code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def liquid_mixture_wsd( phase, sigmas='pore.surface_tension.*', rhos='pore.density.*', MWs='param.molecular_weight.*', ): r""" Computes the surface tension of a liqiud mixture with its own vapor using the correlation in [1] Parameters ---------- %(phase)s %(rhos)s %(MWs)s %(sigmas)s Returns ------- sigma : ndarray A numpy ndarray containing surface tension values References ---------- [1] Winterfeld, Scriven, and Davis """ sigmas = phase.get_comp_vals(sigmas) xs = phase['pore.mole_fraction'] rhos = phase.get_comp_vals(rhos) # kg/m3 MWs = phase.get_comp_vals(MWs) # g/mol rhoms = {k: rhos[k]/(MWs[k]/1000) for k in xs.keys()} # mol/m3 rhom_mix = np.vstack([rhoms[k]*xs[k] for k in xs.keys()]).sum(axis=0) sigma = 0.0 for i, ki in enumerate(xs.keys()): for j, kj in enumerate(xs.keys()): num = xs[ki]*xs[kj]*(rhom_mix**2)*(sigmas[ki]*sigmas[kj])**0.5 denom = rhoms[ki]*rhoms[kj] sigma += num/denom return sigma
Computes the surface tension of a liqiud mixture with its own vapor using the correlation in [1] Parameters ---------- %(phase)s %(rhos)s %(MWs)s %(sigmas)s Returns ------- sigma : ndarray A numpy ndarray containing surface tension values References ---------- [1] Winterfeld, Scriven, and Davis
liquid_mixture_wsd
python
PMEAL/OpenPNM
openpnm/models/phase/surface_tension/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/surface_tension/_funcs.py
MIT
def water_correlation( phase, T="pore.temperature", salinity="pore.salinity", ): r""" Calculates thermal conductivity of pure water or seawater at atmospheric pressure using the correlation given [1]. Values at temperature higher the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- value : ndarray A numpy ndarray containing thermal conductivity of water/seawater in [W/m.K] Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand). The correlation is valid for 273 < T < 453 K and 0 < S < 160 g/kg within 3 percent accuracy. References ---------- [1] D. T. Jamieson, and J. S. Tudhope, Desalination, 8, 393-401, 1970. """ T = phase[T] if salinity in phase.keys(): S = phase[salinity] else: S = 0 T68 = 1.00024 * T # convert from T_90 to T_68 SP = S / 1.00472 # convert from S to S_P k_sw = 0.001 * ( 10 ** ( np.log10(240 + 0.0002 * SP) + 0.434 * (2.3 - (343.5 + 0.037 * SP) / T68) * ((1 - T68 / (647.3 + 0.03 * SP))) ** (1 / 3) ) ) value = k_sw return value
Calculates thermal conductivity of pure water or seawater at atmospheric pressure using the correlation given [1]. Values at temperature higher the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- value : ndarray A numpy ndarray containing thermal conductivity of water/seawater in [W/m.K] Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand). The correlation is valid for 273 < T < 453 K and 0 < S < 160 g/kg within 3 percent accuracy. References ---------- [1] D. T. Jamieson, and J. S. Tudhope, Desalination, 8, 393-401, 1970.
water_correlation
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def gas_pure_gismr( phase, T='pore.temperature', MW='param.molecular_weight', Tb='param.boiling_temperature', Pc='param.critical_pressure', omega='param.acentric_factor', ): r""" Calculate the thermal conductivty of a pure gas using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(MW)s %(Tb)s %(Pc)s %(omega)s Returns ------- References ---------- [1] gharagheizi method: doi:10.1002/aic.13938 """ T = phase[T] MW = phase[MW] Tb = phase[Tb] # The following correction suggested by chemicals package author Pc = phase[Pc]/10000 omega = phase[omega] B = (T + (2.0*omega + 2.0*T - 2.0*T*(2.0*omega + 3.2825)/Tb + 3.2825) / (2.0*omega + T - T*(2.0*omega + 3.2825)/Tb + 3.2825) - T*(2.0*omega + 3.2825)/Tb) A = (2*omega + T - (2*omega + 3.2825)*T/Tb + 3.2825)/(0.1*MW*Pc*T) \ * (3.9752*omega + 0.1*Pc + 1.9876*B + 6.5243)**2 k = 7.9505e-4 + 3.989e-5*T - 5.419e-5*MW + 3.989e-5*A return k
Calculate the thermal conductivty of a pure gas using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(MW)s %(Tb)s %(Pc)s %(omega)s Returns ------- References ---------- [1] gharagheizi method: doi:10.1002/aic.13938
gas_pure_gismr
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def liquid_pure_gismr( phase, T='pore.temperature', MW='param.molecular_weight', Tb='param.boiling_temperature', Pc='param.critical_pressure', omega='param.acentric_factor', ): r""" Calculates the thermal conductivity of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(MW)s %(Tb)s %(Pc)s %(omega)s Returns ------- References ---------- [1] gharagheizi method: doi:10.1002/aic.13938 """ T = phase[T] MW = phase[MW] Tb = phase[Tb] Pc = phase[Pc]/100000 omega = phase[omega] B = 16.0407*MW + 2.0*Tb - 27.9074 A = 3.8588*(MW**8)*(1.0045*B + 6.5152*MW - 8.9756) k = (1e-4)*(10*omega + 2*Pc - 2*T + 4 + 1.908*(Tb + 1.009*(B**2)/(MW**2)) + 3.9287*(MW**4)/(B**4) + A/(B**8)) return k
Calculates the thermal conductivity of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(MW)s %(Tb)s %(Pc)s %(omega)s Returns ------- References ---------- [1] gharagheizi method: doi:10.1002/aic.13938
liquid_pure_gismr
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def liquid_pure_sr( phase, T="pore.temperature", Tc='param.critical_temperature', MW='param.molecular_weight', Tb='param.boiling_temperature', ): r""" Calculates the thermal conductivity of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(MW)s %(Tb)s Returns ------- value : ndarray A numpy ndarray containing thermal conductivity values in [W/m.K] References ---------- [1] Sato et al """ T = phase[T] Tc = phase[Tc] MW = phase[MW] Tbr = phase[Tb]/Tc Tr = T / Tc value = ((1.1053 / ((MW) ** 0.5)) * (3 + 20 * (1 - Tr) ** (2 / 3)) / (3 + 20 * (1 - Tbr) ** (2 / 3))) return value
Calculates the thermal conductivity of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(MW)s %(Tb)s Returns ------- value : ndarray A numpy ndarray containing thermal conductivity values in [W/m.K] References ---------- [1] Sato et al
liquid_pure_sr
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def liquid_mixture_DIPPR9I( phase, rhos='pore.density.*', ks='pore.thermal_conductivity.*', MWs='param.molecular_weight.*', ): r""" Calculates the thermal conductivity of a liquid mixture using the correlation in [1] Parameters ---------- %(phase)s %(rhos)s %(ks)s %(MWs)s Returns ------- References ---------- [1] DIPPR9I """ raise NotImplementedError("This function is not ready yet") from chemicals import rho_to_Vm xs = phase['pore.mole_fraction'] kLs = phase.get_comp_vals(ks) # kL = numba_vectorized.DIPPR9I(xs, kLs) # Another one that doesn't work Vm = [rho_to_Vm(c.get_comp_vals(rhos), c.get_comp_vals(MWs)) for c in phase.components.keys()] denom = np.sum([xs[i]*Vm[i] for i in range(len(xs))], axis=0) phis = np.array([xs[i]*Vm[i] for i in range(len(xs))])/denom kij = 2/np.sum([1/kLs[i] for i in range(len(xs))], axis=0) kmix = np.zeros_like(xs[0]) N = len(xs) for i in range(N): for j in range(N): kmix += phis[i]*phis[j]*kij return kmix
Calculates the thermal conductivity of a liquid mixture using the correlation in [1] Parameters ---------- %(phase)s %(rhos)s %(ks)s %(MWs)s Returns ------- References ---------- [1] DIPPR9I
liquid_mixture_DIPPR9I
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def liquid_mixture_DIPPR9H( phase, ks='pore.thermal_conductivity.*', MWs='param.molecular_weight.*', ): r""" Calculates the thermal conductivity of a liquid mixture using the correlation in [1] Parameters ---------- %(phase)s %(ks)s %(MWs)s Returns ------- References ---------- [1] DIPPR9H """ xs = phase['pore.mole_fraction'] MW = phase.get_comp_vals(MWs) ks = phase.get_comp_vals(ks) num = np.vstack([xs[k]*MW[k]/(ks[k]**2) for k in xs.keys()]).sum(axis=0) denom = np.vstack([xs[k]*MW[k] for k in xs.keys()]).sum(axis=0) temp = num/denom kmix = (1/temp)**0.5 return kmix
Calculates the thermal conductivity of a liquid mixture using the correlation in [1] Parameters ---------- %(phase)s %(ks)s %(MWs)s Returns ------- References ---------- [1] DIPPR9H
liquid_mixture_DIPPR9H
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def gas_mixture_whz( phase, T='pore.temperature', ks='pore.thermal_conductivity.*', MWs='param.molecular_weight.*', ): r""" Calculates the viscosity of a gas mixture using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(ks)s %(MWs)s Returns ------- References ---------- [1] Wassiljew, Herning & Zipperer """ T = phase[T] ys = phase['pore.mole_fraction'] kGs = phase.get_comp_vals(ks) MWs = phase.get_comp_vals(MWs) kmix = np.zeros_like(T) for i, ki in enumerate(ys.keys()): num = ys[ki]*kGs[ki] denom = 0.0 for j, kj in enumerate(ys.keys()): A = np.sqrt(MWs[kj]/MWs[ki]) denom += ys[ki]*A kmix += num/denom return kmix
Calculates the viscosity of a gas mixture using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(ks)s %(MWs)s Returns ------- References ---------- [1] Wassiljew, Herning & Zipperer
gas_mixture_whz
python
PMEAL/OpenPNM
openpnm/models/phase/thermal_conductivity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/thermal_conductivity/_funcs.py
MIT
def water_correlation(phase, T='pore.temperature', salinity='pore.salinity'): r""" Calculates vapor pressure of pure water or seawater given by [1] based on Raoult's law. The pure water vapor pressure is given by [2] Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand) VALIDITY: 273 < T < 473 K; 0 < S < 240 g/kg; ACCURACY: 0.5 percent References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010. [2] ASHRAE handbook: Fundamentals, ASHRAE; 2005. """ T = phase[T] if salinity in phase.keys(): S = phase[salinity] else: S = 0 a1 = -5.8002206E+03 a2 = 1.3914993E+00 a3 = -4.8640239E-02 a4 = 4.1764768E-05 a5 = -1.4452093E-08 a6 = 6.5459673E+00 Pv_w = np.exp((a1/T) + a2 + a3*T + a4*T**2 + a5*T**3 + a6*np.log(T)) Pv_sw = Pv_w/(1+0.57357*(S/(1000-S))) value = Pv_sw return value
Calculates vapor pressure of pure water or seawater given by [1] based on Raoult's law. The pure water vapor pressure is given by [2] Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand) VALIDITY: 273 < T < 473 K; 0 < S < 240 g/kg; ACCURACY: 0.5 percent References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010. [2] ASHRAE handbook: Fundamentals, ASHRAE; 2005.
water_correlation
python
PMEAL/OpenPNM
openpnm/models/phase/vapor_pressure/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/vapor_pressure/_funcs.py
MIT
def liquid_pure_lk( phase, T='pore.temperature', Tc='param.critical_temperature', Pc='param.critical_pressure', omega='param.acentric_factor', ): r""" Calculate the vapor pressure of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Pc)s %(omega)s Returns ------- References ---------- [1] Lee and Kesler """ T = phase[T] Tc = phase[Tc] Tr = T/Tc Pc = phase[Pc] omega = phase[omega] f0 = 5.92714 - 6.09648/Tr - 1.28862*np.log(Tr) + 0.169347*(Tr**6) f1 = 15.2518 - 15.6875/Tr - 13.4721*np.log(Tr) + 0.43577*(Tr**6) Pr = np.exp(f0 + omega*f1) Pvap = Pr*Pc return Pvap
Calculate the vapor pressure of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Pc)s %(omega)s Returns ------- References ---------- [1] Lee and Kesler
liquid_pure_lk
python
PMEAL/OpenPNM
openpnm/models/phase/vapor_pressure/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/vapor_pressure/_funcs.py
MIT
def liquid_pure_antoine( phase, T='pore.temperature', ): r""" Calculates the vapor pressure of a pure liquid using Antoine's equation Parameters ---------- %(phase)s %(T)s %(Tc)s Returns ------- References ---------- [1] RPP Notes ----- Coefficients are looked up from the ``chemicals`` package. If values for "extended" version are not found then the normal 3-coefficient values are sought. """ # either antoine or extended antoine using constants from RPP CAS = phase.params['CAS'] T = phase[T] from chemicals.vapor_pressure import Psat_data_AntoinePoling coeffs = Psat_data_AntoinePoling.loc[CAS] _, A, B, C, Tmin, Tmax = coeffs Pvap = 10**(A - B/(T + C)) return Pvap
Calculates the vapor pressure of a pure liquid using Antoine's equation Parameters ---------- %(phase)s %(T)s %(Tc)s Returns ------- References ---------- [1] RPP Notes ----- Coefficients are looked up from the ``chemicals`` package. If values for "extended" version are not found then the normal 3-coefficient values are sought.
liquid_pure_antoine
python
PMEAL/OpenPNM
openpnm/models/phase/vapor_pressure/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/vapor_pressure/_funcs.py
MIT
def water_correlation( phase, T='pore.temperature', salinity='pore.salinity' ): r""" Calculates viscosity of pure water or seawater at atmospheric pressure. This correlation uses Eq. (22) given by Sharqawy et. al [1]. Values at temperature higher than the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- mu : ndarray Array containing viscosity of water or seawater in [kg/m.s] or [Pa.s] Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand) VALIDITY: 273 < T < 453 K; 0 < S < 150 g/kg; ACCURACY: 1.5 percent References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010. """ T = phase[T] if salinity in phase.keys(): S = phase[salinity] else: S = 0 TC = T-273.15 S = S/1000 a1 = 1.5700386464E-01 a2 = 6.4992620050E+01 a3 = -9.1296496657E+01 a4 = 4.2844324477E-05 mu_w = a4 + 1/(a1*(TC+a2)**2+a3) a5 = 1.5409136040E+00 a6 = 1.9981117208E-02 a7 = -9.5203865864E-05 a8 = 7.9739318223E+00 a9 = -7.5614568881E-02 a10 = 4.7237011074E-04 A = a5 + a6*T + a7*T**2 B = a8 + a9*T + a10*T**2 mu_sw = mu_w*(1 + A*S + B*S**2) value = mu_sw return value
Calculates viscosity of pure water or seawater at atmospheric pressure. This correlation uses Eq. (22) given by Sharqawy et. al [1]. Values at temperature higher than the normal boiling temperature are calculated at the saturation pressure. Parameters ---------- %(phase)s %(T)s %(salinity)s Returns ------- mu : ndarray Array containing viscosity of water or seawater in [kg/m.s] or [Pa.s] Notes ----- T must be in K, and S in g of salt per kg of phase, or ppt (parts per thousand) VALIDITY: 273 < T < 453 K; 0 < S < 150 g/kg; ACCURACY: 1.5 percent References ---------- [1] Sharqawy M. H., Lienhard J. H., and Zubair, S. M., Desalination and Water Treatment, 2010.
water_correlation
python
PMEAL/OpenPNM
openpnm/models/phase/viscosity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/viscosity/_funcs.py
MIT
def air_correlation( phase, T='pore.temperature', n_V='pore.molar_density', ): r""" Calculates the viscosity of air at given conditions This model uses the correlation from [1]. Parameters ---------- %(phase)s %(T)s %(n_V)s Returns ------- References ---------- [1] I forget """ raise Exception("This function does not work yet") # Get props from object T = phase[T] rho = phase[n_V] # Declare given constants MW = 28.9586 # g/mol Tc = 132.6312 # K rho_c = 10447.7 # mol/m3 sigma = 0.36 # nm e_k = 103.3 # K # Compute a few definitions delta = rho/rho_c T_star = T/e_k tau = np.atleast_2d(Tc/T) # Declare the summation variables ind = np.atleast_2d([0, 1, 2, 3, 4]).T N_i = np.atleast_2d([10.72, 1.122, 0.002019, -8.878, -0.02916]).T t_i = np.atleast_2d([0.2, 0.05, 2.4, 0.6, 3.6]).T d_i = np.atleast_2d([1, 4, 9, 1, 8]).T b_i = np.atleast_2d([0.431, -0.4623, 0.08406, 0.005341, -0.00331]).T gamma_i = np.atleast_2d([0, 0, 0, 1, 1]).T # Start crunching numbers omega = np.exp(np.sum(b_i*(np.atleast_2d(np.log(T_star))**(ind)), axis=0)) mu_o = 0.9266958*(MW*T)**0.5/((sigma**2) * omega) temp = N_i * (tau**t_i) * (delta**d_i) * np.exp(-gamma_i*(delta**gamma_i)) mu_t = np.sum(temp, axis=0) mu = mu_o + mu_t return mu
Calculates the viscosity of air at given conditions This model uses the correlation from [1]. Parameters ---------- %(phase)s %(T)s %(n_V)s Returns ------- References ---------- [1] I forget
air_correlation
python
PMEAL/OpenPNM
openpnm/models/phase/viscosity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/viscosity/_funcs.py
MIT
def gas_pure_st( phase, T='pore.temperature', Tc='param.critical_temperature', Pc='param.critical_pressure', MW='param.molecular_weight', ): r""" Calculates the viscosity of a pure gas using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Pc)s %(MW)s Returns ------- References ---------- [1] Stiel and Thodos """ # stiel-thodos T = phase[T] Tc = phase[Tc] Pc = phase[Pc]/101325 MW = phase[MW] mu = np.zeros_like(T) Tr = T/Tc zeta = Tc**(1/6)/((MW**0.5)*(Pc**(2/3))) mu_hi = (17.78e-5*(4.58*Tr - 1.67)**0.625)/zeta mu_lo = (34e-5*Tr**0.94)/zeta mask = Tr > 1.5 mu[mask] = mu_hi[mask] mu[~mask] = mu_lo[~mask] return mu/1000
Calculates the viscosity of a pure gas using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Pc)s %(MW)s Returns ------- References ---------- [1] Stiel and Thodos
gas_pure_st
python
PMEAL/OpenPNM
openpnm/models/phase/viscosity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/viscosity/_funcs.py
MIT
def gas_pure_gesmr( phase, T='pore.temperature', Tc='param.critical_temperature', Pc='param.critical_pressure', MW='param.molecular_weight', ): r""" Calculates the viscosity of a pure gas using the correlation [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Pc)s %(MW)s Returns ------- References ---------- [1] Gharagheizi et al """ T = phase[T] MW = phase[MW] Pc = phase[Pc] Tc = phase[Tc] Tr = T/Tc mu = (1e-5)*Pc*Tr + (0.091 - 0.477/MW)*T + \ MW*((1e-5)*Pc - 8.0*(MW**2)/(T**2))*(10.7639/Tc - 4.1929/T) mu = mu*1e-7 mu = np.clip(mu, a_min=1e-7, a_max=np.inf) return mu
Calculates the viscosity of a pure gas using the correlation [1] Parameters ---------- %(phase)s %(T)s %(Tc)s %(Pc)s %(MW)s Returns ------- References ---------- [1] Gharagheizi et al
gas_pure_gesmr
python
PMEAL/OpenPNM
openpnm/models/phase/viscosity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/viscosity/_funcs.py
MIT
def gas_mixture_hz( phase, mus='pore.viscosity.*', MWs='param.molecular_weight.*', ): r""" Computes the viscosity of a gas mixture using the correlation in [1] Parameters ---------- %(phase)s %(mus)s %(MWs)s Returns ------- mu : ndarray An ndarray of Np length containing the viscosity of the mixture in each pore References ---------- [1] Herning and Zipperer """ MWs = phase.get_comp_vals(MWs) mus = phase.get_comp_vals(mus) xs = phase['pore.mole_fraction'] num = 0.0 denom = 0.0 for k in xs.keys(): num += xs[k]*mus[k]*MWs[k]**0.5 denom += xs[k]*MWs[k]**0.5 mu = num/denom return mu
Computes the viscosity of a gas mixture using the correlation in [1] Parameters ---------- %(phase)s %(mus)s %(MWs)s Returns ------- mu : ndarray An ndarray of Np length containing the viscosity of the mixture in each pore References ---------- [1] Herning and Zipperer
gas_mixture_hz
python
PMEAL/OpenPNM
openpnm/models/phase/viscosity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/viscosity/_funcs.py
MIT
def liquid_pure_ls( phase, T='pore.temperature', MW='param.molecular_weight', Tc='param.critical_temperature', Pc='param.critical_pressure', omega='param.acentric_factor', ): r""" Computes the viscosity of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(MW)s %(Tc)s %(Pc)s %(omega)s Returns ------- mu : ndarray An ndarray of Np length containing the viscosity of the mixture in each pore References ---------- [1] Letsou and Stiel """ T = phase[T] MW = phase[MW] Tc = phase[Tc] Pc = phase[Pc] omega = phase[omega] Tr = T/Tc zeta = 2173.424 * (Tc**(1/6))/((MW**(0.5))*(Pc**(2/3))) zeta0 = (1.5174 - 2.135*Tr + 0.75*(Tr**2))*1e-5 zeta1 = (4.2552 - 7.674*Tr + 3.4*(Tr**2))*1e-5 mu = (zeta0 + omega*zeta1)/zeta return mu
Computes the viscosity of a pure liquid using the correlation in [1] Parameters ---------- %(phase)s %(T)s %(MW)s %(Tc)s %(Pc)s %(omega)s Returns ------- mu : ndarray An ndarray of Np length containing the viscosity of the mixture in each pore References ---------- [1] Letsou and Stiel
liquid_pure_ls
python
PMEAL/OpenPNM
openpnm/models/phase/viscosity/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/phase/viscosity/_funcs.py
MIT
def _poisson_conductance(phase, pore_conductivity=None, throat_conductivity=None, size_factors=None): r""" Calculates the conductance of the conduits in the network, where a conduit is (1/2 pore - full throat - 1/2 pore). See the notes section. Parameters ---------- phase : OpenPNM Phase The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. pore_conductivity : str Dictionary key of the pore conductivity values throat_conductivity : str Dictionary key of the throat conductivity values size_factors: str Dictionary key of the conduit size factors' values. Returns ------- g : ndarray Array containing conductance values for conduits in the geometry attached to the given physics object. Notes ----- This function requires that all the necessary phase properties already be calculated. """ network = phase.network cn = network.conns Dt = phase[throat_conductivity] D1, D2 = phase[pore_conductivity][cn].T # If individual size factors for conduit constiuents are known SF = network[size_factors] if SF.ndim == 2: F1, Ft, F2 = SF.T g1 = D1 * F1 gt = Dt * Ft g2 = D2 * F2 return 1 / (1 / g1 + 1 / gt + 1 / g2) else: # Otherwise, i.e., the size factor for the entire conduit is only known F = network[size_factors] return Dt * F
Calculates the conductance of the conduits in the network, where a conduit is (1/2 pore - full throat - 1/2 pore). See the notes section. Parameters ---------- phase : OpenPNM Phase The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. pore_conductivity : str Dictionary key of the pore conductivity values throat_conductivity : str Dictionary key of the throat conductivity values size_factors: str Dictionary key of the conduit size factors' values. Returns ------- g : ndarray Array containing conductance values for conduits in the geometry attached to the given physics object. Notes ----- This function requires that all the necessary phase properties already be calculated.
