code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
182
url
stringlengths
46
251
license
stringclasses
4 values
def parallel_func(func, n_jobs, verbose=5): """Return parallel instance with delayed function Util function to use joblib only if available Parameters ---------- func : callable A function n_jobs : int Number of jobs to run in parallel verbose : int Verbosity level Returns ------- parallel : instance of joblib.Parallel or list The parallel object my_func : callable func if not parallel or delayed(func) n_jobs : int Number of jobs >= 0 Examples -------- >>> from math import sqrt >>> from statsmodels.tools.parallel import parallel_func >>> parallel, p_func, n_jobs = parallel_func(sqrt, n_jobs=-1, verbose=0) >>> print(n_jobs) >>> parallel(p_func(i**2) for i in range(10)) """ try: try: from joblib import Parallel, delayed except ImportError: from sklearn.externals.joblib import Parallel, delayed parallel = Parallel(n_jobs, verbose=verbose) my_func = delayed(func) if n_jobs == -1: try: import multiprocessing n_jobs = multiprocessing.cpu_count() except (ImportError, NotImplementedError): import warnings warnings.warn(module_unavailable_doc.format('multiprocessing'), ModuleUnavailableWarning) n_jobs = 1 except ImportError: import warnings warnings.warn(module_unavailable_doc.format('joblib'), ModuleUnavailableWarning) n_jobs = 1 my_func = func parallel = list return parallel, my_func, n_jobs
Return parallel instance with delayed function Util function to use joblib only if available Parameters ---------- func : callable A function n_jobs : int Number of jobs to run in parallel verbose : int Verbosity level Returns ------- parallel : instance of joblib.Parallel or list The parallel object my_func : callable func if not parallel or delayed(func) n_jobs : int Number of jobs >= 0 Examples -------- >>> from math import sqrt >>> from statsmodels.tools.parallel import parallel_func >>> parallel, p_func, n_jobs = parallel_func(sqrt, n_jobs=-1, verbose=0) >>> print(n_jobs) >>> parallel(p_func(i**2) for i in range(10))
parallel_func
python
statsmodels/statsmodels
statsmodels/tools/parallel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/parallel.py
BSD-3-Clause
def discrepancy(sample, bounds=None): """Discrepancy. Compute the centered discrepancy on a given sample. It is a measure of the uniformity of the points in the parameter space. The lower the value is, the better the coverage of the parameter space is. Parameters ---------- sample : array_like (n_samples, k_vars) The sample to compute the discrepancy from. bounds : tuple or array_like ([min, k_vars], [max, k_vars]) Desired range of transformed data. The transformation apply the bounds on the sample and not the theoretical space, unit cube. Thus min and max values of the sample will coincide with the bounds. Returns ------- discrepancy : float Centered discrepancy. References ---------- [1] Fang et al. "Design and modeling for computer experiments", Computer Science and Data Analysis Series Science and Data Analysis Series, 2006. """ sample = np.asarray(sample) n_sample, dim = sample.shape # Sample scaling from bounds to unit hypercube if bounds is not None: min_ = bounds.min(axis=0) max_ = bounds.max(axis=0) sample = (sample - min_) / (max_ - min_) abs_ = abs(sample - 0.5) disc1 = np.sum(np.prod(1 + 0.5 * abs_ - 0.5 * abs_ ** 2, axis=1)) prod_arr = 1 for i in range(dim): s0 = sample[:, i] prod_arr *= (1 + 0.5 * abs(s0[:, None] - 0.5) + 0.5 * abs(s0 - 0.5) - 0.5 * abs(s0[:, None] - s0)) disc2 = prod_arr.sum() c2 = ((13.0 / 12.0) ** dim - 2.0 / n_sample * disc1 + 1.0 / (n_sample ** 2) * disc2) return c2
Discrepancy. Compute the centered discrepancy on a given sample. It is a measure of the uniformity of the points in the parameter space. The lower the value is, the better the coverage of the parameter space is. Parameters ---------- sample : array_like (n_samples, k_vars) The sample to compute the discrepancy from. bounds : tuple or array_like ([min, k_vars], [max, k_vars]) Desired range of transformed data. The transformation apply the bounds on the sample and not the theoretical space, unit cube. Thus min and max values of the sample will coincide with the bounds. Returns ------- discrepancy : float Centered discrepancy. References ---------- [1] Fang et al. "Design and modeling for computer experiments", Computer Science and Data Analysis Series Science and Data Analysis Series, 2006.
discrepancy
python
statsmodels/statsmodels
statsmodels/tools/sequences.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/sequences.py
BSD-3-Clause
def primes_from_2_to(n): """Prime numbers from 2 to *n*. Parameters ---------- n : int Sup bound with ``n >= 6``. Returns ------- primes : list(int) Primes in ``2 <= p < n``. References ---------- [1] `StackOverflow <https://stackoverflow.com/questions/2068372>`_. """ sieve = np.ones(n // 3 + (n % 6 == 2), dtype=bool) for i in range(1, int(n ** 0.5) // 3 + 1): if sieve[i]: k = 3 * i + 1 | 1 sieve[k * k // 3::2 * k] = False sieve[k * (k - 2 * (i & 1) + 4) // 3::2 * k] = False return np.r_[2, 3, ((3 * np.nonzero(sieve)[0][1:] + 1) | 1)]
Prime numbers from 2 to *n*. Parameters ---------- n : int Sup bound with ``n >= 6``. Returns ------- primes : list(int) Primes in ``2 <= p < n``. References ---------- [1] `StackOverflow <https://stackoverflow.com/questions/2068372>`_.
primes_from_2_to
python
statsmodels/statsmodels
statsmodels/tools/sequences.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/sequences.py
BSD-3-Clause
def n_primes(n): """List of the n-first prime numbers. Parameters ---------- n : int Number of prime numbers wanted. Returns ------- primes : list(int) List of primes. """ primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997][:n] if len(primes) < n: big_number = 10 while 'Not enought primes': primes = primes_from_2_to(big_number)[:n] if len(primes) == n: break big_number += 1000 return primes
List of the n-first prime numbers. Parameters ---------- n : int Number of prime numbers wanted. Returns ------- primes : list(int) List of primes.
n_primes
python
statsmodels/statsmodels
statsmodels/tools/sequences.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/sequences.py
BSD-3-Clause
def van_der_corput(n_sample, base=2, start_index=0): """Van der Corput sequence. Pseudo-random number generator based on a b-adic expansion. Parameters ---------- n_sample : int Number of element of the sequence. base : int Base of the sequence. start_index : int Index to start the sequence from. Returns ------- sequence : list (n_samples,) Sequence of Van der Corput. """ sequence = [] for i in range(start_index, start_index + n_sample): n_th_number, denom = 0., 1. quotient = i while quotient > 0: quotient, remainder = divmod(quotient, base) denom *= base n_th_number += remainder / denom sequence.append(n_th_number) return sequence
Van der Corput sequence. Pseudo-random number generator based on a b-adic expansion. Parameters ---------- n_sample : int Number of element of the sequence. base : int Base of the sequence. start_index : int Index to start the sequence from. Returns ------- sequence : list (n_samples,) Sequence of Van der Corput.
van_der_corput
python
statsmodels/statsmodels
statsmodels/tools/sequences.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/sequences.py
BSD-3-Clause
def halton(dim, n_sample, bounds=None, start_index=0): """Halton sequence. Pseudo-random number generator that generalize the Van der Corput sequence for multiple dimensions. Halton sequence use base-two Van der Corput sequence for the first dimension, base-three for its second and base-n for its n-dimension. Parameters ---------- dim : int Dimension of the parameter space. n_sample : int Number of samples to generate in the parametr space. bounds : tuple or array_like ([min, k_vars], [max, k_vars]) Desired range of transformed data. The transformation apply the bounds on the sample and not the theoretical space, unit cube. Thus min and max values of the sample will coincide with the bounds. start_index : int Index to start the sequence from. Returns ------- sequence : array_like (n_samples, k_vars) Sequence of Halton. References ---------- [1] Halton, "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals", Numerische Mathematik, 1960. Examples -------- Generate samples from a low discrepancy sequence of Halton. >>> from statsmodels.tools import sequences >>> sample = sequences.halton(dim=2, n_sample=5) Compute the quality of the sample using the discrepancy criterion. >>> uniformity = sequences.discrepancy(sample) If some wants to continue an existing design, extra points can be obtained. >>> sample_continued = sequences.halton(dim=2, n_sample=5, start_index=5) """ base = n_primes(dim) # Generate a sample using a Van der Corput sequence per dimension. sample = [van_der_corput(n_sample + 1, bdim, start_index) for bdim in base] sample = np.array(sample).T[1:] # Sample scaling from unit hypercube to feature range if bounds is not None: min_ = bounds.min(axis=0) max_ = bounds.max(axis=0) sample = sample * (max_ - min_) + min_ return sample
Halton sequence. Pseudo-random number generator that generalize the Van der Corput sequence for multiple dimensions. Halton sequence use base-two Van der Corput sequence for the first dimension, base-three for its second and base-n for its n-dimension. Parameters ---------- dim : int Dimension of the parameter space. n_sample : int Number of samples to generate in the parametr space. bounds : tuple or array_like ([min, k_vars], [max, k_vars]) Desired range of transformed data. The transformation apply the bounds on the sample and not the theoretical space, unit cube. Thus min and max values of the sample will coincide with the bounds. start_index : int Index to start the sequence from. Returns ------- sequence : array_like (n_samples, k_vars) Sequence of Halton. References ---------- [1] Halton, "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals", Numerische Mathematik, 1960. Examples -------- Generate samples from a low discrepancy sequence of Halton. >>> from statsmodels.tools import sequences >>> sample = sequences.halton(dim=2, n_sample=5) Compute the quality of the sample using the discrepancy criterion. >>> uniformity = sequences.discrepancy(sample) If some wants to continue an existing design, extra points can be obtained. >>> sample_continued = sequences.halton(dim=2, n_sample=5, start_index=5)
halton
python
statsmodels/statsmodels
statsmodels/tools/sequences.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/sequences.py
BSD-3-Clause
def combine_indices(groups, prefix='', sep='.', return_labels=False): """use np.unique to get integer group indices for product, intersection """ if isinstance(groups, tuple): groups = np.column_stack(groups) else: groups = np.asarray(groups) dt = groups.dtype is2d = (groups.ndim == 2) # need to store if is2d: ncols = groups.shape[1] if not groups.flags.c_contiguous: groups = np.array(groups, order='C') groups_ = groups.view([('', groups.dtype)] * groups.shape[1]) else: groups_ = groups uni, uni_idx, uni_inv = np.unique(groups_, return_index=True, return_inverse=True) if is2d: uni = uni.view(dt).reshape(-1, ncols) # avoiding a view would be # for t in uni.dtype.fields.values(): # assert (t[0] == dt) # # uni.dtype = dt # uni.shape = (uni.size//ncols, ncols) if return_labels: label = [(prefix+sep.join(['%s']*len(uni[0]))) % tuple(ii) for ii in uni] return uni_inv, uni_idx, uni, label else: return uni_inv, uni_idx, uni
use np.unique to get integer group indices for product, intersection
combine_indices
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def group_sums(x, group, use_bincount=True): """simple bincount version, again group : ndarray, integer assumed to be consecutive integers no dtype checking because I want to raise in that case uses loop over columns of x for comparison, simple python loop """ x = np.asarray(x) group = np.asarray(group).squeeze() if x.ndim == 1: x = x[:, None] elif x.ndim > 2 and use_bincount: raise ValueError('not implemented yet') if use_bincount: # re-label groups or bincount takes too much memory if np.max(group) > 2 * x.shape[0]: group = pd.factorize(group)[0] return np.array( [ np.bincount(group, weights=x[:, col]) for col in range(x.shape[1]) ] ) else: uniques = np.unique(group) result = np.zeros([len(uniques)] + list(x.shape[1:])) for ii, cat in enumerate(uniques): result[ii] = x[group == cat].sum(0) return result
simple bincount version, again group : ndarray, integer assumed to be consecutive integers no dtype checking because I want to raise in that case uses loop over columns of x for comparison, simple python loop
group_sums
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def group_sums_dummy(x, group_dummy): """sum by groups given group dummy variable group_dummy can be either ndarray or sparse matrix """ if data_util._is_using_ndarray_type(group_dummy, None): return np.dot(x.T, group_dummy) else: # check for sparse return x.T * group_dummy
sum by groups given group dummy variable group_dummy can be either ndarray or sparse matrix
group_sums_dummy
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def dummy_sparse(groups): """create a sparse indicator from a group array with integer labels Parameters ---------- groups : ndarray, int, 1d (nobs,) an array of group indicators for each observation. Group levels are assumed to be defined as consecutive integers, i.e. range(n_groups) where n_groups is the number of group levels. A group level with no observations for it will still produce a column of zeros. Returns ------- indi : ndarray, int8, 2d (nobs, n_groups) an indicator array with one row per observation, that has 1 in the column of the group level for that observation Examples -------- >>> g = np.array([0, 0, 2, 1, 1, 2, 0]) >>> indi = dummy_sparse(g) >>> indi <7x3 sparse matrix of type '<type 'numpy.int8'>' with 7 stored elements in Compressed Sparse Row format> >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) current behavior with missing groups >>> g = np.array([0, 0, 2, 0, 2, 0]) >>> indi = dummy_sparse(g) >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) """ from scipy import sparse indptr = np.arange(len(groups)+1) data = np.ones(len(groups), dtype=np.int8) indi = sparse.csr_matrix((data, groups, indptr)) return indi
create a sparse indicator from a group array with integer labels Parameters ---------- groups : ndarray, int, 1d (nobs,) an array of group indicators for each observation. Group levels are assumed to be defined as consecutive integers, i.e. range(n_groups) where n_groups is the number of group levels. A group level with no observations for it will still produce a column of zeros. Returns ------- indi : ndarray, int8, 2d (nobs, n_groups) an indicator array with one row per observation, that has 1 in the column of the group level for that observation Examples -------- >>> g = np.array([0, 0, 2, 1, 1, 2, 0]) >>> indi = dummy_sparse(g) >>> indi <7x3 sparse matrix of type '<type 'numpy.int8'>' with 7 stored elements in Compressed Sparse Row format> >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) current behavior with missing groups >>> g = np.array([0, 0, 2, 0, 2, 0]) >>> indi = dummy_sparse(g) >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=int8)
dummy_sparse
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def dummy(self, drop_idx=None, sparse=False, dtype=int): """ drop_idx is only available if sparse=False drop_idx is supposed to index into uni """ uni = self.uni if drop_idx is not None: idx = lrange(len(uni)) del idx[drop_idx] uni = uni[idx] group = self.group if not sparse: return (group[:, None] == uni[None, :]).astype(dtype) else: return dummy_sparse(self.group_int)
drop_idx is only available if sparse=False drop_idx is supposed to index into uni
dummy
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def lag_indices(self, lag): """return the index array for lagged values Warning: if k is larger then the number of observations for an individual, then no values for that individual are returned. TODO: for the unbalanced case, I should get the same truncation for the array with lag=0. From the return of lag_idx we would not know which individual is missing. TODO: do I want the full equivalent of lagmat in tsa? maxlag or lag or lags. not tested yet """ lag_idx = np.asarray(self.groupidx)[:, 1] - lag # asarray or already? mask_ok = (lag <= lag_idx) # still an observation that belongs to the same individual return lag_idx[mask_ok]
return the index array for lagged values Warning: if k is larger then the number of observations for an individual, then no values for that individual are returned. TODO: for the unbalanced case, I should get the same truncation for the array with lag=0. From the return of lag_idx we would not know which individual is missing. TODO: do I want the full equivalent of lagmat in tsa? maxlag or lag or lags. not tested yet
lag_indices
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def _is_hierarchical(x): """ Checks if the first item of an array-like object is also array-like If so, we have a MultiIndex and returns True. Else returns False. """ item = x[0] # is there a better way to do this? if isinstance(item, (list, tuple, np.ndarray, pd.Series, pd.DataFrame)): return True else: return False
Checks if the first item of an array-like object is also array-like If so, we have a MultiIndex and returns True. Else returns False.
_is_hierarchical
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def __init__(self, index, names=None): """ index : index-like Can be pandas MultiIndex or Index or array-like. If array-like and is a MultipleIndex (more than one grouping variable), groups are expected to be in each row. E.g., [('red', 1), ('red', 2), ('green', 1), ('green', 2)] names : list or str, optional The names to use for the groups. Should be a str if only one grouping variable is used. Notes ----- If index is already a pandas Index then there is no copy. """ if isinstance(index, (Index, MultiIndex)): if names is not None: if hasattr(index, 'set_names'): # newer pandas index.set_names(names, inplace=True) else: index.names = names self.index = index else: # array_like if _is_hierarchical(index): self.index = _make_hierarchical_index(index, names) else: self.index = Index(index, name=names) if names is None: names = _make_generic_names(self.index) if hasattr(self.index, 'set_names'): self.index.set_names(names, inplace=True) else: self.index.names = names self.nobs = len(self.index) self.nlevels = len(self.index.names) self.slices = None
index : index-like Can be pandas MultiIndex or Index or array-like. If array-like and is a MultipleIndex (more than one grouping variable), groups are expected to be in each row. E.g., [('red', 1), ('red', 2), ('green', 1), ('green', 2)] names : list or str, optional The names to use for the groups. Should be a str if only one grouping variable is used. Notes ----- If index is already a pandas Index then there is no copy.
