code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def intersecting_pyramids( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors of intersecting pyramids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.intersecting_pyramids( network=network, throat_coords=throat_coords ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 1 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3)) F2 = 1 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3)) # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = 1 / 6 # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) S2 = 1 / (16 * _np.pi**2 * I2 * F2) St = _np.full(len(Lt), _np.inf) return _np.vstack([S1, St, S2]).T
Computes hydraulic size factors of intersecting pyramids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes -----
intersecting_pyramids
python
PMEAL/OpenPNM
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
MIT
def hybrid_pyramids_and_cuboids( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors for conduits assuming pores are truncated pyramids and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.hybrid_pyramids_and_cuboids( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 1 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3)) F2 = 1 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3)) Ft = Lt / Dt**4 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / 6 mask = Lt == 0.0 if mask.any(): inv_F_t = _np.zeros(len(Ft)) inv_F_t[~mask] = 1/Ft[~mask] inv_F_t[mask] = _np.inf else: inv_F_t = 1/Ft # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = inv_F_t / (16 * _np.pi**2 * It) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
Computes hydraulic size factors for conduits assuming pores are truncated pyramids and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes -----
hybrid_pyramids_and_cuboids
python
PMEAL/OpenPNM
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
MIT
def cubes_and_cuboids( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", pore_aspect=[1, 1, 1], throat_aspect=[1, 1, 1], ): r""" Computes hydraulic size factors for conduits assuming pores are cubes and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s pore_aspect : list Aspect ratio of the pores throat_aspect : list Aspect ratio of the throats Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.cubes_and_cuboids( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = L1 / D1**4 F2 = L2 / D2**4 Ft = Lt / Dt**4 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / 6 # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = 1 / (16 * _np.pi**2 * It * Ft) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
Computes hydraulic size factors for conduits assuming pores are cubes and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s pore_aspect : list Aspect ratio of the pores throat_aspect : list Aspect ratio of the throats Returns ------- Notes -----
cubes_and_cuboids
python
PMEAL/OpenPNM
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
MIT
def squares_and_rectangles( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", pore_aspect=[1, 1], throat_aspect=[1, 1], ): r""" Computes hydraulic size factors for conduits assuming pores are squares and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s pore_aspect : list Aspect ratio of the pores throat_aspect : list Aspect ratio of the throats Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.squares_and_rectangles( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^3) dx, x = [0, Li] F1 = L1 / D1**3 F2 = L2 / D2**3 Ft = Lt / Dt**3 # S is 1 / (12 * F) S1, St, S2 = [1 / (Fi * 12) for Fi in [F1, Ft, F2]] return _np.vstack([S1, St, S2]).T
Computes hydraulic size factors for conduits assuming pores are squares and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s pore_aspect : list Aspect ratio of the pores throat_aspect : list Aspect ratio of the throats Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry.
squares_and_rectangles
python
PMEAL/OpenPNM
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
MIT
def ncylinders_in_series( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", n=5, ): r""" Computes hydraulic size factors for conduits of spheres and cylinders with the spheres approximated as N cylinders in series. Parameters ---------- %(network)s %(Dp)s %(Dt)s n : int Number of cylindrical divisions for each pore Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T # Ensure throats are never bigger than connected pores Dt = _np.minimum(Dt, 0.99 * _np.minimum(D1, D2)) L1, Lt, L2 = _conduit_lengths.spheres_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T dL1 = _np.linspace(0, L1, num=n) dL2 = _np.linspace(0, L2, num=n) r1 = D1 / 2 * _np.sin(_np.arccos(dL1 / (D1 / 2))) r2 = D2 / 2 * _np.sin(_np.arccos(dL2 / (D2 / 2))) gtemp = (_np.pi * r1 ** 4 / (8 * L1 / n)).T F1 = 1 / _np.sum(1 / gtemp, axis=1) gtemp = (_np.pi * r2 ** 4 / (8 * L2 / n)).T F2 = 1 / _np.sum(1 / gtemp, axis=1) Ft = (_np.pi * (Dt / 2) ** 4 / (8 * Lt)).T return _np.vstack([F1, Ft, F2]).T
Computes hydraulic size factors for conduits of spheres and cylinders with the spheres approximated as N cylinders in series. Parameters ---------- %(network)s %(Dp)s %(Dt)s n : int Number of cylindrical divisions for each pore Returns ------- Notes -----
ncylinders_in_series
python
PMEAL/OpenPNM
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
MIT
def sphere( network, pore_diameter='pore.diameter' ): r""" Calculate cross-sectional area assuming the pore body is a sphere Parameters ---------- %(network)s %(Dp)s Returns ------- areas : ndarray A numpy ndarry containing pore cross-sectional area values """ D = network[pore_diameter] return _pi/4 * D**2
Calculate cross-sectional area assuming the pore body is a sphere Parameters ---------- %(network)s %(Dp)s Returns ------- areas : ndarray A numpy ndarry containing pore cross-sectional area values
sphere
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
MIT
def cone( network, pore_diameter='pore.diameter' ): r""" Calculate cross-sectional area assuming the pore body is a cone Parameters ---------- %(network)s %(Dp)s Returns ------- """ D = network[pore_diameter] return _pi / 4 * D**2
Calculate cross-sectional area assuming the pore body is a cone Parameters ---------- %(network)s %(Dp)s Returns -------
cone
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
MIT
def cube( network, pore_diameter='pore.diameter' ): r""" Calculate cross-sectional area assuming the pore body is a cube Parameters ---------- %(network)s %(Dp)s Returns ------- """ D = network[pore_diameter] return D**2
Calculate cross-sectional area assuming the pore body is a cube Parameters ---------- %(network)s %(Dp)s Returns -------
cube
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
MIT
def circle( network, pore_diameter='pore.diameter' ): r""" Calculate cross-sectional area assuming the pore body is a circle Parameters ---------- %(network)s %(Dp)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ return network[pore_diameter]
Calculate cross-sectional area assuming the pore body is a circle Parameters ---------- %(network)s %(Dp)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry.
circle
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
MIT
def square( network, pore_diameter='pore.diameter' ): r""" Calculate cross-sectional area assuming the pore body is a square Parameters ---------- %(network)s %(Dp)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ return network[pore_diameter]
Calculate cross-sectional area assuming the pore body is a square Parameters ---------- %(network)s %(Dp)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry.
square
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_cross_sectional_area/_funcs.py
MIT
def equivalent_diameter( network, pore_volume='pore.volume', pore_shape='sphere' ): r""" Calculate the diameter of a sphere or edge-length of a cube with same volume as the pore. Parameters ---------- %(network)s %(Vp)s pore_shape : str The shape of the pore body to assume when back-calculating from volume. Options are 'sphere' (default) or 'cube'. Returns ------- diameters : ndarray A number ndarray containing pore diameter values """ from scipy.special import cbrt pore_vols = network[pore_volume] if pore_shape.startswith('sph'): value = cbrt(6*pore_vols/_np.pi) elif pore_shape.startswith('cub'): value = cbrt(pore_vols) return value
Calculate the diameter of a sphere or edge-length of a cube with same volume as the pore. Parameters ---------- %(network)s %(Vp)s pore_shape : str The shape of the pore body to assume when back-calculating from volume. Options are 'sphere' (default) or 'cube'. Returns ------- diameters : ndarray A number ndarray containing pore diameter values
equivalent_diameter
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_size/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_size/_funcs.py
MIT
def sphere( network, pore_diameter='pore.diameter' ): r""" Calculate pore volume from diameter assuming a spherical pore body Parameters ---------- %(network)s %(Dp)s Returns ------- volumes : ndarray Numpy ndarray containing pore volume values """ return 4/3*_pi*(network[pore_diameter]/2)**3
Calculate pore volume from diameter assuming a spherical pore body Parameters ---------- %(network)s %(Dp)s Returns ------- volumes : ndarray Numpy ndarray containing pore volume values
sphere
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_volume/_funcs.py
MIT
def cube( network, pore_diameter='pore.diameter' ): r""" Calculate pore volume from diameter assuming a cubic pore body Parameters ---------- %(network)s %(Dp)s Returns ------- """ return network[pore_diameter]**3
Calculate pore volume from diameter assuming a cubic pore body Parameters ---------- %(network)s %(Dp)s Returns -------
cube
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_volume/_funcs.py
MIT
def circle( network, pore_diameter='pore.diameter', ): r""" Calculate pore volume from diameter assuming a spherical pore body Parameters ---------- %(network)s %(Dp)s Returns ------- """ return _pi/4 * network[pore_diameter]**2
Calculate pore volume from diameter assuming a spherical pore body Parameters ---------- %(network)s %(Dp)s Returns -------
circle
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_volume/_funcs.py
MIT
def square( network, pore_diameter='pore.diameter', ): r""" Calculate pore volume from diameter assuming a cubic pore body Parameters ---------- %(network)s %(Dp)s Returns ------- """ return network[pore_diameter]**2
Calculate pore volume from diameter assuming a cubic pore body Parameters ---------- %(network)s %(Dp)s Returns -------
square
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_volume/_funcs.py
MIT
def effective( network, pore_volume='pore.volume', throat_volume='throat.volume', ): r""" Calculate the effective pore volume for optional use in transient simulations. The effective pore volume is calculated by adding half the volume of all neighbouring throats to the pore volume. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ cn = network['throat.conns'] P1 = cn[:, 0] P2 = cn[:, 1] eff_vol = np.copy(network[pore_volume]) np.add.at(eff_vol, P1, 1/2*network[throat_volume]) np.add.at(eff_vol, P2, 1/2*network[throat_volume]) return eff_vol
Calculate the effective pore volume for optional use in transient simulations. The effective pore volume is calculated by adding half the volume of all neighbouring throats to the pore volume. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
effective
python
PMEAL/OpenPNM
openpnm/models/geometry/pore_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/pore_volume/_funcs.py
MIT
def mason_morrow( network, throat_perimeter='throat.perimeter', throat_area='throat.cross_sectional_area', ): r""" Mason and Morrow relate the capillary pressure to the shape factor in a similar way to Mortensen but for triangles. Parameters ---------- %(network)s %(Pt)s %(At)s Returns ------- References ---------- Mason, G. and Morrow, N.R.. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. Journal of Colloid and Interface Science, 141(1), pp.262-274 (1991). """ # Only apply to throats with an area ts = network.throats()[network[throat_area] <= 0] P = network[throat_perimeter] A = network[throat_area] value = A/(P**2) value[ts] = 1/(4*_np.pi) return value
Mason and Morrow relate the capillary pressure to the shape factor in a similar way to Mortensen but for triangles. Parameters ---------- %(network)s %(Pt)s %(At)s Returns ------- References ---------- Mason, G. and Morrow, N.R.. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. Journal of Colloid and Interface Science, 141(1), pp.262-274 (1991).