_poisson_conductance
python
PMEAL/OpenPNM
openpnm/models/physics/_utils.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/_utils.py
MIT
def _get_key_props(phase=None, diameter="throat.diameter", surface_tension="throat.surface_tension", contact_angle="throat.contact_angle"): """ Returns desired properties in the correct format! See Notes. Notes ----- Many of the methods are generic to pores and throats. Some information may be stored on either the pore or throat and needs to be interpolated. This is a helper method to return the properties in the correct format. TODO: Check for method to convert throat to pore data """ element = diameter.split(".")[0] if element == "pore": if "throat" in surface_tension: sigma = phase.interpolate_data(propname=surface_tension) else: sigma = phase[surface_tension] if "throat" in contact_angle: theta = phase.interpolate_data(propname=contact_angle) else: theta = phase[contact_angle] if element == "throat": if "pore" in surface_tension: sigma = phase.interpolate_data(propname=surface_tension) else: sigma = phase[surface_tension] if "pore" in contact_angle: theta = phase.interpolate_data(propname=contact_angle) else: theta = phase[contact_angle] return element, sigma, theta
Returns desired properties in the correct format! See Notes. Notes ----- Many of the methods are generic to pores and throats. Some information may be stored on either the pore or throat and needs to be interpolated. This is a helper method to return the properties in the correct format. TODO: Check for method to convert throat to pore data
_get_key_props
python
PMEAL/OpenPNM
openpnm/models/physics/_utils.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/_utils.py
MIT
def ad_dif( phase, pore_pressure='pore.pressure', throat_hydraulic_conductance='throat.hydraulic_conductance', throat_diffusive_conductance='throat.diffusive_conductance', s_scheme='powerlaw' ): r""" Calculates the advective-diffusive conductance of conduits in network. Parameters ---------- %(phase)s pore_pressure : str %(dict_blurb)s pore pressure throat_hydraulic_conductance : str %(dict_blurb)s hydraulic conductance throat_diffusive_conductance : str %(dict_blurb)s throat diffusive conductance s_scheme : str Name of the space discretization scheme to use Returns ------- %(return_arr)s advection-diffuvsion conductance values Notes ----- This function calculates the specified property for the *entire* network then extracts the values for the appropriate throats at the end. This function assumes cylindrical throats with constant cross-section area. Corrections for different shapes and variable cross-section area can be imposed by passing the proper conduit_shape_factors argument when computing the diffusive and hydraulic conductances. shape_factor depends on the physics of the problem, i.e. diffusion-like processes and fluid flow need different shape factors. """ network = phase.project.network cn = network['throat.conns'] # Find g for half of pore 1, throat, and half of pore 2 P = phase[pore_pressure] gh = phase[throat_hydraulic_conductance] gd = phase[throat_diffusive_conductance] if gd.size == network.Nt: gd = _np.tile(gd, 2) # Special treatment when gd is not Nt by 1 (ex. mass partitioning) elif gd.size == 2 * network.Nt: gd = gd.reshape(network.Nt * 2, order='F') else: raise Exception(f"Shape of {throat_diffusive_conductance} must either" r" be (Nt,1) or (Nt,2)") Qij = -gh * _np.diff(P[cn], axis=1).squeeze() Qij = _np.append(Qij, -Qij) Peij = Qij / gd Peij[(Peij < 1e-10) & (Peij >= 0)] = 1e-10 Peij[(Peij > -1e-10) & (Peij <= 0)] = -1e-10 # Correct the flow rate Qij = Peij * gd if s_scheme == 'upwind': w = gd + _np.maximum(0, -Qij) elif s_scheme == 'hybrid': w = _np.maximum(0, _np.maximum(-Qij, gd - Qij / 2)) elif s_scheme == 'powerlaw': w = gd * _np.maximum(0, (1 - 0.1 * _np.absolute(Peij))**5) + \ _np.maximum(0, -Qij) elif s_scheme == 'exponential': w = -Qij / (1 - _np.exp(Peij)) else: raise Exception('Unrecognized discretization scheme: ' + s_scheme) w = w.reshape(network.Nt, 2, order='F') return w
Calculates the advective-diffusive conductance of conduits in network. Parameters ---------- %(phase)s pore_pressure : str %(dict_blurb)s pore pressure throat_hydraulic_conductance : str %(dict_blurb)s hydraulic conductance throat_diffusive_conductance : str %(dict_blurb)s throat diffusive conductance s_scheme : str Name of the space discretization scheme to use Returns ------- %(return_arr)s advection-diffuvsion conductance values Notes ----- This function calculates the specified property for the *entire* network then extracts the values for the appropriate throats at the end. This function assumes cylindrical throats with constant cross-section area. Corrections for different shapes and variable cross-section area can be imposed by passing the proper conduit_shape_factors argument when computing the diffusive and hydraulic conductances. shape_factor depends on the physics of the problem, i.e. diffusion-like processes and fluid flow need different shape factors.
ad_dif
python
PMEAL/OpenPNM
openpnm/models/physics/ad_dif_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/ad_dif_conductance/_funcs.py
MIT
def washburn(phase, surface_tension="throat.surface_tension", contact_angle="throat.contact_angle", diameter="throat.diameter"): r""" Computes the capillary entry pressure assuming the throat in a cylindrical tube. Parameters ---------- %(phase)s surface_tension : str %(dict_blurb)s surface tension. If a pore property is given, it is interpolated to a throat list. contact_angle : str %(dict_blurb)s contact angle. If a pore property is given, it is interpolated to a throat list. diameter : str %(dict_blurb)s throat diameter Returns ------- %(return_arr)s capillary entry pressure Notes ----- The Washburn equation is: .. math:: P_c = -\frac{2\sigma(cos(\theta))}{r} This is the most basic approach to calculating entry pressure and is suitable for highly non-wetting invading phases in most materials. """ network = phase.network sigma = phase[surface_tension] theta = phase[contact_angle] r = network[diameter] / 2 value = -2 * sigma * _np.cos(_np.radians(theta)) / r if diameter.split(".")[0] == "throat": pass else: value = value[phase.pores()] value[_np.absolute(value) == _np.inf] = 0 return value
Computes the capillary entry pressure assuming the throat in a cylindrical tube. Parameters ---------- %(phase)s surface_tension : str %(dict_blurb)s surface tension. If a pore property is given, it is interpolated to a throat list. contact_angle : str %(dict_blurb)s contact angle. If a pore property is given, it is interpolated to a throat list. diameter : str %(dict_blurb)s throat diameter Returns ------- %(return_arr)s capillary entry pressure Notes ----- The Washburn equation is: .. math:: P_c = -\frac{2\sigma(cos(\theta))}{r} This is the most basic approach to calculating entry pressure and is suitable for highly non-wetting invading phases in most materials.
washburn
python
PMEAL/OpenPNM
openpnm/models/physics/capillary_pressure/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/capillary_pressure/_funcs.py
MIT
def purcell(phase, r_toroid, surface_tension="throat.surface_tension", contact_angle="throat.contact_angle", diameter="throat.diameter"): r""" Computes the throat capillary entry pressure assuming the throat is a toroid. Parameters ---------- %(phase)s r_toroid : float or array_like The radius of the toroid surrounding the pore surface_tension : str %(dict_blurb)s surface tension. contact_angle : str %(dict_blurb)s contact angle. diameter : str %(dict_blurb)s throat diameter Returns ------- %(return_arr)s capillary entry pressure Notes ----- This approach accounts for the converging-diverging nature of many throat types. Advancing the meniscus beyond the apex of the toroid requires an increase in capillary pressure beyond that for a cylindical tube of the same radius. The details of this equation are described by Mason and Morrow [1]_, and explored by Gostick [2]_ in the context of a pore network model. References ---------- .. [1] G. Mason, N. R. Morrow, Effect of contact angle on capillary displacement curvatures in pore throats formed by spheres. J. Colloid Interface Sci. 168, 130 (1994). .. [2] J. Gostick, Random pore network modeling of fibrous PEMFC gas diffusion media using Voronoi and Delaunay tessellations. J. Electrochem. Soc. 160, F731 (2013). """ network = phase.network sigma = phase[surface_tension] theta = phase[contact_angle] r = network[diameter] / 2 R = r_toroid alpha = ( theta - 180 + _np.rad2deg(_np.arcsin(_np.sin(_np.radians(theta)) / (1 + r / R))) ) value = (-2 * sigma / r) * ( _np.cos(_np.radians(theta - alpha)) / (1 + R / r * (1 - _np.cos(_np.radians(alpha)))) ) if diameter.split(".")[0] == "throat": pass else: value = value[phase.pores()] return value
Computes the throat capillary entry pressure assuming the throat is a toroid. Parameters ---------- %(phase)s r_toroid : float or array_like The radius of the toroid surrounding the pore surface_tension : str %(dict_blurb)s surface tension. contact_angle : str %(dict_blurb)s contact angle. diameter : str %(dict_blurb)s throat diameter Returns ------- %(return_arr)s capillary entry pressure Notes ----- This approach accounts for the converging-diverging nature of many throat types. Advancing the meniscus beyond the apex of the toroid requires an increase in capillary pressure beyond that for a cylindical tube of the same radius. The details of this equation are described by Mason and Morrow [1]_, and explored by Gostick [2]_ in the context of a pore network model. References ---------- .. [1] G. Mason, N. R. Morrow, Effect of contact angle on capillary displacement curvatures in pore throats formed by spheres. J. Colloid Interface Sci. 168, 130 (1994). .. [2] J. Gostick, Random pore network modeling of fibrous PEMFC gas diffusion media using Voronoi and Delaunay tessellations. J. Electrochem. Soc. 160, F731 (2013).
purcell
python
PMEAL/OpenPNM
openpnm/models/physics/capillary_pressure/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/capillary_pressure/_funcs.py
MIT
def generic_diffusive(phase, pore_diffusivity="pore.diffusivity", throat_diffusivity="throat.diffusivity", size_factors="throat.diffusive_size_factors"): r""" Calculates the diffusive conductance of conduits in network. Parameters ---------- %(phase)s pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s throat diffusivity size_factors : str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s diffusive conductance """ return _poisson_conductance(phase=phase, pore_conductivity=pore_diffusivity, throat_conductivity=throat_diffusivity, size_factors=size_factors)
Calculates the diffusive conductance of conduits in network. Parameters ---------- %(phase)s pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s throat diffusivity size_factors : str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s diffusive conductance
generic_diffusive
python
PMEAL/OpenPNM
openpnm/models/physics/diffusive_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/diffusive_conductance/_funcs.py
MIT
def ordinary_diffusion(phase, pore_diffusivity="pore.diffusivity", throat_diffusivity="throat.diffusivity", size_factors="throat.diffusive_size_factors"): r""" Calculates the diffusive conductance of conduits in network. Parameters ---------- %(phase)s pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s throat diffusivity size_factors: str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s diffusive conductance """ return _poisson_conductance(phase=phase, pore_conductivity=pore_diffusivity, throat_conductivity=throat_diffusivity, size_factors=size_factors)
Calculates the diffusive conductance of conduits in network. Parameters ---------- %(phase)s pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s throat diffusivity size_factors: str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s diffusive conductance
ordinary_diffusion
python
PMEAL/OpenPNM
openpnm/models/physics/diffusive_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/diffusive_conductance/_funcs.py
MIT
def mixed_diffusion(phase, pore_diameter="pore.diameter", throat_diameter="throat.diameter", pore_diffusivity="pore.diffusivity", throat_diffusivity="throat.diffusivity", pore_temperature="pore.temperature", throat_temperature="throat.temperature", molecular_weight="pore.molecular_weight", size_factors="throat.diffusive_size_factors"): r""" Calculates the diffusive conductance of conduits in network with Knudsen correction. Parameters ---------- %(phase)s pore_diameter : str %(dict_blurb)s pore diameter throat_diameter : str %(dict_blurb)s throat diameter pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s pore diffusivity pore_temperature : str %(dict_blurb)s pore temperature molecular_weigth : str %(dict_blurb)s pore molecular weight size_factors : str %(dict_blurb)s size factor Returns ------- %(return_arr)s diffusive conductance """ # Fetch model parameters Dp = phase[pore_diffusivity] Dt = phase[throat_diffusivity] dp = phase.network[pore_diameter] dt = phase.network[throat_diameter] MWp = phase[molecular_weight] MWt = phase.interpolate_data(propname='throat.'+molecular_weight.split('.', 1)[-1]) Tp = phase[pore_temperature] Tt = phase[throat_temperature] # Calculate Knudsen contribution DKp = dp/3 * (8*_const.R*Tp / (_const.pi*MWp)) ** 0.5 DKt = dt/3 * (8*_const.R*Tt / (_const.pi*MWt)) ** 0.5 # Calculate mixed diffusivity Dp_eff = (1/DKp + 1/Dp) ** -1 Dt_eff = (1/DKt + 1/Dt) ** -1 return _poisson_conductance(phase=phase, pore_conductivity=Dp_eff, throat_conductivity=Dt_eff, size_factors=size_factors)
Calculates the diffusive conductance of conduits in network with Knudsen correction. Parameters ---------- %(phase)s pore_diameter : str %(dict_blurb)s pore diameter throat_diameter : str %(dict_blurb)s throat diameter pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s pore diffusivity pore_temperature : str %(dict_blurb)s pore temperature molecular_weigth : str %(dict_blurb)s pore molecular weight size_factors : str %(dict_blurb)s size factor Returns ------- %(return_arr)s diffusive conductance
mixed_diffusion
python
PMEAL/OpenPNM
openpnm/models/physics/diffusive_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/diffusive_conductance/_funcs.py
MIT
def taylor_aris_diffusion(phase, pore_area="pore.area", throat_area="throat.cross_sectional_area", pore_diffusivity="pore.diffusivity", throat_diffusivity="throat.diffusivity", pore_pressure="pore.pressure", throat_hydraulic_conductance="throat.hydraulic_conductance", size_factors="throat.diffusive_size_factors"): r""" Calculates the diffusive conductance of conduits in network considering the Taylor-Aris effect (effect of flow on diffusion). Parameters ---------- %(phase)s pore_area : str %(dict_blurb)s pore cross-sectional area throat_area : str %(dict_blurb)s throat cross-sectional area pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s pore diffusivity pore_pressure : str %(dict_blurb)s pore pressure throat_hydraulic_conductance : str %(dict_blurb)s throat hydraulic conductance size_factors : str %(dict_blurb)s conduit size factors Returns ------- %(return_arr)s diffusive conductance """ network = phase.network cn = network['throat.conns'] F = network[size_factors] # Fetch model parameters A1, A2 = network[pore_area][cn].T At = network[throat_area] D1, D2 = phase[pore_diffusivity][cn].T Dt = phase[throat_diffusivity] P = phase[pore_pressure] gh = phase[throat_hydraulic_conductance] # Calculate Peclet number Qt = -gh * _np.diff(P[cn], axis=1).squeeze() u1, ut, u2 = [Qt/Ai for Ai in [A1, At, A2]] Pe1 = u1 * ((4 * A1 / _np.pi) ** 0.5) / D1 Pe2 = u2 * ((4 * A2 / _np.pi) ** 0.5) / D2 Pet = ut * ((4 * At / _np.pi) ** 0.5) / Dt if F.ndim > 1: g1 = D1 * (1 + Pe1**2 / 192) * F[:, 0] gt = Dt * (1 + Pet**2 / 192) * F[:, 1] g2 = D2 * (1 + Pe2**2 / 192) * F[:, 2] gtot = 1 / (1/g1 + 1/gt + 1/g2) else: gtot = Dt * (1 + Pet**2 / 192) * F return gtot
Calculates the diffusive conductance of conduits in network considering the Taylor-Aris effect (effect of flow on diffusion). Parameters ---------- %(phase)s pore_area : str %(dict_blurb)s pore cross-sectional area throat_area : str %(dict_blurb)s throat cross-sectional area pore_diffusivity : str %(dict_blurb)s pore diffusivity throat_diffusivity : str %(dict_blurb)s pore diffusivity pore_pressure : str %(dict_blurb)s pore pressure throat_hydraulic_conductance : str %(dict_blurb)s throat hydraulic conductance size_factors : str %(dict_blurb)s conduit size factors Returns ------- %(return_arr)s diffusive conductance
taylor_aris_diffusion
python
PMEAL/OpenPNM
openpnm/models/physics/diffusive_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/diffusive_conductance/_funcs.py
MIT
def generic_electrical( phase, pore_conductivity='pore.electrical_conductivity', throat_conductivity='throat.electrical_conductivity', size_factors='throat.diffusive_size_factors' ): r""" Calculate the electrical conductance of conduits in network, where a conduit is ( 1/2 pore - full throat - 1/2 pore ). See the notes section. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s pore electrical conductivity throat_conductivity : str %(dict_blurb)s throat electrical conductivity size_factors: str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s electrical conductance """ return _poisson_conductance(phase=phase, pore_conductivity=pore_conductivity, throat_conductivity=throat_conductivity, size_factors=size_factors)
Calculate the electrical conductance of conduits in network, where a conduit is ( 1/2 pore - full throat - 1/2 pore ). See the notes section. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s pore electrical conductivity throat_conductivity : str %(dict_blurb)s throat electrical conductivity size_factors: str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s electrical conductance
generic_electrical
python
PMEAL/OpenPNM
openpnm/models/physics/electrical_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/electrical_conductance/_funcs.py
MIT
def series_resistors( phase, pore_conductivity='pore.electrical_conductivity', throat_conductivity='throat.electrical_conductivity', size_factors='throat.diffusive_size_factors' ): r""" Calculate the electrical conductance of conduits in network, where a conduit is ( 1/2 pore - full throat - 1/2 pore ). See the notes section. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s pore electrical conductivity throat_conductivity : str %(dict_blurb)s throat electrical conductivity size_factors: str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s electrical conductance """ return _poisson_conductance(phase=phase, pore_conductivity=pore_conductivity, throat_conductivity=throat_conductivity, size_factors=size_factors)
Calculate the electrical conductance of conduits in network, where a conduit is ( 1/2 pore - full throat - 1/2 pore ). See the notes section. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s pore electrical conductivity throat_conductivity : str %(dict_blurb)s throat electrical conductivity size_factors: str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s electrical conductance
series_resistors
python
PMEAL/OpenPNM
openpnm/models/physics/electrical_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/electrical_conductance/_funcs.py
MIT
def generic_hydraulic( phase, pore_viscosity='pore.viscosity', throat_viscosity='throat.viscosity', size_factors='throat.hydraulic_size_factors' ): r""" Calculates the hydraulic conductance of conduits in network. Parameters ---------- %(phase)s pore_viscosity : str %(dict_blurb)s pore viscosity throat_viscosity : str %(dict_blurb)s throat viscosity size_factors : str %(dict_blurb)s conduit hydraulic size factors Returns ------- %(return_arr)s hydraulic conductance """ network = phase.network conns = network.conns mu1, mu2 = phase[pore_viscosity][conns].T mut = phase[throat_viscosity] SF = network[size_factors] if isinstance(SF, dict): # Legacy approach F1, Ft, F2 = SF.values() elif SF.ndim > 1: # Nt-by-3 array F1, Ft, F2 = SF.T else: # Nt array, like from network extraction predictions F1, Ft, F2 = _np.inf, SF, _np.inf g1 = F1 / mu1 gt = Ft / mut g2 = F2 / mu2 return 1 / (1/g1 + 1/gt + 1/g2)
Calculates the hydraulic conductance of conduits in network. Parameters ---------- %(phase)s pore_viscosity : str %(dict_blurb)s pore viscosity throat_viscosity : str %(dict_blurb)s throat viscosity size_factors : str %(dict_blurb)s conduit hydraulic size factors Returns ------- %(return_arr)s hydraulic conductance
generic_hydraulic
python
PMEAL/OpenPNM
openpnm/models/physics/hydraulic_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/hydraulic_conductance/_funcs.py
MIT
def hagen_poiseuille( phase, pore_viscosity="pore.viscosity", throat_viscosity="throat.viscosity", size_factors="throat.hydraulic_size_factors" ): r""" Calculates the hydraulic conductance of conduits in network. Parameters ---------- %(phase)s pore_viscosity : str %(dict_blurb)s pore viscosity throat_viscosity : str %(dict_blurb)s throat viscosity size_factors : str %(dict_blurb)s conduit hydraulic size factors Returns ------- %(return_arr)s hydraulic conductance """ return generic_hydraulic(phase=phase, pore_viscosity=pore_viscosity, throat_viscosity=throat_viscosity, size_factors=size_factors)
Calculates the hydraulic conductance of conduits in network. Parameters ---------- %(phase)s pore_viscosity : str %(dict_blurb)s pore viscosity throat_viscosity : str %(dict_blurb)s throat viscosity size_factors : str %(dict_blurb)s conduit hydraulic size factors Returns ------- %(return_arr)s hydraulic conductance
hagen_poiseuille
python
PMEAL/OpenPNM
openpnm/models/physics/hydraulic_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/hydraulic_conductance/_funcs.py
MIT