__init__
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def reindex(self, index=None, names=None): """ Resets the index in-place. """ # NOTE: this is not of much use if the rest of the data does not change # This needs to reset cache if names is None: names = self.group_names self = Grouping(index, names)
Resets the index in-place.
reindex
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def get_slices(self, level=0): """ Sets the slices attribute to be a list of indices of the sorted groups for the first index level. I.e., self.slices[0] is the index where each observation is in the first (sorted) group. """ # TODO: refactor this groups = self.index.get_level_values(level).unique() groups = np.sort(np.array(groups)) if isinstance(self.index, MultiIndex): self.slices = [self.index.get_loc_level(x, level=level)[0] for x in groups] else: self.slices = [self.index.get_loc(x) for x in groups]
Sets the slices attribute to be a list of indices of the sorted groups for the first index level. I.e., self.slices[0] is the index where each observation is in the first (sorted) group.
get_slices
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def count_categories(self, level=0): """ Sets the attribute counts to equal the bincount of the (integer-valued) labels. """ # TODO: refactor this not to set an attribute. Why would we do this? self.counts = np.bincount(self.labels[level])
Sets the attribute counts to equal the bincount of the (integer-valued) labels.
count_categories
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def check_index(self, is_sorted=True, unique=True, index=None): """Sanity checks""" if not index: index = self.index if is_sorted: test = pd.DataFrame(lrange(len(index)), index=index) test_sorted = test.sort() if not test.index.equals(test_sorted.index): raise Exception('Data is not be sorted') if unique: if len(index) != len(index.unique()): raise Exception('Duplicate index entries')
Sanity checks
check_index
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def sort(self, data, index=None): """Applies a (potentially hierarchical) sort operation on a numpy array or pandas series/dataframe based on the grouping index or a user-supplied index. Returns an object of the same type as the original data as well as the matching (sorted) Pandas index. """ if index is None: index = self.index if data_util._is_using_ndarray_type(data, None): if data.ndim == 1: out = pd.Series(data, index=index, copy=True) out = out.sort_index() else: out = pd.DataFrame(data, index=index) out = out.sort_index(inplace=False) # copies return np.array(out), out.index elif data_util._is_using_pandas(data, None): out = data out = out.reindex(index) # copies? out = out.sort_index() return out, out.index else: msg = 'data must be a Numpy array or a Pandas Series/DataFrame' raise ValueError(msg)
Applies a (potentially hierarchical) sort operation on a numpy array or pandas series/dataframe based on the grouping index or a user-supplied index. Returns an object of the same type as the original data as well as the matching (sorted) Pandas index.
sort
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def transform_dataframe(self, dataframe, function, level=0, **kwargs): """Apply function to each column, by group Assumes that the dataframe already has a proper index""" if dataframe.shape[0] != self.nobs: raise Exception('dataframe does not have the same shape as index') out = dataframe.groupby(level=level).apply(function, **kwargs) if 1 in out.shape: return np.ravel(out) else: return np.array(out)
Apply function to each column, by group Assumes that the dataframe already has a proper index
transform_dataframe
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def transform_array(self, array, function, level=0, **kwargs): """Apply function to each column, by group """ if array.shape[0] != self.nobs: raise Exception('array does not have the same shape as index') dataframe = pd.DataFrame(array, index=self.index) return self.transform_dataframe(dataframe, function, level=level, **kwargs)
Apply function to each column, by group
transform_array
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def transform_slices(self, array, function, level=0, **kwargs): """Apply function to each group. Similar to transform_array but does not coerce array to a DataFrame and back and only works on a 1D or 2D numpy array. function is called function(group, group_idx, **kwargs). """ array = np.asarray(array) if array.shape[0] != self.nobs: raise Exception('array does not have the same shape as index') # always reset because level is given. need to refactor this. self.get_slices(level=level) processed = [] for s in self.slices: if array.ndim == 2: subset = array[s, :] elif array.ndim == 1: subset = array[s] processed.append(function(subset, s, **kwargs)) processed = np.array(processed) return processed.reshape(-1, processed.shape[-1])
Apply function to each group. Similar to transform_array but does not coerce array to a DataFrame and back and only works on a 1D or 2D numpy array. function is called function(group, group_idx, **kwargs).
transform_slices
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def dummy_sparse(self, level=0): """create a sparse indicator from a group array with integer labels Parameters ---------- groups : ndarray, int, 1d (nobs,) An array of group indicators for each observation. Group levels are assumed to be defined as consecutive integers, i.e. range(n_groups) where n_groups is the number of group levels. A group level with no observations for it will still produce a column of zeros. Returns ------- indi : ndarray, int8, 2d (nobs, n_groups) an indicator array with one row per observation, that has 1 in the column of the group level for that observation Examples -------- >>> g = np.array([0, 0, 2, 1, 1, 2, 0]) >>> indi = dummy_sparse(g) >>> indi <7x3 sparse matrix of type '<type 'numpy.int8'>' with 7 stored elements in Compressed Sparse Row format> >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) current behavior with missing groups >>> g = np.array([0, 0, 2, 0, 2, 0]) >>> indi = dummy_sparse(g) >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) """ indi = dummy_sparse(self.labels[level]) self._dummies = indi
create a sparse indicator from a group array with integer labels Parameters ---------- groups : ndarray, int, 1d (nobs,) An array of group indicators for each observation. Group levels are assumed to be defined as consecutive integers, i.e. range(n_groups) where n_groups is the number of group levels. A group level with no observations for it will still produce a column of zeros. Returns ------- indi : ndarray, int8, 2d (nobs, n_groups) an indicator array with one row per observation, that has 1 in the column of the group level for that observation Examples -------- >>> g = np.array([0, 0, 2, 1, 1, 2, 0]) >>> indi = dummy_sparse(g) >>> indi <7x3 sparse matrix of type '<type 'numpy.int8'>' with 7 stored elements in Compressed Sparse Row format> >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=int8) current behavior with missing groups >>> g = np.array([0, 0, 2, 0, 2, 0]) >>> indi = dummy_sparse(g) >>> indi.todense() matrix([[1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=int8)
dummy_sparse
python
statsmodels/statsmodels
statsmodels/tools/grouputils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/grouputils.py
BSD-3-Clause
def check_ftest_pvalues(results): """ Check that the outputs of `res.wald_test` produces pvalues that match res.pvalues. Check that the string representations of `res.summary()` and (possibly) `res.summary2()` correctly label either the t or z-statistic. Parameters ---------- results : Results Raises ------ AssertionError """ res = results use_t = res.use_t k_vars = len(res.params) # check default use_t pvals = [ res.wald_test(np.eye(k_vars)[k], use_f=use_t, scalar=True).pvalue for k in range(k_vars) ] assert_allclose(pvals, res.pvalues, rtol=5e-10, atol=1e-25) # automatic use_f based on results class use_t pvals = [ res.wald_test(np.eye(k_vars)[k], scalar=True).pvalue for k in range(k_vars) ] assert_allclose(pvals, res.pvalues, rtol=5e-10, atol=1e-25) # TODO: Separate these out into summary/summary2 tests? # label for pvalues in summary string_use_t = "P>|z|" if use_t is False else "P>|t|" summ = str(res.summary()) assert_(string_use_t in summ) # try except for models that do not have summary2 try: summ2 = str(res.summary2()) except AttributeError: pass else: assert_(string_use_t in summ2)
Check that the outputs of `res.wald_test` produces pvalues that match res.pvalues. Check that the string representations of `res.summary()` and (possibly) `res.summary2()` correctly label either the t or z-statistic. Parameters ---------- results : Results Raises ------ AssertionError
check_ftest_pvalues
python
statsmodels/statsmodels
statsmodels/tools/_testing.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/_testing.py
BSD-3-Clause
def check_predict_types(results): """ Check that the `predict` method of the given results object produces the correct output type. Parameters ---------- results : Results Raises ------ AssertionError """ res = results # squeeze to make 1d for single regressor test case p_exog = np.squeeze(np.asarray(res.model.exog[:2])) # ignore wrapper for isinstance check from statsmodels.genmod.generalized_linear_model import GLMResults from statsmodels.discrete.discrete_model import DiscreteResults from statsmodels.compat.pandas import ( assert_frame_equal, assert_series_equal, ) # possibly unwrap -- GEE has no wrapper results = getattr(results, "_results", results) if isinstance(results, (GLMResults, DiscreteResults)): # SMOKE test only TODO: mark this somehow res.predict(p_exog) res.predict(p_exog.tolist()) res.predict(p_exog[0].tolist()) else: fitted = res.fittedvalues[:2] assert_allclose(fitted, res.predict(p_exog), rtol=1e-12) # this needs reshape to column-vector: assert_allclose( fitted, res.predict(np.squeeze(p_exog).tolist()), rtol=1e-12 ) # only one prediction: assert_allclose( fitted[:1], res.predict(p_exog[0].tolist()), rtol=1e-12 ) assert_allclose(fitted[:1], res.predict(p_exog[0]), rtol=1e-12) # Check that pandas wrapping works as expected exog_index = range(len(p_exog)) predicted = res.predict(p_exog) cls = pd.Series if p_exog.ndim == 1 else pd.DataFrame predicted_pandas = res.predict(cls(p_exog, index=exog_index)) # predicted.ndim may not match p_exog.ndim because it may be squeezed # if p_exog has only one column cls = pd.Series if predicted.ndim == 1 else pd.DataFrame predicted_expected = cls(predicted, index=exog_index) if isinstance(predicted_expected, pd.Series): assert_series_equal(predicted_expected, predicted_pandas) else: assert_frame_equal(predicted_expected, predicted_pandas)
Check that the `predict` method of the given results object produces the correct output type. Parameters ---------- results : Results Raises ------ AssertionError
check_predict_types
python
statsmodels/statsmodels
statsmodels/tools/_testing.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/_testing.py
BSD-3-Clause
def check_random_state(seed=None): """ Turn `seed` into a random number generator. Parameters ---------- seed : {None, int, array_like[ints], `numpy.random.Generator`, `numpy.random.RandomState`, `scipy.stats.qmc.QMCEngine`}, optional If `seed` is None fresh, unpredictable entropy will be pulled from the OS and `numpy.random.Generator` is used. If `seed` is an int or ``array_like[ints]``, a new ``Generator`` instance is used, seeded with `seed`. If `seed` is already a ``Generator``, ``RandomState`` or `scipy.stats.qmc.QMCEngine` instance then that instance is used. `scipy.stats.qmc.QMCEngine` requires SciPy >=1.7. It also means that the generator only have the method ``random``. Returns ------- seed : {`numpy.random.Generator`, `numpy.random.RandomState`, `scipy.stats.qmc.QMCEngine`} Random number generator. """ if hasattr(stats, "qmc") and \ isinstance(seed, stats.qmc.QMCEngine): return seed elif isinstance(seed, np.random.RandomState): return seed elif isinstance(seed, np.random.Generator): return seed elif seed is not None: return np.random.default_rng(seed) else: import warnings warnings.warn(_future_warn, FutureWarning) return np.random.mtrand._rand
Turn `seed` into a random number generator. Parameters ---------- seed : {None, int, array_like[ints], `numpy.random.Generator`, `numpy.random.RandomState`, `scipy.stats.qmc.QMCEngine`}, optional If `seed` is None fresh, unpredictable entropy will be pulled from the OS and `numpy.random.Generator` is used. If `seed` is an int or ``array_like[ints]``, a new ``Generator`` instance is used, seeded with `seed`. If `seed` is already a ``Generator``, ``RandomState`` or `scipy.stats.qmc.QMCEngine` instance then that instance is used. `scipy.stats.qmc.QMCEngine` requires SciPy >=1.7. It also means that the generator only have the method ``random``. Returns ------- seed : {`numpy.random.Generator`, `numpy.random.RandomState`, `scipy.stats.qmc.QMCEngine`} Random number generator.
check_random_state
python
statsmodels/statsmodels
statsmodels/tools/rng_qrng.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/rng_qrng.py
BSD-3-Clause
def mse(x1, x2, axis=0): """mean squared error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- mse : ndarray or float mean squared error along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass, for example numpy matrices will silently produce an incorrect result. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.mean((x1 - x2) ** 2, axis=axis)
mean squared error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- mse : ndarray or float mean squared error along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass, for example numpy matrices will silently produce an incorrect result.
mse
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def rmse(x1, x2, axis=0): """root mean squared error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- rmse : ndarray or float root mean squared error along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass, for example numpy matrices will silently produce an incorrect result. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.sqrt(mse(x1, x2, axis=axis))
root mean squared error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- rmse : ndarray or float root mean squared error along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass, for example numpy matrices will silently produce an incorrect result.
rmse
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def rmspe(y, y_hat, axis=0, zeros=np.nan): """ Root Mean Squared Percentage Error Parameters ---------- y : array_like The actual value. y_hat : array_like The predicted value. axis : int Axis along which the summary statistic is calculated zeros : float Value to assign to error where y is zero Returns ------- rmspe : ndarray or float Root Mean Squared Percentage Error along given axis. """ y_hat = np.asarray(y_hat) y = np.asarray(y) error = y - y_hat loc = y != 0 loc = loc.ravel() percentage_error = np.full_like(error, zeros) percentage_error.flat[loc] = error.flat[loc] / y.flat[loc] mspe = np.nanmean(percentage_error ** 2, axis=axis) * 100 return np.sqrt(mspe)
Root Mean Squared Percentage Error Parameters ---------- y : array_like The actual value. y_hat : array_like The predicted value. axis : int Axis along which the summary statistic is calculated zeros : float Value to assign to error where y is zero Returns ------- rmspe : ndarray or float Root Mean Squared Percentage Error along given axis.
rmspe
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def maxabs(x1, x2, axis=0): """maximum absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- maxabs : ndarray or float maximum absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.max(np.abs(x1 - x2), axis=axis)
maximum absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- maxabs : ndarray or float maximum absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
maxabs
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def meanabs(x1, x2, axis=0): """mean absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- meanabs : ndarray or float mean absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.mean(np.abs(x1 - x2), axis=axis)
mean absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- meanabs : ndarray or float mean absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
meanabs
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def medianabs(x1, x2, axis=0): """median absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- medianabs : ndarray or float median absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.median(np.abs(x1 - x2), axis=axis)
median absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- medianabs : ndarray or float median absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
medianabs
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def bias(x1, x2, axis=0): """bias, mean error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- bias : ndarray or float bias, or mean difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.mean(x1 - x2, axis=axis)
bias, mean error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- bias : ndarray or float bias, or mean difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
bias
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def medianbias(x1, x2, axis=0): """median bias, median error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- medianbias : ndarray or float median bias, or median difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.median(x1 - x2, axis=axis)
median bias, median error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- medianbias : ndarray or float median bias, or median difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
medianbias
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def vare(x1, x2, ddof=0, axis=0): """variance of error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- vare : ndarray or float variance of difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.var(x1 - x2, ddof=ddof, axis=axis)
variance of error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- vare : ndarray or float variance of difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
vare
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def stde(x1, x2, ddof=0, axis=0): """standard deviation of error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- stde : ndarray or float standard deviation of difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.std(x1 - x2, ddof=ddof, axis=axis)
standard deviation of error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- stde : ndarray or float standard deviation of difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass.
stde
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def iqr(x1, x2, axis=0): """ Interquartile range of error Parameters ---------- x1 : array_like One of the inputs into the IQR calculation. x2 : array_like The other input into the IQR calculation. axis : {None, int} axis along which the summary statistic is calculated Returns ------- irq : {float, ndarray} Interquartile range along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they must broadcast. """ x1 = array_like(x1, "x1", dtype=None, ndim=None) x2 = array_like(x2, "x1", dtype=None, ndim=None) if axis is None: x1 = x1.ravel() x2 = x2.ravel() axis = 0 xdiff = np.sort(x1 - x2, axis=axis) nobs = x1.shape[axis] idx = np.round((nobs - 1) * np.array([0.25, 0.75])).astype(int) sl = [slice(None)] * xdiff.ndim sl[axis] = idx iqr = np.diff(xdiff[tuple(sl)], axis=axis) iqr = np.squeeze(iqr) # drop reduced dimension return iqr
Interquartile range of error Parameters ---------- x1 : array_like One of the inputs into the IQR calculation. x2 : array_like The other input into the IQR calculation. axis : {None, int} axis along which the summary statistic is calculated Returns ------- irq : {float, ndarray} Interquartile range along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they must broadcast.
iqr
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def aic(llf, nobs, df_modelwc): """ Akaike information criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aic : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion """ return -2.0 * llf + 2.0 * df_modelwc
Akaike information criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aic : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion
aic
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def aicc(llf, nobs, df_modelwc): """ Akaike information criterion (AIC) with small sample correction Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aicc : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc Notes ----- Returns +inf if the effective degrees of freedom, defined as ``nobs - df_modelwc - 1.0``, is <= 0. """ dof_eff = nobs - df_modelwc - 1.0 if dof_eff > 0: return -2.0 * llf + 2.0 * df_modelwc * nobs / dof_eff else: return np.inf
Akaike information criterion (AIC) with small sample correction Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aicc : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc Notes ----- Returns +inf if the effective degrees of freedom, defined as ``nobs - df_modelwc - 1.0``, is <= 0.