mason_morrow
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_capillary_shape_factor/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_capillary_shape_factor/_funcs.py
MIT
def jenkins_rao( network, throat_perimeter='throat.perimeter', throat_area='throat.cross_sectional_area', throat_diameter='throat.indiameter', ): r""" Jenkins and Rao relate the capillary pressure in an eliptical throat to the aspect ratio Parameters ---------- %(network)s %(Pt)s %(At)s %(Dt)s Returns ------- References ---------- Jenkins, R.G. and Rao, M.B., The effect of elliptical pores on mercury porosimetry results. Powder technology, 38(2), pp.177-180. (1984) """ P = network[throat_perimeter] A = network[throat_area] r = network[throat_diameter]/2 # Normalized by value for perfect circle value = (P/A)/(2/r) return value
Jenkins and Rao relate the capillary pressure in an eliptical throat to the aspect ratio Parameters ---------- %(network)s %(Pt)s %(At)s %(Dt)s Returns ------- References ---------- Jenkins, R.G. and Rao, M.B., The effect of elliptical pores on mercury porosimetry results. Powder technology, 38(2), pp.177-180. (1984)
jenkins_rao
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_capillary_shape_factor/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_capillary_shape_factor/_funcs.py
MIT
def pore_coords( network ): r""" Calculate throat centroid values by averaging adjacent pore coordinates Parameters ---------- %(network)s Returns ------- values : ndarray A numpy ndarray containing throat centroid values """ conns = network['throat.conns'] coords = network['pore.coords'] return _np.mean(coords[conns], axis=1)
Calculate throat centroid values by averaging adjacent pore coordinates Parameters ---------- %(network)s Returns ------- values : ndarray A numpy ndarray containing throat centroid values
pore_coords
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_centroid/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_centroid/_funcs.py
MIT
def cylinder( network, throat_diameter='throat.diameter', ): r""" Calculate throat cross-sectional area for a cylindrical throat Parameters ---------- %(network)s %(Dt)s Returns ------- """ diams = network[throat_diameter] value = _pi / 4 * diams**2 return value
Calculate throat cross-sectional area for a cylindrical throat Parameters ---------- %(network)s %(Dt)s Returns -------
cylinder
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_cross_sectional_area/_funcs.py
MIT
def cuboid( network, throat_diameter='throat.diameter', ): r""" Calculate throat cross-sectional area for a cuboid throat Parameters ---------- %(network)s %(Dt)s Returns ------- """ diams = network[throat_diameter] value = (diams)**2 return value
Calculate throat cross-sectional area for a cuboid throat Parameters ---------- %(network)s %(Dt)s Returns -------
cuboid
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_cross_sectional_area/_funcs.py
MIT
def rectangle( network, throat_diameter='throat.diameter', ): r""" Calculate throat cross-sectional area for a rectangular throat Parameters ---------- %(network)s %(Dt)s Returns ------- """ return network[throat_diameter]
Calculate throat cross-sectional area for a rectangular throat Parameters ---------- %(network)s %(Dt)s Returns -------
rectangle
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_cross_sectional_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_cross_sectional_area/_funcs.py
MIT
def spheres_and_cylinders( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter', throat_centroid='throat.centroid', ): r""" Computes the endpoints of throats when pores are spherical. The endpoints lie inside the sphere, defined by the lens formed between the intersection of the sphere and cylinder. Parameters ---------- %(network)s %(Dp)s %(Dt)s %(Tcen)s Returns ------- endpoints : ndarray An array containing the Nt-2-3 coordinates of the end points of each throat. """ xyz = network.coords cn = network.conns L = network['throat.spacing'] Dt = network[throat_diameter] D1 = network[pore_diameter][cn[:, 0]] D2 = network[pore_diameter][cn[:, 1]] L1 = _np.zeros_like(L) L2 = _np.zeros_like(L) # Handle the case where Dt > Dp mask = Dt > D1 L1[mask] = 0.5 * D1[mask] L1[~mask] = _np.sqrt(D1[~mask]**2 - Dt[~mask]**2) / 2 mask = Dt > D2 L2[mask] = 0.5 * D2[mask] L2[~mask] = _np.sqrt(D2[~mask]**2 - Dt[~mask]**2) / 2 # Handle non-colinear pores and throat centroids try: TC = network[throat_centroid] LP1T = _np.linalg.norm(TC - xyz[cn[:, 0]], axis=1) + 1e-15 LP2T = _np.linalg.norm(TC - xyz[cn[:, 1]], axis=1) + 1e-15 unit_vec_P1T = (TC - xyz[cn[:, 0]]) / LP1T[:, None] unit_vec_P2T = (TC - xyz[cn[:, 1]]) / LP2T[:, None] except KeyError: unit_vec_P1T = (xyz[cn[:, 1]] - xyz[cn[:, 0]]) / L[:, None] unit_vec_P2T = -1 * unit_vec_P1T # Find throat endpoints EP1 = xyz[cn[:, 0]] + L1[:, None] * unit_vec_P1T EP2 = xyz[cn[:, 1]] + L2[:, None] * unit_vec_P2T # Handle throats w/ overlapping pores L1 = (4 * L**2 + D1**2 - D2**2) / (8 * L) L2 = (4 * L**2 + D2**2 - D1**2) / (8 * L) h = (2 * _np.sqrt(D1**2 / 4 - L1**2)).real overlap = L - 0.5 * (D1 + D2) < 0 mask = overlap & (Dt < h) EP1[mask] = (xyz[cn[:, 0]] + L1[:, None] * unit_vec_P1T)[mask] EP2[mask] = (xyz[cn[:, 1]] + L2[:, None] * unit_vec_P2T)[mask] return {'head': EP1, 'tail': EP2}
Computes the endpoints of throats when pores are spherical. The endpoints lie inside the sphere, defined by the lens formed between the intersection of the sphere and cylinder. Parameters ---------- %(network)s %(Dp)s %(Dt)s %(Tcen)s Returns ------- endpoints : ndarray An array containing the Nt-2-3 coordinates of the end points of each throat.
spheres_and_cylinders
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_endpoints/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_endpoints/_funcs.py
MIT
def spheres_and_cylinders( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter' ): r""" Finds throat length assuming pores are spheres and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- lengths : ndarray A numpy ndarray containing throat length values """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.spheres_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are spheres and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- lengths : ndarray A numpy ndarray containing throat length values
spheres_and_cylinders
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def circles_and_rectangles( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter', ): r""" Finds throat length assuming pores are circles and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.circles_and_rectangles( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are circles and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
circles_and_rectangles
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def cones_and_cylinders( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter' ): r""" Finds throat length assuming pores are cones and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.cones_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are cones and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
cones_and_cylinders
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def intersecting_cones( network, pore_coords="pore.coords", throat_coords="throat.coords" ): r""" Finds throat length assuming pores are intersecting cones. Parameters ---------- %(network)s %(Pcoords)s %(Tcoords)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.intersecting_cones( network=network, pore_coords=pore_coords, throat_coords=throat_coords ) return out[:, 1]
Finds throat length assuming pores are intersecting cones. Parameters ---------- %(network)s %(Pcoords)s %(Tcoords)s Returns -------
intersecting_cones
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def hybrid_cones_and_cylinders( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Finds throat length assuming pores are cones and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.hybrid_cones_and_cylinders( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ) return out[:, 1]
Finds throat length assuming pores are cones and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns -------
hybrid_cones_and_cylinders
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def trapezoids_and_rectangles( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter' ): r""" Finds throat length assuming pores are trapezoids and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.trapezoids_and_rectangles( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are trapezoids and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
trapezoids_and_rectangles
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def intersecting_trapezoids( network, pore_coords="pore.coords", throat_coords="throat.coords" ): r""" Finds throat length assuming pores are intersecting trapezoids. Parameters ---------- %(network)s %(Pcoords)s %(Tcoords)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.intersecting_trapezoids( network=network, pore_coords=pore_coords, throat_coords=throat_coords ) return out[:, 1]
Finds throat length assuming pores are intersecting trapezoids. Parameters ---------- %(network)s %(Pcoords)s %(Tcoords)s Returns -------
intersecting_trapezoids
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def hybrid_trapezoids_and_rectangles( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Finds throat length assuming pores are trapezoids and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.hybrid_trapezoids_and_rectangles( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ) return out[:, 1]
Finds throat length assuming pores are trapezoids and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns -------
hybrid_trapezoids_and_rectangles
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def pyramids_and_cuboids( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter' ): r""" Finds throat length assuming pores are pyramids and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.pyramids_and_cuboids( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are pyramids and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
pyramids_and_cuboids
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def intersecting_pyramids( network, pore_coords="pore.coords", throat_coords="throat.coords" ): r""" Finds throat length assuming pores are intersecting pyramids. Parameters ---------- %(network)s %(Pcoords)s %(Tcoords)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.intersecting_pyramids( network=network, pore_coords=pore_coords, throat_coords=throat_coords ) return out[:, 1]
Finds throat length assuming pores are intersecting pyramids. Parameters ---------- %(network)s %(Pcoords)s %(Tcoords)s Returns -------
intersecting_pyramids
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def hybrid_pyramids_and_cuboids( network, pore_diameter='pore.diameter', throat_coords="throat.coords", ): r""" Finds throat length assuming pores are pyramids and throats are cuboids. Parameters ---------- %(network)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.hybrid_pyramids_and_cuboids( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ) return out[:, 1]
Finds throat length assuming pores are pyramids and throats are cuboids. Parameters ---------- %(network)s Returns -------
hybrid_pyramids_and_cuboids
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def cubes_and_cuboids( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter' ): r""" Finds throat length assuming pores are cubes and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.cubes_and_cuboids( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are cubes and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
cubes_and_cuboids
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def squares_and_rectangles( network, pore_diameter='pore.diameter', throat_diameter='throat.diameter' ): r""" Finds throat length assuming pores are squares and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- """ from openpnm.models.geometry import conduit_lengths out = conduit_lengths.squares_and_rectangles( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ) return out[:, 1]
Finds throat length assuming pores are squares and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns -------
squares_and_rectangles
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_length/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_length/_funcs.py
MIT
def cylinder( network, throat_diameter='throat.diameter', ): r""" Calcuate the throat perimeter assuming a circular cross-section Parameters ---------- %(network)s %(Dt)s Returns ------- perimeters : ndarray A numpy ndarray containing throat perimeter values """ return network[throat_diameter]*_np.pi
Calcuate the throat perimeter assuming a circular cross-section Parameters ---------- %(network)s %(Dt)s Returns ------- perimeters : ndarray A numpy ndarray containing throat perimeter values
cylinder
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_perimeter/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_perimeter/_funcs.py
MIT
def cuboid( network, throat_diameter='throat.diameter', ): r""" Calcuate the throat perimeter assuming a square cross-section Parameters ---------- %(network)s %(Dt)s Returns ------- """ return network[throat_diameter]*4
Calcuate the throat perimeter assuming a square cross-section Parameters ---------- %(network)s %(Dt)s Returns -------
cuboid
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_perimeter/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_perimeter/_funcs.py
MIT
def rectangle( network, throat_diameter='throat.diameter', ): r""" Calcuate the throat perimeter assuming a rectangular cross-section (2D) Parameters ---------- %(network)s %(Dt)s Returns ------- """ return 1.0
Calcuate the throat perimeter assuming a rectangular cross-section (2D) Parameters ---------- %(network)s %(Dt)s Returns -------
rectangle
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_perimeter/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_perimeter/_funcs.py
MIT
def equivalent_diameter( network, throat_area='throat.cross_sectional_area', throat_shape='circle', ): r""" Calculates the diameter of a cirlce or edge-length of a sqaure with same area as the throat. Parameters ---------- %(network)s %(At)s throat_shape : str The shape cross-sectional shape of the throat to assume when back-calculating from the area. Options are 'circle' (default) or 'square'. Returns ------- diameters : ndarray A numpy ndarray containing throat diameter values """ area = network[throat_area] if throat_shape.startswith('circ'): value = 2*_np.sqrt(area/_np.pi) elif throat_shape.startswith('square'): value = _np.sqrt(area) return value
Calculates the diameter of a cirlce or edge-length of a sqaure with same area as the throat. Parameters ---------- %(network)s %(At)s throat_shape : str The shape cross-sectional shape of the throat to assume when back-calculating from the area. Options are 'circle' (default) or 'square'. Returns ------- diameters : ndarray A numpy ndarray containing throat diameter values
equivalent_diameter
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_size/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_size/_funcs.py
MIT
def cylinder( network, throat_diameter='throat.diameter', throat_length='throat.length', ): r""" Calculate surface area for a cylindrical throat Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- surface_areas : ndarray A numpy ndarray containing throat surface area values """ return _np.pi * network[throat_diameter] * network[throat_length]
Calculate surface area for a cylindrical throat Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- surface_areas : ndarray A numpy ndarray containing throat surface area values
cylinder
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_surface_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_surface_area/_funcs.py
MIT
def cuboid( network, throat_diameter='throat.diameter', throat_length='throat.length', ): r""" Calculate surface area for a cuboid throat Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- """ return 4 * network[throat_diameter] * network[throat_length]
Calculate surface area for a cuboid throat Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns -------
cuboid
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_surface_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_surface_area/_funcs.py
MIT
def extrusion( network, throat_perimeter='throat.perimeter', throat_length='throat.length', ): r""" Calculate surface area for an arbitrary shaped throat give the perimeter and length. Parameters ---------- %(network)s %(Pt)s %(Lt)s Returns ------- """ return network[throat_perimeter] * network[throat_length]
Calculate surface area for an arbitrary shaped throat give the perimeter and length. Parameters ---------- %(network)s %(Pt)s %(Lt)s Returns -------
extrusion
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_surface_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_surface_area/_funcs.py
MIT
def rectangle( network, throat_length='throat.length', ): r""" Calculate surface area for a rectangular throat Only suitable for true 2D simulations Parameters ---------- %(network)s %(Lt)s Returns ------- """ return 2 * network[throat_length]
Calculate surface area for a rectangular throat Only suitable for true 2D simulations Parameters ---------- %(network)s %(Lt)s Returns -------
rectangle
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_surface_area/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_surface_area/_funcs.py
MIT
def pore_to_pore(network): r""" Calculates throat vector as straight path between connected pores. Parameters ---------- %(network)s Returns ------- unit_vec : ndarray A [Nt-by-3] numpy ndarray containing pore-to-pore unit vectors Notes ----- There is an important impicit assumption here: the positive direction is taken as the direction from the pore with the lower index to the higher. This corresponds to the pores in the 1st and 2nd columns of the 'throat.conns' array as stored on the network. """ conns = network['throat.conns'] P1 = conns[:, 0] P2 = conns[:, 1] coords = network['pore.coords'] vec = coords[P2] - coords[P1] unit_vec = tr.unit_vector(vec, axis=1) return unit_vec
Calculates throat vector as straight path between connected pores. Parameters ---------- %(network)s Returns ------- unit_vec : ndarray A [Nt-by-3] numpy ndarray containing pore-to-pore unit vectors Notes ----- There is an important impicit assumption here: the positive direction is taken as the direction from the pore with the lower index to the higher. This corresponds to the pores in the 1st and 2nd columns of the 'throat.conns' array as stored on the network.
