Datasets:
language:
- en
size_categories:
- 50K<n<100K
license: mit
task_categories:
- tabular-regression
tags:
- photonics
- silicon-nitride
- waveguide
- optical
- dataset
- synthetic
dataset_info:
features:
- name: waveguide_width
dtype: float
- name: waveguide_height
dtype: float
- name: cladding_material
dtype: string
- name: cladding_thickness
dtype: float
- name: deposition_method
dtype: string
- name: etch_method
dtype: string
- name: sidewall_roughness
dtype: float
- name: annealing_params
dtype: string
- name: wavelength
dtype: float
- name: polarization
dtype: string
- name: input_power
dtype: float
- name: temperature
dtype: float
- name: bend_radius
dtype: float
- name: device_length
dtype: float
- name: insertion_loss
dtype: float
- name: propagation_loss
dtype: float
- name: coupling_efficiency_input
dtype: float
- name: coupling_efficiency_output
dtype: float
- name: scattering_loss
dtype: float
- name: effective_index
dtype: float
- name: mode_confinement_factor
dtype: float
- name: batch_id
dtype: string
- name: data_source
dtype: string
- name: measurement_method
dtype: string
- name: uncertainty
dtype: float
dataset_size: 90000
dataset_version: 1.0.0
SiN Photonic Waveguide Loss & Efficiency Dataset
Description
This dataset provides 90,000 synthetic rows of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on waveguide loss and efficiency metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance.
Key Highlights ✨
- Material Focus: Silicon Nitride (Si₃N₄)
- Columns: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics
- Size: 90,000 rows (ideal for both training and validation splits)
- Use Cases:
- Waveguide loss prediction
- Process control and optimization
- Photonic design parameter studies
- Synthetic data augmentation for AI/ML tasks
Dataset Structure 🏗️
Each row corresponds to a single waveguide configuration or measurement instance, including:
Waveguide Geometry
waveguide_width
(µm)waveguide_height
(nm or µm)bend_radius
(µm)device_length
(mm)
Material & Fabrication
cladding_material
cladding_thickness
(µm)deposition_method
etch_method
sidewall_roughness
(nm)annealing_params
Operational Parameters
wavelength
(nm)polarization
(TE/TM)input_power
(dBm)temperature
(°C)
Performance Metrics
insertion_loss
(dB)propagation_loss
(dB/cm)coupling_efficiency_input
(%)coupling_efficiency_output
(%)scattering_loss
(dB/cm)effective_index
mode_confinement_factor
(0–1)
Metadata
batch_id
(fabrication batch/wafer ID)data_source
(Synthetic or Measurement)measurement_method
(e.g., cut-back, ring_resonance)uncertainty
(± dB or %)
Example Row
waveguide_width = 1.212
waveguide_height = 400.00
cladding_material = SiO2
cladding_thickness = 2.50
deposition_method = LPCVD
etch_method = RIE
sidewall_roughness = 2.05
annealing_params = 900C_3hr
wavelength = 1552.23
polarization = TE
input_power = 0.00
temperature = 25.00
bend_radius = 50.00
device_length = 10.00
insertion_loss = 3.50
propagation_loss = 0.300
coupling_efficiency_input = 72.00
coupling_efficiency_output = 68.00
scattering_loss = 0.15
effective_index = 1.800
mode_confinement_factor = 0.80
batch_id = BATCH_12
data_source = Synthetic
measurement_method = ring_resonance
uncertainty = 0.05
How to Use 💡
Download/Clone
- You can download the CSV file manually or use Hugging Face’s
datasets
library:from datasets import load_dataset dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency")
- You can download the CSV file manually or use Hugging Face’s
Loading & Exploration
- Load into your favorite Python environment (
pandas
,polars
, etc.) to quickly explore the data distribution:import pandas as pd df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv") print(df.head())
- Load into your favorite Python environment (
Model Training
- For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the
insertion_loss
orpropagation_loss
columns as the labels or targets. - Example ML scenario:
features = df[[ "waveguide_width", "waveguide_height", "sidewall_roughness", "wavelength", "polarization", "temperature" ]] target = df["propagation_loss"] # Then train a regression model, e.g., scikit-learn, XGBoost, etc.
- For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the
Synthetic Data Augmentation
- Use this synthetic dataset to supplement smaller real datasets
Caveats & Limitations ⚠️
- Synthetic Nature: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes.
- Statistical Simplifications: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured.
- Measurement Noise: The
uncertainty
column does not fully replicate complex measurement artifacts.
License 📄
This dataset is available under the MIT License. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution.
Citation & Acknowledgments 🙌
If you use this dataset in your research or applications, please cite it as follows (example citation):
Author: https://huggingface.co/Taylor658
Title: SiN Photonic Waveguide Loss & Efficiency (Synthetic)
Year: 2025
@misc{sin_waveguide_loss_efficiency_2025,
title = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)},
author = {atayloraeropsace},
year = {2025},
howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}}
}
Contributing 🧑💻
We welcome community contributions, ideas, and corrections:
- Add additional columns (e.g., doping profiles, stress levels, advanced measurement data).