aicc
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def bic(llf, nobs, df_modelwc): """ Bayesian information criterion (BIC) or Schwarz criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- bic : float information criterion References ---------- https://en.wikipedia.org/wiki/Bayesian_information_criterion """ return -2.0 * llf + np.log(nobs) * df_modelwc
Bayesian information criterion (BIC) or Schwarz criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- bic : float information criterion References ---------- https://en.wikipedia.org/wiki/Bayesian_information_criterion
bic
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def hqic(llf, nobs, df_modelwc): """ Hannan-Quinn information criterion (HQC) Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- hqic : float information criterion References ---------- Wikipedia does not say much """ return -2.0 * llf + 2 * np.log(np.log(nobs)) * df_modelwc
Hannan-Quinn information criterion (HQC) Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- hqic : float information criterion References ---------- Wikipedia does not say much
hqic
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def aicc_sigma(sigma2, nobs, df_modelwc, islog=False): """ Akaike information criterion (AIC) with small sample correction Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aicc : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc """ if not islog: sigma2 = np.log(sigma2) return sigma2 + aicc(0, nobs, df_modelwc) / nobs
Akaike information criterion (AIC) with small sample correction Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aicc : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc
aicc_sigma
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def bic_sigma(sigma2, nobs, df_modelwc, islog=False): """Bayesian information criterion (BIC) or Schwarz criterion Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- bic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- https://en.wikipedia.org/wiki/Bayesian_information_criterion """ if not islog: sigma2 = np.log(sigma2) return sigma2 + bic(0, nobs, df_modelwc) / nobs
Bayesian information criterion (BIC) or Schwarz criterion Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- bic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- https://en.wikipedia.org/wiki/Bayesian_information_criterion
bic_sigma
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def hqic_sigma(sigma2, nobs, df_modelwc, islog=False): """Hannan-Quinn information criterion (HQC) Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- hqic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- xxx """ if not islog: sigma2 = np.log(sigma2) return sigma2 + hqic(0, nobs, df_modelwc) / nobs
Hannan-Quinn information criterion (HQC) Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- hqic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- xxx
hqic_sigma
python
statsmodels/statsmodels
statsmodels/tools/eval_measures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/eval_measures.py
BSD-3-Clause
def approx_fprime(x, f, epsilon=None, args=(), kwargs={}, centered=False): ''' Gradient of function, or Jacobian if function f returns 1d array Parameters ---------- x : ndarray parameters at which the derivative is evaluated f : function `f(*((x,)+args), **kwargs)` returning either one value or 1d array epsilon : float, optional Stepsize, if None, optimal stepsize is used. This is EPS**(1/2)*x for `centered` == False and EPS**(1/3)*x for `centered` == True. args : tuple Tuple of additional arguments for function `f`. kwargs : dict Dictionary of additional keyword arguments for function `f`. centered : bool Whether central difference should be returned. If not, does forward differencing. Returns ------- grad : ndarray gradient or Jacobian Notes ----- If f returns a 1d array, it returns a Jacobian. If a 2d array is returned by f (e.g., with a value for each observation), it returns a 3d array with the Jacobian of each observation with shape xk x nobs x xk. I.e., the Jacobian of the first observation would be [:, 0, :] ''' n = len(x) f0 = f(*((x,)+args), **kwargs) dim = np.atleast_1d(f0).shape # it could be a scalar grad = np.zeros((n,) + dim, np.promote_types(float, x.dtype)) ei = np.zeros((n,), float) if not centered: epsilon = _get_epsilon(x, 2, epsilon, n) for k in range(n): ei[k] = epsilon[k] grad[k, :] = (f(*((x+ei,) + args), **kwargs) - f0)/epsilon[k] ei[k] = 0.0 else: epsilon = _get_epsilon(x, 3, epsilon, n) / 2. for k in range(n): ei[k] = epsilon[k] grad[k, :] = (f(*((x+ei,)+args), **kwargs) - f(*((x-ei,)+args), **kwargs))/(2 * epsilon[k]) ei[k] = 0.0 if n == 1: return grad.T else: return grad.squeeze().T
Gradient of function, or Jacobian if function f returns 1d array Parameters ---------- x : ndarray parameters at which the derivative is evaluated f : function `f(*((x,)+args), **kwargs)` returning either one value or 1d array epsilon : float, optional Stepsize, if None, optimal stepsize is used. This is EPS**(1/2)*x for `centered` == False and EPS**(1/3)*x for `centered` == True. args : tuple Tuple of additional arguments for function `f`. kwargs : dict Dictionary of additional keyword arguments for function `f`. centered : bool Whether central difference should be returned. If not, does forward differencing. Returns ------- grad : ndarray gradient or Jacobian Notes ----- If f returns a 1d array, it returns a Jacobian. If a 2d array is returned by f (e.g., with a value for each observation), it returns a 3d array with the Jacobian of each observation with shape xk x nobs x xk. I.e., the Jacobian of the first observation would be [:, 0, :]
approx_fprime
python
statsmodels/statsmodels
statsmodels/tools/numdiff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/numdiff.py
BSD-3-Clause
def approx_fprime_cs(x, f, epsilon=None, args=(), kwargs={}): ''' Calculate gradient or Jacobian with complex step derivative approximation Parameters ---------- x : ndarray parameters at which the derivative is evaluated f : function `f(*((x,)+args), **kwargs)` returning either one value or 1d array epsilon : float, optional Stepsize, if None, optimal stepsize is used. Optimal step-size is EPS*x. See note. args : tuple Tuple of additional arguments for function `f`. kwargs : dict Dictionary of additional keyword arguments for function `f`. Returns ------- partials : ndarray array of partial derivatives, Gradient or Jacobian Notes ----- The complex-step derivative has truncation error O(epsilon**2), so truncation error can be eliminated by choosing epsilon to be very small. The complex-step derivative avoids the problem of round-off error with small epsilon because there is no subtraction. ''' # From Guilherme P. de Freitas, numpy mailing list # May 04 2010 thread "Improvement of performance" # http://mail.scipy.org/pipermail/numpy-discussion/2010-May/050250.html n = len(x) epsilon = _get_epsilon(x, 1, epsilon, n) increments = np.identity(n) * 1j * epsilon # TODO: see if this can be vectorized, but usually dim is small partials = [f(x+ih, *args, **kwargs).imag / epsilon[i] for i, ih in enumerate(increments)] return np.array(partials).T
Calculate gradient or Jacobian with complex step derivative approximation Parameters ---------- x : ndarray parameters at which the derivative is evaluated f : function `f(*((x,)+args), **kwargs)` returning either one value or 1d array epsilon : float, optional Stepsize, if None, optimal stepsize is used. Optimal step-size is EPS*x. See note. args : tuple Tuple of additional arguments for function `f`. kwargs : dict Dictionary of additional keyword arguments for function `f`. Returns ------- partials : ndarray array of partial derivatives, Gradient or Jacobian Notes ----- The complex-step derivative has truncation error O(epsilon**2), so truncation error can be eliminated by choosing epsilon to be very small. The complex-step derivative avoids the problem of round-off error with small epsilon because there is no subtraction.
approx_fprime_cs
python
statsmodels/statsmodels
statsmodels/tools/numdiff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/numdiff.py
BSD-3-Clause
def _approx_fprime_cs_scalar(x, f, epsilon=None, args=(), kwargs={}): ''' Calculate gradient for scalar parameter with complex step derivatives. This assumes that the function ``f`` is vectorized for a scalar parameter. The function value ``f(x)`` has then the same shape as the input ``x``. The derivative returned by this function also has the same shape as ``x``. Parameters ---------- x : ndarray Parameters at which the derivative is evaluated. f : function `f(*((x,)+args), **kwargs)` returning either one value or 1d array. epsilon : float, optional Stepsize, if None, optimal stepsize is used. Optimal step-size is EPS*x. See note. args : tuple Tuple of additional arguments for function `f`. kwargs : dict Dictionary of additional keyword arguments for function `f`. Returns ------- partials : ndarray Array of derivatives, gradient evaluated for parameters ``x``. Notes ----- The complex-step derivative has truncation error O(epsilon**2), so truncation error can be eliminated by choosing epsilon to be very small. The complex-step derivative avoids the problem of round-off error with small epsilon because there is no subtraction. ''' # From Guilherme P. de Freitas, numpy mailing list # May 04 2010 thread "Improvement of performance" # http://mail.scipy.org/pipermail/numpy-discussion/2010-May/050250.html x = np.asarray(x) n = x.shape[-1] epsilon = _get_epsilon(x, 1, epsilon, n) eps = 1j * epsilon partials = f(x + eps, *args, **kwargs).imag / epsilon return np.array(partials)
Calculate gradient for scalar parameter with complex step derivatives. This assumes that the function ``f`` is vectorized for a scalar parameter. The function value ``f(x)`` has then the same shape as the input ``x``. The derivative returned by this function also has the same shape as ``x``. Parameters ---------- x : ndarray Parameters at which the derivative is evaluated. f : function `f(*((x,)+args), **kwargs)` returning either one value or 1d array. epsilon : float, optional Stepsize, if None, optimal stepsize is used. Optimal step-size is EPS*x. See note. args : tuple Tuple of additional arguments for function `f`. kwargs : dict Dictionary of additional keyword arguments for function `f`. Returns ------- partials : ndarray Array of derivatives, gradient evaluated for parameters ``x``. Notes ----- The complex-step derivative has truncation error O(epsilon**2), so truncation error can be eliminated by choosing epsilon to be very small. The complex-step derivative avoids the problem of round-off error with small epsilon because there is no subtraction.
_approx_fprime_cs_scalar
python
statsmodels/statsmodels
statsmodels/tools/numdiff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/numdiff.py
BSD-3-Clause
def approx_hess_cs(x, f, epsilon=None, args=(), kwargs={}): '''Calculate Hessian with complex-step derivative approximation Parameters ---------- x : array_like value at which function derivative is evaluated f : function function of one array f(x) epsilon : float stepsize, if None, then stepsize is automatically chosen Returns ------- hess : ndarray array of partial second derivatives, Hessian Notes ----- based on equation 10 in M. S. RIDOUT: Statistical Applications of the Complex-step Method of Numerical Differentiation, University of Kent, Canterbury, Kent, U.K. The stepsize is the same for the complex and the finite difference part. ''' # TODO: might want to consider lowering the step for pure derivatives n = len(x) h = _get_epsilon(x, 3, epsilon, n) ee = np.diag(h) hess = np.outer(h, h) n = len(x) for i in range(n): for j in range(i, n): hess[i, j] = np.squeeze( (f(*((x + 1j*ee[i, :] + ee[j, :],) + args), **kwargs) - f(*((x + 1j*ee[i, :] - ee[j, :],)+args), **kwargs)).imag/2./hess[i, j] ) hess[j, i] = hess[i, j] return hess
Calculate Hessian with complex-step derivative approximation Parameters ---------- x : array_like value at which function derivative is evaluated f : function function of one array f(x) epsilon : float stepsize, if None, then stepsize is automatically chosen Returns ------- hess : ndarray array of partial second derivatives, Hessian Notes ----- based on equation 10 in M. S. RIDOUT: Statistical Applications of the Complex-step Method of Numerical Differentiation, University of Kent, Canterbury, Kent, U.K. The stepsize is the same for the complex and the finite difference part.
approx_hess_cs
python
statsmodels/statsmodels
statsmodels/tools/numdiff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/numdiff.py
BSD-3-Clause
def test_missing_data_pandas(): """ Fixes GH: #144 """ X = np.random.random((10, 5)) X[1, 2] = np.nan df = pandas.DataFrame(X) vals, cnames, rnames = data.interpret_data(df) np.testing.assert_equal(rnames.tolist(), [0, 2, 3, 4, 5, 6, 7, 8, 9])
Fixes GH: #144
test_missing_data_pandas
python
statsmodels/statsmodels
statsmodels/tools/tests/test_data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tests/test_data.py
BSD-3-Clause
def _right_squeeze(arr, stop_dim=0): """ Remove trailing singleton dimensions Parameters ---------- arr : ndarray Input array stop_dim : int Dimension where checking should stop so that shape[i] is not checked for i < stop_dim Returns ------- squeezed : ndarray Array with all trailing singleton dimensions (0 or 1) removed. Singleton dimensions for dimension < stop_dim are retained. """ last = arr.ndim for s in reversed(arr.shape): if s > 1: break last -= 1 last = max(last, stop_dim) return arr.reshape(arr.shape[:last])
Remove trailing singleton dimensions Parameters ---------- arr : ndarray Input array stop_dim : int Dimension where checking should stop so that shape[i] is not checked for i < stop_dim Returns ------- squeezed : ndarray Array with all trailing singleton dimensions (0 or 1) removed. Singleton dimensions for dimension < stop_dim are retained.
_right_squeeze
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def array_like( obj, name, dtype=np.double, ndim=1, maxdim=None, shape=None, order=None, contiguous=False, optional=False, writeable=True, ): """ Convert array-like to a ndarray and check conditions Parameters ---------- obj : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. name : str Name of the variable to use in exceptions dtype : {None, numpy.dtype, str} Required dtype. Default is double. If None, does not change the dtype of obj (if present) or uses NumPy to automatically detect the dtype ndim : {int, None} Required number of dimensions of obj. If None, no check is performed. If the number of dimensions of obj is less than ndim, additional axes are inserted on the right. See examples. maxdim : {int, None} Maximum allowed dimension. Use ``maxdim`` instead of ``ndim`` when inputs are allowed to have ndim 1, 2, ..., or maxdim. shape : {tuple[int], None} Required shape obj. If None, no check is performed. Partially restricted shapes can be checked using None. See examples. order : {'C', 'F', None} Order of the array contiguous : bool Ensure that the array's data is contiguous with order ``order`` optional : bool Flag indicating whether None is allowed writeable : bool Whether to ensure the returned array is writeable Returns ------- ndarray The converted input. Examples -------- Convert a list or pandas series to an array >>> import pandas as pd >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) >>> a = array_like(pd.Series(x), 'x', ndim=1) >>> a.shape (4,) >>> type(a.orig) pandas.core.series.Series Squeezes singleton dimensions when required >>> x = np.array(x).reshape((4, 1)) >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) Right-appends when required size is larger than actual >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=2) >>> a.shape (4, 1) Check only the first and last dimension of the input >>> x = np.arange(4*10*4).reshape((4, 10, 4)) >>> y = array_like(x, 'x', ndim=3, shape=(4, None, 4)) Check only the first two dimensions >>> z = array_like(x, 'x', ndim=3, shape=(4, 10)) Raises ValueError if constraints are not satisfied >>> z = array_like(x, 'x', ndim=2) Traceback (most recent call last): ... ValueError: x is required to have ndim 2 but has ndim 3 >>> z = array_like(x, 'x', shape=(10, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (10, 4, 4) but has shape (4, 10, 4) >>> z = array_like(x, 'x', shape=(None, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (*, 4, 4) but has shape (4, 10, 4) """ if optional and obj is None: return None reqs = ["W"] if writeable else [] if order == "C" or contiguous: reqs += ["C"] elif order == "F": reqs += ["F"] arr = np.require(obj, dtype=dtype, requirements=reqs) if maxdim is not None: if arr.ndim > maxdim: msg = f"{name} must have ndim <= {maxdim}" raise ValueError(msg) elif ndim is not None: if arr.ndim > ndim: arr = _right_squeeze(arr, stop_dim=ndim) elif arr.ndim < ndim: arr = np.reshape(arr, arr.shape + (1,) * (ndim - arr.ndim)) if arr.ndim != ndim: msg = "{0} is required to have ndim {1} but has ndim {2}" raise ValueError(msg.format(name, ndim, arr.ndim)) if shape is not None: for actual, req in zip(arr.shape, shape): if req is not None and actual != req: req_shape = str(shape).replace("None, ", "*, ") msg = "{0} is required to have shape {1} but has shape {2}" raise ValueError(msg.format(name, req_shape, arr.shape)) return arr
Convert array-like to a ndarray and check conditions Parameters ---------- obj : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. name : str Name of the variable to use in exceptions dtype : {None, numpy.dtype, str} Required dtype. Default is double. If None, does not change the dtype of obj (if present) or uses NumPy to automatically detect the dtype ndim : {int, None} Required number of dimensions of obj. If None, no check is performed. If the number of dimensions of obj is less than ndim, additional axes are inserted on the right. See examples. maxdim : {int, None} Maximum allowed dimension. Use ``maxdim`` instead of ``ndim`` when inputs are allowed to have ndim 1, 2, ..., or maxdim. shape : {tuple[int], None} Required shape obj. If None, no check is performed. Partially restricted shapes can be checked using None. See examples. order : {'C', 'F', None} Order of the array contiguous : bool Ensure that the array's data is contiguous with order ``order`` optional : bool Flag indicating whether None is allowed writeable : bool Whether to ensure the returned array is writeable Returns ------- ndarray The converted input. Examples -------- Convert a list or pandas series to an array >>> import pandas as pd >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) >>> a = array_like(pd.Series(x), 'x', ndim=1) >>> a.shape (4,) >>> type(a.orig) pandas.core.series.Series Squeezes singleton dimensions when required >>> x = np.array(x).reshape((4, 1)) >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) Right-appends when required size is larger than actual >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=2) >>> a.shape (4, 1) Check only the first and last dimension of the input >>> x = np.arange(4*10*4).reshape((4, 10, 4)) >>> y = array_like(x, 'x', ndim=3, shape=(4, None, 4)) Check only the first two dimensions >>> z = array_like(x, 'x', ndim=3, shape=(4, 10)) Raises ValueError if constraints are not satisfied >>> z = array_like(x, 'x', ndim=2) Traceback (most recent call last): ... ValueError: x is required to have ndim 2 but has ndim 3 >>> z = array_like(x, 'x', shape=(10, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (10, 4, 4) but has shape (4, 10, 4) >>> z = array_like(x, 'x', shape=(None, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (*, 4, 4) but has shape (4, 10, 4)
array_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def wrap(self, obj, columns=None, append=None, trim_start=0, trim_end=0): """ Parameters ---------- obj : {array_like} The value to wrap like to a pandas Series or DataFrame. columns : {str, list[str]} Column names or series name, if obj is 1d. append : str String to append to the columns to create a new column name. trim_start : int The number of observations to drop from the start of the index, so that the index applied is index[trim_start:]. trim_end : int The number of observations to drop from the end of the index , so that the index applied is index[:nobs - trim_end]. Returns ------- array_like A pandas Series or DataFrame, depending on the shape of obj. """ obj = np.asarray(obj) if not self._is_pandas: return obj if obj.shape[0] + trim_start + trim_end != self._pandas_obj.shape[0]: raise ValueError( "obj must have the same number of elements in " "axis 0 as orig" ) index = self._pandas_obj.index index = index[trim_start: index.shape[0] - trim_end] if obj.ndim == 1: if columns is None: name = getattr(self._pandas_obj, "name", None) elif isinstance(columns, str): name = columns else: name = columns[0] if append is not None: name = append if name is None else f"{name}_{append}" return pd.Series(obj, name=name, index=index) elif obj.ndim == 2: if columns is None: columns = getattr(self._pandas_obj, "columns", None) if append is not None: new = [] for c in columns: new.append(append if c is None else f"{c}_{append}") columns = new return pd.DataFrame(obj, columns=columns, index=index) else: raise ValueError("Can only wrap 1 or 2-d array_like")
Parameters ---------- obj : {array_like} The value to wrap like to a pandas Series or DataFrame. columns : {str, list[str]} Column names or series name, if obj is 1d. append : str String to append to the columns to create a new column name. trim_start : int The number of observations to drop from the start of the index, so that the index applied is index[trim_start:]. trim_end : int The number of observations to drop from the end of the index , so that the index applied is index[:nobs - trim_end]. Returns ------- array_like A pandas Series or DataFrame, depending on the shape of obj.
