code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
182
url
stringlengths
46
251
license
stringclasses
4 values
def acovf_explicit(ar, ma, nobs): '''add correlation of MA representation explicitely ''' ir = arma_impulse_response(ar, ma) acovfexpl = [np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(10)] return acovfexpl
add correlation of MA representation explicitely
acovf_explicit
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def autocorr(s, axis=-1): """Returns the autocorrelation of signal s at all lags. Adheres to the definition r(k) = E{s(n)s*(n-k)} where E{} is the expectation operator. """ N = s.shape[axis] S = np.fft.fft(s, n=2*N-1, axis=axis) sxx = np.fft.ifft(S*S.conjugate(), axis=axis).real[:N] return sxx/N
Returns the autocorrelation of signal s at all lags. Adheres to the definition r(k) = E{s(n)s*(n-k)} where E{} is the expectation operator.
autocorr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def norm_corr(x,y,mode = 'valid'): """Returns the correlation between two ndarrays, by calling np.correlate in 'same' mode and normalizing the result by the std of the arrays and by their lengths. This results in a correlation = 1 for an auto-correlation""" return ( np.correlate(x,y,mode) / (np.std(x)*np.std(y)*(x.shape[-1])) )
Returns the correlation between two ndarrays, by calling np.correlate in 'same' mode and normalizing the result by the std of the arrays and by their lengths. This results in a correlation = 1 for an auto-correlation
norm_corr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def pltxcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): """ call signature:: def xcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c /= np.sqrt(np.dot(x, x) * np.dot(y, y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maxlags must be None or strictly ' 'positive < %d' % Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') self.plot(lags, c, **kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b
call signature:: def xcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py
pltxcorr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def _ll_nb1(y, X, beta, alph): '''Negative Binomial regression (type 1 likelihood)''' ll = _ll_nbp(y, X, beta, alph, Q=1) return ll
Negative Binomial regression (type 1 likelihood)
_ll_nb1
python
statsmodels/statsmodels
statsmodels/sandbox/examples/example_nbin.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/example_nbin.py
BSD-3-Clause
def _ll_nb2(y, X, beta, alph): '''Negative Binomial regression (type 2 likelihood)''' ll = _ll_nbp(y, X, beta, alph, Q=0) return ll
Negative Binomial regression (type 2 likelihood)
_ll_nb2
python
statsmodels/statsmodels
statsmodels/sandbox/examples/example_nbin.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/example_nbin.py
BSD-3-Clause
def _ll_geom(y, X, beta): '''Geometric regression''' ll = _ll_nbp(y, X, beta, alph=1, Q=0) return ll
Geometric regression
_ll_geom
python
statsmodels/statsmodels
statsmodels/sandbox/examples/example_nbin.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/example_nbin.py
BSD-3-Clause
def print_results2(res): groupind = res.groups #res.fitjoint() #not really necessary, because called by ftest_summary ft = res.ftest_summary() #print ft[0] #skip because table is nicer templ = \ '''Table of F-tests for overall or pairwise equality of coefficients' %(tab)s Notes: p-values are not corrected for many tests (no Bonferroni correction) * : reject at 5%% uncorrected confidence level Null hypothesis: all or pairwise coefficient are the same' Alternative hypothesis: all coefficients are different' Comparison with stats.f_oneway %(statsfow)s Likelihood Ratio Test %(lrtest)s Null model: pooled all coefficients are the same across groups,' Alternative model: all coefficients are allowed to be different' not verified but looks close to f-test result' OLS parameters by group from individual, separate ols regressions' %(olsbg)s for group in sorted(res.olsbygroup): r = res.olsbygroup[group] print group, r.params Check for heteroscedasticity, ' variance and standard deviation for individual regressions' %(grh)s variance ', res.sigmabygroup standard dev', np.sqrt(res.sigmabygroup) ''' from statsmodels.iolib import SimpleTable resvals = {} resvals['tab'] = str(SimpleTable([([f'{row[0]!r}'] + list(row[1]) + ['*']*(row[1][1]>0.5).item() ) for row in ft[1]], headers=['pair', 'F-statistic','p-value','df_denom', 'df_num'])) resvals['statsfow'] = str(stats.f_oneway(*[y[groupind==gr] for gr in res.unique])) #resvals['lrtest'] = str(res.lr_test()) resvals['lrtest'] = str(SimpleTable([res.lr_test()], headers=['likelihood ratio', 'p-value', 'df'] )) resvals['olsbg'] = str(SimpleTable([[group] + res.olsbygroup[group].params.tolist() for group in sorted(res.olsbygroup)])) resvals['grh'] = str(SimpleTable(np.vstack([res.sigmabygroup, np.sqrt(res.sigmabygroup)]), headers=res.unique.tolist())) return templ % resvals
Table of F-tests for overall or pairwise equality of coefficients' %(tab)s Notes: p-values are not corrected for many tests (no Bonferroni correction) * : reject at 5%% uncorrected confidence level Null hypothesis: all or pairwise coefficient are the same' Alternative hypothesis: all coefficients are different' Comparison with stats.f_oneway %(statsfow)s Likelihood Ratio Test %(lrtest)s Null model: pooled all coefficients are the same across groups,' Alternative model: all coefficients are allowed to be different' not verified but looks close to f-test result' OLS parameters by group from individual, separate ols regressions' %(olsbg)s for group in sorted(res.olsbygroup): r = res.olsbygroup[group] print group, r.params Check for heteroscedasticity, ' variance and standard deviation for individual regressions' %(grh)s variance ', res.sigmabygroup standard dev', np.sqrt(res.sigmabygroup)
print_results2
python
statsmodels/statsmodels
statsmodels/sandbox/examples/ex_onewaygls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/ex_onewaygls.py
BSD-3-Clause
def loglike_ar1(x, rho): '''loglikelihood of AR(1) process, as a test case sigma_u partially hard coded Greene chapter 12 eq. (12-31) ''' x = np.asarray(x) u = np.r_[x[0], x[1:] - rho * x[:-1]] sigma_u2 = 2*(1-rho**2) loglik = 0.5*(-(u**2).sum(0) / sigma_u2 + np.log(1-rho**2) - x.shape[0] * (np.log(2*np.pi) + np.log(sigma_u2))) return loglik
loglikelihood of AR(1) process, as a test case sigma_u partially hard coded Greene chapter 12 eq. (12-31)
loglike_ar1
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def ar2transform(x, arcoefs): ''' (Greene eq 12-30) ''' a1, a2 = arcoefs y = np.zeros_like(x) y[0] = np.sqrt((1+a2) * ((1-a2)**2 - a1**2) / (1-a2)) * x[0] y[1] = np.sqrt(1-a2**2) * x[2] - a1 * np.sqrt(1-a1**2)/(1-a2) * x[1] #TODO:wrong index in x y[2:] = x[2:] - a1 * x[1:-1] - a2 * x[:-2] return y
(Greene eq 12-30)
ar2transform
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def mvn_loglike(x, sigma): '''loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient ''' #see numpy thread #Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1) sigmainv = linalg.inv(sigma) logdetsigma = np.log(np.linalg.det(sigma)) nobs = len(x) llf = - np.dot(x, np.dot(sigmainv, x)) llf -= nobs * np.log(2 * np.pi) llf -= logdetsigma llf *= 0.5 return llf
loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient
mvn_loglike
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def yt_minv_y(self, y): '''xSigmainvx does not use stored cholesky yet ''' return np.dot(x,linalg.cho_solve(linalg.cho_factor(self.m),x))
xSigmainvx does not use stored cholesky yet
yt_minv_y
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_decomp_1.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_decomp_1.py
BSD-3-Clause
def tiny2zero(x, eps = 1e-15): '''replace abs values smaller than eps by zero, makes copy ''' mask = np.abs(x.copy()) < eps x[mask] = 0 return x
replace abs values smaller than eps by zero, makes copy
tiny2zero
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_decomp_1.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_decomp_1.py
BSD-3-Clause
def acovf_fft(x, demean=True): '''autocovariance function with call to fftconvolve, biased Parameters ---------- x : array_like timeseries, signal demean : bool If true, then demean time series Returns ------- acovf : ndarray autocovariance for data, same length as x might work for nd in parallel with time along axis 0 ''' from scipy import signal x = np.asarray(x) if demean: x = x - x.mean() signal.fftconvolve(x,x[::-1])[len(x)-1:len(x)+10]/x.shape[0]
autocovariance function with call to fftconvolve, biased Parameters ---------- x : array_like timeseries, signal demean : bool If true, then demean time series Returns ------- acovf : ndarray autocovariance for data, same length as x might work for nd in parallel with time along axis 0
acovf_fft
python
statsmodels/statsmodels
statsmodels/sandbox/archive/tsa.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/tsa.py
BSD-3-Clause
def _opt_wtd_nuis_regress(self, test_vals): """ A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest Parameters ---------- params: 1d array The regression coefficients of the model. This includes the nuisance and parameters of interests. Returns ------- llr : float -2 times the log likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest. """ test_params = test_vals.reshape(self.model.nvar, 1) est_vect = self.model.uncens_exog * (self.model.uncens_endog - np.dot(self.model.uncens_exog, test_params)) eta_star = self._modif_newton(np.zeros(self.model.nvar), est_vect, self.model._fit_weights) denom = np.sum(self.model._fit_weights) + np.dot(eta_star, est_vect.T) self.new_weights = self.model._fit_weights / denom return -1 * np.sum(np.log(self.new_weights))
A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest Parameters ---------- params: 1d array The regression coefficients of the model. This includes the nuisance and parameters of interests. Returns ------- llr : float -2 times the log likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest.
_opt_wtd_nuis_regress
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _EM_test(self, nuisance_params, params=None, param_nums=None, b0_vals=None, F=None, survidx=None, uncens_nobs=None, numcensbelow=None, km=None, uncensored=None, censored=None, maxiter=None, ftol=None): """ Uses EM algorithm to compute the maximum likelihood of a test Parameters ---------- nuisance_params : ndarray Vector of values to be used as nuisance params. maxiter : int Number of iterations in the EM algorithm for a parameter vector Returns ------- -2 ''*'' log likelihood ratio at hypothesized values and nuisance params Notes ----- Optional parameters are provided by the test_beta function. """ iters = 0 params[param_nums] = b0_vals nuis_param_index = np.int_(np.delete(np.arange(self.model.nvar), param_nums)) params[nuis_param_index] = nuisance_params to_test = params.reshape(self.model.nvar, 1) opt_res = np.inf diff = np.inf while iters < maxiter and diff > ftol: F = F.flatten() death = np.cumsum(F[::-1]) survivalprob = death[::-1] surv_point_mat = np.dot(F.reshape(-1, 1), 1. / survivalprob[survidx].reshape(1, - 1)) surv_point_mat = add_constant(surv_point_mat) summed_wts = np.cumsum(surv_point_mat, axis=1) wts = summed_wts[np.int_(np.arange(uncens_nobs)), numcensbelow[uncensored]] # ^E step # See Zhou 2005, section 3. self.model._fit_weights = wts new_opt_res = self._opt_wtd_nuis_regress(to_test) # ^ Uncensored weights' contribution to likelihood value. F = self.new_weights # ^ M step diff = np.abs(new_opt_res - opt_res) opt_res = new_opt_res iters = iters + 1 death = np.cumsum(F.flatten()[::-1]) survivalprob = death[::-1] llike = -opt_res + np.sum(np.log(survivalprob[survidx])) wtd_km = km.flatten() / np.sum(km) survivalmax = np.cumsum(wtd_km[::-1])[::-1] llikemax = np.sum(np.log(wtd_km[uncensored])) + \ np.sum(np.log(survivalmax[censored])) if iters == maxiter: warnings.warn('The EM reached the maximum number of iterations', IterationLimitWarning) return -2 * (llike - llikemax)
Uses EM algorithm to compute the maximum likelihood of a test Parameters ---------- nuisance_params : ndarray Vector of values to be used as nuisance params. maxiter : int Number of iterations in the EM algorithm for a parameter vector Returns ------- -2 ''*'' log likelihood ratio at hypothesized values and nuisance params Notes ----- Optional parameters are provided by the test_beta function.
_EM_test
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _ci_limits_beta(self, b0, param_num=None): """ Returns the difference between the log likelihood for a parameter and some critical value. Parameters ---------- b0: float Value of a regression parameter param_num : int Parameter index of b0 """ return self.test_beta([b0], [param_num])[0] - self.r0
Returns the difference between the log likelihood for a parameter and some critical value. Parameters ---------- b0: float Value of a regression parameter param_num : int Parameter index of b0
_ci_limits_beta
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _is_tied(self, endog, censors): """ Indicated if an observation takes the same value as the next ordered observation. Parameters ---------- endog : ndarray Models endogenous variable censors : ndarray arrat indicating a censored array Returns ------- indic_ties : ndarray ties[i]=1 if endog[i]==endog[i+1] and censors[i]=censors[i+1] """ nobs = int(self.nobs) endog_idx = endog[np.arange(nobs - 1)] == ( endog[np.arange(nobs - 1) + 1]) censors_idx = censors[np.arange(nobs - 1)] == ( censors[np.arange(nobs - 1) + 1]) indic_ties = endog_idx * censors_idx # Both true return np.int_(indic_ties)
Indicated if an observation takes the same value as the next ordered observation. Parameters ---------- endog : ndarray Models endogenous variable censors : ndarray arrat indicating a censored array Returns ------- indic_ties : ndarray ties[i]=1 if endog[i]==endog[i+1] and censors[i]=censors[i+1]
_is_tied
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _km_w_ties(self, tie_indic, untied_km): """ Computes KM estimator value at each observation, taking into acocunt ties in the data. Parameters ---------- tie_indic: 1d array Indicates if the i'th observation is the same as the ith +1 untied_km: 1d array Km estimates at each observation assuming no ties. """ # TODO: Vectorize, even though it is only 1 pass through for any # function call num_same = 1 idx_nums = [] for obs_num in np.arange(int(self.nobs - 1))[::-1]: if tie_indic[obs_num] == 1: idx_nums.append(obs_num) num_same = num_same + 1 untied_km[obs_num] = untied_km[obs_num + 1] elif tie_indic[obs_num] == 0 and num_same > 1: idx_nums.append(max(idx_nums) + 1) idx_nums = np.asarray(idx_nums) untied_km[idx_nums] = untied_km[idx_nums] num_same = 1 idx_nums = [] return untied_km.reshape(self.nobs, 1)
Computes KM estimator value at each observation, taking into acocunt ties in the data. Parameters ---------- tie_indic: 1d array Indicates if the i'th observation is the same as the ith +1 untied_km: 1d array Km estimates at each observation assuming no ties.
