Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
code
Size:
< 1K
License:
metadata
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language:
- code
license:
- apache-2.0
multilinguality:
- multilingual
pretty_name: HumanEval-X
size_categories:
- unknown
source_datasets: []
task_categories:
- sequence-modeling
task_ids:
- language-modeling
HumanEval-X
Dataset Description
HumanEval-X is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation.
Languages
The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go.
Dataset Structure
To load the dataset you need to specify a subset among the 5 exiting languages [python, cpp, go, java, js]
. By default python
is loaded.
from datasets import load_dataset
load_dataset("THUDM/humaneval-x", "js")
DatasetDict({
test: Dataset({
features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'],
num_rows: 164
})
})
next(iter(data["test"]))
{'task_id': 'JavaScript/0',
'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n false\n >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n true\n */\nconst hasCloseElements = (numbers, threshold) => {\n',
'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n',
'canonical_solution': ' for (let i = 0; i < numbers.length; i++) {\n for (let j = 0; j < numbers.length; j++) {\n if (i != j) {\n let distance = Math.abs(numbers[i] - numbers[j]);\n if (distance < threshold) {\n return true;\n }\n }\n }\n }\n return false;\n}\n\n',
'test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n console.assert(\n hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n )\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n',
'example_test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n console.assert(\n hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n )\n}\ntestHasCloseElements()\n'}
Data Fields
task_id
: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"].prompt
: the function declaration and docstring, used for code generation.declaration
: only the function declaration, used for code translation.canonical_solution
: human-crafted example solutions.test
: hidden test samples, used for evaluation.example_test
: public test samples (appeared in prompt), used for evaluation.
Data Splits
Each subset has one split: test.
Citation Information
Refer to https://github.com/THUDM/CodeGeeX.