wrap
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def bool_like(value, name, optional=False, strict=False): """ Convert to bool or raise if not bool_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow bool. If False, allow types that support casting to bool. Returns ------- converted : bool value converted to a bool """ if optional and value is None: return value extra_text = " or None" if optional else "" if strict: if isinstance(value, bool): return value else: raise TypeError(f"{name} must be a bool{extra_text}") if hasattr(value, "squeeze") and callable(value.squeeze): value = value.squeeze() try: return bool(value) except Exception: raise TypeError( "{} must be a bool (or bool-compatible)" "{}".format(name, extra_text) )
Convert to bool or raise if not bool_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow bool. If False, allow types that support casting to bool. Returns ------- converted : bool value converted to a bool
bool_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def int_like( value: Any, name: str, optional: bool = False, strict: bool = False ) -> Optional[int]: """ Convert to int or raise if not int_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int or np.integer that are not bool. If False, allow types that support integer division by 1 and conversion to int. Returns ------- converted : int value converted to a int """ if optional and value is None: return None is_bool_timedelta = isinstance(value, (bool, np.timedelta64)) if hasattr(value, "squeeze") and callable(value.squeeze): value = value.squeeze() if isinstance(value, (int, np.integer)) and not is_bool_timedelta: return int(value) elif not strict and not is_bool_timedelta: try: if value == (value // 1): return int(value) except Exception: pass extra_text = " or None" if optional else "" raise TypeError( "{} must be integer_like (int or np.integer, but not bool" " or timedelta64){}".format(name, extra_text) )
Convert to int or raise if not int_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int or np.integer that are not bool. If False, allow types that support integer division by 1 and conversion to int. Returns ------- converted : int value converted to a int
int_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def float_like(value, name, optional=False, strict=False): """ Convert to float or raise if not float_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int, np.integer, float or np.inexact that are not bool or complex. If False, allow complex types with 0 imag part or any other type that is float like in the sense that it support multiplication by 1.0 and conversion to float. Returns ------- converted : float value converted to a float """ if optional and value is None: return None is_bool = isinstance(value, bool) is_complex = isinstance(value, (complex, np.complexfloating)) if hasattr(value, "squeeze") and callable(value.squeeze): value = value.squeeze() if isinstance(value, (int, np.integer, float, np.inexact)) and not ( is_bool or is_complex ): return float(value) elif not strict and is_complex: imag = np.imag(value) if imag == 0: return float(np.real(value)) elif not strict and not is_bool: try: return float(value / 1.0) except Exception: pass extra_text = " or None" if optional else "" raise TypeError( "{} must be float_like (float or np.inexact)" "{}".format(name, extra_text) )
Convert to float or raise if not float_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int, np.integer, float or np.inexact that are not bool or complex. If False, allow complex types with 0 imag part or any other type that is float like in the sense that it support multiplication by 1.0 and conversion to float. Returns ------- converted : float value converted to a float
float_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def string_like(value, name, optional=False, options=None, lower=True): """ Check if object is string-like and raise if not Parameters ---------- value : object Value to verify. name : str Variable name for exceptions. optional : bool Flag indicating whether None is allowed. options : tuple[str] Allowed values for input parameter `value`. lower : bool Convert all case-based characters in `value` into lowercase. Returns ------- str The validated input Raises ------ TypeError If the value is not a string or None when optional is True. ValueError If the input is not in ``options`` when ``options`` is set. """ if value is None: return None if not isinstance(value, str): extra_text = " or None" if optional else "" raise TypeError(f"{name} must be a string{extra_text}") if lower: value = value.lower() if options is not None and value not in options: extra_text = "If not None, " if optional else "" options_text = "'" + "', '".join(options) + "'" msg = "{}{} must be one of: {}".format( extra_text, name, options_text ) raise ValueError(msg) return value
Check if object is string-like and raise if not Parameters ---------- value : object Value to verify. name : str Variable name for exceptions. optional : bool Flag indicating whether None is allowed. options : tuple[str] Allowed values for input parameter `value`. lower : bool Convert all case-based characters in `value` into lowercase. Returns ------- str The validated input Raises ------ TypeError If the value is not a string or None when optional is True. ValueError If the input is not in ``options`` when ``options`` is set.
string_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def dict_like(value, name, optional=False, strict=True): """ Check if dict_like (dict, Mapping) or raise if not Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow dict. If False, allow any Mapping-like object. Returns ------- converted : dict_like value """ if optional and value is None: return None if not isinstance(value, Mapping) or ( strict and not (isinstance(value, dict)) ): extra_text = "If not None, " if optional else "" strict_text = " or dict_like (i.e., a Mapping)" if strict else "" msg = f"{extra_text}{name} must be a dict{strict_text}" raise TypeError(msg) return value
Check if dict_like (dict, Mapping) or raise if not Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow dict. If False, allow any Mapping-like object. Returns ------- converted : dict_like value
dict_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def _noncentrality_chisquare(chi2_stat, df, alpha=0.05): """noncentrality parameter for chi-square statistic `nc` is zero-truncated umvue Parameters ---------- chi2_stat : float Chisquare-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657. .. [2] Li, Qizhai, Junjian Zhang, and Shuai Dai. 2009. “On Estimating the Non-Centrality Parameter of a Chi-Squared Distribution.” Statistics & Probability Letters 79 (1): 98–104. https://doi.org/10.1016/j.spl.2008.07.025. """ alpha_half = alpha / 2 nc_umvue = chi2_stat - df nc = np.maximum(nc_umvue, 0) nc_lzd = np.maximum(nc_umvue, chi2_stat / (df + 1)) nc_krs = np.maximum(nc_umvue, chi2_stat * 2 / (df + 2)) nc_median = special.chndtrinc(chi2_stat, df, 0.5) ci = special.chndtrinc(chi2_stat, df, [1 - alpha_half, alpha_half]) res = Holder(nc=nc, confint=ci, nc_umvue=nc_umvue, nc_lzd=nc_lzd, nc_krs=nc_krs, nc_median=nc_median, name="Noncentrality for chisquare-distributed random variable" ) return res
noncentrality parameter for chi-square statistic `nc` is zero-truncated umvue Parameters ---------- chi2_stat : float Chisquare-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657. .. [2] Li, Qizhai, Junjian Zhang, and Shuai Dai. 2009. “On Estimating the Non-Centrality Parameter of a Chi-Squared Distribution.” Statistics & Probability Letters 79 (1): 98–104. https://doi.org/10.1016/j.spl.2008.07.025.
_noncentrality_chisquare
python
statsmodels/statsmodels
statsmodels/stats/effect_size.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/effect_size.py
BSD-3-Clause
def _noncentrality_f(f_stat, df1, df2, alpha=0.05): """noncentrality parameter for f statistic `nc` is zero-truncated umvue Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657. """ alpha_half = alpha / 2 x_s = f_stat * df1 / df2 nc_umvue = (df2 - 2) * x_s - df1 nc = np.maximum(nc_umvue, 0) nc_krs = np.maximum(nc_umvue, x_s * 2 * (df2 - 1) / (df1 + 2)) nc_median = special.ncfdtrinc(df1, df2, 0.5, f_stat) ci = special.ncfdtrinc(df1, df2, [1 - alpha_half, alpha_half], f_stat) res = Holder(nc=nc, confint=ci, nc_umvue=nc_umvue, nc_krs=nc_krs, nc_median=nc_median, name="Noncentrality for F-distributed random variable" ) return res
noncentrality parameter for f statistic `nc` is zero-truncated umvue Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657.
_noncentrality_f
python
statsmodels/statsmodels
statsmodels/stats/effect_size.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/effect_size.py
BSD-3-Clause
def _noncentrality_t(t_stat, df, alpha=0.05): """noncentrality parameter for t statistic Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Hedges, Larry V. 2016. “Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators:” Journal of Educational Statistics, November. https://doi.org/10.3102/10769986006002107. """ alpha_half = alpha / 2 gfac = np.exp(special.gammaln(df/2.-0.5) - special.gammaln(df/2.)) c11 = np.sqrt(df/2.) * gfac nc = t_stat / c11 nc_median = special.nctdtrinc(df, 0.5, t_stat) ci = special.nctdtrinc(df, [1 - alpha_half, alpha_half], t_stat) res = Holder(nc=nc, confint=ci, nc_median=nc_median, name="Noncentrality for t-distributed random variable" ) return res
noncentrality parameter for t statistic Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Hedges, Larry V. 2016. “Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators:” Journal of Educational Statistics, November. https://doi.org/10.3102/10769986006002107.
_noncentrality_t
python
statsmodels/statsmodels
statsmodels/stats/effect_size.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/effect_size.py
BSD-3-Clause
def _kurtosis(a): """ wrapper for scipy.stats.kurtosis that returns nan instead of raising Error missing options """ try: res = stats.kurtosis(a) except ValueError: res = np.nan return res
wrapper for scipy.stats.kurtosis that returns nan instead of raising Error missing options
_kurtosis
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def _skew(a): """ wrapper for scipy.stats.skew that returns nan instead of raising Error missing options """ try: res = stats.skew(a) except ValueError: res = np.nan return res
wrapper for scipy.stats.skew that returns nan instead of raising Error missing options
_skew
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def sign_test(samp, mu0=0): """ Signs test Parameters ---------- samp : array_like 1d array. The sample for which you want to perform the sign test. mu0 : float See Notes for the definition of the sign test. mu0 is 0 by default, but it is common to set it to the median. Returns ------- M p-value Notes ----- The signs test returns M = (N(+) - N(-))/2 where N(+) is the number of values above `mu0`, N(-) is the number of values below. Values equal to `mu0` are discarded. The p-value for M is calculated using the binomial distribution and can be interpreted the same as for a t-test. The test-statistic is distributed Binom(min(N(+), N(-)), n_trials, .5) where n_trials equals N(+) + N(-). See Also -------- scipy.stats.wilcoxon """ samp = np.asarray(samp) pos = np.sum(samp > mu0) neg = np.sum(samp < mu0) M = (pos - neg) / 2.0 try: p = stats.binomtest(min(pos, neg), pos + neg, 0.5).pvalue except AttributeError: # Remove after min SciPy >= 1.7 p = stats.binom_test(min(pos, neg), pos + neg, 0.5) return M, p
Signs test Parameters ---------- samp : array_like 1d array. The sample for which you want to perform the sign test. mu0 : float See Notes for the definition of the sign test. mu0 is 0 by default, but it is common to set it to the median. Returns ------- M p-value Notes ----- The signs test returns M = (N(+) - N(-))/2 where N(+) is the number of values above `mu0`, N(-) is the number of values below. Values equal to `mu0` are discarded. The p-value for M is calculated using the binomial distribution and can be interpreted the same as for a t-test. The test-statistic is distributed Binom(min(N(+), N(-)), n_trials, .5) where n_trials equals N(+) + N(-). See Also -------- scipy.stats.wilcoxon
sign_test
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def frame(self) -> pd.DataFrame: """ Descriptive statistics for both numeric and categorical data Returns ------- DataFrame The statistics """ numeric = self.numeric categorical = self.categorical if categorical.shape[1] == 0: return numeric elif numeric.shape[1] == 0: return categorical df = pd.concat([numeric, categorical], axis=1) return self._reorder(df[self._data.columns])
Descriptive statistics for both numeric and categorical data Returns ------- DataFrame The statistics
frame
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def numeric(self) -> pd.DataFrame: """ Descriptive statistics for numeric data Returns ------- DataFrame The statistics of the numeric columns """ df: pd.DataFrame = self._data.loc[:, self._is_numeric] cols = df.columns _, k = df.shape std = df.std() count = df.count() mean = df.mean() mad = (df - mean).abs().mean() std_err = std.copy() std_err.loc[count > 0] /= count.loc[count > 0] ** 0.5 if self._use_t: q = stats.t(count - 1).ppf(1.0 - self._alpha / 2) else: q = stats.norm.ppf(1.0 - self._alpha / 2) def _mode(ser): dtype = ser.dtype if isinstance(ser.dtype, np.dtype) else ser.dtype.numpy_dtype ser_no_missing = ser.dropna().to_numpy(dtype=dtype) kwargs = {} if SP_LT_19 else {"keepdims": True} mode_res = stats.mode(ser_no_missing, **kwargs) # Changes in SciPy 1.10 if np.isscalar(mode_res[0]): return float(mode_res[0]), mode_res[1] if mode_res[0].shape[0] > 0: return [float(val) for val in mode_res] return np.nan, np.nan mode_values = df.apply(_mode).T if mode_values.size > 0: if isinstance(mode_values, pd.DataFrame): # pandas 1.0 or later mode = np.asarray(mode_values[0], dtype=float) mode_counts = np.asarray(mode_values[1], dtype=np.int64) else: # pandas before 1.0 returns a Series of 2-elem list mode = [] mode_counts = [] for idx in mode_values.index: val = mode_values.loc[idx] mode.append(val[0]) mode_counts.append(val[1]) mode = np.atleast_1d(mode) mode_counts = np.atleast_1d(mode_counts) else: mode = mode_counts = np.empty(0) loc = count > 0 mode_freq = np.full(mode.shape[0], np.nan) mode_freq[loc] = mode_counts[loc] / count.loc[loc] # TODO: Workaround for pandas AbstractMethodError in extension # types. Remove when quantile is supported for these _df = df try: from pandas.api.types import is_extension_array_dtype _df = df.copy() for col in df: if is_extension_array_dtype(df[col].dtype): if _df[col].isnull().any(): _df[col] = _df[col].fillna(np.nan) except ImportError: pass if df.shape[1] > 0: iqr = _df.quantile(0.75) - _df.quantile(0.25) else: iqr = mean def _safe_jarque_bera(c): a = np.asarray(c) if a.shape[0] < 2: return (np.nan,) * 4 return jarque_bera(a) jb = df.apply( lambda x: list(_safe_jarque_bera(x.dropna())), result_type="expand" ).T nan_mean = mean.copy() nan_mean.loc[nan_mean == 0] = np.nan coef_var = std / nan_mean results = { "nobs": pd.Series( np.ones(k, dtype=np.int64) * df.shape[0], index=cols ), "missing": df.shape[0] - count, "mean": mean, "std_err": std_err, "upper_ci": mean + q * std_err, "lower_ci": mean - q * std_err, "std": std, "iqr": iqr, "mad": mad, "coef_var": coef_var, "range": pd_ptp(df), "max": df.max(), "min": df.min(), "skew": jb[2], "kurtosis": jb[3], "iqr_normal": iqr / np.diff(stats.norm.ppf([0.25, 0.75])), "mad_normal": mad / np.sqrt(2 / np.pi), "jarque_bera": jb[0], "jarque_bera_pval": jb[1], "mode": pd.Series(mode, index=cols), "mode_freq": pd.Series(mode_freq, index=cols), "median": df.median(), } final = {k: v for k, v in results.items() if k in self._stats} results_df = pd.DataFrame( list(final.values()), columns=cols, index=list(final.keys()) ) if "percentiles" not in self._stats: return results_df # Pandas before 1.0 cannot handle empty DF if df.shape[1] > 0: # TODO: Remove when extension types support quantile perc = _df.quantile(self._percentiles / 100).astype(float) else: perc = pd.DataFrame(index=self._percentiles / 100, dtype=float) if np.all(np.floor(100 * perc.index) == (100 * perc.index)): perc.index = [f"{int(100 * idx)}%" for idx in perc.index] else: dupe = True scale = 100 index = perc.index while dupe: scale *= 10 idx = np.floor(scale * perc.index) if np.all(np.diff(idx) > 0): dupe = False index = np.floor(scale * index) / (scale / 100) fmt = f"0.{len(str(scale//100))-1}f" output = f"{{0:{fmt}}}%" perc.index = [output.format(val) for val in index] # Add in the names of the percentiles to the output self._stats = self._stats + perc.index.tolist() return self._reorder(pd.concat([results_df, perc], axis=0))
Descriptive statistics for numeric data Returns ------- DataFrame The statistics of the numeric columns
numeric
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def categorical(self) -> pd.DataFrame: """ Descriptive statistics for categorical data Returns ------- DataFrame The statistics of the categorical columns """ df = self._data.loc[:, [col for col in self._is_cat_like]] k = df.shape[1] cols = df.columns vc = {col: df[col].value_counts(normalize=True) for col in df} distinct = pd.Series( {col: vc[col].shape[0] for col in vc}, dtype=np.int64 ) top = {} freq = {} for col in vc: single = vc[col] if single.shape[0] >= self._ntop: top[col] = single.index[: self._ntop] freq[col] = np.asarray(single.iloc[:5]) else: val = list(single.index) val += [None] * (self._ntop - len(val)) top[col] = val freq_val = list(single) freq_val += [np.nan] * (self._ntop - len(freq_val)) freq[col] = np.asarray(freq_val) index = [f"top_{i}" for i in range(1, self._ntop + 1)] top_df = pd.DataFrame(top, dtype="object", index=index, columns=cols) index = [f"freq_{i}" for i in range(1, self._ntop + 1)] freq_df = pd.DataFrame(freq, dtype="object", index=index, columns=cols) results = { "nobs": pd.Series( np.ones(k, dtype=np.int64) * df.shape[0], index=cols ), "missing": df.shape[0] - df.count(), "distinct": distinct, } final = {k: v for k, v in results.items() if k in self._stats} results_df = pd.DataFrame( list(final.values()), columns=cols, index=list(final.keys()), dtype="object", ) if self._compute_top: results_df = pd.concat([results_df, top_df], axis=0) if self._compute_freq: results_df = pd.concat([results_df, freq_df], axis=0) return self._reorder(results_df)