pore_to_pore
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_vector/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_vector/_funcs.py
MIT
def cylinder( network, throat_diameter='throat.diameter', throat_length='throat.length', ): r""" Calculate throat volume assuing a cylindrical shape Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- volumes : ndarray A numpy ndarray containing throat volume values Notes ----- This models does not account for the volume reprsented by the intersection of the throat with a spherical pore body. Use the ``lens`` or ``pendular_ring`` models in addition to this one to account for this volume. """ leng = network[throat_length] diam = network[throat_diameter] value = _np.pi/4*leng*diam**2 return value
Calculate throat volume assuing a cylindrical shape Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- volumes : ndarray A numpy ndarray containing throat volume values Notes ----- This models does not account for the volume reprsented by the intersection of the throat with a spherical pore body. Use the ``lens`` or ``pendular_ring`` models in addition to this one to account for this volume.
cylinder
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_volume/_funcs.py
MIT
def cuboid( network, throat_diameter='throat.diameter', throat_length='throat.length', ): r""" Calculate throat volume assuing a square cross-section Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- Notes ----- At present this models does NOT account for the volume reprsented by the intersection of the throat with a spherical pore body. """ leng = network[throat_length] diam = network[throat_diameter] value = leng*diam**2 return value
Calculate throat volume assuing a square cross-section Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- Notes ----- At present this models does NOT account for the volume reprsented by the intersection of the throat with a spherical pore body.
cuboid
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_volume/_funcs.py
MIT
def rectangle( network, throat_diameter='throat.diameter', throat_length='throat.length', ): r""" Calculate throat volume assuing a rectangular shape Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- Notes ----- At present this models does NOT account for the volume reprsented by the intersection of the throat with a spherical pore body. """ return network[throat_length] * network[throat_diameter]
Calculate throat volume assuing a rectangular shape Parameters ---------- %(network)s %(Dt)s %(Lt)s Returns ------- Notes ----- At present this models does NOT account for the volume reprsented by the intersection of the throat with a spherical pore body.
rectangle
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_volume/_funcs.py
MIT
def extrusion( network, throat_length='throat.length', throat_area='throat.cross_sectional_area', ): r""" Calculate throat volume from the throat area and the throat length. This method is useful for abnormal shaped throats. Parameters ---------- %(network)s %(Lt)s %(At)s Returns ------- Notes ----- At present this models does NOT account for the volume reprsented by the intersection of the throat with a spherical pore body. """ leng = network[throat_length] area = network[throat_area] value = leng*area return value
Calculate throat volume from the throat area and the throat length. This method is useful for abnormal shaped throats. Parameters ---------- %(network)s %(Lt)s %(At)s Returns ------- Notes ----- At present this models does NOT account for the volume reprsented by the intersection of the throat with a spherical pore body.
extrusion
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_volume/_funcs.py
MIT
def lens( network, throat_diameter='throat.diameter', pore_diameter='pore.diameter', ): r""" Calculates the volume residing the hemispherical caps formed by the intersection between cylindrical throats and spherical pores. This volume should be subtracted from throat volumes if the throat lengths were found using throat end points. Parameters ---------- %(network)s %(Dt)s %(Dp)s Returns ------- Notes ----- This model does not consider the possibility that multiple throats might overlap in the same location which could happen if throats are large and connectivity is random. See Also -------- pendular_ring """ conns = network['throat.conns'] Rp = network[pore_diameter]/2 Rt = network[throat_diameter]/2 a = _np.atleast_2d(Rt).T q = _np.arcsin(a/Rp[conns]) b = Rp[conns]*_np.cos(q) h = Rp[conns] - b V = 1/6*_np.pi*h*(3*a**2 + h**2) return _np.sum(V, axis=1)
Calculates the volume residing the hemispherical caps formed by the intersection between cylindrical throats and spherical pores. This volume should be subtracted from throat volumes if the throat lengths were found using throat end points. Parameters ---------- %(network)s %(Dt)s %(Dp)s Returns ------- Notes ----- This model does not consider the possibility that multiple throats might overlap in the same location which could happen if throats are large and connectivity is random. See Also -------- pendular_ring
lens
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_volume/_funcs.py
MIT
def pendular_ring( network, throat_diameter='throat.diameter', pore_diameter='pore.diameter', ): r""" Calculates the volume of the pendular rings residing between the end of a cylindrical throat and spherical pores that are in contact but not overlapping. This volume should be added to the throat volume if the throat length was found as the center-to-center distance less the pore radii. Parameters ---------- %(network)s %(Dt)s %(Dp)s Returns ------- Notes ----- This model does not consider the possibility that multiple throats might overlap in the same location which could happen if throats are large and connectivity is random. See Also -------- lens """ conns = network['throat.conns'] Rp = network[pore_diameter]/2 Rt = network[throat_diameter]/2 a = _np.atleast_2d(Rt).T q = _np.arcsin(a/Rp[conns]) b = Rp[conns]*_np.cos(q) h = Rp[conns] - b Vlens = 1/6*_np.pi*h*(3*a**2 + h**2) Vcyl = _np.pi*(a)**2*h V = Vcyl - Vlens return _np.sum(V, axis=1)
Calculates the volume of the pendular rings residing between the end of a cylindrical throat and spherical pores that are in contact but not overlapping. This volume should be added to the throat volume if the throat length was found as the center-to-center distance less the pore radii. Parameters ---------- %(network)s %(Dt)s %(Dp)s Returns ------- Notes ----- This model does not consider the possibility that multiple throats might overlap in the same location which could happen if throats are large and connectivity is random. See Also -------- lens
pendular_ring
python
PMEAL/OpenPNM
openpnm/models/geometry/throat_volume/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/throat_volume/_funcs.py
MIT
def difference(target, props): r""" Subtracts elements 1:N in `props` from element 0 Parameters ---------- target : OpenPNM dict The object to which the model is associated props : list A list of dict keys containing the values to operate on. If the first element is A, and the next are B and C, then the results is A - B - C. """ A = target[props[0]] for B in props[1:]: A = A - target[B] return A
Subtracts elements 1:N in `props` from element 0 Parameters ---------- target : OpenPNM dict The object to which the model is associated props : list A list of dict keys containing the values to operate on. If the first element is A, and the next are B and C, then the results is A - B - C.
difference
python
PMEAL/OpenPNM
openpnm/models/misc/_basic_math.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_basic_math.py
MIT
def fraction(target, numerator, denominator): r""" Calculates the ratio between two values Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. numerator : str Dictionary key pointing the numerator values denominator : str Dictionary key pointing the denominator values """ x = target[numerator] y = target[denominator] return x/y
Calculates the ratio between two values Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. numerator : str Dictionary key pointing the numerator values denominator : str Dictionary key pointing the denominator values
fraction
python
PMEAL/OpenPNM
openpnm/models/misc/_basic_math.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_basic_math.py
MIT
def summation(target, props=[]): r""" Sums the values in the given arrays Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. props : list of dictionary keys The dictionary keys pointing the arrays whose elements should be summed """ vals = np.zeros_like(target[props[0]]) for item in props: vals += target[item] return vals
Sums the values in the given arrays Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. props : list of dictionary keys The dictionary keys pointing the arrays whose elements should be summed
summation
python
PMEAL/OpenPNM
openpnm/models/misc/_basic_math.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_basic_math.py
MIT
def product(target, props): r""" Calculates the product of multiple property values Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. props : list[str] The name of the arguments to be used for the product. Returns ------- value : ndarray Array containing product values of ``target[props[0]]``, ``target[props[1]]``, etc. """ value = np.ones_like(target[props[0]]) for item in props: value *= target[item] return value
Calculates the product of multiple property values Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. props : list[str] The name of the arguments to be used for the product. Returns ------- value : ndarray Array containing product values of ``target[props[0]]``, ``target[props[1]]``, etc.
product
python
PMEAL/OpenPNM
openpnm/models/misc/_basic_math.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_basic_math.py
MIT
def from_neighbor_throats(target, prop, mode='min', ignore_nans=True): r""" Adopt a value from the values found in neighboring throats Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. prop : str The dictionary key of the array containing the throat property to be used in the calculation. mode : str Controls how the pore property is calculated. The default value is 'min'. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'min' Returns the value of the minimum property of the neighboring throats 'max' Returns the value of the maximum property of the neighboring throats 'mean' Returns the value of the mean property of the neighboring throats 'sum' Returns the sum of the property of the neighboring throats =========== ===================================================== Returns ------- value : ndarray Array containing customized values based on those of adjacent throats. """ network = target.network data = target[prop] nans = np.isnan(data) im = network.create_incidence_matrix() if mode == 'min': if ignore_nans: data[nans] = np.inf values = np.ones((network.Np, ))*np.inf np.minimum.at(values, im.row, data[im.col]) if mode == 'max': if ignore_nans: data[nans] = -np.inf values = np.ones((network.Np, ))*-np.inf np.maximum.at(values, im.row, data[im.col]) if mode == 'mean': if ignore_nans: data[nans] = 0 values = np.zeros((network.Np, )) np.add.at(values, im.row, data[im.col]) counts = np.zeros((network.Np, )) np.add.at(counts, im.row, np.ones((network.Nt, ))[im.col]) if ignore_nans: np.subtract.at(counts, im.row, nans[im.col]) values = values/counts if mode == 'sum': if ignore_nans: data[nans] = 0 values = np.zeros((network.Np, )) np.add.at(values, im.row, data[im.col]) return values
Adopt a value from the values found in neighboring throats Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. prop : str The dictionary key of the array containing the throat property to be used in the calculation. mode : str Controls how the pore property is calculated. The default value is 'min'. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'min' Returns the value of the minimum property of the neighboring throats 'max' Returns the value of the maximum property of the neighboring throats 'mean' Returns the value of the mean property of the neighboring throats 'sum' Returns the sum of the property of the neighboring throats =========== ===================================================== Returns ------- value : ndarray Array containing customized values based on those of adjacent throats.
from_neighbor_throats
python
PMEAL/OpenPNM
openpnm/models/misc/_neighbor_lookups.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_neighbor_lookups.py
MIT
def from_neighbor_pores(target, prop, mode='min', ignore_nans=True): r""" Adopt a value based on the values in neighboring pores Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. prop : str The dictionary key to the array containing the pore property to be used in the calculation. mode : str Controls how the pore property is calculated. The default value is 'min'. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'min' Returns the value of the minimum property of the neighboring pores 'max' Returns the value of the maximum property of the neighboring pores 'mean' Returns the value of the mean property of the neighboring pores 'sum' Returns the sum of the property of the neighrboring pores =========== ===================================================== ignore_nans : bool (default is ``True``) If ``True`` the result will ignore ``nans`` in the neighbors Returns ------- value : ndarray Array containing customized values based on those of adjacent pores. """ network = target.network throats = target.Ts P12 = network.find_connected_pores(throats) pvalues = target[prop][P12] if ignore_nans: pvalues = np.ma.MaskedArray(data=pvalues, mask=np.isnan(pvalues)) try: # If pvalues is not empty if mode == 'min': value = np.amin(pvalues, axis=1) if mode == 'max': value = np.amax(pvalues, axis=1) if mode == 'mean': value = np.mean(pvalues, axis=1) if mode == 'sum': value = np.sum(pvalues, axis=1) except np.AxisError: # Handle case of empty pvalues value = [] return np.array(value)
Adopt a value based on the values in neighboring pores Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. prop : str The dictionary key to the array containing the pore property to be used in the calculation. mode : str Controls how the pore property is calculated. The default value is 'min'. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'min' Returns the value of the minimum property of the neighboring pores 'max' Returns the value of the maximum property of the neighboring pores 'mean' Returns the value of the mean property of the neighboring pores 'sum' Returns the sum of the property of the neighrboring pores =========== ===================================================== ignore_nans : bool (default is ``True``) If ``True`` the result will ignore ``nans`` in the neighbors Returns ------- value : ndarray Array containing customized values based on those of adjacent pores.
from_neighbor_pores
python
PMEAL/OpenPNM
openpnm/models/misc/_neighbor_lookups.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_neighbor_lookups.py
MIT
def generic_function(target, prop, func, **kwargs): r""" Runs an arbitrary function on the given data This allows users to place a customized calculation into the automatated model regeneration pipeline. Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. prop : str The dictionary key containing the array to be operated on func : Numpy function A handle to the function to apply kwargs : keyward arguments All arguments required by the specific Numpy function Returns ------- result : ndarray Array containing ``func(target[prop], **kwargs)``. Examples -------- The following example shows how to use a Numpy function, but any function can be used, as long as it returns an array object: >>> import openpnm as op >>> import numpy as np >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> pn['pore.rand'] = np.random.rand(pn.Np) >>> pn.add_model(propname='pore.cos', ... model=op.models.misc.generic_function, ... func=np.cos, ... prop='pore.rand') """ values = target[prop] result = func(values, **kwargs) if not isinstance(result, np.ndarray): logger.warning('Given function must return a Numpy array') return result
Runs an arbitrary function on the given data This allows users to place a customized calculation into the automatated model regeneration pipeline. Parameters ---------- target : Base The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. prop : str The dictionary key containing the array to be operated on func : Numpy function A handle to the function to apply kwargs : keyward arguments All arguments required by the specific Numpy function Returns ------- result : ndarray Array containing ``func(target[prop], **kwargs)``. Examples -------- The following example shows how to use a Numpy function, but any function can be used, as long as it returns an array object: >>> import openpnm as op >>> import numpy as np >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> pn['pore.rand'] = np.random.rand(pn.Np) >>> pn.add_model(propname='pore.cos', ... model=op.models.misc.generic_function, ... func=np.cos, ... prop='pore.rand')
generic_function
python
PMEAL/OpenPNM
openpnm/models/misc/_simple_equations.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_simple_equations.py
MIT
def linear(target, m, b, prop): r""" Calculates a property as a linear function of a given property Parameters ---------- target : Base The object for which these values are being calculated. This controls the length of the calculated array, and also provides access to other necessary thermofluid properties. m, b : floats Slope and intercept of the linear corelation prop : str The dictionary key containing the independent variable or phase property to be used in the correlation. Returns ------- value : ndarray Array containing ``m * target[prop] + b``. """ x = target[prop] value = m*x + b return value
Calculates a property as a linear function of a given property Parameters ---------- target : Base The object for which these values are being calculated. This controls the length of the calculated array, and also provides access to other necessary thermofluid properties. m, b : floats Slope and intercept of the linear corelation prop : str The dictionary key containing the independent variable or phase property to be used in the correlation. Returns ------- value : ndarray Array containing ``m * target[prop] + b``.
linear
python
PMEAL/OpenPNM
openpnm/models/misc/_simple_equations.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_simple_equations.py
MIT
def polynomial(target, a, prop): r""" Calculates a property as a polynomial function of a given property Parameters ---------- target : Base The object for which these values are being calculated. This controls the length of the calculated array, and also provides access to other necessary thermofluid properties. a : array_like A list containing the polynomial coefficients, where element 0 in the list corresponds to a0 and so on. Note that no entries can be skipped so 0 coefficients must be sent as 0. prop : str The dictionary key containing the independent variable or phase property to be used in the polynomial. Returns ------- value : ndarray Array containing ``Pn(target[prop])``, where ``Pn`` is nth order polynomial with coefficients stored in ``a``. """ x = target[prop].astype(float) value = 0.0 for i in range(0, len(a)): value += a[i]*(x**i) return value
Calculates a property as a polynomial function of a given property Parameters ---------- target : Base The object for which these values are being calculated. This controls the length of the calculated array, and also provides access to other necessary thermofluid properties. a : array_like A list containing the polynomial coefficients, where element 0 in the list corresponds to a0 and so on. Note that no entries can be skipped so 0 coefficients must be sent as 0. prop : str The dictionary key containing the independent variable or phase property to be used in the polynomial. Returns ------- value : ndarray Array containing ``Pn(target[prop])``, where ``Pn`` is nth order polynomial with coefficients stored in ``a``.
polynomial
python
PMEAL/OpenPNM
openpnm/models/misc/_simple_equations.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_simple_equations.py
MIT
def weibull(network, seeds, shape, scale, loc): r""" Produces values from a Weibull distribution given a set of random numbers. Parameters ---------- %(network)s seeds : str (dict key) %(dict_blurb) seed shape : float Controls the width or skewness of the distribution. For more information on the effect of this parameter refer to the corresponding `scipy.stats function <https://docs.scipy.org/doc/scipy/reference/stats.html>`_. scale : float Controls the width of the distribution. For more information on the effect of this parameter refer to the corresponding scipy.stats function. loc : float Specifies the central value of ??? Returns ------- values : ndndarray A numpy ndarray containing values following the distribution Examples -------- The following code illustrates the inner workings of this function, which uses the 'weibull_min' method of the scipy.stats module. This can be used to find suitable values of 'shape', 'scale'` and 'loc'. Note that 'shape' is represented by 'c' in the actual function call. .. plot:: import numpy import scipy.stats import matplotlib.pyplot as plt func = scipy.stats.weibull_min(c=1.5, scale=0.0001, loc=0) plt.hist(func.ppf(q=numpy.random.rand(10000)), bins=50) plt.show() """ seeds = network[seeds] value = spts.weibull_min.ppf(q=seeds, c=shape, scale=scale, loc=loc) return value
Produces values from a Weibull distribution given a set of random numbers. Parameters ---------- %(network)s seeds : str (dict key) %(dict_blurb) seed shape : float Controls the width or skewness of the distribution. For more information on the effect of this parameter refer to the corresponding `scipy.stats function <https://docs.scipy.org/doc/scipy/reference/stats.html>`_. scale : float Controls the width of the distribution. For more information on the effect of this parameter refer to the corresponding scipy.stats function. loc : float Specifies the central value of ??? Returns ------- values : ndndarray A numpy ndarray containing values following the distribution Examples -------- The following code illustrates the inner workings of this function, which uses the 'weibull_min' method of the scipy.stats module. This can be used to find suitable values of 'shape', 'scale'` and 'loc'. Note that 'shape' is represented by 'c' in the actual function call. .. plot:: import numpy import scipy.stats import matplotlib.pyplot as plt func = scipy.stats.weibull_min(c=1.5, scale=0.0001, loc=0) plt.hist(func.ppf(q=numpy.random.rand(10000)), bins=50) plt.show()
weibull
python
PMEAL/OpenPNM
openpnm/models/misc/_statistical_distributions.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_statistical_distributions.py
MIT
def normal(network, seeds, mean=None, stddev=None, scale=None, loc=None): r""" Produces values from a Weibull distribution given a set of random numbers. Parameters ---------- %(network)s seeds : str (dict key) %(dict_blurb) seed mean : float The mean value of the distribution. This is referred to as the ``loc`` in the scipy.stats function, and this key word is also accepted. stddev : float The standard deviation of the distribution. This is referred to as the ``scale`` in the scipy.stats function, and this key word is also accepted. Returns ------- Examples -------- The following code illustrates the inner workings of this function, which uses the 'norm' method of the scipy.stats module. This can be used to find suitable values of 'scale' and 'loc'. .. plot:: import numpy import scipy.stats import matplotlib.pyplot as plt func = scipy.stats.norm(scale=.0001, loc=0.001) fig = plt.hist(func.ppf(q=numpy.random.rand(10000)), bins=50) plt.show() """ scale = stddev if stddev is not None else scale loc = mean if mean is not None else loc seeds = network[seeds] value = spts.norm.ppf(q=seeds, scale=scale, loc=loc) return value
Produces values from a Weibull distribution given a set of random numbers. Parameters ---------- %(network)s seeds : str (dict key) %(dict_blurb) seed mean : float The mean value of the distribution. This is referred to as the ``loc`` in the scipy.stats function, and this key word is also accepted. stddev : float The standard deviation of the distribution. This is referred to as the ``scale`` in the scipy.stats function, and this key word is also accepted. Returns ------- Examples -------- The following code illustrates the inner workings of this function, which uses the 'norm' method of the scipy.stats module. This can be used to find suitable values of 'scale' and 'loc'. .. plot:: import numpy import scipy.stats import matplotlib.pyplot as plt func = scipy.stats.norm(scale=.0001, loc=0.001) fig = plt.hist(func.ppf(q=numpy.random.rand(10000)), bins=50) plt.show()
normal
python
PMEAL/OpenPNM
openpnm/models/misc/_statistical_distributions.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_statistical_distributions.py
MIT
def generic_distribution(network, seeds, func, **kwargs): r""" Accepts an object from the Scipy.stats submodule and returns values from the distribution for the given seeds Parameters ---------- %(network)s seeds : str (dict key) %(dict_blurb) seed func : object An object from the scipy.stats library. Can be a 'frozen' object, where all the parameters were specified upon creation, or a handle to an unintialized object. In the latter case the parameters for the distribution should be provided as keyword arguments. Returns ------- values : ndarray An ndarray of either Np or Nt length, with values taken from the supplied distribution. Examples -------- The following code illustrates the process of obtaining a 'frozen' Scipy stats object and adding it as a model: .. plot:: import numpy import scipy.stats import openpnm as op import matplotlib.pyplot as plt pn = op.network.Cubic(shape=[3, 3, 3]) pn.add_model(propname='pore.seed', model=op.models.geometry.pore_seed.random) # Now retrieve the stats distribution and add to ``geo`` as a model stats_obj = scipy.stats.weibull_min(c=2, scale=.0001, loc=0) pn.add_model(propname='pore.size', model=op.models.geometry.pore_size.generic_distribution, seeds='pore.seed', func=stats_obj) plt.hist(stats_obj.ppf(q=numpy.random.rand(1000)), bins=50) plt.show() """ if hasattr(func, 'freeze'): func = func.freeze(**kwargs) seeds = network[seeds] value = func.ppf(seeds) return value
Accepts an object from the Scipy.stats submodule and returns values from the distribution for the given seeds Parameters ---------- %(network)s seeds : str (dict key) %(dict_blurb) seed func : object An object from the scipy.stats library. Can be a 'frozen' object, where all the parameters were specified upon creation, or a handle to an unintialized object. In the latter case the parameters for the distribution should be provided as keyword arguments. Returns ------- values : ndarray An ndarray of either Np or Nt length, with values taken from the supplied distribution. Examples -------- The following code illustrates the process of obtaining a 'frozen' Scipy stats object and adding it as a model: .. plot:: import numpy import scipy.stats import openpnm as op import matplotlib.pyplot as plt pn = op.network.Cubic(shape=[3, 3, 3]) pn.add_model(propname='pore.seed', model=op.models.geometry.pore_seed.random) # Now retrieve the stats distribution and add to ``geo`` as a model stats_obj = scipy.stats.weibull_min(c=2, scale=.0001, loc=0) pn.add_model(propname='pore.size', model=op.models.geometry.pore_size.generic_distribution, seeds='pore.seed', func=stats_obj) plt.hist(stats_obj.ppf(q=numpy.random.rand(1000)), bins=50) plt.show()
generic_distribution
python
PMEAL/OpenPNM
openpnm/models/misc/_statistical_distributions.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_statistical_distributions.py
MIT
def random(network, element, seed=None, num_range=[0, 1]): r""" Create an array of random numbers of a specified size. Parameters ---------- %(network)s seed : int The starting seed value to sent to numpy's random number generator. A value of ``None`` means a different distribution is returned each time the model is (re)run. num_range : list A two element list indicating the low and high end of the returned numbers. The default is ``[0, 1]``, but a value of ``[0.1, 0.9]`` may be useful if these values are to be used in subsequent distributions to prevent generating extreme values in the tails. Returns ------- """ range_size = num_range[1] - num_range[0] range_min = num_range[0] if seed is not None: np.random.seed(seed) value = np.random.rand(network._count(element),) value = value*range_size + range_min return value
Create an array of random numbers of a specified size. Parameters ---------- %(network)s seed : int The starting seed value to sent to numpy's random number generator. A value of ``None`` means a different distribution is returned each time the model is (re)run. num_range : list A two element list indicating the low and high end of the returned numbers. The default is ``[0, 1]``, but a value of ``[0.1, 0.9]`` may be useful if these values are to be used in subsequent distributions to prevent generating extreme values in the tails. Returns -------
random
python
PMEAL/OpenPNM
openpnm/models/misc/_statistical_distributions.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_statistical_distributions.py
MIT
def match_histogram(network, bin_centers, bin_heights, element='pore'): r""" Generate values corresponding to a given histogram Parameters ---------- %(network)s bin_centers : array_like The x-axis of the histogram, such as pore sizes. bin_heights : array_like The y-axis of the histogram, such as the number of pores of each size. element : str Controls how many values to generate. Can either be 'pore' or 'throat'. Returns ------- values : ndarray Values corresponding to ``bin_centers`` generated in proportion to the respective ``bin_heights``. """ N = network._count(element) h = np.cumsum(bin_heights) b = np.digitize(np.random.rand(N)*np.amax(h), bins=h) vals = np.array(bin_centers)[b] return vals
Generate values corresponding to a given histogram Parameters ---------- %(network)s bin_centers : array_like The x-axis of the histogram, such as pore sizes. bin_heights : array_like The y-axis of the histogram, such as the number of pores of each size. element : str Controls how many values to generate. Can either be 'pore' or 'throat'. Returns ------- values : ndarray Values corresponding to ``bin_centers`` generated in proportion to the respective ``bin_heights``.
match_histogram
python
PMEAL/OpenPNM
openpnm/models/misc/_statistical_distributions.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/misc/_statistical_distributions.py
MIT
def cluster_number(network): r""" Assign a cluster number to each pore """ from scipy.sparse import csgraph as csg am = network.create_adjacency_matrix(fmt='coo', triu=True) N, Cs = csg.connected_components(am, directed=False) return Cs
Assign a cluster number to each pore
cluster_number
python
PMEAL/OpenPNM
openpnm/models/network/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_health.py
MIT
def cluster_size(network, cluster=None): r""" Find the size of the cluster to which each pore belongs Parameters ---------- network : dict The Network cluster : str, optional Dict key pointing to the array containing the cluster number of each pore. If not provided then it will be calculated. Returns ------- cluster_size : ndarray An Np-long array containing the size of the cluster to which each pore belongs """ if cluster is None: from scipy.sparse import csgraph as csg am = network.create_adjacency_matrix(fmt='coo', triu=True) N, cluster_num = csg.connected_components(am, directed=False) else: cluster_num = network[cluster] Cs, ind, N = np.unique(cluster_num, return_inverse=True, return_counts=True) values = N[ind] return values
Find the size of the cluster to which each pore belongs Parameters ---------- network : dict The Network cluster : str, optional Dict key pointing to the array containing the cluster number of each pore. If not provided then it will be calculated. Returns ------- cluster_size : ndarray An Np-long array containing the size of the cluster to which each pore belongs
cluster_size
python
PMEAL/OpenPNM
openpnm/models/network/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_health.py
MIT
def isolated_pores(network): r""" Find which pores, if any, are not connected to a throat """ values = np.ones(network.Np, dtype=bool) hits = np.unique(network.conns) if np.any(hits >= network.Np): logger.warning("Some throats point to non-existent pores") hits = hits[hits < network.Np] values[hits] = False return values
Find which pores, if any, are not connected to a throat
isolated_pores
python
PMEAL/OpenPNM
openpnm/models/network/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_health.py
MIT
def count_coincident_pores(network, thresh=1e-6): r""" Count number of pores that are spatially coincident with other pores Parameters ---------- network : dict The Network thresh : float The distance below which two pores are considered spatially coincident Returns ------- count : ndarray A numpy array of Np length containing the number of coincident pores """ # This needs to be a bit complicated because it cannot be assumed # the coincident pores are topologically connected import scipy.spatial as sptl coords = network.coords tree = sptl.KDTree(coords) hits = tree.query_pairs(r=thresh) arr = np.array(list(hits)).flatten() v, n = np.unique(arr, return_counts=True) values = np.zeros(network.Np, dtype=int) values[v.astype(int)] = n return values
Count number of pores that are spatially coincident with other pores Parameters ---------- network : dict The Network thresh : float The distance below which two pores are considered spatially coincident Returns ------- count : ndarray A numpy array of Np length containing the number of coincident pores
count_coincident_pores
python
PMEAL/OpenPNM
openpnm/models/network/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_health.py
MIT
def find_coincident_pores(network, thresh=1e-6): r""" Find the indices of coincident pores Parameters ---------- network : dict The Network thresh : float The distance below which two pores are considered spatially coincident Returns ------- indices : list of lists One row corresponding to each pore, with each row listing the indices of any coincident pores. An empty list means no pores were found within a distance of ``thresh``. """ # This needs to be a bit complicated because it cannot be assumed # the coincident pores are topologically connected import scipy.spatial as sptl coords = network['pore.coords'] tree = sptl.KDTree(coords) a = tree.sparse_distance_matrix(tree, max_distance=thresh, output_type='coo_matrix') a.data += 1.0 a.setdiag(0) a.eliminate_zeros() a.data -= 1.0 a = a.tolil() return a.rows
Find the indices of coincident pores Parameters ---------- network : dict The Network thresh : float The distance below which two pores are considered spatially coincident Returns ------- indices : list of lists One row corresponding to each pore, with each row listing the indices of any coincident pores. An empty list means no pores were found within a distance of ``thresh``.
find_coincident_pores
python
PMEAL/OpenPNM
openpnm/models/network/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_health.py
MIT
def gabriel_edges(network): r""" Find throats which make a Gabriel subgraph Returns ------- throats : ndarray An ndarray of boolean values with ``True`` indicating that a throat satisfies the conditions of Gabriel graph, meaning that a circle (or sphere) can be drawn between its two connected pores that does not contain any other pores. Notes ----- Technically this should only be used on a Delaunay network, but it will work on any graph. By deleting all throats that are *not* identified by this fuction one would obtain the Gabriel graph [1]. References ---------- [1] `Wikipedia <https://en.wikipedia.org/wiki/Gabriel_graph>`_ """ dn = network # Find centroid or midpoint of each edge in conns c = dn['pore.coords'][dn['throat.conns']] m = (c[:, 0, :] + c[:, 1, :])/2 # Find the radius the sphere between each pair of nodes r = np.sqrt(np.sum((c[:, 0, :] - c[:, 1, :])**2, axis=1))/2 # Use the kd-tree function in Scipy's spatial module tree = sptl.cKDTree(dn['pore.coords']) # Find the nearest point for each midpoint n = tree.query(x=m, k=1)[0] # If nearest point to m is at distance r, then the edge is a Gabriel edge g = n >= r*(0.999) # This factor avoids precision errors in the distances return g
Find throats which make a Gabriel subgraph Returns ------- throats : ndarray An ndarray of boolean values with ``True`` indicating that a throat satisfies the conditions of Gabriel graph, meaning that a circle (or sphere) can be drawn between its two connected pores that does not contain any other pores. Notes ----- Technically this should only be used on a Delaunay network, but it will work on any graph. By deleting all throats that are *not* identified by this fuction one would obtain the Gabriel graph [1]. References ---------- [1] `Wikipedia <https://en.wikipedia.org/wiki/Gabriel_graph>`_
gabriel_edges
python
PMEAL/OpenPNM
openpnm/models/network/_topology.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_topology.py
MIT
def pore_to_pore_distance(network): r""" Find the center to center distance between each pair of pores """ cn = network['throat.conns'] C1 = network['pore.coords'][cn[:, 0]] C2 = network['pore.coords'][cn[:, 1]] values = norm(C1 - C2, axis=1) return values
Find the center to center distance between each pair of pores
pore_to_pore_distance
python
PMEAL/OpenPNM
openpnm/models/network/_topology.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_topology.py
MIT
def distance_to_nearest_neighbor(network): r""" Find the distance between each pore and its closest topological neighbor """ cn = network['throat.conns'] C1 = network['pore.coords'][cn[:, 0]] C2 = network['pore.coords'][cn[:, 1]] D = norm(C1 - C2, axis=1) im = network.create_incidence_matrix() values = np.ones((network.Np, ))*np.inf np.minimum.at(values, im.row, D[im.col]) return np.array(values)
Find the distance between each pore and its closest topological neighbor
distance_to_nearest_neighbor
python
PMEAL/OpenPNM
openpnm/models/network/_topology.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_topology.py
MIT
def distance_to_furthest_neighbor(network): r""" Find the distance between each pore and its furthest topological neighbor """ throats = network.throats(network.name) cn = network['throat.conns'][throats] C1 = network['pore.coords'][cn[:, 0]] C2 = network['pore.coords'][cn[:, 1]] D = norm(C1 - C2, axis=1) im = network.create_incidence_matrix() values = np.zeros((network.Np, )) np.maximum.at(values, im.row, D[im.col]) return np.array(values)
Find the distance between each pore and its furthest topological neighbor
distance_to_furthest_neighbor
python
PMEAL/OpenPNM
openpnm/models/network/_topology.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_topology.py
MIT
def distance_to_nearest_pore(network): r""" Find distance to and index of nearest pore even if not topologically connected """ import scipy.spatial as sptl coords = network.coords tree = sptl.KDTree(coords) ds, ids = tree.query(coords, k=2) values = ds[:, 1] return values
Find distance to and index of nearest pore even if not topologically connected
distance_to_nearest_pore
python
PMEAL/OpenPNM
openpnm/models/network/_topology.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/network/_topology.py
MIT
def chemicals_wrapper(phase, f, **kwargs): r""" Wrapper function for calling models in the ``chemicals`` package Parameters ---------- phase : dict The OpenPNM Species object for which this model should calculate values. This object should ideally have all the necessary chemical properties in its ``params`` attribute, although this is optional as discussed below in relation to ``kwargs``. f : function The handle of the function to apply, such as ``chemicals.viscosity.Letsou_Stiel``. kwargs By default this function will use ``openpnm.models.phase.default_argmap`` to determine which names on ``phase`` correspond to each argument required by ``f``. For instance, ``default_argmap['Tc'] = 'param.critical_temperature'`` so any functions that need ``Tc`` will receive ``phase['param.critical_temperature']``. Some models only require the normal thermodynamic parameters, like ``T``, ``Tc``, and ``Pc``, so in many cases no additional arguments are needed beyond whats in the default argument map. However, other models require values that are themselves calcualted by another model, like ``Cvm``, or perhaps a list of constants like ``a0``, ``a1``, etc. It is necessary to provide these as keyword arguments, and they will be included in ``default_argmap`` as new entries or overwriting existing ones. So ``mu='pore.blah'`` will pass ``phase['pore.blah']`` to the ``mu`` argument of ``f``. Any arguments ending with an ``s`` are assumed to refer to the individual properties of pure components in a mixture. So ``mus`` means fetch the viscosity of each component as a list, like ``[1.3e-5, 1.9e-5]``. This function will trim the trailing ``s`` off any argument name before checking the ``default_argmap`` so that the normal pure component values can be looked up. Notes ----- This wrapper works with both pure and mixture phases, but the mixture models are very slow due to the way ``chemicals`` vectorizes code. For pure species it allows the computation of values at many different conditions in a vectorized way. The means that the conditions in each pore, such as temperature, pressure, etc can be passed and iterpreted as a list of conditions. For mixture models, however, the vectorization is done over the compositions, at a *fixed* condition. This means that we must do a pure-python for-loop (ie. slow) for each individual pore. As such, we have re-implemented several of the most useful mixing models offered by ``chemicals`` in ``OpenPNM``, and include unit tests to ensure both implementations agree. """ import chemicals as _chemicals # Update default argmap with any user supplied values argmap = default_argmap.copy() for k, v in kwargs.items(): argmap[k] = v args = _get_items_from_target(phase, f, argmap) # f = getattr(_chemicals.numba_vectorized, f.__name__) msg = f"Numba version failed for {f.__name__}, reverting to pure python" if len(set(['xs', 'yz', 'zs']).intersection(args.keys())): # Call function in for-loop for each pore since they are not vectorized logger.info(msg) vals = _np.zeros(phase.Np) for pore in phase.Ps: a = {} for item in args.keys(): if item.endswith('s'): try: a[item] = [args[item][i][pore] for i in range(len(args[item]))] except TypeError: a[item] = args[item] else: a[item] = args[item][pore] vals[pore] = f(*list(a.values())) else: try: # Get the numba vectorized version of f, or else numpy arrays don't work f = getattr(_chemicals.numba_vectorized, f.__name__) vals = f(*args.values()) except AssertionError: f = getattr(_chemicals, f.__name__) vals = f(*args.values()) logger.warn(msg) return vals
Wrapper function for calling models in the ``chemicals`` package Parameters ---------- phase : dict The OpenPNM Species object for which this model should calculate values. This object should ideally have all the necessary chemical properties in its ``params`` attribute, although this is optional as discussed below in relation to ``kwargs``. f : function The handle of the function to apply, such as ``chemicals.viscosity.Letsou_Stiel``. kwargs By default this function will use ``openpnm.models.phase.default_argmap`` to determine which names on ``phase`` correspond to each argument required by ``f``. For instance, ``default_argmap['Tc'] = 'param.critical_temperature'`` so any functions that need ``Tc`` will receive ``phase['param.critical_temperature']``. Some models only require the normal thermodynamic parameters, like ``T``, ``Tc``, and ``Pc``, so in many cases no additional arguments are needed beyond whats in the default argument map. However, other models require values that are themselves calcualted by another model, like ``Cvm``, or perhaps a list of constants like ``a0``, ``a1``, etc. It is necessary to provide these as keyword arguments, and they will be included in ``default_argmap`` as new entries or overwriting existing ones. So ``mu='pore.blah'`` will pass ``phase['pore.blah']`` to the ``mu`` argument of ``f``. Any arguments ending with an ``s`` are assumed to refer to the individual properties of pure components in a mixture. So ``mus`` means fetch the viscosity of each component as a list, like ``[1.3e-5, 1.9e-5]``. This function will trim the trailing ``s`` off any argument name before checking the ``default_argmap`` so that the normal pure component values can be looked up. Notes ----- This wrapper works with both pure and mixture phases, but the mixture models are very slow due to the way ``chemicals`` vectorizes code. For pure species it allows the computation of values at many different conditions in a vectorized way. The means that the conditions in each pore, such as temperature, pressure, etc can be passed and iterpreted as a list of conditions. For mixture models, however, the vectorization is done over the compositions, at a *fixed* condition. This means that we must do a pure-python for-loop (ie. slow) for each individual pore. As such, we have re-implemented several of the most useful mixing models offered by ``chemicals`` in ``OpenPNM``, and include unit tests to ensure both implementations agree.
chemicals_wrapper
python
PMEAL/OpenPNM
openpnm/models/phase/__init__.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/__init__.py
MIT
def liquid_mixture_Vc_XXX( phase, Vcs='pore.critical_volume.*', ): # pragma: no cover r""" Calculates the critical volume of a liquid mixture using the correlation in [1]_ Parameters ---------- %(phase)s %(Vcs)s Returns ------- References ---------- .. [1] tbd """ raise NotImplementedError("This function is not ready yet") xs = phase['pore.mole_fraction'] Vcs = phase.get_comp_vals(Vcs) N = len(xs) # Number of components Vm1 = np.sum([xs[i]*Vcs[i] for i in range(N)], axis=0) Vm2 = np.sum([xs[i]*(Vcs[i])**(2/3) for i in range(N)], axis=0) Vm3 = np.sum([xs[i]*(Vcs[i])**(1/3) for i in range(N)], axis=0) Vm = 0.25*(Vm1 + 3*(Vm2*Vm3)) return Vm
Calculates the critical volume of a liquid mixture using the correlation in [1]_ Parameters ---------- %(phase)s %(Vcs)s Returns ------- References ---------- .. [1] tbd
liquid_mixture_Vc_XXX
python
PMEAL/OpenPNM
openpnm/models/phase/critical_props/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/critical_props/_funcs.py
MIT
def liquid_mixture_Tc_XXX( phase, Vm='pore.molar_volume', Vcs='pore.critical_volume.*', Tcs='pore.critical_temperature.*', ): # pragma: no cover r""" Calculates the critical temperature of a liquid mixture using the correlation in [1]_ Parameters ---------- %(phase)s %(Vm)s %(Vcs)s %(Tcs)s Returns ------- References ---------- .. [1] tbd """ raise NotImplementedError("This function is not ready yet") xs = phase['pore.mole_fraction'] Tcs = phase.get_comp_vals(Tcs) Vcs = phase.get_comp_vals(Vcs) Vm = phase[Vm] N = len(xs) # Number of components num = np.zeros_like(xs[0]) for i in range(N): for j in range(N): VT = (Vcs[i]*Tcs[i]*Vcs[j]*Tcs[j])**0.5 num += xs[i]*xs[j]*VT Tcm = num/Vm return Tcm
Calculates the critical temperature of a liquid mixture using the correlation in [1]_ Parameters ---------- %(phase)s %(Vm)s %(Vcs)s %(Tcs)s Returns ------- References ---------- .. [1] tbd
liquid_mixture_Tc_XXX
python
PMEAL/OpenPNM
openpnm/models/phase/critical_props/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/critical_props/_funcs.py
MIT
def liquid_mixture_acentric_factor_XXX( phase, omegas='param.acentric_factor.*', ): # pragma: no cover r""" Calculates the accentric factor of a liquid mixture using the correlation in [1]_ Parameters ---------- %(phase)s %(omegas)s Returns ------- References ---------- .. [1] tbd """ raise NotImplementedError("This function is not ready yet") xs = phase['pore.mole_fraction'] omegas = phase.get_comp_vals(omegas) omega = np.sum([omegas[i]*xs[i] for i in range(len(xs))], axis=0) return omega
Calculates the accentric factor of a liquid mixture using the correlation in [1]_ Parameters ---------- %(phase)s %(omegas)s Returns ------- References ---------- .. [1] tbd
liquid_mixture_acentric_factor_XXX
python
PMEAL/OpenPNM
openpnm/models/phase/critical_props/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/critical_props/_funcs.py
MIT
def ideal_gas( phase, P='pore.pressure', T='pore.temperature', MW='param.molecular_weight', ): r""" Uses ideal gas law to calculate the mass density of an ideal gas Parameters ---------- %(phase)s %(T)s %(P)s %(MW)s Returns ------- """ P = phase[P] T = phase[T] try: # If phase is a pure species, it should have molecular weight in params MW = phase[MW] except KeyError: # Otherwise, get the mole weighted average value MW = phase.get_mix_vals(MW) R = 8.314462618 # J/(mol.K) value = P/(R*T)*(MW/1000) # Convert to kg/m3 return value
Uses ideal gas law to calculate the mass density of an ideal gas Parameters ---------- %(phase)s %(T)s %(P)s %(MW)s Returns -------
ideal_gas
python
PMEAL/OpenPNM
openpnm/models/phase/density/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/density/_funcs.py
MIT
def water_correlation( phase, T='pore.temperature', salinity='pore.salinity', ): r""" Calculates density of pure water or seawater at atmospheric pressure using Eq. (8) given by Sharqawy et. al [1]. Values at temperature higher than the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- Notes ----- ``T`` must be in K, and ``salinity`` in g of salt per kg of phase, or ppt (parts per thousand) VALIDITY: 273 < T < 453 K; 0 < S < 160 g/kg; ACCURACY: 0.1 pct References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010. """ T = phase[T] if salinity in phase.keys(): S = phase[salinity] else: S = 0 a1 = 9.9992293295E+02 a2 = 2.0341179217E-02 a3 = -6.1624591598E-03 a4 = 2.2614664708E-05 a5 = -4.6570659168E-08 b1 = 8.0200240891E-01 b2 = -2.0005183488E-03 b3 = 1.6771024982E-05 b4 = -3.0600536746E-08 b5 = -1.6132224742E-11 TC = T-273.15 rho_w = a1 + a2*TC + a3*TC**2 + a4*TC**3 + a5*TC**4 d_rho = b1*S + b2*S*TC + b3*S*(TC**2) + b4*S*(TC**3) + b5*(S**2)*(TC**2) rho_sw = rho_w + d_rho value = rho_sw return value
Calculates density of pure water or seawater at atmospheric pressure using Eq. (8) given by Sharqawy et. al [1]. Values at temperature higher than the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- Notes ----- ``T`` must be in K, and ``salinity`` in g of salt per kg of phase, or ppt (parts per thousand) VALIDITY: 273 < T < 453 K; 0 < S < 160 g/kg; ACCURACY: 0.1 pct References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010.
water_correlation
python
PMEAL/OpenPNM
openpnm/models/phase/density/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/density/_funcs.py
MIT
def liquid_mixture_COSTALD( phase, T='pore.temperature', MWs='param.molecular_weight.*', Tcs='param.critical_temperature.*', Vcs='param.critical_volume.*', omegas='param.acentric_factor.*', ): r""" Computes the density of a liquid mixture using the COrrospoding STAtes Liquid Density (COSTALD) method. Parameters ---------- %(phase)s %(T)s %(MWs)s %(Tcs)s %(Vcs)s %(omegas)s Returns ------- density : ndarray The density of the liquid mixture in units of kg/m3. Note that ``chemicals.volume.COSTALD`` returns molar volume, so this function converts it to density using the mole fraction weighted molecular weight of the mixture: :math:`MW_{mix} = \Sigma x_i \cdot MW_i`. Notes ----- This is same approach used by ``chemicals.volume.COSTALD_mixture`` and exact numerical correspondance is confirmed. Unlike the ``chemicals`` version, this function is vectorized over the conditions rather than the compositions, since a typical simulation has millions of pores each representing an independent conditions, but a mixture typically only has a few components. """ # Fetch parameters for each pure component Tcs = phase.get_comp_vals(Tcs) Vcs = phase.get_comp_vals(Vcs) omegas = phase.get_comp_vals(omegas) Xs = phase['pore.mole_fraction'] # Compute mixture values omegam = np.vstack([Xs[k]*omegas[k] for k in Xs.keys()]).sum(axis=0) Vm1 = np.vstack([Xs[k]*Vcs[k] for k in Xs.keys()]).sum(axis=0) Vm2 = np.vstack([Xs[k]*(Vcs[k])**(2/3) for k in Xs.keys()]).sum(axis=0) Vm3 = np.vstack([Xs[k]*(Vcs[k])**(1/3) for k in Xs.keys()]).sum(axis=0) Vm = 0.25*(Vm1 + 3*Vm2*Vm3) Tcm = 0.0 for i, ki in enumerate(Xs.keys()): inner = 0.0 for j, kj in enumerate(Xs.keys()): inner += Xs[ki]*Xs[kj]*(Vcs[ki]*Tcs[ki]*Vcs[kj]*Tcs[kj])**0.5 Tcm += inner Tcm = Tcm/Vm # Convert molar volume to normal mass density MWs = phase.get_comp_vals('param.molecular_weight') MWm = np.vstack([Xs[k]*MWs[k] for k in Xs.keys()]).sum(axis=0) T = phase[T] rhoL = liquid_pure_COSTALD( phase=phase, T=T, MW=MWm, Tc=Tcm, Vc=Vm, omega=omegam, ) return rhoL
Computes the density of a liquid mixture using the COrrospoding STAtes Liquid Density (COSTALD) method. Parameters ---------- %(phase)s %(T)s %(MWs)s %(Tcs)s %(Vcs)s %(omegas)s Returns ------- density : ndarray The density of the liquid mixture in units of kg/m3. Note that ``chemicals.volume.COSTALD`` returns molar volume, so this function converts it to density using the mole fraction weighted molecular weight of the mixture: :math:`MW_{mix} = \Sigma x_i \cdot MW_i`. Notes ----- This is same approach used by ``chemicals.volume.COSTALD_mixture`` and exact numerical correspondance is confirmed. Unlike the ``chemicals`` version, this function is vectorized over the conditions rather than the compositions, since a typical simulation has millions of pores each representing an independent conditions, but a mixture typically only has a few components.
liquid_mixture_COSTALD
python
PMEAL/OpenPNM
openpnm/models/phase/density/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/density/_funcs.py
MIT
def liquid_pure_COSTALD( phase, T='pore.temperature', Tc='param.critical_temperature', Vc='param.critical_volume', omega='param.acentric_factor', MW='param.molecular_weight', ): r""" Computes the density of a pure liquid using the COrrospoding STAtes Liquid Density (COSTALD) method. Parameters ---------- %(phase)s %(T)s %(Tc)s %(Vc)s %(omega)s %(MW)s Returns ------- """ Vc = phase[Vc] Tc = phase[Tc] omega = phase[omega] T = phase[T] Tr = T/Tc V0 = 1 - 1.52816*(1-Tr)**(1/3) + 1.43907*(1-Tr)**(2/3) - 0.81446*(1-Tr) + \ 0.190454*(1-Tr)**(4/3) V1 = (-0.296123 + 0.386914*Tr - 0.0427258*Tr**2 - 0.0480645*Tr**3)/(Tr - 1.00001) Vs = Vc*V0*(1-omega*V1) MW = phase[MW] rhoL = 1e-3*MW/Vs return rhoL
Computes the density of a pure liquid using the COrrospoding STAtes Liquid Density (COSTALD) method. Parameters ---------- %(phase)s %(T)s %(Tc)s %(Vc)s %(omega)s %(MW)s Returns -------
liquid_pure_COSTALD
python
PMEAL/OpenPNM
openpnm/models/phase/density/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/density/_funcs.py
MIT
def mass_to_molar( phase, MW='param.molecular_weight', rho='pore.density', ): r""" Calculates the molar density from the molecular weight and mass density Parameters ---------- %(phase)s %(MW)s %(rho)s Returns ------- value : ndarray A numpy ndrray containing molar density values [mol/m3] """ MW = phase[MW]/1000 rho = phase[rho] value = rho/MW return value
Calculates the molar density from the molecular weight and mass density Parameters ---------- %(phase)s %(MW)s %(rho)s Returns ------- value : ndarray A numpy ndrray containing molar density values [mol/m3]
mass_to_molar
python
PMEAL/OpenPNM
openpnm/models/phase/density/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/density/_funcs.py
MIT
def liquid_mixture_tc( phase, T='pore.temperature', mu='pore.viscosity', Vms_at_Tb='param.molar_volume_Tb.*', sigmas_at_Tb='param.surface_tension_Tb.*', ): r""" Uses Tyn-Calus model to estimate diffusion coefficient in a dilute liquid solution of A in B from first principles at conditions of interest Parameters ---------- %(phase)s %(T)s %(mu)s Vms_at_Tb : str or list of scalars Molar volumes of each component at its boiling temperature (m3/mol). Can either be a string to a parameter on each component of a list of scalar values which are used directly sigmas_at_Tb : float Surface tension of component A at boiling temperature (N/m) Returns ------- """ T = phase[T] mu = phase[mu] sigma_A, sigma_B = phase.get_comp_vals(sigmas_at_Tb).values() VA, VB = phase.get_comp_vals(Vms_at_Tb).values() A = 8.93e-8*(VB*1e6)**0.267/(VA*1e6)**0.433*T B = (sigma_B/sigma_A)**0.15/(mu*1e3) value = A*B*1e-4 return value
Uses Tyn-Calus model to estimate diffusion coefficient in a dilute liquid solution of A in B from first principles at conditions of interest Parameters ---------- %(phase)s %(T)s %(mu)s Vms_at_Tb : str or list of scalars Molar volumes of each component at its boiling temperature (m3/mol). Can either be a string to a parameter on each component of a list of scalar values which are used directly sigmas_at_Tb : float Surface tension of component A at boiling temperature (N/m) Returns -------
liquid_mixture_tc
python
PMEAL/OpenPNM
openpnm/models/phase/diffusivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/diffusivity/_funcs.py
MIT
def gas_mixture_ce( phase, T='pore.temperature', P='pore.pressure', Tcs='param.critical_temperature.*', Pcs='param.critical_pressure.*', omegas='param.acentric_factor.*', MWs='param.molecular_weight.*', epsilons='param.LJ_energy.*', sigmas='param.LJ_diameter.*', ): r""" Calculate gas phase diffusion coefficient using Chapman-Enskog equation. Parameters ---------- %(phase)s %(T)s %(P)s %(Tcs)s %(Pcs)s %(omegas)s %(MWs)s %(epsilons)s %(sigmas)s Returns ------- """ # Fetch values from components T = phase[T] P = phase[P] try: MA, MB = phase.get_comp_vals(MWs).values() except ValueError: raise Exception('This function only works on binary mixtures') MWAB = 2/(1/MA + 1/MB) omega = phase.get_comp_vals(omegas).values() Tc = phase.get_comp_vals(Tcs).values() Pc = phase.get_comp_vals(Pcs).values() k = 1.380649e-23 # Boltzmann constant try: eA, eB = phase.get_comp_vals(epsilons).values() except Exception: # Use correlation of Tee, Gotoh, & Stewart eA, eB = (0.7915 + 0.1693*omega)*Tc*k eAB = (eA*eB)**0.5 # Compute collision integral using Neufeld's correlation (RPP Eq.(11-3.6)) A, B, C, D, E, F, G, H = (1.06036, 0.15610, 0.19300, 0.47635, 1.03587, 1.52996, 1.76474, 3.89411) Tstar = k*T/eAB Omega = Omega = A/(Tstar**B) + C/np.exp(D*Tstar) + E/np.exp(F*Tstar) \ + G/np.exp(H*Tstar) # Now apply RPP Eq.(11-3.2) try: sA, sB = phase.get_comp_vals(sigmas).values() except Exception: # Use correlation of Tee, Gotoh, & Stewart sA, sB = (2.3551 - 0.08847*omega)*(Tc/Pc)**(1/3) sAB = (sA + sB)/2 DAB = 0.00266 * (T**1.5) / (P/101325 * MWAB**0.5 * sAB**2 * Omega) * 1e-4 return DAB
Calculate gas phase diffusion coefficient using Chapman-Enskog equation. Parameters ---------- %(phase)s %(T)s %(P)s %(Tcs)s %(Pcs)s %(omegas)s %(MWs)s %(epsilons)s %(sigmas)s Returns -------
gas_mixture_ce
python
PMEAL/OpenPNM
openpnm/models/phase/diffusivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/diffusivity/_funcs.py
MIT
def gas_mixture_fesg( phase, T='pore.temperature', P='pore.pressure', MWs='param.molecular_weight.*', Vdms='param.molar_diffusion_volume.*', ): r""" Estimates the diffusion coefficient of both species in a binary gas mixture using the Fuller et al correlation [1]_, [2]_, [3]_. Parameters ---------- %(phase)s %(T)s %(P)s %(MWs)s %(Vdms)s Returns ------- Dij : dict[ndarray] The dict contains one array for each component, containing the diffusion coefficient of that component at each location. References ---------- .. [1] Fuller, E. N., and J. C. Giddings: J. Gas Chromatogr., 3: 222 (1965). .. [2] Fuller, E. N., P. D. Schettler, and J. C. Giddings: Ind. Eng. Chem., 58(5): 18 (1966). .. [3] Fuller, E. N., K. Ensley, and J. C. Giddings: J. Phys. Chem., 73: 3679 (1969). """ T = phase[T] P = phase[P] # The following is to accomodate proper mixtures AND normal Phase objects try: MA, MB = phase.get_comp_vals(MWs).values() except AttributeError: MA, MB = phase[MWs] try: vA, vB = phase.get_comp_vals(Vdms).values() except AttributeError: vA, vB = phase[Vdms] MAB = 2/(1/MA + 1/MB) P = P/101325 DAB = 0.00143*T**1.75/(P*(MAB**0.5)*(vA**(1./3) + vB**(1./3))**2)*1e-4 return DAB
Estimates the diffusion coefficient of both species in a binary gas mixture using the Fuller et al correlation [1]_, [2]_, [3]_. Parameters ---------- %(phase)s %(T)s %(P)s %(MWs)s %(Vdms)s Returns ------- Dij : dict[ndarray] The dict contains one array for each component, containing the diffusion coefficient of that component at each location. References ---------- .. [1] Fuller, E. N., and J. C. Giddings: J. Gas Chromatogr., 3: 222 (1965). .. [2] Fuller, E. N., P. D. Schettler, and J. C. Giddings: Ind. Eng. Chem., 58(5): 18 (1966). .. [3] Fuller, E. N., K. Ensley, and J. C. Giddings: J. Phys. Chem., 73: 3679 (1969).
gas_mixture_fesg
python
PMEAL/OpenPNM
openpnm/models/phase/diffusivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/diffusivity/_funcs.py
MIT
def gas_pure_TRC( phase, T='pore.temperature', a=[], ): r""" Parameters ---------- %(phase)s %(T)s a : list The coefficients to use (see notes for form of equation). If not given the ``phase['param.CAS']`` is used to lookup the values from ``chemicals.heat_capacity.TRC_gas_data`` Returns ------- """ # TRCCp from chemicals.heat_capacity import TRC_gas_data T = phase[T] if len(a) == 0: c = TRC_gas_data.loc[phase.params['CAS']] a = list(c[3:11]) R = 8.314462618 y = np.zeros_like(T) temp = (T - a[7])/(T + a[6]) mask = T > a[7] y[mask] = temp[mask] Cp = R*(a[0] + (a[1]/(T**2))*np.exp(-a[1]/T) + a[3]*(y**2) + (a[4] - a[5]/((T - a[7])**2))*(y**8)) return Cp
Parameters ---------- %(phase)s %(T)s a : list The coefficients to use (see notes for form of equation). If not given the ``phase['param.CAS']`` is used to lookup the values from ``chemicals.heat_capacity.TRC_gas_data`` Returns -------
gas_pure_TRC
python
PMEAL/OpenPNM
openpnm/models/phase/heat_capacity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/heat_capacity/_funcs.py
MIT
def gas_mixture_yweighted( phase, Cps='pore.heat_capacity.*', ): r""" Uses a linearly mole fraction weighted average Parameters ---------- %(phase)s %(Cps)s Returns ------- """ Cpmix = mixing_rule(phase=phase, prop=Cps, mode='linear') return Cpmix
Uses a linearly mole fraction weighted average Parameters ---------- %(phase)s %(Cps)s Returns -------
gas_mixture_yweighted
python
PMEAL/OpenPNM
openpnm/models/phase/heat_capacity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/heat_capacity/_funcs.py
MIT
def liquid_mixture_xweighted( phase, Cps='pore.heat_capacity.*', ): r""" Uses a linearly mole fraction weighted average Parameters ---------- %(phase)s %(Cps)s Returns ------- """ Cpmix = mixing_rule(phase=phase, prop=Cps, mode='linear') return Cpmix
Uses a linearly mole fraction weighted average Parameters ---------- %(phase)s %(Cps)s Returns -------
liquid_mixture_xweighted
python
PMEAL/OpenPNM
openpnm/models/phase/heat_capacity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/heat_capacity/_funcs.py
MIT
def mix_and_match( phase, prop, phases, occupancy, ): r""" Return the given property by looking it up from a list of given phases based on occupancy. Parameters ---------- %(phase)s prop : str The dictionary key to the array containing the pore/throat property to be used in the calculation. phases : list List of Phases over which the given `prop` is to be averaged out. occupancy : str The dictionary key to the array containing the occupancy associated with each of the given ``phases``. Returns ------- weighted_average : ndarray Weighted average of the given `prop` averaged over `phases`. """ # Hack for ModelsMixin to not complain (cyclic dep) prop = prop.strip("_") values = np.zeros_like(phases[0][prop]) for phase in phases: mask = phase[occupancy] values[mask] = phase[prop][mask] return values
Return the given property by looking it up from a list of given phases based on occupancy. Parameters ---------- %(phase)s prop : str The dictionary key to the array containing the pore/throat property to be used in the calculation. phases : list List of Phases over which the given `prop` is to be averaged out. occupancy : str The dictionary key to the array containing the occupancy associated with each of the given ``phases``. Returns ------- weighted_average : ndarray Weighted average of the given `prop` averaged over `phases`.
mix_and_match
python
PMEAL/OpenPNM
openpnm/models/phase/misc/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/misc/_funcs.py
MIT
def mole_to_mass_fraction( phase, MWs='param.molecular_weight.*', ): r""" Convert mole fraction to mass fraction Parameters ---------- %(phase)s %(MWs)s Returns ------- """ MWs = phase.get_comp_vals(MWs) xs = phase['pore.mole_fraction'] ms = {} # Find the actual masses in each pore for c in xs.keys(): ms[c] = xs[c]*MWs[c] # Normalize component mass by total mass in each pore denom = np.vstack(list(ms.values())).sum(axis=0) for c in xs.keys(): ms[c] = ms[c]/denom return ms
Convert mole fraction to mass fraction Parameters ---------- %(phase)s %(MWs)s Returns -------
mole_to_mass_fraction
python
PMEAL/OpenPNM
openpnm/models/phase/misc/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/misc/_funcs.py
MIT
def salinity( phase, T='pore.temperature', conc='pore.concentration', ): r""" Calculates the salinity in g salt per kg of solution from concentration Parameters ---------- %(phase)s %(T)s %(conc)s Returns ------- salinity : ndarray The salinity in g of solute per kg of solution. Notes ----- This model is useful for converting known concentration values (e.g. calculated by a transport algorithm) into salinity values, which can then be used for finding other physical properties of water which are available as a function of salinity. The salinity correlations are valid for salinity up to 160 g/kg, which corresponds to a concentration of 0.05 mol/L (assuming NaCl is the only solute) """ C = phase[conc] T = phase[T] a = 8.73220929e+00 b = 6.00389629e+01 c = -1.19083743e-01 d = -1.77796042e+00 e = 3.26987130e-04 f = -1.09636011e-01 g = -1.83933426e-07 S = a + b*C + c*T + d*C**2 + e*T**2 + f*C**3 + g*T**3 return S
Calculates the salinity in g salt per kg of solution from concentration Parameters ---------- %(phase)s %(T)s %(conc)s Returns ------- salinity : ndarray The salinity in g of solute per kg of solution. Notes ----- This model is useful for converting known concentration values (e.g. calculated by a transport algorithm) into salinity values, which can then be used for finding other physical properties of water which are available as a function of salinity. The salinity correlations are valid for salinity up to 160 g/kg, which corresponds to a concentration of 0.05 mol/L (assuming NaCl is the only solute)
salinity
python
PMEAL/OpenPNM
openpnm/models/phase/mixtures/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/mixtures/_funcs.py
MIT
def mixing_rule( phase, prop, mode='logarithmic', power=1, ): r""" Computes the property of a mixture using the specified mixing rule Parameters ---------- %(phase)s prop : str The dictionary key containing the property of interest on each component mode : str The mixing rule to to use. Options are: ============== ======================================================== mode ============== ======================================================== 'logarithmic' (default) Uses the natural logarithm of the property as: :math:`ln(z) = \Sigma (x_i \cdot ln(\z_i))` 'linear' Basic mole fraction weighting of the form :math:`z = \Sigma (x_i \cdot \z_i)` 'power Applies an exponent to the property as: :math:`\z^{power} = \Sigma (x_i \cdot \z_i^{power})` ============== ======================================================== power : scalar If ``mode='power'`` this indicates the value of the exponent, otherwise this is ignored. """ xs = phase['pore.mole_fraction'] ys = phase.get_comp_vals(prop) z = 0.0 if mode == 'logarithmic': for i in xs.keys(): z += xs[i]*np.log(ys[i]) z = np.exp(z) elif mode in ['linear', 'simple']: for i in xs.keys(): z += xs[i]*ys[i] elif mode == 'power': for i in xs.keys(): z += xs[i]*ys[i]**power z = z**(1/power) return z
Computes the property of a mixture using the specified mixing rule Parameters ---------- %(phase)s prop : str The dictionary key containing the property of interest on each component mode : str The mixing rule to to use. Options are: ============== ======================================================== mode ============== ======================================================== 'logarithmic' (default) Uses the natural logarithm of the property as: :math:`ln(z) = \Sigma (x_i \cdot ln(\z_i))` 'linear' Basic mole fraction weighting of the form :math:`z = \Sigma (x_i \cdot \z_i)` 'power Applies an exponent to the property as: :math:`\z^{power} = \Sigma (x_i \cdot \z_i^{power})` ============== ======================================================== power : scalar If ``mode='power'`` this indicates the value of the exponent, otherwise this is ignored.
mixing_rule
python
PMEAL/OpenPNM
openpnm/models/phase/mixtures/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/mixtures/_funcs.py
MIT
def mole_to_mass_fraction( phase, MWs='param.molecular_weight' ): r""" Computes the mass fraction in each pore Parameters ---------- %(phase)s %(MWs)s Returns ------- ws : ndarray An ndarray containing the mass fraction in each pore computed from the mole fractions of each component and their molecular weights. """ xs = phase['pore.mole_fraction'] MW = phase.get_comp_vals(MWs) num = [xs[k]*MW[k] for k in xs.keys()] denom = np.sum(num, axis=0) ws = num/denom comps = list(phase.components.keys()) d = {comps[i]: ws[i, :] for i in range(len(comps))} return d
Computes the mass fraction in each pore Parameters ---------- %(phase)s %(MWs)s Returns ------- ws : ndarray An ndarray containing the mass fraction in each pore computed from the mole fractions of each component and their molecular weights.
mole_to_mass_fraction
python
PMEAL/OpenPNM
openpnm/models/phase/mixtures/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/mixtures/_funcs.py
MIT
def mole_summation(phase): r""" Computes total mole fraction in each pore given component values Parameters ---------- %(phase)s Returns ------- vals : ND-array An ND-array containing the total mole fraction. Note that this is not guaranteed to sum to 1.0. """ xs = [phase['pore.mole_fraction.' + c.name] for c in phase.components.values()] if len(xs) > 0: xs = np.sum(xs, axis=0) else: xs = np.nan return xs
Computes total mole fraction in each pore given component values Parameters ---------- %(phase)s Returns ------- vals : ND-array An ND-array containing the total mole fraction. Note that this is not guaranteed to sum to 1.0.
mole_summation
python
PMEAL/OpenPNM
openpnm/models/phase/mixtures/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/mixtures/_funcs.py
MIT
def from_component(phase, prop, compname): r""" Fetches the given values from the specified object Parameters ---------- %(phase)s prop : str The name of the array to retreive compname : str The name of the object possessing the desired data Returns ------- vals : ND-array An ND-array containing the request data """ comp = phase.project[compname] vals = comp[prop] return vals
Fetches the given values from the specified object Parameters ---------- %(phase)s prop : str The name of the array to retreive compname : str The name of the object possessing the desired data Returns ------- vals : ND-array An ND-array containing the request data
from_component
python
PMEAL/OpenPNM
openpnm/models/phase/mixtures/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/mixtures/_funcs.py
MIT
def gaseous_species_in_water( phase, T="throat.temperature", ): r""" Calculate Henry's law constant for gaseous species dissolved in water Parameters ---------- %(phase)s %(T)s Returns ------- H : ndarray A numpy ndarray containing Henry's law constant (Kpx) [atm/mol-frac] Notes ----- The constant for the correlation a lookup using the chemical formula stored in ``phase.params['formula']``. References ---------- Yaws, Carl L., et al. "Solubility & Henry's Law constants for sulfur compounds in water: unlike traditional methods, the new correlation and data presented here are appropriate for very low concentrations." Chemical Engineering 110.8 (2003): 60-65. """ import pandas as pd fname = "gas_water_henry.csv" path = Path(os.path.realpath(__file__), "../") path = Path(path.resolve(), fname) df = pd.read_csv(path) row = df[df.Formula == phase.params['formula']] A, B, C, D = row.iloc[0, 3:7].astype(float) Tmin, Tmax = row.iloc[0, 7:9].astype(float) T = phase[T] if (T.min() < Tmin) or (T.max() > Tmax): logger.critical("The correlation is only accurate for temperatures in the " + f"range of {Tmin:.1f}K and {Tmax:.1f}K!") Hpx_log10 = A + B/T + C*np.log10(T) + D*T return 10**Hpx_log10
Calculate Henry's law constant for gaseous species dissolved in water Parameters ---------- %(phase)s %(T)s Returns ------- H : ndarray A numpy ndarray containing Henry's law constant (Kpx) [atm/mol-frac] Notes ----- The constant for the correlation a lookup using the chemical formula stored in ``phase.params['formula']``. References ---------- Yaws, Carl L., et al. "Solubility & Henry's Law constants for sulfur compounds in water: unlike traditional methods, the new correlation and data presented here are appropriate for very low concentrations." Chemical Engineering 110.8 (2003): 60-65.
gaseous_species_in_water
python
PMEAL/OpenPNM
openpnm/models/phase/partition_coefficient/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/partition_coefficient/_funcs.py
MIT
def water_correlation( phase, T='pore.temperature', salinity='pore.salinity' ): r""" Calculates surface tension of pure water or seawater at atmospheric pressure This model uses Eq. (28) given by Sharqawy et al. [1]. Values at temperature higher than the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- value : ndarray A numpy ndarray containing surface tension of seawater in [N/m] Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand). The correlation is valid for 273 < T < 313 K and 0 < S < 40 g/kg within 0.2 percent accuracy. References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010. """ T = phase[T] if salinity in phase.keys(): S = phase[salinity] else: S = 0 sigma_w = 0.2358*((1-(T/647.096))**1.256)*(1-0.625*(1-(T/647.096))) a1 = 2.2637334337E-04 a2 = 9.4579521377E-03 a3 = 3.3104954843E-02 TC = T-273.15 sigma_sw = sigma_w*(1+(a1*TC+a2)*np.log(1+a3*S)) value = sigma_sw return value
Calculates surface tension of pure water or seawater at atmospheric pressure This model uses Eq. (28) given by Sharqawy et al. [1]. Values at temperature higher than the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- value : ndarray A numpy ndarray containing surface tension of seawater in [N/m] Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand). The correlation is valid for 273 < T < 313 K and 0 < S < 40 g/kg within 0.2 percent accuracy. References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010.
water_correlation
python
PMEAL/OpenPNM
openpnm/models/phase/surface_tension/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/surface_tension/_funcs.py
MIT
def liquid_pure_bb( phase, T='pore.temperature', Tc='param.critical_temperature', Tb='param.boiling_temperature', Pc='param.critical_pressure', ): r""" Computes the surface tension of a pure liquid in its own vapor using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Tb)s %(Pc)s Returns ------- value : ndarray A numpy ndarray containing surface tension values scaled to the temperature [N/m] References ---------- [1] Brock and Bird """ T = phase[T] Tc = phase[Tc] Tr = T/Tc Tb = phase[Tb] Tbr = Tb/Tc Pc = phase[Pc]/100000 Q = 0.1196*(1 + Tbr*np.log(Pc/1.01325)/(1-Tbr))-0.279 sigma = 1e-3 * Q * (Pc**(2/3)) * (Tc**(1/3)) * ((1-Tr)**(11/9)) return sigma
Computes the surface tension of a pure liquid in its own vapor using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Tb)s %(Pc)s Returns ------- value : ndarray A numpy ndarray containing surface tension values scaled to the temperature [N/m] References ---------- [1] Brock and Bird
liquid_pure_bb
python
PMEAL/OpenPNM
openpnm/models/phase/surface_tension/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/surface_tension/_funcs.py
MIT