 = np.sum(d12)
sum2 = np.sum(d, axis=0)
if ng > 2:
w = ((ng - 1.0) * sum2 - sum1) / ((ng - 1.0) * (ng - 2.0))
else:
w = sum1 * np.ones((2, 1)) / 2.0
return (q_crit / np.sqrt(2)) * w | Compute simultaneous confidence intervals for comparison of means.
q_crit value is generated from tukey hsd test. Variance is considered
across all groups. Returned halfwidths can be thought of as uncertainty
intervals around each group mean. They allow for simultaneous
comparison of pairwise significance among any pairs (by checking for
overlap)
Parameters
----------
q_crit : float
The Q critical value studentized range statistic from Tukey's HSD
var : float
The group variance
groupnobs : array_like object
Number of observations contained in each group.
pairindices : tuple of lists, optional
Indices corresponding to the upper triangle of matrix. Computed
here if not supplied
Returns
-------
halfwidths : ndarray
Half the width of each confidence interval for each group given in
groupnobs
See Also
--------
MultiComparison : statistics class providing significance tests
tukeyhsd : among other things, computes q_crit value
References
----------
.. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures.
Hoboken, NJ: John Wiley & Sons, 1987.) | simultaneous_ci | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def distance_st_range(mean_all, nobs_all, var_all, df=None, triu=False):
"""pairwise distance matrix, outsourced from tukeyhsd
CHANGED: meandiffs are with sign, studentized range uses abs
q_crit added for testing
TODO: error in variance calculation when nobs_all is scalar, missing 1/n
"""
mean_all = np.asarray(mean_all)
# check if or when other ones need to be arrays
n_means = len(mean_all)
if df is None:
df = nobs_all - 1
if (np.size(nobs_all) == 1) and (np.size(var_all) == 1):
# balanced sample sizes and homogenous variance
var_pairs = 1.0 * var_all / nobs_all * np.ones((n_means, n_means))
elif np.size(var_all) == 1:
# unequal sample sizes and homogenous variance
var_pairs = var_all * varcorrection_pairs_unbalanced(nobs_all, srange=True)
elif np.size(var_all) > 1:
var_pairs, df_sum = varcorrection_pairs_unequal(var_all, nobs_all, df)
var_pairs /= 2.
# check division by two for studentized range
else:
raise ValueError("not supposed to be here")
# meandiffs_ = mean_all[:,None] - mean_all
meandiffs = mean_all - mean_all[:, None] # reverse sign, check with R example
std_pairs = np.sqrt(var_pairs)
idx1, idx2 = np.triu_indices(n_means, 1)
if triu:
# select all pairs from upper triangle of matrix
meandiffs = meandiffs_[idx1, idx2] # noqa: F821 See GH#5756
std_pairs = std_pairs_[idx1, idx2] # noqa: F821 See GH#5756
st_range = np.abs(meandiffs) / std_pairs # studentized range statistic
return st_range, meandiffs, std_pairs, (idx1, idx2) # return square arrays | pairwise distance matrix, outsourced from tukeyhsd
CHANGED: meandiffs are with sign, studentized range uses abs
q_crit added for testing
TODO: error in variance calculation when nobs_all is scalar, missing 1/n | distance_st_range | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def tukey_pvalues(std_range, nm, df):
"""compute tukey p-values by numerical integration of multivariate-t distribution
"""
# corrected but very slow with warnings about integration
# need to increase maxiter or similar
# nm = len(std_range)
contr = contrast_allpairs(nm)
corr = np.dot(contr, contr.T) / 2.0
tstat = std_range / np.sqrt(2) * np.ones(corr.shape[0]) # need len of all pairs
return multicontrast_pvalues(tstat, corr, df=df) | compute tukey p-values by numerical integration of multivariate-t distribution | tukey_pvalues | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def multicontrast_pvalues(tstat, tcorr, df=None, dist="t", alternative="two-sided"):
"""pvalues for simultaneous tests
currently only for t distribution, normal distribution not added yet
alternative is ignored
"""
from statsmodels.sandbox.distributions.multivariate import mvstdtprob
if (df is None) and (dist == "t"):
raise ValueError("df has to be specified for the t-distribution")
tstat = np.asarray(tstat)
ntests = len(tstat)
cc = np.abs(tstat)
pval_global = 1 - mvstdtprob(-cc, cc, tcorr, df)
pvals = []
for ti in cc:
ti * np.ones(ntests)
pvals.append(1 - mvstdtprob(-cc, cc, tcorr, df))
return pval_global, np.asarray(pvals) | pvalues for simultaneous tests
currently only for t distribution, normal distribution not added yet
alternative is ignored | multicontrast_pvalues | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
def get_crit(self, alpha):
"""
get_tukeyQcrit
currently tukey Q, add others
"""
q_crit = get_tukeyQcrit(self.n_vals, self.df, alpha=alpha)
return q_crit * np.ones(self.n_vals) | get_tukeyQcrit
currently tukey Q, add others | get_crit | python | statsmodels/statsmodels | statsmodels/sandbox/stats/multicomp.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py | BSD-3-Clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.