Descriptive statistics for categorical data Returns ------- DataFrame The statistics of the categorical columns
categorical
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def summary(self) -> SimpleTable: """ Summary table of the descriptive statistics Returns ------- SimpleTable A table instance supporting export to text, csv and LaTeX """ df = self.frame.astype(object) if df.isnull().any().any(): df = df.fillna("") cols = [str(col) for col in df.columns] stubs = [str(idx) for idx in df.index] data = [] for _, row in df.iterrows(): data.append([v for v in row]) def _formatter(v): if isinstance(v, str): return v elif v // 1 == v: return str(int(v)) return f"{v:0.4g}" return SimpleTable( data, header=cols, stubs=stubs, title="Descriptive Statistics", txt_fmt={"data_fmts": {0: "%s", 1: _formatter}}, datatypes=[1] * len(data), )
Summary table of the descriptive statistics Returns ------- SimpleTable A table instance supporting export to text, csv and LaTeX
summary
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def corr_nearest(corr, threshold=1e-15, n_fact=100): ''' Find the nearest correlation matrix that is positive semi-definite. The function iteratively adjust the correlation matrix by clipping the eigenvalues of a difference matrix. The diagonal elements are set to one. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes n_fact : int or float factor to determine the maximum number of iterations. The maximum number of iterations is the integer part of the number of columns in the correlation matrix times n_fact. Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. Stops after the first step if correlation matrix is already positive semi-definite or positive definite, so that smallest eigenvalue is above threshold. In this case, the returned array is not the original, but is equal to it within numerical precision. See Also -------- corr_clipped cov_nearest ''' k_vars = corr.shape[0] if k_vars != corr.shape[1]: raise ValueError("matrix is not square") diff = np.zeros(corr.shape) x_new = corr.copy() diag_idx = np.arange(k_vars) for ii in range(int(len(corr) * n_fact)): x_adj = x_new - diff x_psd, clipped = clip_evals(x_adj, value=threshold) if not clipped: x_new = x_psd break diff = x_psd - x_adj x_new = x_psd.copy() x_new[diag_idx, diag_idx] = 1 else: warnings.warn(iteration_limit_doc, IterationLimitWarning) return x_new
Find the nearest correlation matrix that is positive semi-definite. The function iteratively adjust the correlation matrix by clipping the eigenvalues of a difference matrix. The diagonal elements are set to one. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes n_fact : int or float factor to determine the maximum number of iterations. The maximum number of iterations is the integer part of the number of columns in the correlation matrix times n_fact. Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. Stops after the first step if correlation matrix is already positive semi-definite or positive definite, so that smallest eigenvalue is above threshold. In this case, the returned array is not the original, but is equal to it within numerical precision. See Also -------- corr_clipped cov_nearest
corr_nearest
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def corr_clipped(corr, threshold=1e-15): ''' Find a near correlation matrix that is positive semi-definite This function clips the eigenvalues, replacing eigenvalues smaller than the threshold by the threshold. The new matrix is normalized, so that the diagonal elements are one. Compared to corr_nearest, the distance between the original correlation matrix and the positive definite correlation matrix is larger, however, it is much faster since it only computes eigenvalues once. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. In examples, the smallest eigenvalue can be by a factor of 10 smaller than the threshold, e.g. threshold 1e-8 can result in smallest eigenvalue in the range between 1e-9 and 1e-8. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. The diagonal elements of returned correlation matrix is set to ones. If the correlation matrix is already positive semi-definite given the threshold, then the original correlation matrix is returned. ``cov_clipped`` is 40 or more times faster than ``cov_nearest`` in simple example, but has a slightly larger approximation error. See Also -------- corr_nearest cov_nearest ''' x_new, clipped = clip_evals(corr, value=threshold) if not clipped: return corr # cov2corr x_std = np.sqrt(np.diag(x_new)) x_new = x_new / x_std / x_std[:, None] return x_new
Find a near correlation matrix that is positive semi-definite This function clips the eigenvalues, replacing eigenvalues smaller than the threshold by the threshold. The new matrix is normalized, so that the diagonal elements are one. Compared to corr_nearest, the distance between the original correlation matrix and the positive definite correlation matrix is larger, however, it is much faster since it only computes eigenvalues once. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. In examples, the smallest eigenvalue can be by a factor of 10 smaller than the threshold, e.g. threshold 1e-8 can result in smallest eigenvalue in the range between 1e-9 and 1e-8. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. The diagonal elements of returned correlation matrix is set to ones. If the correlation matrix is already positive semi-definite given the threshold, then the original correlation matrix is returned. ``cov_clipped`` is 40 or more times faster than ``cov_nearest`` in simple example, but has a slightly larger approximation error. See Also -------- corr_nearest cov_nearest
corr_clipped
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def cov_nearest(cov, method='clipped', threshold=1e-15, n_fact=100, return_all=False): """ Find the nearest covariance matrix that is positive (semi-) definite This leaves the diagonal, i.e. the variance, unchanged Parameters ---------- cov : ndarray, (k,k) initial covariance matrix method : str if "clipped", then the faster but less accurate ``corr_clipped`` is used.if "nearest", then ``corr_nearest`` is used threshold : float clipping threshold for smallest eigen value, see Notes n_fact : int or float factor to determine the maximum number of iterations in ``corr_nearest``. See its doc string return_all : bool if False (default), then only the covariance matrix is returned. If True, then correlation matrix and standard deviation are additionally returned. Returns ------- cov_ : ndarray corrected covariance matrix corr_ : ndarray, (optional) corrected correlation matrix std_ : ndarray, (optional) standard deviation Notes ----- This converts the covariance matrix to a correlation matrix. Then, finds the nearest correlation matrix that is positive semidefinite and converts it back to a covariance matrix using the initial standard deviation. The smallest eigenvalue of the intermediate correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input covariance matrix is symmetric. See Also -------- corr_nearest corr_clipped """ from statsmodels.stats.moment_helpers import cov2corr, corr2cov cov_, std_ = cov2corr(cov, return_std=True) if method == 'clipped': corr_ = corr_clipped(cov_, threshold=threshold) else: # method == 'nearest' corr_ = corr_nearest(cov_, threshold=threshold, n_fact=n_fact) cov_ = corr2cov(corr_, std_) if return_all: return cov_, corr_, std_ else: return cov_
Find the nearest covariance matrix that is positive (semi-) definite This leaves the diagonal, i.e. the variance, unchanged Parameters ---------- cov : ndarray, (k,k) initial covariance matrix method : str if "clipped", then the faster but less accurate ``corr_clipped`` is used.if "nearest", then ``corr_nearest`` is used threshold : float clipping threshold for smallest eigen value, see Notes n_fact : int or float factor to determine the maximum number of iterations in ``corr_nearest``. See its doc string return_all : bool if False (default), then only the covariance matrix is returned. If True, then correlation matrix and standard deviation are additionally returned. Returns ------- cov_ : ndarray corrected covariance matrix corr_ : ndarray, (optional) corrected correlation matrix std_ : ndarray, (optional) standard deviation Notes ----- This converts the covariance matrix to a correlation matrix. Then, finds the nearest correlation matrix that is positive semidefinite and converts it back to a covariance matrix using the initial standard deviation. The smallest eigenvalue of the intermediate correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input covariance matrix is symmetric. See Also -------- corr_nearest corr_clipped
cov_nearest
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def _nmono_linesearch(obj, grad, x, d, obj_hist, M=10, sig1=0.1, sig2=0.9, gam=1e-4, maxiter=100): """ Implements the non-monotone line search of Grippo et al. (1986), as described in Birgin, Martinez and Raydan (2013). Parameters ---------- obj : real-valued function The objective function, to be minimized grad : vector-valued function The gradient of the objective function x : array_like The starting point for the line search d : array_like The search direction obj_hist : array_like Objective function history (must contain at least one value) M : positive int Number of previous function points to consider (see references for details). sig1 : real Tuning parameter, see references for details. sig2 : real Tuning parameter, see references for details. gam : real Tuning parameter, see references for details. maxiter : int The maximum number of iterations; returns Nones if convergence does not occur by this point Returns ------- alpha : real The step value x : Array_like The function argument at the final step obval : Real The function value at the final step g : Array_like The gradient at the final step Notes ----- The basic idea is to take a big step in the direction of the gradient, even if the function value is not decreased (but there is a maximum allowed increase in terms of the recent history of the iterates). References ---------- Grippo L, Lampariello F, Lucidi S (1986). A Nonmonotone Line Search Technique for Newton's Method. SIAM Journal on Numerical Analysis, 23, 707-716. E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint). """ alpha = 1. last_obval = obj(x) obj_max = max(obj_hist[-M:]) for iter in range(maxiter): obval = obj(x + alpha*d) g = grad(x) gtd = (g * d).sum() if obval <= obj_max + gam*alpha*gtd: return alpha, x + alpha*d, obval, g a1 = -0.5*alpha**2*gtd / (obval - last_obval - alpha*gtd) if (sig1 <= a1) and (a1 <= sig2*alpha): alpha = a1 else: alpha /= 2. last_obval = obval return None, None, None, None
Implements the non-monotone line search of Grippo et al. (1986), as described in Birgin, Martinez and Raydan (2013). Parameters ---------- obj : real-valued function The objective function, to be minimized grad : vector-valued function The gradient of the objective function x : array_like The starting point for the line search d : array_like The search direction obj_hist : array_like Objective function history (must contain at least one value) M : positive int Number of previous function points to consider (see references for details). sig1 : real Tuning parameter, see references for details. sig2 : real Tuning parameter, see references for details. gam : real Tuning parameter, see references for details. maxiter : int The maximum number of iterations; returns Nones if convergence does not occur by this point Returns ------- alpha : real The step value x : Array_like The function argument at the final step obval : Real The function value at the final step g : Array_like The gradient at the final step Notes ----- The basic idea is to take a big step in the direction of the gradient, even if the function value is not decreased (but there is a maximum allowed increase in terms of the recent history of the iterates). References ---------- Grippo L, Lampariello F, Lucidi S (1986). A Nonmonotone Line Search Technique for Newton's Method. SIAM Journal on Numerical Analysis, 23, 707-716. E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint).
_nmono_linesearch
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def _spg_optim(func, grad, start, project, maxiter=1e4, M=10, ctol=1e-3, maxiter_nmls=200, lam_min=1e-30, lam_max=1e30, sig1=0.1, sig2=0.9, gam=1e-4): """ Implements the spectral projected gradient method for minimizing a differentiable function on a convex domain. Parameters ---------- func : real valued function The objective function to be minimized. grad : real array-valued function The gradient of the objective function start : array_like The starting point project : function In-place projection of the argument to the domain of func. ... See notes regarding additional arguments Returns ------- rslt : Bunch rslt.params is the final iterate, other fields describe convergence status. Notes ----- This can be an effective heuristic algorithm for problems where no guaranteed algorithm for computing a global minimizer is known. There are a number of tuning parameters, but these generally should not be changed except for `maxiter` (positive integer) and `ctol` (small positive real). See the Birgin et al reference for more information about the tuning parameters. Reference --------- E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint). Available at: http://www.ime.usp.br/~egbirgin/publications/bmr5.pdf """ lam = min(10*lam_min, lam_max) params = start.copy() gval = grad(params) obj_hist = [func(params), ] for itr in range(int(maxiter)): # Check convergence df = params - gval project(df) df -= params if np.max(np.abs(df)) < ctol: return Bunch(**{"Converged": True, "params": params, "objective_values": obj_hist, "Message": "Converged successfully"}) # The line search direction d = params - lam*gval project(d) d -= params # Carry out the nonmonotone line search alpha, params1, fval, gval1 = _nmono_linesearch( func, grad, params, d, obj_hist, M=M, sig1=sig1, sig2=sig2, gam=gam, maxiter=maxiter_nmls) if alpha is None: return Bunch(**{"Converged": False, "params": params, "objective_values": obj_hist, "Message": "Failed in nmono_linesearch"}) obj_hist.append(fval) s = params1 - params y = gval1 - gval sy = (s*y).sum() if sy <= 0: lam = lam_max else: ss = (s*s).sum() lam = max(lam_min, min(ss/sy, lam_max)) params = params1 gval = gval1 return Bunch(**{"Converged": False, "params": params, "objective_values": obj_hist, "Message": "spg_optim did not converge"})
Implements the spectral projected gradient method for minimizing a differentiable function on a convex domain. Parameters ---------- func : real valued function The objective function to be minimized. grad : real array-valued function The gradient of the objective function start : array_like The starting point project : function In-place projection of the argument to the domain of func. ... See notes regarding additional arguments Returns ------- rslt : Bunch rslt.params is the final iterate, other fields describe convergence status. Notes ----- This can be an effective heuristic algorithm for problems where no guaranteed algorithm for computing a global minimizer is known. There are a number of tuning parameters, but these generally should not be changed except for `maxiter` (positive integer) and `ctol` (small positive real). See the Birgin et al reference for more information about the tuning parameters. Reference --------- E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint). Available at: http://www.ime.usp.br/~egbirgin/publications/bmr5.pdf
_spg_optim
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def _project_correlation_factors(X): """ Project a matrix into the domain of matrices whose row-wise sums of squares are less than or equal to 1. The input matrix is modified in-place. """ nm = np.sqrt((X*X).sum(1)) ii = np.flatnonzero(nm > 1) if len(ii) > 0: X[ii, :] /= nm[ii][:, None]
Project a matrix into the domain of matrices whose row-wise sums of squares are less than or equal to 1. The input matrix is modified in-place.
_project_correlation_factors
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def to_matrix(self): """ Returns the PSD matrix represented by this instance as a full (square) matrix. """ return np.diag(self.diag) + np.dot(self.root, self.root.T)
Returns the PSD matrix represented by this instance as a full (square) matrix.
to_matrix
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def decorrelate(self, rhs): """ Decorrelate the columns of `rhs`. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1/2} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- The returned matrix has the identity matrix as its row-wise population covariance matrix. This function exploits the factor structure for efficiency. """ # I + factor * qval * factor' is the inverse square root of # the covariance matrix in the homogeneous case where diag = # 1. qval = -1 + 1 / np.sqrt(1 + self.scales) # Decorrelate in the general case. rhs = rhs / np.sqrt(self.diag)[:, None] rhs1 = np.dot(self.factor.T, rhs) rhs1 *= qval[:, None] rhs1 = np.dot(self.factor, rhs1) rhs += rhs1 return rhs
Decorrelate the columns of `rhs`. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1/2} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- The returned matrix has the identity matrix as its row-wise population covariance matrix. This function exploits the factor structure for efficiency.
decorrelate
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def solve(self, rhs): """ Solve a linear system of equations with factor-structured coefficients. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- This function exploits the factor structure for efficiency. """ qval = -self.scales / (1 + self.scales) dr = np.sqrt(self.diag) rhs = rhs / dr[:, None] mat = qval[:, None] * np.dot(self.factor.T, rhs) rhs = rhs + np.dot(self.factor, mat) return rhs / dr[:, None]
Solve a linear system of equations with factor-structured coefficients. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- This function exploits the factor structure for efficiency.
solve
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def logdet(self): """ Returns the logarithm of the determinant of a factor-structured matrix. """ logdet = np.sum(np.log(self.diag)) logdet += np.sum(np.log(self.scales)) logdet += np.sum(np.log(1 + 1 / self.scales)) return logdet
Returns the logarithm of the determinant of a factor-structured matrix.