def general_toroidal( phase, profile_equation='elliptical', mode='max', target_Pc=None, num_points=1000, throat_scale_a='throat.scale_a', throat_scale_b='throat.scale_b', throat_diameter='throat.diameter', touch_length='throat.touch_length', surface_tension='throat.surface_tension', contact_angle='throat.contact_angle' ): r""" The general model for meniscus properties inside a toroidal throat Parameters ---------- %(phase)s profile_equation : str Options are 'elliptical' (default), 'sinusoidal'. mode : str Determines what information to send back. Options are: ======== ========================================================= Mode Description ======== ========================================================= 'max' (default) The maximum capillary pressure along the throat axis 'touch' The maximum capillary pressure a meniscus can sustain before touching a solid feature ======== ========================================================= target_Pc : float The target capillary pressure to return data for when mode is 'men' num_points : float The number of divisions to make along the profile length to assess the meniscus properties in order to find target pressures, touch lengths, minima and maxima. The default is 1000. throat_scale_a : str %(dict_blurb)s scale factor for adjusting the profile along the throat axis (x). throat_scale_b : str %(dict_blurb)s scale factor for adjusting the profile perpendicular to the throat axis (y). throat_diameter : str %(dict_blurb)s throat diameter values to be used. touch_length : str %(dict_blurb)s maximum length that a meniscus can protrude into the connecting pore before touching a solid feature and therfore invading surface_tension : str %(dict_blurb)s surface tension values to be used. If a pore property is given, it is interpolated to a throat list. contact_angle : str %(dict_blurb)s contact angle values to be used. If a pore property is given, it is interpolated to a throat list. Returns ------- values : dict A dictionary containing the following entries: ============ ========================================================= Item Description ============ ========================================================= 'pos' xpos 'rx' rx(xpos, fa, fb, throatRad) 'alpha' fill_angle(xpos, fa, fb, throatRad) 'alpha_min' fill_angle(xmin, fa, fb, throatRad) 'alpha_max' fill_angle(xmax, fa, fb, throatRad) 'c2x' c2x(xpos, fa, fb, throatRad, contact) 'gamma' cap_angle(xpos, fa, fb, throatRad, contact) 'radius' rad_curve(xpos, fa, fb, throatRad, contact) 'center' (xpos - men_data['c2x']) 'men_max' ?? ============ ========================================================= """ from sympy import symbols, lambdify from sympy import atan as sym_atan from sympy import cos as sym_cos from sympy import sin as sym_sin from sympy import sqrt as sym_sqrt from sympy import pi as sym_pi # Get data from dictionary keys network = phase.network surface_tension = phase[surface_tension] contact = phase[contact_angle] # Contact Angle in radians contact = np.deg2rad(contact) # Network properties throatRad = network[throat_diameter]/2 # Scaling parameters for throat profile fa = phase[throat_scale_a] fb = phase[throat_scale_b] # Governing equations x, a, b, rt, sigma, theta = symbols('x, a, b, rt, sigma, theta') if profile_equation == 'elliptical': y = sym_sqrt(1 - (x/a)**2)*b elif profile_equation == 'sinusoidal': y = (sym_cos((sym_pi/2)*(x/a)))*b else: logger.error('Profile equation is not valid, default to elliptical') y = sym_sqrt(1 - (x/a)**2)*b # Throat radius profile r = rt + (b-y) # Derivative of profile rprime = r.diff(x) # Filling angle alpha = sym_atan(rprime) # Angle between y axis and contact point to meniscus center eta = sym_pi - alpha - theta gamma = sym_pi/2 - eta # Radius of curvature of meniscus rm = r/sym_cos(eta) # distance from center of curvature to meniscus contact point (Pythagoras) d = rm*sym_sin(eta) # angle between throat axis, meniscus center and meniscus contact point # Capillary Pressure p = 2*sigma/rm # Callable functions rx = lambdify((x, a, b, rt), r, 'numpy') fill_angle = lambdify((x, a, b, rt), alpha, 'numpy') rad_curve = lambdify((x, a, b, rt, theta), rm, 'numpy') c2x = lambdify((x, a, b, rt, theta), d, 'numpy') cap_angle = lambdify((x, a, b, rt, theta), gamma, 'numpy') Pc = lambdify((x, a, b, rt, theta, sigma), p, 'numpy') # All relative positions along throat hp = int(num_points/2) log_pos = np.logspace(-4, -1, hp+1)[:-1] lin_pos = np.arange(0.1, 1.0, 1/hp) half_pos = np.concatenate((log_pos, lin_pos)) pos = np.concatenate((-half_pos[::-1], half_pos)) # Now find the positions of the menisci along each throat axis Y, X = np.meshgrid(throatRad, pos) X *= fa # throat Capillary Pressure t_Pc = Pc(X, fa, fb, Y, contact, surface_tension) # Values of minima and maxima Pc_min = np.min(t_Pc, axis=0) Pc_max = np.max(t_Pc, axis=0) # Arguments of minima and maxima a_min = np.argmin(t_Pc, axis=0) a_max = np.argmax(t_Pc, axis=0) if mode == 'max': return Pc_max elif mode == 'touch': all_rad = rad_curve(X, fa, fb, Y, contact) all_c2x = c2x(X, fa, fb, Y, contact) all_cen = X - all_c2x dist = all_cen + all_rad # Only count lengths where meniscus bulges into pore dist[all_rad < 0] = 0.0 touch_len = network[touch_length] mask = dist > touch_len arg_touch = np.argmax(mask, axis=0) # Make sure we only count ones that happen before max pressure # And above min pressure (which will be erroneous) arg_in_range = (arg_touch < a_max) * (arg_touch > a_min) arg_touch[~arg_in_range] = a_max[~arg_in_range] x_touch = pos[arg_touch]*fa # Return the pressure at which a touch happens Pc_touch = Pc(x_touch, fa, fb, throatRad, contact, surface_tension) return Pc_touch elif (mode == 'men'): if target_Pc is None: logger.error(msg='Please supply a target capillary pressure' + ' when mode is "men", defaulting to 1.0e-6') target_Pc = 1.0e-6 else: raise Exception('Unrecognized mode') if np.abs(target_Pc) < 1.0e-6: logger.error(msg='Please supply a target capillary pressure' + ' with absolute value greater than 1.0e-6,' + ' default to 1.0e-6') target_Pc = 1.0e-6 # Find the position in-between the minima and maxima corresponding to # the target pressure inds = np.indices(np.shape(t_Pc)) # Change values outside the range between minima and maxima to be those # Values mask = inds[0] < np.ones(len(pos))[:, np.newaxis]*a_min t_Pc[mask] = (np.ones(len(pos))[:, np.newaxis]*Pc_min)[mask] mask = inds[0] > np.ones(len(pos))[:, np.newaxis]*a_max t_Pc[mask] = (np.ones(len(pos))[:, np.newaxis]*Pc_max)[mask] # Find the argument at or above the target Pressure mask = t_Pc >= target_Pc arg_x = np.argmax(mask, axis=0) # If outside range change to minima or maxima accordingly arg_x[target_Pc < Pc_min] = a_min[target_Pc < Pc_min] arg_x[target_Pc > Pc_max] = a_max[target_Pc > Pc_max] xpos = pos[arg_x]*fa xmin = pos[a_min]*fa xmax = pos[a_max]*fa # Output men_data = {} men_data['pos'] = xpos men_data['rx'] = rx(xpos, fa, fb, throatRad) men_data['alpha'] = fill_angle(xpos, fa, fb, throatRad) men_data['alpha_min'] = fill_angle(xmin, fa, fb, throatRad) men_data['alpha_max'] = fill_angle(xmax, fa, fb, throatRad) men_data['c2x'] = c2x(xpos, fa, fb, throatRad, contact) men_data['gamma'] = cap_angle(xpos, fa, fb, throatRad, contact) men_data['radius'] = rad_curve(xpos, fa, fb, throatRad, contact) # xpos is relative to the throat center men_data['center'] = (xpos - men_data['c2x']) men_data['men_max'] = men_data['center'] - men_data['radius'] logger.info(mode+' calculated for Pc: '+str(target_Pc)) return men_data
The general model for meniscus properties inside a toroidal throat Parameters ---------- %(phase)s profile_equation : str Options are 'elliptical' (default), 'sinusoidal'. mode : str Determines what information to send back. Options are: ======== ========================================================= Mode Description ======== ========================================================= 'max' (default) The maximum capillary pressure along the throat axis 'touch' The maximum capillary pressure a meniscus can sustain before touching a solid feature ======== ========================================================= target_Pc : float The target capillary pressure to return data for when mode is 'men' num_points : float The number of divisions to make along the profile length to assess the meniscus properties in order to find target pressures, touch lengths, minima and maxima. The default is 1000. throat_scale_a : str %(dict_blurb)s scale factor for adjusting the profile along the throat axis (x). throat_scale_b : str %(dict_blurb)s scale factor for adjusting the profile perpendicular to the throat axis (y). throat_diameter : str %(dict_blurb)s throat diameter values to be used. touch_length : str %(dict_blurb)s maximum length that a meniscus can protrude into the connecting pore before touching a solid feature and therfore invading surface_tension : str %(dict_blurb)s surface tension values to be used. If a pore property is given, it is interpolated to a throat list. contact_angle : str %(dict_blurb)s contact angle values to be used. If a pore property is given, it is interpolated to a throat list. Returns ------- values : dict A dictionary containing the following entries: ============ ========================================================= Item Description ============ ========================================================= 'pos' xpos 'rx' rx(xpos, fa, fb, throatRad) 'alpha' fill_angle(xpos, fa, fb, throatRad) 'alpha_min' fill_angle(xmin, fa, fb, throatRad) 'alpha_max' fill_angle(xmax, fa, fb, throatRad) 'c2x' c2x(xpos, fa, fb, throatRad, contact) 'gamma' cap_angle(xpos, fa, fb, throatRad, contact) 'radius' rad_curve(xpos, fa, fb, throatRad, contact) 'center' (xpos - men_data['c2x']) 'men_max' ?? ============ =========================================================
general_toroidal
python
PMEAL/OpenPNM
openpnm/models/physics/meniscus/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/meniscus/_funcs.py
MIT
def sinusoidal( phase, mode='max', target_Pc=None, num_points=1e3, r_toroid=5e-6, throat_diameter='throat.diameter', pore_diameter='pore.diameter', touch_length='throat.touch_length', surface_tension='throat.surface_tension', contact_angle='throat.contact_angle' ): r""" Wrapper for the toroidal model to implement a sinusoidal profile. The quarter-wavelength is equal to toroidal radius r_toroid. The amplitude is equal to the toroidal radius multiplied by the ratio of the throat radius and average connecting pore radius. Notes ----- The capillary pressure equation for a sinusoidal throat is extended from the Washburn equation as [1]_: .. math:: P_c = -\frac{2\sigma(cos(\alpha + \theta))}{r(x)} where alpha is: .. math:: \alpha = arctan(\frac{dr}{dx}) References ---------- .. [1] A. Forner-Cuenca et. al, Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability. J. ECS. 163, 9, F1038-F1048 (2016). """ phase['throat.scale_a'] = r_toroid phase['throat.scale_b'] = r_toroid output = general_toroidal(phase=phase, mode=mode, profile_equation='sinusoidal', target_Pc=target_Pc, num_points=num_points, throat_diameter=throat_diameter, touch_length=touch_length, surface_tension=surface_tension, contact_angle=contact_angle) return output
Wrapper for the toroidal model to implement a sinusoidal profile. The quarter-wavelength is equal to toroidal radius r_toroid. The amplitude is equal to the toroidal radius multiplied by the ratio of the throat radius and average connecting pore radius. Notes ----- The capillary pressure equation for a sinusoidal throat is extended from the Washburn equation as [1]_: .. math:: P_c = -\frac{2\sigma(cos(\alpha + \theta))}{r(x)} where alpha is: .. math:: \alpha = arctan(\frac{dr}{dx}) References ---------- .. [1] A. Forner-Cuenca et. al, Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability. J. ECS. 163, 9, F1038-F1048 (2016).
sinusoidal
python
PMEAL/OpenPNM
openpnm/models/physics/meniscus/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/meniscus/_funcs.py
MIT
def purcell( phase, mode='max', target_Pc=None, num_points=1e3, r_toroid=5e-6, throat_diameter='throat.diameter', touch_length='throat.touch_length', surface_tension='throat.surface_tension', contact_angle='throat.contact_angle' ): r""" Wrapper for the general toroidal model to implement the Purcell equation for a torus with cylindrical profile and toroidal radius r_toroid. Notes ----- This approach accounts for the converging-diverging nature of many throat types. Advancing the meniscus beyond the apex of the toroid requires an increase in capillary pressure beyond that for a cylindical tube of the same radius. The details of this equation are described by Mason and Morrow [1], and explored by Gostick [2] in the context of a pore network model. References ---------- [1] Missing reference [2] Missing reference """ phase['throat.scale_a'] = r_toroid phase['throat.scale_b'] = r_toroid output = general_toroidal(phase=phase, mode=mode, profile_equation='elliptical', target_Pc=target_Pc, num_points=num_points, throat_diameter=throat_diameter, touch_length=touch_length, surface_tension=surface_tension, contact_angle=contact_angle) return output
Wrapper for the general toroidal model to implement the Purcell equation for a torus with cylindrical profile and toroidal radius r_toroid. Notes ----- This approach accounts for the converging-diverging nature of many throat types. Advancing the meniscus beyond the apex of the toroid requires an increase in capillary pressure beyond that for a cylindical tube of the same radius. The details of this equation are described by Mason and Morrow [1], and explored by Gostick [2] in the context of a pore network model. References ---------- [1] Missing reference [2] Missing reference
purcell
python
PMEAL/OpenPNM
openpnm/models/physics/meniscus/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/meniscus/_funcs.py
MIT
def late_filling(phase, pressure='pore.pressure', Pc_star='pore.pc_star', Swp_star=0.2, eta=3): r""" Calculates the fraction of a pore or throat filled with invading fluid based on the capillary pressure in the invading phase. The invading phase volume is calculated from: .. math:: S_{nwp} = 1 - S_{wp}^{*} (P^{*}/P_{c})^{\eta} Parameters ---------- pressure : str %(dict_blurb)s capillary pressure in the non-wetting phase (Pc > 0). Pc_star : str %(dict_blurb)s minimum pressure required to create an interface within the pore body or throat. Typically this would be calculated using the Washburn equation. Swp_star : float The residual wetting phase in an invaded pore or throat at a pressure of ``pc_star``. eta : float Exponent controlling the rate at which wetting phase is displaced with increasing pressure. Returns ------- %(return_arr)s fraction of each pore or throat that would be filled with non-wetting phase at the given phase pressure. This does not account for whether or not the element is actually invaded, which requires a percolation algorithm of some sort. """ pc_star = phase[Pc_star] Pc = phase[pressure] # Remove any 0's from the Pc array to prevent numpy div by 0 warning Pc = np.maximum(Pc, 1e-9) Swp = Swp_star*((pc_star/Pc)**eta) values = np.clip(1 - Swp, 0.0, 1.0) return values
Calculates the fraction of a pore or throat filled with invading fluid based on the capillary pressure in the invading phase. The invading phase volume is calculated from: .. math:: S_{nwp} = 1 - S_{wp}^{*} (P^{*}/P_{c})^{\eta} Parameters ---------- pressure : str %(dict_blurb)s capillary pressure in the non-wetting phase (Pc > 0). Pc_star : str %(dict_blurb)s minimum pressure required to create an interface within the pore body or throat. Typically this would be calculated using the Washburn equation. Swp_star : float The residual wetting phase in an invaded pore or throat at a pressure of ``pc_star``. eta : float Exponent controlling the rate at which wetting phase is displaced with increasing pressure. Returns ------- %(return_arr)s fraction of each pore or throat that would be filled with non-wetting phase at the given phase pressure. This does not account for whether or not the element is actually invaded, which requires a percolation algorithm of some sort.
late_filling
python
PMEAL/OpenPNM
openpnm/models/physics/multiphase/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/multiphase/_funcs.py
MIT
def standard_kinetics(phase, X, prefactor, exponent): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of ``X``: .. math:: r = A X^b Parameters ---------- %(phase)s X : str %(dict_blurb)s quantity of interest prefactor : str %(dict_blurb)s the prefactor to be used in the source term model exponent : str %(dict_blurb)s the exponent to be used in the source term model Returns ------- rate_info : dict A dictionary containing the following three items: ======= ============================================================== Item Description ======= ============================================================== rate The value of the source term function at the given X. S1 The slope of the source term function at the given X. S2 The intercept of the source term function at the given X. ======= ============================================================== Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ X = phase[X] A = phase[prefactor] b = phase[exponent] r = A*(X**b) S1 = A*b*(X**(b - 1)) S2 = A*(1 - b)*(X**b) values = {'S1': S1, 'S2': S2, 'rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of ``X``: .. math:: r = A X^b Parameters ---------- %(phase)s X : str %(dict_blurb)s quantity of interest prefactor : str %(dict_blurb)s the prefactor to be used in the source term model exponent : str %(dict_blurb)s the exponent to be used in the source term model Returns ------- rate_info : dict A dictionary containing the following three items: ======= ============================================================== Item Description ======= ============================================================== rate The value of the source term function at the given X. S1 The slope of the source term function at the given X. S2 The intercept of the source term function at the given X. ======= ============================================================== Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
standard_kinetics
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def linear(phase, X, A1=0.0, A2=0.0): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of ``X``: .. math:: r = A_{1} X + A_{2} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A2 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ r = phase[A1] * phase[X] + phase[A2] S1 = phase[A1] S2 = phase[A2] values = {'S1': S1, 'S2': S2, 'rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of ``X``: .. math:: r = A_{1} X + A_{2} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A2 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
linear
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def power_law(phase, X, A1=0.0, A2=0.0, A3=0.0): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of *X*: .. math:: r = A_{1} x^{A_{2}} + A_{3} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A3 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = phase[A1] B = phase[A2] C = phase[A3] X = phase[X] r = A * X ** B + C S1 = A * B * X ** (B - 1) S2 = A * X ** B * (1 - B) + C values = {'S1': S1, 'S2': S2, 'rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of *X*: .. math:: r = A_{1} x^{A_{2}} + A_{3} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A3 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
power_law
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def exponential(phase, X, A1=0.0, A2=1.0, A3=1.0, A4=1.0, A5=0.0, A6=0.0): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} A_{2}^{( A_{3} x^{ A_{4} } + A_{5})} + A_{6} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A6 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = phase[A1] B = phase[A2] C = phase[A3] D = phase[A4] E = phase[A5] F = phase[A6] X = phase[X] r = A * B ** (C * X ** D + E) + F S1 = A * C * D * X ** (D - 1) * _np.log(B) * B ** (C * X ** D + E) S2 = A * B ** (C * X ** D + E) * (1 - C * D * _np.log(B) * X ** D) + F values = {'S1': S1, 'S2': S2, 'rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} A_{2}^{( A_{3} x^{ A_{4} } + A_{5})} + A_{6} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A6 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
exponential
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def natural_exponential(phase, X, A1=0.0, A2=0.0, A3=0.0, A4=0.0, A5=0.0): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} exp( A_{2} x^{ A_{3} } + A_{4} )+ A_{5} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A5 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = phase[A1] B = phase[A2] C = phase[A3] D = phase[A4] E = phase[A5] X = phase[X] r = A * _np.exp(B * X ** C + D) + E S1 = A * B * C * X ** (C - 1) * _np.exp(B * X ** C + D) S2 = A * (1 - B * C * X ** C) * _np.exp(B * X ** C + D) + E values = {'pore.S1': S1, 'pore.S2': S2, 'pore.rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} exp( A_{2} x^{ A_{3} } + A_{4} )+ A_{5} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A5 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
natural_exponential
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def logarithm(phase, X, A1=0.0, A2=10.0, A3=1.0, A4=1.0, A5=0.0, A6=0.0): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} Log_{ A_{2} }( A_{3} x^{ A_{4} }+ A_{5})+ A_{6} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A6 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = phase[A1] B = phase[A2] C = phase[A3] D = phase[A4] E = phase[A5] F = phase[A6] X = phase[X] r = (A * _np.log(C * X ** D + E)/_np.log(B) + F) S1 = A * C * D * X ** (D - 1) / (_np.log(B) * (C * X ** D + E)) S2 = A * _np.log(C * X ** D + E) / _np.log(B) + F - A * C * D * X ** D / \ (_np.log(B) * (C * X ** D + E)) values = {'S1': S1, 'S2': S2, 'rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} Log_{ A_{2} }( A_{3} x^{ A_{4} }+ A_{5})+ A_{6} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A6 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
logarithm
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def natural_logarithm(phase, X, A1=0.0, A2=1.0, A3=1.0, A4=0.0, A5=0.0): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} Ln( A_{2} x^{ A_{3} }+ A_{4})+ A_{5} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A5 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = phase[A1] B = phase[A2] C = phase[A3] D = phase[A4] E = phase[A5] X = phase[X] r = A*_np.log(B*X**C + D) + E S1 = A*B*C*X**(C - 1) / (B * X ** C + D) S2 = A*_np.log(B*X**C + D) + E - A*B*C*X**C / (B*X**C + D) values = {'pore.S1': S1, 'pore.S2': S2, 'pore.rate': r} return values
Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} Ln( A_{2} x^{ A_{3} }+ A_{4})+ A_{5} Parameters ---------- %(phase)s X : str The dictionary key on the phase object containing the the quantity of interest A1 -> A5 : str The dictionary keys on the phase object containing the coefficients values to be used in the source term model Returns ------- dict A dictionary containing the following three items: 'rate' The value of the source term function at the given X. 'S1' The slope of the source term function at the given X. 'S2' The intercept of the source term function at the given X. Notes ----- The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2}
natural_logarithm
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def _build_func(eq, **args): r""" Take a symbolic equation and return the lambdified version plus the linearization of form S1 * x + S2 """ from sympy import lambdify eq_prime = eq.diff(args['x']) s1 = eq_prime s2 = eq - eq_prime*args['x'] EQ = lambdify(args.values(), expr=eq, modules='numpy') S1 = lambdify(args.values(), expr=s1, modules='numpy') S2 = lambdify(args.values(), expr=s2, modules='numpy') return EQ, S1, S2
Take a symbolic equation and return the lambdified version plus the linearization of form S1 * x + S2
_build_func
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def general_symbolic(phase, eqn, x, **kwargs): r""" A general function to interpret a sympy equation and evaluate the linear components of the source term. Parameters ---------- %(phase)s eqn : str The str representation of the equation to use. This will be passed to sympy's ``sympify`` function to make a *live* sympy object. x : str The dictionary key of the independent variable kwargs All additional keyword arguments are converted to sympy variables using the ``symbols`` function. Note that IF the arguments are strs, it is assumed they are dictionary keys pointing to arrays on the ``phase`` object. If they are numerical values they are used 'as is'. Numpy arrays are not accepted. These must be stored in the ``phase`` dictionary and referenced by key. Examples -------- >>> import openpnm as op >>> from openpnm.models.physics import source_terms as st >>> import numpy as np >>> import sympy >>> pn = op.network.Cubic(shape=[5, 5, 5], spacing=0.0001) >>> water = op.phase.Water(network=pn) >>> water['pore.a'] = 1 >>> water['pore.b'] = 2 >>> water['pore.c'] = 3 >>> water['pore.x'] = np.random.random(water.Np) >>> y = 'a*x**b + c' >>> arg_map = {'a':'pore.a', 'b':'pore.b', 'c':'pore.c'} >>> water.add_model(propname='pore.general', ... model=st.general_symbolic, ... eqn=y, x='pore.x', **arg_map) """ from sympy import symbols, sympify eqn = sympify(eqn) # Get the data data = {'x': phase[x]} args = {'x': symbols('x')} for key in kwargs.keys(): if isinstance(kwargs[key], str): data[key] = phase[kwargs[key]] else: data[key] = kwargs[key] args[key] = symbols(key) r, s1, s2 = _build_func(eqn, **args) r_val = r(*data.values()) s1_val = s1(*data.values()) s2_val = s2(*data.values()) values = {'S1': s1_val, 'S2': s2_val, 'rate': r_val} return values
A general function to interpret a sympy equation and evaluate the linear components of the source term. Parameters ---------- %(phase)s eqn : str The str representation of the equation to use. This will be passed to sympy's ``sympify`` function to make a *live* sympy object. x : str The dictionary key of the independent variable kwargs All additional keyword arguments are converted to sympy variables using the ``symbols`` function. Note that IF the arguments are strs, it is assumed they are dictionary keys pointing to arrays on the ``phase`` object. If they are numerical values they are used 'as is'. Numpy arrays are not accepted. These must be stored in the ``phase`` dictionary and referenced by key. Examples -------- >>> import openpnm as op >>> from openpnm.models.physics import source_terms as st >>> import numpy as np >>> import sympy >>> pn = op.network.Cubic(shape=[5, 5, 5], spacing=0.0001) >>> water = op.phase.Water(network=pn) >>> water['pore.a'] = 1 >>> water['pore.b'] = 2 >>> water['pore.c'] = 3 >>> water['pore.x'] = np.random.random(water.Np) >>> y = 'a*x**b + c' >>> arg_map = {'a':'pore.a', 'b':'pore.b', 'c':'pore.c'} >>> water.add_model(propname='pore.general', ... model=st.general_symbolic, ... eqn=y, x='pore.x', **arg_map)
general_symbolic