_km_w_ties
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _make_km(self, endog, censors): """ Computes the Kaplan-Meier estimate for the weights in the AFT model Parameters ---------- endog: nx1 array Array of response variables censors: nx1 array Censor-indicating variable Returns ------- Kaplan Meier estimate for each observation Notes ----- This function makes calls to _is_tied and km_w_ties to handle ties in the data.If a censored observation and an uncensored observation has the same value, it is assumed that the uncensored happened first. """ nobs = self.nobs num = (nobs - (np.arange(nobs) + 1.)) denom = (nobs - (np.arange(nobs) + 1.) + 1.) km = (num / denom).reshape(nobs, 1) km = km ** np.abs(censors - 1.) km = np.cumprod(km) # If no ties, this is kaplan-meier tied = self._is_tied(endog, censors) wtd_km = self._km_w_ties(tied, km) return (censors / wtd_km).reshape(nobs, 1)
Computes the Kaplan-Meier estimate for the weights in the AFT model Parameters ---------- endog: nx1 array Array of response variables censors: nx1 array Censor-indicating variable Returns ------- Kaplan Meier estimate for each observation Notes ----- This function makes calls to _is_tied and km_w_ties to handle ties in the data.If a censored observation and an uncensored observation has the same value, it is assumed that the uncensored happened first.
_make_km
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def fit(self): """ Fits an AFT model and returns results instance Parameters ---------- None Returns ------- Results instance. Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored. """ return AFTResults(self)
Fits an AFT model and returns results instance Parameters ---------- None Returns ------- Results instance. Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored.
fit
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def params(self): """ Fits an AFT model and returns parameters. Parameters ---------- None Returns ------- Fitted params Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored. """ self.model.modif_censors = np.copy(self.model.censors) self.model.modif_censors[-1] = 1 wts = self.model._make_km(self.model.endog, self.model.modif_censors) res = WLS(self.model.endog, self.model.exog, wts).fit() params = res.params return params
Fits an AFT model and returns parameters. Parameters ---------- None Returns ------- Fitted params Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored.
params
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def test_beta(self, b0_vals, param_nums, ftol=10 ** - 5, maxiter=30, print_weights=1): """ Returns the profile log likelihood for regression parameters 'param_num' at 'b0_vals.' Parameters ---------- b0_vals : list The value of parameters to be tested param_num : list Which parameters to be tested maxiter : int, optional How many iterations to use in the EM algorithm. Default is 30 ftol : float, optional The function tolerance for the EM optimization. Default is 10''**''-5 print_weights : bool If true, returns the weights tate maximize the profile log likelihood. Default is False Returns ------- test_results : tuple The log-likelihood and p-pvalue of the test. Notes ----- The function will warn if the EM reaches the maxiter. However, when optimizing over nuisance parameters, it is possible to reach a maximum number of inner iterations for a specific value for the nuisance parameters while the resultsof the function are still valid. This usually occurs when the optimization over the nuisance parameters selects parameter values that yield a log-likihood ratio close to infinity. Examples -------- >>> import statsmodels.api as sm >>> import numpy as np # Test parameter is .05 in one regressor no intercept model >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, x, cens) >>> res=model.test_beta([0], [0]) >>> res (1.4657739632606308, 0.22601365256959183) #Test slope is 0 in model with intercept >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, sm.add_constant(x), cens) >>> res = model.test_beta([0], [1]) >>> res (4.623487775078047, 0.031537049752572731) """ censors = self.model.censors endog = self.model.endog exog = self.model.exog uncensored = (censors == 1).flatten() censored = (censors == 0).flatten() uncens_endog = endog[uncensored] uncens_exog = exog[uncensored, :] reg_model = OLS(uncens_endog, uncens_exog).fit() llr, pval, new_weights = reg_model.el_test(b0_vals, param_nums, return_weights=True) # Needs to be changed km = self.model._make_km(endog, censors).flatten() # when merged uncens_nobs = self.model.uncens_nobs F = np.asarray(new_weights).reshape(uncens_nobs) # Step 0 ^ params = self.params() survidx = np.where(censors == 0) survidx = survidx[0] - np.arange(len(survidx[0])) numcensbelow = np.int_(np.cumsum(1 - censors)) if len(param_nums) == len(params): llr = self._EM_test([], F=F, params=params, param_nums=param_nums, b0_vals=b0_vals, survidx=survidx, uncens_nobs=uncens_nobs, numcensbelow=numcensbelow, km=km, uncensored=uncensored, censored=censored, ftol=ftol, maxiter=25) return llr, chi2.sf(llr, self.model.nvar) else: x0 = np.delete(params, param_nums) try: res = optimize.fmin(self._EM_test, x0, (params, param_nums, b0_vals, F, survidx, uncens_nobs, numcensbelow, km, uncensored, censored, maxiter, ftol), full_output=1, disp=0) llr = res[1] return llr, chi2.sf(llr, len(param_nums)) except np.linalg.LinAlgError: return np.inf, 0
Returns the profile log likelihood for regression parameters 'param_num' at 'b0_vals.' Parameters ---------- b0_vals : list The value of parameters to be tested param_num : list Which parameters to be tested maxiter : int, optional How many iterations to use in the EM algorithm. Default is 30 ftol : float, optional The function tolerance for the EM optimization. Default is 10''**''-5 print_weights : bool If true, returns the weights tate maximize the profile log likelihood. Default is False Returns ------- test_results : tuple The log-likelihood and p-pvalue of the test. Notes ----- The function will warn if the EM reaches the maxiter. However, when optimizing over nuisance parameters, it is possible to reach a maximum number of inner iterations for a specific value for the nuisance parameters while the resultsof the function are still valid. This usually occurs when the optimization over the nuisance parameters selects parameter values that yield a log-likihood ratio close to infinity. Examples -------- >>> import statsmodels.api as sm >>> import numpy as np # Test parameter is .05 in one regressor no intercept model >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, x, cens) >>> res=model.test_beta([0], [0]) >>> res (1.4657739632606308, 0.22601365256959183) #Test slope is 0 in model with intercept >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, sm.add_constant(x), cens) >>> res = model.test_beta([0], [1]) >>> res (4.623487775078047, 0.031537049752572731)
test_beta
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def ci_beta(self, param_num, beta_high, beta_low, sig=.05): """ Returns the confidence interval for a regression parameter in the AFT model. Parameters ---------- param_num : int Parameter number of interest beta_high : float Upper bound for the confidence interval beta_low : float Lower bound for the confidence interval sig : float, optional Significance level. Default is .05 Notes ----- If the function returns f(a) and f(b) must have different signs, consider widening the search area by adjusting beta_low and beta_high. Also note that this process is computational intensive. There are 4 levels of optimization/solving. From outer to inner: 1) Solving so that llr-critical value = 0 2) maximizing over nuisance parameters 3) Using EM at each value of nuisamce parameters 4) Using the _modified_Newton optimizer at each iteration of the EM algorithm. Also, for very unlikely nuisance parameters, it is possible for the EM algorithm to not converge. This is not an indicator that the solver did not find the correct solution. It just means for a specific iteration of the nuisance parameters, the optimizer was unable to converge. If the user desires to verify the success of the optimization, it is recommended to test the limits using test_beta. """ params = self.params() self.r0 = chi2.ppf(1 - sig, 1) ll = optimize.brentq(self._ci_limits_beta, beta_low, params[param_num], (param_num)) ul = optimize.brentq(self._ci_limits_beta, params[param_num], beta_high, (param_num)) return ll, ul
Returns the confidence interval for a regression parameter in the AFT model. Parameters ---------- param_num : int Parameter number of interest beta_high : float Upper bound for the confidence interval beta_low : float Lower bound for the confidence interval sig : float, optional Significance level. Default is .05 Notes ----- If the function returns f(a) and f(b) must have different signs, consider widening the search area by adjusting beta_low and beta_high. Also note that this process is computational intensive. There are 4 levels of optimization/solving. From outer to inner: 1) Solving so that llr-critical value = 0 2) maximizing over nuisance parameters 3) Using EM at each value of nuisamce parameters 4) Using the _modified_Newton optimizer at each iteration of the EM algorithm. Also, for very unlikely nuisance parameters, it is possible for the EM algorithm to not converge. This is not an indicator that the solver did not find the correct solution. It just means for a specific iteration of the nuisance parameters, the optimizer was unable to converge. If the user desires to verify the success of the optimization, it is recommended to test the limits using test_beta.
ci_beta
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def fit(self): """ Fits the model and provides regression results. Returns ------- Results : class Empirical likelihood regression class. """ exog_with = add_constant(self.exog, prepend=True) restricted_model = OLS(self.endog, exog_with) restricted_fit = restricted_model.fit() restricted_el = restricted_fit.el_test( np.array([0]), np.array([0]), ret_params=1) params = np.squeeze(restricted_el[3]) beta_hat_llr = restricted_el[0] llf = np.sum(np.log(restricted_el[2])) return OriginResults(restricted_model, params, beta_hat_llr, llf)
Fits the model and provides regression results. Returns ------- Results : class Empirical likelihood regression class.
fit
python
statsmodels/statsmodels
statsmodels/emplike/originregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/originregress.py
BSD-3-Clause
def el_test(self, b0_vals, param_nums, method='nm', stochastic_exog=1, return_weights=0): """ Returns the llr and p-value for a hypothesized parameter value for a regression that goes through the origin. Parameters ---------- b0_vals : 1darray The hypothesized value to be tested. param_num : 1darray Which parameters to test. Note this uses python indexing but the '0' parameter refers to the intercept term, which is assumed 0. Therefore, param_num should be > 0. return_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. Default is False. method : str Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm'. stochastic_exog : bool When TRUE, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. Default is TRUE. Returns ------- res : tuple pvalue and likelihood ratio. """ b0_vals = np.hstack((0, b0_vals)) param_nums = np.hstack((0, param_nums)) test_res = self.model.fit().el_test(b0_vals, param_nums, method=method, stochastic_exog=stochastic_exog, return_weights=return_weights) llr_test = test_res[0] llr_res = llr_test - self.llr pval = chi2.sf(llr_res, self.model.exog.shape[1] - 1) if return_weights: return llr_res, pval, test_res[2] else: return llr_res, pval
Returns the llr and p-value for a hypothesized parameter value for a regression that goes through the origin. Parameters ---------- b0_vals : 1darray The hypothesized value to be tested. param_num : 1darray Which parameters to test. Note this uses python indexing but the '0' parameter refers to the intercept term, which is assumed 0. Therefore, param_num should be > 0. return_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. Default is False. method : str Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm'. stochastic_exog : bool When TRUE, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. Default is TRUE. Returns ------- res : tuple pvalue and likelihood ratio.
el_test
python
statsmodels/statsmodels
statsmodels/emplike/originregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/originregress.py
BSD-3-Clause
def conf_int_el(self, param_num, upper_bound=None, lower_bound=None, sig=.05, method='nm', stochastic_exog=True): """ Returns the confidence interval for a regression parameter when the regression is forced through the origin. Parameters ---------- param_num : int The parameter number to be tested. Note this uses python indexing but the '0' parameter refers to the intercept term. upper_bound : float The maximum value the upper confidence limit can be. The closer this is to the confidence limit, the quicker the computation. Default is .00001 confidence limit under normality. lower_bound : float The minimum value the lower confidence limit can be. Default is .00001 confidence limit under normality. sig : float, optional The significance level. Default .05. method : str, optional Algorithm to optimize of nuisance params. Can be 'nm' or 'powell'. Default is 'nm'. stochastic_exog : bool Default is True. Returns ------- ci: tuple The confidence interval for the parameter 'param_num'. """ r0 = chi2.ppf(1 - sig, 1) param_num = np.array([param_num]) if upper_bound is None: ci = np.asarray(self.model.fit().conf_int(.0001)) upper_bound = (np.squeeze(ci[param_num])[1]) if lower_bound is None: ci = np.asarray(self.model.fit().conf_int(.0001)) lower_bound = (np.squeeze(ci[param_num])[0]) def f(b0): b0 = np.array([b0]) val = self.el_test( b0, param_num, method=method, stochastic_exog=stochastic_exog ) return val[0] - r0 _param = np.squeeze(self.params[param_num]) lowerl = optimize.brentq(f, np.squeeze(lower_bound), _param) upperl = optimize.brentq(f, _param, np.squeeze(upper_bound)) return (lowerl, upperl)
Returns the confidence interval for a regression parameter when the regression is forced through the origin. Parameters ---------- param_num : int The parameter number to be tested. Note this uses python indexing but the '0' parameter refers to the intercept term. upper_bound : float The maximum value the upper confidence limit can be. The closer this is to the confidence limit, the quicker the computation. Default is .00001 confidence limit under normality. lower_bound : float The minimum value the lower confidence limit can be. Default is .00001 confidence limit under normality. sig : float, optional The significance level. Default .05. method : str, optional Algorithm to optimize of nuisance params. Can be 'nm' or 'powell'. Default is 'nm'. stochastic_exog : bool Default is True. Returns ------- ci: tuple The confidence interval for the parameter 'param_num'.
conf_int_el
python
statsmodels/statsmodels
statsmodels/emplike/originregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/originregress.py
BSD-3-Clause
def _opt_common_mu(self, mu): """ Optimizes the likelihood under the null hypothesis that all groups have mean mu. Parameters ---------- mu : float The common mean. Returns ------- llr : float -2 times the llr ratio, which is the test statistic. """ nobs = self.nobs endog = self.endog num_groups = self.num_groups endog_asarray = np.zeros((nobs, num_groups)) obs_num = 0 for arr_num in range(len(endog)): new_obs_num = obs_num + len(endog[arr_num]) endog_asarray[obs_num: new_obs_num, arr_num] = endog[arr_num] - \ mu obs_num = new_obs_num est_vect = endog_asarray wts = np.ones(est_vect.shape[0]) * (1. / (est_vect.shape[0])) eta_star = self._modif_newton(np.zeros(num_groups), est_vect, wts) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Optimizes the likelihood under the null hypothesis that all groups have mean mu. Parameters ---------- mu : float The common mean. Returns ------- llr : float -2 times the llr ratio, which is the test statistic.
_opt_common_mu
python
statsmodels/statsmodels
statsmodels/emplike/elanova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/elanova.py
BSD-3-Clause
def compute_ANOVA(self, mu=None, mu_start=0, return_weights=0): """ Returns -2 log likelihood, the pvalue and the maximum likelihood estimate for a common mean. Parameters ---------- mu : float If a mu is specified, ANOVA is conducted with mu as the common mean. Otherwise, the common mean is the maximum empirical likelihood estimate of the common mean. Default is None. mu_start : float Starting value for commean mean if specific mu is not specified. Default = 0. return_weights : bool if TRUE, returns the weights on observations that maximize the likelihood. Default is FALSE. Returns ------- res: tuple The log-likelihood, p-value and estimate for the common mean. """ if mu is not None: llr = self._opt_common_mu(mu) pval = 1 - chi2.cdf(llr, self.num_groups - 1) if return_weights: return llr, pval, mu, self.new_weights else: return llr, pval, mu else: res = optimize.fmin_powell(self._opt_common_mu, mu_start, full_output=1, disp=False) llr = res[1] mu_common = float(np.squeeze(res[0])) pval = 1 - chi2.cdf(llr, self.num_groups - 1) if return_weights: return llr, pval, mu_common, self.new_weights else: return llr, pval, mu_common
Returns -2 log likelihood, the pvalue and the maximum likelihood estimate for a common mean. Parameters ---------- mu : float If a mu is specified, ANOVA is conducted with mu as the common mean. Otherwise, the common mean is the maximum empirical likelihood estimate of the common mean. Default is None. mu_start : float Starting value for commean mean if specific mu is not specified. Default = 0. return_weights : bool if TRUE, returns the weights on observations that maximize the likelihood. Default is FALSE. Returns ------- res: tuple The log-likelihood, p-value and estimate for the common mean.
compute_ANOVA
python
statsmodels/statsmodels
statsmodels/emplike/elanova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/elanova.py
BSD-3-Clause
def _opt_nuis_regress(self, nuisance_params, param_nums=None, endog=None, exog=None, nobs=None, nvar=None, params=None, b0_vals=None, stochastic_exog=None): """ A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest. Parameters ---------- nuisance_params: 1darray Parameters to be optimized over. Returns ------- llr : float -2 x the log-likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest. """ params[param_nums] = b0_vals nuis_param_index = np.int_(np.delete(np.arange(nvar), param_nums)) params[nuis_param_index] = nuisance_params new_params = params.reshape(nvar, 1) self.new_params = new_params est_vect = exog * \ (endog - np.squeeze(np.dot(exog, new_params))).reshape(int(nobs), 1) if not stochastic_exog: exog_means = np.mean(exog, axis=0)[1:] exog_mom2 = (np.sum(exog * exog, axis=0))[1:]\ / nobs mean_est_vect = exog[:, 1:] - exog_means mom2_est_vect = (exog * exog)[:, 1:] - exog_mom2 regressor_est_vect = np.concatenate((mean_est_vect, mom2_est_vect), axis=1) est_vect = np.concatenate((est_vect, regressor_est_vect), axis=1) wts = np.ones(int(nobs)) * (1. / nobs) x0 = np.zeros(est_vect.shape[1]).reshape(-1, 1) try: eta_star = self._modif_newton(x0, est_vect, wts) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom # the following commented out code is to verify weights # see open issue #1845 #self.new_weights /= self.new_weights.sum() #if not np.allclose(self.new_weights.sum(), 1., rtol=0, atol=1e-10): # raise RuntimeError('weights do not sum to 1') llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr except np.linalg.LinAlgError: return np.inf
A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest. Parameters ---------- nuisance_params: 1darray Parameters to be optimized over. Returns ------- llr : float -2 x the log-likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest.
_opt_nuis_regress
python
statsmodels/statsmodels
statsmodels/emplike/elregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/elregress.py
BSD-3-Clause
def DescStat(endog): """ Returns an instance to conduct inference on descriptive statistics via empirical likelihood. See DescStatUV and DescStatMV for more information. Parameters ---------- endog : ndarray Array of data Returns : DescStat instance If k=1, the function returns a univariate instance, DescStatUV. If k>1, the function returns a multivariate instance, DescStatMV. """ if endog.ndim == 1: endog = endog.reshape(len(endog), 1) if endog.shape[1] == 1: return DescStatUV(endog) if endog.shape[1] > 1: return DescStatMV(endog)
Returns an instance to conduct inference on descriptive statistics via empirical likelihood. See DescStatUV and DescStatMV for more information. Parameters ---------- endog : ndarray Array of data Returns : DescStat instance If k=1, the function returns a univariate instance, DescStatUV. If k>1, the function returns a multivariate instance, DescStatMV.
DescStat
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _log_star(self, eta, est_vect, weights, nobs): """ Transforms the log of observation probabilities in terms of the Lagrange multiplier to the log 'star' of the probabilities. Parameters ---------- eta : float Lagrange multiplier est_vect : ndarray (n,k) Estimating equations vector wts : nx1 array Observation weights Returns ------ data_star : ndarray The weighted logstar of the estimting equations Notes ----- This function is only a placeholder for the _fit_Newton. The function value is not used in optimization and the optimal value is disregarded when computing the log likelihood ratio. """ data_star = np.log(weights) + (np.sum(weights) +\ np.dot(est_vect, eta)) idx = data_star < 1. / nobs not_idx = ~idx nx = nobs * data_star[idx] data_star[idx] = np.log(1. / nobs) - 1.5 + nx * (2. - nx / 2) data_star[not_idx] = np.log(data_star[not_idx]) return data_star
Transforms the log of observation probabilities in terms of the Lagrange multiplier to the log 'star' of the probabilities. Parameters ---------- eta : float Lagrange multiplier est_vect : ndarray (n,k) Estimating equations vector wts : nx1 array Observation weights Returns ------ data_star : ndarray The weighted logstar of the estimting equations Notes ----- This function is only a placeholder for the _fit_Newton. The function value is not used in optimization and the optimal value is disregarded when computing the log likelihood ratio.
_log_star
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _hess(self, eta, est_vect, weights, nobs): """ Calculates the hessian of a weighted empirical likelihood problem. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- hess : m x m array Weighted hessian used in _wtd_modif_newton """ #eta = np.squeeze(eta) data_star_doub_prime = np.sum(weights) + np.dot(est_vect, eta) idx = data_star_doub_prime < 1. / nobs not_idx = ~idx data_star_doub_prime[idx] = - nobs ** 2 data_star_doub_prime[not_idx] = - (data_star_doub_prime[not_idx]) ** -2 wtd_dsdp = weights * data_star_doub_prime return np.dot(est_vect.T, wtd_dsdp[:, None] * est_vect)
Calculates the hessian of a weighted empirical likelihood problem. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- hess : m x m array Weighted hessian used in _wtd_modif_newton
_hess
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _grad(self, eta, est_vect, weights, nobs): """ Calculates the gradient of a weighted empirical likelihood problem Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- gradient : ndarray (m,1) The gradient used in _wtd_modif_newton """ #eta = np.squeeze(eta) data_star_prime = np.sum(weights) + np.dot(est_vect, eta) idx = data_star_prime < 1. / nobs not_idx = ~idx data_star_prime[idx] = nobs * (2 - nobs * data_star_prime[idx]) data_star_prime[not_idx] = 1. / data_star_prime[not_idx] return np.dot(weights * data_star_prime, est_vect)
Calculates the gradient of a weighted empirical likelihood problem Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- gradient : ndarray (m,1) The gradient used in _wtd_modif_newton
_grad
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _modif_newton(self, eta, est_vect, weights): """ Modified Newton's method for maximizing the log 'star' equation. This function calls _fit_newton to find the optimal values of eta. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- params : 1xm array Lagrange multiplier that maximizes the log-likelihood """ nobs = len(est_vect) def f(x0): return -np.sum(self._log_star(x0, est_vect, weights, nobs)) def grad(x0): return -self._grad(x0, est_vect, weights, nobs) def hess(x0): return -self._hess(x0, est_vect, weights, nobs) kwds = {'tol': 1e-8} eta = eta.squeeze() res = _fit_newton(f, grad, eta, (), kwds, hess=hess, maxiter=50, \ disp=0) return res[0]
Modified Newton's method for maximizing the log 'star' equation. This function calls _fit_newton to find the optimal values of eta. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- params : 1xm array Lagrange multiplier that maximizes the log-likelihood
_modif_newton
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _find_eta(self, eta): """ Finding the root of sum(xi-h0)/(1+eta(xi-mu)) solves for eta when computing ELR for univariate mean. Parameters ---------- eta : float Lagrange multiplier in the empirical likelihood maximization Returns ------- llr : float n times the log likelihood value for a given value of eta """ return np.sum((self.endog - self.mu0) / \ (1. + eta * (self.endog - self.mu0)))
Finding the root of sum(xi-h0)/(1+eta(xi-mu)) solves for eta when computing ELR for univariate mean. Parameters ---------- eta : float Lagrange multiplier in the empirical likelihood maximization Returns ------- llr : float n times the log likelihood value for a given value of eta
_find_eta
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_mu(self, mu): """ Calculates the difference between the log likelihood of mu_test and a specified critical value. Parameters ---------- mu : float Hypothesized value of the mean. Returns ------- diff : float The difference between the log likelihood value of mu0 and a specified value. """ return self.test_mean(mu)[0] - self.r0
Calculates the difference between the log likelihood of mu_test and a specified critical value. Parameters ---------- mu : float Hypothesized value of the mean. Returns ------- diff : float The difference between the log likelihood value of mu0 and a specified value.
_ci_limits_mu
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _find_gamma(self, gamma): """ Finds gamma that satisfies sum(log(n * w(gamma))) - log(r0) = 0 Used for confidence intervals for the mean Parameters ---------- gamma : float Lagrange multiplier when computing confidence interval Returns ------- diff : float The difference between the log-liklihood when the Lagrange multiplier is gamma and a pre-specified value """ denom = np.sum((self.endog - gamma) ** -1) new_weights = (self.endog - gamma) ** -1 / denom return -2 * np.sum(np.log(self.nobs * new_weights)) - \ self.r0
Finds gamma that satisfies sum(log(n * w(gamma))) - log(r0) = 0 Used for confidence intervals for the mean Parameters ---------- gamma : float Lagrange multiplier when computing confidence interval Returns ------- diff : float The difference between the log-liklihood when the Lagrange multiplier is gamma and a pre-specified value
_find_gamma
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_var(self, nuisance_mu, pval=False): """ This is the function to be optimized over a nuisance mean parameter to determine the likelihood ratio for the variance Parameters ---------- nuisance_mu : float Value of a nuisance mean parameter Returns ------- llr : float Log likelihood of a pre-specified variance holding the nuisance parameter constant """ endog = self.endog nobs = self.nobs sig_data = ((endog - nuisance_mu) ** 2 \ - self.sig2_0) mu_data = (endog - nuisance_mu) est_vect = np.column_stack((mu_data, sig_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) if pval: # Used for contour plotting return chi2.sf(-2 * llr, 1) return -2 * llr
This is the function to be optimized over a nuisance mean parameter to determine the likelihood ratio for the variance Parameters ---------- nuisance_mu : float Value of a nuisance mean parameter Returns ------- llr : float Log likelihood of a pre-specified variance holding the nuisance parameter constant
_opt_var
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_var(self, var): """ Used to determine the confidence intervals for the variance. It calls test_var and when called by an optimizer, finds the value of sig2_0 that is chi2.ppf(significance-level) Parameters ---------- var_test : float Hypothesized value of the variance Returns ------- diff : float The difference between the log likelihood ratio at var_test and a pre-specified value. """ return self.test_var(var)[0] - self.r0
Used to determine the confidence intervals for the variance. It calls test_var and when called by an optimizer, finds the value of sig2_0 that is chi2.ppf(significance-level) Parameters ---------- var_test : float Hypothesized value of the variance Returns ------- diff : float The difference between the log likelihood ratio at var_test and a pre-specified value.
_ci_limits_var
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_skew(self, nuis_params): """ Called by test_skew. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-specified skewness holding the nuisance parameters constant. """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] skew_data = (((endog - nuis_params[0]) ** 3) / (nuis_params[1] ** 1.5)) - self.skew0 est_vect = np.column_stack((mu_data, sig_data, skew_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Called by test_skew. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-specified skewness holding the nuisance parameters constant.
_opt_skew
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_kurt(self, nuis_params): """ Called by test_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-speified kurtosis holding the nuisance parameters constant """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] kurt_data = ((((endog - nuis_params[0]) ** 4) / \ (nuis_params[1] ** 2)) - 3) - self.kurt0 est_vect = np.column_stack((mu_data, sig_data, kurt_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Called by test_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-speified kurtosis holding the nuisance parameters constant
_opt_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_skew_kurt(self, nuis_params): """ Called by test_joint_skew_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------ llr : float The log likelihood ratio of a pre-speified skewness and kurtosis holding the nuisance parameters constant. """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] skew_data = (((endog - nuis_params[0]) ** 3) / \ (nuis_params[1] ** 1.5)) - self.skew0 kurt_data = ((((endog - nuis_params[0]) ** 4) / \ (nuis_params[1] ** 2)) - 3) - self.kurt0 est_vect = np.column_stack((mu_data, sig_data, skew_data, kurt_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Called by test_joint_skew_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------ llr : float The log likelihood ratio of a pre-speified skewness and kurtosis holding the nuisance parameters constant.
_opt_skew_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_skew(self, skew): """ Parameters ---------- skew0 : float Hypothesized value of skewness Returns ------- diff : float The difference between the log likelihood ratio at skew and a pre-specified value. """ return self.test_skew(skew)[0] - self.r0
Parameters ---------- skew0 : float Hypothesized value of skewness Returns ------- diff : float The difference between the log likelihood ratio at skew and a pre-specified value.
_ci_limits_skew
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_kurt(self, kurt): """ Parameters ---------- skew0 : float Hypothesized value of kurtosis Returns ------- diff : float The difference between the log likelihood ratio at kurt and a pre-specified value. """ return self.test_kurt(kurt)[0] - self.r0
Parameters ---------- skew0 : float Hypothesized value of kurtosis Returns ------- diff : float The difference between the log likelihood ratio at kurt and a pre-specified value.
_ci_limits_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_correl(self, nuis_params, corr0, endog, nobs, x0, weights0): """ Parameters ---------- nuis_params : 1darray Array containing two nuisance means and two nuisance variances Returns ------- llr : float The log-likelihood of the correlation coefficient holding nuisance parameters constant """ mu1_data, mu2_data = (endog - nuis_params[::2]).T sig1_data = mu1_data ** 2 - nuis_params[1] sig2_data = mu2_data ** 2 - nuis_params[3] correl_data = ((mu1_data * mu2_data) - corr0 * (nuis_params[1] * nuis_params[3]) ** .5) est_vect = np.column_stack((mu1_data, sig1_data, mu2_data, sig2_data, correl_data)) eta_star = self._modif_newton(x0, est_vect, weights0) denom = 1. + np.dot(est_vect, eta_star) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Parameters ---------- nuis_params : 1darray Array containing two nuisance means and two nuisance variances Returns ------- llr : float The log-likelihood of the correlation coefficient holding nuisance parameters constant
_opt_correl
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_mean(self, mu0, return_weights=False): """ Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. Parameters ---------- mu0 : float Mean value to be tested return_weights : bool If return_weights is True the function returns the weights of the observations under the null hypothesis. Default is False Returns ------- test_results : tuple The log-likelihood ratio and p-value of mu0 """ self.mu0 = mu0 endog = self.endog nobs = self.nobs eta_min = (1. - (1. / nobs)) / (self.mu0 - max(endog)) eta_max = (1. - (1. / nobs)) / (self.mu0 - min(endog)) eta_star = optimize.brentq(self._find_eta, eta_min, eta_max) new_weights = (1. / nobs) * 1. / (1. + eta_star * (endog - self.mu0)) llr = -2 * np.sum(np.log(nobs * new_weights)) if return_weights: return llr, chi2.sf(llr, 1), new_weights else: return llr, chi2.sf(llr, 1)
Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. Parameters ---------- mu0 : float Mean value to be tested return_weights : bool If return_weights is True the function returns the weights of the observations under the null hypothesis. Default is False Returns ------- test_results : tuple The log-likelihood ratio and p-value of mu0
test_mean
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def ci_mean(self, sig=.05, method='gamma', epsilon=10 ** -8, gamma_low=-10 ** 10, gamma_high=10 ** 10): """ Returns the confidence interval for the mean. Parameters ---------- sig : float significance level. Default is .05 method : str Root finding method, Can be 'nested-brent' or 'gamma'. Default is 'gamma' 'gamma' Tries to solve for the gamma parameter in the Lagrange (see Owen pg 22) and then determine the weights. 'nested brent' uses brents method to find the confidence intervals but must maximize the likelihood ratio on every iteration. gamma is generally much faster. If the optimizations does not converge, try expanding the gamma_high and gamma_low variable. gamma_low : float Lower bound for gamma when finding lower limit. If function returns f(a) and f(b) must have different signs, consider lowering gamma_low. gamma_high : float Upper bound for gamma when finding upper limit. If function returns f(a) and f(b) must have different signs, consider raising gamma_high. epsilon : float When using 'nested-brent', amount to decrease (increase) from the maximum (minimum) of the data when starting the search. This is to protect against the likelihood ratio being zero at the maximum (minimum) value of the data. If data is very small in absolute value (<10 ``**`` -6) consider shrinking epsilon When using 'gamma', amount to decrease (increase) the minimum (maximum) by to start the search for gamma. If function returns f(a) and f(b) must have different signs, consider lowering epsilon. Returns ------- Interval : tuple Confidence interval for the mean """ endog = self.endog sig = 1 - sig if method == 'nested-brent': self.r0 = chi2.ppf(sig, 1) middle = np.mean(endog) epsilon_u = (max(endog) - np.mean(endog)) * epsilon epsilon_l = (np.mean(endog) - min(endog)) * epsilon ulim = optimize.brentq(self._ci_limits_mu, middle, max(endog) - epsilon_u) llim = optimize.brentq(self._ci_limits_mu, middle, min(endog) + epsilon_l) return llim, ulim if method == 'gamma': self.r0 = chi2.ppf(sig, 1) gamma_star_l = optimize.brentq(self._find_gamma, gamma_low, min(endog) - epsilon) gamma_star_u = optimize.brentq(self._find_gamma, \ max(endog) + epsilon, gamma_high) weights_low = ((endog - gamma_star_l) ** -1) / \ np.sum((endog - gamma_star_l) ** -1) weights_high = ((endog - gamma_star_u) ** -1) / \ np.sum((endog - gamma_star_u) ** -1) mu_low = np.sum(weights_low * endog) mu_high = np.sum(weights_high * endog) return mu_low, mu_high
Returns the confidence interval for the mean. Parameters ---------- sig : float significance level. Default is .05 method : str Root finding method, Can be 'nested-brent' or 'gamma'. Default is 'gamma' 'gamma' Tries to solve for the gamma parameter in the Lagrange (see Owen pg 22) and then determine the weights. 'nested brent' uses brents method to find the confidence intervals but must maximize the likelihood ratio on every iteration. gamma is generally much faster. If the optimizations does not converge, try expanding the gamma_high and gamma_low variable. gamma_low : float Lower bound for gamma when finding lower limit. If function returns f(a) and f(b) must have different signs, consider lowering gamma_low. gamma_high : float Upper bound for gamma when finding upper limit. If function returns f(a) and f(b) must have different signs, consider raising gamma_high. epsilon : float When using 'nested-brent', amount to decrease (increase) from the maximum (minimum) of the data when starting the search. This is to protect against the likelihood ratio being zero at the maximum (minimum) value of the data. If data is very small in absolute value (<10 ``**`` -6) consider shrinking epsilon When using 'gamma', amount to decrease (increase) the minimum (maximum) by to start the search for gamma. If function returns f(a) and f(b) must have different signs, consider lowering epsilon. Returns ------- Interval : tuple Confidence interval for the mean
ci_mean
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_var(self, sig2_0, return_weights=False): """ Returns -2 x log-likelihood ratio and the p-value for the hypothesized variance Parameters ---------- sig2_0 : float Hypothesized variance to be tested return_weights : bool If True, returns the weights that maximize the likelihood of observing sig2_0. Default is False Returns ------- test_results : tuple The log-likelihood ratio and the p_value of sig2_0 Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> random_numbers = np.random.standard_normal(1000)*100 >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> hyp_test = el_analysis.test_var(9500) """ self.sig2_0 = sig2_0 mu_max = max(self.endog) mu_min = min(self.endog) llr = optimize.fminbound(self._opt_var, mu_min, mu_max, \ full_output=1)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T else: return llr, p_val
Returns -2 x log-likelihood ratio and the p-value for the hypothesized variance Parameters ---------- sig2_0 : float Hypothesized variance to be tested return_weights : bool If True, returns the weights that maximize the likelihood of observing sig2_0. Default is False Returns ------- test_results : tuple The log-likelihood ratio and the p_value of sig2_0 Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> random_numbers = np.random.standard_normal(1000)*100 >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> hyp_test = el_analysis.test_var(9500)
test_var
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def ci_var(self, lower_bound=None, upper_bound=None, sig=.05): """ Returns the confidence interval for the variance. Parameters ---------- lower_bound : float The minimum value the lower confidence interval can take. The p-value from test_var(lower_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality upper_bound : float The maximum value the upper confidence interval can take. The p-value from test_var(upper_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality sig : float The significance level. Default is .05 Returns ------- Interval : tuple Confidence interval for the variance Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> random_numbers = np.random.standard_normal(100) >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> el_analysis.ci_var() (0.7539322567470305, 1.229998852496268) >>> el_analysis.ci_var(.5, 2) (0.7539322567469926, 1.2299988524962664) Notes ----- If the function returns the error f(a) and f(b) must have different signs, consider lowering lower_bound and raising upper_bound. """ endog = self.endog if upper_bound is None: upper_bound = ((self.nobs - 1) * endog.var()) / \ (chi2.ppf(.0001, self.nobs - 1)) if lower_bound is None: lower_bound = ((self.nobs - 1) * endog.var()) / \ (chi2.ppf(.9999, self.nobs - 1)) self.r0 = chi2.ppf(1 - sig, 1) llim = optimize.brentq(self._ci_limits_var, lower_bound, endog.var()) ulim = optimize.brentq(self._ci_limits_var, endog.var(), upper_bound) return llim, ulim
Returns the confidence interval for the variance. Parameters ---------- lower_bound : float The minimum value the lower confidence interval can take. The p-value from test_var(lower_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality upper_bound : float The maximum value the upper confidence interval can take. The p-value from test_var(upper_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality sig : float The significance level. Default is .05 Returns ------- Interval : tuple Confidence interval for the variance Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> random_numbers = np.random.standard_normal(100) >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> el_analysis.ci_var() (0.7539322567470305, 1.229998852496268) >>> el_analysis.ci_var(.5, 2) (0.7539322567469926, 1.2299988524962664) Notes ----- If the function returns the error f(a) and f(b) must have different signs, consider lowering lower_bound and raising upper_bound.
ci_var
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def plot_contour(self, mu_low, mu_high, var_low, var_high, mu_step, var_step, levs=[.2, .1, .05, .01, .001]): """ Returns a plot of the confidence region for a univariate mean and variance. Parameters ---------- mu_low : float Lowest value of the mean to plot mu_high : float Highest value of the mean to plot var_low : float Lowest value of the variance to plot var_high : float Highest value of the variance to plot mu_step : float Increments to evaluate the mean var_step : float Increments to evaluate the mean levs : list Which values of significance the contour lines will be drawn. Default is [.2, .1, .05, .01, .001] Returns ------- Figure The contour plot """ fig, ax = utils.create_mpl_ax() ax.set_ylabel('Variance') ax.set_xlabel('Mean') mu_vect = list(np.arange(mu_low, mu_high, mu_step)) var_vect = list(np.arange(var_low, var_high, var_step)) z = [] for sig0 in var_vect: self.sig2_0 = sig0 for mu0 in mu_vect: z.append(self._opt_var(mu0, pval=True)) z = np.asarray(z).reshape(len(var_vect), len(mu_vect)) ax.contour(mu_vect, var_vect, z, levels=levs) return fig
Returns a plot of the confidence region for a univariate mean and variance. Parameters ---------- mu_low : float Lowest value of the mean to plot mu_high : float Highest value of the mean to plot var_low : float Lowest value of the variance to plot var_high : float Highest value of the variance to plot mu_step : float Increments to evaluate the mean var_step : float Increments to evaluate the mean levs : list Which values of significance the contour lines will be drawn. Default is [.2, .1, .05, .01, .001] Returns ------- Figure The contour plot
plot_contour
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_skew(self, skew0, return_weights=False): """ Returns -2 x log-likelihood and p-value for the hypothesized skewness. Parameters ---------- skew0 : float Skewness value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p_value of skew0 """ self.skew0 = skew0 start_nuisance = np.array([self.endog.mean(), self.endog.var()]) llr = optimize.fmin_powell(self._opt_skew, start_nuisance, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val
Returns -2 x log-likelihood and p-value for the hypothesized skewness. Parameters ---------- skew0 : float Skewness value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p_value of skew0
test_skew
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_kurt(self, kurt0, return_weights=False): """ Returns -2 x log-likelihood and the p-value for the hypothesized kurtosis. Parameters ---------- kurt0 : float Kurtosis value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value of kurt0 """ self.kurt0 = kurt0 start_nuisance = np.array([self.endog.mean(), self.endog.var()]) llr = optimize.fmin_powell(self._opt_kurt, start_nuisance, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val
Returns -2 x log-likelihood and the p-value for the hypothesized kurtosis. Parameters ---------- kurt0 : float Kurtosis value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value of kurt0
test_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_joint_skew_kurt(self, skew0, kurt0, return_weights=False): """ Returns - 2 x log-likelihood and the p-value for the joint hypothesis test for skewness and kurtosis Parameters ---------- skew0 : float Skewness value to be tested kurt0 : float Kurtosis value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value of the joint hypothesis test. """ self.skew0 = skew0 self.kurt0 = kurt0 start_nuisance = np.array([self.endog.mean(), self.endog.var()]) llr = optimize.fmin_powell(self._opt_skew_kurt, start_nuisance, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 2) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val
Returns - 2 x log-likelihood and the p-value for the joint hypothesis test for skewness and kurtosis Parameters ---------- skew0 : float Skewness value to be tested kurt0 : float Kurtosis value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value of the joint hypothesis test.
test_joint_skew_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def ci_skew(self, sig=.05, upper_bound=None, lower_bound=None): """ Returns the confidence interval for skewness. Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value of skewness the upper limit can be. Default is .99 confidence limit assuming normality. lower_bound : float Minimum value of skewness the lower limit can be. Default is .99 confidence level assuming normality. Returns ------- Interval : tuple Confidence interval for the skewness Notes ----- If function returns f(a) and f(b) must have different signs, consider expanding lower and upper bounds """ nobs = self.nobs endog = self.endog if upper_bound is None: upper_bound = skew(endog) + \ 2.5 * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5 if lower_bound is None: lower_bound = skew(endog) - \ 2.5 * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5 self.r0 = chi2.ppf(1 - sig, 1) llim = optimize.brentq(self._ci_limits_skew, lower_bound, skew(endog)) ulim = optimize.brentq(self._ci_limits_skew, skew(endog), upper_bound) return llim, ulim
Returns the confidence interval for skewness. Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value of skewness the upper limit can be. Default is .99 confidence limit assuming normality. lower_bound : float Minimum value of skewness the lower limit can be. Default is .99 confidence level assuming normality. Returns ------- Interval : tuple Confidence interval for the skewness Notes ----- If function returns f(a) and f(b) must have different signs, consider expanding lower and upper bounds
ci_skew
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def ci_kurt(self, sig=.05, upper_bound=None, lower_bound=None): """ Returns the confidence interval for kurtosis. Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value of kurtosis the upper limit can be. Default is .99 confidence limit assuming normality. lower_bound : float Minimum value of kurtosis the lower limit can be. Default is .99 confidence limit assuming normality. Returns ------- Interval : tuple Lower and upper confidence limit Notes ----- For small n, upper_bound and lower_bound may have to be provided by the user. Consider using test_kurt to find values close to the desired significance level. If function returns f(a) and f(b) must have different signs, consider expanding the bounds. """ endog = self.endog nobs = self.nobs if upper_bound is None: upper_bound = kurtosis(endog) + \ (2.5 * (2. * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5) * \ (((nobs ** 2.) - 1.) / ((nobs - 3.) *\ (nobs + 5.))) ** .5) if lower_bound is None: lower_bound = kurtosis(endog) - \ (2.5 * (2. * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5) * \ (((nobs ** 2.) - 1.) / ((nobs - 3.) *\ (nobs + 5.))) ** .5) self.r0 = chi2.ppf(1 - sig, 1) llim = optimize.brentq(self._ci_limits_kurt, lower_bound, \ kurtosis(endog)) ulim = optimize.brentq(self._ci_limits_kurt, kurtosis(endog), \ upper_bound) return llim, ulim
Returns the confidence interval for kurtosis. Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value of kurtosis the upper limit can be. Default is .99 confidence limit assuming normality. lower_bound : float Minimum value of kurtosis the lower limit can be. Default is .99 confidence limit assuming normality. Returns ------- Interval : tuple Lower and upper confidence limit Notes ----- For small n, upper_bound and lower_bound may have to be provided by the user. Consider using test_kurt to find values close to the desired significance level. If function returns f(a) and f(b) must have different signs, consider expanding the bounds.
ci_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def mv_test_mean(self, mu_array, return_weights=False): """ Returns -2 x log likelihood and the p-value for a multivariate hypothesis test of the mean Parameters ---------- mu_array : 1d array Hypothesized values for the mean. Must have same number of elements as columns in endog return_weights : bool If True, returns the weights that maximize the likelihood of mu_array. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value for mu_array """ endog = self.endog nobs = self.nobs if len(mu_array) != endog.shape[1]: raise ValueError('mu_array must have the same number of ' 'elements as the columns of the data.') mu_array = mu_array.reshape(1, endog.shape[1]) means = np.ones((endog.shape[0], endog.shape[1])) means = mu_array * means est_vect = endog - means start_vals = 1. / nobs * np.ones(endog.shape[1]) eta_star = self._modif_newton(start_vals, est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1 / nobs * 1 / denom llr = -2 * np.sum(np.log(nobs * self.new_weights)) p_val = chi2.sf(llr, mu_array.shape[1]) if return_weights: return llr, p_val, self.new_weights.T else: return llr, p_val
Returns -2 x log likelihood and the p-value for a multivariate hypothesis test of the mean Parameters ---------- mu_array : 1d array Hypothesized values for the mean. Must have same number of elements as columns in endog return_weights : bool If True, returns the weights that maximize the likelihood of mu_array. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value for mu_array
mv_test_mean
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_corr(self, corr0, return_weights=0): """ Returns -2 x log-likelihood ratio and p-value for the correlation coefficient between 2 variables Parameters ---------- corr0 : float Hypothesized value to be tested return_weights : bool If true, returns the weights that maximize the log-likelihood at the hypothesized value """ nobs = self.nobs endog = self.endog if endog.shape[1] != 2: raise NotImplementedError('Correlation matrix not yet implemented') nuis0 = np.array([endog[:, 0].mean(), endog[:, 0].var(), endog[:, 1].mean(), endog[:, 1].var()]) x0 = np.zeros(5) weights0 = np.array([1. / nobs] * int(nobs)) args = (corr0, endog, nobs, x0, weights0) llr = optimize.fmin(self._opt_correl, nuis0, args=args, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val
Returns -2 x log-likelihood ratio and p-value for the correlation coefficient between 2 variables Parameters ---------- corr0 : float Hypothesized value to be tested return_weights : bool If true, returns the weights that maximize the log-likelihood at the hypothesized value
test_corr
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def ci_corr(self, sig=.05, upper_bound=None, lower_bound=None): """ Returns the confidence intervals for the correlation coefficient Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value the upper confidence limit can be. Default is 99% confidence limit assuming normality. lower_bound : float Minimum value the lower confidence limit can be. Default is 99% confidence limit assuming normality. Returns ------- interval : tuple Confidence interval for the correlation """ endog = self.endog nobs = self.nobs self.r0 = chi2.ppf(1 - sig, 1) point_est = np.corrcoef(endog[:, 0], endog[:, 1])[0, 1] if upper_bound is None: upper_bound = min(.999, point_est + \ 2.5 * ((1. - point_est ** 2.) / \ (nobs - 2.)) ** .5) if lower_bound is None: lower_bound = max(- .999, point_est - \ 2.5 * (np.sqrt((1. - point_est ** 2.) / \ (nobs - 2.)))) llim = optimize.brenth(self._ci_limits_corr, lower_bound, point_est) ulim = optimize.brenth(self._ci_limits_corr, point_est, upper_bound) return llim, ulim
Returns the confidence intervals for the correlation coefficient Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value the upper confidence limit can be. Default is 99% confidence limit assuming normality. lower_bound : float Minimum value the lower confidence limit can be. Default is 99% confidence limit assuming normality. Returns ------- interval : tuple Confidence interval for the correlation
ci_corr
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def drop_missing(Y, X=None, axis=1): """ Returns views on the arrays Y and X where missing observations are dropped. Y : array_like X : array_like, optional axis : int Axis along which to look for missing observations. Default is 1, ie., observations in rows. Returns ------- Y : ndarray All Y where the X : ndarray Notes ----- If either Y or X is 1d, it is reshaped to be 2d. """ Y = np.asarray(Y) if Y.ndim == 1: Y = Y[:, None] if X is not None: X = np.array(X) if X.ndim == 1: X = X[:, None] keepidx = np.logical_and(~np.isnan(Y).any(axis), ~np.isnan(X).any(axis)) return Y[keepidx], X[keepidx] else: keepidx = ~np.isnan(Y).any(axis) return Y[keepidx]
Returns views on the arrays Y and X where missing observations are dropped. Y : array_like X : array_like, optional axis : int Axis along which to look for missing observations. Default is 1, ie., observations in rows. Returns ------- Y : ndarray All Y where the X : ndarray Notes ----- If either Y or X is 1d, it is reshaped to be 2d.
drop_missing
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def categorical(data, col=None, dictnames=False, drop=False): """ Construct a dummy matrix from categorical variables .. deprecated:: 0.12 Use pandas.get_dummies instead. Parameters ---------- data : array_like An array, Series or DataFrame. This can be either a 1d vector of the categorical variable or a 2d array with the column specifying the categorical variable specified by the col argument. col : {str, int, None} If data is a DataFrame col must in a column of data. If data is a Series, col must be either the name of the Series or None. For arrays, `col` can be an int that is the (zero-based) column index number. `col` can only be None for a 1d array. The default is None. dictnames : bool, optional If True, a dictionary mapping the column number to the categorical name is returned. Used to have information about plain arrays. drop : bool Whether or not keep the categorical variable in the returned matrix. Returns ------- dummy_matrix : array_like A matrix of dummy (indicator/binary) float variables for the categorical data. dictnames : dict[int, str], optional Mapping between column numbers and categorical names. Notes ----- This returns a dummy variable for *each* distinct variable. If a a DaataFrame is provided, the names for the new variable is the old variable name - underscore - category name. So if the a variable 'vote' had answers as 'yes' or 'no' then the returned array would have to new variables-- 'vote_yes' and 'vote_no'. There is currently no name checking. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm Univariate examples >>> import string >>> string_var = [string.ascii_lowercase[0:5], ... string.ascii_lowercase[5:10], ... string.ascii_lowercase[10:15], ... string.ascii_lowercase[15:20], ... string.ascii_lowercase[20:25]] >>> string_var *= 5 >>> string_var = np.asarray(sorted(string_var)) >>> design = sm.tools.categorical(string_var, drop=True) Or for a numerical categorical variable >>> instr = np.floor(np.arange(10,60, step=2)/10) >>> design = sm.tools.categorical(instr, drop=True) With a structured array >>> num = np.random.randn(25,2) >>> struct_ar = np.zeros((25,1), ... dtype=[('var1', 'f4'),('var2', 'f4'), ... ('instrument','f4'),('str_instr','a5')]) >>> struct_ar['var1'] = num[:,0][:,None] >>> struct_ar['var2'] = num[:,1][:,None] >>> struct_ar['instrument'] = instr[:,None] >>> struct_ar['str_instr'] = string_var[:,None] >>> design = sm.tools.categorical(struct_ar, col='instrument', drop=True) Or >>> design2 = sm.tools.categorical(struct_ar, col='str_instr', drop=True) """ raise NotImplementedError("categorical has been removed")
Construct a dummy matrix from categorical variables .. deprecated:: 0.12 Use pandas.get_dummies instead. Parameters ---------- data : array_like An array, Series or DataFrame. This can be either a 1d vector of the categorical variable or a 2d array with the column specifying the categorical variable specified by the col argument. col : {str, int, None} If data is a DataFrame col must in a column of data. If data is a Series, col must be either the name of the Series or None. For arrays, `col` can be an int that is the (zero-based) column index number. `col` can only be None for a 1d array. The default is None. dictnames : bool, optional If True, a dictionary mapping the column number to the categorical name is returned. Used to have information about plain arrays. drop : bool Whether or not keep the categorical variable in the returned matrix. Returns ------- dummy_matrix : array_like A matrix of dummy (indicator/binary) float variables for the categorical data. dictnames : dict[int, str], optional Mapping between column numbers and categorical names. Notes ----- This returns a dummy variable for *each* distinct variable. If a a DaataFrame is provided, the names for the new variable is the old variable name - underscore - category name. So if the a variable 'vote' had answers as 'yes' or 'no' then the returned array would have to new variables-- 'vote_yes' and 'vote_no'. There is currently no name checking. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm Univariate examples >>> import string >>> string_var = [string.ascii_lowercase[0:5], ... string.ascii_lowercase[5:10], ... string.ascii_lowercase[10:15], ... string.ascii_lowercase[15:20], ... string.ascii_lowercase[20:25]] >>> string_var *= 5 >>> string_var = np.asarray(sorted(string_var)) >>> design = sm.tools.categorical(string_var, drop=True) Or for a numerical categorical variable >>> instr = np.floor(np.arange(10,60, step=2)/10) >>> design = sm.tools.categorical(instr, drop=True) With a structured array >>> num = np.random.randn(25,2) >>> struct_ar = np.zeros((25,1), ... dtype=[('var1', 'f4'),('var2', 'f4'), ... ('instrument','f4'),('str_instr','a5')]) >>> struct_ar['var1'] = num[:,0][:,None] >>> struct_ar['var2'] = num[:,1][:,None] >>> struct_ar['instrument'] = instr[:,None] >>> struct_ar['str_instr'] = string_var[:,None] >>> design = sm.tools.categorical(struct_ar, col='instrument', drop=True) Or >>> design2 = sm.tools.categorical(struct_ar, col='str_instr', drop=True)
categorical
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def add_constant(data, prepend=True, has_constant='skip'): """ Add a column of ones to an array. Parameters ---------- data : array_like A column-ordered design matrix. prepend : bool If true, the constant is in the first column. Else the constant is appended (last column). has_constant : str {'raise', 'add', 'skip'} Behavior if ``data`` already has a constant. The default will return data without adding another constant. If 'raise', will raise an error if any column has a constant value. Using 'add' will add a column of 1s if a constant column is present. Returns ------- array_like The original values with a constant (column of ones) as the first or last column. Returned value type depends on input type. Notes ----- When the input is a pandas Series or DataFrame, the added column's name is 'const'. """ if _is_using_pandas(data, None): from statsmodels.tsa.tsatools import add_trend return add_trend(data, trend='c', prepend=prepend, has_constant=has_constant) # Special case for NumPy x = np.asarray(data) ndim = x.ndim if ndim == 1: x = x[:, None] elif x.ndim > 2: raise ValueError('Only implemented for 2-dimensional arrays') is_nonzero_const = np.ptp(x, axis=0) == 0 is_nonzero_const &= np.all(x != 0.0, axis=0) if is_nonzero_const.any(): if has_constant == 'skip': return x elif has_constant == 'raise': if ndim == 1: raise ValueError("data is constant.") else: columns = np.arange(x.shape[1]) cols = ",".join([str(c) for c in columns[is_nonzero_const]]) raise ValueError(f"Column(s) {cols} are constant.") x = [np.ones(x.shape[0]), x] x = x if prepend else x[::-1] return np.column_stack(x)
Add a column of ones to an array. Parameters ---------- data : array_like A column-ordered design matrix. prepend : bool If true, the constant is in the first column. Else the constant is appended (last column). has_constant : str {'raise', 'add', 'skip'} Behavior if ``data`` already has a constant. The default will return data without adding another constant. If 'raise', will raise an error if any column has a constant value. Using 'add' will add a column of 1s if a constant column is present. Returns ------- array_like The original values with a constant (column of ones) as the first or last column. Returned value type depends on input type. Notes ----- When the input is a pandas Series or DataFrame, the added column's name is 'const'.
add_constant
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def isestimable(c, d): """ True if (Q, P) contrast `c` is estimable for (N, P) design `d`. From an Q x P contrast matrix `C` and an N x P design matrix `D`, checks if the contrast `C` is estimable by looking at the rank of ``vstack([C,D])`` and verifying it is the same as the rank of `D`. Parameters ---------- c : array_like A contrast matrix with shape (Q, P). If 1 dimensional assume shape is (1, P). d : array_like The design matrix, (N, P). Returns ------- bool True if the contrast `c` is estimable on design `d`. Examples -------- >>> d = np.array([[1, 1, 1, 0, 0, 0], ... [0, 0, 0, 1, 1, 1], ... [1, 1, 1, 1, 1, 1]]).T >>> isestimable([1, 0, 0], d) False >>> isestimable([1, -1, 0], d) True """ c = array_like(c, 'c', maxdim=2) d = array_like(d, 'd', ndim=2) c = c[None, :] if c.ndim == 1 else c if c.shape[1] != d.shape[1]: raise ValueError('Contrast should have %d columns' % d.shape[1]) new = np.vstack([c, d]) if np.linalg.matrix_rank(new) != np.linalg.matrix_rank(d): return False return True
True if (Q, P) contrast `c` is estimable for (N, P) design `d`. From an Q x P contrast matrix `C` and an N x P design matrix `D`, checks if the contrast `C` is estimable by looking at the rank of ``vstack([C,D])`` and verifying it is the same as the rank of `D`. Parameters ---------- c : array_like A contrast matrix with shape (Q, P). If 1 dimensional assume shape is (1, P). d : array_like The design matrix, (N, P). Returns ------- bool True if the contrast `c` is estimable on design `d`. Examples -------- >>> d = np.array([[1, 1, 1, 0, 0, 0], ... [0, 0, 0, 1, 1, 1], ... [1, 1, 1, 1, 1, 1]]).T >>> isestimable([1, 0, 0], d) False >>> isestimable([1, -1, 0], d) True
isestimable
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def pinv_extended(x, rcond=1e-15): """ Return the pinv of an array X as well as the singular values used in computation. Code adapted from numpy. """ x = np.asarray(x) x = x.conjugate() u, s, vt = np.linalg.svd(x, False) s_orig = np.copy(s) m = u.shape[0] n = vt.shape[1] cutoff = rcond * np.maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. res = np.dot(np.transpose(vt), np.multiply(s[:, np.newaxis], np.transpose(u))) return res, s_orig
Return the pinv of an array X as well as the singular values used in computation. Code adapted from numpy.
pinv_extended
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def recipr(x): """ Reciprocal of an array with entries less than or equal to 0 set to 0. Parameters ---------- x : array_like The input array. Returns ------- ndarray The array with 0-filled reciprocals. """ x = np.asarray(x) out = np.zeros_like(x, dtype=np.float64) nans = np.isnan(x.flat) pos = ~nans pos[pos] = pos[pos] & (x.flat[pos] > 0) out.flat[pos] = 1.0 / x.flat[pos] out.flat[nans] = np.nan return out
Reciprocal of an array with entries less than or equal to 0 set to 0. Parameters ---------- x : array_like The input array. Returns ------- ndarray The array with 0-filled reciprocals.
recipr
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def recipr0(x): """ Reciprocal of an array with entries less than 0 set to 0. Parameters ---------- x : array_like The input array. Returns ------- ndarray The array with 0-filled reciprocals. """ x = np.asarray(x) out = np.zeros_like(x, dtype=np.float64) nans = np.isnan(x.flat) non_zero = ~nans non_zero[non_zero] = non_zero[non_zero] & (x.flat[non_zero] != 0) out.flat[non_zero] = 1.0 / x.flat[non_zero] out.flat[nans] = np.nan return out
Reciprocal of an array with entries less than 0 set to 0. Parameters ---------- x : array_like The input array. Returns ------- ndarray The array with 0-filled reciprocals.
recipr0
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def clean0(matrix): """ Erase columns of zeros: can save some time in pseudoinverse. Parameters ---------- matrix : ndarray The array to clean. Returns ------- ndarray The cleaned array. """ colsum = np.add.reduce(matrix**2, 0) val = [matrix[:, i] for i in np.flatnonzero(colsum)] return np.array(np.transpose(val))
Erase columns of zeros: can save some time in pseudoinverse. Parameters ---------- matrix : ndarray The array to clean. Returns ------- ndarray The cleaned array.
clean0
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def fullrank(x, r=None): """ Return an array whose column span is the same as x. Parameters ---------- x : ndarray The array to adjust, 2d. r : int, optional The rank of x. If not provided, determined by `np.linalg.matrix_rank`. Returns ------- ndarray The array adjusted to have full rank. Notes ----- If the rank of x is known it can be specified as r -- no check is made to ensure that this really is the rank of x. """ if r is None: r = np.linalg.matrix_rank(x) v, d, u = np.linalg.svd(x, full_matrices=False) order = np.argsort(d) order = order[::-1] value = [] for i in range(r): value.append(v[:, order[i]]) return np.asarray(np.transpose(value)).astype(np.float64)
Return an array whose column span is the same as x. Parameters ---------- x : ndarray The array to adjust, 2d. r : int, optional The rank of x. If not provided, determined by `np.linalg.matrix_rank`. Returns ------- ndarray The array adjusted to have full rank. Notes ----- If the rank of x is known it can be specified as r -- no check is made to ensure that this really is the rank of x.
fullrank
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def unsqueeze(data, axis, oldshape): """ Unsqueeze a collapsed array. Parameters ---------- data : ndarray The data to unsqueeze. axis : int The axis to unsqueeze. oldshape : tuple[int] The original shape before the squeeze or reduce operation. Returns ------- ndarray The unsqueezed array. Examples -------- >>> from numpy import mean >>> from numpy.random import standard_normal >>> x = standard_normal((3,4,5)) >>> m = mean(x, axis=1) >>> m.shape (3, 5) >>> m = unsqueeze(m, 1, x.shape) >>> m.shape (3, 1, 5) >>> """ newshape = list(oldshape) newshape[axis] = 1 return data.reshape(newshape)
Unsqueeze a collapsed array. Parameters ---------- data : ndarray The data to unsqueeze. axis : int The axis to unsqueeze. oldshape : tuple[int] The original shape before the squeeze or reduce operation. Returns ------- ndarray The unsqueezed array. Examples -------- >>> from numpy import mean >>> from numpy.random import standard_normal >>> x = standard_normal((3,4,5)) >>> m = mean(x, axis=1) >>> m.shape (3, 5) >>> m = unsqueeze(m, 1, x.shape) >>> m.shape (3, 1, 5) >>>
unsqueeze
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def nan_dot(A, B): """ Returns np.dot(left_matrix, right_matrix) with the convention that nan * 0 = 0 and nan * x = nan if x != 0. Parameters ---------- A, B : ndarray """ # Find out who should be nan due to nan * nonzero should_be_nan_1 = np.dot(np.isnan(A), (B != 0)) should_be_nan_2 = np.dot((A != 0), np.isnan(B)) should_be_nan = should_be_nan_1 + should_be_nan_2 # Multiply after setting all nan to 0 # This is what happens if there were no nan * nonzero conflicts C = np.dot(np.nan_to_num(A), np.nan_to_num(B)) C[should_be_nan] = np.nan return C
Returns np.dot(left_matrix, right_matrix) with the convention that nan * 0 = 0 and nan * x = nan if x != 0. Parameters ---------- A, B : ndarray
nan_dot
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def maybe_unwrap_results(results): """ Gets raw results back from wrapped results. Can be used in plotting functions or other post-estimation type routines. """ return getattr(results, '_results', results)
Gets raw results back from wrapped results. Can be used in plotting functions or other post-estimation type routines.
maybe_unwrap_results
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def _ensure_2d(x, ndarray=False): """ Parameters ---------- x : ndarray, Series, DataFrame or None Input to verify dimensions, and to transform as necesary ndarray : bool Flag indicating whether to always return a NumPy array. Setting False will return an pandas DataFrame when the input is a Series or a DataFrame. Returns ------- out : ndarray, DataFrame or None array or DataFrame with 2 dimensiona. One dimensional arrays are returned as nobs by 1. None is returned if x is None. names : list of str or None list containing variables names when the input is a pandas datatype. Returns None if the input is an ndarray. Notes ----- Accepts None for simplicity """ if x is None: return x is_pandas = _is_using_pandas(x, None) if x.ndim == 2: if is_pandas: return x, x.columns else: return x, None elif x.ndim > 2: raise ValueError('x mst be 1 or 2-dimensional.') name = x.name if is_pandas else None if ndarray: return np.asarray(x)[:, None], name else: return pd.DataFrame(x), name
Parameters ---------- x : ndarray, Series, DataFrame or None Input to verify dimensions, and to transform as necesary ndarray : bool Flag indicating whether to always return a NumPy array. Setting False will return an pandas DataFrame when the input is a Series or a DataFrame. Returns ------- out : ndarray, DataFrame or None array or DataFrame with 2 dimensiona. One dimensional arrays are returned as nobs by 1. None is returned if x is None. names : list of str or None list containing variables names when the input is a pandas datatype. Returns None if the input is an ndarray. Notes ----- Accepts None for simplicity
_ensure_2d
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def matrix_rank(m, tol=None, method="qr"): """ Matrix rank calculation using QR or SVD Parameters ---------- m : array_like A 2-d array-like object to test tol : float, optional The tolerance to use when testing the matrix rank. If not provided an appropriate value is selected. method : {"ip", "qr", "svd"} The method used. "ip" uses the inner-product of a normalized version of m and then computes the rank using NumPy's matrix_rank. "qr" uses a QR decomposition and is the default. "svd" defers to NumPy's matrix_rank. Returns ------- int The rank of m. Notes ----- When using a QR factorization, the rank is determined by the number of elements on the leading diagonal of the R matrix that are above tol in absolute value. """ m = array_like(m, "m", ndim=2) if method == "ip": m = m[:, np.any(m != 0, axis=0)] m = m / np.sqrt((m ** 2).sum(0)) m = m.T @ m return np.linalg.matrix_rank(m, tol=tol, hermitian=True) elif method == "qr": r, = scipy.linalg.qr(m, mode="r") abs_diag = np.abs(np.diag(r)) if tol is None: tol = abs_diag[0] * m.shape[1] * np.finfo(float).eps return int((abs_diag > tol).sum()) else: return np.linalg.matrix_rank(m, tol=tol)
Matrix rank calculation using QR or SVD Parameters ---------- m : array_like A 2-d array-like object to test tol : float, optional The tolerance to use when testing the matrix rank. If not provided an appropriate value is selected. method : {"ip", "qr", "svd"} The method used. "ip" uses the inner-product of a normalized version of m and then computes the rank using NumPy's matrix_rank. "qr" uses a QR decomposition and is the default. "svd" defers to NumPy's matrix_rank. Returns ------- int The rank of m. Notes ----- When using a QR factorization, the rank is determined by the number of elements on the leading diagonal of the R matrix that are above tol in absolute value.
matrix_rank
python
statsmodels/statsmodels
statsmodels/tools/tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tools.py
BSD-3-Clause
def _generate_url(func, stable): """ Parse inputs and return a correctly formatted URL or raises ValueError if the input is not understandable """ url = BASE_URL if stable: url += 'stable/' else: url += 'devel/' if func is None: return url elif isinstance(func, str): url += 'search.html?' url += urlencode({'q': func}) url += '&check_keywords=yes&area=default' else: try: func = func func_name = func.__name__ func_module = func.__module__ if not func_module.startswith('statsmodels.'): raise ValueError('Function must be from statsmodels') url += 'generated/' url += func_module + '.' + func_name + '.html' except AttributeError: raise ValueError('Input not understood') return url
Parse inputs and return a correctly formatted URL or raises ValueError if the input is not understandable
_generate_url
python
statsmodels/statsmodels
statsmodels/tools/web.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/web.py
BSD-3-Clause
def webdoc(func=None, stable=None): """ Opens a browser and displays online documentation Parameters ---------- func : {str, callable} Either a string to search the documentation or a function stable : bool Flag indicating whether to use the stable documentation (True) or the development documentation (False). If not provided, opens the stable documentation if the current version of statsmodels is a release Examples -------- >>> import statsmodels.api as sm Documentation site >>> sm.webdoc() Search for glm in docs >>> sm.webdoc('glm') Go to current generated help for OLS >>> sm.webdoc(sm.OLS, stable=False) Notes ----- By default, open stable documentation if the current version of statsmodels is a release. Otherwise opens the development documentation. Uses the default system browser. """ stable = __version__ if 'dev' not in __version__ else stable url_or_error = _generate_url(func, stable) webbrowser.open(url_or_error) return None
Opens a browser and displays online documentation Parameters ---------- func : {str, callable} Either a string to search the documentation or a function stable : bool Flag indicating whether to use the stable documentation (True) or the development documentation (False). If not provided, opens the stable documentation if the current version of statsmodels is a release Examples -------- >>> import statsmodels.api as sm Documentation site >>> sm.webdoc() Search for glm in docs >>> sm.webdoc('glm') Go to current generated help for OLS >>> sm.webdoc(sm.OLS, stable=False) Notes ----- By default, open stable documentation if the current version of statsmodels is a release. Otherwise opens the development documentation. Uses the default system browser.
webdoc
python
statsmodels/statsmodels
statsmodels/tools/web.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/web.py
BSD-3-Clause
def bunch_factory(attribute, columns): """ Generates a special purpose Bunch class Parameters ---------- attribute: str Attribute to access when splitting columns: List[str] List of names to use when splitting the columns of attribute Notes ----- After the class is initialized as a Bunch, the columne of attribute are split so that Bunch has the keys in columns and bunch[column[i]] = bunch[attribute][:, i] """ class FactoryBunch(Bunch): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not hasattr(self, attribute): raise AttributeError('{} is required and must be passed to ' 'the constructor'.format(attribute)) for i, att in enumerate(columns): self[att] = getattr(self, attribute)[:, i] return FactoryBunch
Generates a special purpose Bunch class Parameters ---------- attribute: str Attribute to access when splitting columns: List[str] List of names to use when splitting the columns of attribute Notes ----- After the class is initialized as a Bunch, the columne of attribute are split so that Bunch has the keys in columns and bunch[column[i]] = bunch[attribute][:, i]
bunch_factory
python
statsmodels/statsmodels
statsmodels/tools/testing.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/testing.py
BSD-3-Clause
def logdet_symm(m, check_symm=False): """ Return log(det(m)) asserting positive definiteness of m. Parameters ---------- m : array_like 2d array that is positive-definite (and symmetric) Returns ------- logdet : float The log-determinant of m. """ from scipy import linalg if check_symm: if not np.all(m == m.T): # would be nice to short-circuit check raise ValueError("m is not symmetric.") c, _ = linalg.cho_factor(m, lower=True) return 2*np.sum(np.log(c.diagonal()))
Return log(det(m)) asserting positive definiteness of m. Parameters ---------- m : array_like 2d array that is positive-definite (and symmetric) Returns ------- logdet : float The log-determinant of m.
logdet_symm
python
statsmodels/statsmodels
statsmodels/tools/linalg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/linalg.py
BSD-3-Clause
def stationary_solve(r, b): """ Solve a linear system for a Toeplitz correlation matrix. A Toeplitz correlation matrix represents the covariance of a stationary series with unit variance. Parameters ---------- r : array_like A vector describing the coefficient matrix. r[0] is the first band next to the diagonal, r[1] is the second band, etc. b : array_like The right-hand side for which we are solving, i.e. we solve Tx = b and return b, where T is the Toeplitz coefficient matrix. Returns ------- The solution to the linear system. """ db = r[0:1] dim = b.ndim if b.ndim == 1: b = b[:, None] x = b[0:1, :] for j in range(1, len(b)): rf = r[0:j][::-1] a = (b[j, :] - np.dot(rf, x)) / (1 - np.dot(rf, db[::-1])) z = x - np.outer(db[::-1], a) x = np.concatenate((z, a[None, :]), axis=0) if j == len(b) - 1: break rn = r[j] a = (rn - np.dot(rf, db)) / (1 - np.dot(rf, db[::-1])) z = db - a*db[::-1] db = np.concatenate((z, np.r_[a])) if dim == 1: x = x[:, 0] return x
Solve a linear system for a Toeplitz correlation matrix. A Toeplitz correlation matrix represents the covariance of a stationary series with unit variance. Parameters ---------- r : array_like A vector describing the coefficient matrix. r[0] is the first band next to the diagonal, r[1] is the second band, etc. b : array_like The right-hand side for which we are solving, i.e. we solve Tx = b and return b, where T is the Toeplitz coefficient matrix. Returns ------- The solution to the linear system.
stationary_solve
python
statsmodels/statsmodels
statsmodels/tools/linalg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/linalg.py
BSD-3-Clause
def transf_constraints(constraints): """use QR to get transformation matrix to impose constraint Parameters ---------- constraints : ndarray, 2-D restriction matrix with one constraints in rows Returns ------- transf : ndarray transformation matrix to reparameterize so that constraint is imposed Notes ----- This is currently and internal helper function for GAM. API not stable and will most likely change. The code for this function was taken from patsy spline handling, and corresponds to the reparameterization used by Wood in R's mgcv package. See Also -------- statsmodels.base._constraints.TransformRestriction : class to impose constraints by reparameterization used by `_fit_constrained`. """ from scipy import linalg m = constraints.shape[0] q, _ = linalg.qr(np.transpose(constraints)) transf = q[:, m:] return transf
use QR to get transformation matrix to impose constraint Parameters ---------- constraints : ndarray, 2-D restriction matrix with one constraints in rows Returns ------- transf : ndarray transformation matrix to reparameterize so that constraint is imposed Notes ----- This is currently and internal helper function for GAM. API not stable and will most likely change. The code for this function was taken from patsy spline handling, and corresponds to the reparameterization used by Wood in R's mgcv package. See Also -------- statsmodels.base._constraints.TransformRestriction : class to impose constraints by reparameterization used by `_fit_constrained`.
transf_constraints
python
statsmodels/statsmodels
statsmodels/tools/linalg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/linalg.py
BSD-3-Clause
def matrix_sqrt(mat, inverse=False, full=False, nullspace=False, threshold=1e-15): """matrix square root for symmetric matrices Usage is for decomposing a covariance function S into a square root R such that R' R = S if inverse is False, or R' R = pinv(S) if inverse is True Parameters ---------- mat : array_like, 2-d square symmetric square matrix for which square root or inverse square root is computed. There is no checking for whether the matrix is symmetric. A warning is issued if some singular values are negative, i.e. below the negative of the threshold. inverse : bool If False (default), then the matrix square root is returned. If inverse is True, then the matrix square root of the inverse matrix is returned. full : bool If full is False (default, then the square root has reduce number of rows if the matrix is singular, i.e. has singular values below the threshold. nullspace : bool If nullspace is true, then the matrix square root of the null space of the matrix is returned. threshold : float Singular values below the threshold are dropped. Returns ------- msqrt : ndarray matrix square root or square root of inverse matrix. """ # see also scipy.linalg null_space u, s, v = np.linalg.svd(mat) if np.any(s < -threshold): import warnings warnings.warn('some singular values are negative') if not nullspace: mask = s > threshold s[s < threshold] = 0 else: mask = s < threshold s[s > threshold] = 0 sqrt_s = np.sqrt(s[mask]) if inverse: sqrt_s = 1 / np.sqrt(s[mask]) if full: b = np.dot(u[:, mask], np.dot(np.diag(sqrt_s), v[mask])) else: b = np.dot(np.diag(sqrt_s), v[mask]) return b
matrix square root for symmetric matrices Usage is for decomposing a covariance function S into a square root R such that R' R = S if inverse is False, or R' R = pinv(S) if inverse is True Parameters ---------- mat : array_like, 2-d square symmetric square matrix for which square root or inverse square root is computed. There is no checking for whether the matrix is symmetric. A warning is issued if some singular values are negative, i.e. below the negative of the threshold. inverse : bool If False (default), then the matrix square root is returned. If inverse is True, then the matrix square root of the inverse matrix is returned. full : bool If full is False (default, then the square root has reduce number of rows if the matrix is singular, i.e. has singular values below the threshold. nullspace : bool If nullspace is true, then the matrix square root of the null space of the matrix is returned. threshold : float Singular values below the threshold are dropped. Returns ------- msqrt : ndarray matrix square root or square root of inverse matrix.
matrix_sqrt
python
statsmodels/statsmodels
statsmodels/tools/linalg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/linalg.py
BSD-3-Clause
def add_indep(x, varnames, dtype=None): ''' construct array with independent columns x is either iterable (list, tuple) or instance of ndarray or a subclass of it. If x is an ndarray, then each column is assumed to represent a variable with observations in rows. ''' # TODO: this needs tests for subclasses if isinstance(x, np.ndarray) and x.ndim == 2: x = x.T nvars_orig = len(x) nobs = len(x[0]) if not dtype: dtype = np.asarray(x[0]).dtype xout = np.zeros((nobs, nvars_orig), dtype=dtype) count = 0 rank_old = 0 varnames_new = [] varnames_dropped = [] for (xi, ni) in zip(x, varnames): xout[:, count] = xi rank_new = np.linalg.matrix_rank(xout) if rank_new > rank_old: varnames_new.append(ni) rank_old = rank_new count += 1 else: varnames_dropped.append(ni) return xout[:, :count], varnames_new
construct array with independent columns x is either iterable (list, tuple) or instance of ndarray or a subclass of it. If x is an ndarray, then each column is assumed to represent a variable with observations in rows.
add_indep
python
statsmodels/statsmodels
statsmodels/tools/catadd.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/catadd.py
BSD-3-Clause
def deprecated_alias(old_name, new_name, remove_version=None, msg=None, warning=FutureWarning): """ Deprecate attribute in favor of alternative name. Parameters ---------- old_name : str Old, deprecated name new_name : str New name remove_version : str, optional Version that the alias will be removed msg : str, optional Message to show. Default is `old_name` is a deprecated alias for `new_name` warning : Warning, optional Warning class to give. Default is FutureWarning. Notes ----- Older or less-used classes may not conform to statsmodels naming conventions. `deprecated_alias` lets us bring them into conformance without breaking backward-compatibility. Example ------- Instances of the `Foo` class have a `nvars` attribute, but it _should_ be called `neqs`: class Foo: nvars = deprecated_alias('nvars', 'neqs') def __init__(self, neqs): self.neqs = neqs >>> foo = Foo(3) >>> foo.nvars __main__:1: FutureWarning: nvars is a deprecated alias for neqs 3 """ if msg is None: msg = f'{old_name} is a deprecated alias for {new_name}' if remove_version is not None: msg += ', will be removed in version %s' % remove_version def fget(self): warnings.warn(msg, warning, stacklevel=2) return getattr(self, new_name) def fset(self, value): warnings.warn(msg, warning, stacklevel=2) setattr(self, new_name, value) res = property(fget=fget, fset=fset) return res
Deprecate attribute in favor of alternative name. Parameters ---------- old_name : str Old, deprecated name new_name : str New name remove_version : str, optional Version that the alias will be removed msg : str, optional Message to show. Default is `old_name` is a deprecated alias for `new_name` warning : Warning, optional Warning class to give. Default is FutureWarning. Notes ----- Older or less-used classes may not conform to statsmodels naming conventions. `deprecated_alias` lets us bring them into conformance without breaking backward-compatibility. Example ------- Instances of the `Foo` class have a `nvars` attribute, but it _should_ be called `neqs`: class Foo: nvars = deprecated_alias('nvars', 'neqs') def __init__(self, neqs): self.neqs = neqs >>> foo = Foo(3) >>> foo.nvars __main__:1: FutureWarning: nvars is a deprecated alias for neqs 3
deprecated_alias
python
statsmodels/statsmodels
statsmodels/tools/decorators.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/decorators.py
BSD-3-Clause
def show_versions(show_dirs=True): """ List the versions of statsmodels and any installed dependencies Parameters ---------- show_dirs : bool Flag indicating to show module locations """ if not show_dirs: _show_versions_only() print("\nINSTALLED VERSIONS") print("------------------") print("Python: %d.%d.%d.%s.%s" % sys.version_info[:]) uname = platform.uname() sysname = uname.system release = uname.release version = uname.version machine = uname.machine print(f"OS: {sysname} {release} {version} {machine}") print("byteorder: %s" % sys.byteorder) print("LC_ALL: %s" % os.environ.get("LC_ALL", "None")) print("LANG: %s" % os.environ.get("LANG", "None")) try: import statsmodels has_sm = True except ImportError: has_sm = False print("\nstatsmodels\n===========\n") if has_sm: print( "Installed: {} ({})".format( safe_version(statsmodels), dirname(statsmodels.__file__) ) ) else: print("Not installed") print("\nRequired Dependencies\n=====================\n") try: import Cython print("cython: {} ({})".format(safe_version(Cython), dirname(Cython.__file__))) except ImportError: print("cython: Not installed") try: import numpy print("numpy: {} ({})".format(safe_version(numpy), dirname(numpy.__file__))) except ImportError: print("numpy: Not installed") try: import scipy print("scipy: {} ({})".format(safe_version(scipy), dirname(scipy.__file__))) except ImportError: print("scipy: Not installed") try: import pandas print( "pandas: {} ({})".format( safe_version(pandas, "__version__"), dirname(pandas.__file__), ) ) except ImportError: print("pandas: Not installed") try: import dateutil print( " dateutil: {} ({})".format( safe_version(dateutil), dirname(dateutil.__file__) ) ) except ImportError: print(" dateutil: not installed") try: import patsy print("patsy: {} ({})".format(safe_version(patsy), dirname(patsy.__file__))) except ImportError: print("patsy: Not installed") print("\nOptional Dependencies\n=====================\n") try: import matplotlib as mpl print("matplotlib: {} ({})".format(safe_version(mpl), dirname(mpl.__file__))) print(" backend: %s " % mpl.rcParams["backend"]) except ImportError: print("matplotlib: Not installed") try: from cvxopt import info print( "cvxopt: {} ({})".format( safe_version(info, "version"), dirname(info.__file__) ) ) except ImportError: print("cvxopt: Not installed") try: import joblib print("joblib: {} ({})".format(safe_version(joblib), dirname(joblib.__file__))) except ImportError: print("joblib: Not installed") print("\nDeveloper Tools\n================\n") try: import IPython print( "IPython: {} ({})".format(safe_version(IPython), dirname(IPython.__file__)) ) except ImportError: print("IPython: Not installed") try: import jinja2 print( " jinja2: {} ({})".format(safe_version(jinja2), dirname(jinja2.__file__)) ) except ImportError: print(" jinja2: Not installed") try: import sphinx print("sphinx: {} ({})".format(safe_version(sphinx), dirname(sphinx.__file__))) except ImportError: print("sphinx: Not installed") try: import pygments print( " pygments: {} ({})".format( safe_version(pygments), dirname(pygments.__file__) ) ) except ImportError: print(" pygments: Not installed") try: import pytest print(f"pytest: {safe_version(pytest)} ({dirname(pytest.__file__)})") except ImportError: print("pytest: Not installed") try: import virtualenv print( "virtualenv: {} ({})".format( safe_version(virtualenv), dirname(virtualenv.__file__) ) ) except ImportError: print("virtualenv: Not installed") print("\n")
List the versions of statsmodels and any installed dependencies Parameters ---------- show_dirs : bool Flag indicating to show module locations
show_versions
python
statsmodels/statsmodels
statsmodels/tools/print_version.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/print_version.py
BSD-3-Clause
def dedent_lines(lines): """Deindent a list of lines maximally""" return textwrap.dedent("\n".join(lines)).split("\n")
Deindent a list of lines maximally
dedent_lines
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def strip_blank_lines(line): """Remove leading and trailing blank lines from a list of lines""" while line and not line[0].strip(): del line[0] while line and not line[-1].strip(): del line[-1] return line
Remove leading and trailing blank lines from a list of lines
strip_blank_lines
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def __init__(self, data): """ Parameters ---------- data : str String with lines separated by '\n'. """ if isinstance(data, list): self._str = data else: self._str = data.split("\n") # store string as list of lines self.reset()
Parameters ---------- data : str String with lines separated by '\n'.
__init__
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def parse_item_name(text): """Match ':role:`name`' or 'name'.""" m = self._func_rgx.match(text) if not m: raise ParseError(f"{text} is not a item name") role = m.group("role") name = m.group("name") if role else m.group("name2") return name, role, m.end()
Match ':role:`name`' or 'name'.
_parse_see_also.parse_item_name
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def _parse_see_also(self, content): """ func_name : Descriptive text continued text another_func_name : Descriptive text func_name1, func_name2, :meth:`func_name`, func_name3 """ items = [] def parse_item_name(text): """Match ':role:`name`' or 'name'.""" m = self._func_rgx.match(text) if not m: raise ParseError(f"{text} is not a item name") role = m.group("role") name = m.group("name") if role else m.group("name2") return name, role, m.end() rest = [] for line in content: if not line.strip(): continue line_match = self._line_rgx.match(line) description = None if line_match: description = line_match.group("desc") if line_match.group("trailing") and description: self._error_location( "Unexpected comma or period after function list at " "index %d of line " '"%s"' % (line_match.end("trailing"), line) ) if not description and line.startswith(" "): rest.append(line.strip()) elif line_match: funcs = [] text = line_match.group("allfuncs") while True: if not text.strip(): break name, role, match_end = parse_item_name(text) funcs.append((name, role)) text = text[match_end:].strip() if text and text[0] == ",": text = text[1:].strip() rest = list(filter(None, [description])) items.append((funcs, rest)) else: raise ParseError(f"{line} is not a item name") return items
func_name : Descriptive text continued text another_func_name : Descriptive text func_name1, func_name2, :meth:`func_name`, func_name3
_parse_see_also
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def _parse_index(self, section, content): """ .. index: default :refguide: something, else, and more """ def strip_each_in(lst): return [s.strip() for s in lst] out = {} section = section.split("::") if len(section) > 1: out["default"] = strip_each_in(section[1].split(","))[0] for line in content: line = line.split(":") if len(line) > 2: out[line[1]] = strip_each_in(line[2].split(",")) return out
.. index: default :refguide: something, else, and more
_parse_index
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def _parse_summary(self): """Grab signature (if given) and summary""" if self._is_at_section(): return # If several signatures present, take the last one while True: summary = self._doc.read_to_next_empty_line() summary_str = " ".join([s.strip() for s in summary]).strip() compiled = re.compile(r"^([\w., ]+=)?\s*[\w\.]+\(.*\)$") if compiled.match(summary_str): self["Signature"] = summary_str if not self._is_at_section(): continue break if summary is not None: self["Summary"] = summary if not self._is_at_section(): self["Extended Summary"] = self._read_to_next_section()
Grab signature (if given) and summary
_parse_summary
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def remove_parameters(self, parameters): """ Parameters ---------- parameters : str, list[str] The names of the parameters to remove. """ if self._docstring is None: # Protection against -oo execution return if isinstance(parameters, str): parameters = [parameters] repl = [ param for param in self._ds["Parameters"] if param.name not in parameters ] if len(repl) + len(parameters) != len(self._ds["Parameters"]): raise ValueError("One or more parameters were not found.") self._ds["Parameters"] = repl
Parameters ---------- parameters : str, list[str] The names of the parameters to remove.
remove_parameters
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def insert_parameters(self, after, parameters): """ Parameters ---------- after : {None, str} If None, inset the parameters before the first parameter in the docstring. parameters : Parameter, list[Parameter] A Parameter of a list of Parameters. """ if self._docstring is None: # Protection against -oo execution return if isinstance(parameters, Parameter): parameters = [parameters] if after is None: self._ds["Parameters"] = parameters + self._ds["Parameters"] else: loc = -1 for i, param in enumerate(self._ds["Parameters"]): if param.name == after: loc = i + 1 break if loc < 0: raise ValueError() params = self._ds["Parameters"][:loc] + parameters params += self._ds["Parameters"][loc:] self._ds["Parameters"] = params
Parameters ---------- after : {None, str} If None, inset the parameters before the first parameter in the docstring. parameters : Parameter, list[Parameter] A Parameter of a list of Parameters.
insert_parameters
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def replace_block(self, block_name, block): """ Parameters ---------- block_name : str Name of the block to replace, e.g., 'Summary'. block : object The replacement block. The structure of the replacement block must match how the block is stored by NumpyDocString. """ if self._docstring is None: # Protection against -oo execution return block_name = " ".join(map(str.capitalize, block_name.split(" "))) if block_name not in self._ds: raise ValueError( "{} is not a block in the docstring".format(block_name) ) if not isinstance(block, list) and isinstance( self._ds[block_name], list ): block = [block] self._ds[block_name] = block
Parameters ---------- block_name : str Name of the block to replace, e.g., 'Summary'. block : object The replacement block. The structure of the replacement block must match how the block is stored by NumpyDocString.
replace_block
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def remove_parameters(docstring, parameters): """ Parameters ---------- docstring : str The docstring to modify. parameters : str, list[str] The names of the parameters to remove. Returns ------- str The modified docstring. """ if docstring is None: return ds = Docstring(docstring) ds.remove_parameters(parameters) return str(ds)
Parameters ---------- docstring : str The docstring to modify. parameters : str, list[str] The names of the parameters to remove. Returns ------- str The modified docstring.
remove_parameters
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def indent(text, prefix, predicate=None): """ Non-protected indent Parameters ---------- text : {None, str} If None, function always returns "" prefix : str Prefix to add to the start of each line predicate : callable, optional If provided, 'prefix' will only be added to the lines where 'predicate(line)' is True. If 'predicate' is not provided, it will default to adding 'prefix' to all non-empty lines that do not consist solely of whitespace characters. Returns ------- """ if text is None: return "" return textwrap.indent(text, prefix, predicate=predicate)
Non-protected indent Parameters ---------- text : {None, str} If None, function always returns "" prefix : str Prefix to add to the start of each line predicate : callable, optional If provided, 'prefix' will only be added to the lines where 'predicate(line)' is True. If 'predicate' is not provided, it will default to adding 'prefix' to all non-empty lines that do not consist solely of whitespace characters. Returns -------
indent
python
statsmodels/statsmodels
statsmodels/tools/docstring.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/docstring.py
BSD-3-Clause
def transform(self, data): """standardize the data using the stored transformation """ # could use scipy.stats.zscore instead if self.mean is None: return np.asarray(data) / self.scale else: return (np.asarray(data) - self.mean) / self.scale
standardize the data using the stored transformation
transform
python
statsmodels/statsmodels
statsmodels/tools/transform_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/transform_model.py
BSD-3-Clause
def transform_params(self, params): """Transform parameters of the standardized model to the original model Parameters ---------- params : ndarray parameters estimated with the standardized model Returns ------- params_new : ndarray parameters transformed to the parameterization of the original model """ params_new = params / self.scale if self.const_idx != 'n': params_new[self.const_idx] -= (params_new * self.mean).sum() return params_new
Transform parameters of the standardized model to the original model Parameters ---------- params : ndarray parameters estimated with the standardized model Returns ------- params_new : ndarray parameters transformed to the parameterization of the original model
transform_params
python
statsmodels/statsmodels
statsmodels/tools/transform_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/transform_model.py
BSD-3-Clause
def interpret_data(data, colnames=None, rownames=None): """ Convert passed data structure to form required by estimation classes Parameters ---------- data : array_like colnames : sequence or None May be part of data structure rownames : sequence or None Returns ------- (values, colnames, rownames) : (homogeneous ndarray, list) """ if isinstance(data, np.ndarray): values = np.asarray(data) if colnames is None: colnames = ['Y_%d' % i for i in range(values.shape[1])] elif is_data_frame(data): # XXX: hack data = data.dropna() values = data.values colnames = data.columns rownames = data.index else: # pragma: no cover raise TypeError('Cannot handle input type {typ}' .format(typ=type(data).__name__)) if not isinstance(colnames, list): colnames = list(colnames) # sanity check if len(colnames) != values.shape[1]: raise ValueError('length of colnames does not match number ' 'of columns in data') if rownames is not None and len(rownames) != len(values): raise ValueError('length of rownames does not match number ' 'of rows in data') return values, colnames, rownames
Convert passed data structure to form required by estimation classes Parameters ---------- data : array_like colnames : sequence or None May be part of data structure rownames : sequence or None Returns ------- (values, colnames, rownames) : (homogeneous ndarray, list)
interpret_data
python
statsmodels/statsmodels
statsmodels/tools/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/data.py
BSD-3-Clause
def _is_recarray(data): """ Returns true if data is a recarray """ if NP_LT_2: return isinstance(data, np.core.recarray) else: return isinstance(data, np.rec.recarray)
Returns true if data is a recarray
_is_recarray
python
statsmodels/statsmodels
statsmodels/tools/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/data.py
BSD-3-Clause
def _as_array_with_name(obj, default_name): """ Call np.asarray() on obj and attempt to get the name if its a Series. Parameters ---------- obj: pd.Series Series to convert to an array default_name: str The default name to return in case the object isn't a pd.Series or has no name attribute. Returns ------- array_and_name: tuple[np.ndarray, str] The data casted to np.ndarra and the series name or None """ if is_series(obj): return (np.asarray(obj), obj.name) return (np.asarray(obj), default_name)
Call np.asarray() on obj and attempt to get the name if its a Series. Parameters ---------- obj: pd.Series Series to convert to an array default_name: str The default name to return in case the object isn't a pd.Series or has no name attribute. Returns ------- array_and_name: tuple[np.ndarray, str] The data casted to np.ndarra and the series name or None
_as_array_with_name
python
statsmodels/statsmodels
statsmodels/tools/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/data.py
BSD-3-Clause