logdet
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def corr_nearest_factor(corr, rank, ctol=1e-6, lam_min=1e-30, lam_max=1e30, maxiter=1000): """ Find the nearest correlation matrix with factor structure to a given square matrix. Parameters ---------- corr : square array The target matrix (to which the nearest correlation matrix is sought). Must be square, but need not be positive semidefinite. rank : int The rank of the factor structure of the solution, i.e., the number of linearly independent columns of X. ctol : positive real Convergence criterion. lam_min : float Tuning parameter for spectral projected gradient optimization (smallest allowed step in the search direction). lam_max : float Tuning parameter for spectral projected gradient optimization (largest allowed step in the search direction). maxiter : int Maximum number of iterations in spectral projected gradient optimization. Returns ------- rslt : Bunch rslt.corr is a FactoredPSDMatrix defining the estimated correlation structure. Other fields of `rslt` contain returned values from spg_optim. Notes ----- A correlation matrix has factor structure if it can be written in the form I + XX' - diag(XX'), where X is n x k with linearly independent columns, and with each row having sum of squares at most equal to 1. The approximation is made in terms of the Frobenius norm. This routine is useful when one has an approximate correlation matrix that is not positive semidefinite, and there is need to estimate the inverse, square root, or inverse square root of the population correlation matrix. The factor structure allows these tasks to be done without constructing any n x n matrices. This is a non-convex problem with no known guaranteed globally convergent algorithm for computing the solution. Borsdof, Higham and Raydan (2010) compared several methods for this problem and found the spectral projected gradient (SPG) method (used here) to perform best. The input matrix `corr` can be a dense numpy array or any scipy sparse matrix. The latter is useful if the input matrix is obtained by thresholding a very large sample correlation matrix. If `corr` is sparse, the calculations are optimized to save memory, so no working matrix with more than 10^6 elements is constructed. References ---------- .. [*] R Borsdof, N Higham, M Raydan (2010). Computing a nearest correlation matrix with factor structure. SIAM J Matrix Anal Appl, 31:5, 2603-2622. http://eprints.ma.man.ac.uk/1523/01/covered/MIMS_ep2009_87.pdf Examples -------- Hard thresholding a correlation matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded correlation matrix with a PSD matrix as follows, where `corr` is the input correlation matrix. >>> import numpy as np >>> from statsmodels.stats.correlation_tools import corr_nearest_factor >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> corr = np.corrcoef(x.T) >>> corr = corr * (np.abs(corr) >= 0.3) >>> rslt = corr_nearest_factor(corr, 3) """ p, _ = corr.shape # Starting values (following the PCA method in BHR). u, s, vt = svds(corr, rank) X = u * np.sqrt(s) nm = np.sqrt((X**2).sum(1)) ii = np.flatnonzero(nm > 1e-5) X[ii, :] /= nm[ii][:, None] # Zero the diagonal corr1 = corr.copy() if type(corr1) is np.ndarray: np.fill_diagonal(corr1, 0) elif sparse.issparse(corr1): corr1.setdiag(np.zeros(corr1.shape[0])) corr1.eliminate_zeros() corr1.sort_indices() else: raise ValueError("Matrix type not supported") # The gradient, from lemma 4.1 of BHR. def grad(X): gr = np.dot(X, np.dot(X.T, X)) if type(corr1) is np.ndarray: gr -= np.dot(corr1, X) else: gr -= corr1.dot(X) gr -= (X*X).sum(1)[:, None] * X return 4*gr # The objective function (sum of squared deviations between fitted # and observed arrays). def func(X): if type(corr1) is np.ndarray: M = np.dot(X, X.T) np.fill_diagonal(M, 0) M -= corr1 fval = (M*M).sum() return fval else: fval = 0. # Control the size of intermediates max_ws = 1e6 bs = int(max_ws / X.shape[0]) ir = 0 while ir < X.shape[0]: ir2 = min(ir+bs, X.shape[0]) u = np.dot(X[ir:ir2, :], X.T) ii = np.arange(u.shape[0]) u[ii, ir+ii] = 0 u -= np.asarray(corr1[ir:ir2, :].todense()) fval += (u*u).sum() ir += bs return fval rslt = _spg_optim(func, grad, X, _project_correlation_factors, ctol=ctol, lam_min=lam_min, lam_max=lam_max, maxiter=maxiter) root = rslt.params diag = 1 - (root**2).sum(1) soln = FactoredPSDMatrix(diag, root) rslt.corr = soln del rslt.params return rslt
Find the nearest correlation matrix with factor structure to a given square matrix. Parameters ---------- corr : square array The target matrix (to which the nearest correlation matrix is sought). Must be square, but need not be positive semidefinite. rank : int The rank of the factor structure of the solution, i.e., the number of linearly independent columns of X. ctol : positive real Convergence criterion. lam_min : float Tuning parameter for spectral projected gradient optimization (smallest allowed step in the search direction). lam_max : float Tuning parameter for spectral projected gradient optimization (largest allowed step in the search direction). maxiter : int Maximum number of iterations in spectral projected gradient optimization. Returns ------- rslt : Bunch rslt.corr is a FactoredPSDMatrix defining the estimated correlation structure. Other fields of `rslt` contain returned values from spg_optim. Notes ----- A correlation matrix has factor structure if it can be written in the form I + XX' - diag(XX'), where X is n x k with linearly independent columns, and with each row having sum of squares at most equal to 1. The approximation is made in terms of the Frobenius norm. This routine is useful when one has an approximate correlation matrix that is not positive semidefinite, and there is need to estimate the inverse, square root, or inverse square root of the population correlation matrix. The factor structure allows these tasks to be done without constructing any n x n matrices. This is a non-convex problem with no known guaranteed globally convergent algorithm for computing the solution. Borsdof, Higham and Raydan (2010) compared several methods for this problem and found the spectral projected gradient (SPG) method (used here) to perform best. The input matrix `corr` can be a dense numpy array or any scipy sparse matrix. The latter is useful if the input matrix is obtained by thresholding a very large sample correlation matrix. If `corr` is sparse, the calculations are optimized to save memory, so no working matrix with more than 10^6 elements is constructed. References ---------- .. [*] R Borsdof, N Higham, M Raydan (2010). Computing a nearest correlation matrix with factor structure. SIAM J Matrix Anal Appl, 31:5, 2603-2622. http://eprints.ma.man.ac.uk/1523/01/covered/MIMS_ep2009_87.pdf Examples -------- Hard thresholding a correlation matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded correlation matrix with a PSD matrix as follows, where `corr` is the input correlation matrix. >>> import numpy as np >>> from statsmodels.stats.correlation_tools import corr_nearest_factor >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> corr = np.corrcoef(x.T) >>> corr = corr * (np.abs(corr) >= 0.3) >>> rslt = corr_nearest_factor(corr, 3)
corr_nearest_factor
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def cov_nearest_factor_homog(cov, rank): """ Approximate an arbitrary square matrix with a factor-structured matrix of the form k*I + XX'. Parameters ---------- cov : array_like The input array, must be square but need not be positive semidefinite rank : int The rank of the fitted factor structure Returns ------- A FactoredPSDMatrix instance containing the fitted matrix Notes ----- This routine is useful if one has an estimated covariance matrix that is not SPD, and the ultimate goal is to estimate the inverse, square root, or inverse square root of the true covariance matrix. The factor structure allows these tasks to be performed without constructing any n x n matrices. The calculations use the fact that if k is known, then X can be determined from the eigen-decomposition of cov - k*I, which can in turn be easily obtained form the eigen-decomposition of `cov`. Thus the problem can be reduced to a 1-dimensional search for k that does not require repeated eigen-decompositions. If the input matrix is sparse, then cov - k*I is also sparse, so the eigen-decomposition can be done efficiently using sparse routines. The one-dimensional search for the optimal value of k is not convex, so a local minimum could be obtained. Examples -------- Hard thresholding a covariance matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded covariance matrix with a PSD matrix as follows: >>> import numpy as np >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> cov = np.cov(x) >>> cov = cov * (np.abs(cov) >= 0.3) >>> rslt = cov_nearest_factor_homog(cov, 3) """ m, n = cov.shape Q, Lambda, _ = svds(cov, rank) if sparse.issparse(cov): QSQ = np.dot(Q.T, cov.dot(Q)) ts = cov.diagonal().sum() tss = cov.dot(cov).diagonal().sum() else: QSQ = np.dot(Q.T, np.dot(cov, Q)) ts = np.trace(cov) tss = np.trace(np.dot(cov, cov)) def fun(k): Lambda_t = Lambda - k v = tss + m*(k**2) + np.sum(Lambda_t**2) - 2*k*ts v += 2*k*np.sum(Lambda_t) - 2*np.sum(np.diag(QSQ) * Lambda_t) return v # Get the optimal decomposition k_opt = fminbound(fun, 0, 1e5) Lambda_opt = Lambda - k_opt fac_opt = Q * np.sqrt(Lambda_opt) diag = k_opt * np.ones(m, dtype=np.float64) # - (fac_opt**2).sum(1) return FactoredPSDMatrix(diag, fac_opt)
Approximate an arbitrary square matrix with a factor-structured matrix of the form k*I + XX'. Parameters ---------- cov : array_like The input array, must be square but need not be positive semidefinite rank : int The rank of the fitted factor structure Returns ------- A FactoredPSDMatrix instance containing the fitted matrix Notes ----- This routine is useful if one has an estimated covariance matrix that is not SPD, and the ultimate goal is to estimate the inverse, square root, or inverse square root of the true covariance matrix. The factor structure allows these tasks to be performed without constructing any n x n matrices. The calculations use the fact that if k is known, then X can be determined from the eigen-decomposition of cov - k*I, which can in turn be easily obtained form the eigen-decomposition of `cov`. Thus the problem can be reduced to a 1-dimensional search for k that does not require repeated eigen-decompositions. If the input matrix is sparse, then cov - k*I is also sparse, so the eigen-decomposition can be done efficiently using sparse routines. The one-dimensional search for the optimal value of k is not convex, so a local minimum could be obtained. Examples -------- Hard thresholding a covariance matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded covariance matrix with a PSD matrix as follows: >>> import numpy as np >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> cov = np.cov(x) >>> cov = cov * (np.abs(cov) >= 0.3) >>> rslt = cov_nearest_factor_homog(cov, 3)
cov_nearest_factor_homog
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def set_bandwidth(self, bw): """ Set the bandwidth to the given vector. Parameters ---------- bw : array_like A vector of non-negative bandwidth values. """ self.bw = bw self._setup()
Set the bandwidth to the given vector. Parameters ---------- bw : array_like A vector of non-negative bandwidth values.
set_bandwidth
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def set_default_bw(self, loc, bwm=None): """ Set default bandwiths based on domain values. Parameters ---------- loc : array_like Values from the domain to which the kernel will be applied. bwm : scalar, optional A non-negative scalar that is used to multiply the default bandwidth. """ sd = loc.std(0) q25, q75 = np.percentile(loc, [25, 75], axis=0) iqr = (q75 - q25) / 1.349 bw = np.where(iqr < sd, iqr, sd) bw *= 0.9 / loc.shape[0] ** 0.2 if bwm is not None: bw *= bwm # The final bandwidths self.bw = np.asarray(bw, dtype=np.float64) self._setup()
Set default bandwiths based on domain values. Parameters ---------- loc : array_like Values from the domain to which the kernel will be applied. bwm : scalar, optional A non-negative scalar that is used to multiply the default bandwidth.
set_default_bw
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def kernel_covariance(exog, loc, groups, kernel=None, bw=None): """ Use kernel averaging to estimate a multivariate covariance function. The goal is to estimate a covariance function C(x, y) = cov(Z(x), Z(y)) where x, y are vectors in R^p (e.g. representing locations in time or space), and Z(.) represents a multivariate process on R^p. The data used for estimation can be observed at arbitrary values of the position vector, and there can be multiple independent observations from the process. Parameters ---------- exog : array_like The rows of exog are realizations of the process obtained at specified points. loc : array_like The rows of loc are the locations (e.g. in space or time) at which the rows of exog are observed. groups : array_like The values of groups are labels for distinct independent copies of the process. kernel : MultivariateKernel instance, optional An instance of MultivariateKernel, defaults to GaussianMultivariateKernel. bw : array_like or scalar A bandwidth vector, or bandwidth multiplier. If a 1d array, it contains kernel bandwidths for each component of the process, and must have length equal to the number of columns of exog. If a scalar, bw is a bandwidth multiplier used to adjust the default bandwidth; if None, a default bandwidth is used. Returns ------- A real-valued function C(x, y) that returns an estimate of the covariance between values of the process located at x and y. References ---------- .. [1] Genton M, W Kleiber (2015). Cross covariance functions for multivariate geostatics. Statistical Science 30(2). https://arxiv.org/pdf/1507.08017.pdf """ exog = np.asarray(exog) loc = np.asarray(loc) groups = np.asarray(groups) if loc.ndim == 1: loc = loc[:, None] v = [exog.shape[0], loc.shape[0], len(groups)] if min(v) != max(v): msg = "exog, loc, and groups must have the same number of rows" raise ValueError(msg) # Map from group labels to the row indices in each group. ix = {} for i, g in enumerate(groups): if g not in ix: ix[g] = [] ix[g].append(i) for g in ix.keys(): ix[g] = np.sort(ix[g]) if kernel is None: kernel = GaussianMultivariateKernel() if bw is None: kernel.set_default_bw(loc) elif np.isscalar(bw): kernel.set_default_bw(loc, bwm=bw) else: kernel.set_bandwidth(bw) def cov(x, y): kx = kernel.call(x, loc) ky = kernel.call(y, loc) cm, cw = 0., 0. for g, ii in ix.items(): m = len(ii) j1, j2 = np.indices((m, m)) j1 = ii[j1.flat] j2 = ii[j2.flat] w = kx[j1] * ky[j2] # TODO: some other form of broadcasting may be faster than # einsum here cm += np.einsum("ij,ik,i->jk", exog[j1, :], exog[j2, :], w) cw += w.sum() if cw < 1e-10: msg = ("Effective sample size is 0. The bandwidth may be too " + "small, or you are outside the range of your data.") warnings.warn(msg) return np.nan * np.ones_like(cm) return cm / cw return cov
Use kernel averaging to estimate a multivariate covariance function. The goal is to estimate a covariance function C(x, y) = cov(Z(x), Z(y)) where x, y are vectors in R^p (e.g. representing locations in time or space), and Z(.) represents a multivariate process on R^p. The data used for estimation can be observed at arbitrary values of the position vector, and there can be multiple independent observations from the process. Parameters ---------- exog : array_like The rows of exog are realizations of the process obtained at specified points. loc : array_like The rows of loc are the locations (e.g. in space or time) at which the rows of exog are observed. groups : array_like The values of groups are labels for distinct independent copies of the process. kernel : MultivariateKernel instance, optional An instance of MultivariateKernel, defaults to GaussianMultivariateKernel. bw : array_like or scalar A bandwidth vector, or bandwidth multiplier. If a 1d array, it contains kernel bandwidths for each component of the process, and must have length equal to the number of columns of exog. If a scalar, bw is a bandwidth multiplier used to adjust the default bandwidth; if None, a default bandwidth is used. Returns ------- A real-valued function C(x, y) that returns an estimate of the covariance between values of the process located at x and y. References ---------- .. [1] Genton M, W Kleiber (2015). Cross covariance functions for multivariate geostatics. Statistical Science 30(2). https://arxiv.org/pdf/1507.08017.pdf
kernel_covariance
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def omni_normtest(resids, axis=0): """ Omnibus test for normality Parameters ---------- resid : array_like axis : int, optional Default is 0 Returns ------- Chi^2 score, two-tail probability """ # TODO: change to exception in summary branch and catch in summary() # behavior changed between scipy 0.9 and 0.10 resids = np.asarray(resids) n = resids.shape[axis] if n < 8: from warnings import warn warn("omni_normtest is not valid with less than 8 observations; %i " "samples were given." % int(n), ValueWarning) return np.nan, np.nan return stats.normaltest(resids, axis=axis)
Omnibus test for normality Parameters ---------- resid : array_like axis : int, optional Default is 0 Returns ------- Chi^2 score, two-tail probability
omni_normtest
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def robust_skewness(y, axis=0): """ Calculates the four skewness measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the skewness measures are computed. If `None`, the entire array is used. Returns ------- sk1 : ndarray The standard skewness estimator. sk2 : ndarray Skewness estimator based on quartiles. sk3 : ndarray Skewness estimator based on mean-median difference, standardized by absolute deviation. sk4 : ndarray Skewness estimator based on mean-median difference, standardized by standard deviation. Notes ----- The robust skewness measures are defined .. math:: SK_{2}=\\frac{\\left(q_{.75}-q_{.5}\\right) -\\left(q_{.5}-q_{.25}\\right)}{q_{.75}-q_{.25}} .. math:: SK_{3}=\\frac{\\mu-\\hat{q}_{0.5}} {\\hat{E}\\left[\\left|y-\\hat{\\mu}\\right|\\right]} .. math:: SK_{4}=\\frac{\\mu-\\hat{q}_{0.5}}{\\hat{\\sigma}} .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004. """ if axis is None: y = y.ravel() axis = 0 y = np.sort(y, axis) q1, q2, q3 = np.percentile(y, [25.0, 50.0, 75.0], axis=axis) mu = y.mean(axis) shape = (y.size,) if axis is not None: shape = list(mu.shape) shape.insert(axis, 1) shape = tuple(shape) mu_b = np.reshape(mu, shape) q2_b = np.reshape(q2, shape) sigma = np.sqrt(np.mean(((y - mu_b)**2), axis)) sk1 = stats.skew(y, axis=axis) sk2 = (q1 + q3 - 2.0 * q2) / (q3 - q1) sk3 = (mu - q2) / np.mean(abs(y - q2_b), axis=axis) sk4 = (mu - q2) / sigma return sk1, sk2, sk3, sk4
Calculates the four skewness measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the skewness measures are computed. If `None`, the entire array is used. Returns ------- sk1 : ndarray The standard skewness estimator. sk2 : ndarray Skewness estimator based on quartiles. sk3 : ndarray Skewness estimator based on mean-median difference, standardized by absolute deviation. sk4 : ndarray Skewness estimator based on mean-median difference, standardized by standard deviation. Notes ----- The robust skewness measures are defined .. math:: SK_{2}=\\frac{\\left(q_{.75}-q_{.5}\\right) -\\left(q_{.5}-q_{.25}\\right)}{q_{.75}-q_{.25}} .. math:: SK_{3}=\\frac{\\mu-\\hat{q}_{0.5}} {\\hat{E}\\left[\\left|y-\\hat{\\mu}\\right|\\right]} .. math:: SK_{4}=\\frac{\\mu-\\hat{q}_{0.5}}{\\hat{\\sigma}} .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004.
robust_skewness
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def _kr3(y, alpha=5.0, beta=50.0): """ KR3 estimator from Kim & White Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. alpha : float, optional Lower cut-off for measuring expectation in tail. beta : float, optional Lower cut-off for measuring expectation in center. Returns ------- kr3 : float Robust kurtosis estimator based on standardized lower- and upper-tail expected values Notes ----- .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004. """ perc = (alpha, 100.0 - alpha, beta, 100.0 - beta) lower_alpha, upper_alpha, lower_beta, upper_beta = np.percentile(y, perc) l_alpha = np.mean(y[y < lower_alpha]) u_alpha = np.mean(y[y > upper_alpha]) l_beta = np.mean(y[y < lower_beta]) u_beta = np.mean(y[y > upper_beta]) return (u_alpha - l_alpha) / (u_beta - l_beta)
KR3 estimator from Kim & White Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. alpha : float, optional Lower cut-off for measuring expectation in tail. beta : float, optional Lower cut-off for measuring expectation in center. Returns ------- kr3 : float Robust kurtosis estimator based on standardized lower- and upper-tail expected values Notes ----- .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004.