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def butler_volmer_conc( phase, X, n, i0_ref, c_ref, beta, gamma=1, temperature="pore.temperature", reaction_area="pore.reaction_area", solid_voltage="pore.solid_voltage", electrolyte_voltage="pore.electrolyte_voltage", open_circuit_voltage="pore.open_circuit_voltage", ): r""" Calculates the rate, slope and intercept of the Butler-Volmer kinetic model based on **concentration** to be used in mass transfer algorithms. Parameters ---------- %(phase)s X : str The dictionary key of the quantity of interest (i.e. main variable to be solved; in this case, concentration). n : float Number of electrons transferred in the redox reaction. i0_ref : float Exchange current density for some conveniently selected value of c_ref [A/m^2]. c_ref : float Reference concentration [mol/m^3]. beta : float Symmetry factor. The value of beta represents the fraction of the applied potential that promotes the cathodic reaction. Frequently, beta is assummed to be 0.5, although the theoretical justification for this is not completely rigorous. This kinetic parameter must be determined to agree with experimental data. gamma : float The exponent of the concentration term solid_voltage : str The dictionary key of solid phase voltages [V]. electrolyte_voltage : str The dictionary key of electrolyte phase voltages [V]. open_circuit_voltage : str The dictionary key of equilibrium potential values [V]. reaction_area : str The dictionary key of reaction area values [m^2]. temperature : str The dictionary key of temperature values [K]. Returns ------- dict Dictionary containing the following key/value pairs: - rate : The value of the source term function at the given X. - S1 : The slope of the source term function at the given X. - S2 : The intercept of the source term function at the given X. Notes ----- The difference between butler_volmer_conc and butler_volmer_voltage is that the former is linearized with respect to the electrolyte concentration whereas the latter is linearized with respect to the electrolyte voltage. Consequently, while the S1 and S2 produced by these model shouldn't be identical, they should both produce the same **rate** with the only difference that the rate generated by butler_volmer_conc has the units [mol/s] whereas that generated by butler_volmer_voltage has the units [C/s]. Therefore, the two rates will differ by n * F, where n is the number of electrons transferred and F is the Faraday's constant. The Butler-Volmer equation used in this function is based on Eq. 8.24 of the Electrochemical Systems reference book cited here. .. math:: r_{mass} = \frac{ i A }{ n F }= i_{0ref} A_{rxn} (\frac{ 1 }{ n F })(\frac{ X }{ c_{ref} }) ^ {\gamma} \Big( \exp( \frac{(1-\beta) n F}{RT} \eta_s ) - \exp( -\frac{\beta n F}{RT} \eta_s ) \Big) where: .. math:: \eta_s = \phi_{met} - \phi_{soln} - U_{eq} where :math:`{\phi_{met}}` is the electrostatic potential of the electrode, :math:`{\phi_{soln}}` is the electrostatic potential of the electrolyte solution, and :math:`{U_{eq}}` is the equilibrium potential, which is the potential at which the net rate of reaction is zero. Here, we assume U_{eq} is equal to the open-circuit voltage and is constant. Alternatively, the dependency of the U_{eq} to the consentration of species can be defined as a function and assigned to the phase['pore.open_circuit_voltage'] (e.g. Eq.8.20 of the reference book (Electrochemical Systems). The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} Reference: John Newman, Karen E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, third edition, 2004. For more details read Chapter8:Electrode kinetics (e.g. Eqs: 8.6,8.10,8.24). """ # Fetch model variables X = phase[X] T = phase[temperature] phi_met = phase[solid_voltage] phi_soln = phase[electrolyte_voltage] U_eq = phase[open_circuit_voltage] A_rxn = phase.network[reaction_area] F = _sp.constants.physical_constants["Faraday constant"][0] R = _sp.constants.R # Linearize with respect to X (electrolyte concentration) eta_s = phi_met - phi_soln - U_eq cte = i0_ref * A_rxn / (n * F) m1 = (1-beta) * n * F / (R * T) m2 = beta * n * F / (R * T) fV = _np.exp(m1 * eta_s) - _np.exp(-m2 * eta_s) fC = (X / c_ref)**gamma r = cte * fC * fV drdC = cte * (X / c_ref)**(gamma - 1) * (1 / c_ref) * fV S1 = drdC S2 = r - drdC * X values = {"S1": S1, "S2": S2, "rate": r} return values
Calculates the rate, slope and intercept of the Butler-Volmer kinetic model based on **concentration** to be used in mass transfer algorithms. Parameters ---------- %(phase)s X : str The dictionary key of the quantity of interest (i.e. main variable to be solved; in this case, concentration). n : float Number of electrons transferred in the redox reaction. i0_ref : float Exchange current density for some conveniently selected value of c_ref [A/m^2]. c_ref : float Reference concentration [mol/m^3]. beta : float Symmetry factor. The value of beta represents the fraction of the applied potential that promotes the cathodic reaction. Frequently, beta is assummed to be 0.5, although the theoretical justification for this is not completely rigorous. This kinetic parameter must be determined to agree with experimental data. gamma : float The exponent of the concentration term solid_voltage : str The dictionary key of solid phase voltages [V]. electrolyte_voltage : str The dictionary key of electrolyte phase voltages [V]. open_circuit_voltage : str The dictionary key of equilibrium potential values [V]. reaction_area : str The dictionary key of reaction area values [m^2]. temperature : str The dictionary key of temperature values [K]. Returns ------- dict Dictionary containing the following key/value pairs: - rate : The value of the source term function at the given X. - S1 : The slope of the source term function at the given X. - S2 : The intercept of the source term function at the given X. Notes ----- The difference between butler_volmer_conc and butler_volmer_voltage is that the former is linearized with respect to the electrolyte concentration whereas the latter is linearized with respect to the electrolyte voltage. Consequently, while the S1 and S2 produced by these model shouldn't be identical, they should both produce the same **rate** with the only difference that the rate generated by butler_volmer_conc has the units [mol/s] whereas that generated by butler_volmer_voltage has the units [C/s]. Therefore, the two rates will differ by n * F, where n is the number of electrons transferred and F is the Faraday's constant. The Butler-Volmer equation used in this function is based on Eq. 8.24 of the Electrochemical Systems reference book cited here. .. math:: r_{mass} = \frac{ i A }{ n F }= i_{0ref} A_{rxn} (\frac{ 1 }{ n F })(\frac{ X }{ c_{ref} }) ^ {\gamma} \Big( \exp( \frac{(1-\beta) n F}{RT} \eta_s ) - \exp( -\frac{\beta n F}{RT} \eta_s ) \Big) where: .. math:: \eta_s = \phi_{met} - \phi_{soln} - U_{eq} where :math:`{\phi_{met}}` is the electrostatic potential of the electrode, :math:`{\phi_{soln}}` is the electrostatic potential of the electrolyte solution, and :math:`{U_{eq}}` is the equilibrium potential, which is the potential at which the net rate of reaction is zero. Here, we assume U_{eq} is equal to the open-circuit voltage and is constant. Alternatively, the dependency of the U_{eq} to the consentration of species can be defined as a function and assigned to the phase['pore.open_circuit_voltage'] (e.g. Eq.8.20 of the reference book (Electrochemical Systems). The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} Reference: John Newman, Karen E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, third edition, 2004. For more details read Chapter8:Electrode kinetics (e.g. Eqs: 8.6,8.10,8.24).
butler_volmer_conc
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def butler_volmer_voltage( phase, X, n, i0_ref, c_ref, beta, gamma=1, temperature="pore.temperature", reaction_area="pore.reaction_area", solid_voltage="pore.solid_voltage", open_circuit_voltage="pore.open_circuit_voltage", electrolyte_concentration="pore.electrolyte_concentration", ): r""" Calculates the rate, slope and intercept of the Butler-Volmer kinetic model based on **voltage** to be used in electron conduction algorithms. Parameters ---------- %(phase)s X : str The dictionary key of the quantity of interest (i.e. main variable to be solved; in this case, electrolyte voltage). n : float Number of electrons transferred in the redox reaction. i0_ref : float Exchange current density for some conveniently selected value of c_ref [A/m^2]. c_ref : float Reference concentration [mol/m^3]. beta : float Symmetry factor. The value of beta represents the fraction of the applied potential that promotes the cathodic reaction. Frequently, beta is assummed to be 0.5, although the theoretical justification for this is not completely rigorous. This kinetic parameter must be determined to agree with experimental data. gamma : float The exponent of the concentration term electrolyte_concentration : str The dictionary key of the electrolyte concentrations [mol/m^3]. solid_voltage : str The dictionary key of solid phase voltages [V]. electrolyte_voltage : str The dictionary key of electrolyte phase voltages [V]. open_circuit_voltage : str The dictionary key of equilibrium potential values [V]. reaction_area : str The dictionary key of reaction area values [m^2]. temperature : str The dictionary key of temperature values [K]. Returns ------- rate_info : dict Dictionary containing the following key/value pairs: - rate : The value of the source term function at the given X. - S1 : The slope of the source term function at the given X. - S2 : The intercept of the source term function at the given X. Notes ----- The difference between butler_volmer_conc and butler_volmer_voltage is that the former is linearized with respect to the electrolyte concentration whereas the latter is linearized with respect to the electrolyte voltage. Consequently, while the S1 and S2 produced by these model shouldn't be identical, they should both produce the same **rate** with the only difference that the rate generated by butler_volmer_conc has the units [mol/s] whereas that generated by butler_volmer_voltage has the units [C/s]. Therefore, the two rates will differ by n * F, where n is the number of electrons transferred and F is the Faraday's constant. The Butler-Volmer equation used in this function is based on Eq. 8.24 of the Electrochemical Systems reference book cited here. .. math:: r_{charge}=i A = i_{0ref} A_{rxn} (\frac{ c }{ c_{ref} }) ^ {\gamma} \Big( \exp( \frac{(1-\beta) n F}{RT} \eta_s ) - \exp( -\frac{\beta n F}{RT} \eta_s ) \Big) where: .. math:: \eta_s = \phi_{met} - \phi_{soln} - U_{eq} where :math:`{\phi_{met}}` is the electrostatic potential of the electrode, :math:`{\phi_{soln}}` is the electrostatic potential of the electrolyte solution, and :math:`{U_{eq}}` is the equilibrium potential, which is the potential at which the net rate of reaction is zero. Here, we assume U_{eq} is equal to the open-circuit voltage and is constant. Alternatively, the dependency of the U_{eq} to the consentration of species can be defined as a function and assigned to the phase['pore.open_circuit_voltage'] (e.g. Eq.8.20 of the reference book (Electrochemical Systems). The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} Reference: John Newman, Karen E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, third edition, 2004. For more details read Chapter8:Electrode kinetics (e.g. Eqs: 8.6,8.10,8.24). """ # Fetch model variables A_rxn = phase.network[reaction_area] phi_met = phase[solid_voltage] U_eq = phase[open_circuit_voltage] c = phase[electrolyte_concentration] T = phase[temperature] X = phase[X] F = _sp.constants.physical_constants["Faraday constant"][0] R = _sp.constants.R # Linearize with respect to X (electrolyte voltage) eta_s = phi_met - X - U_eq cte = i0_ref * A_rxn m1 = (1-beta) * n * F / (R * T) m2 = beta * n * F / (R * T) fV = _np.exp(m1 * eta_s) - _np.exp(-m2 * eta_s) dfVdV = -(m1 * _np.exp(m1 * eta_s) + m2 * _np.exp(-m2 * eta_s)) fC = (c / c_ref)**gamma r = cte * fC * fV drdV = cte * fC * dfVdV S1 = drdV S2 = r - drdV * X values = {"S1": S1, "S2": S2, "rate": r} return values
Calculates the rate, slope and intercept of the Butler-Volmer kinetic model based on **voltage** to be used in electron conduction algorithms. Parameters ---------- %(phase)s X : str The dictionary key of the quantity of interest (i.e. main variable to be solved; in this case, electrolyte voltage). n : float Number of electrons transferred in the redox reaction. i0_ref : float Exchange current density for some conveniently selected value of c_ref [A/m^2]. c_ref : float Reference concentration [mol/m^3]. beta : float Symmetry factor. The value of beta represents the fraction of the applied potential that promotes the cathodic reaction. Frequently, beta is assummed to be 0.5, although the theoretical justification for this is not completely rigorous. This kinetic parameter must be determined to agree with experimental data. gamma : float The exponent of the concentration term electrolyte_concentration : str The dictionary key of the electrolyte concentrations [mol/m^3]. solid_voltage : str The dictionary key of solid phase voltages [V]. electrolyte_voltage : str The dictionary key of electrolyte phase voltages [V]. open_circuit_voltage : str The dictionary key of equilibrium potential values [V]. reaction_area : str The dictionary key of reaction area values [m^2]. temperature : str The dictionary key of temperature values [K]. Returns ------- rate_info : dict Dictionary containing the following key/value pairs: - rate : The value of the source term function at the given X. - S1 : The slope of the source term function at the given X. - S2 : The intercept of the source term function at the given X. Notes ----- The difference between butler_volmer_conc and butler_volmer_voltage is that the former is linearized with respect to the electrolyte concentration whereas the latter is linearized with respect to the electrolyte voltage. Consequently, while the S1 and S2 produced by these model shouldn't be identical, they should both produce the same **rate** with the only difference that the rate generated by butler_volmer_conc has the units [mol/s] whereas that generated by butler_volmer_voltage has the units [C/s]. Therefore, the two rates will differ by n * F, where n is the number of electrons transferred and F is the Faraday's constant. The Butler-Volmer equation used in this function is based on Eq. 8.24 of the Electrochemical Systems reference book cited here. .. math:: r_{charge}=i A = i_{0ref} A_{rxn} (\frac{ c }{ c_{ref} }) ^ {\gamma} \Big( \exp( \frac{(1-\beta) n F}{RT} \eta_s ) - \exp( -\frac{\beta n F}{RT} \eta_s ) \Big) where: .. math:: \eta_s = \phi_{met} - \phi_{soln} - U_{eq} where :math:`{\phi_{met}}` is the electrostatic potential of the electrode, :math:`{\phi_{soln}}` is the electrostatic potential of the electrolyte solution, and :math:`{U_{eq}}` is the equilibrium potential, which is the potential at which the net rate of reaction is zero. Here, we assume U_{eq} is equal to the open-circuit voltage and is constant. Alternatively, the dependency of the U_{eq} to the consentration of species can be defined as a function and assigned to the phase['pore.open_circuit_voltage'] (e.g. Eq.8.20 of the reference book (Electrochemical Systems). The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} Reference: John Newman, Karen E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, third edition, 2004. For more details read Chapter8:Electrode kinetics (e.g. Eqs: 8.6,8.10,8.24).
butler_volmer_voltage
python
PMEAL/OpenPNM
openpnm/models/physics/source_terms/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/source_terms/_funcs.py
MIT
def generic_thermal(phase, pore_conductivity='pore.thermal_conductivity', throat_conductivity='throat.thermal_conductivity', size_factors='throat.diffusive_size_factors'): r""" Calculate the thermal conductance of conduits in network. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s thermal conductivity throat_conductivity : str %(dict_blurb)s throat thermal conductivity size_factors : str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s thermal conductance """ return _poisson_conductance(phase=phase, pore_conductivity=pore_conductivity, throat_conductivity=throat_conductivity, size_factors=size_factors)
Calculate the thermal conductance of conduits in network. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s thermal conductivity throat_conductivity : str %(dict_blurb)s throat thermal conductivity size_factors : str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s thermal conductance
generic_thermal
python
PMEAL/OpenPNM
openpnm/models/physics/thermal_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/thermal_conductance/_funcs.py
MIT
def series_resistors( phase, pore_thermal_conductivity='pore.thermal_conductivity', throat_thermal_conductivity='throat.thermal_conductivity', size_factors='throat.diffusive_size_factors' ): r""" Calculate the thermal conductance of conduits in network. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s thermal conductivity throat_conductivity : str %(dict_blurb)s throat thermal conductivity size_factors : str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s thermal conductance """ return _poisson_conductance(phase=phase, pore_conductivity=pore_thermal_conductivity, throat_conductivity=throat_thermal_conductivity, size_factors=size_factors)
Calculate the thermal conductance of conduits in network. Parameters ---------- %(phase)s pore_conductivity : str %(dict_blurb)s thermal conductivity throat_conductivity : str %(dict_blurb)s throat thermal conductivity size_factors : str %(dict_blurb)s conduit diffusive size factors Returns ------- %(return_arr)s thermal conductance
series_resistors
python
PMEAL/OpenPNM
openpnm/models/physics/thermal_conductance/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/physics/thermal_conductance/_funcs.py
MIT
def add_boundary_pores(self, labels, spacing): r""" Add boundary pores to the specified faces of the network Pores are offset from the faces by 1/2 of the given ``spacing``, such that they lie directly on the boundaries. Parameters ---------- labels : str or list[str] The labels indicating the pores defining each face where boundary pores are to be added (e.g. 'left' or ['left', 'right']) spacing : scalar or array_like The spacing of the network (e.g. [1, 1, 1]). This must be given since it can be quite difficult to infer from the network, for instance if boundary pores have already added to other faces. """ spacing = np.array(spacing) if spacing.size == 1: spacing = np.ones(3)*spacing for item in labels: Ps = self.pores(item) coords = np.absolute(self['pore.coords'][Ps]) axis = np.count_nonzero(np.diff(coords, axis=0), axis=0) == 0 offset = np.array(axis, dtype=int)/2 if np.amin(coords) == np.amin(coords[:, np.where(axis)[0]]): offset = -1*offset topotools.add_boundary_pores(network=self, pores=Ps, offset=offset, apply_label=item + '_boundary')
Add boundary pores to the specified faces of the network Pores are offset from the faces by 1/2 of the given ``spacing``, such that they lie directly on the boundaries. Parameters ---------- labels : str or list[str] The labels indicating the pores defining each face where boundary pores are to be added (e.g. 'left' or ['left', 'right']) spacing : scalar or array_like The spacing of the network (e.g. [1, 1, 1]). This must be given since it can be quite difficult to infer from the network, for instance if boundary pores have already added to other faces.
add_boundary_pores
python
PMEAL/OpenPNM
openpnm/network/_bcc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_bcc.py
MIT
def add_boundary_pores(self, labels=["top", "bottom", "front", "back", "left", "right"], spacing=None): r""" Add pores to the faces of the network for use as boundary pores. Pores are offset from the faces by 1/2 a lattice spacing such that they lie directly on the boundaries. Parameters ---------- labels : str or list[str] The labels indicating the pores defining each face where boundary pores are to be added (e.g. 'left' or ['left', 'right']) spacing : scalar or array_like The spacing of the network (e.g. [1, 1, 1]). This should be given since it can be quite difficult to infer from the network, for instance if boundary pores have already added to other faces. """ if isinstance(labels, str): labels = [labels] x, y, z = self["pore.coords"].T if spacing is None: spacing = skgr.tools.get_cubic_spacing(self) else: spacing = np.array(spacing) if spacing.size == 1: spacing = np.ones(3) * spacing Lcx, Lcy, Lcz = spacing offset = {} shape = skgr.tools.get_cubic_shape(self) offset["front"] = offset["left"] = offset["bottom"] = [0, 0, 0] offset["right"] = [Lcx * shape[0], 0, 0] offset["back"] = [0, Lcy * shape[1], 0] offset["top"] = [0, 0, Lcz * shape[2]] scale = {} scale["left"] = scale["right"] = [0, 1, 1] scale["front"] = scale["back"] = [1, 0, 1] scale["bottom"] = scale["top"] = [1, 1, 0] for label in labels: try: Ps = self.pores(label) topotools.clone_pores(network=self, pores=Ps, labels=f"{label}_boundary", mode='parents') # Translate cloned pores ind = self.pores(label + "_boundary") coords = self["pore.coords"][ind] coords = coords * scale[label] + offset[label] self["pore.coords"][ind] = coords except KeyError: msg = f"No pores labelled {label} found, skipping boundary addition" logger.warning(msg)
Add pores to the faces of the network for use as boundary pores. Pores are offset from the faces by 1/2 a lattice spacing such that they lie directly on the boundaries. Parameters ---------- labels : str or list[str] The labels indicating the pores defining each face where boundary pores are to be added (e.g. 'left' or ['left', 'right']) spacing : scalar or array_like The spacing of the network (e.g. [1, 1, 1]). This should be given since it can be quite difficult to infer from the network, for instance if boundary pores have already added to other faces.
add_boundary_pores
python
PMEAL/OpenPNM
openpnm/network/_cubic.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_cubic.py
MIT
def find_throat_facets(self, throats=None): r""" Finds the indicies of the Voronoi nodes that define the facet or ridge between the Delaunay nodes connected by the given throat. Parameters ---------- throats : array_like The throats whose facets are sought. The given throats should be from the 'delaunay' network. If no throats are specified, all 'delaunay' throats are assumed. Notes ----- The method is not well optimized as it scans through each given throat inside a for-loop, so it could be slow for large networks. """ if throats is None: throats = self.throats('delaunay') temp = [] tvals = self['throat.interconnect'].astype(int) am = self.create_adjacency_matrix(weights=tvals, fmt='lil', drop_zeros=True) for t in throats: P12 = self['throat.conns'][t] Ps = list(set(am.rows[P12][0]).intersection(am.rows[P12][1])) temp.append(Ps) return np.array(temp, dtype=object)
Finds the indicies of the Voronoi nodes that define the facet or ridge between the Delaunay nodes connected by the given throat. Parameters ---------- throats : array_like The throats whose facets are sought. The given throats should be from the 'delaunay' network. If no throats are specified, all 'delaunay' throats are assumed. Notes ----- The method is not well optimized as it scans through each given throat inside a for-loop, so it could be slow for large networks.
find_throat_facets
python
PMEAL/OpenPNM
openpnm/network/_delaunay_voronoi_dual.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_delaunay_voronoi_dual.py
MIT
def find_pore_hulls(self, pores=None): r""" Finds the indices of the Voronoi nodes that define the convex hull around the given Delaunay nodes. Parameters ---------- pores : array_like The pores whose convex hull are sought. The given pores should be from the 'delaunay' network. If no pores are given, then the hull is found for all 'delaunay' pores. Notes ----- This metod is not fully optimized as it scans through each pore in a for-loop, so could be slow for large networks. """ if pores is None: pores = self.pores('delaunay') temp = [] tvals = self['throat.interconnect'].astype(int) am = self.create_adjacency_matrix(weights=tvals, fmt='lil', drop_zeros=True) for p in pores: Ps = am.rows[p] temp.append(Ps) return np.array(temp, dtype=object)
Finds the indices of the Voronoi nodes that define the convex hull around the given Delaunay nodes. Parameters ---------- pores : array_like The pores whose convex hull are sought. The given pores should be from the 'delaunay' network. If no pores are given, then the hull is found for all 'delaunay' pores. Notes ----- This metod is not fully optimized as it scans through each pore in a for-loop, so could be slow for large networks.
find_pore_hulls
python
PMEAL/OpenPNM
openpnm/network/_delaunay_voronoi_dual.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_delaunay_voronoi_dual.py
MIT
def add_boundary_pores(self, labels, spacing): r""" Add boundary pores to the specified faces of the network Pores are offset from the faces by 1/2 of the given ``spacing``, such that they lie directly on the boundaries. Parameters ---------- labels : str or list[str] The labels indicating the pores defining each face where boundary pores are to be added (e.g. 'left' or ['left', 'right']) spacing : scalar or array_like The spacing of the network (e.g. [1, 1, 1]). This must be given since it can be quite difficult to infer from the network, for instance if boundary pores have already added to other faces. """ spacing = np.array(spacing) if spacing.size == 1: spacing = np.ones(3)*spacing for item in labels: Ps = self.pores(item) coords = np.absolute(self['pore.coords'][Ps]) axis = np.count_nonzero(np.diff(coords, axis=0), axis=0) == 0 offset = np.array(axis, dtype=int)/2 if np.amin(coords) == np.amin(coords[:, np.where(axis)[0]]): offset = -1*offset topotools.add_boundary_pores(network=self, pores=Ps, offset=offset, apply_label=item + '_boundary')
Add boundary pores to the specified faces of the network Pores are offset from the faces by 1/2 of the given ``spacing``, such that they lie directly on the boundaries. Parameters ---------- labels : str or list[str] The labels indicating the pores defining each face where boundary pores are to be added (e.g. 'left' or ['left', 'right']) spacing : scalar or array_like The spacing of the network (e.g. [1, 1, 1]). This must be given since it can be quite difficult to infer from the network, for instance if boundary pores have already added to other faces.
add_boundary_pores
python
PMEAL/OpenPNM
openpnm/network/_fcc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_fcc.py
MIT
def get_adjacency_matrix(self, fmt='coo'): r""" Adjacency matrix in the specified sparse format, with throat IDs indicating the non-zero values. Parameters ---------- fmt : str, default is 'coo' The sparse storage format to return. Options are: **'coo'** : This is the native format of OpenPNM's data **'lil'** : Enables row-wise slice of the matrix **'csr'** : Favored by most linear algebra routines **'dok'** : Enables subscript access of locations Notes ----- This method will only create the requested matrix in the specified format if one is not already saved on the object. If not present, this method will create and return the matrix, as well as store it for future use. To obtain a matrix with weights other than throat IDs at each non-zero location use ``create_adjacency_matrix``. To obtain the non-directed graph, with only upper-triangular entries, use ``sp.sparse.triu(am, k=1)``. """ # Retrieve existing matrix if available if fmt in self._am.keys(): am = self._am[fmt] else: am = self.create_adjacency_matrix(weights=self.Ts, fmt=fmt) self._am[fmt] = am return am
Adjacency matrix in the specified sparse format, with throat IDs indicating the non-zero values. Parameters ---------- fmt : str, default is 'coo' The sparse storage format to return. Options are: **'coo'** : This is the native format of OpenPNM's data **'lil'** : Enables row-wise slice of the matrix **'csr'** : Favored by most linear algebra routines **'dok'** : Enables subscript access of locations Notes ----- This method will only create the requested matrix in the specified format if one is not already saved on the object. If not present, this method will create and return the matrix, as well as store it for future use. To obtain a matrix with weights other than throat IDs at each non-zero location use ``create_adjacency_matrix``. To obtain the non-directed graph, with only upper-triangular entries, use ``sp.sparse.triu(am, k=1)``.
get_adjacency_matrix
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def get_incidence_matrix(self, fmt='coo'): r""" Incidence matrix in the specified sparse format, with pore IDs indicating the non-zero values. Parameters ---------- fmt : str, default is 'coo' The sparse storage format to return. Options are: **'coo'** : This is the native format of OpenPNM's data **'lil'** : Enables row-wise slice of the matrix **'csr'** : Favored by most linear algebra routines **'dok'** : Enables subscript access of locations Notes ----- This method will only create the requested matrix in the specified format if one is not already saved on the object. If not present, this method will create and return the matrix, as well as store it for future use. To obtain a matrix with weights other than pore IDs at each non-zero location use ``create_incidence_matrix``. """ if fmt in self._im.keys(): im = self._im[fmt] elif self._im.keys(): im = self._im[list(self._im.keys())[0]] tofmt = getattr(im, f"to{fmt}") im = tofmt() self._im[fmt] = im else: im = self.create_incidence_matrix(weights=self.Ts, fmt=fmt) self._im[fmt] = im return im
Incidence matrix in the specified sparse format, with pore IDs indicating the non-zero values. Parameters ---------- fmt : str, default is 'coo' The sparse storage format to return. Options are: **'coo'** : This is the native format of OpenPNM's data **'lil'** : Enables row-wise slice of the matrix **'csr'** : Favored by most linear algebra routines **'dok'** : Enables subscript access of locations Notes ----- This method will only create the requested matrix in the specified format if one is not already saved on the object. If not present, this method will create and return the matrix, as well as store it for future use. To obtain a matrix with weights other than pore IDs at each non-zero location use ``create_incidence_matrix``.
get_incidence_matrix
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def find_connected_pores(self, throats=[], flatten=False, mode='or'): r""" Return a list of pores connected to the given list of throats Parameters ---------- throats : array_like List of throats numbers flatten : bool, optional If ``True`` (default) a 1D array of unique pore numbers is returned. If ``False`` each location in the the returned array contains a sub-arras of neighboring pores for each input throat, in the order they were sent. mode : str Specifies logic to filter the resulting list. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'or' All neighbors of the input pores. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input pore. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input pores. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input pores. Also accepts 'intersection' and 'all' =========== ===================================================== Returns ------- 1D array (if ``flatten`` is ``True``) or ndarray of arrays (if ``flatten`` is ``False``) Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ps = pn.find_connected_pores(throats=[0, 1]) >>> print(Ps) [[0 1] [1 2]] >>> Ps = pn.find_connected_pores(throats=[0, 1], flatten=True) >>> print(Ps) [0 1 2] """ Ts = self._parse_indices(throats) pores = topotools.find_connected_sites(bonds=Ts, network=self, flatten=flatten, logic=mode) return pores
Return a list of pores connected to the given list of throats Parameters ---------- throats : array_like List of throats numbers flatten : bool, optional If ``True`` (default) a 1D array of unique pore numbers is returned. If ``False`` each location in the the returned array contains a sub-arras of neighboring pores for each input throat, in the order they were sent. mode : str Specifies logic to filter the resulting list. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'or' All neighbors of the input pores. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input pore. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input pores. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input pores. Also accepts 'intersection' and 'all' =========== ===================================================== Returns ------- 1D array (if ``flatten`` is ``True``) or ndarray of arrays (if ``flatten`` is ``False``) Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ps = pn.find_connected_pores(throats=[0, 1]) >>> print(Ps) [[0 1] [1 2]] >>> Ps = pn.find_connected_pores(throats=[0, 1], flatten=True) >>> print(Ps) [0 1 2]
find_connected_pores
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def find_connecting_throat(self, P1, P2): r""" Return the throat index connecting pairs of pores. Parameters ---------- P1 : array_like The indices of the pores whose throats are sought. These can be vectors of indices, but must be the same length P2 : array_like The indices of the pores whose throats are sought. These can be vectors of indices, but must be the same length Returns ------- list Returns a list the same length as P1 (and P2) with the each element containing the throat index that connects the corresponding pores, or `None`` if pores are not connected. Notes ----- The returned list can be converted to an ndarray, which will convert the ``None`` values to ``nan``. These can then be found using ``numpy.isnan``. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ts = pn.find_connecting_throat([0, 1, 2], [2, 2, 2]) >>> print(Ts) [nan 1. nan] """ sites = np.vstack((P1, P2)).T Ts = topotools.find_connecting_bonds(sites=sites, network=self) return Ts
Return the throat index connecting pairs of pores. Parameters ---------- P1 : array_like The indices of the pores whose throats are sought. These can be vectors of indices, but must be the same length P2 : array_like The indices of the pores whose throats are sought. These can be vectors of indices, but must be the same length Returns ------- list Returns a list the same length as P1 (and P2) with the each element containing the throat index that connects the corresponding pores, or `None`` if pores are not connected. Notes ----- The returned list can be converted to an ndarray, which will convert the ``None`` values to ``nan``. These can then be found using ``numpy.isnan``. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ts = pn.find_connecting_throat([0, 1, 2], [2, 2, 2]) >>> print(Ts) [nan 1. nan]
find_connecting_throat
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def find_neighbor_pores(self, pores, mode='or', flatten=True, include_input=False, asmask=False): r""" Returns a list of pores that are direct neighbors to the given pore(s) Parameters ---------- pores : array_like Indices of the pores whose neighbors are sought flatten : bool If ``True`` (default) the returned result is a compressed array of all neighbors. If ``False``, a list of lists with each sub-list containing the neighbors for each input site. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy ``array``. include_input : bool If ``False`` (default) then the input pores are not included in the returned list(s). Note that since pores are not neighbors of themselves, the neighbors of pore N will not include N, even if this flag is ``True``. mode : str Specifies logic to filter the resulting list. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'or' All neighbors of the input pores. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input pore. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input pores. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input pores. Also accepts 'intersection' and 'all' =========== ===================================================== asmask : boolean If ``False`` (default), the returned result is a list of the neighboring pores as indices. If ``True``, the returned result is a boolean mask. (Useful for labelling) Returns ------- If ``flatten`` is ``True``, returns a 1D array of pore indices filtered according to the specified mode. If ``flatten`` is ``False``, returns a list of lists, where each list contains the neighbors of the corresponding input pores. Notes ----- The ``logic`` options are applied to neighboring pores only, thus it is not possible to obtain pores that are part of the global set but not neighbors. This is because (a) the list of global pores might be very large, and (b) it is not possible to return a list of neighbors for each input pores if global pores are considered. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ps = pn.find_neighbor_pores(pores=[0, 2]) >>> print(Ps) [ 1 3 5 7 25 27] >>> Ps = pn.find_neighbor_pores(pores=[0, 1]) >>> print(Ps) [ 2 5 6 25 26] >>> Ps = pn.find_neighbor_pores(pores=[0, 1], mode='or', ... include_input=True) >>> print(Ps) [ 0 1 2 5 6 25 26] >>> Ps = pn.find_neighbor_pores(pores=[0, 2], flatten=False) >>> print(Ps[0]) [ 1 5 25] >>> print(Ps[1]) [ 1 3 7 27] >>> Ps = pn.find_neighbor_pores(pores=[0, 2], mode='xnor') >>> print(Ps) [1] >>> Ps = pn.find_neighbor_pores(pores=[0, 2], mode='xor') >>> print(Ps) [ 3 5 7 25 27] """ pores = self._parse_indices(pores) if np.size(pores) == 0: return np.array([], ndmin=1, dtype=int) neighbors = topotools.find_neighbor_sites(sites=pores, logic=mode, network=self, flatten=flatten, include_input=include_input) if asmask is False: return neighbors elif flatten is True: neighbors = self._tomask(element='pore', indices=neighbors) return neighbors else: raise Exception('Cannot create mask on an unflattened output')
Returns a list of pores that are direct neighbors to the given pore(s) Parameters ---------- pores : array_like Indices of the pores whose neighbors are sought flatten : bool If ``True`` (default) the returned result is a compressed array of all neighbors. If ``False``, a list of lists with each sub-list containing the neighbors for each input site. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy ``array``. include_input : bool If ``False`` (default) then the input pores are not included in the returned list(s). Note that since pores are not neighbors of themselves, the neighbors of pore N will not include N, even if this flag is ``True``. mode : str Specifies logic to filter the resulting list. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'or' All neighbors of the input pores. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input pore. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input pores. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input pores. Also accepts 'intersection' and 'all' =========== ===================================================== asmask : boolean If ``False`` (default), the returned result is a list of the neighboring pores as indices. If ``True``, the returned result is a boolean mask. (Useful for labelling) Returns ------- If ``flatten`` is ``True``, returns a 1D array of pore indices filtered according to the specified mode. If ``flatten`` is ``False``, returns a list of lists, where each list contains the neighbors of the corresponding input pores. Notes ----- The ``logic`` options are applied to neighboring pores only, thus it is not possible to obtain pores that are part of the global set but not neighbors. This is because (a) the list of global pores might be very large, and (b) it is not possible to return a list of neighbors for each input pores if global pores are considered. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ps = pn.find_neighbor_pores(pores=[0, 2]) >>> print(Ps) [ 1 3 5 7 25 27] >>> Ps = pn.find_neighbor_pores(pores=[0, 1]) >>> print(Ps) [ 2 5 6 25 26] >>> Ps = pn.find_neighbor_pores(pores=[0, 1], mode='or', ... include_input=True) >>> print(Ps) [ 0 1 2 5 6 25 26] >>> Ps = pn.find_neighbor_pores(pores=[0, 2], flatten=False) >>> print(Ps[0]) [ 1 5 25] >>> print(Ps[1]) [ 1 3 7 27] >>> Ps = pn.find_neighbor_pores(pores=[0, 2], mode='xnor') >>> print(Ps) [1] >>> Ps = pn.find_neighbor_pores(pores=[0, 2], mode='xor') >>> print(Ps) [ 3 5 7 25 27]
find_neighbor_pores
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def find_neighbor_throats(self, pores, mode='or', flatten=True, asmask=False): r""" Returns a list of throats neighboring the given pore(s) Parameters ---------- pores : array_like Indices of pores whose neighbors are sought flatten : bool, optional If ``True`` (default) a 1D array of unique throat indices is returned. If ``False`` the returned array contains arrays of neighboring throat indices for each input pore, in the order they were sent. mode : str Specifies logic to filter the resulting list. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'or' (default) All neighbors of the input throats. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input throats. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input throats. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input throats. Also accepts 'intersection' and 'all' =========== ===================================================== asmask : boolean If ``False`` (default), the returned result is a list of the neighboring throats as indices. If ``True``, the returned result is a boolean mask. (Useful for labelling) Returns ------- If ``flatten`` is ``True``, returns a 1D array of throat indices filtered according to the specified mode. If ``flatten`` is ``False``, returns a list of lists, where each list contains the neighbors of the corresponding input pores. Notes ----- The ``logic`` options are applied to neighboring bonds only, thus it is not possible to obtain bonds that are part of the global set but not neighbors. This is because (a) the list of global bonds might be very large, and (b) it is not possible to return a list of neighbors for each input site if global sites are considered. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ts = pn.find_neighbor_throats(pores=[0, 1]) >>> print(Ts) [ 0 1 100 101 200 201] >>> Ts = pn.find_neighbor_throats(pores=[0, 1], flatten=False) >>> print(Ts[0]) [ 0 100 200] >>> print(Ts[1]) [ 0 1 101 201] """ pores = self._parse_indices(pores) if np.size(pores) == 0: return np.array([], ndmin=1, dtype=int) if flatten is False: neighbors = topotools.find_neighbor_bonds(sites=pores, logic=mode, network=self, flatten=flatten) else: neighbors = topotools.find_neighbor_bonds(sites=pores, logic=mode, network=self, flatten=True) if asmask is False: return neighbors elif flatten is True: neighbors = self._tomask(element='throat', indices=neighbors) return neighbors else: raise Exception('Cannot create mask on an unflattened output')
Returns a list of throats neighboring the given pore(s) Parameters ---------- pores : array_like Indices of pores whose neighbors are sought flatten : bool, optional If ``True`` (default) a 1D array of unique throat indices is returned. If ``False`` the returned array contains arrays of neighboring throat indices for each input pore, in the order they were sent. mode : str Specifies logic to filter the resulting list. Options are: =========== ===================================================== mode meaning =========== ===================================================== 'or' (default) All neighbors of the input throats. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input throats. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input throats. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input throats. Also accepts 'intersection' and 'all' =========== ===================================================== asmask : boolean If ``False`` (default), the returned result is a list of the neighboring throats as indices. If ``True``, the returned result is a boolean mask. (Useful for labelling) Returns ------- If ``flatten`` is ``True``, returns a 1D array of throat indices filtered according to the specified mode. If ``flatten`` is ``False``, returns a list of lists, where each list contains the neighbors of the corresponding input pores. Notes ----- The ``logic`` options are applied to neighboring bonds only, thus it is not possible to obtain bonds that are part of the global set but not neighbors. This is because (a) the list of global bonds might be very large, and (b) it is not possible to return a list of neighbors for each input site if global sites are considered. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Ts = pn.find_neighbor_throats(pores=[0, 1]) >>> print(Ts) [ 0 1 100 101 200 201] >>> Ts = pn.find_neighbor_throats(pores=[0, 1], flatten=False) >>> print(Ts[0]) [ 0 100 200] >>> print(Ts[1]) [ 0 1 101 201]
find_neighbor_throats
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def num_neighbors(self, pores, mode='or', flatten=False): r""" Returns the number of neigbhoring pores for each given input pore Parameters ---------- pores : array_like Pores whose neighbors are to be counted flatten : bool, optional If ``False`` (default) the number of pores neighboring each input pore as an array the same length as ``pores``. If ``True`` the sum total number of is counted. mode : str The logic to apply to the returned count of pores: =========== ===================================================== mode meaning =========== ===================================================== 'or' (default) All neighbors of the input pores. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input pore. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input pores. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input pores. Also accepts 'intersection' and 'all' =========== ===================================================== Returns ------- If ``flatten`` is False, a 1D array with number of neighbors in each element, otherwise a scalar value of the number of neighbors. Notes ----- This method literally just counts the number of elements in the array returned by ``find_neighbor_pores`` using the same logic. Explore those methods if uncertain about the meaning of the ``mode`` argument here. See Also -------- find_neighbor_pores find_neighbor_throats Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Np = pn.num_neighbors(pores=[0, 1], flatten=False) >>> print(Np) [3 4] >>> Np = pn.num_neighbors(pores=[0, 2], flatten=True) >>> print(Np) 6 >>> Np = pn.num_neighbors(pores=[0, 2], mode='and', flatten=True) >>> print(Np) 1 """ pores = self._parse_indices(pores) if flatten: # Count number of neighbors num = self.find_neighbor_pores(pores, flatten=flatten, mode=mode, include_input=True) num = np.size(num) else: # Could be done much faster if flatten == False am = self.create_adjacency_matrix(fmt="csr") num = am[pores].sum(axis=1).A1 return num
Returns the number of neigbhoring pores for each given input pore Parameters ---------- pores : array_like Pores whose neighbors are to be counted flatten : bool, optional If ``False`` (default) the number of pores neighboring each input pore as an array the same length as ``pores``. If ``True`` the sum total number of is counted. mode : str The logic to apply to the returned count of pores: =========== ===================================================== mode meaning =========== ===================================================== 'or' (default) All neighbors of the input pores. Also accepts 'any' and 'union'. 'xor' Only neighbors of one and only one input pore. This is useful for counting the pores that are not shared by any of the input pores. Also accepts 'exclusive_or'. 'xnor' Neighbors that are shared by two or more input pores. This is equivalent to counting all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'and' Only neighbors shared by all input pores. Also accepts 'intersection' and 'all' =========== ===================================================== Returns ------- If ``flatten`` is False, a 1D array with number of neighbors in each element, otherwise a scalar value of the number of neighbors. Notes ----- This method literally just counts the number of elements in the array returned by ``find_neighbor_pores`` using the same logic. Explore those methods if uncertain about the meaning of the ``mode`` argument here. See Also -------- find_neighbor_pores find_neighbor_throats Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> Np = pn.num_neighbors(pores=[0, 1], flatten=False) >>> print(Np) [3 4] >>> Np = pn.num_neighbors(pores=[0, 2], flatten=True) >>> print(Np) 6 >>> Np = pn.num_neighbors(pores=[0, 2], mode='and', flatten=True) >>> print(Np) 1
num_neighbors
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def find_nearby_pores(self, pores, r, flatten=False, include_input=False): r""" Find all pores within a given radial distance of the input pore(s) regardless of whether or not they are toplogically connected. Parameters ---------- pores : array_like The list of pores for whom nearby neighbors are to be found r : scalar The maximum radius within which the search should be performed include_input : bool Controls whether the input pores should be included in the list of pores nearby the *other pores* in the input list. So if ``pores=[1, 2]`` and 1 and 2 are within ``r`` of each other, then 1 will be included in the returned for pores near 2, and vice-versa *if* this argument is ``True``. The default is ``False``. flatten : bool If ``True`` returns a single list of all pores that match the criteria, otherwise returns an array containing a sub-array for each input pore, where each sub-array contains the pores that are nearby to each given input pore. The default is False. Returns ------- A list of pores which are within the given spatial distance. If a list of N pores is supplied, then a an N-long list of such lists is returned. The returned lists each contain the pore for which the neighbors were sought. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[3, 3, 3]) >>> Ps = pn.find_nearby_pores(pores=[0, 1], r=1) >>> print(Ps[0]) [3 9] >>> print(Ps[1]) [ 2 4 10] >>> Ps = pn.find_nearby_pores(pores=[0, 1], r=0.5) >>> print(Ps) [array([], dtype=int64), array([], dtype=int64)] >>> Ps = pn.find_nearby_pores(pores=[0, 1], r=1, flatten=True) >>> print(Ps) [ 2 3 4 9 10] """ pores = self._parse_indices(pores) # Handle an empty array if given if np.size(pores) == 0: return np.array([], dtype=np.int64) if r <= 0: raise Exception('Provided distances should be greater than 0') # Create kdTree objects kd = sptl.cKDTree(self['pore.coords']) kd_pores = sptl.cKDTree(self['pore.coords'][pores]) # Perform search Ps_within_r = kd_pores.query_ball_tree(kd, r=r) # Remove self from each list for i, P in enumerate(Ps_within_r): Ps_within_r[i].remove(pores[i]) # Convert to flattened list by default temp = np.concatenate((Ps_within_r)) Pn = np.unique(temp).astype(np.int64) # Remove inputs if necessary if include_input is False: Pn = Pn[~np.in1d(Pn, pores)] # Convert list of lists to a list of ndarrays if flatten is False: if len(Pn) == 0: # Deal with no nearby neighbors Pn = [np.array([], dtype=np.int64) for i in pores] else: mask = np.zeros(shape=np.amax((Pn.max(), pores.max())) + 1, dtype=bool) mask[Pn] = True temp = [] for item in Ps_within_r: temp.append(np.array(item, dtype=np.int64)[mask[item]]) Pn = temp return Pn
Find all pores within a given radial distance of the input pore(s) regardless of whether or not they are toplogically connected. Parameters ---------- pores : array_like The list of pores for whom nearby neighbors are to be found r : scalar The maximum radius within which the search should be performed include_input : bool Controls whether the input pores should be included in the list of pores nearby the *other pores* in the input list. So if ``pores=[1, 2]`` and 1 and 2 are within ``r`` of each other, then 1 will be included in the returned for pores near 2, and vice-versa *if* this argument is ``True``. The default is ``False``. flatten : bool If ``True`` returns a single list of all pores that match the criteria, otherwise returns an array containing a sub-array for each input pore, where each sub-array contains the pores that are nearby to each given input pore. The default is False. Returns ------- A list of pores which are within the given spatial distance. If a list of N pores is supplied, then a an N-long list of such lists is returned. The returned lists each contain the pore for which the neighbors were sought. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[3, 3, 3]) >>> Ps = pn.find_nearby_pores(pores=[0, 1], r=1) >>> print(Ps[0]) [3 9] >>> print(Ps[1]) [ 2 4 10] >>> Ps = pn.find_nearby_pores(pores=[0, 1], r=0.5) >>> print(Ps) [array([], dtype=int64), array([], dtype=int64)] >>> Ps = pn.find_nearby_pores(pores=[0, 1], r=1, flatten=True) >>> print(Ps) [ 2 3 4 9 10]
find_nearby_pores
python
PMEAL/OpenPNM
openpnm/network/_network.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/network/_network.py
MIT
def get_comp_vals(self, propname): r""" Get a dictionary of the requested values from each component in the mixture Parameters ---------- propname : str The property to fetch, such as ``'pore.viscosity'``. Returns ------- vals : dict A dictionary with each component name as the key and the requested property as the value. """ if not isinstance(propname, str): return propname if propname.endswith('*'): try: return self[propname] except KeyError: pass try: vals = {} for comp in self.components.values(): vals[comp.name] = comp[propname] return vals except KeyError: msg = f'{propname} not found on at least one component' raise Exception(msg)
Get a dictionary of the requested values from each component in the mixture Parameters ---------- propname : str The property to fetch, such as ``'pore.viscosity'``. Returns ------- vals : dict A dictionary with each component name as the key and the requested property as the value.
get_comp_vals
python
PMEAL/OpenPNM
openpnm/phase/_mixture.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/phase/_mixture.py
MIT
def get_mix_vals(self, propname, mode='linear', power=1): r""" Get the mole fraction weighted value of a given property for the mixture Parameters ---------- propname : str The property to fetch, such as ``'pore.viscosity'``. mode : str The type of weighting to use. Options are: ============== ==================================================== mode ============== ==================================================== 'linear' (default) Basic mole fraction weighting of the form: :math:`z = \Sigma (x_i \cdot \z_i)` 'logarithmic' Uses the natural logarithm of the property as: :math:`ln(z) = \Sigma (x_i \cdot ln(\z_i))` 'power Applies an exponent to the property as: :math:`\z^{power} = \Sigma (x_i \cdot \z_i^{power})` ============== ==================================================== power : scalar If ``mode='power'`` this indicates the value of the exponent, otherwise this is ignored. Returns ------- vals : ndarray An ndarray with the requested values obtained using the specified weigthing. """ Xs = self['pore.mole_fraction'] ys = self.get_comp_vals(propname) if mode == 'linear': z = np.vstack([Xs[k]*ys[k] for k in Xs.keys()]).sum(axis=0) elif mode == 'logarithmic': z = np.vstack([Xs[k]*np.log(ys[k]) for k in Xs.keys()]).sum(axis=0) z = np.exp(z) elif mode == 'power': z = np.vstack([Xs[k]*(ys[k])**power for k in Xs.keys()]).sum(axis=0) z = z**(1/power) return z
Get the mole fraction weighted value of a given property for the mixture Parameters ---------- propname : str The property to fetch, such as ``'pore.viscosity'``. mode : str The type of weighting to use. Options are: ============== ==================================================== mode ============== ==================================================== 'linear' (default) Basic mole fraction weighting of the form: :math:`z = \Sigma (x_i \cdot \z_i)` 'logarithmic' Uses the natural logarithm of the property as: :math:`ln(z) = \Sigma (x_i \cdot ln(\z_i))` 'power Applies an exponent to the property as: :math:`\z^{power} = \Sigma (x_i \cdot \z_i^{power})` ============== ==================================================== power : scalar If ``mode='power'`` this indicates the value of the exponent, otherwise this is ignored. Returns ------- vals : ndarray An ndarray with the requested values obtained using the specified weigthing.
get_mix_vals
python
PMEAL/OpenPNM
openpnm/phase/_mixture.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/phase/_mixture.py
MIT
def remove_comp(self, component): r""" Helper method to remove a component from the mixture Parameters ---------- component : Species object or str name The `Species` to remove from the mixture. Can either be a handle to the object, or the object's `name`. Notes ----- This method just calls `del mixture['pore.mole_fraction.<component.name>']` to remove the given component. """ if hasattr(component, 'name'): component = component.name try: del self['pore.mole_fraction.' + component] except KeyError: pass
Helper method to remove a component from the mixture Parameters ---------- component : Species object or str name The `Species` to remove from the mixture. Can either be a handle to the object, or the object's `name`. Notes ----- This method just calls `del mixture['pore.mole_fraction.<component.name>']` to remove the given component.
remove_comp
python
PMEAL/OpenPNM
openpnm/phase/_mixture.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/phase/_mixture.py
MIT
def check_mixture_health(self): r""" Checks the state of health of the mixture Calculates the mole fraction of all species in each pore and returns an list of where values are too low or too high, Returns ------- health : dict A HealthDict object containing lists of locations where the mole fractions are not unity. One value indicates locations that are too high, and another where they are too low. This `dict` evaluates to `True` if all items are healthy. """ h = HealthDict() h['mole_fraction_too_low'] = [] h['mole_fraction_too_high'] = [] conc = mole_summation(phase=self) lo = np.where(conc < 1.0)[0] hi = np.where(conc > 1.0)[0] if len(lo) > 0: h['mole_fraction_too_low'] = lo if len(hi) > 0: h['mole_fraction_too_high'] = hi return h
Checks the state of health of the mixture Calculates the mole fraction of all species in each pore and returns an list of where values are too low or too high, Returns ------- health : dict A HealthDict object containing lists of locations where the mole fractions are not unity. One value indicates locations that are too high, and another where they are too low. This `dict` evaluates to `True` if all items are healthy.
check_mixture_health
python
PMEAL/OpenPNM
openpnm/phase/_mixture.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/phase/_mixture.py
MIT
def x(self, compname=None, x=None): r""" Helper method for getting and setting mole fractions of a component Parameters ---------- compname : str, optional The name of the component, i.e. ``obj.name``. If ``x`` is not provided this will *return* the mole fraction of the requested component. If ``x`` is provided this will *set* the mole fraction of the specified component to ``x``. x : scalar or ndarray, optional The mole fraction of the given species in the mixture. If not provided this method works as a *getter* and will return the mole fraction of the requested component. If ``compname`` is not provided then the mole fractions of all components will be returned as a dictionary with the components names as keys. Notes ----- This method is equivalent to ``mixture['pore.mole_fraction.<compname>'] = x`` """ if hasattr(compname, 'name'): compname = compname.name if x is None: if compname is None: return self['pore.mole_fraction'] else: self['pore.mole_fraction' + '.' + compname] else: self['pore.mole_fraction.' + compname] = x
Helper method for getting and setting mole fractions of a component Parameters ---------- compname : str, optional The name of the component, i.e. ``obj.name``. If ``x`` is not provided this will *return* the mole fraction of the requested component. If ``x`` is provided this will *set* the mole fraction of the specified component to ``x``. x : scalar or ndarray, optional The mole fraction of the given species in the mixture. If not provided this method works as a *getter* and will return the mole fraction of the requested component. If ``compname`` is not provided then the mole fractions of all components will be returned as a dictionary with the components names as keys. Notes ----- This method is equivalent to ``mixture['pore.mole_fraction.<compname>'] = x``
x
python
PMEAL/OpenPNM
openpnm/phase/_mixture.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/phase/_mixture.py
MIT
def y(self, compname=None, y=None): r""" Helper method for getting and setting mole fractions of a component Parameters ---------- compname : str, optional The name of the component i.e. ``obj.name``. If ``y`` is not provided this will *return* the mole fraction of the requested component. If ``y`` is provided this will *set* the mole fraction of the specified component to ``y``. y : scalar or ndarray, optional The mole fraction of the given species in the mixture. If not provided this method works as a *getter* and will return the mole fraction of the requested component. If ``compname`` is also not provided then the mole fractions of all components will be returned as a dictionary with the components names as keys. Notes ----- This method is equivalent to ``mixture['pore.mole_fraction.<compname>'] = y`` """ if hasattr(compname, 'name'): compname = compname.name if y is None: if compname is None: return self['pore.mole_fraction'] else: return self['pore.mole_fraction' + '.' + compname] else: self['pore.mole_fraction.' + compname] = y
Helper method for getting and setting mole fractions of a component Parameters ---------- compname : str, optional The name of the component i.e. ``obj.name``. If ``y`` is not provided this will *return* the mole fraction of the requested component. If ``y`` is provided this will *set* the mole fraction of the specified component to ``y``. y : scalar or ndarray, optional The mole fraction of the given species in the mixture. If not provided this method works as a *getter* and will return the mole fraction of the requested component. If ``compname`` is also not provided then the mole fractions of all components will be returned as a dictionary with the components names as keys. Notes ----- This method is equivalent to ``mixture['pore.mole_fraction.<compname>'] = y``
y
python
PMEAL/OpenPNM
openpnm/phase/_mixture.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/phase/_mixture.py
MIT
def _get_rtol(self, A, b, x0): r""" Returns the relative tolerance ``rtol`` that corresponds to the the given tolerance ``tol``. Notes ----- ``rtol`` is defined based on the following formula: ``rtol = residual(@x_final) / residual(@x0)`` """ res0 = self._get_residual(A, b, x0) atol = self._get_atol(b) rtol = atol / res0 return rtol
Returns the relative tolerance ``rtol`` that corresponds to the the given tolerance ``tol``. Notes ----- ``rtol`` is defined based on the following formula: ``rtol = residual(@x_final) / residual(@x0)``
_get_rtol
python
PMEAL/OpenPNM
openpnm/solvers/_base.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_base.py
MIT
def solve(self, A, b, **kwargs): """Solves the given linear system of equations Ax=b.""" from pypardiso import spsolve if not isinstance(A, (csr_matrix, csc_matrix)): A = A.tocsr() return (spsolve(A, b), 0)
Solves the given linear system of equations Ax=b.
solve
python
PMEAL/OpenPNM
openpnm/solvers/_pardiso.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_pardiso.py
MIT
def _create_solver(self): r""" This method creates the petsc sparse linear solver. """ # https://petsc.org/release/docs/manualpages/KSP/KSPType.html iterative = [ 'richardson', 'chebyshev', 'cg', 'groppcg', 'pipecg', 'pipecgrr', 'cgne', 'nash', 'stcg', 'gltr', 'fcg', 'pipefcg', 'gmres', 'pipefgmres', 'fgmres', 'lgmres', 'dgmres', 'pgmres', 'tcqmr', 'bcgs', 'ibcgs', 'fbcgs', 'fbcgsr', 'bcgsl', 'pipebcgs', 'cgs', 'tfqmr', 'cr', 'pipecr', 'lsqr', 'preonly', 'qcg', 'bicg', 'minres', 'symmlq', 'lcd', 'python', 'gcr', 'pipegcr', 'tsirm', 'cgls', 'fetidp'] # https://petsc.org/release/docs/manualpages/PC/PCType.html preconditioners = [ 'none', 'jacobi', 'sor', 'lu', 'shell', 'bjacobi', 'mg', 'eisenstat', 'ilu', 'icc', 'asm', 'gasm', 'ksp', 'composite', 'redundant', 'spai', 'nn', 'cholesky', 'pbjacobi', 'mat', 'hypre', 'parms', 'fieldsplit', 'tfs', 'ml', 'galerkin', 'exotic', 'cp', 'bfbt', 'lsc', 'python', 'pfmg', 'syspfmg', 'redistribute', 'svd', 'gamg', 'sacusp', 'sacusppoly', 'bicgstabcusp', 'ainvcusp', 'chowiluviennacl', 'rowscalingviennacl', 'saviennacl', 'bddc', 'kaczmarz', 'telescope'] direct_lu = ['mumps', 'superlu_dist', 'umfpack', 'klu'] direct_cholesky = ['mumps', 'cholmod'] valid_solvers = iterative + direct_lu + direct_cholesky solver = self.solver_type preconditioner = self.preconditioner if solver not in valid_solvers: raise Exception(f"{solver} solver not availabe, choose another solver") if preconditioner not in preconditioners: raise Exception(f"{preconditioner} not found, choose another preconditioner") self.ksp = PETSc.KSP() self.ksp.create(PETSc.COMM_WORLD) if solver in direct_lu: self.ksp.getPC().setType('lu') self.ksp.getPC().setFactorSolverType(solver) self.ksp.setType('preonly') elif solver in direct_cholesky: self.ksp.getPC().setType('cholesky') self.ksp.getPC().setFactorSolverType(solver) self.ksp.setType('preonly') elif solver in preconditioners: self.ksp.getPC().setType(solver) self.ksp.setType('preonly') elif solver in iterative: self.ksp.getPC().setType(preconditioner) self.ksp.setType(solver)
This method creates the petsc sparse linear solver.
_create_solver
python
PMEAL/OpenPNM
openpnm/solvers/_petsc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_petsc.py
MIT
def _set_tolerances(self, atol=None, rtol=None, maxiter=None): r""" Set absolute and relative tolerances, and maximum number of iterations. """ atol = self.atol if atol is None else atol rtol = self.rtol if rtol is None else rtol maxiter = self.maxiter if maxiter is None else maxiter # BUG: PETSc misses rtol requirement by ~10-20X -> Report to petsc4py self.ksp.setTolerances(atol=None, rtol=rtol/50, max_it=maxiter)
Set absolute and relative tolerances, and maximum number of iterations.
_set_tolerances
python
PMEAL/OpenPNM
openpnm/solvers/_petsc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_petsc.py
MIT
def _assemble_A(self): r""" This method creates the petsc sparse coefficients matrix from the OpenPNM scipy one. The method also equally decomposes the matrix at certain rows into different blocks (each block contains all the columns) and distributes them over the pre-assigned cores for parallel computing. The method can be used in serial. """ # Create a petsc sparse matrix self.petsc_A = PETSc.Mat() self.petsc_A.create(PETSc.COMM_WORLD) self.petsc_A.setSizes([self.m, self.n]) self.petsc_A.setType('aij') # sparse self.petsc_A.setUp() # Loop over owned block of rows on this processor # and insert entry values (for parallel computing). self.Istart, self.Iend = self.petsc_A.getOwnershipRange() # Assign values to the coefficients matrix from the scipy sparse csr size_tmp = self.A.shape # Row indices csr1 = self.A.indptr[self.Istart:self.Iend+1] - self.A.indptr[self.Istart] ind1 = self.A.indptr[self.Istart] ind2 = self.A.indptr[self.Iend] csr2 = self.A.indices[ind1:ind2] # column indices csr3 = self.A.data[ind1:ind2] # data self.petsc_A = PETSc.Mat().createAIJ(size=size_tmp, csr=(csr1, csr2, csr3)) # Communicate off-processor values and setup internal data structures # for performing parallel operations self.petsc_A.assemblyBegin() self.petsc_A.assemblyEnd()
This method creates the petsc sparse coefficients matrix from the OpenPNM scipy one. The method also equally decomposes the matrix at certain rows into different blocks (each block contains all the columns) and distributes them over the pre-assigned cores for parallel computing. The method can be used in serial.
_assemble_A
python
PMEAL/OpenPNM
openpnm/solvers/_petsc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_petsc.py
MIT
def _assemble_b_and_x(self): r""" Initialize the solution vector (self.petsc_x), which is a dense matrix (1D vector) and defines the rhs vector (self.petsc_b) from the existing data. """ # Get vector(s) compatible with the matrix (same parallel layout) # passing same communicator as the A matrix # Global solution vector (all the local solutions will return to it) self.petsc_s = PETSc.Vec() self.petsc_s.create(PETSc.COMM_WORLD) self.petsc_s.setSizes(self.m) self.petsc_s.setFromOptions() self.Istart, self.Iend = self.petsc_s.getOwnershipRange() self.petsc_x = (self.petsc_s).duplicate() self.petsc_b = (self.petsc_s).duplicate() # Set the solution vector to zeros or the given initial guess (if any) PETSc.Vec.setArray(self.petsc_x, self.x0[self.Istart: self.Iend]) # Define the petsc rhs vector from the numpy one PETSc.Vec.setArray(self.petsc_b, self.b[self.Istart: self.Iend])
Initialize the solution vector (self.petsc_x), which is a dense matrix (1D vector) and defines the rhs vector (self.petsc_b) from the existing data.
_assemble_b_and_x
python
PMEAL/OpenPNM
openpnm/solvers/_petsc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_petsc.py
MIT
def solve(self, A, b, x0=None, solver_type='cg', precondioner='jacobi', maxiter=None, atol=None, rtol=None): r""" Solves and returns the solution to the linear system, Ax = b. This method converts the solution vector from a PETSc.Vec instance to a numpy array, and finally destroys all the PETSc objects to free memory. Parameters ---------- A : csr_matrix Coefficients matrix in Ax = b b : ndarray Right-hand-side vector in Ax = b solver_type : str, optional Default is the iterative solver 'cg' based on the Conjugate Gradient method. preconditioner: str, optional Default is the 'jacobi' preconditioner, i.e., diagonal scaling preconditioning. The preconditioner is used with iterative solvers. When a direct solver is used, this parameter is ignored. factorization_type : str, optional The factorization type used with the direct solver. Default is 'lu'. This parameter is ignored when an iterative solver is used. Returns ------- ndarray The solution to Ax = b Notes ----- Certain combinations of iterative solvers and precondioners or direct solvers and factorization types are not supported. The summary table of the different possibilities can be found `here <https://petsc.org/main/overview/linear_solve_table>`_ """ self.b = b self.A = sp.sparse.csr_matrix(A) self.m, self.n = self.A.shape self.x0 = np.zeros_like(self.b) if x0 is None else x0 self.solver_type = solver_type self.preconditioner = precondioner self.atol = self._get_atol(self.b) self.rtol = self._get_rtol(self.x0) self._assemble_b_and_x() self._assemble_A() self._create_solver() self._set_tolerances(atol=atol, rtol=rtol, maxiter=maxiter) self.ksp.setOperators(self.petsc_A) self.ksp.setFromOptions() # Solve the linear system self.ksp.solve(self.petsc_b, self.petsc_x) # Gather the solution to all processors gather_to_0, self.petsc_s = PETSc.Scatter().toAll(self.petsc_x) gather_to_0.scatter(self.petsc_x, self.petsc_s, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD) # Convert solution vector from PETSc.Vec instance to a numpy array self.solution = PETSc.Vec.getArray(self.petsc_s) # Destroy petsc solver, coefficients matrix, rhs, and solution vectors PETSc.KSP.destroy(self.ksp) PETSc.Mat.destroy(self.petsc_A) PETSc.Vec.destroy(self.petsc_b) PETSc.Vec.destroy(self.petsc_x) PETSc.Vec.destroy(self.petsc_s) # FIXME: fetch exit_code somehow from petsc exit_code = 0 return self.solution, exit_code
Solves and returns the solution to the linear system, Ax = b. This method converts the solution vector from a PETSc.Vec instance to a numpy array, and finally destroys all the PETSc objects to free memory. Parameters ---------- A : csr_matrix Coefficients matrix in Ax = b b : ndarray Right-hand-side vector in Ax = b solver_type : str, optional Default is the iterative solver 'cg' based on the Conjugate Gradient method. preconditioner: str, optional Default is the 'jacobi' preconditioner, i.e., diagonal scaling preconditioning. The preconditioner is used with iterative solvers. When a direct solver is used, this parameter is ignored. factorization_type : str, optional The factorization type used with the direct solver. Default is 'lu'. This parameter is ignored when an iterative solver is used. Returns ------- ndarray The solution to Ax = b Notes ----- Certain combinations of iterative solvers and precondioners or direct solvers and factorization types are not supported. The summary table of the different possibilities can be found `here <https://petsc.org/main/overview/linear_solve_table>`_
solve
python
PMEAL/OpenPNM
openpnm/solvers/_petsc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_petsc.py
MIT
def solve(self, A, b, **kwargs): """Solves the given linear system of equations Ax=b.""" if not isinstance(A, (csr_matrix, csc_matrix)): A = A.tocsr() return (spsolve(A, b), 0)
Solves the given linear system of equations Ax=b.
solve
python
PMEAL/OpenPNM
openpnm/solvers/_scipy.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_scipy.py
MIT
def solve(self, A, b, **kwargs): """Solves the given linear system of equations Ax=b.""" if not isinstance(A, (csr_matrix, csc_matrix)): A = A.tocsr() atol = self._get_atol(b) try: return cg(A, b, tol=self.tol, atol=atol, **kwargs) except TypeError: return cg(A, b, rtol=self.tol, atol=atol, **kwargs)
Solves the given linear system of equations Ax=b.
solve
python
PMEAL/OpenPNM
openpnm/solvers/_scipy.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/solvers/_scipy.py
MIT
def find_isolated_clusters(network, mask, inlets): r""" Identifies pores and throats that are invaded but not connected to the inlets Parameters ---------- network : dict The OpenPNM Network mask : ndarray A boolean mask of either Nt or Np length with ``True`` values indicating invaded bonds or sites. If this array is Nt-long then then bond percolation is used to identify clusters, whereas site percolation is used if it is Np-long. inlets : ndarray A array containing indices of the pores which define the inlets. Any clusters not connected to these sites are considered isolated. Returns ------- sites : ndarray An ndarray containing the indices of invaded pores which are not connected to the given ``inlets``. """ labels = find_clusters(network=network, mask=mask) isolated = np.in1d(labels.pore_labels, labels.pore_labels[inlets], invert=True) isolated = np.where(isolated)[0] return isolated
Identifies pores and throats that are invaded but not connected to the inlets Parameters ---------- network : dict The OpenPNM Network mask : ndarray A boolean mask of either Nt or Np length with ``True`` values indicating invaded bonds or sites. If this array is Nt-long then then bond percolation is used to identify clusters, whereas site percolation is used if it is Np-long. inlets : ndarray A array containing indices of the pores which define the inlets. Any clusters not connected to these sites are considered isolated. Returns ------- sites : ndarray An ndarray containing the indices of invaded pores which are not connected to the given ``inlets``.
find_isolated_clusters
python
PMEAL/OpenPNM
openpnm/topotools/_perctools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_perctools.py
MIT
def find_clusters(network, mask=[]): r""" Identify connected clusters of pores and throats in the network. Either site and bond percolation can be considered, see description of ``mask`` argument for details. Parameters ---------- network : Network The network mask : array_like, boolean A list of open bonds or sites (throats or pores). If the mask is Np-long, then the method will perform a site percolation to identify clusters, and if the mask is Nt-long bond percolation will be performed. Returns ------- p_labels, t_labels : tuple of ndarrays A tuple containing an Np-long array of pore cluster labels, and an Nt-long array of throat cluster labels. The label numbers correspond such that pores and throats with the same label are part of the same cluster. Uninvaded locations are set to -1. """ # Parse the input arguments mask = np.array(mask, ndmin=1) if mask.dtype != bool: raise Exception('Mask must be a boolean array of Np or Nt length') # If pore mask was given perform site percolation if np.size(mask) == network.Np: (p_clusters, t_clusters) = \ simulations.site_percolation(network.conns, mask) # If pore mask was given perform bond percolation elif np.size(mask) == network.Nt: (p_clusters, t_clusters) = \ simulations.bond_percolation(network.conns, mask) else: raise Exception('Mask received was neither Nt nor Np long') result = namedtuple('result', ('pore_labels', 'throat_labels')) result.pore_labels = p_clusters result.throat_labels = t_clusters return result
Identify connected clusters of pores and throats in the network. Either site and bond percolation can be considered, see description of ``mask`` argument for details. Parameters ---------- network : Network The network mask : array_like, boolean A list of open bonds or sites (throats or pores). If the mask is Np-long, then the method will perform a site percolation to identify clusters, and if the mask is Nt-long bond percolation will be performed. Returns ------- p_labels, t_labels : tuple of ndarrays A tuple containing an Np-long array of pore cluster labels, and an Nt-long array of throat cluster labels. The label numbers correspond such that pores and throats with the same label are part of the same cluster. Uninvaded locations are set to -1.
find_clusters
python
PMEAL/OpenPNM
openpnm/topotools/_perctools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_perctools.py
MIT
def trim(network, pores=[], throats=[]): """ Remove pores or throats from the network Parameters ---------- network : Network The Network from which pores or throats should be removed pores (or throats) : array_like The indices of the of the pores or throats to be removed from the network. """ pores = network._parse_indices(pores) throats = network._parse_indices(throats) Pkeep = np.copy(network['pore.all']) Tkeep = np.copy(network['throat.all']) if np.size(pores) > 0: Pkeep[pores] = False if not np.any(Pkeep): raise Exception('Cannot delete ALL pores') # # Performing customized find_neighbor_throats which is much faster, # # but not general for other types of queries # temp = np.in1d(network['throat.conns'].flatten(), pores) # temp = np.reshape(temp, (network.Nt, 2)) # Ts = np.any(temp, axis=1) # Ts = network.Ts[Ts] Ts = network.find_neighbor_throats(pores=~Pkeep, mode='union') if len(Ts) > 0: Tkeep[Ts] = False if np.size(throats) > 0: Tkeep[throats] = False # The following IF catches the special case of deleting ALL throats # It removes all throat props, adds 'all', and skips rest of function if not np.any(Tkeep): logger.info('Removing ALL throats from network') for item in list(network.keys()): if item.split('.', 1)[0] == 'throat': del network[item] network['throat.all'] = np.array([], ndmin=1) return # Temporarily store throat conns and pore map for processing later Np_old = network.Np Nt_old = network.Nt Pkeep_inds = np.where(Pkeep)[0] Tkeep_inds = np.where(Tkeep)[0] Pmap = np.ones((network.Np,), dtype=int)*-1 tpore1 = network['throat.conns'][:, 0] tpore2 = network['throat.conns'][:, 1] # Delete specified pores and throats from all objects for obj in network.project: if (obj.Np == Np_old) and (obj.Nt == Nt_old): Ps = Pkeep_inds Ts = Tkeep_inds for key in list(obj.keys()): temp = obj.pop(key) if key.split('.', 1)[0] == 'throat': obj.update({key: temp[Ts]}) if key.split('.', 1)[0] == 'pore': obj.update({key: temp[Ps]}) # Remap throat connections Pmap[Pkeep] = np.arange(0, np.sum(Pkeep)) Tnew1 = Pmap[tpore1[Tkeep]] Tnew2 = Pmap[tpore2[Tkeep]] network.update({'throat.conns': np.vstack((Tnew1, Tnew2)).T}) # Clear adjacency and incidence matrices which will be out of date now network._am.clear() network._im.clear()
Remove pores or throats from the network Parameters ---------- network : Network The Network from which pores or throats should be removed pores (or throats) : array_like The indices of the of the pores or throats to be removed from the network.
trim
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def extend(network, coords=[], conns=[], labels=[], **kwargs): r""" Add pores or throats to the network from a list of coords or conns. Parameters ---------- network : Network The network to which pores or throats should be added coords : array_like The coordinates of the pores to add. These will be appended to the 'pore.coords' array so should be of shape N-by-3, where N is the number of pores in the list. conns : array_like The throat connections to add. These will be appended to the 'throat.conns' array so should be of shape N-by-2. Note that the numbering must point to existing pores. labels : str, or list[str], optional A list of labels to apply to the new pores and throats """ if 'throat_conns' in kwargs.keys(): conns = kwargs['throat_conns'] if 'pore_coords' in kwargs.keys(): coords = kwargs['pore_coords'] coords = np.array(coords) conns = np.array(conns) Np_old = network.num_pores() Nt_old = network.num_throats() Np = Np_old + coords.shape[0] Nt = Nt_old + conns.shape[0] if np.any(conns > Np): raise Exception('Some throat conns point to non-existent pores') network.update({'pore.all': np.ones([Np, ], dtype=bool), 'throat.all': np.ones([Nt, ], dtype=bool)}) # Add coords and conns if np.size(coords) > 0: coords = np.vstack((network['pore.coords'], coords)) network['pore.coords'] = coords if np.size(conns) > 0: conns = np.vstack((network['throat.conns'], conns)) network['throat.conns'] = conns # Increase size of any prop or label arrays already on network and phases objs = list(network.project.phases) objs.append(network) for obj in objs: obj.update({'pore.all': np.ones([Np, ], dtype=bool), 'throat.all': np.ones([Nt, ], dtype=bool)}) for item in list(obj.keys()): N = obj._count(element=item.split('.', 1)[0]) if obj[item].shape[0] < N: arr = obj.pop(item) s = arr.shape if arr.dtype == bool: obj[item] = np.zeros(shape=(N, *s[1:]), dtype=bool) else: obj[item] = np.ones(shape=(N, *s[1:]), dtype=float)*np.nan obj[item][:arr.shape[0]] = arr # Regenerate models on all objects to fill new elements for obj in network.project.phases: if hasattr(obj, 'models'): obj.regenerate_models() # Apply labels, if supplied if labels != []: # Convert labels to list if necessary if isinstance(labels, str): labels = [labels] for label in labels: # Remove pore or throat from label, if present label = label.split('.', 1)[-1] if np.size(coords) > 0: Ps = np.r_[Np_old:Np] if 'pore.'+label not in network.labels(): network['pore.'+label] = False network['pore.'+label][Ps] = True if np.size(conns) > 0: Ts = np.r_[Nt_old:Nt] if 'throat.'+label not in network.labels(): network['throat.'+label] = False network['throat.'+label][Ts] = True # Clear adjacency and incidence matrices which will be out of date now network._am.clear() network._im.clear()
Add pores or throats to the network from a list of coords or conns. Parameters ---------- network : Network The network to which pores or throats should be added coords : array_like The coordinates of the pores to add. These will be appended to the 'pore.coords' array so should be of shape N-by-3, where N is the number of pores in the list. conns : array_like The throat connections to add. These will be appended to the 'throat.conns' array so should be of shape N-by-2. Note that the numbering must point to existing pores. labels : str, or list[str], optional A list of labels to apply to the new pores and throats
extend
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def label_faces(network, tol=0.0, label='surface'): r""" Finds pores on the surface of the network and labels them according to whether they are on the *top*, *bottom*, etc. This function assumes the network is cubic in shape Parameters ---------- network : Network The network to apply the labels tol : scalar The tolerance for defining what counts as a surface pore, which is specifically meant for random networks. All pores with ``tol`` of the maximum or minimum along each axis are counts as pores. The default is 0. label : str An identifying label to isolate the pores on the faces of the network. The default is 'surface'. Surface pores can be found using ``find_surface_pores``. """ if label is not None: label = label.split('.', 1)[-1] if 'pore.'+label not in network.labels(): find_surface_pores(network, label=label) Psurf = network['pore.'+label] else: Psurf = True # So it will "do nothing" below crds = network['pore.coords'] xmin, xmax = np.amin(crds[:, 0]), np.amax(crds[:, 0]) xspan = xmax - xmin ymin, ymax = np.amin(crds[:, 1]), np.amax(crds[:, 1]) yspan = ymax - ymin zmin, zmax = np.amin(crds[:, 2]), np.amax(crds[:, 2]) zspan = zmax - zmin dims = dimensionality(network) if dims[0]: network['pore.left'] = (crds[:, 0] <= (xmin + tol*xspan)) * Psurf network['pore.xmin'] = np.copy(network['pore.left']) network['pore.right'] = (crds[:, 0] >= (xmax - tol*xspan)) * Psurf network['pore.xmax'] = np.copy(network['pore.right']) if dims[1]: network['pore.front'] = (crds[:, 1] <= (ymin + tol*yspan)) * Psurf network['pore.ymin'] = np.copy(network['pore.front']) network['pore.back'] = (crds[:, 1] >= (ymax - tol*yspan)) * Psurf network['pore.ymax'] = np.copy(network['pore.back']) if dims[2]: network['pore.bottom'] = (crds[:, 2] <= (zmin + tol*zspan)) * Psurf network['pore.zmin'] = np.copy(network['pore.bottom']) network['pore.top'] = (crds[:, 2] >= (zmax - tol*zspan)) * Psurf network['pore.zmax'] = np.copy(network['pore.top'])
Finds pores on the surface of the network and labels them according to whether they are on the *top*, *bottom*, etc. This function assumes the network is cubic in shape Parameters ---------- network : Network The network to apply the labels tol : scalar The tolerance for defining what counts as a surface pore, which is specifically meant for random networks. All pores with ``tol`` of the maximum or minimum along each axis are counts as pores. The default is 0. label : str An identifying label to isolate the pores on the faces of the network. The default is 'surface'. Surface pores can be found using ``find_surface_pores``.
label_faces
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def find_surface_pores(network, markers=None, label='surface'): r""" Find the pores on the surface of the domain by performing a Delaunay triangulation between the network pores and some external ``markers``. All pores connected to these external marker points are considered surface pores. Parameters ---------- network: Network The network for which the surface pores are to be found markers: array_like 3 x N array of the marker coordinates to use in the triangulation. The labeling is performed in one step, so all points are added, and then any pores connected to at least one marker is given the provided label. By default, this function will automatically generate 6 points outside each axis of the network domain. Users may wish to specify a single external marker point and provide an appropriate label in order to identify specific faces. For instance, the marker may be *above* the domain, and the label might be 'top_surface'. label : str The label to apply to the pores. The default is 'surface'. Notes ----- This function does not check whether the given markers actually lie outside the domain, allowing the labeling of *internal* sufaces. If this method fails to mark some surface pores, consider sending more markers on each face. """ import scipy.spatial as sptl dims = dimensionality(network) coords = network['pore.coords'][:, dims] if markers is None: # normalize coords to a 1 unit cube centered on origin coords -= np.amin(coords, axis=0) coords /= np.amax(coords, axis=0) coords -= 0.5 npts = max((network.Np/10, 100)) if sum(dims) == 1: network['pore.'+label] = True return if sum(dims) == 2: r = 0.75 theta = np.linspace(0, 2*np.pi, int(npts), dtype=float) x = r*np.cos(theta) y = r*np.sin(theta) markers = np.vstack((x, y)).T if sum(dims) == 3: r = 1.00 indices = np.arange(0, int(npts), dtype=float) + 0.5 phi = np.arccos(1 - 2*indices/npts) theta = np.pi * (1 + 5**0.5) * indices x = r*np.cos(theta) * np.sin(phi) y = r*np.sin(theta) * np.sin(phi) z = r*np.cos(phi) markers = np.vstack((x, y, z)).T else: if sum(dims) == 1: pass if sum(dims) == 2: markers = np.atleast_2d(markers) if markers.shape[1] != 2: raise Exception('Network appears planar, so markers must be 2D') if sum(dims) == 3: markers = np.atleast_2d(markers) if markers.shape[1] != 3: raise Exception('Markers must be 3D for this network') pts = np.vstack((coords, markers)) tri = sptl.Delaunay(pts, incremental=False) (indices, indptr) = tri.vertex_neighbor_vertices for k in range(network.Np, tri.npoints): neighbors = indptr[indices[k]:indices[k+1]] inds = np.where(neighbors < network.Np) neighbors = neighbors[inds] if 'pore.'+label not in network.keys(): network['pore.'+label] = False network['pore.'+label][neighbors] = True
Find the pores on the surface of the domain by performing a Delaunay triangulation between the network pores and some external ``markers``. All pores connected to these external marker points are considered surface pores. Parameters ---------- network: Network The network for which the surface pores are to be found markers: array_like 3 x N array of the marker coordinates to use in the triangulation. The labeling is performed in one step, so all points are added, and then any pores connected to at least one marker is given the provided label. By default, this function will automatically generate 6 points outside each axis of the network domain. Users may wish to specify a single external marker point and provide an appropriate label in order to identify specific faces. For instance, the marker may be *above* the domain, and the label might be 'top_surface'. label : str The label to apply to the pores. The default is 'surface'. Notes ----- This function does not check whether the given markers actually lie outside the domain, allowing the labeling of *internal* sufaces. If this method fails to mark some surface pores, consider sending more markers on each face.
find_surface_pores
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def clone_pores(network, pores, labels=['clone'], mode='parents'): r""" Clones the specified pores and adds them to the network Parameters ---------- network : Network The Network object to which the new pores are to be added pores : array_like List of pores to clone labels : str, or list[str] The labels to apply to the clones, default is 'clone' mode : str Controls the connections between parents and clones. Options are: =========== ========================================================== mode description =========== ========================================================== 'parents' Each clone is connected only to its parent.(Default) 'siblings' Clones are only connected to each other in the same manner as parents were connected. 'isolated' No connections between parents or siblings =========== ========================================================== """ if isinstance(labels, str): labels = [labels] network._parse_indices(pores) Np = network.Np Nt = network.Nt # Clone pores parents = np.array(pores, ndmin=1) pcurrent = network['pore.coords'] pclone = pcurrent[pores, :] pnew = np.concatenate((pcurrent, pclone), axis=0) Npnew = np.shape(pnew)[0] clones = np.arange(Np, Npnew) # Create cloned pores first extend(network=network, pore_coords=pclone) # Apply provided labels to cloned pores for item in labels: network.set_label(label=item, pores=range(Np, Npnew)) # Add connections between parents and clones if mode == 'parents': tclone = np.vstack((parents, clones)).T extend(network=network, conns=tclone) elif mode == 'siblings': ts = network.find_neighbor_throats(pores=pores, mode='xnor') mapping = np.zeros([network.Np, ], dtype=int) mapping[pores] = np.arange(Np, network.Np) tclone = mapping[network['throat.conns'][ts]] extend(network=network, throat_conns=tclone) elif mode == 'isolated': pass Ntnew = network.Nt for item in labels: network.set_label(label=item, throats=range(Nt, Ntnew)) # Clear adjacency and incidence matrices which will be out of date now network._am.clear() network._im.clear()
Clones the specified pores and adds them to the network Parameters ---------- network : Network The Network object to which the new pores are to be added pores : array_like List of pores to clone labels : str, or list[str] The labels to apply to the clones, default is 'clone' mode : str Controls the connections between parents and clones. Options are: =========== ========================================================== mode description =========== ========================================================== 'parents' Each clone is connected only to its parent.(Default) 'siblings' Clones are only connected to each other in the same manner as parents were connected. 'isolated' No connections between parents or siblings =========== ==========================================================
clone_pores
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def merge_networks(network, donor=[]): r""" Combine multiple networks into one without making any topological connections Parameters ---------- network : Network The network to which all the other networks should be added. donor : Network or list of Objects The network object(s) to add to the given network See Also -------- extend trim stitch """ if isinstance(donor, list): donors = donor else: donors = [donor] for donor in donors: network['throat.conns'] = np.vstack((network['throat.conns'], donor['throat.conns'] + network.Np)) network['pore.coords'] = np.vstack((network['pore.coords'], donor['pore.coords'])) p_all = np.ones((np.shape(network['pore.coords'])[0],), dtype=bool) t_all = np.ones((np.shape(network['throat.conns'])[0],), dtype=bool) network.update({'pore.all': p_all}) network.update({'throat.all': t_all}) for key in set(network.keys()).union(set(donor.keys())): if key.split('.')[1] not in ['conns', 'coords', '_id', 'all']: if key in network.keys(): pop_flag = False # If key not on donor add it first with dummy values to # simplify merging later if key not in donor.keys(): logger.debug('Adding ' + key + ' to donor') if network[key].dtype == bool: # Deal with labels donor[key] = False else: # Deal with numerical data element = key.split('.', 1)[0] shape = list(network[key].shape) N = donor._count(element) shape[0] = N donor[key] = np.empty(shape=shape)*np.nan pop_flag = True # Then merge it with existing array on network if len(network[key].shape) == 1: temp = np.hstack((network[key], donor[key])) else: temp = np.vstack((network[key], donor[key])) network[key] = temp if pop_flag: donor.pop(key, None) else: # If key not on network add it first logger.debug('Adding ' + key + ' to network') if donor[key].dtype == bool: network[key] = False else: data_shape = list(donor[key].shape) pore_prop = True if key.split(".")[0] == "pore" else False data_shape[0] = network.Np if pore_prop else network.Nt network[key] = np.empty(data_shape) * np.nan # Then append donor values to network s = np.shape(donor[key])[0] network[key][-s:] = donor[key] # Clear adjacency and incidence matrices which will be out of date now network._am.clear() network._im.clear()
Combine multiple networks into one without making any topological connections Parameters ---------- network : Network The network to which all the other networks should be added. donor : Network or list of Objects The network object(s) to add to the given network See Also -------- extend trim stitch
merge_networks
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def stitch_pores(network, pores1, pores2, mode='gabriel'): r""" Stitches together pores in a network with disconnected clusters Parameters ---------- network : OpenPNM Network The network to operate upon pores1 and pores2: array_like The pore indices of the disconnected clusters to be joined mode : str Dictates which tesselation method is used to identify which pores to stitch together. Options are: =========== ========================================================== mode meaning =========== ========================================================== 'delaunay' Uses the delaunay tesselation method =========== ========================================================== Returns ------- None The network is operated on 'in-place' so nothing is returned. """ raise NotImplementedError() from openpnm.network import Delaunay pores1 = network._parse_indices(pores1) pores2 = network._parse_indices(pores2) C1 = network.coords[pores1, :] C2 = network.coords[pores2, :] crds = np.vstack((C1, C2)) if mode == 'delaunay': shape = get_shape(network) * dimensionality(network) net = Delaunay(points=crds, shape=shape) else: raise Exception('Unsupported mode') net.set_label(pores=range(len(pores1)), label='pore.one') net.set_label(pores=range(len(pores2)), label='pore.two') Ts = net.find_neighbor_throats(pores=net.pores('one'), mode='xor') conns = net.conns[Ts] mapped_conns = np.vstack((pores1[conns[:, 0]], pores2[conns[:, 1] - len(pores1)])).T mapped_conns = np.sort(mapped_conns, axis=1) extend(network=network, conns=mapped_conns, labels='stitched')
Stitches together pores in a network with disconnected clusters Parameters ---------- network : OpenPNM Network The network to operate upon pores1 and pores2: array_like The pore indices of the disconnected clusters to be joined mode : str Dictates which tesselation method is used to identify which pores to stitch together. Options are: =========== ========================================================== mode meaning =========== ========================================================== 'delaunay' Uses the delaunay tesselation method =========== ========================================================== Returns ------- None The network is operated on 'in-place' so nothing is returned.
stitch_pores
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def connect_pores(network, pores1, pores2, labels=['new_conns']): r""" Returns the possible connections between two groups of pores Parameters ---------- network : Network The network to which the pores should be added pores1 : array_like The first group of pores on the network pores2 : array_like The second group of pores on the network labels : list of strings The labels to apply to the new throats. The default is ``'new_conns'``. Notes ----- The method also works if ``pores1`` and ``pores2`` are list of lists, in which case it consecutively connects corresponding members of the two lists in a 1-to-1 fashion. Example: pores1 = [[0, 1], [2, 3]] and pores2 = [[5], [7, 9]] leads to creation of the following connections: :: 0 --> 5 2 --> 7 3 --> 7 1 --> 5 2 --> 9 3 --> 9 If you want to use the batch functionality, make sure that each element within ``pores1`` and ``pores2`` are of type list or ndarray. """ # Assert that `pores1` and `pores2` are list of lists try: len(pores1[0]) except (TypeError, IndexError): pores1 = [pores1] try: len(pores2[0]) except (TypeError, IndexError): pores2 = [pores2] if len(pores1) != len(pores2): raise Exception('Running in batch mode! pores1 and pores2 must be' + ' of the same length.') arr1, arr2 = [], [] for ps1, ps2 in zip(pores1, pores2): size1 = np.size(ps1) size2 = np.size(ps2) arr1.append(np.repeat(ps1, size2)) arr2.append(np.tile(ps2, size1)) conns = np.vstack([np.concatenate(arr1), np.concatenate(arr2)]).T extend(network=network, throat_conns=conns, labels=labels)
Returns the possible connections between two groups of pores Parameters ---------- network : Network The network to which the pores should be added pores1 : array_like The first group of pores on the network pores2 : array_like The second group of pores on the network labels : list of strings The labels to apply to the new throats. The default is ``'new_conns'``. Notes ----- The method also works if ``pores1`` and ``pores2`` are list of lists, in which case it consecutively connects corresponding members of the two lists in a 1-to-1 fashion. Example: pores1 = [[0, 1], [2, 3]] and pores2 = [[5], [7, 9]] leads to creation of the following connections: :: 0 --> 5 2 --> 7 3 --> 7 1 --> 5 2 --> 9 3 --> 9 If you want to use the batch functionality, make sure that each element within ``pores1`` and ``pores2`` are of type list or ndarray.
connect_pores
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def merge_pores(network, pores, labels=['merged'], include_neighbors=True): r""" Combines a selection of pores into a new single pore located at the centroid of the selected pores (and optionally their neighbors) and connected to all of their neighbors. Parameters ---------- network : Network pores : array_like The list of pores which are to be combined into a new single pore labels : str or list[str] The labels to apply to the new pore and new throat connections Notes ----- (1) The method also works if a list of lists is passed, in which case it consecutively merges the given selections of pores. (2) The selection of pores should be chosen carefully, preferrable so that they all form a continuous cluster. For instance, it is recommended to use the ``find_nearby_pores`` method to find all pores within a certain distance of a given pore, and these can then be merged without causing any abnormal connections. """ # Assert that `pores` is list of lists try: len(pores[0]) except (TypeError, IndexError): pores = [pores] N = len(pores) NBs, XYZs = [], [] for Ps in pores: temp = network.find_neighbor_pores(pores=Ps, mode='union', flatten=True, include_input=False) NBs.append(temp) if len(Ps) == 2: XYZs.append(np.mean(network["pore.coords"][Ps], axis=0)) else: if include_neighbors: points = np.concatenate((temp, Ps)) else: points = Ps XYZs.append(hull_centroid(network["pore.coords"][points])) extend(network, pore_coords=XYZs, labels=labels) Pnew = network.Ps[-N::] # Possible throats between new pores: This only happens when running in # batch mode, i.e. multiple groups of pores are to be merged. In case # some of these groups share elements, possible throats between the # intersecting elements is not captured and must be added manually. pores_set = [set(items) for items in pores] NBs_set = [set(items) for items in NBs] ps1, ps2 = [], [] from itertools import combinations for i, j in combinations(range(N), 2): if not NBs_set[i].isdisjoint(pores_set[j]): ps1.append([network.Ps[-N+i]]) ps2.append([network.Ps[-N+j]]) # Add (possible) connections between the new pores connect_pores(network, pores1=ps1, pores2=ps2, labels=labels) # Add connections between the new pores and the rest of the network connect_pores(network, pores2=np.split(Pnew, N), pores1=NBs, labels=labels) # Trim merged pores from the network trim(network=network, pores=np.concatenate(pores))
Combines a selection of pores into a new single pore located at the centroid of the selected pores (and optionally their neighbors) and connected to all of their neighbors. Parameters ---------- network : Network pores : array_like The list of pores which are to be combined into a new single pore labels : str or list[str] The labels to apply to the new pore and new throat connections Notes ----- (1) The method also works if a list of lists is passed, in which case it consecutively merges the given selections of pores. (2) The selection of pores should be chosen carefully, preferrable so that they all form a continuous cluster. For instance, it is recommended to use the ``find_nearby_pores`` method to find all pores within a certain distance of a given pore, and these can then be merged without causing any abnormal connections.
merge_pores
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def hull_centroid(points): r""" Computes centroid of the convex hull enclosing the given coordinates. Parameters ---------- points : Np by 3 ndarray Coordinates (xyz) Returns ------- centroid : array A 3 by 1 Numpy array containing coordinates of the centroid. """ dim = [np.unique(points[:, i]).size != 1 for i in range(3)] hull = ConvexHull(points[:, dim]) centroid = points.mean(axis=0) centroid[dim] = hull.points[hull.vertices].mean(axis=0) return centroid
Computes centroid of the convex hull enclosing the given coordinates. Parameters ---------- points : Np by 3 ndarray Coordinates (xyz) Returns ------- centroid : array A 3 by 1 Numpy array containing coordinates of the centroid.
hull_centroid
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def add_boundary_pores(network, pores, offset=None, move_to=None, apply_label='boundary'): r""" This method uses ``clone_pores`` to clone the input pores, then shifts them the specified amount and direction, then applies the given label. Parameters ---------- pores : array_like List of pores to offset. If no pores are specified, then it assumes that all surface pores are to be cloned. offset : 3 x 1 array The distance in vector form which the cloned boundary pores should be offset. Either this, or ``move_to`` must be specified. move_to : 3 x 1 array The location to move the boundary pores to. A value of ``None`` indicates that no translation should be applied in that axis. For instance, ``[None, None, 0]`` indicates that the boundary pores should moved along the z-axis to the specified location. Either this or ``offset`` must be specified. apply_label : str This label is applied to the boundary pores. Default is 'boundary'. """ # Parse the input pores Ps = np.array(pores, ndmin=1) if Ps.dtype is bool: Ps = network.to_indices(Ps) if np.size(pores) == 0: # Handle an empty array if given return np.array([], dtype=np.int64) # Clone the specifed pores clone_pores(network=network, pores=Ps) newPs = network.pores('pore.clone') del network['pore.clone'] newTs = network.throats('clone') del network['throat.clone'] if offset is not None: # Offset the cloned pores network['pore.coords'][newPs] += offset if move_to is not None: # Move the cloned pores for i, d in enumerate(move_to): if d is not None: temp = network['pore.coords'][newPs] temp[:, i] = d network['pore.coords'][newPs] = temp # Apply labels to boundary pores (trim leading 'pores' if present) label = apply_label.split('.', 1)[-1] plabel = 'pore.' + label tlabel = 'throat.' + label network[plabel] = False network[plabel][newPs] = True network[tlabel] = False network[tlabel][newTs] = True
This method uses ``clone_pores`` to clone the input pores, then shifts them the specified amount and direction, then applies the given label. Parameters ---------- pores : array_like List of pores to offset. If no pores are specified, then it assumes that all surface pores are to be cloned. offset : 3 x 1 array The distance in vector form which the cloned boundary pores should be offset. Either this, or ``move_to`` must be specified. move_to : 3 x 1 array The location to move the boundary pores to. A value of ``None`` indicates that no translation should be applied in that axis. For instance, ``[None, None, 0]`` indicates that the boundary pores should moved along the z-axis to the specified location. Either this or ``offset`` must be specified. apply_label : str This label is applied to the boundary pores. Default is 'boundary'.
add_boundary_pores
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def iscoplanar(coords): r""" Determines if given pores are coplanar with each other Parameters ---------- coords : array_like List of pore coords to check for coplanarity. At least 3 pores are required. Returns ------- results : bool A boolean value of whether given points are coplanar (``True``) or not (``False``) """ coords = np.array(coords, ndmin=1) if np.shape(coords)[0] < 3: raise Exception('At least 3 input pores are required') Px = coords[:, 0] Py = coords[:, 1] Pz = coords[:, 2] # Do easy check first, for common coordinate if np.shape(np.unique(Px))[0] == 1: return True if np.shape(np.unique(Py))[0] == 1: return True if np.shape(np.unique(Pz))[0] == 1: return True # Perform rigorous check using vector algebra # Grab first basis vector from list of coords n1 = np.array((Px[1] - Px[0], Py[1] - Py[0], Pz[1] - Pz[0])).T n = np.array([0.0, 0.0, 0.0]) i = 1 while n.sum() == 0: if i >= (np.size(Px) - 1): logger.warning('No valid basis vectors found') return False # Chose a secon basis vector n2 = np.array((Px[i+1] - Px[i], Py[i+1] - Py[i], Pz[i+1] - Pz[i])).T # Find their cross product n = np.cross(n1, n2) i += 1 # Create vectors between all other pairs of points r = np.array((Px[1:-1] - Px[0], Py[1:-1] - Py[0], Pz[1:-1] - Pz[0])) # Ensure they all lie on the same plane n_dot = np.dot(n, r) return bool(np.sum(np.absolute(n_dot)) == 0)
Determines if given pores are coplanar with each other Parameters ---------- coords : array_like List of pore coords to check for coplanarity. At least 3 pores are required. Returns ------- results : bool A boolean value of whether given points are coplanar (``True``) or not (``False``)
iscoplanar
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def is_fully_connected(network, pores_BC=None): r""" Checks whether network is fully connected, i.e. not clustered. Parameters ---------- network : Network The network whose connectivity to check. pores_BC : array_like (optional) The pore indices of boundary conditions (inlets/outlets). Returns ------- bool If ``pores_BC`` is not specified, then returns ``True`` only if the entire network is connected to the same cluster. If ``pores_BC`` is given, then returns ``True`` only if all clusters are connected to the given boundary condition pores. """ am = network.get_adjacency_matrix(fmt='lil').copy() temp = csgraph.connected_components(am, directed=False)[1] is_connected = np.unique(temp).size == 1 # Ensure all clusters are part of pores, if given if not is_connected and pores_BC is not None: am.resize(network.Np + 1, network.Np + 1) pores_BC = network._parse_indices(pores_BC) am.rows[-1] = pores_BC.tolist() am.data[-1] = np.arange(network.Nt, network.Nt + len(pores_BC)).tolist() temp = csgraph.connected_components(am, directed=False)[1] is_connected = np.unique(temp).size == 1 return is_connected
Checks whether network is fully connected, i.e. not clustered. Parameters ---------- network : Network The network whose connectivity to check. pores_BC : array_like (optional) The pore indices of boundary conditions (inlets/outlets). Returns ------- bool If ``pores_BC`` is not specified, then returns ``True`` only if the entire network is connected to the same cluster. If ``pores_BC`` is given, then returns ``True`` only if all clusters are connected to the given boundary condition pores.
is_fully_connected
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def get_domain_area(network, inlets=None, outlets=None): r""" Determine the cross sectional area relative to the inlets/outlets. Parameters ---------- network : Network The network object containing the pore coordinates inlets : array_like The pore indices of the inlets. outlets : array_Like The pore indices of the outlets. Returns ------- area : scalar The cross sectional area relative to the inlets/outlets. """ logger.warning('Attempting to estimate inlet area...will be low') if dimensionality(network).sum() != 3: raise Exception('The network is not 3D, specify area manually') inlets = network.coords[inlets] outlets = network.coords[outlets] if not iscoplanar(inlets): logger.error('Detected inlet pores are not coplanar') if not iscoplanar(outlets): logger.error('Detected outlet pores are not coplanar') Nin = np.ptp(inlets, axis=0) > 0 if Nin.all(): logger.warning('Detected inlets are not oriented along a principle axis') Nout = np.ptp(outlets, axis=0) > 0 if Nout.all(): logger.warning('Detected outlets are not oriented along a principle axis') hull_in = ConvexHull(points=inlets[:, Nin]) hull_out = ConvexHull(points=outlets[:, Nout]) if hull_in.volume != hull_out.volume: logger.error('Inlet and outlet faces are different area') area = hull_in.volume # In 2D: volume=area, area=perimeter return area
Determine the cross sectional area relative to the inlets/outlets. Parameters ---------- network : Network The network object containing the pore coordinates inlets : array_like The pore indices of the inlets. outlets : array_Like The pore indices of the outlets. Returns ------- area : scalar The cross sectional area relative to the inlets/outlets.
get_domain_area
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def get_domain_length(network, inlets=None, outlets=None): r""" Determine the domain length relative to the inlets/outlets. Parameters ---------- network : Network The network object containing the pore coordinates inlets : array_like The pore indices of the inlets. outlets : array_Like The pore indices of the outlets. Returns ------- area : scalar The domain length relative to the inlets/outlets. """ msg = ('Attempting to estimate domain length...could be low if' ' boundary pores were not added') logger.warning(msg) inlets = network.coords[inlets] outlets = network.coords[outlets] if not iscoplanar(inlets): logger.error('Detected inlet pores are not coplanar') if not iscoplanar(outlets): logger.error('Detected inlet pores are not coplanar') tree = cKDTree(data=inlets) Ls = np.unique(np.float64(tree.query(x=outlets)[0])) if not np.allclose(Ls, Ls[0]): logger.error('A unique value of length could not be found') length = Ls[0] return length
Determine the domain length relative to the inlets/outlets. Parameters ---------- network : Network The network object containing the pore coordinates inlets : array_like The pore indices of the inlets. outlets : array_Like The pore indices of the outlets. Returns ------- area : scalar The domain length relative to the inlets/outlets.
get_domain_length
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def reduce_coordination(network, z): r""" Deletes throats on network to match specified average coordination number Parameters ---------- target : Network The network whose throats are to be trimmed z : scalar The desired average coordination number. It is not possible to specify the distribution of the coordination, only the mean value. Returns ------- trim : ndarray A boolean array with ``True`` values indicating which pores to trim (using ``op.topotools.trim``) to obtain the desired average coordination number. Notes ----- This method first finds the minimum spanning tree of the network using random weights on each throat, then assures that these throats are *not* deleted, in order to maintain network connectivity. The list of throats to trim is generated randomly from the throats *not* on the spanning tree. """ # Find minimum spanning tree using random weights am = network.create_adjacency_matrix(weights=np.random.rand(network.Nt), triu=False) mst = csgraph.minimum_spanning_tree(am, overwrite=True) mst = mst.tocoo() # Label throats on spanning tree to avoid deleting them Ts = network.find_connecting_throat(mst.row, mst.col) Ts = np.hstack(Ts) network['throat.mst'] = False network['throat.mst'][Ts] = True # Trim throats not on the spanning tree to acheive desired coordination Ts = np.random.permutation(network.throats('mst', mode='nor')) del network['throat.mst'] Ts = Ts[:int(network.Nt - network.Np*(z/2))] Ts = network.to_mask(throats=Ts) return Ts
Deletes throats on network to match specified average coordination number Parameters ---------- target : Network The network whose throats are to be trimmed z : scalar The desired average coordination number. It is not possible to specify the distribution of the coordination, only the mean value. Returns ------- trim : ndarray A boolean array with ``True`` values indicating which pores to trim (using ``op.topotools.trim``) to obtain the desired average coordination number. Notes ----- This method first finds the minimum spanning tree of the network using random weights on each throat, then assures that these throats are *not* deleted, in order to maintain network connectivity. The list of throats to trim is generated randomly from the throats *not* on the spanning tree.
reduce_coordination
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def add_reservoir_pore(cls, network, pores, offset=0.1): r""" Adds a single pore connected to all ``pores`` to act as a reservoir This function is mostly needed to make network compatible with the Statoil file format, which requires reservoir pores on the inlet and outlet faces. Parameters ---------- network : Network The network to which the reservoir pore should be added pores : array_like The pores to which the reservoir pore should be connected to offset : scalar Controls the distance which the reservoir is offset from the given ``pores``. The total displacement is found from the network dimension normal to given ``pores``, multiplied by ``offset``. Returns ------- project : list An OpenPNM project object with a new geometry object added to represent the newly added pore and throats. """ import openpnm.models.geometry as mods # Check if a label was given and fetch actual indices if isinstance(pores, str): # Convert 'face' into 'pore.face' if necessary if not pores.startswith('pore.'): pores = 'pore.' + pores pores = network.pores(pores) # Find coordinates of pores on given face coords = network['pore.coords'][pores] # Normalize the coordinates based on full network size c_norm = coords/network['pore.coords'].max(axis=0) # Identify axis of face by looking for dim with smallest delta diffs = np.amax(c_norm - np.average(c_norm, axis=0), axis=0) ax = np.where(diffs == diffs.min())[0][0] # Add new pore at center of domain new_coord = network['pore.coords'].mean(axis=0) domain_half_length = np.ptp(network['pore.coords'][:, ax])/2 if coords[:, ax].mean() < network['pore.coords'][:, ax].mean(): new_coord[ax] = new_coord[ax] - domain_half_length*(1 + offset) if coords[:, ax].mean() > network['pore.coords'][:, ax].mean(): new_coord[ax] = new_coord[ax] + domain_half_length*(1 + offset) # Ps = np.arange(network.Np, network.Np + 1) extend(network=network, coords=[new_coord], labels=['reservoir']) conns = [[P, network.Np-1] for P in pores] # Ts = np.arange(network.Nt, network.Nt + len(conns)) extend(network=network, conns=conns, labels=['reservoir']) # Compute the geometrical properties of the reservoir pore and throats # Confirm if network has any geometry props on it props = {'throat.length', 'pore.diameter', 'throat.volume'} if len(set(network.keys()).intersection(props)) > 0: raise Exception('Geometrical properties should be moved to a ' + 'geometry object first') # or just do this?: geo = Imported(network=network) network.add_model(propname='pore.diameter', model=mods.geometry.pore_size.largest_sphere) network.add_model(propname='throat.diameter_temp', model=mods.geometry.throat_size.from_neighbor_pores, mode='min') network.add_model(propname='throat.diameter', model=mods.misc.scaled, prop='throat.diameter_temp', factor=0.5) network.add_model(propname='throat.volume', model=mods.geometry.throat_volume.cylinder) return network.project
Adds a single pore connected to all ``pores`` to act as a reservoir This function is mostly needed to make network compatible with the Statoil file format, which requires reservoir pores on the inlet and outlet faces. Parameters ---------- network : Network The network to which the reservoir pore should be added pores : array_like The pores to which the reservoir pore should be connected to offset : scalar Controls the distance which the reservoir is offset from the given ``pores``. The total displacement is found from the network dimension normal to given ``pores``, multiplied by ``offset``. Returns ------- project : list An OpenPNM project object with a new geometry object added to represent the newly added pore and throats.
add_reservoir_pore
python
PMEAL/OpenPNM
openpnm/topotools/_topotools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/topotools/_topotools.py
MIT
def check_data_health(obj): r""" Checks the health of pore and throat data arrays. Parameters ---------- obj : Base A handle of the object to be checked Returns ------- health : dict Returns a HealthDict object which is a basic dictionary with an added ``health`` attribute that is ``True`` is all entries in the dict are deemed healthy (empty lists), or ``False`` otherwise. """ health = HealthDict() for item in obj.props(): health[item] = [] if obj[item].dtype == 'O': health[item] = 'No checks on object' elif np.sum(np.isnan(obj[item])) > 0: health[item] = 'Has NaNs' elif np.shape(obj[item])[0] != obj._count(item.split('.', 1)[0]): health[item] = 'Wrong Length' return health
Checks the health of pore and throat data arrays. Parameters ---------- obj : Base A handle of the object to be checked Returns ------- health : dict Returns a HealthDict object which is a basic dictionary with an added ``health`` attribute that is ``True`` is all entries in the dict are deemed healthy (empty lists), or ``False`` otherwise.
check_data_health
python
PMEAL/OpenPNM
openpnm/utils/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_health.py
MIT
def check_network_health(network): r""" This method checks the topological health of the network The following aspects are checked for: (1) Isolated pores (2) Disconnected clusters of pores (3) Duplicate throats (4) Headless throats (5) Bidirectional throats Returns ------- health : dict A dictionary containing the offending pores or throat numbers under each named key. Notes ----- It also returns a list of which pores and throats should be trimmed from the network to restore health. This list is a suggestion only, and is based on keeping the largest cluster and trimming the others. - Does not yet check for duplicate pores - Does not yet suggest which throats to remove - This is just a 'check' and does not 'fix' the problems it finds """ import openpnm.models.network as mods health = HealthDict() # Check for headless throats headless = mods.headless_throats(network) health['headless_throats'] = np.where(headless)[0].tolist() # Check for throats that loop back onto the same pore looped = mods.looped_throats(network) health['looped_throats'] = np.where(looped)[0].tolist() # Check for individual isolated pores isolated = mods.isolated_pores(network) health['isolated_pores'] = np.where(isolated)[0].tolist() # Check for separated clusters of pores size = mods.cluster_size(network) mx = np.max(size) health['disconnected_pores'] = np.where(size < mx)[0].tolist() # Check for duplicate throats dupes = mods.duplicate_throats(network) health['duplicate_throats'] = np.where(dupes)[0].tolist() # Check for bidirectional throats bidir = mods.bidirectional_throats(network) health['bidirectional_throats'] = np.where(bidir)[0].tolist() return health
This method checks the topological health of the network The following aspects are checked for: (1) Isolated pores (2) Disconnected clusters of pores (3) Duplicate throats (4) Headless throats (5) Bidirectional throats Returns ------- health : dict A dictionary containing the offending pores or throat numbers under each named key. Notes ----- It also returns a list of which pores and throats should be trimmed from the network to restore health. This list is a suggestion only, and is based on keeping the largest cluster and trimming the others. - Does not yet check for duplicate pores - Does not yet suggest which throats to remove - This is just a 'check' and does not 'fix' the problems it finds
check_network_health
python
PMEAL/OpenPNM
openpnm/utils/_health.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_health.py
MIT
def flat_list(input_list): r""" Given a list of nested lists of arbitrary depth, returns a single level or 'flat' list. """ def _flatten(l): for el in l: if isinstance(el, Iterable) and not isinstance(el, (str, bytes)): yield from _flatten(el) else: yield el return list(_flatten(input_list))
Given a list of nested lists of arbitrary depth, returns a single level or 'flat' list.
flat_list
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def sanitize_dict(input_dict): r""" Given a nested dictionary, ensures that all nested dicts are normal Python dicts. This is necessary for pickling, or just converting an 'auto-vivifying' dict to something that acts normal. """ plain_dict = dict() for key in input_dict.keys(): value = input_dict[key] if hasattr(value, "keys"): plain_dict[key] = sanitize_dict(value) else: plain_dict[key] = value return plain_dict
Given a nested dictionary, ensures that all nested dicts are normal Python dicts. This is necessary for pickling, or just converting an 'auto-vivifying' dict to something that acts normal.
sanitize_dict
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def methods_to_table(obj): r""" Converts a methods on an object to a ReST compatible table Parameters ---------- obj : Base Any object that has a methods params : bool Indicates whether or not to include a list of parameter values in the table. Set to False for just a list of models, and True for a more verbose table with all parameter values. """ parent = obj.__class__.__mro__[1] temp = inspect.getmembers(parent, predicate=inspect.isroutine) parent_funcs = [i[0] for i in temp if not i[0].startswith("_")] temp = inspect.getmembers(obj.__class__, predicate=inspect.isroutine) obj_funcs = [i[0] for i in temp if not i[0].startswith("_")] funcs = set(obj_funcs).difference(set(parent_funcs)) row = "+" + "-" * 22 + "+" + "-" * 49 + "+" fmt = "{0:1s} {1:20s} {2:1s} {3:47s} {4:1s}" lines = [] lines.append(row) lines.append(fmt.format("|", "Method", "|", "Description", "|")) lines.append(row.replace("-", "=")) for i, item in enumerate(funcs): try: s = getattr(obj, item).__doc__.strip() end = s.find("\n") if end > 47: s = s[:44] + "..." lines.append(fmt.format("|", item, "|", s[:end], "|")) lines.append(row) except AttributeError: pass return "\n".join(lines)
Converts a methods on an object to a ReST compatible table Parameters ---------- obj : Base Any object that has a methods params : bool Indicates whether or not to include a list of parameter values in the table. Set to False for just a list of models, and True for a more verbose table with all parameter values.
methods_to_table
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def models_to_table(obj, params=True): r""" Converts a all the models on an object to a ReST compatible table Parameters ---------- obj : Base Any object that has a ``models`` attribute params : bool Indicates whether or not to include a list of parameter values in the table. Set to False for just a list of models, and True for a more verbose table with all parameter values. """ if not hasattr(obj, "models"): raise Exception("Received object does not have any models") row = "+" + "-" * 4 + "+" + "-" * 22 + "+" + "-" * 18 + "+" + "-" * 26 + "+" fmt = "{0:1s} {1:2s} {2:1s} {3:20s} {4:1s} {5:16s} {6:1s} {7:24s} {8:1s}" lines = [] lines.append(row) lines.append( fmt.format("|", "#", "|", "Property Name", "|", "Parameter", "|", "Value", "|") ) lines.append(row.replace("-", "=")) for i, item in enumerate(obj.models.keys()): prop = item if len(prop) > 20: prop = item[:17] + "..." temp = obj.models[item].copy() model = str(temp.pop("model")).split(" ")[1] lines.append( fmt.format("|", str(i + 1), "|", prop, "|", "model:", "|", model, "|") ) lines.append(row) if params: for param in temp.keys(): p1 = param if len(p1) > 16: p1 = p1[:13] + "..." p2 = str(temp[param]) if len(p2) > 24: p2 = p2[:21] + "..." lines.append(fmt.format("|", "", "|", "", "|", p1, "|", p2, "|")) lines.append(row) return "\n".join(lines)
Converts a all the models on an object to a ReST compatible table Parameters ---------- obj : Base Any object that has a ``models`` attribute params : bool Indicates whether or not to include a list of parameter values in the table. Set to False for just a list of models, and True for a more verbose table with all parameter values.
models_to_table
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT