code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
182
url
stringlengths
46
251
license
stringclasses
4 values
def linear_harvey_collier(res, order_by=None, skip=None): """ Harvey Collier test for linearity The Null hypothesis is that the regression is correctly modeled as linear. Parameters ---------- res : RegressionResults A results instance from a linear regression. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). Returns ------- tvalue : float The test statistic, based on ttest_1sample. pvalue : float The pvalue of the test. See Also -------- statsmodels.stats.diadnostic.recursive_olsresiduals Recursive OLS residual calculation used in the test. Notes ----- This test is a t-test that the mean of the recursive ols residuals is zero. Calculating the recursive residuals might take some time for large samples. """ # I think this has different ddof than # B.H. Baltagi, Econometrics, 2011, chapter 8 # but it matches Gretl and R:lmtest, pvalue at decimal=13 rr = recursive_olsresiduals(res, skip=skip, alpha=0.95, order_by=order_by) return stats.ttest_1samp(rr[3][3:], 0)
Harvey Collier test for linearity The Null hypothesis is that the regression is correctly modeled as linear. Parameters ---------- res : RegressionResults A results instance from a linear regression. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). Returns ------- tvalue : float The test statistic, based on ttest_1sample. pvalue : float The pvalue of the test. See Also -------- statsmodels.stats.diadnostic.recursive_olsresiduals Recursive OLS residual calculation used in the test. Notes ----- This test is a t-test that the mean of the recursive ols residuals is zero. Calculating the recursive residuals might take some time for large samples.
linear_harvey_collier
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def linear_rainbow(res, frac=0.5, order_by=None, use_distance=False, center=None): """ Rainbow test for linearity The null hypothesis is the fit of the model using full sample is the same as using a central subset. The alternative is that the fits are difference. The rainbow test has power against many different forms of nonlinearity. Parameters ---------- res : RegressionResults A results instance from a linear regression. frac : float, default 0.5 The fraction of the data to include in the center model. order_by : {ndarray, str, List[str]}, default None If an ndarray, the values in the array are used to sort the observations. If a string or a list of strings, these are interpreted as column name(s) which are then used to lexicographically sort the data. use_distance : bool, default False Flag indicating whether data should be ordered by the Mahalanobis distance to the center. center : {float, int}, default None If a float, the value must be in [0, 1] and the center is center * nobs of the ordered data. If an integer, must be in [0, nobs) and is interpreted as the observation of the ordered data to use. Returns ------- fstat : float The test statistic based on the F test. pvalue : float The pvalue of the test. Notes ----- This test assumes residuals are homoskedastic and may reject a correct linear specification if the residuals are heteroskedastic. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("res must be a results instance from a linear model.") frac = float_like(frac, "frac") use_distance = bool_like(use_distance, "use_distance") nobs = res.nobs endog = res.model.endog exog = res.model.exog if order_by is not None and use_distance: raise ValueError("order_by and use_distance cannot be simultaneously" "used.") if order_by is not None: if isinstance(order_by, np.ndarray): order_by = array_like(order_by, "order_by", ndim=1, dtype="int") else: if isinstance(order_by, str): order_by = [order_by] try: cols = res.model.data.orig_exog[order_by].copy() except (IndexError, KeyError): raise TypeError("order_by must contain valid column names " "from the exog data used to construct res," "and exog must be a pandas DataFrame.") name = "__index__" while name in cols: name += '_' cols[name] = np.arange(cols.shape[0]) cols = cols.sort_values(order_by) order_by = np.asarray(cols[name]) endog = endog[order_by] exog = exog[order_by] if use_distance: center = int(nobs) // 2 if center is None else center if isinstance(center, float): if not 0.0 <= center <= 1.0: raise ValueError("center must be in (0, 1) when a float.") center = int(center * (nobs-1)) else: center = int_like(center, "center") if not 0 < center < nobs - 1: raise ValueError("center must be in [0, nobs) when an int.") center_obs = exog[center:center+1] from scipy.spatial.distance import cdist try: err = exog - center_obs vi = np.linalg.inv(err.T @ err / nobs) except np.linalg.LinAlgError: err = exog - exog.mean(0) vi = np.linalg.inv(err.T @ err / nobs) dist = cdist(exog, center_obs, metric='mahalanobis', VI=vi) idx = np.argsort(dist.ravel()) endog = endog[idx] exog = exog[idx] lowidx = np.ceil(0.5 * (1 - frac) * nobs).astype(int) uppidx = np.floor(lowidx + frac * nobs).astype(int) if uppidx - lowidx < exog.shape[1]: raise ValueError("frac is too small to perform test. frac * nobs" "must be greater than the number of exogenous" "variables in the model.") mi_sl = slice(lowidx, uppidx) res_mi = OLS(endog[mi_sl], exog[mi_sl]).fit() nobs_mi = res_mi.model.endog.shape[0] ss_mi = res_mi.ssr ss = res.ssr fstat = (ss - ss_mi) / (nobs - nobs_mi) / ss_mi * res_mi.df_resid pval = stats.f.sf(fstat, nobs - nobs_mi, res_mi.df_resid) return fstat, pval
Rainbow test for linearity The null hypothesis is the fit of the model using full sample is the same as using a central subset. The alternative is that the fits are difference. The rainbow test has power against many different forms of nonlinearity. Parameters ---------- res : RegressionResults A results instance from a linear regression. frac : float, default 0.5 The fraction of the data to include in the center model. order_by : {ndarray, str, List[str]}, default None If an ndarray, the values in the array are used to sort the observations. If a string or a list of strings, these are interpreted as column name(s) which are then used to lexicographically sort the data. use_distance : bool, default False Flag indicating whether data should be ordered by the Mahalanobis distance to the center. center : {float, int}, default None If a float, the value must be in [0, 1] and the center is center * nobs of the ordered data. If an integer, must be in [0, nobs) and is interpreted as the observation of the ordered data to use. Returns ------- fstat : float The test statistic based on the F test. pvalue : float The pvalue of the test. Notes ----- This test assumes residuals are homoskedastic and may reject a correct linear specification if the residuals are heteroskedastic.
linear_rainbow
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def linear_lm(resid, exog, func=None): """ Lagrange multiplier test for linearity against functional alternative # TODO: Remove the restriction limitations: Assumes currently that the first column is integer. Currently it does not check whether the transformed variables contain NaNs, for example log of negative number. Parameters ---------- resid : ndarray residuals of a regression exog : ndarray exogenous variables for which linearity is tested func : callable, default None If func is None, then squares are used. func needs to take an array of exog and return an array of transformed variables. Returns ------- lm : float Lagrange multiplier test statistic lm_pval : float p-value of Lagrange multiplier tes ftest : ContrastResult instance the results from the F test variant of this test Notes ----- Written to match Gretl's linearity test. The test runs an auxiliary regression of the residuals on the combined original and transformed regressors. The Null hypothesis is that the linear specification is correct. """ if func is None: def func(x): return np.power(x, 2) exog = np.asarray(exog) exog_aux = np.column_stack((exog, func(exog[:, 1:]))) nobs, k_vars = exog.shape ls = OLS(resid, exog_aux).fit() ftest = ls.f_test(np.eye(k_vars - 1, k_vars * 2 - 1, k_vars)) lm = nobs * ls.rsquared lm_pval = stats.chi2.sf(lm, k_vars - 1) return lm, lm_pval, ftest
Lagrange multiplier test for linearity against functional alternative # TODO: Remove the restriction limitations: Assumes currently that the first column is integer. Currently it does not check whether the transformed variables contain NaNs, for example log of negative number. Parameters ---------- resid : ndarray residuals of a regression exog : ndarray exogenous variables for which linearity is tested func : callable, default None If func is None, then squares are used. func needs to take an array of exog and return an array of transformed variables. Returns ------- lm : float Lagrange multiplier test statistic lm_pval : float p-value of Lagrange multiplier tes ftest : ContrastResult instance the results from the F test variant of this test Notes ----- Written to match Gretl's linearity test. The test runs an auxiliary regression of the residuals on the combined original and transformed regressors. The Null hypothesis is that the linear specification is correct.
linear_lm
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def spec_white(resid, exog): """ White's Two-Moment Specification Test Parameters ---------- resid : array_like OLS residuals. exog : array_like OLS design matrix. Returns ------- stat : float The test statistic. pval : float A chi-square p-value for test statistic. dof : int The degrees of freedom. See Also -------- het_white White's test for heteroskedasticity. Notes ----- Implements the two-moment specification test described by White's Theorem 2 (1980, p. 823) which compares the standard OLS covariance estimator with White's heteroscedasticity-consistent estimator. The test statistic is shown to be chi-square distributed. Null hypothesis is homoscedastic and correctly specified. Assumes the OLS design matrix contains an intercept term and at least one variable. The intercept is removed to calculate the test statistic. Interaction terms (squares and crosses of OLS regressors) are added to the design matrix to calculate the test statistic. Degrees-of-freedom (full rank) = nvar + nvar * (nvar + 1) / 2 Linearly dependent columns are removed to avoid singular matrix error. References ---------- .. [*] White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48: 817-838. """ x = array_like(exog, "exog", ndim=2) e = array_like(resid, "resid", ndim=1) if x.shape[1] < 2 or not np.any(np.ptp(x, 0) == 0.0): raise ValueError("White's specification test requires at least two" "columns where one is a constant.") # add interaction terms i0, i1 = np.triu_indices(x.shape[1]) exog = np.delete(x[:, i0] * x[:, i1], 0, 1) # collinearity check - see _fit_collinear atol = 1e-14 rtol = 1e-13 tol = atol + rtol * exog.var(0) r = np.linalg.qr(exog, mode="r") mask = np.abs(r.diagonal()) < np.sqrt(tol) exog = exog[:, np.where(~mask)[0]] # calculate test statistic sqe = e * e sqmndevs = sqe - np.mean(sqe) d = np.dot(exog.T, sqmndevs) devx = exog - np.mean(exog, axis=0) devx *= sqmndevs[:, None] b = devx.T.dot(devx) stat = d.dot(np.linalg.solve(b, d)) # chi-square test dof = devx.shape[1] pval = stats.chi2.sf(stat, dof) return stat, pval, dof
White's Two-Moment Specification Test Parameters ---------- resid : array_like OLS residuals. exog : array_like OLS design matrix. Returns ------- stat : float The test statistic. pval : float A chi-square p-value for test statistic. dof : int The degrees of freedom. See Also -------- het_white White's test for heteroskedasticity. Notes ----- Implements the two-moment specification test described by White's Theorem 2 (1980, p. 823) which compares the standard OLS covariance estimator with White's heteroscedasticity-consistent estimator. The test statistic is shown to be chi-square distributed. Null hypothesis is homoscedastic and correctly specified. Assumes the OLS design matrix contains an intercept term and at least one variable. The intercept is removed to calculate the test statistic. Interaction terms (squares and crosses of OLS regressors) are added to the design matrix to calculate the test statistic. Degrees-of-freedom (full rank) = nvar + nvar * (nvar + 1) / 2 Linearly dependent columns are removed to avoid singular matrix error. References ---------- .. [*] White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48: 817-838.
spec_white
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def recursive_olsresiduals(res, skip=None, lamda=0.0, alpha=0.95, order_by=None): """ Calculate recursive ols with residuals and Cusum test statistic Parameters ---------- res : RegressionResults Results from estimation of a regression model. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). lamda : float, default 0.0 The weight for Ridge correction to initial (X'X)^{-1}. alpha : {0.90, 0.95, 0.99}, default 0.95 Confidence level of test, currently only two values supported, used for confidence interval in cusum graph. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. Returns ------- rresid : ndarray The recursive ols residuals. rparams : ndarray The recursive ols parameter estimates. rypred : ndarray The recursive prediction of endogenous variable. rresid_standardized : ndarray The recursive residuals standardized so that N(0,sigma2) distributed, where sigma2 is the error variance. rresid_scaled : ndarray The recursive residuals normalize so that N(0,1) distributed. rcusum : ndarray The cumulative residuals for cusum test. rcusumci : ndarray The confidence interval for cusum test using a size of alpha. Notes ----- It produces same recursive residuals as other version. This version updates the inverse of the X'X matrix and does not require matrix inversion during updating. looks efficient but no timing Confidence interval in Greene and Brown, Durbin and Evans is the same as in Ploberger after a little bit of algebra. References ---------- jplv to check formulas, follows Harvey BigJudge 5.5.2b for formula for inverse(X'X) updating Greene section 7.5.2 Brown, R. L., J. Durbin, and J. M. Evans. “Techniques for Testing the Constancy of Regression Relationships over Time.” Journal of the Royal Statistical Society. Series B (Methodological) 37, no. 2 (1975): 149-192. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("res a regression results instance") y = res.model.endog x = res.model.exog order_by = array_like(order_by, "order_by", dtype="int", optional=True, ndim=1, shape=(y.shape[0],)) # intialize with skip observations if order_by is not None: x = x[order_by] y = y[order_by] nobs, nvars = x.shape if skip is None: skip = nvars rparams = np.nan * np.zeros((nobs, nvars)) rresid = np.nan * np.zeros(nobs) rypred = np.nan * np.zeros(nobs) rvarraw = np.nan * np.zeros(nobs) x0 = x[:skip] if np.linalg.matrix_rank(x0) < x0.shape[1]: err_msg = """\ "The initial regressor matrix, x[:skip], issingular. You must use a value of skip large enough to ensure that the first OLS estimator is well-defined. """ raise ValueError(err_msg) y0 = y[:skip] # add Ridge to start (not in jplv) xtxi = np.linalg.inv(np.dot(x0.T, x0) + lamda * np.eye(nvars)) xty = np.dot(x0.T, y0) # xi * y #np.dot(xi, y) beta = np.dot(xtxi, xty) rparams[skip - 1] = beta yipred = np.dot(x[skip - 1], beta) rypred[skip - 1] = yipred rresid[skip - 1] = y[skip - 1] - yipred rvarraw[skip - 1] = 1 + np.dot(x[skip - 1], np.dot(xtxi, x[skip - 1])) for i in range(skip, nobs): xi = x[i:i + 1, :] yi = y[i] # get prediction error with previous beta yipred = np.dot(xi, beta) rypred[i] = np.squeeze(yipred) residi = yi - yipred rresid[i] = np.squeeze(residi) # update beta and inverse(X'X) tmp = np.dot(xtxi, xi.T) ft = 1 + np.dot(xi, tmp) xtxi = xtxi - np.dot(tmp, tmp.T) / ft # BigJudge equ 5.5.15 beta = beta + (tmp * residi / ft).ravel() # BigJudge equ 5.5.14 rparams[i] = beta rvarraw[i] = np.squeeze(ft) rresid_scaled = rresid / np.sqrt(rvarraw) # N(0,sigma2) distributed nrr = nobs - skip # sigma2 = rresid_scaled[skip-1:].var(ddof=1) #var or sum of squares ? # Greene has var, jplv and Ploberger have sum of squares (Ass.:mean=0) # Gretl uses: by reverse engineering matching their numbers sigma2 = rresid_scaled[skip:].var(ddof=1) rresid_standardized = rresid_scaled / np.sqrt(sigma2) # N(0,1) distributed rcusum = rresid_standardized[skip - 1:].cumsum() # confidence interval points in Greene p136 looks strange. Cleared up # this assumes sum of independent standard normal, which does not take into # account that we make many tests at the same time if alpha == 0.90: a = 0.850 elif alpha == 0.95: a = 0.948 elif alpha == 0.99: a = 1.143 else: raise ValueError("alpha can only be 0.9, 0.95 or 0.99") # following taken from Ploberger, # crit = a * np.sqrt(nrr) rcusumci = (a * np.sqrt(nrr) + 2 * a * np.arange(0, nobs - skip) / np.sqrt( nrr)) * np.array([[-1.], [+1.]]) return (rresid, rparams, rypred, rresid_standardized, rresid_scaled, rcusum, rcusumci)
Calculate recursive ols with residuals and Cusum test statistic Parameters ---------- res : RegressionResults Results from estimation of a regression model. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). lamda : float, default 0.0 The weight for Ridge correction to initial (X'X)^{-1}. alpha : {0.90, 0.95, 0.99}, default 0.95 Confidence level of test, currently only two values supported, used for confidence interval in cusum graph. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. Returns ------- rresid : ndarray The recursive ols residuals. rparams : ndarray The recursive ols parameter estimates. rypred : ndarray The recursive prediction of endogenous variable. rresid_standardized : ndarray The recursive residuals standardized so that N(0,sigma2) distributed, where sigma2 is the error variance. rresid_scaled : ndarray The recursive residuals normalize so that N(0,1) distributed. rcusum : ndarray The cumulative residuals for cusum test. rcusumci : ndarray The confidence interval for cusum test using a size of alpha. Notes ----- It produces same recursive residuals as other version. This version updates the inverse of the X'X matrix and does not require matrix inversion during updating. looks efficient but no timing Confidence interval in Greene and Brown, Durbin and Evans is the same as in Ploberger after a little bit of algebra. References ---------- jplv to check formulas, follows Harvey BigJudge 5.5.2b for formula for inverse(X'X) updating Greene section 7.5.2 Brown, R. L., J. Durbin, and J. M. Evans. “Techniques for Testing the Constancy of Regression Relationships over Time.” Journal of the Royal Statistical Society. Series B (Methodological) 37, no. 2 (1975): 149-192.
recursive_olsresiduals
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def breaks_hansen(olsresults): """ Test for model stability, breaks in parameters for ols, Hansen 1992 Parameters ---------- olsresults : RegressionResults Results from estimation of a regression model. Returns ------- teststat : float Hansen's test statistic. crit : ndarray The critical values at alpha=0.95 for different nvars. Notes ----- looks good in example, maybe not very powerful for small changes in parameters According to Greene, distribution of test statistics depends on nvar but not on nobs. Test statistic is verified against R:strucchange References ---------- Greene section 7.5.1, notation follows Greene """ x = olsresults.model.exog resid = array_like(olsresults.resid, "resid", shape=(x.shape[0], 1)) nobs, nvars = x.shape resid2 = resid ** 2 ft = np.c_[x * resid[:, None], (resid2 - resid2.mean())] score = ft.cumsum(0) f = nobs * (ft[:, :, None] * ft[:, None, :]).sum(0) s = (score[:, :, None] * score[:, None, :]).sum(0) h = np.trace(np.dot(np.linalg.inv(f), s)) crit95 = np.array([(2, 1.01), (6, 1.9), (15, 3.75), (19, 4.52)], dtype=[("nobs", int), ("crit", float)]) # TODO: get critical values from Bruce Hansen's 1992 paper return h, crit95
Test for model stability, breaks in parameters for ols, Hansen 1992 Parameters ---------- olsresults : RegressionResults Results from estimation of a regression model. Returns ------- teststat : float Hansen's test statistic. crit : ndarray The critical values at alpha=0.95 for different nvars. Notes ----- looks good in example, maybe not very powerful for small changes in parameters According to Greene, distribution of test statistics depends on nvar but not on nobs. Test statistic is verified against R:strucchange References ---------- Greene section 7.5.1, notation follows Greene
breaks_hansen
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def breaks_cusumolsresid(resid, ddof=0): """ Cusum test for parameter stability based on ols residuals. Parameters ---------- resid : ndarray An array of residuals from an OLS estimation. ddof : int The number of parameters in the OLS estimation, used as degrees of freedom correction for error variance. Returns ------- sup_b : float The test statistic, maximum of absolute value of scaled cumulative OLS residuals. pval : float Probability of observing the data under the null hypothesis of no structural change, based on asymptotic distribution which is a Brownian Bridge crit: list The tabulated critical values, for alpha = 1%, 5% and 10%. Notes ----- Tested against R:structchange. Not clear: Assumption 2 in Ploberger, Kramer assumes that exog x have asymptotically zero mean, x.mean(0) = [1, 0, 0, ..., 0] Is this really necessary? I do not see how it can affect the test statistic under the null. It does make a difference under the alternative. Also, the asymptotic distribution of test statistic depends on this. From examples it looks like there is little power for standard cusum if exog (other than constant) have mean zero. References ---------- Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.” Econometrica 60, no. 2 (March 1992): 271-285. """ resid = np.asarray(resid).ravel() nobs = len(resid) nobssigma2 = (resid ** 2).sum() if ddof > 0: nobssigma2 = nobssigma2 / (nobs - ddof) * nobs # b is asymptotically a Brownian Bridge b = resid.cumsum() / np.sqrt(nobssigma2) # use T*sigma directly # asymptotically distributed as standard Brownian Bridge sup_b = np.abs(b).max() crit = [(1, 1.63), (5, 1.36), (10, 1.22)] # Note stats.kstwobign.isf(0.1) is distribution of sup.abs of Brownian # Bridge # >>> stats.kstwobign.isf([0.01,0.05,0.1]) # array([ 1.62762361, 1.35809864, 1.22384787]) pval = stats.kstwobign.sf(sup_b) return sup_b, pval, crit
Cusum test for parameter stability based on ols residuals. Parameters ---------- resid : ndarray An array of residuals from an OLS estimation. ddof : int The number of parameters in the OLS estimation, used as degrees of freedom correction for error variance. Returns ------- sup_b : float The test statistic, maximum of absolute value of scaled cumulative OLS residuals. pval : float Probability of observing the data under the null hypothesis of no structural change, based on asymptotic distribution which is a Brownian Bridge crit: list The tabulated critical values, for alpha = 1%, 5% and 10%. Notes ----- Tested against R:structchange. Not clear: Assumption 2 in Ploberger, Kramer assumes that exog x have asymptotically zero mean, x.mean(0) = [1, 0, 0, ..., 0] Is this really necessary? I do not see how it can affect the test statistic under the null. It does make a difference under the alternative. Also, the asymptotic distribution of test statistic depends on this. From examples it looks like there is little power for standard cusum if exog (other than constant) have mean zero. References ---------- Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.” Econometrica 60, no. 2 (March 1992): 271-285.
breaks_cusumolsresid
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def variance(self, decomp_type, n=5000, conf=0.99): """ A helper function to calculate the variance/std. Used to keep the decomposition functions cleaner """ if self.submitted_n is not None: n = self.submitted_n if self.submitted_conf is not None: conf = self.submitted_conf if self.submitted_weight is not None: submitted_weight = [ self.submitted_weight, 1 - self.submitted_weight, ] bi = self.bi bifurcate = self.bifurcate endow_eff_list = [] coef_eff_list = [] int_eff_list = [] exp_eff_list = [] unexp_eff_list = [] for _ in range(0, n): endog = np.column_stack((self.bi_col, self.endog)) exog = self.exog amount = len(endog) samples = np.random.randint(0, high=amount, size=amount) endog = endog[samples] exog = exog[samples] neumark = np.delete(exog, bifurcate, axis=1) exog_f = exog[np.where(exog[:, bifurcate] == bi[0])] exog_s = exog[np.where(exog[:, bifurcate] == bi[1])] endog_f = endog[np.where(endog[:, 0] == bi[0])] endog_s = endog[np.where(endog[:, 0] == bi[1])] exog_f = np.delete(exog_f, bifurcate, axis=1) exog_s = np.delete(exog_s, bifurcate, axis=1) endog_f = endog_f[:, 1] endog_s = endog_s[:, 1] endog = endog[:, 1] two_fold_type = self.two_fold_type if self.hasconst is False: exog_f = add_constant(exog_f, prepend=False) exog_s = add_constant(exog_s, prepend=False) exog = add_constant(exog, prepend=False) neumark = add_constant(neumark, prepend=False) _f_model = OLS(endog_f, exog_f).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) _s_model = OLS(endog_s, exog_s).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) exog_f_mean = np.mean(exog_f, axis=0) exog_s_mean = np.mean(exog_s, axis=0) if decomp_type == 3: endow_eff = (exog_f_mean - exog_s_mean) @ _s_model.params coef_eff = exog_s_mean @ (_f_model.params - _s_model.params) int_eff = (exog_f_mean - exog_s_mean) @ ( _f_model.params - _s_model.params ) endow_eff_list.append(endow_eff) coef_eff_list.append(coef_eff) int_eff_list.append(int_eff) elif decomp_type == 2: len_f = len(exog_f) len_s = len(exog_s) if two_fold_type == "cotton": t_params = (len_f / (len_f + len_s) * _f_model.params) + ( len_s / (len_f + len_s) * _s_model.params ) elif two_fold_type == "reimers": t_params = 0.5 * (_f_model.params + _s_model.params) elif two_fold_type == "self_submitted": t_params = ( submitted_weight[0] * _f_model.params + submitted_weight[1] * _s_model.params ) elif two_fold_type == "nuemark": _t_model = OLS(endog, neumark).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) t_params = _t_model.params else: _t_model = OLS(endog, exog).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) t_params = np.delete(_t_model.params, bifurcate) unexplained = (exog_f_mean @ (_f_model.params - t_params)) + ( exog_s_mean @ (t_params - _s_model.params) ) explained = (exog_f_mean - exog_s_mean) @ t_params unexp_eff_list.append(unexplained) exp_eff_list.append(explained) high, low = int(n * conf), int(n * (1 - conf)) if decomp_type == 3: return [ np.std(np.sort(endow_eff_list)[low:high]), np.std(np.sort(coef_eff_list)[low:high]), np.std(np.sort(int_eff_list)[low:high]), ] elif decomp_type == 2: return [ np.std(np.sort(unexp_eff_list)[low:high]), np.std(np.sort(exp_eff_list)[low:high]), ]
A helper function to calculate the variance/std. Used to keep the decomposition functions cleaner
variance
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def three_fold(self, std=False, n=None, conf=None): """ Calculates the three-fold Oaxaca Blinder Decompositions Parameters ---------- std: boolean, optional If true, bootstrapped standard errors will be calculated. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the three-fold decomposition. """ self.submitted_n = n self.submitted_conf = conf self.submitted_weight = None std_val = None self.endow_eff = ( self.exog_f_mean - self.exog_s_mean ) @ self._s_model.params self.coef_eff = self.exog_s_mean @ ( self._f_model.params - self._s_model.params ) self.int_eff = (self.exog_f_mean - self.exog_s_mean) @ ( self._f_model.params - self._s_model.params ) if std is True: std_val = self.variance(3) return OaxacaResults( (self.endow_eff, self.coef_eff, self.int_eff, self.gap), 3, std_val=std_val, )
Calculates the three-fold Oaxaca Blinder Decompositions Parameters ---------- std: boolean, optional If true, bootstrapped standard errors will be calculated. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the three-fold decomposition.
three_fold
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def two_fold( self, std=False, two_fold_type="pooled", submitted_weight=None, n=None, conf=None, ): """ Calculates the two-fold or pooled Oaxaca Blinder Decompositions Methods ------- std: boolean, optional If true, bootstrapped standard errors will be calculated. two_fold_type: string, optional This method allows for the specific calculation of the non-discriminatory model. There are four different types available at this time. pooled, cotton, reimers, self_submitted. Pooled is assumed and if a non-viable parameter is given, pooled will be ran. pooled - This type assumes that the pooled model's parameters (a normal regression) is the non-discriminatory model. This includes the indicator variable. This is generally the best idea. If you have economic justification for using others, then use others. nuemark - This is similar to the pooled type, but the regression is not done including the indicator variable. cotton - This type uses the adjusted in Cotton (1988), which accounts for the undervaluation of one group causing the overevalution of another. It uses the sample size weights for a linear combination of the two model parameters reimers - This type uses a linear combination of the two models with both parameters being 50% of the non-discriminatory model. self_submitted - This allows the user to submit their own weights. Please be sure to put the weight of the larger mean group only. This should be submitted in the submitted_weights variable. submitted_weight: int/float, required only for self_submitted, This is the submitted weight for the larger mean. If the weight for the larger mean is p, then the weight for the other mean is 1-p. Only submit the first value. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the two-fold decomposition. """ self.submitted_n = n self.submitted_conf = conf std_val = None self.two_fold_type = two_fold_type self.submitted_weight = submitted_weight if two_fold_type == "cotton": self.t_params = ( self.len_f / (self.len_f + self.len_s) * self._f_model.params ) + (self.len_s / (self.len_f + self.len_s) * self._s_model.params) elif two_fold_type == "reimers": self.t_params = 0.5 * (self._f_model.params + self._s_model.params) elif two_fold_type == "self_submitted": if submitted_weight is None: raise ValueError("Please submit weights") submitted_weight = [submitted_weight, 1 - submitted_weight] self.t_params = ( submitted_weight[0] * self._f_model.params + submitted_weight[1] * self._s_model.params ) elif two_fold_type == "nuemark": self._t_model = OLS(self.endog, self.neumark).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) self.t_params = self._t_model.params else: self._t_model = OLS(self.endog, self.exog).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) self.t_params = np.delete(self._t_model.params, self.bifurcate) self.unexplained = ( self.exog_f_mean @ (self._f_model.params - self.t_params) ) + (self.exog_s_mean @ (self.t_params - self._s_model.params)) self.explained = (self.exog_f_mean - self.exog_s_mean) @ self.t_params if std is True: std_val = self.variance(2) return OaxacaResults( (self.unexplained, self.explained, self.gap), 2, std_val=std_val )
Calculates the two-fold or pooled Oaxaca Blinder Decompositions Methods ------- std: boolean, optional If true, bootstrapped standard errors will be calculated. two_fold_type: string, optional This method allows for the specific calculation of the non-discriminatory model. There are four different types available at this time. pooled, cotton, reimers, self_submitted. Pooled is assumed and if a non-viable parameter is given, pooled will be ran. pooled - This type assumes that the pooled model's parameters (a normal regression) is the non-discriminatory model. This includes the indicator variable. This is generally the best idea. If you have economic justification for using others, then use others. nuemark - This is similar to the pooled type, but the regression is not done including the indicator variable. cotton - This type uses the adjusted in Cotton (1988), which accounts for the undervaluation of one group causing the overevalution of another. It uses the sample size weights for a linear combination of the two model parameters reimers - This type uses a linear combination of the two models with both parameters being 50% of the non-discriminatory model. self_submitted - This allows the user to submit their own weights. Please be sure to put the weight of the larger mean group only. This should be submitted in the submitted_weights variable. submitted_weight: int/float, required only for self_submitted, This is the submitted weight for the larger mean. If the weight for the larger mean is p, then the weight for the other mean is 1-p. Only submit the first value. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the two-fold decomposition.
two_fold
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def summary(self): """ Print a summary table with the Oaxaca-Blinder effects """ if self.model_type == 2: if self.std is None: print( dedent( f"""\ Oaxaca-Blinder Two-fold Effects Unexplained Effect: {self.params[0]:.5f} Explained Effect: {self.params[1]:.5f} Gap: {self.params[2]:.5f}""" ) ) else: print( dedent( """\ Oaxaca-Blinder Two-fold Effects Unexplained Effect: {:.5f} Unexplained Standard Error: {:.5f} Explained Effect: {:.5f} Explained Standard Error: {:.5f} Gap: {:.5f}""".format( self.params[0], self.std[0], self.params[1], self.std[1], self.params[2], ) ) ) if self.model_type == 3: if self.std is None: print( dedent( f"""\ Oaxaca-Blinder Three-fold Effects Endowment Effect: {self.params[0]:.5f} Coefficient Effect: {self.params[1]:.5f} Interaction Effect: {self.params[2]:.5f} Gap: {self.params[3]:.5f}""" ) ) else: print( dedent( f"""\ Oaxaca-Blinder Three-fold Effects Endowment Effect: {self.params[0]:.5f} Endowment Standard Error: {self.std[0]:.5f} Coefficient Effect: {self.params[1]:.5f} Coefficient Standard Error: {self.std[1]:.5f} Interaction Effect: {self.params[2]:.5f} Interaction Standard Error: {self.std[2]:.5f} Gap: {self.params[3]:.5f}""" ) )
Print a summary table with the Oaxaca-Blinder effects
summary
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def trimboth(a, proportiontocut, axis=0): """ Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). You must pre-sort the array if you want 'proper' trimming. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float or int Proportion of data to trim at each end. axis : int or None Axis along which the observations are trimmed. The default is to trim along axis=0. If axis is None then the array will be flattened before trimming. Returns ------- out : array-like Trimmed version of array `a`. Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,) """ a = np.asarray(a) if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut >= uppercut): raise ValueError("Proportion too big.") sl = [slice(None)] * a.ndim sl[axis] = slice(lowercut, uppercut) return a[tuple(sl)]
Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). You must pre-sort the array if you want 'proper' trimming. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float or int Proportion of data to trim at each end. axis : int or None Axis along which the observations are trimmed. The default is to trim along axis=0. If axis is None then the array will be flattened before trimming. Returns ------- out : array-like Trimmed version of array `a`. Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,)
trimboth
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def trim_mean(a, proportiontocut, axis=0): """ Return mean of array after trimming observations from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off at each tail of the sorted observations. axis : int or None Axis along which the trimmed means are computed. The default is axis=0. If axis is None then the trimmed mean will be computed for the flattened array. Returns ------- trim_mean : ndarray Mean of trimmed array. """ newa = trimboth(np.sort(a, axis), proportiontocut, axis=axis) return np.mean(newa, axis=axis)
Return mean of array after trimming observations from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off at each tail of the sorted observations. axis : int or None Axis along which the trimmed means are computed. The default is axis=0. If axis is None then the trimmed mean will be computed for the flattened array. Returns ------- trim_mean : ndarray Mean of trimmed array.
trim_mean
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def data_trimmed(self): """numpy array of trimmed and sorted data """ # returns a view return self.data_sorted[self.sl]
numpy array of trimmed and sorted data
data_trimmed
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def data_winsorized(self): """winsorized data """ lb = np.expand_dims(self.lowerbound, self.axis) ub = np.expand_dims(self.upperbound, self.axis) return np.clip(self.data_sorted, lb, ub)
winsorized data
data_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def mean_trimmed(self): """mean of trimmed data """ return np.mean(self.data_sorted[tuple(self.sl)], self.axis)
mean of trimmed data
mean_trimmed
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def mean_winsorized(self): """mean of winsorized data """ return np.mean(self.data_winsorized, self.axis)
mean of winsorized data
mean_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def var_winsorized(self): """variance of winsorized data """ # hardcoded ddof = 1 return np.var(self.data_winsorized, ddof=1, axis=self.axis)
variance of winsorized data
var_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def std_mean_trimmed(self): """standard error of trimmed mean """ se = np.sqrt(self.var_winsorized / self.nobs_reduced) # trimming creates correlation across trimmed observations # trimming is based on order statistics of the data # wilcox 2012, p.61 se *= np.sqrt(self.nobs / self.nobs_reduced) return se
standard error of trimmed mean
std_mean_trimmed
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def std_mean_winsorized(self): """standard error of winsorized mean """ # the following matches Wilcox, WRS2 std_ = np.sqrt(self.var_winsorized / self.nobs) std_ *= (self.nobs - 1) / (self.nobs_reduced - 1) # old version # tm = self # formula from an old SAS manual page, simplified # std_ = np.sqrt(tm.var_winsorized / (tm.nobs_reduced - 1) * # (tm.nobs - 1.) / tm.nobs) return std_
standard error of winsorized mean
std_mean_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def ttest_mean(self, value=0, transform='trimmed', alternative='two-sided'): """ One sample t-test for trimmed or Winsorized mean Parameters ---------- value : float Value of the mean under the Null hypothesis transform : {'trimmed', 'winsorized'} Specified whether the mean test is based on trimmed or winsorized data. alternative : {'two-sided', 'larger', 'smaller'} Notes ----- p-value is based on the approximate t-distribution of the test statistic. The approximation is valid if the underlying distribution is symmetric. """ import statsmodels.stats.weightstats as smws df = self.nobs_reduced - 1 if transform == 'trimmed': mean_ = self.mean_trimmed std_ = self.std_mean_trimmed elif transform == 'winsorized': mean_ = self.mean_winsorized std_ = self.std_mean_winsorized else: raise ValueError("transform can only be 'trimmed' or 'winsorized'") res = smws._tstat_generic(mean_, 0, std_, df, alternative=alternative, diff=value) return res + (df,)
One sample t-test for trimmed or Winsorized mean Parameters ---------- value : float Value of the mean under the Null hypothesis transform : {'trimmed', 'winsorized'} Specified whether the mean test is based on trimmed or winsorized data. alternative : {'two-sided', 'larger', 'smaller'} Notes ----- p-value is based on the approximate t-distribution of the test statistic. The approximation is valid if the underlying distribution is symmetric.
ttest_mean
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def reset_fraction(self, frac): """create a TrimmedMean instance with a new trimming fraction This reuses the sorted array from the current instance. """ tm = TrimmedMean(self.data_sorted, frac, is_sorted=True, axis=self.axis) tm.data = self.data # TODO: this will not work if there is processing of meta-information # in __init__, # for example storing a pandas DataFrame or Series index return tm
create a TrimmedMean instance with a new trimming fraction This reuses the sorted array from the current instance.
reset_fraction
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def scale_transform(data, center='median', transform='abs', trim_frac=0.2, axis=0): """Transform data for variance comparison for Levene type tests Parameters ---------- data : array_like Observations for the data. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : 'abs', 'square', 'identity' or a callable The transform for the centered data. trim_frac : float in [0, 0.5) Fraction of observations that are trimmed on each side of the sorted observations. This is only used if center is `trimmed`. axis : int Axis along which the data are transformed when centering. Returns ------- res : ndarray transformed data in the same shape as the original data. """ x = np.asarray(data) # x is shorthand from earlier code if transform == 'abs': tfunc = np.abs elif transform == 'square': tfunc = lambda x: x * x # noqa elif transform == 'identity': tfunc = lambda x: x # noqa elif callable(transform): tfunc = transform else: raise ValueError('transform should be abs, square or exp') if center == 'median': res = tfunc(x - np.expand_dims(np.median(x, axis=axis), axis)) elif center == 'mean': res = tfunc(x - np.expand_dims(np.mean(x, axis=axis), axis)) elif center == 'trimmed': center = trim_mean(x, trim_frac, axis=axis) res = tfunc(x - np.expand_dims(center, axis)) elif isinstance(center, numbers.Number): res = tfunc(x - center) else: raise ValueError('center should be median, mean or trimmed') return res
Transform data for variance comparison for Levene type tests Parameters ---------- data : array_like Observations for the data. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : 'abs', 'square', 'identity' or a callable The transform for the centered data. trim_frac : float in [0, 0.5) Fraction of observations that are trimmed on each side of the sorted observations. This is only used if center is `trimmed`. axis : int Axis along which the data are transformed when centering. Returns ------- res : ndarray transformed data in the same shape as the original data.
scale_transform
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def _int_ifclose(x, dec=1, width=4): '''helper function for creating result string for int or float only dec=1 and width=4 is implemented Parameters ---------- x : int or float value to format dec : 1 number of decimals to print if x is not an integer width : 4 width of string Returns ------- xint : int or float x is converted to int if it is within 1e-14 of an integer x_string : str x formatted as string, either '%4d' or '%4.1f' ''' xint = int(round(x)) if np.max(np.abs(xint - x)) < 1e-14: return xint, '%4d' % xint else: return x, '%4.1f' % x
helper function for creating result string for int or float only dec=1 and width=4 is implemented Parameters ---------- x : int or float value to format dec : 1 number of decimals to print if x is not an integer width : 4 width of string Returns ------- xint : int or float x is converted to int if it is within 1e-14 of an integer x_string : str x formatted as string, either '%4d' or '%4.1f'
_int_ifclose
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def aggregate_raters(data, n_cat=None): '''convert raw data with shape (subject, rater) to (subject, cat_counts) brings data into correct format for fleiss_kappa bincount will raise exception if data cannot be converted to integer. Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. n_cat : None or int If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. Returns ------- arr : nd_array, (n_rows, n_cat) Contains counts of raters that assigned a category level to individuals. Subjects are in rows, category levels in columns. categories : nd_array, (n_category_levels,) Contains the category levels. ''' data = np.asarray(data) n_rows = data.shape[0] if n_cat is None: #I could add int conversion (reverse_index) to np.unique cat_uni, cat_int = np.unique(data.ravel(), return_inverse=True) n_cat = len(cat_uni) data_ = cat_int.reshape(data.shape) else: cat_uni = np.arange(n_cat) #for return only, assumed cat levels data_ = data tt = np.zeros((n_rows, n_cat), int) for idx, row in enumerate(data_): ro = np.bincount(row) tt[idx, :len(ro)] = ro return tt, cat_uni
convert raw data with shape (subject, rater) to (subject, cat_counts) brings data into correct format for fleiss_kappa bincount will raise exception if data cannot be converted to integer. Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. n_cat : None or int If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. Returns ------- arr : nd_array, (n_rows, n_cat) Contains counts of raters that assigned a category level to individuals. Subjects are in rows, category levels in columns. categories : nd_array, (n_category_levels,) Contains the category levels.
aggregate_raters
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def to_table(data, bins=None): '''convert raw data with shape (subject, rater) to (rater1, rater2) brings data into correct format for cohens_kappa Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. bins : None, int or tuple of array_like If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. If bins are a tuple of two array_like, then the bins are directly used by ``numpy.histogramdd``. This is useful if we want to merge categories. Returns ------- arr : nd_array, (n_cat, n_cat) Contingency table that contains counts of category level with rater1 in rows and rater2 in columns. Notes ----- no NaN handling, delete rows with missing values This works also for more than two raters. In that case the dimension of the resulting contingency table is the same as the number of raters instead of 2-dimensional. ''' data = np.asarray(data) n_rows, n_cols = data.shape if bins is None: #I could add int conversion (reverse_index) to np.unique cat_uni, cat_int = np.unique(data.ravel(), return_inverse=True) n_cat = len(cat_uni) data_ = cat_int.reshape(data.shape) bins_ = np.arange(n_cat+1) - 0.5 #alternative implementation with double loop #tt = np.asarray([[(x == [i,j]).all(1).sum() for j in cat_uni] # for i in cat_uni] ) #other altervative: unique rows and bincount elif np.isscalar(bins): bins_ = np.arange(bins+1) - 0.5 data_ = data else: bins_ = bins data_ = data tt = np.histogramdd(data_, (bins_,)*n_cols) return tt[0], bins_
convert raw data with shape (subject, rater) to (rater1, rater2) brings data into correct format for cohens_kappa Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. bins : None, int or tuple of array_like If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. If bins are a tuple of two array_like, then the bins are directly used by ``numpy.histogramdd``. This is useful if we want to merge categories. Returns ------- arr : nd_array, (n_cat, n_cat) Contingency table that contains counts of category level with rater1 in rows and rater2 in columns. Notes ----- no NaN handling, delete rows with missing values This works also for more than two raters. In that case the dimension of the resulting contingency table is the same as the number of raters instead of 2-dimensional.
to_table
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def fleiss_kappa(table, method='fleiss'): """Fleiss' and Randolph's kappa multi-rater agreement measure Parameters ---------- table : array_like, 2-D assumes subjects in rows, and categories in columns. Convert raw data into this format by using :func:`statsmodels.stats.inter_rater.aggregate_raters` method : str Method 'fleiss' returns Fleiss' kappa which uses the sample margin to define the chance outcome. Method 'randolph' or 'uniform' (only first 4 letters are needed) returns Randolph's (2005) multirater kappa which assumes a uniform distribution of the categories to define the chance outcome. Returns ------- kappa : float Fleiss's or Randolph's kappa statistic for inter rater agreement Notes ----- no variance or hypothesis tests yet Interrater agreement measures like Fleiss's kappa measure agreement relative to chance agreement. Different authors have proposed ways of defining these chance agreements. Fleiss' is based on the marginal sample distribution of categories, while Randolph uses a uniform distribution of categories as benchmark. Warrens (2010) showed that Randolph's kappa is always larger or equal to Fleiss' kappa. Under some commonly observed condition, Fleiss' and Randolph's kappa provide lower and upper bounds for two similar kappa_like measures by Light (1971) and Hubert (1977). References ---------- Wikipedia https://en.wikipedia.org/wiki/Fleiss%27_kappa Fleiss, Joseph L. 1971. "Measuring Nominal Scale Agreement among Many Raters." Psychological Bulletin 76 (5): 378-82. https://doi.org/10.1037/h0031619. Randolph, Justus J. 2005 "Free-Marginal Multirater Kappa (multirater K [free]): An Alternative to Fleiss' Fixed-Marginal Multirater Kappa." Presented at the Joensuu Learning and Instruction Symposium, vol. 2005 https://eric.ed.gov/?id=ED490661 Warrens, Matthijs J. 2010. "Inequalities between Multi-Rater Kappas." Advances in Data Analysis and Classification 4 (4): 271-86. https://doi.org/10.1007/s11634-010-0073-4. """ table = 1.0 * np.asarray(table) #avoid integer division n_sub, n_cat = table.shape n_total = table.sum() n_rater = table.sum(1) n_rat = n_rater.max() #assume fully ranked assert n_total == n_sub * n_rat #marginal frequency of categories p_cat = table.sum(0) / n_total table2 = table * table p_rat = (table2.sum(1) - n_rat) / (n_rat * (n_rat - 1.)) p_mean = p_rat.mean() if method == 'fleiss': p_mean_exp = (p_cat*p_cat).sum() elif method.startswith('rand') or method.startswith('unif'): p_mean_exp = 1 / n_cat kappa = (p_mean - p_mean_exp) / (1- p_mean_exp) return kappa
Fleiss' and Randolph's kappa multi-rater agreement measure Parameters ---------- table : array_like, 2-D assumes subjects in rows, and categories in columns. Convert raw data into this format by using :func:`statsmodels.stats.inter_rater.aggregate_raters` method : str Method 'fleiss' returns Fleiss' kappa which uses the sample margin to define the chance outcome. Method 'randolph' or 'uniform' (only first 4 letters are needed) returns Randolph's (2005) multirater kappa which assumes a uniform distribution of the categories to define the chance outcome. Returns ------- kappa : float Fleiss's or Randolph's kappa statistic for inter rater agreement Notes ----- no variance or hypothesis tests yet Interrater agreement measures like Fleiss's kappa measure agreement relative to chance agreement. Different authors have proposed ways of defining these chance agreements. Fleiss' is based on the marginal sample distribution of categories, while Randolph uses a uniform distribution of categories as benchmark. Warrens (2010) showed that Randolph's kappa is always larger or equal to Fleiss' kappa. Under some commonly observed condition, Fleiss' and Randolph's kappa provide lower and upper bounds for two similar kappa_like measures by Light (1971) and Hubert (1977). References ---------- Wikipedia https://en.wikipedia.org/wiki/Fleiss%27_kappa Fleiss, Joseph L. 1971. "Measuring Nominal Scale Agreement among Many Raters." Psychological Bulletin 76 (5): 378-82. https://doi.org/10.1037/h0031619. Randolph, Justus J. 2005 "Free-Marginal Multirater Kappa (multirater K [free]): An Alternative to Fleiss' Fixed-Marginal Multirater Kappa." Presented at the Joensuu Learning and Instruction Symposium, vol. 2005 https://eric.ed.gov/?id=ED490661 Warrens, Matthijs J. 2010. "Inequalities between Multi-Rater Kappas." Advances in Data Analysis and Classification 4 (4): 271-86. https://doi.org/10.1007/s11634-010-0073-4.
fleiss_kappa
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def cohens_kappa(table, weights=None, return_results=True, wt=None): '''Compute Cohen's kappa with variance and equal-zero test Parameters ---------- table : array_like, 2-Dim square array with results of two raters, one rater in rows, second rater in columns weights : array_like The interpretation of weights depends on the wt argument. If both are None, then the simple kappa is computed. see wt for the case when wt is not None If weights is two dimensional, then it is directly used as a weight matrix. For computing the variance of kappa, the maximum of the weights is assumed to be smaller or equal to one. TODO: fix conflicting definitions in the 2-Dim case for wt : {None, str} If wt and weights are None, then the simple kappa is computed. If wt is given, but weights is None, then the weights are set to be [0, 1, 2, ..., k]. If weights is a one-dimensional array, then it is used to construct the weight matrix given the following options. wt in ['linear', 'ca' or None] : use linear weights, Cicchetti-Allison actual weights are linear in the score "weights" difference wt in ['quadratic', 'fc'] : use linear weights, Fleiss-Cohen actual weights are squared in the score "weights" difference wt = 'toeplitz' : weight matrix is constructed as a toeplitz matrix from the one dimensional weights. return_results : bool If True (default), then an instance of KappaResults is returned. If False, then only kappa is computed and returned. Returns ------- results or kappa If return_results is True (default), then a results instance with all statistics is returned If return_results is False, then only kappa is calculated and returned. Notes ----- There are two conflicting definitions of the weight matrix, Wikipedia versus SAS manual. However, the computation are invariant to rescaling of the weights matrix, so there is no difference in the results. Weights for 'linear' and 'quadratic' are interpreted as scores for the categories, the weights in the computation are based on the pairwise difference between the scores. Weights for 'toeplitz' are a interpreted as weighted distance. The distance only depends on how many levels apart two entries in the table are but not on the levels themselves. example: weights = '0, 1, 2, 3' and wt is either linear or toeplitz means that the weighting only depends on the simple distance of levels. weights = '0, 0, 1, 1' and wt = 'linear' means that the first two levels are zero distance apart and the same for the last two levels. This is the sample as forming two aggregated levels by merging the first two and the last two levels, respectively. weights = [0, 1, 2, 3] and wt = 'quadratic' is the same as squaring these weights and using wt = 'toeplitz'. References ---------- Wikipedia SAS Manual ''' table = np.asarray(table, float) #avoid integer division agree = np.diag(table).sum() nobs = table.sum() probs = table / nobs freqs = probs #TODO: rename to use freqs instead of probs for observed probs_diag = np.diag(probs) freq_row = table.sum(1) / nobs freq_col = table.sum(0) / nobs prob_exp = freq_col * freq_row[:, None] assert np.allclose(prob_exp.sum(), 1) #print prob_exp.sum() agree_exp = np.diag(prob_exp).sum() #need for kappa_max if weights is None and wt is None: kind = 'Simple' kappa = (agree / nobs - agree_exp) / (1 - agree_exp) if return_results: #variance term_a = probs_diag * (1 - (freq_row + freq_col) * (1 - kappa))**2 term_a = term_a.sum() term_b = probs * (freq_col[:, None] + freq_row)**2 d_idx = np.arange(table.shape[0]) term_b[d_idx, d_idx] = 0 #set diagonal to zero term_b = (1 - kappa)**2 * term_b.sum() term_c = (kappa - agree_exp * (1-kappa))**2 var_kappa = (term_a + term_b - term_c) / (1 - agree_exp)**2 / nobs #term_c = freq_col * freq_row[:, None] * (freq_col + freq_row[:,None]) term_c = freq_col * freq_row * (freq_col + freq_row) var_kappa0 = (agree_exp + agree_exp**2 - term_c.sum()) var_kappa0 /= (1 - agree_exp)**2 * nobs else: if weights is None: weights = np.arange(table.shape[0]) #weights follows the Wikipedia definition, not the SAS, which is 1 - kind = 'Weighted' weights = np.asarray(weights, float) if weights.ndim == 1: if wt in ['ca', 'linear', None]: weights = np.abs(weights[:, None] - weights) / \ (weights[-1] - weights[0]) elif wt in ['fc', 'quadratic']: weights = (weights[:, None] - weights)**2 / \ (weights[-1] - weights[0])**2 elif wt == 'toeplitz': #assume toeplitz structure from scipy.linalg import toeplitz #weights = toeplitz(np.arange(table.shape[0])) weights = toeplitz(weights) else: raise ValueError('wt option is not known') else: rows, cols = table.shape if (table.shape != weights.shape): raise ValueError('weights are not square') #this is formula from Wikipedia kappa = 1 - (weights * table).sum() / nobs / (weights * prob_exp).sum() #TODO: add var_kappa for weighted version if return_results: var_kappa = np.nan var_kappa0 = np.nan #switch to SAS manual weights, problem if user specifies weights #w is negative in some examples, #but weights is scale invariant in examples and rough check of source w = 1. - weights w_row = (freq_col * w).sum(1) w_col = (freq_row[:, None] * w).sum(0) agree_wexp = (w * freq_col * freq_row[:, None]).sum() term_a = freqs * (w - (w_col + w_row[:, None]) * (1 - kappa))**2 fac = 1. / ((1 - agree_wexp)**2 * nobs) var_kappa = term_a.sum() - (kappa - agree_wexp * (1 - kappa))**2 var_kappa *= fac freqse = freq_col * freq_row[:, None] var_kappa0 = (freqse * (w - (w_col + w_row[:, None]))**2).sum() var_kappa0 -= agree_wexp**2 var_kappa0 *= fac kappa_max = (np.minimum(freq_row, freq_col).sum() - agree_exp) / \ (1 - agree_exp) if return_results: res = KappaResults( kind=kind, kappa=kappa, kappa_max=kappa_max, weights=weights, var_kappa=var_kappa, var_kappa0=var_kappa0) return res else: return kappa
Compute Cohen's kappa with variance and equal-zero test Parameters ---------- table : array_like, 2-Dim square array with results of two raters, one rater in rows, second rater in columns weights : array_like The interpretation of weights depends on the wt argument. If both are None, then the simple kappa is computed. see wt for the case when wt is not None If weights is two dimensional, then it is directly used as a weight matrix. For computing the variance of kappa, the maximum of the weights is assumed to be smaller or equal to one. TODO: fix conflicting definitions in the 2-Dim case for wt : {None, str} If wt and weights are None, then the simple kappa is computed. If wt is given, but weights is None, then the weights are set to be [0, 1, 2, ..., k]. If weights is a one-dimensional array, then it is used to construct the weight matrix given the following options. wt in ['linear', 'ca' or None] : use linear weights, Cicchetti-Allison actual weights are linear in the score "weights" difference wt in ['quadratic', 'fc'] : use linear weights, Fleiss-Cohen actual weights are squared in the score "weights" difference wt = 'toeplitz' : weight matrix is constructed as a toeplitz matrix from the one dimensional weights. return_results : bool If True (default), then an instance of KappaResults is returned. If False, then only kappa is computed and returned. Returns ------- results or kappa If return_results is True (default), then a results instance with all statistics is returned If return_results is False, then only kappa is calculated and returned. Notes ----- There are two conflicting definitions of the weight matrix, Wikipedia versus SAS manual. However, the computation are invariant to rescaling of the weights matrix, so there is no difference in the results. Weights for 'linear' and 'quadratic' are interpreted as scores for the categories, the weights in the computation are based on the pairwise difference between the scores. Weights for 'toeplitz' are a interpreted as weighted distance. The distance only depends on how many levels apart two entries in the table are but not on the levels themselves. example: weights = '0, 1, 2, 3' and wt is either linear or toeplitz means that the weighting only depends on the simple distance of levels. weights = '0, 0, 1, 1' and wt = 'linear' means that the first two levels are zero distance apart and the same for the last two levels. This is the sample as forming two aggregated levels by merging the first two and the last two levels, respectively. weights = [0, 1, 2, 3] and wt = 'quadratic' is the same as squaring these weights and using wt = 'toeplitz'. References ---------- Wikipedia SAS Manual
cohens_kappa
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def test_mvmean(data, mean_null=0, return_results=True): """Hotellings test for multivariate mean in one sample Parameters ---------- data : array_like data with observations in rows and variables in columns mean_null : array_like mean of the multivariate data under the null hypothesis return_results : bool If true, then a results instance is returned. If False, then only the test statistic and pvalue are returned. Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df (statistic, pvalue) : tuple If return_results is false, then only the test statistic and the pvalue are returned. """ x = np.asarray(data) nobs, k_vars = x.shape mean = x.mean(0) cov = np.cov(x, rowvar=False, ddof=1) diff = mean - mean_null t2 = nobs * diff.dot(np.linalg.solve(cov, diff)) factor = (nobs - 1) * k_vars / (nobs - k_vars) statistic = t2 / factor df = (k_vars, nobs - k_vars) pvalue = stats.f.sf(statistic, df[0], df[1]) if return_results: res = HolderTuple(statistic=statistic, pvalue=pvalue, df=df, t2=t2, distr="F") return res else: return statistic, pvalue
Hotellings test for multivariate mean in one sample Parameters ---------- data : array_like data with observations in rows and variables in columns mean_null : array_like mean of the multivariate data under the null hypothesis return_results : bool If true, then a results instance is returned. If False, then only the test statistic and pvalue are returned. Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df (statistic, pvalue) : tuple If return_results is false, then only the test statistic and the pvalue are returned.
test_mvmean
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def test_mvmean_2indep(data1, data2): """Hotellings test for multivariate mean in two independent samples The null hypothesis is that both samples have the same mean. The alternative hypothesis is that means differ. Parameters ---------- data1 : array_like first sample data with observations in rows and variables in columns data2 : array_like second sample data with observations in rows and variables in columns Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df """ x1 = array_like(data1, "x1", ndim=2) x2 = array_like(data2, "x2", ndim=2) nobs1, k_vars = x1.shape nobs2, k_vars2 = x2.shape if k_vars2 != k_vars: msg = "both samples need to have the same number of columns" raise ValueError(msg) mean1 = x1.mean(0) mean2 = x2.mean(0) cov1 = np.cov(x1, rowvar=False, ddof=1) cov2 = np.cov(x2, rowvar=False, ddof=1) nobs_t = nobs1 + nobs2 combined_cov = ((nobs1 - 1) * cov1 + (nobs2 - 1) * cov2) / (nobs_t - 2) diff = mean1 - mean2 t2 = (nobs1 * nobs2) / nobs_t * diff @ np.linalg.solve(combined_cov, diff) factor = ((nobs_t - 2) * k_vars) / (nobs_t - k_vars - 1) statistic = t2 / factor df = (k_vars, nobs_t - 1 - k_vars) pvalue = stats.f.sf(statistic, df[0], df[1]) return HolderTuple(statistic=statistic, pvalue=pvalue, df=df, t2=t2, distr="F")
Hotellings test for multivariate mean in two independent samples The null hypothesis is that both samples have the same mean. The alternative hypothesis is that means differ. Parameters ---------- data1 : array_like first sample data with observations in rows and variables in columns data2 : array_like second sample data with observations in rows and variables in columns Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df
test_mvmean_2indep
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def confint_mvmean(data, lin_transf=None, alpha=0.5, simult=False): """Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Parameters ---------- data : array_like data with observations in rows and variables in columns lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If ``simult`` is False (default), then the pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Returns ------- low : ndarray lower confidence bound on the linear transformed upp : ndarray upper confidence bound on the linear transformed values : ndarray mean or their linear transformation, center of the confidence region Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall. """ x = np.asarray(data) nobs, k_vars = x.shape if lin_transf is None: lin_transf = np.eye(k_vars) mean = x.mean(0) cov = np.cov(x, rowvar=False, ddof=0) ci = confint_mvmean_fromstats(mean, cov, nobs, lin_transf=lin_transf, alpha=alpha, simult=simult) return ci
Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Parameters ---------- data : array_like data with observations in rows and variables in columns lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If ``simult`` is False (default), then the pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Returns ------- low : ndarray lower confidence bound on the linear transformed upp : ndarray upper confidence bound on the linear transformed values : ndarray mean or their linear transformation, center of the confidence region Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall.
confint_mvmean
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def confint_mvmean_fromstats(mean, cov, nobs, lin_transf=None, alpha=0.05, simult=False): """Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Data is provided in the form of summary statistics, mean, cov, nobs. Parameters ---------- mean : ndarray cov : ndarray nobs : int lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If simult is False (default), then pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall. """ mean = np.asarray(mean) cov = np.asarray(cov) c = np.atleast_2d(lin_transf) k_vars = len(mean) if simult is False: values = c.dot(mean) quad_form = (c * cov.dot(c.T).T).sum(1) df = nobs - 1 t_critval = stats.t.isf(alpha / 2, df) ci_diff = np.sqrt(quad_form / df) * t_critval low = values - ci_diff upp = values + ci_diff else: values = c.dot(mean) quad_form = (c * cov.dot(c.T).T).sum(1) factor = (nobs - 1) * k_vars / (nobs - k_vars) / nobs df = (k_vars, nobs - k_vars) f_critval = stats.f.isf(alpha, df[0], df[1]) ci_diff = np.sqrt(factor * quad_form * f_critval) low = values - ci_diff upp = values + ci_diff return low, upp, values # , (f_critval, factor, quad_form, df)
Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Data is provided in the form of summary statistics, mean, cov, nobs. Parameters ---------- mean : ndarray cov : ndarray nobs : int lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If simult is False (default), then pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall.
confint_mvmean_fromstats
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def test_cov(cov, nobs, cov_null): """One sample hypothesis test for covariance equal to null covariance The Null hypothesis is that cov = cov_null, against the alternative that it is not equal to cov_null Parameters ---------- cov : array_like Covariance matrix of the data, estimated with denominator ``(N - 1)``, i.e. `ddof=1`. nobs : int number of observations used in the estimation of the covariance cov_null : nd_array covariance under the null hypothesis Returns ------- res : instance of HolderTuple results with ``statistic, pvalue`` and other attributes like ``df`` References ---------- Bartlett, M. S. 1954. “A Note on the Multiplying Factors for Various Χ2 Approximations.” Journal of the Royal Statistical Society. Series B (Methodological) 16 (2): 296–98. Rencher, Alvin C., and William F. Christensen. 2012. Methods of Multivariate Analysis: Rencher/Methods. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118391686. StataCorp, L. P. Stata Multivariate Statistics: Reference Manual. Stata Press Publication. """ # using Stata formulas where cov_sample use nobs in denominator # Bartlett 1954 has fewer terms S = np.asarray(cov) * (nobs - 1) / nobs S0 = np.asarray(cov_null) k = cov.shape[0] n = nobs fact = nobs - 1. fact *= 1 - (2 * k + 1 - 2 / (k + 1)) / (6 * (n - 1) - 1) fact2 = _logdet(S0) - _logdet(n / (n - 1) * S) fact2 += np.trace(n / (n - 1) * np.linalg.solve(S0, S)) - k statistic = fact * fact2 df = k * (k + 1) / 2 pvalue = stats.chi2.sf(statistic, df) return HolderTuple(statistic=statistic, pvalue=pvalue, df=df, distr="chi2", null="equal value", cov_null=cov_null )
One sample hypothesis test for covariance equal to null covariance The Null hypothesis is that cov = cov_null, against the alternative that it is not equal to cov_null Parameters ---------- cov : array_like Covariance matrix of the data, estimated with denominator ``(N - 1)``, i.e. `ddof=1`. nobs : int number of observations used in the estimation of the covariance cov_null : nd_array covariance under the null hypothesis Returns ------- res : instance of HolderTuple results with ``statistic, pvalue`` and other attributes like ``df`` References ---------- Bartlett, M. S. 1954. “A Note on the Multiplying Factors for Various Χ2 Approximations.” Journal of the Royal Statistical Society. Series B (Methodological) 16 (2): 296–98. Rencher, Alvin C., and William F. Christensen. 2012. Methods of Multivariate Analysis: Rencher/Methods. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118391686. StataCorp, L. P. Stata Multivariate Statistics: Reference Manual. Stata Press Publication.
test_cov
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def _get_blocks(mat, block_len): """get diagonal blocks from matrix """ k = len(mat) idx = np.cumsum(block_len) if idx[-1] == k: idx = idx[:-1] elif idx[-1] > k: raise ValueError("sum of block_len larger than shape of mat") else: # allow one missing block that is the remainder pass idx_blocks = np.split(np.arange(k), idx) blocks = [] for ii in idx_blocks: blocks.append(mat[ii[:, None], ii]) return blocks, idx_blocks
get diagonal blocks from matrix
_get_blocks
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def gof_chisquare_discrete(distfn, arg, rvs, alpha, msg): '''perform chisquare test for random sample of a discrete distribution Parameters ---------- distname : str name of distribution function arg : sequence parameters of distribution alpha : float significance level, threshold for p-value Returns ------- result : bool 0 if test passes, 1 if test fails Notes ----- originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results ''' # define parameters for test ## n=2000 n = len(rvs) nsupp = 20 wsupp = 1.0/nsupp ## distfn = getattr(stats, distname) ## np.random.seed(9765456) ## rvs = distfn.rvs(size=n,*arg) # construct intervals with minimum mass 1/nsupp # intervalls are left-half-open as in a cdf difference distsupport = lrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1) last = 0 distsupp = [max(distfn.a, -1000)] distmass = [] for ii in distsupport: current = distfn.cdf(ii,*arg) if current - last >= wsupp-1e-14: distsupp.append(ii) distmass.append(current - last) last = current if current > (1-wsupp): break if distsupp[-1] < distfn.b: distsupp.append(distfn.b) distmass.append(1-last) distsupp = np.array(distsupp) distmass = np.array(distmass) # convert intervals to right-half-open as required by histogram histsupp = distsupp+1e-8 histsupp[0] = distfn.a # find sample frequencies and perform chisquare test #TODO: move to compatibility.py freq, hsupp = np.histogram(rvs,histsupp) # cdfs = distfn.cdf(distsupp,*arg) (chis,pval) = stats.chisquare(np.array(freq),n*distmass) return chis, pval, (pval > alpha), 'chisquare - test for %s' \ 'at arg = %s with pval = %s' % (msg,str(arg),str(pval))
perform chisquare test for random sample of a discrete distribution Parameters ---------- distname : str name of distribution function arg : sequence parameters of distribution alpha : float significance level, threshold for p-value Returns ------- result : bool 0 if test passes, 1 if test fails Notes ----- originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results
gof_chisquare_discrete
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def gof_binning_discrete(rvs, distfn, arg, nsupp=20): '''get bins for chisquare type gof tests for a discrete distribution Parameters ---------- rvs : ndarray sample data distname : str name of distribution function arg : sequence parameters of distribution nsupp : int number of bins. The algorithm tries to find bins with equal weights. depending on the distribution, the actual number of bins can be smaller. Returns ------- freq : ndarray empirical frequencies for sample; not normalized, adds up to sample size expfreq : ndarray theoretical frequencies according to distribution histsupp : ndarray bin boundaries for histogram, (added 1e-8 for numerical robustness) Notes ----- The results can be used for a chisquare test :: (chis,pval) = stats.chisquare(freq, expfreq) originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results todo : optimal number of bins ? (check easyfit), recommendation in literature at least 5 expected observations in each bin ''' # define parameters for test ## n=2000 n = len(rvs) wsupp = 1.0/nsupp ## distfn = getattr(stats, distname) ## np.random.seed(9765456) ## rvs = distfn.rvs(size=n,*arg) # construct intervals with minimum mass 1/nsupp # intervalls are left-half-open as in a cdf difference distsupport = lrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1) last = 0 distsupp = [max(distfn.a, -1000)] distmass = [] for ii in distsupport: current = distfn.cdf(ii,*arg) if current - last >= wsupp-1e-14: distsupp.append(ii) distmass.append(current - last) last = current if current > (1-wsupp): break if distsupp[-1] < distfn.b: distsupp.append(distfn.b) distmass.append(1-last) distsupp = np.array(distsupp) distmass = np.array(distmass) # convert intervals to right-half-open as required by histogram histsupp = distsupp+1e-8 histsupp[0] = distfn.a # find sample frequencies and perform chisquare test freq,hsupp = np.histogram(rvs,histsupp) #freq,hsupp = np.histogram(rvs,histsupp,new=True) distfn.cdf(distsupp,*arg) return np.array(freq), n*distmass, histsupp
get bins for chisquare type gof tests for a discrete distribution Parameters ---------- rvs : ndarray sample data distname : str name of distribution function arg : sequence parameters of distribution nsupp : int number of bins. The algorithm tries to find bins with equal weights. depending on the distribution, the actual number of bins can be smaller. Returns ------- freq : ndarray empirical frequencies for sample; not normalized, adds up to sample size expfreq : ndarray theoretical frequencies according to distribution histsupp : ndarray bin boundaries for histogram, (added 1e-8 for numerical robustness) Notes ----- The results can be used for a chisquare test :: (chis,pval) = stats.chisquare(freq, expfreq) originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results todo : optimal number of bins ? (check easyfit), recommendation in literature at least 5 expected observations in each bin
gof_binning_discrete
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def chisquare(f_obs, f_exp=None, value=0, ddof=0, return_basic=True): '''chisquare goodness-of-fit test The null hypothesis is that the distance between the expected distribution and the observed frequencies is ``value``. The alternative hypothesis is that the distance is larger than ``value``. ``value`` is normalized in terms of effect size. The standard chisquare test has the null hypothesis that ``value=0``, that is the distributions are the same. Notes ----- The case with value greater than zero is similar to an equivalence test, that the exact null hypothesis is replaced by an approximate hypothesis. However, TOST "reverses" null and alternative hypothesis, while here the alternative hypothesis is that the distance (divergence) is larger than a threshold. References ---------- McLaren, ... Drost,... See Also -------- powerdiscrepancy scipy.stats.chisquare ''' f_obs = np.asarray(f_obs) n_bins = len(f_obs) nobs = f_obs.sum(0) if f_exp is None: # uniform distribution f_exp = np.empty(n_bins, float) f_exp.fill(nobs / float(n_bins)) f_exp = np.asarray(f_exp, float) chisq = ((f_obs - f_exp)**2 / f_exp).sum(0) if value == 0: pvalue = stats.chi2.sf(chisq, n_bins - 1 - ddof) else: pvalue = stats.ncx2.sf(chisq, n_bins - 1 - ddof, value**2 * nobs) if return_basic: return chisq, pvalue else: return chisq, pvalue #TODO: replace with TestResults
chisquare goodness-of-fit test The null hypothesis is that the distance between the expected distribution and the observed frequencies is ``value``. The alternative hypothesis is that the distance is larger than ``value``. ``value`` is normalized in terms of effect size. The standard chisquare test has the null hypothesis that ``value=0``, that is the distributions are the same. Notes ----- The case with value greater than zero is similar to an equivalence test, that the exact null hypothesis is replaced by an approximate hypothesis. However, TOST "reverses" null and alternative hypothesis, while here the alternative hypothesis is that the distance (divergence) is larger than a threshold. References ---------- McLaren, ... Drost,... See Also -------- powerdiscrepancy scipy.stats.chisquare
chisquare
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def chisquare_power(effect_size, nobs, n_bins, alpha=0.05, ddof=0): '''power of chisquare goodness of fit test effect size is sqrt of chisquare statistic divided by nobs Parameters ---------- effect_size : float This is the deviation from the Null of the normalized chi_square statistic. This follows Cohen's definition (sqrt). nobs : int or float number of observations n_bins : int (or float) number of bins, or points in the discrete distribution alpha : float in (0,1) significance level of the test, default alpha=0.05 Returns ------- power : float power of the test at given significance level at effect size Notes ----- This function also works vectorized if all arguments broadcast. This can also be used to calculate the power for power divergence test. However, for the range of more extreme values of the power divergence parameter, this power is not a very good approximation for samples of small to medium size (Drost et al. 1989) References ---------- Drost, ... See Also -------- chisquare_effectsize statsmodels.stats.GofChisquarePower ''' crit = stats.chi2.isf(alpha, n_bins - 1 - ddof) power = stats.ncx2.sf(crit, n_bins - 1 - ddof, effect_size**2 * nobs) return power
power of chisquare goodness of fit test effect size is sqrt of chisquare statistic divided by nobs Parameters ---------- effect_size : float This is the deviation from the Null of the normalized chi_square statistic. This follows Cohen's definition (sqrt). nobs : int or float number of observations n_bins : int (or float) number of bins, or points in the discrete distribution alpha : float in (0,1) significance level of the test, default alpha=0.05 Returns ------- power : float power of the test at given significance level at effect size Notes ----- This function also works vectorized if all arguments broadcast. This can also be used to calculate the power for power divergence test. However, for the range of more extreme values of the power divergence parameter, this power is not a very good approximation for samples of small to medium size (Drost et al. 1989) References ---------- Drost, ... See Also -------- chisquare_effectsize statsmodels.stats.GofChisquarePower
chisquare_power
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def chisquare_effectsize(probs0, probs1, correction=None, cohen=True, axis=0): '''effect size for a chisquare goodness-of-fit test Parameters ---------- probs0 : array_like probabilities or cell frequencies under the Null hypothesis probs1 : array_like probabilities or cell frequencies under the Alternative hypothesis probs0 and probs1 need to have the same length in the ``axis`` dimension. and broadcast in the other dimensions Both probs0 and probs1 are normalized to add to one (in the ``axis`` dimension). correction : None or tuple If None, then the effect size is the chisquare statistic divide by the number of observations. If the correction is a tuple (nobs, df), then the effectsize is corrected to have less bias and a smaller variance. However, the correction can make the effectsize negative. In that case, the effectsize is set to zero. Pederson and Johnson (1990) as referenced in McLaren et all. (1994) cohen : bool If True, then the square root is returned as in the definition of the effect size by Cohen (1977), If False, then the original effect size is returned. axis : int If the probability arrays broadcast to more than 1 dimension, then this is the axis over which the sums are taken. Returns ------- effectsize : float effect size of chisquare test ''' probs0 = np.asarray(probs0, float) probs1 = np.asarray(probs1, float) probs0 = probs0 / probs0.sum(axis) probs1 = probs1 / probs1.sum(axis) d2 = ((probs1 - probs0)**2 / probs0).sum(axis) if correction is not None: nobs, df = correction diff = ((probs1 - probs0) / probs0).sum(axis) d2 = np.maximum((d2 * nobs - diff - df) / (nobs - 1.), 0) if cohen: return np.sqrt(d2) else: return d2
effect size for a chisquare goodness-of-fit test Parameters ---------- probs0 : array_like probabilities or cell frequencies under the Null hypothesis probs1 : array_like probabilities or cell frequencies under the Alternative hypothesis probs0 and probs1 need to have the same length in the ``axis`` dimension. and broadcast in the other dimensions Both probs0 and probs1 are normalized to add to one (in the ``axis`` dimension). correction : None or tuple If None, then the effect size is the chisquare statistic divide by the number of observations. If the correction is a tuple (nobs, df), then the effectsize is corrected to have less bias and a smaller variance. However, the correction can make the effectsize negative. In that case, the effectsize is set to zero. Pederson and Johnson (1990) as referenced in McLaren et all. (1994) cohen : bool If True, then the square root is returned as in the definition of the effect size by Cohen (1977), If False, then the original effect size is returned. axis : int If the probability arrays broadcast to more than 1 dimension, then this is the axis over which the sums are taken. Returns ------- effectsize : float effect size of chisquare test
chisquare_effectsize
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def pval_corrected(self, method=None): '''p-values corrected for multiple testing problem This uses the default p-value correction of the instance stored in ``self.multitest_method`` if method is None. ''' import statsmodels.stats.multitest as smt if method is None: method = self.multitest_method # TODO: breaks with method=None return smt.multipletests(self.pvals_raw, method=method)[1]
p-values corrected for multiple testing problem This uses the default p-value correction of the instance stored in ``self.multitest_method`` if method is None.
pval_corrected
python
statsmodels/statsmodels
statsmodels/stats/base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/base.py
BSD-3-Clause
def pval_table(self): '''create a (n_levels, n_levels) array with corrected p_values this needs to improve, similar to R pairwise output ''' k = self.n_levels pvals_mat = np.zeros((k, k)) # if we do not assume we have all pairs pvals_mat[lzip(*self.all_pairs)] = self.pval_corrected() return pvals_mat
create a (n_levels, n_levels) array with corrected p_values this needs to improve, similar to R pairwise output
pval_table
python
statsmodels/statsmodels
statsmodels/stats/base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/base.py
BSD-3-Clause
def summary(self): '''returns text summarizing the results uses the default pvalue correction of the instance stored in ``self.multitest_method`` ''' import statsmodels.stats.multitest as smt maxlevel = max(len(ss) for ss in self.all_pairs_names) text = ('Corrected p-values using %s p-value correction\n\n' % smt.multitest_methods_names[self.multitest_method]) text += 'Pairs' + (' ' * (maxlevel - 5 + 1)) + 'p-values\n' text += '\n'.join(f'{pairs} {pv:6.4g}' for (pairs, pv) in zip(self.all_pairs_names, self.pval_corrected())) return text
returns text summarizing the results uses the default pvalue correction of the instance stored in ``self.multitest_method``
summary
python
statsmodels/statsmodels
statsmodels/stats/base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/base.py
BSD-3-Clause
def dispersion_poisson(results): """Score/LM type tests for Poisson variance assumptions .. deprecated:: 0.14 dispersion_poisson moved to discrete._diagnostic_count Null Hypothesis is H0: var(y) = E(y) and assuming E(y) is correctly specified H1: var(y) ~= E(y) The tests are based on the constrained model, i.e. the Poisson model. The tests differ in their assumed alternatives, and in their maintained assumptions. Parameters ---------- results : Poisson results instance This can be a results instance for either a discrete Poisson or a GLM with family Poisson. Returns ------- res : ndarray, shape (7, 2) each row contains the test statistic and p-value for one of the 7 tests computed here. description : 2-D list of strings Each test has two strings a descriptive name and a string for the alternative hypothesis. """ msg = ( 'dispersion_poisson here is deprecated, use the version in ' 'discrete._diagnostic_count' ) warnings.warn(msg, FutureWarning) from statsmodels.discrete._diagnostics_count import test_poisson_dispersion return test_poisson_dispersion(results, _old=True)
Score/LM type tests for Poisson variance assumptions .. deprecated:: 0.14 dispersion_poisson moved to discrete._diagnostic_count Null Hypothesis is H0: var(y) = E(y) and assuming E(y) is correctly specified H1: var(y) ~= E(y) The tests are based on the constrained model, i.e. the Poisson model. The tests differ in their assumed alternatives, and in their maintained assumptions. Parameters ---------- results : Poisson results instance This can be a results instance for either a discrete Poisson or a GLM with family Poisson. Returns ------- res : ndarray, shape (7, 2) each row contains the test statistic and p-value for one of the 7 tests computed here. description : 2-D list of strings Each test has two strings a descriptive name and a string for the alternative hypothesis.
dispersion_poisson
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def dispersion_poisson_generic(results, exog_new_test, exog_new_control=None, include_score=False, use_endog=True, cov_type='HC3', cov_kwds=None, use_t=False): """A variable addition test for the variance function .. deprecated:: 0.14 dispersion_poisson_generic moved to discrete._diagnostic_count This uses an artificial regression to calculate a variant of an LM or generalized score test for the specification of the variance assumption in a Poisson model. The performed test is a Wald test on the coefficients of the `exog_new_test`. Warning: insufficiently tested, especially for options """ msg = ( 'dispersion_poisson_generic here is deprecated, use the version in ' 'discrete._diagnostic_count' ) warnings.warn(msg, FutureWarning) from statsmodels.discrete._diagnostics_count import ( _test_poisson_dispersion_generic, ) res_test = _test_poisson_dispersion_generic( results, exog_new_test, exog_new_control= exog_new_control, include_score=include_score, use_endog=use_endog, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t, ) return res_test
A variable addition test for the variance function .. deprecated:: 0.14 dispersion_poisson_generic moved to discrete._diagnostic_count This uses an artificial regression to calculate a variant of an LM or generalized score test for the specification of the variance assumption in a Poisson model. The performed test is a Wald test on the coefficients of the `exog_new_test`. Warning: insufficiently tested, especially for options
dispersion_poisson_generic
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def lm_test_glm(result, exog_extra, mean_deriv=None): '''score/lagrange multiplier test for GLM Wooldridge procedure for test of mean function in GLM Parameters ---------- results : GLMResults instance results instance with the constrained model exog_extra : ndarray or None additional exogenous variables for variable addition test This can be set to None if mean_deriv is provided. mean_deriv : None or ndarray Extra moment condition that correspond to the partial derivative of a mean function with respect to some parameters. Returns ------- test_results : Results instance The results instance has the following attributes which are score statistic and p-value for 3 versions of the score test. c1, pval1 : nonrobust score_test results c2, pval2 : score test results robust to over or under dispersion c3, pval3 : score test results fully robust to any heteroscedasticity The test results instance also has a simple summary method. Notes ----- TODO: add `df` to results and make df detection more robust This implements the auxiliary regression procedure of Wooldridge, implemented based on the presentation in chapter 8 in Handbook of Applied Econometrics 2. References ---------- Wooldridge, Jeffrey M. 1997. “Quasi-Likelihood Methods for Count Data.” Handbook of Applied Econometrics 2: 352–406. and other articles and text book by Wooldridge ''' if hasattr(result, '_result'): res = result._result else: res = result mod = result.model nobs = mod.endog.shape[0] #mean_func = mod.family.link.inverse dlinkinv = mod.family.link.inverse_deriv # derivative of mean function w.r.t. beta (linear params) def dm(x, linpred): return dlinkinv(linpred)[:,None] * x var_func = mod.family.variance x = result.model.exog x2 = exog_extra # test omitted try: lin_pred = res.predict(which="linear") except TypeError: # TODO: Standardized to which="linear" and remove linear kwarg lin_pred = res.predict(linear=True) dm_incl = dm(x, lin_pred) if x2 is not None: dm_excl = dm(x2, lin_pred) if mean_deriv is not None: # allow both and stack dm_excl = np.column_stack((dm_excl, mean_deriv)) elif mean_deriv is not None: dm_excl = mean_deriv else: raise ValueError('either exog_extra or mean_deriv have to be provided') # TODO check for rank or redundant, note OLS calculates the rank k_constraint = dm_excl.shape[1] fittedvalues = res.predict() # discrete has linpred instead of mean v = var_func(fittedvalues) std = np.sqrt(v) res_ols1 = OLS(res.resid_response / std, np.column_stack((dm_incl, dm_excl)) / std[:, None]).fit() # case: nonrobust assumes variance implied by distribution is correct c1 = res_ols1.ess pval1 = stats.chi2.sf(c1, k_constraint) #print c1, stats.chi2.sf(c1, 2) # case: robust to dispersion c2 = nobs * res_ols1.rsquared pval2 = stats.chi2.sf(c2, k_constraint) #print c2, stats.chi2.sf(c2, 2) # case: robust to heteroscedasticity from statsmodels.stats.multivariate_tools import partial_project pp = partial_project(dm_excl / std[:,None], dm_incl / std[:,None]) resid_p = res.resid_response / std res_ols3 = OLS(np.ones(nobs), pp.resid * resid_p[:,None]).fit() #c3 = nobs * res_ols3.rsquared # this is Wooldridge c3b = res_ols3.ess # simpler if endog is ones pval3 = stats.chi2.sf(c3b, k_constraint) tres = TestResults(c1=c1, pval1=pval1, c2=c2, pval2=pval2, c3=c3b, pval3=pval3) return tres
score/lagrange multiplier test for GLM Wooldridge procedure for test of mean function in GLM Parameters ---------- results : GLMResults instance results instance with the constrained model exog_extra : ndarray or None additional exogenous variables for variable addition test This can be set to None if mean_deriv is provided. mean_deriv : None or ndarray Extra moment condition that correspond to the partial derivative of a mean function with respect to some parameters. Returns ------- test_results : Results instance The results instance has the following attributes which are score statistic and p-value for 3 versions of the score test. c1, pval1 : nonrobust score_test results c2, pval2 : score test results robust to over or under dispersion c3, pval3 : score test results fully robust to any heteroscedasticity The test results instance also has a simple summary method. Notes ----- TODO: add `df` to results and make df detection more robust This implements the auxiliary regression procedure of Wooldridge, implemented based on the presentation in chapter 8 in Handbook of Applied Econometrics 2. References ---------- Wooldridge, Jeffrey M. 1997. “Quasi-Likelihood Methods for Count Data.” Handbook of Applied Econometrics 2: 352–406. and other articles and text book by Wooldridge
lm_test_glm
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def cm_test_robust(resid, resid_deriv, instruments, weights=1): '''score/lagrange multiplier of Wooldridge generic version of Wooldridge procedure for test of conditional moments Limitation: This version allows only for one unconditional moment restriction, i.e. resid is scalar for each observation. Another limitation is that it assumes independent observations, no correlation in residuals and weights cannot be replaced by cross-observation whitening. Parameters ---------- resid : ndarray, (nobs, ) conditional moment restriction, E(r | x, params) = 0 resid_deriv : ndarray, (nobs, k_params) derivative of conditional moment restriction with respect to parameters instruments : ndarray, (nobs, k_instruments) indicator variables of Wooldridge, multiplies the conditional momen restriction weights : ndarray This is a weights function as used in WLS. The moment restrictions are multiplied by weights. This corresponds to the inverse of the variance in a heteroskedastic model. Returns ------- test_results : Results instance ??? TODO Notes ----- This implements the auxiliary regression procedure of Wooldridge, implemented based on procedure 2.1 in Wooldridge 1990. Wooldridge allows for multivariate conditional moments (`resid`) TODO: check dimensions for multivariate case for extension References ---------- Wooldridge Wooldridge and more Wooldridge ''' # notation: Wooldridge uses too mamny Greek letters # instruments is capital lambda # resid is small phi # resid_deriv is capital phi # weights is C nobs = resid.shape[0] from statsmodels.stats.multivariate_tools import partial_project w_sqrt = np.sqrt(weights) if np.size(weights) > 1: w_sqrt = w_sqrt[:,None] pp = partial_project(instruments * w_sqrt, resid_deriv * w_sqrt) mom_resid = pp.resid moms_test = mom_resid * resid[:, None] * w_sqrt # we get this here in case we extend resid to be more than 1-D k_constraint = moms_test.shape[1] # use OPG variance as in Wooldridge 1990. This might generalize cov = moms_test.T.dot(moms_test) diff = moms_test.sum(0) # see Wooldridge last page in appendix stat = diff.dot(np.linalg.solve(cov, diff)) # for checking, this corresponds to nobs * rsquared of auxiliary regression stat2 = OLS(np.ones(nobs), moms_test).fit().ess pval = stats.chi2.sf(stat, k_constraint) return stat, pval, stat2
score/lagrange multiplier of Wooldridge generic version of Wooldridge procedure for test of conditional moments Limitation: This version allows only for one unconditional moment restriction, i.e. resid is scalar for each observation. Another limitation is that it assumes independent observations, no correlation in residuals and weights cannot be replaced by cross-observation whitening. Parameters ---------- resid : ndarray, (nobs, ) conditional moment restriction, E(r | x, params) = 0 resid_deriv : ndarray, (nobs, k_params) derivative of conditional moment restriction with respect to parameters instruments : ndarray, (nobs, k_instruments) indicator variables of Wooldridge, multiplies the conditional momen restriction weights : ndarray This is a weights function as used in WLS. The moment restrictions are multiplied by weights. This corresponds to the inverse of the variance in a heteroskedastic model. Returns ------- test_results : Results instance ??? TODO Notes ----- This implements the auxiliary regression procedure of Wooldridge, implemented based on procedure 2.1 in Wooldridge 1990. Wooldridge allows for multivariate conditional moments (`resid`) TODO: check dimensions for multivariate case for extension References ---------- Wooldridge Wooldridge and more Wooldridge
cm_test_robust
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def lm_robust(score, constraint_matrix, score_deriv_inv, cov_score, cov_params=None): '''general formula for score/LM test generalized score or lagrange multiplier test for implicit constraints `r(params) = 0`, with gradient `R = d r / d params` linear constraints are given by `R params - q = 0` It is assumed that all arrays are evaluated at the constrained estimates. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model constraint_matrix R : ndarray Linear restriction matrix or Jacobian of nonlinear constraints hessian_inv, Ainv : ndarray, symmetric, square inverse of second derivative of objective function TODO: could be OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. cov_params V : ndarray, symmetric, square covariance of full parameter vector evaluated at constrained parameter estimate. This can be specified instead of cov_score B. Returns ------- lm_stat : float score/lagrange multiplier statistic Notes ----- ''' # shorthand alias R, Ainv, B, V = constraint_matrix, score_deriv_inv, cov_score, cov_params tmp = R.dot(Ainv) wscore = tmp.dot(score) # C Ainv score if B is None and V is None: # only Ainv is given, so we assume information matrix identity holds # computational short cut, should be same if Ainv == inv(B) lm_stat = score.dot(Ainv.dot(score)) else: # information matrix identity does not hold if V is None: inner = tmp.dot(B).dot(tmp.T) else: inner = R.dot(V).dot(R.T) #lm_stat2 = wscore.dot(np.linalg.pinv(inner).dot(wscore)) # Let's assume inner is invertible, TODO: check if usecase for pinv exists lm_stat = wscore.dot(np.linalg.solve(inner, wscore)) return lm_stat#, lm_stat2
general formula for score/LM test generalized score or lagrange multiplier test for implicit constraints `r(params) = 0`, with gradient `R = d r / d params` linear constraints are given by `R params - q = 0` It is assumed that all arrays are evaluated at the constrained estimates. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model constraint_matrix R : ndarray Linear restriction matrix or Jacobian of nonlinear constraints hessian_inv, Ainv : ndarray, symmetric, square inverse of second derivative of objective function TODO: could be OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. cov_params V : ndarray, symmetric, square covariance of full parameter vector evaluated at constrained parameter estimate. This can be specified instead of cov_score B. Returns ------- lm_stat : float score/lagrange multiplier statistic Notes -----
lm_robust
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def lm_robust_subset(score, k_constraints, score_deriv_inv, cov_score): '''general formula for score/LM test generalized score or lagrange multiplier test for constraints on a subset of parameters `params_1 = value`, where params_1 is a subset of the unconstrained parameter vector. It is assumed that all arrays are evaluated at the constrained estimates. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model k_constraint : int number of constraints score_deriv_inv : ndarray, symmetric, square inverse of second derivative of objective function TODO: could be OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. not cov_params V : ndarray, symmetric, square covariance of full parameter vector evaluated at constrained parameter estimate. This can be specified instead of cov_score B. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- The implementation is based on Boos 1992 section 4.1. The same derivation is also in other articles and in text books. ''' # Notation in Boos # score `S = sum (s_i) # score_obs `s_i` # score_deriv `I` is derivative of score (hessian) # `D` is covariance matrix of score, OPG product given independent observations #k_params = len(score) # Note: I reverse order between constraint and unconstrained compared to Boos # submatrices of score_deriv/hessian # these are I22 and I12 in Boos #h_uu = score_deriv[-k_constraints:, -k_constraints:] h_uu = score_deriv_inv[:-k_constraints, :-k_constraints] h_cu = score_deriv_inv[-k_constraints:, :-k_constraints] # TODO: pinv or solve ? tmp_proj = h_cu.dot(np.linalg.inv(h_uu)) tmp = np.column_stack((-tmp_proj, np.eye(k_constraints))) #, tmp_proj)) cov_score_constraints = tmp.dot(cov_score.dot(tmp.T)) #lm_stat2 = wscore.dot(np.linalg.pinv(inner).dot(wscore)) # Let's assume inner is invertible, TODO: check if usecase for pinv exists lm_stat = score.dot(np.linalg.solve(cov_score_constraints, score)) pval = stats.chi2.sf(lm_stat, k_constraints) # # check second calculation Boos referencing Kent 1982 and Engle 1984 # # we can use this when robust_cov_params of full model is available # #h_inv = np.linalg.inv(score_deriv) # hinv = score_deriv_inv # v = h_inv.dot(cov_score.dot(h_inv)) # this is robust cov_params # v_cc = v[:k_constraints, :k_constraints] # h_cc = score_deriv[:k_constraints, :k_constraints] # # brute force calculation: # h_resid_cu = h_cc - h_cu.dot(np.linalg.solve(h_uu, h_cu)) # cov_s_c = h_resid_cu.dot(v_cc.dot(h_resid_cu)) # diff = np.max(np.abs(cov_s_c - cov_score_constraints)) return lm_stat, pval #, lm_stat2
general formula for score/LM test generalized score or lagrange multiplier test for constraints on a subset of parameters `params_1 = value`, where params_1 is a subset of the unconstrained parameter vector. It is assumed that all arrays are evaluated at the constrained estimates. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model k_constraint : int number of constraints score_deriv_inv : ndarray, symmetric, square inverse of second derivative of objective function TODO: could be OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. not cov_params V : ndarray, symmetric, square covariance of full parameter vector evaluated at constrained parameter estimate. This can be specified instead of cov_score B. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- The implementation is based on Boos 1992 section 4.1. The same derivation is also in other articles and in text books.
lm_robust_subset
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def lm_robust_subset_parts(score, k_constraints, score_deriv_uu, score_deriv_cu, cov_score_cc, cov_score_cu, cov_score_uu): """robust generalized score tests on subset of parameters This is the same as lm_robust_subset with arguments in parts of partitioned matrices. This can be useful, when we have the parts based on different estimation procedures, i.e. when we do not have the full unconstrained model. Calculates mainly the covariance of the constraint part of the score. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model. These is the score component for the restricted part under hypothesis. The unconstrained part of the score is assumed to be zero. k_constraint : int number of constraints score_deriv_uu : ndarray, symmetric, square first derivative of moment equation or second derivative of objective function for the unconstrained part TODO: could be OPG or any other estimator if information matrix equality holds score_deriv_cu : ndarray first cross derivative of moment equation or second cross derivative of objective function between. cov_score_cc : ndarray covariance matrix of the score for the unconstrained part. This is the inner part of a sandwich estimator. cov_score_cu : ndarray covariance matrix of the score for the off-diagonal block, i.e. covariance between constrained and unconstrained part. cov_score_uu : ndarray covariance matrix of the score for the unconstrained part. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- TODO: these function should just return the covariance of the score instead of calculating the score/lm test. Implementation similar to lm_robust_subset and is based on Boos 1992, section 4.1 in the form attributed to Breslow (1990). It does not use the computation attributed to Kent (1982) and Engle (1984). """ tmp_proj = np.linalg.solve(score_deriv_uu, score_deriv_cu.T).T tmp = tmp_proj.dot(cov_score_cu.T) # this needs to make a copy of cov_score_cc for further inplace modification cov = cov_score_cc - tmp cov -= tmp.T cov += tmp_proj.dot(cov_score_uu).dot(tmp_proj.T) lm_stat = score.dot(np.linalg.solve(cov, score)) pval = stats.chi2.sf(lm_stat, k_constraints) return lm_stat, pval
robust generalized score tests on subset of parameters This is the same as lm_robust_subset with arguments in parts of partitioned matrices. This can be useful, when we have the parts based on different estimation procedures, i.e. when we do not have the full unconstrained model. Calculates mainly the covariance of the constraint part of the score. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model. These is the score component for the restricted part under hypothesis. The unconstrained part of the score is assumed to be zero. k_constraint : int number of constraints score_deriv_uu : ndarray, symmetric, square first derivative of moment equation or second derivative of objective function for the unconstrained part TODO: could be OPG or any other estimator if information matrix equality holds score_deriv_cu : ndarray first cross derivative of moment equation or second cross derivative of objective function between. cov_score_cc : ndarray covariance matrix of the score for the unconstrained part. This is the inner part of a sandwich estimator. cov_score_cu : ndarray covariance matrix of the score for the off-diagonal block, i.e. covariance between constrained and unconstrained part. cov_score_uu : ndarray covariance matrix of the score for the unconstrained part. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- TODO: these function should just return the covariance of the score instead of calculating the score/lm test. Implementation similar to lm_robust_subset and is based on Boos 1992, section 4.1 in the form attributed to Breslow (1990). It does not use the computation attributed to Kent (1982) and Engle (1984).
lm_robust_subset_parts
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def lm_robust_reparameterized(score, params_deriv, score_deriv, cov_score): """robust generalized score test for transformed parameters The parameters are given by a nonlinear transformation of the estimated reduced parameters `params = g(params_reduced)` with jacobian `G = d g / d params_reduced` score and other arrays are for full parameter space `params` Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model params_deriv : ndarray Jacobian G of the parameter trasnformation score_deriv : ndarray, symmetric, square second derivative of objective function TODO: could be OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- Boos 1992, section 4.3, expression for T_{GS} just before example 6 """ # Boos notation # params_deriv G k_params, k_reduced = params_deriv.shape k_constraints = k_params - k_reduced G = params_deriv # shortcut alias tmp_c0 = np.linalg.pinv(G.T.dot(score_deriv.dot(G))) tmp_c1 = score_deriv.dot(G.dot(tmp_c0.dot(G.T))) tmp_c = np.eye(k_params) - tmp_c1 cov = tmp_c.dot(cov_score.dot(tmp_c.T)) # warning: reduced rank lm_stat = score.dot(np.linalg.pinv(cov).dot(score)) pval = stats.chi2.sf(lm_stat, k_constraints) return lm_stat, pval
robust generalized score test for transformed parameters The parameters are given by a nonlinear transformation of the estimated reduced parameters `params = g(params_reduced)` with jacobian `G = d g / d params_reduced` score and other arrays are for full parameter space `params` Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model params_deriv : ndarray Jacobian G of the parameter trasnformation score_deriv : ndarray, symmetric, square second derivative of objective function TODO: could be OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- Boos 1992, section 4.3, expression for T_{GS} just before example 6
lm_robust_reparameterized
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def conditional_moment_test_generic(mom_test, mom_test_deriv, mom_incl, mom_incl_deriv, var_mom_all=None, cov_type='OPG', cov_kwds=None): """generic conditional moment test This is mainly intended as internal function in support of diagnostic and specification tests. It has no conversion and checking of correct arguments. Parameters ---------- mom_test : ndarray, 2-D (nobs, k_constraints) moment conditions that will be tested to be zero mom_test_deriv : ndarray, 2-D, square (k_constraints, k_constraints) derivative of moment conditions under test with respect to the parameters of the model summed over observations. mom_incl : ndarray, 2-D (nobs, k_params) moment conditions that where use in estimation, assumed to be zero This is score_obs in the case of (Q)MLE mom_incl_deriv : ndarray, 2-D, square (k_params, k_params) derivative of moment conditions of estimator summed over observations This is the information matrix or Hessian in the case of (Q)MLE. var_mom_all : None, or ndarray, 2-D, (k, k) with k = k_constraints + k_params Expected product or variance of the joint (column_stacked) moment conditions. The stacking should have the variance of the moment conditions under test in the first k_constraint rows and columns. If it is not None, then it will be estimated based on cov_type. I think: This is the Hessian of the extended or alternative model under full MLE and score test assuming information matrix identity holds. Returns ------- results Notes ----- TODO: cov_type other than OPG is missing initial implementation based on Cameron Trived countbook 1998 p.48, p.56 also included: mom_incl can be None if expected mom_test_deriv is zero. References ---------- Cameron and Trivedi 1998 count book Wooldridge ??? Pagan and Vella 1989 """ if cov_type != 'OPG': raise NotImplementedError k_constraints = mom_test.shape[1] if mom_incl is None: # assume mom_test_deriv is zero, do not include effect of mom_incl if var_mom_all is None: var_cm = mom_test.T.dot(mom_test) else: var_cm = var_mom_all else: # take into account he effect of parameter estimates on mom_test if var_mom_all is None: mom_all = np.column_stack((mom_test, mom_incl)) # TODO: replace with inner sandwich covariance estimator var_mom_all = mom_all.T.dot(mom_all) tmp = mom_test_deriv.dot(np.linalg.pinv(mom_incl_deriv)) h = np.column_stack((np.eye(k_constraints), -tmp)) var_cm = h.dot(var_mom_all.dot(h.T)) # calculate test results with chisquare var_cm_inv = np.linalg.pinv(var_cm) mom_test_sum = mom_test.sum(0) statistic = mom_test_sum.dot(var_cm_inv.dot(mom_test_sum)) pval = stats.chi2.sf(statistic, k_constraints) # normal test of individual components se = np.sqrt(np.diag(var_cm)) tvalues = mom_test_sum / se pvalues = stats.norm.sf(np.abs(tvalues)) res = ResultsGeneric(var_cm=var_cm, stat_cmt=statistic, pval_cmt=pval, tvalues=tvalues, pvalues=pvalues) return res
generic conditional moment test This is mainly intended as internal function in support of diagnostic and specification tests. It has no conversion and checking of correct arguments. Parameters ---------- mom_test : ndarray, 2-D (nobs, k_constraints) moment conditions that will be tested to be zero mom_test_deriv : ndarray, 2-D, square (k_constraints, k_constraints) derivative of moment conditions under test with respect to the parameters of the model summed over observations. mom_incl : ndarray, 2-D (nobs, k_params) moment conditions that where use in estimation, assumed to be zero This is score_obs in the case of (Q)MLE mom_incl_deriv : ndarray, 2-D, square (k_params, k_params) derivative of moment conditions of estimator summed over observations This is the information matrix or Hessian in the case of (Q)MLE. var_mom_all : None, or ndarray, 2-D, (k, k) with k = k_constraints + k_params Expected product or variance of the joint (column_stacked) moment conditions. The stacking should have the variance of the moment conditions under test in the first k_constraint rows and columns. If it is not None, then it will be estimated based on cov_type. I think: This is the Hessian of the extended or alternative model under full MLE and score test assuming information matrix identity holds. Returns ------- results Notes ----- TODO: cov_type other than OPG is missing initial implementation based on Cameron Trived countbook 1998 p.48, p.56 also included: mom_incl can be None if expected mom_test_deriv is zero. References ---------- Cameron and Trivedi 1998 count book Wooldridge ??? Pagan and Vella 1989
conditional_moment_test_generic
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def conditional_moment_test_regression(mom_test, mom_test_deriv=None, mom_incl=None, mom_incl_deriv=None, var_mom_all=None, demean=False, cov_type='OPG', cov_kwds=None): """generic conditional moment test based artificial regression this is very experimental, no options implemented yet so far OPG regression, or artificial regression with Robust Wald test The latter is (as far as I can see) the same as an overidentifying test in GMM where the test statistic is the value of the GMM objective function and it is assumed that parameters were estimated with optimial GMM, i.e. the weight matrix equal to the expectation of the score variance. """ # so far coded from memory nobs, k_constraints = mom_test.shape endog = np.ones(nobs) if mom_incl is not None: ex = np.column_stack((mom_test, mom_incl)) else: ex = mom_test if demean: ex -= ex.mean(0) if cov_type == 'OPG': res = OLS(endog, ex).fit() statistic = nobs * res.rsquared pval = stats.chi2.sf(statistic, k_constraints) else: res = OLS(endog, ex).fit(cov_type=cov_type, cov_kwds=cov_kwds) tres = res.wald_test(np.eye(ex.shape[1])) statistic = tres.statistic pval = tres.pvalue return statistic, pval
generic conditional moment test based artificial regression this is very experimental, no options implemented yet so far OPG regression, or artificial regression with Robust Wald test The latter is (as far as I can see) the same as an overidentifying test in GMM where the test statistic is the value of the GMM objective function and it is assumed that parameters were estimated with optimial GMM, i.e. the weight matrix equal to the expectation of the score variance.
conditional_moment_test_regression
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def asy_cov_moments(self): """ `sqrt(T) * g_T(b_0) asy N(K delta, V)` mean is not implemented, V is the same as cov_moments in __init__ argument """ return self.cov_moments
`sqrt(T) * g_T(b_0) asy N(K delta, V)` mean is not implemented, V is the same as cov_moments in __init__ argument
asy_cov_moments
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def ztest(self): """statistic, p-value and degrees of freedom of separate moment test currently two sided test only TODO: This can use generic ztest/ttest features and return ContrastResults """ diff = self.moments_constraint bse = np.sqrt(np.diag(self.cov_mom_constraints)) # Newey uses a generalized inverse stat = diff / bse pval = stats.norm.sf(np.abs(stat))*2 return stat, pval
statistic, p-value and degrees of freedom of separate moment test currently two sided test only TODO: This can use generic ztest/ttest features and return ContrastResults
ztest
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def chisquare(self): """statistic, p-value and degrees of freedom of joint moment test """ diff = self.moments_constraint cov = self.cov_mom_constraints # Newey uses a generalized inverse stat = diff.T.dot(np.linalg.pinv(cov).dot(diff)) df = self.rank_cov_mom_constraints pval = stats.chi2.sf(stat, df) # Theorem 1 return stat, pval, df
statistic, p-value and degrees of freedom of joint moment test
chisquare
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def conf_int_samples(self, alpha=0.05, use_t=None, nobs=None, ci_func=None): """confidence intervals for the effect size estimate of samples Additional information needs to be provided for confidence intervals that are not based on normal distribution using available variance. This is likely to change in future. Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. nobs : None or float Number of observations used for degrees of freedom computation. Only used if use_t is true. ci_func : None or callable User provided function to compute confidence intervals. This is not used yet and will allow using non-standard confidence intervals. Returns ------- ci_eff : tuple of ndarrays Tuple (ci_low, ci_upp) with confidence interval computed for each sample. Notes ----- CombineResults currently only has information from the combine_effects function, which does not provide details about individual samples. """ # this is a bit messy, we don't have enough information about # computing conf_int already in results for other than normal # TODO: maybe there is a better if (alpha, use_t) in self.cache_ci: return self.cache_ci[(alpha, use_t)] if use_t is None: use_t = self.use_t if ci_func is not None: kwds = {"use_t": use_t} if use_t is not None else {} ci_eff = ci_func(alpha=alpha, **kwds) self.ci_sample_distr = "ci_func" else: if use_t is False: crit = stats.norm.isf(alpha / 2) self.ci_sample_distr = "normal" else: if nobs is not None: df_resid = nobs - 1 crit = stats.t.isf(alpha / 2, df_resid) self.ci_sample_distr = "t" else: msg = ("`use_t=True` requires `nobs` for each sample " "or `ci_func`. Using normal distribution for " "confidence interval of individual samples.") import warnings warnings.warn(msg) crit = stats.norm.isf(alpha / 2) self.ci_sample_distr = "normal" # sgn = np.asarray([-1, 1]) # ci_eff = self.eff + sgn * crit * self.sd_eff ci_low = self.eff - crit * self.sd_eff ci_upp = self.eff + crit * self.sd_eff ci_eff = (ci_low, ci_upp) # if (alpha, use_t) not in self.cache_ci: # not needed self.cache_ci[(alpha, use_t)] = ci_eff return ci_eff
confidence intervals for the effect size estimate of samples Additional information needs to be provided for confidence intervals that are not based on normal distribution using available variance. This is likely to change in future. Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. nobs : None or float Number of observations used for degrees of freedom computation. Only used if use_t is true. ci_func : None or callable User provided function to compute confidence intervals. This is not used yet and will allow using non-standard confidence intervals. Returns ------- ci_eff : tuple of ndarrays Tuple (ci_low, ci_upp) with confidence interval computed for each sample. Notes ----- CombineResults currently only has information from the combine_effects function, which does not provide details about individual samples.
conf_int_samples
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def conf_int(self, alpha=0.05, use_t=None): """confidence interval for the overall mean estimate Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- ci_eff_fe : tuple of floats Confidence interval for mean effects size based on fixed effects model with scale=1. ci_eff_re : tuple of floats Confidence interval for mean effects size based on random effects model with scale=1 ci_eff_fe_wls : tuple of floats Confidence interval for mean effects size based on fixed effects model with estimated scale corresponding to WLS, ie. HKSJ. ci_eff_re_wls : tuple of floats Confidence interval for mean effects size based on random effects model with estimated scale corresponding to WLS, ie. HKSJ. If random effects method is fully iterated, i.e. Paule-Mandel, then the estimated scale is 1. """ if use_t is None: use_t = self.use_t if use_t is False: crit = stats.norm.isf(alpha / 2) else: crit = stats.t.isf(alpha / 2, self.df_resid) sgn = np.asarray([-1, 1]) m_fe = self.mean_effect_fe m_re = self.mean_effect_re ci_eff_fe = m_fe + sgn * crit * self.sd_eff_w_fe ci_eff_re = m_re + sgn * crit * self.sd_eff_w_re ci_eff_fe_wls = m_fe + sgn * crit * np.sqrt(self.var_hksj_fe) ci_eff_re_wls = m_re + sgn * crit * np.sqrt(self.var_hksj_re) return ci_eff_fe, ci_eff_re, ci_eff_fe_wls, ci_eff_re_wls
confidence interval for the overall mean estimate Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- ci_eff_fe : tuple of floats Confidence interval for mean effects size based on fixed effects model with scale=1. ci_eff_re : tuple of floats Confidence interval for mean effects size based on random effects model with scale=1 ci_eff_fe_wls : tuple of floats Confidence interval for mean effects size based on fixed effects model with estimated scale corresponding to WLS, ie. HKSJ. ci_eff_re_wls : tuple of floats Confidence interval for mean effects size based on random effects model with estimated scale corresponding to WLS, ie. HKSJ. If random effects method is fully iterated, i.e. Paule-Mandel, then the estimated scale is 1.
conf_int
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def test_homogeneity(self): """Test whether the means of all samples are the same currently no options, test uses chisquare distribution default might change depending on `use_t` Returns ------- res : HolderTuple instance The results include the following attributes: - statistic : float Test statistic, ``q`` in meta-analysis, this is the pearson_chi2 statistic for the fixed effects model. - pvalue : float P-value based on chisquare distribution. - df : float Degrees of freedom, equal to number of studies or samples minus 1. """ pvalue = stats.chi2.sf(self.q, self.k - 1) res = HolderTuple(statistic=self.q, pvalue=pvalue, df=self.k - 1, distr="chi2") return res
Test whether the means of all samples are the same currently no options, test uses chisquare distribution default might change depending on `use_t` Returns ------- res : HolderTuple instance The results include the following attributes: - statistic : float Test statistic, ``q`` in meta-analysis, this is the pearson_chi2 statistic for the fixed effects model. - pvalue : float P-value based on chisquare distribution. - df : float Degrees of freedom, equal to number of studies or samples minus 1.
test_homogeneity
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def summary_array(self, alpha=0.05, use_t=None): """Create array with sample statistics and mean estimates Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- res : ndarray Array with columns ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe","w_re"]. Rows include statistics for samples and estimates of overall mean. column_names : list of str The names for the columns, used when creating summary DataFrame. """ ci_low, ci_upp = self.conf_int_samples(alpha=alpha, use_t=use_t) res = np.column_stack([self.eff, self.sd_eff, ci_low, ci_upp, self.weights_rel_fe, self.weights_rel_re]) ci = self.conf_int(alpha=alpha, use_t=use_t) res_fe = [[self.mean_effect_fe, self.sd_eff_w_fe, ci[0][0], ci[0][1], 1, np.nan]] res_re = [[self.mean_effect_re, self.sd_eff_w_re, ci[1][0], ci[1][1], np.nan, 1]] res_fe_wls = [[self.mean_effect_fe, self.sd_eff_w_fe_hksj, ci[2][0], ci[2][1], 1, np.nan]] res_re_wls = [[self.mean_effect_re, self.sd_eff_w_re_hksj, ci[3][0], ci[3][1], np.nan, 1]] res = np.concatenate([res, res_fe, res_re, res_fe_wls, res_re_wls], axis=0) column_names = ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe", "w_re"] return res, column_names
Create array with sample statistics and mean estimates Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- res : ndarray Array with columns ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe","w_re"]. Rows include statistics for samples and estimates of overall mean. column_names : list of str The names for the columns, used when creating summary DataFrame.
summary_array
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def summary_frame(self, alpha=0.05, use_t=None): """Create DataFrame with sample statistics and mean estimates Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- res : DataFrame pandas DataFrame instance with columns ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe","w_re"]. Rows include statistics for samples and estimates of overall mean. """ if use_t is None: use_t = self.use_t labels = (list(self.row_names) + ["fixed effect", "random effect", "fixed effect wls", "random effect wls"]) res, col_names = self.summary_array(alpha=alpha, use_t=use_t) results = pd.DataFrame(res, index=labels, columns=col_names) return results
Create DataFrame with sample statistics and mean estimates Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- res : DataFrame pandas DataFrame instance with columns ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe","w_re"]. Rows include statistics for samples and estimates of overall mean.
summary_frame
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def plot_forest(self, alpha=0.05, use_t=None, use_exp=False, ax=None, **kwds): """Forest plot with means and confidence intervals Parameters ---------- ax : None or matplotlib axis instance If ax is provided, then the plot will be added to it. alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. use_exp : bool If `use_exp` is True, then the effect size and confidence limits will be exponentiated. This transform log-odds-ration into odds-ratio, and similarly for risk-ratio. ax : AxesSubplot, optional If given, this axes is used to plot in instead of a new figure being created. kwds : optional keyword arguments Keywords are forwarded to the dot_plot function that creates the plot. Returns ------- fig : Matplotlib figure instance See Also -------- dot_plot """ from statsmodels.graphics.dotplots import dot_plot res_df = self.summary_frame(alpha=alpha, use_t=use_t) if use_exp: res_df = np.exp(res_df[["eff", "ci_low", "ci_upp"]]) hw = np.abs(res_df[["ci_low", "ci_upp"]] - res_df[["eff"]].values) fig = dot_plot(points=res_df["eff"], intervals=hw, lines=res_df.index, line_order=res_df.index, **kwds) return fig
Forest plot with means and confidence intervals Parameters ---------- ax : None or matplotlib axis instance If ax is provided, then the plot will be added to it. alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. use_exp : bool If `use_exp` is True, then the effect size and confidence limits will be exponentiated. This transform log-odds-ration into odds-ratio, and similarly for risk-ratio. ax : AxesSubplot, optional If given, this axes is used to plot in instead of a new figure being created. kwds : optional keyword arguments Keywords are forwarded to the dot_plot function that creates the plot. Returns ------- fig : Matplotlib figure instance See Also -------- dot_plot
plot_forest
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def effectsize_smd(mean1, sd1, nobs1, mean2, sd2, nobs2): """effect sizes for mean difference for use in meta-analysis mean1, sd1, nobs1 are for treatment mean2, sd2, nobs2 are for control Effect sizes are computed for the mean difference ``mean1 - mean2`` standardized by an estimate of the within variance. This does not have option yet. It uses standardized mean difference with bias correction as effect size. This currently does not use np.asarray, all computations are possible in pandas. Parameters ---------- mean1 : array mean of second sample, treatment groups sd1 : array standard deviation of residuals in treatment groups, within nobs1 : array number of observations in treatment groups mean2, sd2, nobs2 : arrays mean, standard deviation and number of observations of control groups Returns ------- smd_bc : array bias corrected estimate of standardized mean difference var_smdbc : array estimate of variance of smd_bc Notes ----- Status: API will still change. This is currently intended for support of meta-analysis. References ---------- Borenstein, Michael. 2009. Introduction to Meta-Analysis. Chichester: Wiley. Chen, Ding-Geng, and Karl E. Peace. 2013. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group. """ # TODO: not used yet, design and options ? # k = len(mean1) # if row_names is None: # row_names = list(range(k)) # crit = stats.norm.isf(alpha / 2) # var_diff_uneq = sd1**2 / nobs1 + sd2**2 / nobs2 var_diff = (sd1**2 * (nobs1 - 1) + sd2**2 * (nobs2 - 1)) / (nobs1 + nobs2 - 2) sd_diff = np.sqrt(var_diff) nobs = nobs1 + nobs2 bias_correction = 1 - 3 / (4 * nobs - 9) smd = (mean1 - mean2) / sd_diff smd_bc = bias_correction * smd var_smdbc = nobs / nobs1 / nobs2 + smd_bc**2 / 2 / (nobs - 3.94) return smd_bc, var_smdbc
effect sizes for mean difference for use in meta-analysis mean1, sd1, nobs1 are for treatment mean2, sd2, nobs2 are for control Effect sizes are computed for the mean difference ``mean1 - mean2`` standardized by an estimate of the within variance. This does not have option yet. It uses standardized mean difference with bias correction as effect size. This currently does not use np.asarray, all computations are possible in pandas. Parameters ---------- mean1 : array mean of second sample, treatment groups sd1 : array standard deviation of residuals in treatment groups, within nobs1 : array number of observations in treatment groups mean2, sd2, nobs2 : arrays mean, standard deviation and number of observations of control groups Returns ------- smd_bc : array bias corrected estimate of standardized mean difference var_smdbc : array estimate of variance of smd_bc Notes ----- Status: API will still change. This is currently intended for support of meta-analysis. References ---------- Borenstein, Michael. 2009. Introduction to Meta-Analysis. Chichester: Wiley. Chen, Ding-Geng, and Karl E. Peace. 2013. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group.
effectsize_smd
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def effectsize_2proportions(count1, nobs1, count2, nobs2, statistic="diff", zero_correction=None, zero_kwds=None): """Effects sizes for two sample binomial proportions Parameters ---------- count1, nobs1, count2, nobs2 : array_like data for two samples statistic : {"diff", "odds-ratio", "risk-ratio", "arcsine"} statistic for the comparison of two proportions Effect sizes for "odds-ratio" and "risk-ratio" are in logarithm. zero_correction : {None, float, "tac", "clip"} Some statistics are not finite when zero counts are in the data. The options to remove zeros are: * float : if zero_correction is a single float, then it will be added to all count (cells) if the sample has any zeros. * "tac" : treatment arm continuity correction see Ruecker et al 2009, section 3.2 * "clip" : clip proportions without adding a value to all cells The clip bounds can be set with zero_kwds["clip_bounds"] zero_kwds : dict additional options to handle zero counts "clip_bounds" tuple, default (1e-6, 1 - 1e-6) if zero_correction="clip" other options not yet implemented Returns ------- effect size : array Effect size for each sample. var_es : array Estimate of variance of the effect size Notes ----- Status: API is experimental, Options for zero handling is incomplete. The names for ``statistics`` keyword can be shortened to "rd", "rr", "or" and "as". The statistics are defined as: - risk difference = p1 - p2 - log risk ratio = log(p1 / p2) - log odds_ratio = log(p1 / (1 - p1) * (1 - p2) / p2) - arcsine-sqrt = arcsin(sqrt(p1)) - arcsin(sqrt(p2)) where p1 and p2 are the estimated proportions in sample 1 (treatment) and sample 2 (control). log-odds-ratio and log-risk-ratio can be transformed back to ``or`` and `rr` using `exp` function. See Also -------- statsmodels.stats.contingency_tables """ if zero_correction is None: cc1 = cc2 = 0 elif zero_correction == "tac": # treatment arm continuity correction Ruecker et al 2009, section 3.2 nobs_t = nobs1 + nobs2 cc1 = nobs2 / nobs_t cc2 = nobs1 / nobs_t elif zero_correction == "clip": clip_bounds = zero_kwds.get("clip_bounds", (1e-6, 1 - 1e-6)) cc1 = cc2 = 0 elif zero_correction: # TODO: check is float_like cc1 = cc2 = zero_correction else: msg = "zero_correction not recognized or supported" raise NotImplementedError(msg) zero_mask1 = (count1 == 0) | (count1 == nobs1) zero_mask2 = (count2 == 0) | (count2 == nobs2) zmask = np.logical_or(zero_mask1, zero_mask2) n1 = nobs1 + (cc1 + cc2) * zmask n2 = nobs2 + (cc1 + cc2) * zmask p1 = (count1 + cc1) / (n1) p2 = (count2 + cc2) / (n2) if zero_correction == "clip": p1 = np.clip(p1, *clip_bounds) p2 = np.clip(p2, *clip_bounds) if statistic in ["diff", "rd"]: rd = p1 - p2 rd_var = p1 * (1 - p1) / n1 + p2 * (1 - p2) / n2 eff = rd var_eff = rd_var elif statistic in ["risk-ratio", "rr"]: # rr = p1 / p2 log_rr = np.log(p1) - np.log(p2) log_rr_var = (1 - p1) / p1 / n1 + (1 - p2) / p2 / n2 eff = log_rr var_eff = log_rr_var elif statistic in ["odds-ratio", "or"]: # or_ = p1 / (1 - p1) * (1 - p2) / p2 log_or = np.log(p1) - np.log(1 - p1) - np.log(p2) + np.log(1 - p2) log_or_var = 1 / (p1 * (1 - p1) * n1) + 1 / (p2 * (1 - p2) * n2) eff = log_or var_eff = log_or_var elif statistic in ["arcsine", "arcsin", "as"]: as_ = np.arcsin(np.sqrt(p1)) - np.arcsin(np.sqrt(p2)) as_var = (1 / n1 + 1 / n2) / 4 eff = as_ var_eff = as_var else: msg = 'statistic not recognized, use one of "rd", "rr", "or", "as"' raise NotImplementedError(msg) return eff, var_eff
Effects sizes for two sample binomial proportions Parameters ---------- count1, nobs1, count2, nobs2 : array_like data for two samples statistic : {"diff", "odds-ratio", "risk-ratio", "arcsine"} statistic for the comparison of two proportions Effect sizes for "odds-ratio" and "risk-ratio" are in logarithm. zero_correction : {None, float, "tac", "clip"} Some statistics are not finite when zero counts are in the data. The options to remove zeros are: * float : if zero_correction is a single float, then it will be added to all count (cells) if the sample has any zeros. * "tac" : treatment arm continuity correction see Ruecker et al 2009, section 3.2 * "clip" : clip proportions without adding a value to all cells The clip bounds can be set with zero_kwds["clip_bounds"] zero_kwds : dict additional options to handle zero counts "clip_bounds" tuple, default (1e-6, 1 - 1e-6) if zero_correction="clip" other options not yet implemented Returns ------- effect size : array Effect size for each sample. var_es : array Estimate of variance of the effect size Notes ----- Status: API is experimental, Options for zero handling is incomplete. The names for ``statistics`` keyword can be shortened to "rd", "rr", "or" and "as". The statistics are defined as: - risk difference = p1 - p2 - log risk ratio = log(p1 / p2) - log odds_ratio = log(p1 / (1 - p1) * (1 - p2) / p2) - arcsine-sqrt = arcsin(sqrt(p1)) - arcsin(sqrt(p2)) where p1 and p2 are the estimated proportions in sample 1 (treatment) and sample 2 (control). log-odds-ratio and log-risk-ratio can be transformed back to ``or`` and `rr` using `exp` function. See Also -------- statsmodels.stats.contingency_tables
effectsize_2proportions
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def combine_effects(effect, variance, method_re="iterated", row_names=None, use_t=False, alpha=0.05, **kwds): """combining effect sizes for effect sizes using meta-analysis This currently does not use np.asarray, all computations are possible in pandas. Parameters ---------- effect : array mean of effect size measure for all samples variance : array variance of mean or effect size measure for all samples method_re : {"iterated", "chi2"} method that is use to compute the between random effects variance "iterated" or "pm" uses Paule and Mandel method to iteratively estimate the random effects variance. Options for the iteration can be provided in the ``kwds`` "chi2" or "dl" uses DerSimonian and Laird one-step estimator. row_names : list of strings (optional) names for samples or studies, will be included in results summary and table. alpha : float in (0, 1) significance level, default is 0.05, for the confidence intervals Returns ------- results : CombineResults Contains estimation results and intermediate statistics, and includes a method to return a summary table. Statistics from intermediate calculations might be removed at a later time. Notes ----- Status: Basic functionality is verified, mainly compared to R metafor package. However, API might still change. This computes both fixed effects and random effects estimates. The random effects results depend on the method to estimate the RE variance. Scale estimate In fixed effects models and in random effects models without fully iterated random effects variance, the model will in general not account for all residual variance. Traditional meta-analysis uses a fixed scale equal to 1, that might not produce test statistics and confidence intervals with the correct size. Estimating the scale to account for residual variance often improves the small sample properties of inference and confidence intervals. This adjustment to the standard errors is often referred to as HKSJ method based attributed to Hartung and Knapp and Sidik and Jonkman. However, this is equivalent to estimating the scale in WLS. The results instance includes both, fixed scale and estimated scale versions of standard errors and confidence intervals. References ---------- Borenstein, Michael. 2009. Introduction to Meta-Analysis. Chichester: Wiley. Chen, Ding-Geng, and Karl E. Peace. 2013. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group. """ k = len(effect) if row_names is None: row_names = list(range(k)) crit = stats.norm.isf(alpha / 2) # alias for initial version eff = effect var_eff = variance sd_eff = np.sqrt(var_eff) # fixed effects computation weights_fe = 1 / var_eff # no bias correction ? w_total_fe = weights_fe.sum(0) weights_rel_fe = weights_fe / w_total_fe eff_w_fe = weights_rel_fe * eff mean_effect_fe = eff_w_fe.sum() var_eff_w_fe = 1 / w_total_fe sd_eff_w_fe = np.sqrt(var_eff_w_fe) # random effects computation q = (weights_fe * eff**2).sum(0) q -= (weights_fe * eff).sum()**2 / w_total_fe df = k - 1 if method_re.lower() in ["iterated", "pm"]: tau2, _ = _fit_tau_iterative(eff, var_eff, **kwds) elif method_re.lower() in ["chi2", "dl"]: c = w_total_fe - (weights_fe**2).sum() / w_total_fe tau2 = (q - df) / c else: raise ValueError('method_re should be "iterated" or "chi2"') weights_re = 1 / (var_eff + tau2) # no bias_correction ? w_total_re = weights_re.sum(0) weights_rel_re = weights_re / weights_re.sum(0) eff_w_re = weights_rel_re * eff mean_effect_re = eff_w_re.sum() var_eff_w_re = 1 / w_total_re sd_eff_w_re = np.sqrt(var_eff_w_re) # ci_low_eff_re = mean_effect_re - crit * sd_eff_w_re # ci_upp_eff_re = mean_effect_re + crit * sd_eff_w_re scale_hksj_re = (weights_re * (eff - mean_effect_re)**2).sum() / df scale_hksj_fe = (weights_fe * (eff - mean_effect_fe)**2).sum() / df var_hksj_re = (weights_rel_re * (eff - mean_effect_re)**2).sum() / df var_hksj_fe = (weights_rel_fe * (eff - mean_effect_fe)**2).sum() / df res = CombineResults(**locals()) return res
combining effect sizes for effect sizes using meta-analysis This currently does not use np.asarray, all computations are possible in pandas. Parameters ---------- effect : array mean of effect size measure for all samples variance : array variance of mean or effect size measure for all samples method_re : {"iterated", "chi2"} method that is use to compute the between random effects variance "iterated" or "pm" uses Paule and Mandel method to iteratively estimate the random effects variance. Options for the iteration can be provided in the ``kwds`` "chi2" or "dl" uses DerSimonian and Laird one-step estimator. row_names : list of strings (optional) names for samples or studies, will be included in results summary and table. alpha : float in (0, 1) significance level, default is 0.05, for the confidence intervals Returns ------- results : CombineResults Contains estimation results and intermediate statistics, and includes a method to return a summary table. Statistics from intermediate calculations might be removed at a later time. Notes ----- Status: Basic functionality is verified, mainly compared to R metafor package. However, API might still change. This computes both fixed effects and random effects estimates. The random effects results depend on the method to estimate the RE variance. Scale estimate In fixed effects models and in random effects models without fully iterated random effects variance, the model will in general not account for all residual variance. Traditional meta-analysis uses a fixed scale equal to 1, that might not produce test statistics and confidence intervals with the correct size. Estimating the scale to account for residual variance often improves the small sample properties of inference and confidence intervals. This adjustment to the standard errors is often referred to as HKSJ method based attributed to Hartung and Knapp and Sidik and Jonkman. However, this is equivalent to estimating the scale in WLS. The results instance includes both, fixed scale and estimated scale versions of standard errors and confidence intervals. References ---------- Borenstein, Michael. 2009. Introduction to Meta-Analysis. Chichester: Wiley. Chen, Ding-Geng, and Karl E. Peace. 2013. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group.
combine_effects
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def _fit_tau_iterative(eff, var_eff, tau2_start=0, atol=1e-5, maxiter=50): """Paule-Mandel iterative estimate of between random effect variance implementation follows DerSimonian and Kacker 2007 Appendix 8 see also Kacker 2004 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes tau2_start : float starting value for iteration atol : float, default: 1e-5 convergence tolerance for absolute value of estimating equation maxiter : int maximum number of iterations Returns ------- tau2 : float estimate of random effects variance tau squared converged : bool True if iteration has converged. """ tau2 = tau2_start k = eff.shape[0] converged = False for i in range(maxiter): w = 1 / (var_eff + tau2) m = w.dot(eff) / w.sum(0) resid_sq = (eff - m)**2 q_w = w.dot(resid_sq) # estimating equation ee = q_w - (k - 1) if ee < 0: tau2 = 0 converged = 0 break if np.allclose(ee, 0, atol=atol): converged = True break # update tau2 delta = ee / (w**2).dot(resid_sq) tau2 += delta return tau2, converged
Paule-Mandel iterative estimate of between random effect variance implementation follows DerSimonian and Kacker 2007 Appendix 8 see also Kacker 2004 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes tau2_start : float starting value for iteration atol : float, default: 1e-5 convergence tolerance for absolute value of estimating equation maxiter : int maximum number of iterations Returns ------- tau2 : float estimate of random effects variance tau squared converged : bool True if iteration has converged.
_fit_tau_iterative
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def _fit_tau_mm(eff, var_eff, weights): """one-step method of moment estimate of between random effect variance implementation follows Kacker 2004 and DerSimonian and Kacker 2007 eq. 6 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes weights : ndarray weights for estimating overall weighted mean Returns ------- tau2 : float estimate of random effects variance tau squared """ w = weights m = w.dot(eff) / w.sum(0) resid_sq = (eff - m)**2 q_w = w.dot(resid_sq) w_t = w.sum() expect = w.dot(var_eff) - (w**2).dot(var_eff) / w_t denom = w_t - (w**2).sum() / w_t # moment estimate from estimating equation tau2 = (q_w - expect) / denom return tau2
one-step method of moment estimate of between random effect variance implementation follows Kacker 2004 and DerSimonian and Kacker 2007 eq. 6 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes weights : ndarray weights for estimating overall weighted mean Returns ------- tau2 : float estimate of random effects variance tau squared
_fit_tau_mm
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def _fit_tau_iter_mm(eff, var_eff, tau2_start=0, atol=1e-5, maxiter=50): """iterated method of moment estimate of between random effect variance This repeatedly estimates tau, updating weights in each iteration see two-step estimators in DerSimonian and Kacker 2007 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes tau2_start : float starting value for iteration atol : float, default: 1e-5 convergence tolerance for change in tau2 estimate between iterations maxiter : int maximum number of iterations Returns ------- tau2 : float estimate of random effects variance tau squared converged : bool True if iteration has converged. """ tau2 = tau2_start converged = False for _ in range(maxiter): w = 1 / (var_eff + tau2) tau2_new = _fit_tau_mm(eff, var_eff, w) tau2_new = max(0, tau2_new) delta = tau2_new - tau2 if np.allclose(delta, 0, atol=atol): converged = True break tau2 = tau2_new return tau2, converged
iterated method of moment estimate of between random effect variance This repeatedly estimates tau, updating weights in each iteration see two-step estimators in DerSimonian and Kacker 2007 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes tau2_start : float starting value for iteration atol : float, default: 1e-5 convergence tolerance for change in tau2 estimate between iterations maxiter : int maximum number of iterations Returns ------- tau2 : float estimate of random effects variance tau squared converged : bool True if iteration has converged.
_fit_tau_iter_mm
python
statsmodels/statsmodels
statsmodels/stats/meta_analysis.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/meta_analysis.py
BSD-3-Clause
def anova_single(model, **kwargs): """ Anova table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model typ : int or str {1,2,3} or {"I","II","III"} Type of sum of squares to use. **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. """ test = kwargs.get("test", "F") typ = kwargs.get("typ", 1) robust = kwargs.get("robust", None) if robust: robust = robust.lower() endog = model.model.endog exog = model.model.exog nobs = exog.shape[0] model_spec = model.model.data.model_spec # +1 for resids mgr = FormulaManager() n_rows = (len(model_spec.terms) - mgr.has_intercept(model_spec) + 1) pr_test = "PR(>%s)" % test names = ['df', 'sum_sq', 'mean_sq', test, pr_test] table = DataFrame(np.zeros((n_rows, 5)), columns=names) if typ in [1, "I"]: return anova1_lm_single(model, endog, exog, nobs, model_spec, table, n_rows, test, pr_test, robust) elif typ in [2, "II"]: return anova2_lm_single(model, model_spec, n_rows, test, pr_test, robust) elif typ in [3, "III"]: return anova3_lm_single(model, model_spec, n_rows, test, pr_test, robust) elif typ in [4, "IV"]: raise NotImplementedError("Type IV not yet implemented") else: # pragma: no cover raise ValueError("Type %s not understood" % str(typ))
Anova table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model typ : int or str {1,2,3} or {"I","II","III"} Type of sum of squares to use. **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead.
anova_single
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def anova1_lm_single(model, endog, exog, nobs, model_spec, table, n_rows, test, pr_test, robust): """ Anova table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. """ #maybe we should rethink using pinv > qr in OLS/linear models? mgr = FormulaManager() effects = getattr(model, 'effects', None) if effects is None: q,r = np.linalg.qr(exog) effects = np.dot(q.T, endog) arr = np.zeros((len(model_spec.terms), len(model_spec.column_names))) slices = [ mgr.get_slice(model_spec, name) for name in mgr.get_term_names(model_spec) ] for i, slice_ in enumerate(slices): arr[i, slice_] = 1 sum_sq = np.dot(arr, effects**2) #NOTE: assumes intercept is first column mgr = FormulaManager() idx = mgr.intercept_idx(model_spec) sum_sq = sum_sq[~idx] term_names = np.array(mgr.get_term_names(model_spec)) # want boolean indexing term_names = term_names[~idx] index = term_names.tolist() table.index = Index(index + ['Residual']) table.loc[index, ['df', 'sum_sq']] = np.c_[arr[~idx].sum(1), sum_sq] # fill in residual table.loc['Residual', ['sum_sq','df']] = model.ssr, model.df_resid if test == 'F': table[test] = ((table['sum_sq'] / table['df']) / (model.ssr / model.df_resid)) table[pr_test] = stats.f.sf(table["F"], table["df"], model.df_resid) table.loc['Residual', [test, pr_test]] = np.nan, np.nan table['mean_sq'] = table['sum_sq'] / table['df'] return table
Anova table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead.
anova1_lm_single
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def anova2_lm_single(model, model_spec, n_rows, test, pr_test, robust): """ Anova type II table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. Type II Sum of Squares compares marginal contribution of terms. Thus, it is not particularly useful for models with significant interaction terms. """ mgr = FormulaManager() terms_info = model_spec.terms[:] # copy terms_info = mgr.remove_intercept(terms_info) names = ['sum_sq', 'df', test, pr_test] table = DataFrame(np.zeros((n_rows, 4)), columns = names) robust_cov = _get_covariance(model, robust) col_order = [] index = [] for i, term in enumerate(terms_info): # grab all variables except interaction effects that contain term # need two hypotheses matrices L1 is most restrictive, ie., term==0 # L2 is everything except term==0 cols = mgr.get_slice(model_spec, term) L1 = lrange(cols.start, cols.stop) L2 = [] term_set = set(term.factors) for t in terms_info: # for the term you have other_set = set(t.factors) if term_set.issubset(other_set) and not term_set == other_set: col = mgr.get_slice(model_spec, t) # on a higher order term containing current `term` L1.extend(lrange(col.start, col.stop)) L2.extend(lrange(col.start, col.stop)) L1 = np.eye(model.model.exog.shape[1])[L1] L2 = np.eye(model.model.exog.shape[1])[L2] if L2.size: LVL = np.dot(np.dot(L1,robust_cov),L2.T) from scipy import linalg orth_compl,_ = linalg.qr(LVL) r = L1.shape[0] - L2.shape[0] # L1|2 # use the non-unique orthogonal completion since L12 is rank r L12 = np.dot(orth_compl[:,-r:].T, L1) else: L12 = L1 r = L1.shape[0] #from IPython.core.debugger import Pdb; Pdb().set_trace() if test == 'F': f = model.f_test(L12, cov_p=robust_cov) table.loc[table.index[i], test] = f.fvalue table.loc[table.index[i], pr_test] = f.pvalue # need to back out SSR from f_test table.loc[table.index[i], 'df'] = r col_order.append(cols.start) index.append(mgr.get_term_name(term)) table.index = Index(index + ['Residual']) table = table.iloc[np.argsort(col_order + [model.model.exog.shape[1]+1])] # back out sum of squares from f_test ssr = table[test] * table['df'] * model.ssr/model.df_resid table['sum_sq'] = ssr # fill in residual table.loc['Residual', ['sum_sq','df', test, pr_test]] = (model.ssr, model.df_resid, np.nan, np.nan) return table
Anova type II table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. Type II Sum of Squares compares marginal contribution of terms. Thus, it is not particularly useful for models with significant interaction terms.
anova2_lm_single
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def anova_lm(*args, **kwargs): """ Anova table for one or more fitted linear models. Parameters ---------- args : fitted linear model results instance One or more fitted linear models scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". typ : str or int {"I","II","III"} or {1,2,3} The type of Anova test to perform. See notes. robust : {None, "hc0", "hc1", "hc2", "hc3"} Use heteroscedasticity-corrected coefficient covariance matrix. If robust covariance is desired, it is recommended to use `hc3`. Returns ------- anova : DataFrame When args is a single model, return is DataFrame with columns: sum_sq : float64 Sum of squares for model terms. df : float64 Degrees of freedom for model terms. F : float64 F statistic value for significance of adding model terms. PR(>F) : float64 P-value for significance of adding model terms. When args is multiple models, return is DataFrame with columns: df_resid : float64 Degrees of freedom of residuals in models. ssr : float64 Sum of squares of residuals in models. df_diff : float64 Degrees of freedom difference from previous model in args ss_dff : float64 Difference in ssr from previous model in args F : float64 F statistic comparing to previous model in args PR(>F): float64 P-value for significance comparing to previous model in args Notes ----- Model statistics are given in the order of args. Models must have been fit using the formula api. See Also -------- model_results.compare_f_test, model_results.compare_lm_test Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.formula.api import ols >>> moore = sm.datasets.get_rdataset("Moore", "carData", cache=True) # load >>> data = moore.data >>> data = data.rename(columns={"partner.status" : ... "partner_status"}) # make name pythonic >>> moore_lm = ols('conformity ~ C(fcategory, Sum)*C(partner_status, Sum)', ... data=data).fit() >>> table = sm.stats.anova_lm(moore_lm, typ=2) # Type 2 Anova DataFrame >>> print(table) """ typ = kwargs.get('typ', 1) ### Farm Out Single model Anova Type I, II, III, and IV ### if len(args) == 1: model = args[0] return anova_single(model, **kwargs) if typ not in [1, "I"]: raise ValueError("Multiple models only supported for type I. " "Got type %s" % str(typ)) test = kwargs.get("test", "F") scale = kwargs.get("scale", None) n_models = len(args) pr_test = "Pr(>%s)" % test names = ['df_resid', 'ssr', 'df_diff', 'ss_diff', test, pr_test] table = DataFrame(np.zeros((n_models, 6)), columns=names) if not scale: # assume biggest model is last scale = args[-1].scale table["ssr"] = [mdl.ssr for mdl in args] table["df_resid"] = [mdl.df_resid for mdl in args] table.loc[table.index[1:], "df_diff"] = -np.diff(table["df_resid"].values) table["ss_diff"] = -table["ssr"].diff() if test == "F": table["F"] = table["ss_diff"] / table["df_diff"] / scale table[pr_test] = stats.f.sf(table["F"], table["df_diff"], table["df_resid"]) # for earlier scipy - stats.f.sf(np.nan, 10, 2) -> 0 not nan table.loc[table['F'].isnull(), pr_test] = np.nan return table
Anova table for one or more fitted linear models. Parameters ---------- args : fitted linear model results instance One or more fitted linear models scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". typ : str or int {"I","II","III"} or {1,2,3} The type of Anova test to perform. See notes. robust : {None, "hc0", "hc1", "hc2", "hc3"} Use heteroscedasticity-corrected coefficient covariance matrix. If robust covariance is desired, it is recommended to use `hc3`. Returns ------- anova : DataFrame When args is a single model, return is DataFrame with columns: sum_sq : float64 Sum of squares for model terms. df : float64 Degrees of freedom for model terms. F : float64 F statistic value for significance of adding model terms. PR(>F) : float64 P-value for significance of adding model terms. When args is multiple models, return is DataFrame with columns: df_resid : float64 Degrees of freedom of residuals in models. ssr : float64 Sum of squares of residuals in models. df_diff : float64 Degrees of freedom difference from previous model in args ss_dff : float64 Difference in ssr from previous model in args F : float64 F statistic comparing to previous model in args PR(>F): float64 P-value for significance comparing to previous model in args Notes ----- Model statistics are given in the order of args. Models must have been fit using the formula api. See Also -------- model_results.compare_f_test, model_results.compare_lm_test Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.formula.api import ols >>> moore = sm.datasets.get_rdataset("Moore", "carData", cache=True) # load >>> data = moore.data >>> data = data.rename(columns={"partner.status" : ... "partner_status"}) # make name pythonic >>> moore_lm = ols('conformity ~ C(fcategory, Sum)*C(partner_status, Sum)', ... data=data).fit() >>> table = sm.stats.anova_lm(moore_lm, typ=2) # Type 2 Anova DataFrame >>> print(table)
anova_lm
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def _ssr_reduced_model(y, x, term_slices, params, keys): """ Residual sum of squares of OLS model excluding factors in `keys` Assumes x matrix is orthogonal Parameters ---------- y : array_like dependent variable x : array_like independent variables term_slices : a dict of slices term_slices[key] is a boolean array specifies the parameters associated with the factor `key` params : ndarray OLS solution of y = x * params keys : keys for term_slices factors to be excluded Returns ------- rss : float residual sum of squares df : int degrees of freedom """ ind = _not_slice(term_slices, keys, x.shape[1]) params1 = params[ind] ssr = np.subtract(y, x[:, ind].dot(params1)) ssr = ssr.T.dot(ssr) df_resid = len(y) - len(params1) return ssr, df_resid
Residual sum of squares of OLS model excluding factors in `keys` Assumes x matrix is orthogonal Parameters ---------- y : array_like dependent variable x : array_like independent variables term_slices : a dict of slices term_slices[key] is a boolean array specifies the parameters associated with the factor `key` params : ndarray OLS solution of y = x * params keys : keys for term_slices factors to be excluded Returns ------- rss : float residual sum of squares df : int degrees of freedom
_ssr_reduced_model
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def _check_data_balanced(self): """raise if data is not balanced This raises a ValueError if the data is not balanced, and returns None if it is balance Return might change """ factor_levels = 1 for wi in self.within: factor_levels *= len(self.data[wi].unique()) cell_count = {} for index in range(self.data.shape[0]): key = [] for col in self.within: key.append(self.data[col].iloc[index]) key = tuple(key) if key in cell_count: cell_count[key] = cell_count[key] + 1 else: cell_count[key] = 1 error_message = "Data is unbalanced." if len(cell_count) != factor_levels: raise ValueError(error_message) count = cell_count[key] for key in cell_count: if count != cell_count[key]: raise ValueError(error_message) if self.data.shape[0] > count * factor_levels: raise ValueError('There are more than 1 element in a cell! Missing' ' factors?')
raise if data is not balanced This raises a ValueError if the data is not balanced, and returns None if it is balance Return might change
_check_data_balanced
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def fit(self): """estimate the model and compute the Anova table Returns ------- AnovaResults instance """ y = self.data[self.depvar].values # Construct OLS endog and exog from string using patsy within = ['C(%s, Sum)' % i for i in self.within] subject = 'C(%s, Sum)' % self.subject factors = within + [subject] mgr = FormulaManager() x = mgr.get_matrices('*'.join(factors), data=self.data, pandas=False) term_slices = mgr.get_term_name_slices(x) for key in term_slices: ind = np.array([False]*x.shape[1]) ind[term_slices[key]] = True term_slices[key] = np.array(ind) term_exclude = [':'.join(factors)] ind = _not_slice(term_slices, term_exclude, x.shape[1]) x = x[:, ind] # Fit OLS model = OLS(y, x) results = model.fit() if model.rank < x.shape[1]: raise ValueError('Independent variables are collinear.') for i in term_exclude: term_slices.pop(i) for key in term_slices: term_slices[key] = term_slices[key][ind] params = results.params df_resid = results.df_resid ssr = results.ssr columns = ['F Value', 'Num DF', 'Den DF', 'Pr > F'] anova_table = pd.DataFrame(np.zeros((0, 4)), columns=columns) for key in term_slices: if self.subject not in str(key) and str(key) not in ('Intercept', "1"): # Independent variables are orthogonal ssr1, df_resid1 = _ssr_reduced_model( y, x, term_slices, params, [key]) df1 = df_resid1 - df_resid msm = (ssr1 - ssr) / df1 if (str(key) == ':'.join(factors[:-1]) or (str(key) + ':' + subject not in term_slices)): mse = ssr / df_resid df2 = df_resid else: ssr1, df_resid1 = _ssr_reduced_model( y, x, term_slices, params, [str(key) + ':' + subject]) df2 = df_resid1 - df_resid mse = (ssr1 - ssr) / df2 F = msm / mse p = stats.f.sf(F, df1, df2) term = str(key).replace('C(', '').replace(', Sum)', '') anova_table.loc[term, 'F Value'] = F anova_table.loc[term, 'Num DF'] = df1 anova_table.loc[term, 'Den DF'] = df2 anova_table.loc[term, 'Pr > F'] = p return AnovaResults(anova_table)
estimate the model and compute the Anova table Returns ------- AnovaResults instance
fit
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def summary(self): """create summary results Returns ------- summary : summary2.Summary instance """ summ = summary2.Summary() summ.add_title('Anova') summ.add_df(self.anova_table) return summ
create summary results Returns ------- summary : summary2.Summary instance
summary
python
statsmodels/statsmodels
statsmodels/stats/anova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/anova.py
BSD-3-Clause
def _calc_nodewise_row(exog, idx, alpha): """calculates the nodewise_row values for the idxth variable, used to estimate approx_inv_cov. Parameters ---------- exog : array_like The weighted design matrix for the current partition. idx : scalar Index of the current variable. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. Returns ------- An array-like object of length p-1 Notes ----- nodewise_row_i = arg min 1/(2n) ||exog_i - exog_-i gamma||_2^2 + alpha ||gamma||_1 """ p = exog.shape[1] ind = list(range(p)) ind.pop(idx) # handle array alphas if not np.isscalar(alpha): alpha = alpha[ind] tmod = OLS(exog[:, idx], exog[:, ind]) nodewise_row = tmod.fit_regularized(alpha=alpha).params return nodewise_row
calculates the nodewise_row values for the idxth variable, used to estimate approx_inv_cov. Parameters ---------- exog : array_like The weighted design matrix for the current partition. idx : scalar Index of the current variable. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. Returns ------- An array-like object of length p-1 Notes ----- nodewise_row_i = arg min 1/(2n) ||exog_i - exog_-i gamma||_2^2 + alpha ||gamma||_1
_calc_nodewise_row
python
statsmodels/statsmodels
statsmodels/stats/regularized_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/regularized_covariance.py
BSD-3-Clause
def _calc_nodewise_weight(exog, nodewise_row, idx, alpha): """calculates the nodewise_weightvalue for the idxth variable, used to estimate approx_inv_cov. Parameters ---------- exog : array_like The weighted design matrix for the current partition. nodewise_row : array_like The nodewise_row values for the current variable. idx : scalar Index of the current variable alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. Returns ------- A scalar Notes ----- nodewise_weight_i = sqrt(1/n ||exog,i - exog_-i nodewise_row||_2^2 + alpha ||nodewise_row||_1) """ n, p = exog.shape ind = list(range(p)) ind.pop(idx) # handle array alphas if not np.isscalar(alpha): alpha = alpha[ind] d = np.linalg.norm(exog[:, idx] - exog[:, ind].dot(nodewise_row))**2 d = np.sqrt(d / n + alpha * np.linalg.norm(nodewise_row, 1)) return d
calculates the nodewise_weightvalue for the idxth variable, used to estimate approx_inv_cov. Parameters ---------- exog : array_like The weighted design matrix for the current partition. nodewise_row : array_like The nodewise_row values for the current variable. idx : scalar Index of the current variable alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. Returns ------- A scalar Notes ----- nodewise_weight_i = sqrt(1/n ||exog,i - exog_-i nodewise_row||_2^2 + alpha ||nodewise_row||_1)
_calc_nodewise_weight
python
statsmodels/statsmodels
statsmodels/stats/regularized_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/regularized_covariance.py
BSD-3-Clause
def _calc_approx_inv_cov(nodewise_row_l, nodewise_weight_l): """calculates the approximate inverse covariance matrix Parameters ---------- nodewise_row_l : list A list of array-like object where each object corresponds to the nodewise_row values for the corresponding variable, should be length p. nodewise_weight_l : list A list of scalars where each scalar corresponds to the nodewise_weight value for the corresponding variable, should be length p. Returns ------ An array-like object, p x p matrix Notes ----- nwr = nodewise_row nww = nodewise_weight approx_inv_cov_j = - 1 / nww_j [nwr_j,1,...,1,...nwr_j,p] """ p = len(nodewise_weight_l) approx_inv_cov = -np.eye(p) for idx in range(p): ind = list(range(p)) ind.pop(idx) approx_inv_cov[idx, ind] = nodewise_row_l[idx] approx_inv_cov *= -1 / nodewise_weight_l[:, None]**2 return approx_inv_cov
calculates the approximate inverse covariance matrix Parameters ---------- nodewise_row_l : list A list of array-like object where each object corresponds to the nodewise_row values for the corresponding variable, should be length p. nodewise_weight_l : list A list of scalars where each scalar corresponds to the nodewise_weight value for the corresponding variable, should be length p. Returns ------ An array-like object, p x p matrix Notes ----- nwr = nodewise_row nww = nodewise_weight approx_inv_cov_j = - 1 / nww_j [nwr_j,1,...,1,...nwr_j,p]
_calc_approx_inv_cov
python
statsmodels/statsmodels
statsmodels/stats/regularized_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/regularized_covariance.py
BSD-3-Clause
def fit(self, alpha=0): """estimates the regularized inverse covariance using nodewise regression Parameters ---------- alpha : scalar Regularizing constant """ n, p = self.exog.shape nodewise_row_l = [] nodewise_weight_l = [] for idx in range(p): nodewise_row = _calc_nodewise_row(self.exog, idx, alpha) nodewise_row_l.append(nodewise_row) nodewise_weight = _calc_nodewise_weight(self.exog, nodewise_row, idx, alpha) nodewise_weight_l.append(nodewise_weight) nodewise_row_l = np.array(nodewise_row_l) nodewise_weight_l = np.array(nodewise_weight_l) approx_inv_cov = _calc_approx_inv_cov(nodewise_row_l, nodewise_weight_l) self._approx_inv_cov = approx_inv_cov
estimates the regularized inverse covariance using nodewise regression Parameters ---------- alpha : scalar Regularizing constant
fit
python
statsmodels/statsmodels
statsmodels/stats/regularized_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/regularized_covariance.py
BSD-3-Clause
def transform_corr_normal(corr, method, return_var=False, possdef=True): """transform correlation matrix to be consistent at normal distribution Parameters ---------- corr : array_like correlation matrix, either Pearson, Gaussian-rank, Spearman, Kendall or quadrant correlation matrix method : string type of covariance matrix supported types are 'pearson', 'gauss_rank', 'kendal', 'spearman' and 'quadrant' return_var : bool If true, then the asymptotic variance of the normalized correlation is also returned. The variance of the spearman correlation requires numerical integration which is calculated with scipy's odeint. possdef : not implemented yet Check whether resulting correlation matrix for positive semidefinite and return a positive semidefinite approximation if not. Returns ------- corr : ndarray correlation matrix, consistent with correlation for a multivariate normal distribution var : ndarray (optional) asymptotic variance of the correlation if requested by `return_var`. Notes ----- Pearson and Gaussian-rank correlation are consistent at the normal distribution and will be returned without changes. The other correlation matrices are not guaranteed to be positive semidefinite in small sample after conversion, even if the underlying untransformed correlation matrix is positive (semi)definite. Croux and Dehon mention that nobs / k_vars should be larger than 3 for kendall and larger than 2 for spearman. References ---------- .. [1] Boudt, Kris, Jonathan Cornelissen, and Christophe Croux. “The Gaussian Rank Correlation Estimator: Robustness Properties.” Statistics and Computing 22, no. 2 (April 5, 2011): 471–83. https://doi.org/10.1007/s11222-011-9237-0. .. [2] Croux, Christophe, and Catherine Dehon. “Influence Functions of the Spearman and Kendall Correlation Measures.” Statistical Methods & Applications 19, no. 4 (May 12, 2010): 497–515. https://doi.org/10.1007/s10260-010-0142-z. """ method = method.lower() rho = np.asarray(corr) var = None # initialize if method in ['pearson', 'gauss_rank']: corr_n = corr if return_var: var = (1 - rho**2)**2 elif method.startswith('kendal'): corr_n = np.sin(np.pi / 2 * corr) if return_var: var = (1 - rho**2) * np.pi**2 * ( 1./9 - 4 / np.pi**2 * np.arcsin(rho / 2)**2) elif method == 'quadrant': corr_n = np.sin(np.pi / 2 * corr) if return_var: var = (1 - rho**2) * (np.pi**2 / 4 - np.arcsin(rho)**2) elif method.startswith('spearman'): corr_n = 2 * np.sin(np.pi / 6 * corr) # not clear which rho is in formula, should be normalized rho, # but original corr coefficient seems to match results in articles # rho = corr_n if return_var: # odeint only works if grid of rho is large, i.e. many points # e.g. rho = np.linspace(0, 1, 101) rho = np.atleast_1d(rho) idx = np.argsort(rho) rhos = rho[idx] rhos = np.concatenate(([0], rhos)) t = np.arcsin(rhos / 2) # drop np namespace here sin, cos = np.sin, np.cos var = (1 - rho**2 / 4) * pi2 / 9 # leading factor f1 = lambda t, x: np.arcsin(sin(x) / (1 + 2 * cos(2 * x))) # noqa f2 = lambda t, x: np.arcsin(sin(2 * x) / # noqa np.sqrt(1 + 2 * cos(2 * x))) f3 = lambda t, x: np.arcsin(sin(2 * x) / # noqa (2 * np.sqrt(cos(2 * x)))) f4 = lambda t, x: np.arcsin(( 3 * sin(x) - sin(3 * x)) / # noqa (4 * cos(2 * x))) # todo check dimension, odeint return column (n, 1) array hmax = 1e-1 rf1 = integrate.odeint(f1 , 0, t=t, hmax=hmax).squeeze() rf2 = integrate.odeint(f2 , 0, t=t, hmax=hmax).squeeze() rf3 = integrate.odeint(f3 , 0, t=t, hmax=hmax).squeeze() rf4 = integrate.odeint(f4 , 0, t=t, hmax=hmax).squeeze() fact = 1 + 144 * (-9 / 4. * pi2i * np.arcsin(rhos / 2)**2 + pi2i * rf1 + 2 * pi2i * rf2 + pi2i * rf3 + 0.5 * pi2i * rf4) # fact = 1 - 9 / 4 * pi2i * np.arcsin(rhos / 2)**2 fact2 = np.zeros_like(var) * np.nan fact2[idx] = fact[1:] var *= fact2 else: raise ValueError('method not recognized') if return_var: return corr_n, var else: return corr_n
transform correlation matrix to be consistent at normal distribution Parameters ---------- corr : array_like correlation matrix, either Pearson, Gaussian-rank, Spearman, Kendall or quadrant correlation matrix method : string type of covariance matrix supported types are 'pearson', 'gauss_rank', 'kendal', 'spearman' and 'quadrant' return_var : bool If true, then the asymptotic variance of the normalized correlation is also returned. The variance of the spearman correlation requires numerical integration which is calculated with scipy's odeint. possdef : not implemented yet Check whether resulting correlation matrix for positive semidefinite and return a positive semidefinite approximation if not. Returns ------- corr : ndarray correlation matrix, consistent with correlation for a multivariate normal distribution var : ndarray (optional) asymptotic variance of the correlation if requested by `return_var`. Notes ----- Pearson and Gaussian-rank correlation are consistent at the normal distribution and will be returned without changes. The other correlation matrices are not guaranteed to be positive semidefinite in small sample after conversion, even if the underlying untransformed correlation matrix is positive (semi)definite. Croux and Dehon mention that nobs / k_vars should be larger than 3 for kendall and larger than 2 for spearman. References ---------- .. [1] Boudt, Kris, Jonathan Cornelissen, and Christophe Croux. “The Gaussian Rank Correlation Estimator: Robustness Properties.” Statistics and Computing 22, no. 2 (April 5, 2011): 471–83. https://doi.org/10.1007/s11222-011-9237-0. .. [2] Croux, Christophe, and Catherine Dehon. “Influence Functions of the Spearman and Kendall Correlation Measures.” Statistical Methods & Applications 19, no. 4 (May 12, 2010): 497–515. https://doi.org/10.1007/s10260-010-0142-z.
transform_corr_normal
python
statsmodels/statsmodels
statsmodels/stats/covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/covariance.py
BSD-3-Clause
def corr_rank(data): """Spearman rank correlation simplified version of scipy.stats.spearmanr """ x = np.asarray(data) axisout = 0 ar = np.apply_along_axis(stats.rankdata, axisout, x) corr = np.corrcoef(ar, rowvar=False) return corr
Spearman rank correlation simplified version of scipy.stats.spearmanr
corr_rank
python
statsmodels/statsmodels
statsmodels/stats/covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/covariance.py
BSD-3-Clause
def corr_normal_scores(data): """Gaussian rank (normal scores) correlation Status: unverified, subject to change Parameters ---------- data : array_like 2-D data with observations in rows and variables in columns Returns ------- corr : ndarray correlation matrix References ---------- .. [1] Boudt, Kris, Jonathan Cornelissen, and Christophe Croux. “The Gaussian Rank Correlation Estimator: Robustness Properties.” Statistics and Computing 22, no. 2 (April 5, 2011): 471–83. https://doi.org/10.1007/s11222-011-9237-0. """ # TODO: a full version should be same as scipy spearmanr # I think that's not true the croux et al articles mention different # results # needs verification for the p-value calculation x = np.asarray(data) nobs = x.shape[0] axisout = 0 ar = np.apply_along_axis(stats.rankdata, axisout, x) ar = stats.norm.ppf(ar / (nobs + 1)) corr = np.corrcoef(ar, rowvar=axisout) return corr
Gaussian rank (normal scores) correlation Status: unverified, subject to change Parameters ---------- data : array_like 2-D data with observations in rows and variables in columns Returns ------- corr : ndarray correlation matrix References ---------- .. [1] Boudt, Kris, Jonathan Cornelissen, and Christophe Croux. “The Gaussian Rank Correlation Estimator: Robustness Properties.” Statistics and Computing 22, no. 2 (April 5, 2011): 471–83. https://doi.org/10.1007/s11222-011-9237-0.
corr_normal_scores
python
statsmodels/statsmodels
statsmodels/stats/covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/covariance.py
BSD-3-Clause
def corr_quadrant(data, transform=np.sign, normalize=False): """Quadrant correlation Status: unverified, subject to change Parameters ---------- data : array_like 2-D data with observations in rows and variables in columns Returns ------- corr : ndarray correlation matrix References ---------- .. [1] Croux, Christophe, and Catherine Dehon. “Influence Functions of the Spearman and Kendall Correlation Measures.” Statistical Methods & Applications 19, no. 4 (May 12, 2010): 497–515. https://doi.org/10.1007/s10260-010-0142-z. """ # try also with tanh transform, a starting corr for DetXXX # tanh produces a cov not a corr x = np.asarray(data) nobs = x.shape[0] med = np.median(x, 0) x_dm = transform(x - med) corr = x_dm.T.dot(x_dm) / nobs if normalize: std = np.sqrt(np.diag(corr)) corr /= std corr /= std[:, None] return corr
Quadrant correlation Status: unverified, subject to change Parameters ---------- data : array_like 2-D data with observations in rows and variables in columns Returns ------- corr : ndarray correlation matrix References ---------- .. [1] Croux, Christophe, and Catherine Dehon. “Influence Functions of the Spearman and Kendall Correlation Measures.” Statistical Methods & Applications 19, no. 4 (May 12, 2010): 497–515. https://doi.org/10.1007/s10260-010-0142-z.
corr_quadrant
python
statsmodels/statsmodels
statsmodels/stats/covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/covariance.py
BSD-3-Clause
def partial_project(endog, exog): '''helper function to get linear projection or partialling out of variables endog variables are projected on exog variables Parameters ---------- endog : ndarray array of variables where the effect of exog is partialled out. exog : ndarray array of variables on which the endog variables are projected. Returns ------- res : instance of Bunch with - params : OLS parameter estimates from projection of endog on exog - fittedvalues : predicted values of endog given exog - resid : residual of the regression, values of endog with effect of exog partialled out Notes ----- This is no-frills mainly for internal calculations, no error checking or array conversion is performed, at least for now. ''' x1, x2 = endog, exog params = np.linalg.pinv(x2).dot(x1) predicted = x2.dot(params) residual = x1 - predicted res = Bunch(params=params, fittedvalues=predicted, resid=residual) return res
helper function to get linear projection or partialling out of variables endog variables are projected on exog variables Parameters ---------- endog : ndarray array of variables where the effect of exog is partialled out. exog : ndarray array of variables on which the endog variables are projected. Returns ------- res : instance of Bunch with - params : OLS parameter estimates from projection of endog on exog - fittedvalues : predicted values of endog given exog - resid : residual of the regression, values of endog with effect of exog partialled out Notes ----- This is no-frills mainly for internal calculations, no error checking or array conversion is performed, at least for now.
partial_project
python
statsmodels/statsmodels
statsmodels/stats/multivariate_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate_tools.py
BSD-3-Clause
def cancorr(x1, x2, demean=True, standardize=False): '''canonical correlation coefficient beween 2 arrays Parameters ---------- x1, x2 : ndarrays, 2_D two 2-dimensional data arrays, observations in rows, variables in columns demean : bool If demean is true, then the mean is subtracted from each variable standardize : bool If standardize is true, then each variable is demeaned and divided by its standard deviation. Rescaling does not change the canonical correlation coefficients. Returns ------- ccorr : ndarray, 1d canonical correlation coefficients, sorted from largest to smallest. Note, that these are the square root of the eigenvalues. Notes ----- This is a helper function for other statistical functions. It only calculates the canonical correlation coefficients and does not do a full canoncial correlation analysis The canonical correlation coefficient is calculated with the generalized matrix inverse and does not raise an exception if one of the data arrays have less than full column rank. See Also -------- cc_ranktest cc_stats CCA not yet ''' #x, y = x1, x2 if demean or standardize: x1 = (x1 - x1.mean(0)) x2 = (x2 - x2.mean(0)) if standardize: #std does not make a difference to canonical correlation coefficients x1 /= x1.std(0) x2 /= x2.std(0) t1 = np.linalg.pinv(x1).dot(x2) t2 = np.linalg.pinv(x2).dot(x1) m = t1.dot(t2) cc = np.sqrt(np.linalg.eigvals(m)) cc.sort() return cc[::-1]
canonical correlation coefficient beween 2 arrays Parameters ---------- x1, x2 : ndarrays, 2_D two 2-dimensional data arrays, observations in rows, variables in columns demean : bool If demean is true, then the mean is subtracted from each variable standardize : bool If standardize is true, then each variable is demeaned and divided by its standard deviation. Rescaling does not change the canonical correlation coefficients. Returns ------- ccorr : ndarray, 1d canonical correlation coefficients, sorted from largest to smallest. Note, that these are the square root of the eigenvalues. Notes ----- This is a helper function for other statistical functions. It only calculates the canonical correlation coefficients and does not do a full canoncial correlation analysis The canonical correlation coefficient is calculated with the generalized matrix inverse and does not raise an exception if one of the data arrays have less than full column rank. See Also -------- cc_ranktest cc_stats CCA not yet
cancorr
python
statsmodels/statsmodels
statsmodels/stats/multivariate_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate_tools.py
BSD-3-Clause
def cc_ranktest(x1, x2, demean=True, fullrank=False): '''rank tests based on smallest canonical correlation coefficients Anderson canonical correlations test (LM test) and Cragg-Donald test (Wald test) Assumes homoskedasticity and independent observations, overrejects if there is heteroscedasticity or autocorrelation. The Null Hypothesis is that the rank is k - 1, the alternative hypothesis is that the rank is at least k. Parameters ---------- x1, x2 : ndarrays, 2_D two 2-dimensional data arrays, observations in rows, variables in columns demean : bool If demean is true, then the mean is subtracted from each variable. fullrank : bool If true, then only the test that the matrix has full rank is returned. If false, the test for all possible ranks are returned. However, no the p-values are not corrected for the multiplicity of tests. Returns ------- value : float value of the test statistic p-value : float p-value for the test Null Hypothesis tha the smallest canonical correlation coefficient is zero. based on chi-square distribution df : int degrees of freedom for thechi-square distribution in the hypothesis test ccorr : ndarray, 1d All canonical correlation coefficients sorted from largest to smallest. Notes ----- Degrees of freedom for the distribution of the test statistic are based on number of columns of x1 and x2 and not on their matrix rank. (I'm not sure yet what the interpretation of the test is if x1 or x2 are of reduced rank.) See Also -------- cancorr cc_stats ''' from scipy import stats nobs1, k1 = x1.shape nobs2, k2 = x2.shape cc = cancorr(x1, x2, demean=demean) cc2 = cc * cc if fullrank: df = np.abs(k1 - k2) + 1 value = nobs1 * cc2[-1] w_value = nobs1 * (cc2[-1] / (1. - cc2[-1])) return value, stats.chi2.sf(value, df), df, cc, w_value, stats.chi2.sf(w_value, df) else: r = np.arange(min(k1, k2))[::-1] df = (k1 - r) * (k2 - r) values = nobs1 * cc2[::-1].cumsum() w_values = nobs1 * (cc2 / (1. - cc2))[::-1].cumsum() return values, stats.chi2.sf(values, df), df, cc, w_values, stats.chi2.sf(w_values, df)
rank tests based on smallest canonical correlation coefficients Anderson canonical correlations test (LM test) and Cragg-Donald test (Wald test) Assumes homoskedasticity and independent observations, overrejects if there is heteroscedasticity or autocorrelation. The Null Hypothesis is that the rank is k - 1, the alternative hypothesis is that the rank is at least k. Parameters ---------- x1, x2 : ndarrays, 2_D two 2-dimensional data arrays, observations in rows, variables in columns demean : bool If demean is true, then the mean is subtracted from each variable. fullrank : bool If true, then only the test that the matrix has full rank is returned. If false, the test for all possible ranks are returned. However, no the p-values are not corrected for the multiplicity of tests. Returns ------- value : float value of the test statistic p-value : float p-value for the test Null Hypothesis tha the smallest canonical correlation coefficient is zero. based on chi-square distribution df : int degrees of freedom for thechi-square distribution in the hypothesis test ccorr : ndarray, 1d All canonical correlation coefficients sorted from largest to smallest. Notes ----- Degrees of freedom for the distribution of the test statistic are based on number of columns of x1 and x2 and not on their matrix rank. (I'm not sure yet what the interpretation of the test is if x1 or x2 are of reduced rank.) See Also -------- cancorr cc_stats
cc_ranktest
python
statsmodels/statsmodels
statsmodels/stats/multivariate_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate_tools.py
BSD-3-Clause
def cc_stats(x1, x2, demean=True): '''MANOVA statistics based on canonical correlation coefficient Calculates Pillai's Trace, Wilk's Lambda, Hotelling's Trace and Roy's Largest Root. Parameters ---------- x1, x2 : ndarrays, 2_D two 2-dimensional data arrays, observations in rows, variables in columns demean : bool If demean is true, then the mean is subtracted from each variable. Returns ------- res : dict Dictionary containing the test statistics. Notes ----- same as `canon` in Stata missing: F-statistics and p-values TODO: should return a results class instead produces nans sometimes, singular, perfect correlation of x1, x2 ? ''' nobs1, k1 = x1.shape # endogenous ? nobs2, k2 = x2.shape cc = cancorr(x1, x2, demean=demean) cc2 = cc**2 lam = (cc2 / (1 - cc2)) # what if max cc2 is 1 ? # Problem: ccr might not care if x1 or x2 are reduced rank, # but df will depend on rank df_model = k1 * k2 # df_hypothesis (we do not include mean in x1, x2) df_resid = k1 * (nobs1 - k2 - demean) m = 0.5 * (df_model - k1) pt_value = cc2.sum() # Pillai's trace wl_value = np.product(1 / (1 + lam)) # Wilk's Lambda ht_value = lam.sum() # Hotelling's Trace rm_value = lam.max() # Roy's largest root #from scipy import stats # what's the distribution, the test statistic ? res = {} res['canonical correlation coefficient'] = cc res['eigenvalues'] = lam res["Pillai's Trace"] = pt_value res["Wilk's Lambda"] = wl_value res["Hotelling's Trace"] = ht_value res["Roy's Largest Root"] = rm_value res['df_resid'] = df_resid res['df_m'] = m return res
MANOVA statistics based on canonical correlation coefficient Calculates Pillai's Trace, Wilk's Lambda, Hotelling's Trace and Roy's Largest Root. Parameters ---------- x1, x2 : ndarrays, 2_D two 2-dimensional data arrays, observations in rows, variables in columns demean : bool If demean is true, then the mean is subtracted from each variable. Returns ------- res : dict Dictionary containing the test statistics. Notes ----- same as `canon` in Stata missing: F-statistics and p-values TODO: should return a results class instead produces nans sometimes, singular, perfect correlation of x1, x2 ?
cc_stats
python
statsmodels/statsmodels
statsmodels/stats/multivariate_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate_tools.py
BSD-3-Clause
def test_poisson(count, nobs, value, method=None, alternative="two-sided", dispersion=1): """Test for one sample poisson mean or rate Parameters ---------- count : array_like Observed count, number of events. nobs : arrat_like Currently this is total exposure time of the count variable. This will likely change. value : float, array_like This is the value of poisson rate under the null hypothesis. method : str Method to use for confidence interval. This is required, there is currently no default method. See Notes for available methods. alternative : {'two-sided', 'smaller', 'larger'} alternative hypothesis, which can be two-sided or either one of the one-sided tests. dispersion : float Dispersion scale coefficient for Poisson QMLE. Default is that the data follows a Poisson distribution. Dispersion different from 1 correspond to excess-dispersion in Poisson quasi-likelihood (GLM). Dispersion coeffficient different from one is currently only used in wald and score method. Returns ------- HolderTuple instance with test statistic, pvalue and other attributes. Notes ----- The implementatio of the hypothesis test is mainly based on the references for the confidence interval, see confint_poisson. Available methods are: - "score" : based on score test, uses variance under null value - "wald" : based on wald test, uses variance base on estimated rate. - "waldccv" : based on wald test with 0.5 count added to variance computation. This does not use continuity correction for the center of the confidence interval. - "exact-c" central confidence interval based on gamma distribution - "midp-c" : based on midp correction of central exact confidence interval. this uses numerical inversion of the test function. not vectorized. - "sqrt" : based on square root transformed counts - "sqrt-a" based on Anscombe square root transformation of counts + 3/8. See Also -------- confint_poisson """ n = nobs # short hand rate = count / n if method is None: msg = "method needs to be specified, currently no default method" raise ValueError(msg) if dispersion != 1: if method not in ["wald", "waldcc", "score"]: msg = "excess dispersion only supported in wald and score methods" raise ValueError(msg) dist = "normal" if method == "wald": std = np.sqrt(dispersion * rate / n) statistic = (rate - value) / std elif method == "waldccv": # WCC in Barker 2002 # add 0.5 event, not 0.5 event rate as in waldcc # std = np.sqrt((rate + 0.5 / n) / n) # statistic = (rate + 0.5 / n - value) / std std = np.sqrt(dispersion * (rate + 0.5 / n) / n) statistic = (rate - value) / std elif method == "score": std = np.sqrt(dispersion * value / n) statistic = (rate - value) / std pvalue = stats.norm.sf(statistic) elif method.startswith("exact-c") or method.startswith("midp-c"): pv1 = stats.poisson.cdf(count, n * value) pv2 = stats.poisson.sf(count - 1, n * value) if method.startswith("midp-c"): pv1 = pv1 - 0.5 * stats.poisson.pmf(count, n * value) pv2 = pv2 - 0.5 * stats.poisson.pmf(count, n * value) if alternative == "two-sided": pvalue = 2 * np.minimum(pv1, pv2) elif alternative == "larger": pvalue = pv2 elif alternative == "smaller": pvalue = pv1 else: msg = 'alternative should be "two-sided", "larger" or "smaller"' raise ValueError(msg) statistic = np.nan dist = "Poisson" elif method == "sqrt": std = 0.5 statistic = (np.sqrt(count) - np.sqrt(n * value)) / std elif method == "sqrt-a": # anscombe, based on Swift 2009 (with transformation to rate) std = 0.5 statistic = (np.sqrt(count + 3 / 8) - np.sqrt(n * value + 3 / 8)) / std elif method == "sqrt-v": # vandenbroucke, based on Swift 2009 (with transformation to rate) std = 0.5 crit = stats.norm.isf(0.025) statistic = (np.sqrt(count + (crit**2 + 2) / 12) - # np.sqrt(n * value + (crit**2 + 2) / 12)) / std np.sqrt(n * value)) / std else: raise ValueError("unknown method %s" % method) if dist == 'normal': statistic, pvalue = _zstat_generic2(statistic, 1, alternative) res = HolderTuple( statistic=statistic, pvalue=np.clip(pvalue, 0, 1), distribution=dist, method=method, alternative=alternative, rate=rate, nobs=n ) return res
Test for one sample poisson mean or rate Parameters ---------- count : array_like Observed count, number of events. nobs : arrat_like Currently this is total exposure time of the count variable. This will likely change. value : float, array_like This is the value of poisson rate under the null hypothesis. method : str Method to use for confidence interval. This is required, there is currently no default method. See Notes for available methods. alternative : {'two-sided', 'smaller', 'larger'} alternative hypothesis, which can be two-sided or either one of the one-sided tests. dispersion : float Dispersion scale coefficient for Poisson QMLE. Default is that the data follows a Poisson distribution. Dispersion different from 1 correspond to excess-dispersion in Poisson quasi-likelihood (GLM). Dispersion coeffficient different from one is currently only used in wald and score method. Returns ------- HolderTuple instance with test statistic, pvalue and other attributes. Notes ----- The implementatio of the hypothesis test is mainly based on the references for the confidence interval, see confint_poisson. Available methods are: - "score" : based on score test, uses variance under null value - "wald" : based on wald test, uses variance base on estimated rate. - "waldccv" : based on wald test with 0.5 count added to variance computation. This does not use continuity correction for the center of the confidence interval. - "exact-c" central confidence interval based on gamma distribution - "midp-c" : based on midp correction of central exact confidence interval. this uses numerical inversion of the test function. not vectorized. - "sqrt" : based on square root transformed counts - "sqrt-a" based on Anscombe square root transformation of counts + 3/8. See Also -------- confint_poisson
test_poisson
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def confint_poisson(count, exposure, method=None, alpha=0.05, alternative="two-sided"): """Confidence interval for a Poisson mean or rate The function is vectorized for all methods except "midp-c", which uses an iterative method to invert the hypothesis test function. All current methods are central, that is the probability of each tail is smaller or equal to alpha / 2. Parameters ---------- count : array_like Observed count, number of events. exposure : arrat_like Currently this is total exposure time of the count variable. This will likely change. method : str Method to use for confidence interval This is required, there is currently no default method alpha : float in (0, 1) Significance level, nominal coverage of the confidence interval is 1 - alpha. alternative : {"two-sider", "larger", "smaller") default: "two-sided" Specifies whether to calculate a two-sided or one-sided confidence interval. Returns ------- tuple (low, upp) : confidence limits. When alternative is not "two-sided", lower or upper bound is set to 0 or inf respectively. Notes ----- Methods are mainly based on Barker (2002) [1]_ and Swift (2009) [3]_. Available methods are: - "exact-c" central confidence interval based on gamma distribution - "score" : based on score test, uses variance under null value - "wald" : based on wald test, uses variance base on estimated rate. - "waldccv" : based on wald test with 0.5 count added to variance computation. This does not use continuity correction for the center of the confidence interval. - "midp-c" : based on midp correction of central exact confidence interval. this uses numerical inversion of the test function. not vectorized. - "jeffreys" : based on Jeffreys' prior. computed using gamma distribution - "sqrt" : based on square root transformed counts - "sqrt-a" based on Anscombe square root transformation of counts + 3/8. - "sqrt-centcc" will likely be dropped. anscombe with continuity corrected center. (Similar to R survival cipoisson, but without the 3/8 right shift of the confidence interval). sqrt-cent is the same as sqrt-a, using a different computation, will be deleted. sqrt-v is a corrected square root method attributed to vandenbrouke, which might also be deleted. Todo: - missing dispersion, - maybe split nobs and exposure (? needed in NB). Exposure could be used to standardize rate. - modified wald, switch method if count=0. See Also -------- test_poisson References ---------- .. [1] Barker, Lawrence. 2002. “A Comparison of Nine Confidence Intervals for a Poisson Parameter When the Expected Number of Events Is ≤ 5.” The American Statistician 56 (2): 85–89. https://doi.org/10.1198/000313002317572736. .. [2] Patil, VV, and HV Kulkarni. 2012. “Comparison of Confidence Intervals for the Poisson Mean: Some New Aspects.” REVSTAT–Statistical Journal 10(2): 211–27. .. [3] Swift, Michael Bruce. 2009. “Comparison of Confidence Intervals for a Poisson Mean – Further Considerations.” Communications in Statistics - Theory and Methods 38 (5): 748–59. https://doi.org/10.1080/03610920802255856. """ n = exposure # short hand rate = count / exposure if alternative == 'two-sided': alpha = alpha / 2 elif alternative not in ['larger', 'smaller']: raise NotImplementedError( f"alternative {alternative} is not available") if method is None: msg = "method needs to be specified, currently no default method" raise ValueError(msg) if method == "wald": whalf = stats.norm.isf(alpha) * np.sqrt(rate / n) ci = (rate - whalf, rate + whalf) elif method == "waldccv": # based on WCC in Barker 2002 # add 0.5 event, not 0.5 event rate as in BARKER waldcc whalf = stats.norm.isf(alpha) * np.sqrt((rate + 0.5 / n) / n) ci = (rate - whalf, rate + whalf) elif method == "score": crit = stats.norm.isf(alpha) center = count + crit**2 / 2 whalf = crit * np.sqrt(count + crit**2 / 4) ci = ((center - whalf) / n, (center + whalf) / n) elif method == "midp-c": # note local alpha above is for one tail ci = _invert_test_confint(count, n, alpha=2 * alpha, method="midp-c", method_start="exact-c") elif method == "sqrt": # drop, wrong n crit = stats.norm.isf(alpha) center = rate + crit**2 / (4 * n) whalf = crit * np.sqrt(rate / n) ci = (center - whalf, center + whalf) elif method == "sqrt-cent": crit = stats.norm.isf(alpha) center = count + crit**2 / 4 whalf = crit * np.sqrt(count + 3 / 8) ci = ((center - whalf) / n, (center + whalf) / n) elif method == "sqrt-centcc": # drop with cc, does not match cipoisson in R survival crit = stats.norm.isf(alpha) # avoid sqrt of negative value if count=0 center_low = np.sqrt(np.maximum(count + 3 / 8 - 0.5, 0)) center_upp = np.sqrt(count + 3 / 8 + 0.5) whalf = crit / 2 # above is for ci of count ci = (((np.maximum(center_low - whalf, 0))**2 - 3 / 8) / n, ((center_upp + whalf)**2 - 3 / 8) / n) # crit = stats.norm.isf(alpha) # center = count # whalf = crit * np.sqrt((count + 3 / 8 + 0.5)) # ci = ((center - whalf - 0.5) / n, (center + whalf + 0.5) / n) elif method == "sqrt-a": # anscombe, based on Swift 2009 (with transformation to rate) crit = stats.norm.isf(alpha) center = np.sqrt(count + 3 / 8) whalf = crit / 2 # above is for ci of count ci = (((np.maximum(center - whalf, 0))**2 - 3 / 8) / n, ((center + whalf)**2 - 3 / 8) / n) elif method == "sqrt-v": # vandenbroucke, based on Swift 2009 (with transformation to rate) crit = stats.norm.isf(alpha) center = np.sqrt(count + (crit**2 + 2) / 12) whalf = crit / 2 # above is for ci of count ci = (np.maximum(center - whalf, 0))**2 / n, (center + whalf)**2 / n elif method in ["gamma", "exact-c"]: # garwood exact, gamma low = stats.gamma.ppf(alpha, count) / exposure upp = stats.gamma.isf(alpha, count+1) / exposure if np.isnan(low).any(): # case with count = 0 if np.size(low) == 1: low = 0.0 else: low[np.isnan(low)] = 0.0 ci = (low, upp) elif method.startswith("jeff"): # jeffreys, gamma countc = count + 0.5 ci = (stats.gamma.ppf(alpha, countc) / exposure, stats.gamma.isf(alpha, countc) / exposure) else: raise ValueError("unknown method %s" % method) if alternative == "larger": ci = (0, ci[1]) elif alternative == "smaller": ci = (ci[0], np.inf) ci = (np.maximum(ci[0], 0), ci[1]) return ci
Confidence interval for a Poisson mean or rate The function is vectorized for all methods except "midp-c", which uses an iterative method to invert the hypothesis test function. All current methods are central, that is the probability of each tail is smaller or equal to alpha / 2. Parameters ---------- count : array_like Observed count, number of events. exposure : arrat_like Currently this is total exposure time of the count variable. This will likely change. method : str Method to use for confidence interval This is required, there is currently no default method alpha : float in (0, 1) Significance level, nominal coverage of the confidence interval is 1 - alpha. alternative : {"two-sider", "larger", "smaller") default: "two-sided" Specifies whether to calculate a two-sided or one-sided confidence interval. Returns ------- tuple (low, upp) : confidence limits. When alternative is not "two-sided", lower or upper bound is set to 0 or inf respectively. Notes ----- Methods are mainly based on Barker (2002) [1]_ and Swift (2009) [3]_. Available methods are: - "exact-c" central confidence interval based on gamma distribution - "score" : based on score test, uses variance under null value - "wald" : based on wald test, uses variance base on estimated rate. - "waldccv" : based on wald test with 0.5 count added to variance computation. This does not use continuity correction for the center of the confidence interval. - "midp-c" : based on midp correction of central exact confidence interval. this uses numerical inversion of the test function. not vectorized. - "jeffreys" : based on Jeffreys' prior. computed using gamma distribution - "sqrt" : based on square root transformed counts - "sqrt-a" based on Anscombe square root transformation of counts + 3/8. - "sqrt-centcc" will likely be dropped. anscombe with continuity corrected center. (Similar to R survival cipoisson, but without the 3/8 right shift of the confidence interval). sqrt-cent is the same as sqrt-a, using a different computation, will be deleted. sqrt-v is a corrected square root method attributed to vandenbrouke, which might also be deleted. Todo: - missing dispersion, - maybe split nobs and exposure (? needed in NB). Exposure could be used to standardize rate. - modified wald, switch method if count=0. See Also -------- test_poisson References ---------- .. [1] Barker, Lawrence. 2002. “A Comparison of Nine Confidence Intervals for a Poisson Parameter When the Expected Number of Events Is ≤ 5.” The American Statistician 56 (2): 85–89. https://doi.org/10.1198/000313002317572736. .. [2] Patil, VV, and HV Kulkarni. 2012. “Comparison of Confidence Intervals for the Poisson Mean: Some New Aspects.” REVSTAT–Statistical Journal 10(2): 211–27. .. [3] Swift, Michael Bruce. 2009. “Comparison of Confidence Intervals for a Poisson Mean – Further Considerations.” Communications in Statistics - Theory and Methods 38 (5): 748–59. https://doi.org/10.1080/03610920802255856.
confint_poisson
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def tolerance_int_poisson(count, exposure, prob=0.95, exposure_new=1., method=None, alpha=0.05, alternative="two-sided"): """tolerance interval for a poisson observation Parameters ---------- count : array_like Observed count, number of events. exposure : arrat_like Currently this is total exposure time of the count variable. prob : float in (0, 1) Probability of poisson interval, often called "content". With known parameters, each tail would have at most probability ``1 - prob / 2`` in the two-sided interval. exposure_new : float Exposure of the new or predicted observation. method : str Method to used for confidence interval of the estimate of the poisson rate, used in `confint_poisson`. This is required, there is currently no default method. alpha : float in (0, 1) Significance level for the confidence interval of the estimate of the Poisson rate. Nominal coverage of the confidence interval is 1 - alpha. alternative : {"two-sider", "larger", "smaller") The tolerance interval can be two-sided or one-sided. Alternative "larger" provides the upper bound of the confidence interval, larger counts are outside the interval. Returns ------- tuple (low, upp) of limits of tolerance interval. The tolerance interval is a closed interval, that is both ``low`` and ``upp`` are in the interval. Notes ----- verified against R package tolerance `poistol.int` See Also -------- confint_poisson confint_quantile_poisson References ---------- .. [1] Hahn, Gerald J., and William Q. Meeker. 1991. Statistical Intervals: A Guide for Practitioners. 1st ed. Wiley Series in Probability and Statistics. Wiley. https://doi.org/10.1002/9780470316771. .. [2] Hahn, Gerald J., and Ramesh Chandra. 1981. “Tolerance Intervals for Poisson and Binomial Variables.” Journal of Quality Technology 13 (2): 100–110. https://doi.org/10.1080/00224065.1981.11980998. """ prob_tail = 1 - prob alpha_ = alpha if alternative != "two-sided": # confint_poisson does not have one-sided alternatives alpha_ = alpha * 2 low, upp = confint_poisson(count, exposure, method=method, alpha=alpha_) if exposure_new != 1: low *= exposure_new upp *= exposure_new if alternative == "two-sided": low_pred = stats.poisson.ppf(prob_tail / 2, low) upp_pred = stats.poisson.ppf(1 - prob_tail / 2, upp) elif alternative == "larger": low_pred = 0 upp_pred = stats.poisson.ppf(1 - prob_tail, upp) elif alternative == "smaller": low_pred = stats.poisson.ppf(prob_tail, low) upp_pred = np.inf # clip -1 of ppf(0) low_pred = np.maximum(low_pred, 0) return low_pred, upp_pred
tolerance interval for a poisson observation Parameters ---------- count : array_like Observed count, number of events. exposure : arrat_like Currently this is total exposure time of the count variable. prob : float in (0, 1) Probability of poisson interval, often called "content". With known parameters, each tail would have at most probability ``1 - prob / 2`` in the two-sided interval. exposure_new : float Exposure of the new or predicted observation. method : str Method to used for confidence interval of the estimate of the poisson rate, used in `confint_poisson`. This is required, there is currently no default method. alpha : float in (0, 1) Significance level for the confidence interval of the estimate of the Poisson rate. Nominal coverage of the confidence interval is 1 - alpha. alternative : {"two-sider", "larger", "smaller") The tolerance interval can be two-sided or one-sided. Alternative "larger" provides the upper bound of the confidence interval, larger counts are outside the interval. Returns ------- tuple (low, upp) of limits of tolerance interval. The tolerance interval is a closed interval, that is both ``low`` and ``upp`` are in the interval. Notes ----- verified against R package tolerance `poistol.int` See Also -------- confint_poisson confint_quantile_poisson References ---------- .. [1] Hahn, Gerald J., and William Q. Meeker. 1991. Statistical Intervals: A Guide for Practitioners. 1st ed. Wiley Series in Probability and Statistics. Wiley. https://doi.org/10.1002/9780470316771. .. [2] Hahn, Gerald J., and Ramesh Chandra. 1981. “Tolerance Intervals for Poisson and Binomial Variables.” Journal of Quality Technology 13 (2): 100–110. https://doi.org/10.1080/00224065.1981.11980998.
tolerance_int_poisson
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def confint_quantile_poisson(count, exposure, prob, exposure_new=1., method=None, alpha=0.05, alternative="two-sided"): """confidence interval for quantile of poisson random variable Parameters ---------- count : array_like Observed count, number of events. exposure : arrat_like Currently this is total exposure time of the count variable. prob : float in (0, 1) Probability for the quantile, e.g. 0.95 to get the upper 95% quantile. With known mean mu, the quantile would be poisson.ppf(prob, mu). exposure_new : float Exposure of the new or predicted observation. method : str Method to used for confidence interval of the estimate of the poisson rate, used in `confint_poisson`. This is required, there is currently no default method. alpha : float in (0, 1) Significance level for the confidence interval of the estimate of the Poisson rate. Nominal coverage of the confidence interval is 1 - alpha. alternative : {"two-sider", "larger", "smaller") The tolerance interval can be two-sided or one-sided. Alternative "larger" provides the upper bound of the confidence interval, larger counts are outside the interval. Returns ------- tuple (low, upp) of limits of tolerance interval. The confidence interval is a closed interval, that is both ``low`` and ``upp`` are in the interval. See Also -------- confint_poisson tolerance_int_poisson References ---------- Hahn, Gerald J, and William Q Meeker. 2010. Statistical Intervals: A Guide for Practitioners. """ alpha_ = alpha if alternative != "two-sided": # confint_poisson does not have one-sided alternatives alpha_ = alpha * 2 low, upp = confint_poisson(count, exposure, method=method, alpha=alpha_) if exposure_new != 1: low *= exposure_new upp *= exposure_new if alternative == "two-sided": low_pred = stats.poisson.ppf(prob, low) upp_pred = stats.poisson.ppf(prob, upp) elif alternative == "larger": low_pred = 0 upp_pred = stats.poisson.ppf(prob, upp) elif alternative == "smaller": low_pred = stats.poisson.ppf(prob, low) upp_pred = np.inf # clip -1 of ppf(0) low_pred = np.maximum(low_pred, 0) return low_pred, upp_pred
confidence interval for quantile of poisson random variable Parameters ---------- count : array_like Observed count, number of events. exposure : arrat_like Currently this is total exposure time of the count variable. prob : float in (0, 1) Probability for the quantile, e.g. 0.95 to get the upper 95% quantile. With known mean mu, the quantile would be poisson.ppf(prob, mu). exposure_new : float Exposure of the new or predicted observation. method : str Method to used for confidence interval of the estimate of the poisson rate, used in `confint_poisson`. This is required, there is currently no default method. alpha : float in (0, 1) Significance level for the confidence interval of the estimate of the Poisson rate. Nominal coverage of the confidence interval is 1 - alpha. alternative : {"two-sider", "larger", "smaller") The tolerance interval can be two-sided or one-sided. Alternative "larger" provides the upper bound of the confidence interval, larger counts are outside the interval. Returns ------- tuple (low, upp) of limits of tolerance interval. The confidence interval is a closed interval, that is both ``low`` and ``upp`` are in the interval. See Also -------- confint_poisson tolerance_int_poisson References ---------- Hahn, Gerald J, and William Q Meeker. 2010. Statistical Intervals: A Guide for Practitioners.
confint_quantile_poisson
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def _invert_test_confint(count, nobs, alpha=0.05, method="midp-c", method_start="exact-c"): """invert hypothesis test to get confidence interval """ def func(r): v = (test_poisson(count, nobs, value=r, method=method)[1] - alpha)**2 return v ci = confint_poisson(count, nobs, method=method_start) low = optimize.fmin(func, ci[0], xtol=1e-8, disp=False) upp = optimize.fmin(func, ci[1], xtol=1e-8, disp=False) assert np.size(low) == 1 return low[0], upp[0]
invert hypothesis test to get confidence interval
_invert_test_confint
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def _invert_test_confint_2indep( count1, exposure1, count2, exposure2, alpha=0.05, method="score", compare="diff", method_start="wald" ): """invert hypothesis test to get confidence interval for 2indep """ def func(r): v = (test_poisson_2indep( count1, exposure1, count2, exposure2, value=r, method=method, compare=compare )[1] - alpha)**2 return v ci = confint_poisson_2indep(count1, exposure1, count2, exposure2, method=method_start, compare=compare) low = optimize.fmin(func, ci[0], xtol=1e-8, disp=False) upp = optimize.fmin(func, ci[1], xtol=1e-8, disp=False) assert np.size(low) == 1 return low[0], upp[0]
invert hypothesis test to get confidence interval for 2indep
_invert_test_confint_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def test_poisson_2indep(count1, exposure1, count2, exposure2, value=None, ratio_null=None, method=None, compare='ratio', alternative='two-sided', etest_kwds=None): '''Test for comparing two sample Poisson intensity rates. Rates are defined as expected count divided by exposure. The Null and alternative hypothesis for the rates, rate1 and rate2, of two independent Poisson samples are for compare = 'diff' - H0: rate1 - rate2 - value = 0 - H1: rate1 - rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 - rate2 - value > 0 if alternative = 'larger' - H1: rate1 - rate2 - value < 0 if alternative = 'smaller' for compare = 'ratio' - H0: rate1 / rate2 - value = 0 - H1: rate1 / rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 / rate2 - value > 0 if alternative = 'larger' - H1: rate1 / rate2 - value < 0 if alternative = 'smaller' Parameters ---------- count1 : int Number of events in first sample, treatment group. exposure1 : float Total exposure (time * subjects) in first sample. count2 : int Number of events in second sample, control group. exposure2 : float Total exposure (time * subjects) in second sample. ratio_null: float Ratio of the two Poisson rates under the Null hypothesis. Default is 1. Deprecated, use ``value`` instead. .. deprecated:: 0.14.0 Use ``value`` instead. value : float Value of the ratio or difference of 2 independent rates under the null hypothesis. Default is equal rates, i.e. 1 for ratio and 0 for diff. .. versionadded:: 0.14.0 Replacement for ``ratio_null``. method : string Method for the test statistic and the p-value. Defaults to `'score'`. see Notes. ratio: - 'wald': method W1A, wald test, variance based on observed rates - 'score': method W2A, score test, variance based on estimate under the Null hypothesis - 'wald-log': W3A, uses log-ratio, variance based on observed rates - 'score-log' W4A, uses log-ratio, variance based on estimate under the Null hypothesis - 'sqrt': W5A, based on variance stabilizing square root transformation - 'exact-cond': exact conditional test based on binomial distribution This uses ``binom_test`` which is minlike in the two-sided case. - 'cond-midp': midpoint-pvalue of exact conditional test - 'etest' or 'etest-score: etest with score test statistic - 'etest-wald': etest with wald test statistic diff: - 'wald', - 'waldccv' - 'score' - 'etest-score' or 'etest: etest with score test statistic - 'etest-wald': etest with wald test statistic compare : {'diff', 'ratio'} Default is "ratio". If compare is `ratio`, then the hypothesis test is for the rate ratio defined by ratio = rate1 / rate2. If compare is `diff`, then the hypothesis test is for diff = rate1 - rate2. alternative : {"two-sided" (default), "larger", smaller} The alternative hypothesis, H1, has to be one of the following - 'two-sided': H1: ratio, or diff, of rates is not equal to value - 'larger' : H1: ratio, or diff, of rates is larger than value - 'smaller' : H1: ratio, or diff, of rates is smaller than value etest_kwds: dictionary Additional optional parameters to be passed to the etest_poisson_2indep function, namely y_grid. Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. See Also -------- tost_poisson_2indep etest_poisson_2indep Notes ----- The hypothesis tests for compare="ratio" are based on Gu et al 2018. The e-tests are also based on ... - 'wald': method W1A, wald test, variance based on separate estimates - 'score': method W2A, score test, variance based on estimate under Null - 'wald-log': W3A, wald test for log transformed ratio - 'score-log' W4A, score test for log transformed ratio - 'sqrt': W5A, based on variance stabilizing square root transformation - 'exact-cond': exact conditional test based on binomial distribution - 'cond-midp': midpoint-pvalue of exact conditional test - 'etest': etest with score test statistic - 'etest-wald': etest with wald test statistic The hypothesis test for compare="diff" are mainly based on Ng et al 2007 and ... - wald - score - etest-score - etest-wald Note the etests use the constraint maximum likelihood estimate (cmle) as parameters for the underlying Poisson probabilities. The constraint cmle parameters are the same as in the score test. The E-test in Krishnamoorty and Thomson uses a moment estimator instead of the score estimator. References ---------- .. [1] Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008 .. [2] Ng, H. K. T., K. Gu, and M. L. Tang. 2007. “A Comparative Study of Tests for the Difference of Two Poisson Means.” Computational Statistics & Data Analysis 51 (6): 3085–99. https://doi.org/10.1016/j.csda.2006.02.004. ''' # shortcut names y1, n1, y2, n2 = map(np.asarray, [count1, exposure1, count2, exposure2]) d = n2 / n1 rate1, rate2 = y1 / n1, y2 / n2 rates_cmle = None if compare == 'ratio': if method is None: # default method method = 'score' if ratio_null is not None: warnings.warn("'ratio_null' is deprecated, use 'value' keyword", FutureWarning) value = ratio_null if ratio_null is None and value is None: # default value value = ratio_null = 1 else: # for results holder instance, it still contains ratio_null ratio_null = value r = value r_d = r / d # r1 * n1 / (r2 * n2) if method in ['score']: stat = (y1 - y2 * r_d) / np.sqrt((y1 + y2) * r_d) dist = 'normal' elif method in ['wald']: stat = (y1 - y2 * r_d) / np.sqrt(y1 + y2 * r_d**2) dist = 'normal' elif method in ['score-log']: stat = (np.log(y1 / y2) - np.log(r_d)) stat /= np.sqrt((2 + 1 / r_d + r_d) / (y1 + y2)) dist = 'normal' elif method in ['wald-log']: stat = (np.log(y1 / y2) - np.log(r_d)) / np.sqrt(1 / y1 + 1 / y2) dist = 'normal' elif method in ['sqrt']: stat = 2 * (np.sqrt(y1 + 3 / 8.) - np.sqrt((y2 + 3 / 8.) * r_d)) stat /= np.sqrt(1 + r_d) dist = 'normal' elif method in ['exact-cond', 'cond-midp']: from statsmodels.stats import proportion bp = r_d / (1 + r_d) y_total = y1 + y2 stat = np.nan # TODO: why y2 in here and not y1, check definition of H1 "larger" pvalue = proportion.binom_test(y1, y_total, prop=bp, alternative=alternative) if method in ['cond-midp']: # not inplace in case we still want binom pvalue pvalue = pvalue - 0.5 * stats.binom.pmf(y1, y_total, bp) dist = 'binomial' elif method.startswith('etest'): if method.endswith('wald'): method_etest = 'wald' else: method_etest = 'score' if etest_kwds is None: etest_kwds = {} stat, pvalue = etest_poisson_2indep( count1, exposure1, count2, exposure2, value=value, method=method_etest, alternative=alternative, **etest_kwds) dist = 'poisson' else: raise ValueError(f'method "{method}" not recognized') elif compare == "diff": if value is None: value = 0 if method in ['wald']: stat = (rate1 - rate2 - value) / np.sqrt(rate1 / n1 + rate2 / n2) dist = 'normal' "waldccv" elif method in ['waldccv']: stat = (rate1 - rate2 - value) stat /= np.sqrt((count1 + 0.5) / n1**2 + (count2 + 0.5) / n2**2) dist = 'normal' elif method in ['score']: # estimate rates with constraint MLE count_pooled = y1 + y2 rate_pooled = count_pooled / (n1 + n2) dt = rate_pooled - value r2_cmle = 0.5 * (dt + np.sqrt(dt**2 + 4 * value * y2 / (n1 + n2))) r1_cmle = r2_cmle + value stat = ((rate1 - rate2 - value) / np.sqrt(r1_cmle / n1 + r2_cmle / n2)) rates_cmle = (r1_cmle, r2_cmle) dist = 'normal' elif method.startswith('etest'): if method.endswith('wald'): method_etest = 'wald' else: method_etest = 'score' if method == "etest": method = method + "-score" if etest_kwds is None: etest_kwds = {} stat, pvalue = etest_poisson_2indep( count1, exposure1, count2, exposure2, value=value, method=method_etest, compare="diff", alternative=alternative, **etest_kwds) dist = 'poisson' else: raise ValueError(f'method "{method}" not recognized') else: raise NotImplementedError('"compare" needs to be ratio or diff') if dist == 'normal': stat, pvalue = _zstat_generic2(stat, 1, alternative) rates = (rate1, rate2) ratio = rate1 / rate2 diff = rate1 - rate2 res = HolderTuple(statistic=stat, pvalue=pvalue, distribution=dist, compare=compare, method=method, alternative=alternative, rates=rates, ratio=ratio, diff=diff, value=value, rates_cmle=rates_cmle, ratio_null=ratio_null, ) return res
Test for comparing two sample Poisson intensity rates. Rates are defined as expected count divided by exposure. The Null and alternative hypothesis for the rates, rate1 and rate2, of two independent Poisson samples are for compare = 'diff' - H0: rate1 - rate2 - value = 0 - H1: rate1 - rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 - rate2 - value > 0 if alternative = 'larger' - H1: rate1 - rate2 - value < 0 if alternative = 'smaller' for compare = 'ratio' - H0: rate1 / rate2 - value = 0 - H1: rate1 / rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 / rate2 - value > 0 if alternative = 'larger' - H1: rate1 / rate2 - value < 0 if alternative = 'smaller' Parameters ---------- count1 : int Number of events in first sample, treatment group. exposure1 : float Total exposure (time * subjects) in first sample. count2 : int Number of events in second sample, control group. exposure2 : float Total exposure (time * subjects) in second sample. ratio_null: float Ratio of the two Poisson rates under the Null hypothesis. Default is 1. Deprecated, use ``value`` instead. .. deprecated:: 0.14.0 Use ``value`` instead. value : float Value of the ratio or difference of 2 independent rates under the null hypothesis. Default is equal rates, i.e. 1 for ratio and 0 for diff. .. versionadded:: 0.14.0 Replacement for ``ratio_null``. method : string Method for the test statistic and the p-value. Defaults to `'score'`. see Notes. ratio: - 'wald': method W1A, wald test, variance based on observed rates - 'score': method W2A, score test, variance based on estimate under the Null hypothesis - 'wald-log': W3A, uses log-ratio, variance based on observed rates - 'score-log' W4A, uses log-ratio, variance based on estimate under the Null hypothesis - 'sqrt': W5A, based on variance stabilizing square root transformation - 'exact-cond': exact conditional test based on binomial distribution This uses ``binom_test`` which is minlike in the two-sided case. - 'cond-midp': midpoint-pvalue of exact conditional test - 'etest' or 'etest-score: etest with score test statistic - 'etest-wald': etest with wald test statistic diff: - 'wald', - 'waldccv' - 'score' - 'etest-score' or 'etest: etest with score test statistic - 'etest-wald': etest with wald test statistic compare : {'diff', 'ratio'} Default is "ratio". If compare is `ratio`, then the hypothesis test is for the rate ratio defined by ratio = rate1 / rate2. If compare is `diff`, then the hypothesis test is for diff = rate1 - rate2. alternative : {"two-sided" (default), "larger", smaller} The alternative hypothesis, H1, has to be one of the following - 'two-sided': H1: ratio, or diff, of rates is not equal to value - 'larger' : H1: ratio, or diff, of rates is larger than value - 'smaller' : H1: ratio, or diff, of rates is smaller than value etest_kwds: dictionary Additional optional parameters to be passed to the etest_poisson_2indep function, namely y_grid. Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. See Also -------- tost_poisson_2indep etest_poisson_2indep Notes ----- The hypothesis tests for compare="ratio" are based on Gu et al 2018. The e-tests are also based on ... - 'wald': method W1A, wald test, variance based on separate estimates - 'score': method W2A, score test, variance based on estimate under Null - 'wald-log': W3A, wald test for log transformed ratio - 'score-log' W4A, score test for log transformed ratio - 'sqrt': W5A, based on variance stabilizing square root transformation - 'exact-cond': exact conditional test based on binomial distribution - 'cond-midp': midpoint-pvalue of exact conditional test - 'etest': etest with score test statistic - 'etest-wald': etest with wald test statistic The hypothesis test for compare="diff" are mainly based on Ng et al 2007 and ... - wald - score - etest-score - etest-wald Note the etests use the constraint maximum likelihood estimate (cmle) as parameters for the underlying Poisson probabilities. The constraint cmle parameters are the same as in the score test. The E-test in Krishnamoorty and Thomson uses a moment estimator instead of the score estimator. References ---------- .. [1] Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008 .. [2] Ng, H. K. T., K. Gu, and M. L. Tang. 2007. “A Comparative Study of Tests for the Difference of Two Poisson Means.” Computational Statistics & Data Analysis 51 (6): 3085–99. https://doi.org/10.1016/j.csda.2006.02.004.
test_poisson_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def _score_diff(y1, n1, y2, n2, value=0, return_cmle=False): """score test and cmle for difference of 2 independent poisson rates """ count_pooled = y1 + y2 rate1, rate2 = y1 / n1, y2 / n2 rate_pooled = count_pooled / (n1 + n2) dt = rate_pooled - value r2_cmle = 0.5 * (dt + np.sqrt(dt**2 + 4 * value * y2 / (n1 + n2))) r1_cmle = r2_cmle + value eps = 1e-20 # avoid zero division in stat_func v = r1_cmle / n1 + r2_cmle / n2 stat = (rate1 - rate2 - value) / np.sqrt(v + eps) if return_cmle: return stat, r1_cmle, r2_cmle else: return stat
score test and cmle for difference of 2 independent poisson rates
_score_diff
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def etest_poisson_2indep(count1, exposure1, count2, exposure2, ratio_null=None, value=None, method='score', compare="ratio", alternative='two-sided', ygrid=None, y_grid=None): """ E-test for ratio of two sample Poisson rates. Rates are defined as expected count divided by exposure. The Null and alternative hypothesis for the rates, rate1 and rate2, of two independent Poisson samples are: for compare = 'diff' - H0: rate1 - rate2 - value = 0 - H1: rate1 - rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 - rate2 - value > 0 if alternative = 'larger' - H1: rate1 - rate2 - value < 0 if alternative = 'smaller' for compare = 'ratio' - H0: rate1 / rate2 - value = 0 - H1: rate1 / rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 / rate2 - value > 0 if alternative = 'larger' - H1: rate1 / rate2 - value < 0 if alternative = 'smaller' Parameters ---------- count1 : int Number of events in first sample exposure1 : float Total exposure (time * subjects) in first sample count2 : int Number of events in first sample exposure2 : float Total exposure (time * subjects) in first sample ratio_null: float Ratio of the two Poisson rates under the Null hypothesis. Default is 1. Deprecated, use ``value`` instead. .. deprecated:: 0.14.0 Use ``value`` instead. value : float Value of the ratio or diff of 2 independent rates under the null hypothesis. Default is equal rates, i.e. 1 for ratio and 0 for diff. .. versionadded:: 0.14.0 Replacement for ``ratio_null``. method : {"score", "wald"} Method for the test statistic that defines the rejection region. alternative : string The alternative hypothesis, H1, has to be one of the following - 'two-sided': H1: ratio of rates is not equal to ratio_null (default) - 'larger' : H1: ratio of rates is larger than ratio_null - 'smaller' : H1: ratio of rates is smaller than ratio_null y_grid : None or 1-D ndarray Grid values for counts of the Poisson distribution used for computing the pvalue. By default truncation is based on an upper tail Poisson quantiles. ygrid : None or 1-D ndarray Same as y_grid. Deprecated. If both y_grid and ygrid are provided, ygrid will be ignored. .. deprecated:: 0.14.0 Use ``y_grid`` instead. Returns ------- stat_sample : float test statistic for the sample pvalue : float References ---------- Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008 Ng, H. K. T., K. Gu, and M. L. Tang. 2007. “A Comparative Study of Tests for the Difference of Two Poisson Means.” Computational Statistics & Data Analysis 51 (6): 3085–99. https://doi.org/10.1016/j.csda.2006.02.004. """ y1, n1, y2, n2 = map(np.asarray, [count1, exposure1, count2, exposure2]) d = n2 / n1 eps = 1e-20 # avoid zero division in stat_func if compare == "ratio": if ratio_null is None and value is None: # default value value = 1 elif ratio_null is not None: warnings.warn("'ratio_null' is deprecated, use 'value' keyword", FutureWarning) value = ratio_null r = value # rate1 / rate2 r_d = r / d rate2_cmle = (y1 + y2) / n2 / (1 + r_d) rate1_cmle = rate2_cmle * r if method in ['score']: def stat_func(x1, x2): return (x1 - x2 * r_d) / np.sqrt((x1 + x2) * r_d + eps) # TODO: do I need these? return_results ? # rate2_cmle = (y1 + y2) / n2 / (1 + r_d) # rate1_cmle = rate2_cmle * r # rate1 = rate1_cmle # rate2 = rate2_cmle elif method in ['wald']: def stat_func(x1, x2): return (x1 - x2 * r_d) / np.sqrt(x1 + x2 * r_d**2 + eps) # rate2_mle = y2 / n2 # rate1_mle = y1 / n1 # rate1 = rate1_mle # rate2 = rate2_mle else: raise ValueError('method not recognized') elif compare == "diff": if value is None: value = 0 tmp = _score_diff(y1, n1, y2, n2, value=value, return_cmle=True) _, rate1_cmle, rate2_cmle = tmp if method in ['score']: def stat_func(x1, x2): return _score_diff(x1, n1, x2, n2, value=value) elif method in ['wald']: def stat_func(x1, x2): rate1, rate2 = x1 / n1, x2 / n2 stat = (rate1 - rate2 - value) stat /= np.sqrt(rate1 / n1 + rate2 / n2 + eps) return stat else: raise ValueError('method not recognized') # The sampling distribution needs to be based on the null hypotheis # use constrained MLE from 'score' calculation rate1 = rate1_cmle rate2 = rate2_cmle mean1 = n1 * rate1 mean2 = n2 * rate2 stat_sample = stat_func(y1, y2) if ygrid is not None: warnings.warn("ygrid is deprecated, use y_grid", FutureWarning) y_grid = y_grid if y_grid is not None else ygrid # The following uses a fixed truncation for evaluating the probabilities # It will currently only work for small counts, so that sf at truncation # point is small # We can make it depend on the amount of truncated sf. # Some numerical optimization or checks for large means need to be added. if y_grid is None: threshold = stats.poisson.isf(1e-13, max(mean1, mean2)) threshold = max(threshold, 100) # keep at least 100 y_grid = np.arange(threshold + 1) else: y_grid = np.asarray(y_grid) if y_grid.ndim != 1: raise ValueError("y_grid needs to be None or 1-dimensional array") pdf1 = stats.poisson.pmf(y_grid, mean1) pdf2 = stats.poisson.pmf(y_grid, mean2) stat_space = stat_func(y_grid[:, None], y_grid[None, :]) # broadcasting eps = 1e-15 # correction for strict inequality check if alternative in ['two-sided', '2-sided', '2s']: mask = np.abs(stat_space) >= (np.abs(stat_sample) - eps) elif alternative in ['larger', 'l']: mask = stat_space >= (stat_sample - eps) elif alternative in ['smaller', 's']: mask = stat_space <= (stat_sample + eps) else: raise ValueError('invalid alternative') pvalue = ((pdf1[:, None] * pdf2[None, :])[mask]).sum() return stat_sample, pvalue
E-test for ratio of two sample Poisson rates. Rates are defined as expected count divided by exposure. The Null and alternative hypothesis for the rates, rate1 and rate2, of two independent Poisson samples are: for compare = 'diff' - H0: rate1 - rate2 - value = 0 - H1: rate1 - rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 - rate2 - value > 0 if alternative = 'larger' - H1: rate1 - rate2 - value < 0 if alternative = 'smaller' for compare = 'ratio' - H0: rate1 / rate2 - value = 0 - H1: rate1 / rate2 - value != 0 if alternative = 'two-sided' - H1: rate1 / rate2 - value > 0 if alternative = 'larger' - H1: rate1 / rate2 - value < 0 if alternative = 'smaller' Parameters ---------- count1 : int Number of events in first sample exposure1 : float Total exposure (time * subjects) in first sample count2 : int Number of events in first sample exposure2 : float Total exposure (time * subjects) in first sample ratio_null: float Ratio of the two Poisson rates under the Null hypothesis. Default is 1. Deprecated, use ``value`` instead. .. deprecated:: 0.14.0 Use ``value`` instead. value : float Value of the ratio or diff of 2 independent rates under the null hypothesis. Default is equal rates, i.e. 1 for ratio and 0 for diff. .. versionadded:: 0.14.0 Replacement for ``ratio_null``. method : {"score", "wald"} Method for the test statistic that defines the rejection region. alternative : string The alternative hypothesis, H1, has to be one of the following - 'two-sided': H1: ratio of rates is not equal to ratio_null (default) - 'larger' : H1: ratio of rates is larger than ratio_null - 'smaller' : H1: ratio of rates is smaller than ratio_null y_grid : None or 1-D ndarray Grid values for counts of the Poisson distribution used for computing the pvalue. By default truncation is based on an upper tail Poisson quantiles. ygrid : None or 1-D ndarray Same as y_grid. Deprecated. If both y_grid and ygrid are provided, ygrid will be ignored. .. deprecated:: 0.14.0 Use ``y_grid`` instead. Returns ------- stat_sample : float test statistic for the sample pvalue : float References ---------- Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008 Ng, H. K. T., K. Gu, and M. L. Tang. 2007. “A Comparative Study of Tests for the Difference of Two Poisson Means.” Computational Statistics & Data Analysis 51 (6): 3085–99. https://doi.org/10.1016/j.csda.2006.02.004.
etest_poisson_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def tost_poisson_2indep(count1, exposure1, count2, exposure2, low, upp, method='score', compare='ratio'): '''Equivalence test based on two one-sided `test_proportions_2indep` This assumes that we have two independent poisson samples. The Null and alternative hypothesis for equivalence testing are for compare = 'ratio' - H0: rate1 / rate2 <= low or upp <= rate1 / rate2 - H1: low < rate1 / rate2 < upp for compare = 'diff' - H0: rate1 - rate2 <= low or upp <= rate1 - rate2 - H1: low < rate - rate < upp Parameters ---------- count1 : int Number of events in first sample exposure1 : float Total exposure (time * subjects) in first sample count2 : int Number of events in second sample exposure2 : float Total exposure (time * subjects) in second sample low, upp : equivalence margin for the ratio or difference of Poisson rates method: string TOST uses ``test_poisson_2indep`` and has the same methods. ratio: - 'wald': method W1A, wald test, variance based on observed rates - 'score': method W2A, score test, variance based on estimate under the Null hypothesis - 'wald-log': W3A, uses log-ratio, variance based on observed rates - 'score-log' W4A, uses log-ratio, variance based on estimate under the Null hypothesis - 'sqrt': W5A, based on variance stabilizing square root transformation - 'exact-cond': exact conditional test based on binomial distribution This uses ``binom_test`` which is minlike in the two-sided case. - 'cond-midp': midpoint-pvalue of exact conditional test - 'etest' or 'etest-score: etest with score test statistic - 'etest-wald': etest with wald test statistic diff: - 'wald', - 'waldccv' - 'score' - 'etest-score' or 'etest: etest with score test statistic - 'etest-wald': etest with wald test statistic Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. References ---------- Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008 See Also -------- test_poisson_2indep confint_poisson_2indep ''' tt1 = test_poisson_2indep(count1, exposure1, count2, exposure2, value=low, method=method, compare=compare, alternative='larger') tt2 = test_poisson_2indep(count1, exposure1, count2, exposure2, value=upp, method=method, compare=compare, alternative='smaller') # idx_max = 1 if t1.pvalue < t2.pvalue else 0 idx_max = np.asarray(tt1.pvalue < tt2.pvalue, int) statistic = np.choose(idx_max, [tt1.statistic, tt2.statistic]) pvalue = np.choose(idx_max, [tt1.pvalue, tt2.pvalue]) res = HolderTuple(statistic=statistic, pvalue=pvalue, method=method, compare=compare, equiv_limits=(low, upp), results_larger=tt1, results_smaller=tt2, title="Equivalence test for 2 independent Poisson rates" ) return res
Equivalence test based on two one-sided `test_proportions_2indep` This assumes that we have two independent poisson samples. The Null and alternative hypothesis for equivalence testing are for compare = 'ratio' - H0: rate1 / rate2 <= low or upp <= rate1 / rate2 - H1: low < rate1 / rate2 < upp for compare = 'diff' - H0: rate1 - rate2 <= low or upp <= rate1 - rate2 - H1: low < rate - rate < upp Parameters ---------- count1 : int Number of events in first sample exposure1 : float Total exposure (time * subjects) in first sample count2 : int Number of events in second sample exposure2 : float Total exposure (time * subjects) in second sample low, upp : equivalence margin for the ratio or difference of Poisson rates method: string TOST uses ``test_poisson_2indep`` and has the same methods. ratio: - 'wald': method W1A, wald test, variance based on observed rates - 'score': method W2A, score test, variance based on estimate under the Null hypothesis - 'wald-log': W3A, uses log-ratio, variance based on observed rates - 'score-log' W4A, uses log-ratio, variance based on estimate under the Null hypothesis - 'sqrt': W5A, based on variance stabilizing square root transformation - 'exact-cond': exact conditional test based on binomial distribution This uses ``binom_test`` which is minlike in the two-sided case. - 'cond-midp': midpoint-pvalue of exact conditional test - 'etest' or 'etest-score: etest with score test statistic - 'etest-wald': etest with wald test statistic diff: - 'wald', - 'waldccv' - 'score' - 'etest-score' or 'etest: etest with score test statistic - 'etest-wald': etest with wald test statistic Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. References ---------- Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008 See Also -------- test_poisson_2indep confint_poisson_2indep
tost_poisson_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def nonequivalence_poisson_2indep(count1, exposure1, count2, exposure2, low, upp, method='score', compare="ratio"): """Test for non-equivalence, minimum effect for poisson. This reverses null and alternative hypothesis compared to equivalence testing. The null hypothesis is that the effect, ratio (or diff), is in an interval that specifies a range of irrelevant or unimportant differences between the two samples. The Null and alternative hypothesis comparing the ratio of rates are for compare = 'ratio': - H0: low < rate1 / rate2 < upp - H1: rate1 / rate2 <= low or upp <= rate1 / rate2 for compare = 'diff': - H0: rate1 - rate2 <= low or upp <= rate1 - rate2 - H1: low < rate - rate < upp Notes ----- This is implemented as two one-sided tests at the minimum effect boundaries (low, upp) with (nominal) size alpha / 2 each. The size of the test is the sum of the two one-tailed tests, which corresponds to an equal-tailed two-sided test. If low and upp are equal, then the result is the same as the standard two-sided test. The p-value is computed as `2 * min(pvalue_low, pvalue_upp)` in analogy to two-sided equal-tail tests. In large samples the nominal size of the test will be below alpha. References ---------- .. [1] Hodges, J. L., Jr., and E. L. Lehmann. 1954. Testing the Approximate Validity of Statistical Hypotheses. Journal of the Royal Statistical Society, Series B (Methodological) 16: 261–68. .. [2] Kim, Jae H., and Andrew P. Robinson. 2019. “Interval-Based Hypothesis Testing and Its Applications to Economics and Finance.” Econometrics 7 (2): 21. https://doi.org/10.3390/econometrics7020021. """ tt1 = test_poisson_2indep(count1, exposure1, count2, exposure2, value=low, method=method, compare=compare, alternative='smaller') tt2 = test_poisson_2indep(count1, exposure1, count2, exposure2, value=upp, method=method, compare=compare, alternative='larger') # idx_min = 0 if tt1.pvalue < tt2.pvalue else 1 idx_min = np.asarray(tt1.pvalue < tt2.pvalue, int) pvalue = 2 * np.minimum(tt1.pvalue, tt2.pvalue) statistic = np.choose(idx_min, [tt1.statistic, tt2.statistic]) res = HolderTuple(statistic=statistic, pvalue=pvalue, method=method, results_larger=tt1, results_smaller=tt2, title="Equivalence test for 2 independent Poisson rates" ) return res
Test for non-equivalence, minimum effect for poisson. This reverses null and alternative hypothesis compared to equivalence testing. The null hypothesis is that the effect, ratio (or diff), is in an interval that specifies a range of irrelevant or unimportant differences between the two samples. The Null and alternative hypothesis comparing the ratio of rates are for compare = 'ratio': - H0: low < rate1 / rate2 < upp - H1: rate1 / rate2 <= low or upp <= rate1 / rate2 for compare = 'diff': - H0: rate1 - rate2 <= low or upp <= rate1 - rate2 - H1: low < rate - rate < upp Notes ----- This is implemented as two one-sided tests at the minimum effect boundaries (low, upp) with (nominal) size alpha / 2 each. The size of the test is the sum of the two one-tailed tests, which corresponds to an equal-tailed two-sided test. If low and upp are equal, then the result is the same as the standard two-sided test. The p-value is computed as `2 * min(pvalue_low, pvalue_upp)` in analogy to two-sided equal-tail tests. In large samples the nominal size of the test will be below alpha. References ---------- .. [1] Hodges, J. L., Jr., and E. L. Lehmann. 1954. Testing the Approximate Validity of Statistical Hypotheses. Journal of the Royal Statistical Society, Series B (Methodological) 16: 261–68. .. [2] Kim, Jae H., and Andrew P. Robinson. 2019. “Interval-Based Hypothesis Testing and Its Applications to Economics and Finance.” Econometrics 7 (2): 21. https://doi.org/10.3390/econometrics7020021.
nonequivalence_poisson_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def confint_poisson_2indep(count1, exposure1, count2, exposure2, method='score', compare='ratio', alpha=0.05, method_mover="score", ): """Confidence interval for ratio or difference of 2 indep poisson rates. Parameters ---------- count1 : int Number of events in first sample. exposure1 : float Total exposure (time * subjects) in first sample. count2 : int Number of events in second sample. exposure2 : float Total exposure (time * subjects) in second sample. method : string Method for the test statistic and the p-value. Defaults to `'score'`. see Notes. ratio: - 'wald': NOT YET, method W1A, wald test, variance based on observed rates - 'waldcc' : - 'score': method W2A, score test, variance based on estimate under the Null hypothesis - 'wald-log': W3A, uses log-ratio, variance based on observed rates - 'score-log' W4A, uses log-ratio, variance based on estimate under the Null hypothesis - 'sqrt': W5A, based on variance stabilizing square root transformation - 'sqrtcc' : - 'exact-cond': NOT YET, exact conditional test based on binomial distribution This uses ``binom_test`` which is minlike in the two-sided case. - 'cond-midp': NOT YET, midpoint-pvalue of exact conditional test - 'mover' : diff: - 'wald', - 'waldccv' - 'score' - 'mover' compare : {'diff', 'ratio'} Default is "ratio". If compare is `diff`, then the hypothesis test is for diff = rate1 - rate2. If compare is `ratio`, then the hypothesis test is for the rate ratio defined by ratio = rate1 / rate2. alternative : string The alternative hypothesis, H1, has to be one of the following - 'two-sided': H1: ratio of rates is not equal to ratio_null (default) - 'larger' : H1: ratio of rates is larger than ratio_null - 'smaller' : H1: ratio of rates is smaller than ratio_null alpha : float in (0, 1) Significance level, nominal coverage of the confidence interval is 1 - alpha. Returns ------- tuple (low, upp) : confidence limits. """ # shortcut names y1, n1, y2, n2 = map(np.asarray, [count1, exposure1, count2, exposure2]) rate1, rate2 = y1 / n1, y2 / n2 alpha = alpha / 2 # two-sided only if compare == "ratio": if method == "score": low, upp = _invert_test_confint_2indep( count1, exposure1, count2, exposure2, alpha=alpha * 2, # check how alpha is defined method="score", compare="ratio", method_start="waldcc" ) ci = (low, upp) elif method == "wald-log": crit = stats.norm.isf(alpha) c = 0 center = (count1 + c) / (count2 + c) * n2 / n1 std = np.sqrt(1 / (count1 + c) + 1 / (count2 + c)) ci = (center * np.exp(- crit * std), center * np.exp(crit * std)) elif method == "score-log": low, upp = _invert_test_confint_2indep( count1, exposure1, count2, exposure2, alpha=alpha * 2, # check how alpha is defined method="score-log", compare="ratio", method_start="waldcc" ) ci = (low, upp) elif method == "waldcc": crit = stats.norm.isf(alpha) center = (count1 + 0.5) / (count2 + 0.5) * n2 / n1 std = np.sqrt(1 / (count1 + 0.5) + 1 / (count2 + 0.5)) ci = (center * np.exp(- crit * std), center * np.exp(crit * std)) elif method == "sqrtcc": # coded based on Price, Bonett 2000 equ (2.4) crit = stats.norm.isf(alpha) center = np.sqrt((count1 + 0.5) * (count2 + 0.5)) std = 0.5 * np.sqrt(count1 + 0.5 + count2 + 0.5 - 0.25 * crit) denom = (count2 + 0.5 - 0.25 * crit**2) low_sqrt = (center - crit * std) / denom upp_sqrt = (center + crit * std) / denom ci = (low_sqrt**2, upp_sqrt**2) elif method == "mover": method_p = method_mover ci1 = confint_poisson(y1, n1, method=method_p, alpha=2*alpha) ci2 = confint_poisson(y2, n2, method=method_p, alpha=2*alpha) ci = _mover_confint(rate1, rate2, ci1, ci2, contrast="ratio") else: raise ValueError(f'method "{method}" not recognized') ci = (np.maximum(ci[0], 0), ci[1]) elif compare == "diff": if method in ['wald']: crit = stats.norm.isf(alpha) center = rate1 - rate2 half = crit * np.sqrt(rate1 / n1 + rate2 / n2) ci = center - half, center + half elif method in ['waldccv']: crit = stats.norm.isf(alpha) center = rate1 - rate2 std = np.sqrt((count1 + 0.5) / n1**2 + (count2 + 0.5) / n2**2) half = crit * std ci = center - half, center + half elif method == "score": low, upp = _invert_test_confint_2indep( count1, exposure1, count2, exposure2, alpha=alpha * 2, # check how alpha is defined method="score", compare="diff", method_start="waldccv" ) ci = (low, upp) elif method == "mover": method_p = method_mover ci1 = confint_poisson(y1, n1, method=method_p, alpha=2*alpha) ci2 = confint_poisson(y2, n2, method=method_p, alpha=2*alpha) ci = _mover_confint(rate1, rate2, ci1, ci2, contrast="diff") else: raise ValueError(f'method "{method}" not recognized') else: raise NotImplementedError('"compare" needs to be ratio or diff') return ci
Confidence interval for ratio or difference of 2 indep poisson rates. Parameters ---------- count1 : int Number of events in first sample. exposure1 : float Total exposure (time * subjects) in first sample. count2 : int Number of events in second sample. exposure2 : float Total exposure (time * subjects) in second sample. method : string Method for the test statistic and the p-value. Defaults to `'score'`. see Notes. ratio: - 'wald': NOT YET, method W1A, wald test, variance based on observed rates - 'waldcc' : - 'score': method W2A, score test, variance based on estimate under the Null hypothesis - 'wald-log': W3A, uses log-ratio, variance based on observed rates - 'score-log' W4A, uses log-ratio, variance based on estimate under the Null hypothesis - 'sqrt': W5A, based on variance stabilizing square root transformation - 'sqrtcc' : - 'exact-cond': NOT YET, exact conditional test based on binomial distribution This uses ``binom_test`` which is minlike in the two-sided case. - 'cond-midp': NOT YET, midpoint-pvalue of exact conditional test - 'mover' : diff: - 'wald', - 'waldccv' - 'score' - 'mover' compare : {'diff', 'ratio'} Default is "ratio". If compare is `diff`, then the hypothesis test is for diff = rate1 - rate2. If compare is `ratio`, then the hypothesis test is for the rate ratio defined by ratio = rate1 / rate2. alternative : string The alternative hypothesis, H1, has to be one of the following - 'two-sided': H1: ratio of rates is not equal to ratio_null (default) - 'larger' : H1: ratio of rates is larger than ratio_null - 'smaller' : H1: ratio of rates is smaller than ratio_null alpha : float in (0, 1) Significance level, nominal coverage of the confidence interval is 1 - alpha. Returns ------- tuple (low, upp) : confidence limits.
confint_poisson_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause
def power_poisson_ratio_2indep( rate1, rate2, nobs1, nobs_ratio=1, exposure=1, value=0, alpha=0.05, dispersion=1, alternative="smaller", method_var="alt", return_results=True, ): """Power of test of ratio of 2 independent poisson rates. This is based on Zhu and Zhu and Lakkis. It does not directly correspond to `test_poisson_2indep`. Parameters ---------- rate1 : float Poisson rate for the first sample, treatment group, under the alternative hypothesis. rate2 : float Poisson rate for the second sample, reference group, under the alternative hypothesis. nobs1 : float or int Number of observations in sample 1. nobs_ratio : float Sample size ratio, nobs2 = nobs_ratio * nobs1. exposure : float Exposure for each observation. Total exposure is nobs1 * exposure and nobs2 * exposure. alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. value : float Rate ratio, rate1 / rate2, under the null hypothesis. dispersion : float Dispersion coefficient for quasi-Poisson. Dispersion different from one can capture over or under dispersion relative to Poisson distribution. method_var : {"score", "alt"} The variance of the test statistic for the null hypothesis given the rates under the alternative can be either equal to the rates under the alternative ``method_var="alt"``, or estimated under the constrained of the null hypothesis, ``method_var="score"``. alternative : string, 'two-sided' (default), 'larger', 'smaller' Alternative hypothesis whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. return_results : bool If true, then a results instance with extra information is returned, otherwise only the computed power is returned. Returns ------- results : results instance or float If return_results is False, then only the power is returned. If return_results is True, then a results instance with the information in attributes is returned. power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Other attributes in results instance include : std_null standard error of difference under the null hypothesis (without sqrt(nobs1)) std_alt standard error of difference under the alternative hypothesis (without sqrt(nobs1)) References ---------- .. [1] Zhu, Haiyuan. 2017. “Sample Size Calculation for Comparing Two Poisson or Negative Binomial Rates in Noninferiority or Equivalence Trials.” Statistics in Biopharmaceutical Research, March. https://doi.org/10.1080/19466315.2016.1225594 .. [2] Zhu, Haiyuan, and Hassan Lakkis. 2014. “Sample Size Calculation for Comparing Two Negative Binomial Rates.” Statistics in Medicine 33 (3): 376–87. https://doi.org/10.1002/sim.5947. .. [3] PASS documentation """ # TODO: avoid possible circular import, check if needed from statsmodels.stats.power import normal_power_het rate1, rate2, nobs1 = map(np.asarray, [rate1, rate2, nobs1]) nobs2 = nobs_ratio * nobs1 v1 = dispersion / exposure * (1 / rate1 + 1 / (nobs_ratio * rate2)) if method_var == "alt": v0 = v1 elif method_var == "score": # nobs_ratio = 1 / nobs_ratio v0 = dispersion / exposure * (1 + value / nobs_ratio)**2 v0 /= value / nobs_ratio * (rate1 + (nobs_ratio * rate2)) else: raise NotImplementedError(f"method_var {method_var} not recognized") std_null = np.sqrt(v0) std_alt = np.sqrt(v1) es = np.log(rate1 / rate2) - np.log(value) pow_ = normal_power_het(es, nobs1, alpha, std_null=std_null, std_alternative=std_alt, alternative=alternative) p_pooled = None # TODO: replace or remove if return_results: res = HolderTuple( power=pow_, p_pooled=p_pooled, std_null=std_null, std_alt=std_alt, nobs1=nobs1, nobs2=nobs2, nobs_ratio=nobs_ratio, alpha=alpha, tuple_=("power",), # override default ) return res return pow_
Power of test of ratio of 2 independent poisson rates. This is based on Zhu and Zhu and Lakkis. It does not directly correspond to `test_poisson_2indep`. Parameters ---------- rate1 : float Poisson rate for the first sample, treatment group, under the alternative hypothesis. rate2 : float Poisson rate for the second sample, reference group, under the alternative hypothesis. nobs1 : float or int Number of observations in sample 1. nobs_ratio : float Sample size ratio, nobs2 = nobs_ratio * nobs1. exposure : float Exposure for each observation. Total exposure is nobs1 * exposure and nobs2 * exposure. alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. value : float Rate ratio, rate1 / rate2, under the null hypothesis. dispersion : float Dispersion coefficient for quasi-Poisson. Dispersion different from one can capture over or under dispersion relative to Poisson distribution. method_var : {"score", "alt"} The variance of the test statistic for the null hypothesis given the rates under the alternative can be either equal to the rates under the alternative ``method_var="alt"``, or estimated under the constrained of the null hypothesis, ``method_var="score"``. alternative : string, 'two-sided' (default), 'larger', 'smaller' Alternative hypothesis whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. return_results : bool If true, then a results instance with extra information is returned, otherwise only the computed power is returned. Returns ------- results : results instance or float If return_results is False, then only the power is returned. If return_results is True, then a results instance with the information in attributes is returned. power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Other attributes in results instance include : std_null standard error of difference under the null hypothesis (without sqrt(nobs1)) std_alt standard error of difference under the alternative hypothesis (without sqrt(nobs1)) References ---------- .. [1] Zhu, Haiyuan. 2017. “Sample Size Calculation for Comparing Two Poisson or Negative Binomial Rates in Noninferiority or Equivalence Trials.” Statistics in Biopharmaceutical Research, March. https://doi.org/10.1080/19466315.2016.1225594 .. [2] Zhu, Haiyuan, and Hassan Lakkis. 2014. “Sample Size Calculation for Comparing Two Negative Binomial Rates.” Statistics in Medicine 33 (3): 376–87. https://doi.org/10.1002/sim.5947. .. [3] PASS documentation
power_poisson_ratio_2indep
python
statsmodels/statsmodels
statsmodels/stats/rates.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/rates.py
BSD-3-Clause