_kr3
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def expected_robust_kurtosis(ab=(5.0, 50.0), dg=(2.5, 25.0)): """ Calculates the expected value of the robust kurtosis measures in Kim and White assuming the data are normally distributed. Parameters ---------- ab : iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure Returns ------- ekr : ndarray, 4-element Contains the expected values of the 4 robust kurtosis measures Notes ----- See `robust_kurtosis` for definitions of the robust kurtosis measures """ alpha, beta = ab delta, gamma = dg expected_value = np.zeros(4) ppf = stats.norm.ppf pdf = stats.norm.pdf q1, q2, q3, q5, q6, q7 = ppf(np.array((1.0, 2.0, 3.0, 5.0, 6.0, 7.0)) / 8) expected_value[0] = 3 expected_value[1] = ((q7 - q5) + (q3 - q1)) / (q6 - q2) q_alpha, q_beta = ppf(np.array((alpha / 100.0, beta / 100.0))) expected_value[2] = (2 * pdf(q_alpha) / alpha) / (2 * pdf(q_beta) / beta) q_delta, q_gamma = ppf(np.array((delta / 100.0, gamma / 100.0))) expected_value[3] = (-2.0 * q_delta) / (-2.0 * q_gamma) return expected_value
Calculates the expected value of the robust kurtosis measures in Kim and White assuming the data are normally distributed. Parameters ---------- ab : iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure Returns ------- ekr : ndarray, 4-element Contains the expected values of the 4 robust kurtosis measures Notes ----- See `robust_kurtosis` for definitions of the robust kurtosis measures
expected_robust_kurtosis
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def robust_kurtosis(y, axis=0, ab=(5.0, 50.0), dg=(2.5, 25.0), excess=True): """ Calculates the four kurtosis measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the kurtosis are computed. If `None`, the entire array is used. a iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure excess : bool, optional If true (default), computed values are excess of those for a standard normal distribution. Returns ------- kr1 : ndarray The standard kurtosis estimator. kr2 : ndarray Kurtosis estimator based on octiles. kr3 : ndarray Kurtosis estimators based on exceedance expectations. kr4 : ndarray Kurtosis measure based on the spread between high and low quantiles. Notes ----- The robust kurtosis measures are defined .. math:: KR_{2}=\\frac{\\left(\\hat{q}_{.875}-\\hat{q}_{.625}\\right) +\\left(\\hat{q}_{.375}-\\hat{q}_{.125}\\right)} {\\hat{q}_{.75}-\\hat{q}_{.25}} .. math:: KR_{3}=\\frac{\\hat{E}\\left(y|y>\\hat{q}_{1-\\alpha}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\alpha}\\right)} {\\hat{E}\\left(y|y>\\hat{q}_{1-\\beta}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\beta}\\right)} .. math:: KR_{4}=\\frac{\\hat{q}_{1-\\delta}-\\hat{q}_{\\delta}} {\\hat{q}_{1-\\gamma}-\\hat{q}_{\\gamma}} where :math:`\\hat{q}_{p}` is the estimated quantile at :math:`p`. .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004. """ if (axis is None or (y.squeeze().ndim == 1 and y.ndim != 1)): y = y.ravel() axis = 0 alpha, beta = ab delta, gamma = dg perc = (12.5, 25.0, 37.5, 62.5, 75.0, 87.5, delta, 100.0 - delta, gamma, 100.0 - gamma) e1, e2, e3, e5, e6, e7, fd, f1md, fg, f1mg = np.percentile(y, perc, axis=axis) expected_value = (expected_robust_kurtosis(ab, dg) if excess else np.zeros(4)) kr1 = stats.kurtosis(y, axis, False) - expected_value[0] kr2 = ((e7 - e5) + (e3 - e1)) / (e6 - e2) - expected_value[1] if y.ndim == 1: kr3 = _kr3(y, alpha, beta) else: kr3 = np.apply_along_axis(_kr3, axis, y, alpha, beta) kr3 -= expected_value[2] kr4 = (f1md - fd) / (f1mg - fg) - expected_value[3] return kr1, kr2, kr3, kr4
Calculates the four kurtosis measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the kurtosis are computed. If `None`, the entire array is used. a iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure excess : bool, optional If true (default), computed values are excess of those for a standard normal distribution. Returns ------- kr1 : ndarray The standard kurtosis estimator. kr2 : ndarray Kurtosis estimator based on octiles. kr3 : ndarray Kurtosis estimators based on exceedance expectations. kr4 : ndarray Kurtosis measure based on the spread between high and low quantiles. Notes ----- The robust kurtosis measures are defined .. math:: KR_{2}=\\frac{\\left(\\hat{q}_{.875}-\\hat{q}_{.625}\\right) +\\left(\\hat{q}_{.375}-\\hat{q}_{.125}\\right)} {\\hat{q}_{.75}-\\hat{q}_{.25}} .. math:: KR_{3}=\\frac{\\hat{E}\\left(y|y>\\hat{q}_{1-\\alpha}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\alpha}\\right)} {\\hat{E}\\left(y|y>\\hat{q}_{1-\\beta}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\beta}\\right)} .. math:: KR_{4}=\\frac{\\hat{q}_{1-\\delta}-\\hat{q}_{\\delta}} {\\hat{q}_{1-\\gamma}-\\hat{q}_{\\gamma}} where :math:`\\hat{q}_{p}` is the estimated quantile at :math:`p`. .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004.
robust_kurtosis
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def _medcouple_1d(y): """ Calculates the medcouple robust measure of skew. Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. Returns ------- mc : float The medcouple statistic Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008. """ # Parameter changes the algorithm to the slower for large n y = np.squeeze(np.asarray(y)) if y.ndim != 1: raise ValueError("y must be squeezable to a 1-d array") y = np.sort(y) n = y.shape[0] if n % 2 == 0: mf = (y[n // 2 - 1] + y[n // 2]) / 2 else: mf = y[(n - 1) // 2] z = y - mf lower = z[z <= 0.0] upper = z[z >= 0.0] upper = upper[:, None] standardization = upper - lower is_zero = np.logical_and(lower == 0.0, upper == 0.0) standardization[is_zero] = np.inf spread = upper + lower h = spread / standardization # GH5395 num_ties = np.sum(lower == 0.0) if num_ties: # Replacements has -1 above the anti-diagonal, 0 on the anti-diagonal, # and 1 below the anti-diagonal replacements = np.ones((num_ties, num_ties)) - np.eye(num_ties) replacements -= 2 * np.triu(replacements) # Convert diagonal to anti-diagonal replacements = np.fliplr(replacements) # Always replace upper right block h[:num_ties, -num_ties:] = replacements return np.median(h)
Calculates the medcouple robust measure of skew. Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. Returns ------- mc : float The medcouple statistic Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008.
_medcouple_1d
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def medcouple(y, axis=0): """ Calculate the medcouple robust measure of skew. Parameters ---------- y : array_like Data to compute use in the estimator. axis : {int, None} Axis along which the medcouple statistic is computed. If `None`, the entire array is used. Returns ------- mc : ndarray The medcouple statistic with the same shape as `y`, with the specified axis removed. Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008. """ y = np.asarray(y, dtype=np.double) # GH 4243 if axis is None: return _medcouple_1d(y.ravel()) return np.apply_along_axis(_medcouple_1d, axis, y)
Calculate the medcouple robust measure of skew. Parameters ---------- y : array_like Data to compute use in the estimator. axis : {int, None} Axis along which the medcouple statistic is computed. If `None`, the entire array is used. Returns ------- mc : ndarray The medcouple statistic with the same shape as `y`, with the specified axis removed. Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008.
medcouple
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def _mover_confint(stat1, stat2, ci1, ci2, contrast="diff"): """ References ---------- .. [#] Krishnamoorthy, K., Jie Peng, and Dan Zhang. 2016. “Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average, and Product of Means.” Communications in Statistics - Theory and Methods 45 (1): 83–97. https://doi.org/10.1080/03610926.2013.821486. .. [#] Li, Yanhong, John J. Koval, Allan Donner, and G. Y. Zou. 2010. “Interval Estimation for the Area under the Receiver Operating Characteristic Curve When Data Are Subject to Error.” Statistics in Medicine 29 (24): 2521–31. https://doi.org/10.1002/sim.4015. .. [#] Zou, G. Y., and A. Donner. 2008. “Construction of Confidence Limits about Effect Measures: A General Approach.” Statistics in Medicine 27 (10): 1693–1702. https://doi.org/10.1002/sim.3095. """ if contrast == "diff": stat = stat1 - stat2 low_half = np.sqrt((stat1 - ci1[0])**2 + (stat2 - ci2[1])**2) upp_half = np.sqrt((stat1 - ci1[1])**2 + (stat2 - ci2[0])**2) ci = (stat - low_half, stat + upp_half) elif contrast == "sum": stat = stat1 + stat2 low_half = np.sqrt((stat1 - ci1[0])**2 + (stat2 - ci2[0])**2) upp_half = np.sqrt((stat1 - ci1[1])**2 + (stat2 - ci2[1])**2) ci = (stat - low_half, stat + upp_half) elif contrast == "ratio": # stat = stat1 / stat2 prod = stat1 * stat2 term1 = stat2**2 - (ci2[1] - stat2)**2 term2 = stat2**2 - (ci2[0] - stat2)**2 low_ = (prod - np.sqrt(prod**2 - term1 * (stat1**2 - (ci1[0] - stat1)**2)) ) / term1 upp_ = (prod + np.sqrt(prod**2 - term2 * (stat1**2 - (ci1[1] - stat1)**2)) ) / term2 # method 2 Li, Tang, Wong 2014 low1, upp1 = ci1 low2, upp2 = ci2 term1 = upp2 * (2 * stat2 - upp2) term2 = low2 * (2 * stat2 - low2) low = (prod - np.sqrt(prod**2 - term1 * low1 * (2 * stat1 - low1)) ) / term1 upp = (prod + np.sqrt(prod**2 - term2 * upp1 * (2 * stat1 - upp1)) ) / term2 assert_allclose((low_, upp_), (low, upp), atol=1e-15, rtol=1e-10) ci = (low, upp) return ci
References ---------- .. [#] Krishnamoorthy, K., Jie Peng, and Dan Zhang. 2016. “Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average, and Product of Means.” Communications in Statistics - Theory and Methods 45 (1): 83–97. https://doi.org/10.1080/03610926.2013.821486. .. [#] Li, Yanhong, John J. Koval, Allan Donner, and G. Y. Zou. 2010. “Interval Estimation for the Area under the Receiver Operating Characteristic Curve When Data Are Subject to Error.” Statistics in Medicine 29 (24): 2521–31. https://doi.org/10.1002/sim.4015. .. [#] Zou, G. Y., and A. Donner. 2008. “Construction of Confidence Limits about Effect Measures: A General Approach.” Statistics in Medicine 27 (10): 1693–1702. https://doi.org/10.1002/sim.3095.
_mover_confint
python
statsmodels/statsmodels
statsmodels/stats/_inference_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_inference_tools.py
BSD-3-Clause
def _check_nested_exog(small, large): """ Check if a larger exog nests a smaller exog Parameters ---------- small : ndarray exog from smaller model large : ndarray exog from larger model Returns ------- bool True if small is nested by large """ if small.shape[1] > large.shape[1]: return False coef = np.linalg.lstsq(large, small, rcond=None)[0] err = small - large @ coef return np.linalg.matrix_rank(np.c_[large, err]) == large.shape[1]
Check if a larger exog nests a smaller exog Parameters ---------- small : ndarray exog from smaller model large : ndarray exog from larger model Returns ------- bool True if small is nested by large
_check_nested_exog
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def compare_cox(results_x, results_z, store=False): """ Compute the Cox test for non-nested models Parameters ---------- results_x : Result instance result instance of first model results_z : Result instance result instance of second model store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see [1]_ for more information. Formulas from [1]_, section 8.3.4 translated to code Matches results for Example 8.3 in Greene References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="Cox comparison")) x = results_x.model.exog z = results_z.model.exog nobs = results_x.model.endog.shape[0] sigma2_x = results_x.ssr / nobs sigma2_z = results_z.ssr / nobs yhat_x = results_x.fittedvalues res_dx = OLS(yhat_x, z).fit() err_zx = res_dx.resid res_xzx = OLS(err_zx, x).fit() err_xzx = res_xzx.resid sigma2_zx = sigma2_x + np.dot(err_zx.T, err_zx) / nobs c01 = nobs / 2. * (np.log(sigma2_z) - np.log(sigma2_zx)) v01 = sigma2_x * np.dot(err_xzx.T, err_xzx) / sigma2_zx ** 2 q = c01 / np.sqrt(v01) pval = 2 * stats.norm.sf(np.abs(q)) if store: res = ResultsStore() res.res_dx = res_dx res.res_xzx = res_xzx res.c01 = c01 res.v01 = v01 res.q = q res.pvalue = pval res.dist = stats.norm return q, pval, res return q, pval
Compute the Cox test for non-nested models Parameters ---------- results_x : Result instance result instance of first model results_z : Result instance result instance of second model store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see [1]_ for more information. Formulas from [1]_, section 8.3.4 translated to code Matches results for Example 8.3 in Greene References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002).
compare_cox
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def compare_j(results_x, results_z, store=False): """ Compute the J-test for non-nested models Parameters ---------- results_x : RegressionResults The result instance of first model. results_z : RegressionResults The result instance of second model. store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- From description in Greene, section 8.3.3. Matches results for Example 8.3, Greene. Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see Greene for more information. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ # TODO: Allow cov to be specified if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="J comparison")) y = results_x.model.endog z = results_z.model.exog yhat_x = results_x.fittedvalues res_zx = OLS(y, np.column_stack((yhat_x, z))).fit() tstat = res_zx.tvalues[0] pval = res_zx.pvalues[0] if store: res = ResultsStore() res.res_zx = res_zx res.dist = stats.t(res_zx.df_resid) res.teststat = tstat res.pvalue = pval return tstat, pval, res return tstat, pval
Compute the J-test for non-nested models Parameters ---------- results_x : RegressionResults The result instance of first model. results_z : RegressionResults The result instance of second model. store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- From description in Greene, section 8.3.3. Matches results for Example 8.3, Greene. Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see Greene for more information. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002).
compare_j
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def acorr_ljungbox(x, lags=None, boxpierce=False, model_df=0, period=None, return_df=True, auto_lag=False): """ Ljung-Box test of autocorrelation in residuals. Parameters ---------- x : array_like The data series. The data is demeaned before the test statistic is computed. lags : {int, array_like}, default None If lags is an integer then this is taken to be the largest lag that is included, the test result is reported for all smaller lag length. If lags is a list or array, then all lags are included up to the largest lag in the list, however only the tests for the lags in the list are reported. If lags is None, then the default maxlag is min(10, nobs // 5). The default number of lags changes if period is set. boxpierce : bool, default False If true, then additional to the results of the Ljung-Box test also the Box-Pierce test results are returned. model_df : int, default 0 Number of degrees of freedom consumed by the model. In an ARMA model, this value is usually p+q where p is the AR order and q is the MA order. This value is subtracted from the degrees-of-freedom used in the test so that the adjusted dof for the statistics are lags - model_df. If lags - model_df <= 0, then NaN is returned. period : int, default None The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. auto_lag : bool, default False Flag indicating whether to automatically determine the optimal lag length based on threshold of maximum correlation value. Returns ------- DataFrame Frame with columns: * lb_stat - The Ljung-Box test statistic. * lb_pvalue - The p-value based on chi-square distribution. The p-value is computed as 1 - chi2.cdf(lb_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. * bp_stat - The Box-Pierce test statistic. * bp_pvalue - The p-value based for Box-Pierce test on chi-square distribution. The p-value is computed as 1 - chi2.cdf(bp_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. See Also -------- statsmodels.regression.linear_model.OLS.fit Regression model fitting. statsmodels.regression.linear_model.RegressionResults Results from linear regression models. statsmodels.stats.stattools.q_stat Ljung-Box test statistic computed from estimated autocorrelations. Notes ----- Ljung-Box and Box-Pierce statistic differ in their scaling of the autocorrelation function. Ljung-Box test is has better finite-sample properties. References ---------- .. [*] Green, W. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] J. Carlos Escanciano, Ignacio N. Lobato "An automatic Portmanteau test for serial correlation"., Volume 151, 2009. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.sunspots.load_pandas().data >>> res = sm.tsa.ARMA(data["SUNACTIVITY"], (1,1)).fit(disp=-1) >>> sm.stats.acorr_ljungbox(res.resid, lags=[10], return_df=True) lb_stat lb_pvalue 10 214.106992 1.827374e-40 """ # Avoid cyclic import from statsmodels.tsa.stattools._stattools import acf x = array_like(x, "x") period = int_like(period, "period", optional=True) model_df = int_like(model_df, "model_df", optional=False) if period is not None and period <= 1: raise ValueError("period must be >= 2") if model_df < 0: raise ValueError("model_df must be >= 0") nobs = x.shape[0] if auto_lag: maxlag = nobs - 1 # Compute sum of squared autocorrelations sacf = acf(x, nlags=maxlag, fft=False) if not boxpierce: q_sacf = (nobs * (nobs + 2) * np.cumsum(sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1)))) else: q_sacf = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2) # obtain thresholds q = 2.4 threshold = np.sqrt(q * np.log(nobs)) threshold_metric = np.abs(sacf).max() * np.sqrt(nobs) # compute penalized sum of squared autocorrelations if (threshold_metric <= threshold): q_sacf = q_sacf - (np.arange(1, nobs) * np.log(nobs)) else: q_sacf = q_sacf - (2 * np.arange(1, nobs)) # note: np.argmax returns first (i.e., smallest) index of largest value lags = np.argmax(q_sacf) lags = max(1, lags) # optimal lag has to be at least 1 lags = int_like(lags, "lags") lags = np.arange(1, lags + 1) elif period is not None: lags = np.arange(1, min(nobs // 5, 2 * period) + 1, dtype=int) elif lags is None: lags = np.arange(1, min(nobs // 5, 10) + 1, dtype=int) elif not isinstance(lags, Iterable): lags = int_like(lags, "lags") lags = np.arange(1, lags + 1) lags = array_like(lags, "lags", dtype="int") maxlag = lags.max() # normalize by nobs not (nobs-nlags) # SS: unbiased=False is default now sacf = acf(x, nlags=maxlag, fft=False) sacf2 = sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1)) qljungbox = nobs * (nobs + 2) * np.cumsum(sacf2)[lags - 1] adj_lags = lags - model_df pval = np.full_like(qljungbox, np.nan) loc = adj_lags > 0 pval[loc] = stats.chi2.sf(qljungbox[loc], adj_lags[loc]) if not boxpierce: return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval}, index=lags) qboxpierce = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2)[lags - 1] pvalbp = np.full_like(qljungbox, np.nan) pvalbp[loc] = stats.chi2.sf(qboxpierce[loc], adj_lags[loc]) return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval, "bp_stat": qboxpierce, "bp_pvalue": pvalbp}, index=lags)
Ljung-Box test of autocorrelation in residuals. Parameters ---------- x : array_like The data series. The data is demeaned before the test statistic is computed. lags : {int, array_like}, default None If lags is an integer then this is taken to be the largest lag that is included, the test result is reported for all smaller lag length. If lags is a list or array, then all lags are included up to the largest lag in the list, however only the tests for the lags in the list are reported. If lags is None, then the default maxlag is min(10, nobs // 5). The default number of lags changes if period is set. boxpierce : bool, default False If true, then additional to the results of the Ljung-Box test also the Box-Pierce test results are returned. model_df : int, default 0 Number of degrees of freedom consumed by the model. In an ARMA model, this value is usually p+q where p is the AR order and q is the MA order. This value is subtracted from the degrees-of-freedom used in the test so that the adjusted dof for the statistics are lags - model_df. If lags - model_df <= 0, then NaN is returned. period : int, default None The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. auto_lag : bool, default False Flag indicating whether to automatically determine the optimal lag length based on threshold of maximum correlation value. Returns ------- DataFrame Frame with columns: * lb_stat - The Ljung-Box test statistic. * lb_pvalue - The p-value based on chi-square distribution. The p-value is computed as 1 - chi2.cdf(lb_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. * bp_stat - The Box-Pierce test statistic. * bp_pvalue - The p-value based for Box-Pierce test on chi-square distribution. The p-value is computed as 1 - chi2.cdf(bp_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. See Also -------- statsmodels.regression.linear_model.OLS.fit Regression model fitting. statsmodels.regression.linear_model.RegressionResults Results from linear regression models. statsmodels.stats.stattools.q_stat Ljung-Box test statistic computed from estimated autocorrelations. Notes ----- Ljung-Box and Box-Pierce statistic differ in their scaling of the autocorrelation function. Ljung-Box test is has better finite-sample properties. References ---------- .. [*] Green, W. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] J. Carlos Escanciano, Ignacio N. Lobato "An automatic Portmanteau test for serial correlation"., Volume 151, 2009. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.sunspots.load_pandas().data >>> res = sm.tsa.ARMA(data["SUNACTIVITY"], (1,1)).fit(disp=-1) >>> sm.stats.acorr_ljungbox(res.resid, lags=[10], return_df=True) lb_stat lb_pvalue 10 214.106992 1.827374e-40
acorr_ljungbox
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def acorr_lm(resid, nlags=None, store=False, *, period=None, ddof=0, cov_type="nonrobust", cov_kwds=None): """ Lagrange Multiplier tests for autocorrelation. This is a generic Lagrange Multiplier test for autocorrelation. Returns Engle's ARCH test if resid is the squared residual array. Breusch-Godfrey is a variation on this test with additional exogenous variables. Parameters ---------- resid : array_like Time series to test. nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned. period : int, default none The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. ddof : int, default 0 The number of degrees of freedom consumed by the model used to produce resid. The default value is 0. cov_type : str, default "nonrobust" Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwds : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The f statistic of the F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue of the F test. res_store : ResultsStore, optional Intermediate results. Only returned if store=True. See Also -------- het_arch Conditional heteroskedasticity testing. acorr_breusch_godfrey Breusch-Godfrey test for serial correlation. acorr_ljung_box Ljung-Box test for serial correlation. Notes ----- The test statistic is computed as (nobs - ddof) * r2 where r2 is the R-squared from a regression on the residual on nlags lags of the residual. """ resid = array_like(resid, "resid", ndim=1) cov_type = string_like(cov_type, "cov_type") cov_kwds = {} if cov_kwds is None else cov_kwds cov_kwds = dict_like(cov_kwds, "cov_kwds") nobs = resid.shape[0] if period is not None and nlags is None: maxlag = min(nobs // 5, 2 * period) elif nlags is None: maxlag = min(10, nobs // 5) else: maxlag = nlags xdall = lagmat(resid[:, None], maxlag, trim="both") nobs = xdall.shape[0] xdall = np.c_[np.ones((nobs, 1)), xdall] xshort = resid[-nobs:] res_store = ResultsStore() usedlag = maxlag resols = OLS(xshort, xdall[:, :usedlag + 1]).fit(cov_type=cov_type, cov_kwds=cov_kwds) fval = float(resols.fvalue) fpval = float(resols.f_pvalue) if cov_type == "nonrobust": lm = (nobs - ddof) * resols.rsquared lmpval = stats.chi2.sf(lm, usedlag) # Note: deg of freedom for LM test: nvars - constant = lags used else: r_matrix = np.hstack((np.zeros((usedlag, 1)), np.eye(usedlag))) test_stat = resols.wald_test(r_matrix, use_f=False, scalar=True) lm = float(test_stat.statistic) lmpval = float(test_stat.pvalue) if store: res_store.resols = resols res_store.usedlag = usedlag return lm, lmpval, fval, fpval, res_store else: return lm, lmpval, fval, fpval
Lagrange Multiplier tests for autocorrelation. This is a generic Lagrange Multiplier test for autocorrelation. Returns Engle's ARCH test if resid is the squared residual array. Breusch-Godfrey is a variation on this test with additional exogenous variables. Parameters ---------- resid : array_like Time series to test. nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned. period : int, default none The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. ddof : int, default 0 The number of degrees of freedom consumed by the model used to produce resid. The default value is 0. cov_type : str, default "nonrobust" Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwds : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The f statistic of the F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue of the F test. res_store : ResultsStore, optional Intermediate results. Only returned if store=True. See Also -------- het_arch Conditional heteroskedasticity testing. acorr_breusch_godfrey Breusch-Godfrey test for serial correlation. acorr_ljung_box Ljung-Box test for serial correlation. Notes ----- The test statistic is computed as (nobs - ddof) * r2 where r2 is the R-squared from a regression on the residual on nlags lags of the residual.
acorr_lm
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def het_arch(resid, nlags=None, store=False, ddof=0): """ Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH). Parameters ---------- resid : ndarray residuals from an estimation, or time series nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned ddof : int, default 0 If the residuals are from a regression, or ARMA estimation, then there are recommendations to correct the degrees of freedom by the number of parameters that have been estimated, for example ddof=p+q for an ARMA(p,q). Returns ------- lm : float Lagrange multiplier test statistic lmpval : float p-value for Lagrange multiplier test fval : float fstatistic for F test, alternative version of the same test based on F test for the parameter restriction fpval : float pvalue for F test res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- verified against R:FinTS::ArchTest """ return acorr_lm(resid ** 2, nlags=nlags, store=store, ddof=ddof)
Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH). Parameters ---------- resid : ndarray residuals from an estimation, or time series nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned ddof : int, default 0 If the residuals are from a regression, or ARMA estimation, then there are recommendations to correct the degrees of freedom by the number of parameters that have been estimated, for example ddof=p+q for an ARMA(p,q). Returns ------- lm : float Lagrange multiplier test statistic lmpval : float p-value for Lagrange multiplier test fval : float fstatistic for F test, alternative version of the same test based on F test for the parameter restriction fpval : float pvalue for F test res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- verified against R:FinTS::ArchTest
het_arch
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def acorr_breusch_godfrey(res, nlags=None, store=False): """ Breusch-Godfrey Lagrange Multiplier tests for residual autocorrelation. Parameters ---------- res : RegressionResults Estimation results for which the residuals are tested for serial correlation. nlags : int, optional Number of lags to include in the auxiliary regression. (nlags is highest lag). store : bool, default False If store is true, then an additional class instance that contains intermediate results is returned. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The value of the f statistic for F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue for F test. res_store : ResultsStore A class instance that holds intermediate results. Only returned if store=True. Notes ----- BG adds lags of residual to exog in the design matrix for the auxiliary regression with residuals as endog. See [1]_, section 12.7.1. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ x = np.asarray(res.resid).squeeze() if x.ndim != 1: raise ValueError("Model resid must be a 1d array. Cannot be used on" " multivariate models.") exog_old = res.model.exog nobs = x.shape[0] if nlags is None: nlags = min(10, nobs // 5) x = np.concatenate((np.zeros(nlags), x)) xdall = lagmat(x[:, None], nlags, trim="both") nobs = xdall.shape[0] xdall = np.c_[np.ones((nobs, 1)), xdall] xshort = x[-nobs:] if exog_old is None: exog = xdall else: exog = np.column_stack((exog_old, xdall)) k_vars = exog.shape[1] resols = OLS(xshort, exog).fit() ft = resols.f_test(np.eye(nlags, k_vars, k_vars - nlags)) fval = ft.fvalue fpval = ft.pvalue fval = float(np.squeeze(fval)) fpval = float(np.squeeze(fpval)) lm = nobs * resols.rsquared lmpval = stats.chi2.sf(lm, nlags) # Note: degrees of freedom for LM test is nvars minus constant = usedlags if store: res_store = ResultsStore() res_store.resols = resols res_store.usedlag = nlags return lm, lmpval, fval, fpval, res_store else: return lm, lmpval, fval, fpval
Breusch-Godfrey Lagrange Multiplier tests for residual autocorrelation. Parameters ---------- res : RegressionResults Estimation results for which the residuals are tested for serial correlation. nlags : int, optional Number of lags to include in the auxiliary regression. (nlags is highest lag). store : bool, default False If store is true, then an additional class instance that contains intermediate results is returned. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The value of the f statistic for F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue for F test. res_store : ResultsStore A class instance that holds intermediate results. Only returned if store=True. Notes ----- BG adds lags of residual to exog in the design matrix for the auxiliary regression with residuals as endog. See [1]_, section 12.7.1. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002).
acorr_breusch_godfrey
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def _check_het_test(x: np.ndarray, test_name: str) -> None: """ Check validity of the exogenous regressors in a heteroskedasticity test Parameters ---------- x : ndarray The exogenous regressor array test_name : str The test name for the exception """ x_max = x.max(axis=0) if ( not np.any(((x_max - x.min(axis=0)) == 0) & (x_max != 0)) or x.shape[1] < 2 ): raise ValueError( f"{test_name} test requires exog to have at least " "two columns where one is a constant." )
Check validity of the exogenous regressors in a heteroskedasticity test Parameters ---------- x : ndarray The exogenous regressor array test_name : str The test name for the exception
_check_het_test
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def het_white(resid, exog): """ White's Lagrange Multiplier Test for Heteroscedasticity. Parameters ---------- resid : array_like The residuals. The squared residuals are used as the endogenous variable. exog : array_like The explanatory variables for the variance. Squares and interaction terms are automatically included in the auxiliary regression. Returns ------- lm : float The lagrange multiplier statistic. lm_pvalue :float The p-value of lagrange multiplier test. fvalue : float The f-statistic of the hypothesis that the error variance does not depend on x. This is an alternative test variant not the original LM test. f_pvalue : float The p-value for the f-statistic. Notes ----- Assumes x contains constant (for counting dof). question: does f-statistic make sense? constant ? References ---------- Greene section 11.4.1 5th edition p. 222. Test statistic reproduces Greene 5th, example 11.3. """ x = array_like(exog, "exog", ndim=2) y = array_like(resid, "resid", ndim=2, shape=(x.shape[0], 1)) _check_het_test(x, "White's heteroskedasticity") nobs, nvars0 = x.shape i0, i1 = np.triu_indices(nvars0) exog = x[:, i0] * x[:, i1] nobs, nvars = exog.shape assert nvars == nvars0 * (nvars0 - 1) / 2. + nvars0 resols = OLS(y ** 2, exog).fit() fval = resols.fvalue fpval = resols.f_pvalue lm = nobs * resols.rsquared # Note: degrees of freedom for LM test is nvars minus constant # degrees of freedom take possible reduced rank in exog into account # df_model checks the rank to determine df # extra calculation that can be removed: assert resols.df_model == np.linalg.matrix_rank(exog) - 1 lmpval = stats.chi2.sf(lm, resols.df_model) return lm, lmpval, fval, fpval
White's Lagrange Multiplier Test for Heteroscedasticity. Parameters ---------- resid : array_like The residuals. The squared residuals are used as the endogenous variable. exog : array_like The explanatory variables for the variance. Squares and interaction terms are automatically included in the auxiliary regression. Returns ------- lm : float The lagrange multiplier statistic. lm_pvalue :float The p-value of lagrange multiplier test. fvalue : float The f-statistic of the hypothesis that the error variance does not depend on x. This is an alternative test variant not the original LM test. f_pvalue : float The p-value for the f-statistic. Notes ----- Assumes x contains constant (for counting dof). question: does f-statistic make sense? constant ? References ---------- Greene section 11.4.1 5th edition p. 222. Test statistic reproduces Greene 5th, example 11.3.
het_white
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def het_goldfeldquandt(y, x, idx=None, split=None, drop=None, alternative="increasing", store=False): """ Goldfeld-Quandt homoskedasticity test. This test examines whether the residual variance is the same in 2 subsamples. Parameters ---------- y : array_like endogenous variable x : array_like exogenous variable, regressors idx : int, default None column index of variable according to which observations are sorted for the split split : {int, float}, default None If an integer, this is the index at which sample is split. If a float in 0<split<1 then split is interpreted as fraction of the observations in the first sample. If None, uses nobs//2. drop : {int, float}, default None If this is not None, then observation are dropped from the middle part of the sorted series. If 0<split<1 then split is interpreted as fraction of the number of observations to be dropped. Note: Currently, observations are dropped between split and split+drop, where split and drop are the indices (given by rounding if specified as fraction). The first sample is [0:split], the second sample is [split+drop:] alternative : {"increasing", "decreasing", "two-sided"} The default is increasing. This specifies the alternative for the p-value calculation. store : bool, default False Flag indicating to return the regression results Returns ------- fval : float value of the F-statistic pval : float p-value of the hypothesis that the variance in one subsample is larger than in the other subsample ordering : str The ordering used in the alternative. res_store : ResultsStore, optional Storage for the intermediate and final results that are calculated Notes ----- The Null hypothesis is that the variance in the two sub-samples are the same. The alternative hypothesis, can be increasing, i.e. the variance in the second sample is larger than in the first, or decreasing or two-sided. Results are identical R, but the drop option is defined differently. (sorting by idx not tested yet) """ x = np.asarray(x) y = np.asarray(y) # **2 nobs, nvars = x.shape if split is None: split = nobs // 2 elif (0 < split) and (split < 1): split = int(nobs * split) if drop is None: start2 = split elif (0 < drop) and (drop < 1): start2 = split + int(nobs * drop) else: start2 = split + drop if idx is not None: xsortind = np.argsort(x[:, idx]) y = y[xsortind] x = x[xsortind, :] resols1 = OLS(y[:split], x[:split]).fit() resols2 = OLS(y[start2:], x[start2:]).fit() fval = resols2.mse_resid / resols1.mse_resid # if fval>1: if alternative.lower() in ["i", "inc", "increasing"]: fpval = stats.f.sf(fval, resols1.df_resid, resols2.df_resid) ordering = "increasing" elif alternative.lower() in ["d", "dec", "decreasing"]: fpval = stats.f.sf(1. / fval, resols2.df_resid, resols1.df_resid) ordering = "decreasing" elif alternative.lower() in ["2", "2-sided", "two-sided"]: fpval_sm = stats.f.cdf(fval, resols2.df_resid, resols1.df_resid) fpval_la = stats.f.sf(fval, resols2.df_resid, resols1.df_resid) fpval = 2 * min(fpval_sm, fpval_la) ordering = "two-sided" else: raise ValueError("invalid alternative") if store: res = ResultsStore() res.__doc__ = "Test Results for Goldfeld-Quandt test of" \ "heterogeneity" res.fval = fval res.fpval = fpval res.df_fval = (resols2.df_resid, resols1.df_resid) res.resols1 = resols1 res.resols2 = resols2 res.ordering = ordering res.split = split res._str = """\ The Goldfeld-Quandt test for null hypothesis that the variance in the second subsample is {} than in the first subsample: F-statistic ={:8.4f} and p-value ={:8.4f}""".format(ordering, fval, fpval) return fval, fpval, ordering, res return fval, fpval, ordering
Goldfeld-Quandt homoskedasticity test. This test examines whether the residual variance is the same in 2 subsamples. Parameters ---------- y : array_like endogenous variable x : array_like exogenous variable, regressors idx : int, default None column index of variable according to which observations are sorted for the split split : {int, float}, default None If an integer, this is the index at which sample is split. If a float in 0<split<1 then split is interpreted as fraction of the observations in the first sample. If None, uses nobs//2. drop : {int, float}, default None If this is not None, then observation are dropped from the middle part of the sorted series. If 0<split<1 then split is interpreted as fraction of the number of observations to be dropped. Note: Currently, observations are dropped between split and split+drop, where split and drop are the indices (given by rounding if specified as fraction). The first sample is [0:split], the second sample is [split+drop:] alternative : {"increasing", "decreasing", "two-sided"} The default is increasing. This specifies the alternative for the p-value calculation. store : bool, default False Flag indicating to return the regression results Returns ------- fval : float value of the F-statistic pval : float p-value of the hypothesis that the variance in one subsample is larger than in the other subsample ordering : str The ordering used in the alternative. res_store : ResultsStore, optional Storage for the intermediate and final results that are calculated Notes ----- The Null hypothesis is that the variance in the two sub-samples are the same. The alternative hypothesis, can be increasing, i.e. the variance in the second sample is larger than in the first, or decreasing or two-sided. Results are identical R, but the drop option is defined differently. (sorting by idx not tested yet)
het_goldfeldquandt
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause