problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03316
u740767776
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['def keta(x):\n wa = 0\n while x >= 0:\n wa = int(x % 10)\n x = x // 10\n return wa\n\nn = int(input())\nif n % keta(n) == 0:\n print("Yes")\nelse:\n print("No")\n ', 'def keta(x):\n wa = 0\n while x >= 1:\n wa += int(x % 10)\n x = int(x / 10)\n return wa\n \nn = int(input())\nif n % keta(n) == 0:\n print("Yes")\nelse:\n print("No")']
['Time Limit Exceeded', 'Accepted']
['s680512480', 's571315298']
[2940.0, 3060.0]
[2104.0, 17.0]
[165, 166]
p03316
u741080884
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['import sys\n\n\ndef solve(a):\n s = 0\n for b in str(a):\n s += int(b)\n if a%s==0:\n return "Yes"\n else:\n return "No"\n \n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n return line\n\ndef main():\n n = readQuestion()\n answer = solve(n)\n print(answer)\n \nif __name__ == \'__main__\':\n main()', 'import sys\n\n\ndef solve(a):\n s = 0\n for b in str(a):\n s += int(b)\n if a%s==0:\n return "Yes"\n else:\n return "No"\n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n return int(line)\n\ndef main():\n n = readQuestion()\n answer = solve(n)\n print(answer)\n \nif __name__ == \'__main__\':\n main()']
['Runtime Error', 'Accepted']
['s043670922', 's144725167']
[3060.0, 3060.0]
[17.0, 17.0]
[510, 506]
p03316
u746300610
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['a=input()\nl=[int(i) for i in list(str(a))]\ns=0\nfor i in l:\n s+=i\nif a % s==0:\n print("Yes")\nelse:\n print("No")', 'a=int(input())\nl=[int(i) for i in list(str(a))]\ns=0\nfor i in l:\n s+=i\nif a % s==0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s540507896', 's351088151']
[2940.0, 2940.0]
[17.0, 18.0]
[113, 118]
p03316
u746627216
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = list(input())\nn = 0\n\nS = 0\nfor i in range(len(N)):\n S = S + int(N[i])\n n = (int(N[i])999999999 * (10 ** (len(N) - i - 1))) + n\n \nif n % S == 0:\n print('Yes')\nelse:\n print('No')", "N = list(input())\nn = 0\n\nS = 0\nfor i in range(len(N)):\n S = S + int(N[i])\n n = (int(N[i])999999999 * (10 ** (len(N) - i - 1))) + n\n \nif n % S == 0:\n print('Yes')\nelse:\n print('No')", "N = list(input())\nn = 0\n\nS = 0\nfor i in range(len(N)):\n S = S + int(N[i])\n n = (int(N[i]) * (10 ** (len(N) - i - 1))) + n\n \nif n % S == 0:\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s482345047', 's992942934', 's963361973']
[2940.0, 2940.0, 3060.0]
[17.0, 17.0, 17.0]
[195, 195, 186]
p03316
u746793065
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n = int(input())\ns = sum(list(n))\n\nif n % s == 0:\n print("Yes")\nelse:\n print("No")\n', 'n = int(input())\ns = sum(map(int, list(str(n)))\n\nif n % s == 0:\n print("Yes")\nelse:\n print("No")\n', 'n = int(input())\ns = sum(map(int, list(str(n))))\n\nif n % s:\n print("Yes")\nelse:\n print("No")\n', 'n = int(input())\ns = sum(int(list(str(n))))\n\nif n % s == 0:\n print("Yes")\nelse:\n print("No")\n', 'n = int(input())\ns = sum(map(int,(list(str(n))))\n\nif n % s == 0:\n print("Yes")\nelse:\n print("No")\n', 'n = int(input())\ns = list(n)\n\nif n % sum(s):\n print("Yes")\nelse:\n print("No")', 'n = int(input())\ns = list(n)\n\nif n % sum(s) == 0:\n print("Yes")\nelse:\n print("No")\n', 'n = int(input())\ns = sum(map(int, list(str(n))))\n\nif n % s == 0:\n print("Yes")\nelse:\n print("No")\n']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s208496835', 's318737320', 's330273562', 's445143093', 's523461717', 's696863110', 's984612727', 's911757968']
[9140.0, 9012.0, 9108.0, 9152.0, 9004.0, 9148.0, 9144.0, 9136.0]
[30.0, 24.0, 27.0, 27.0, 24.0, 31.0, 18.0, 25.0]
[85, 99, 95, 95, 100, 79, 85, 100]
p03316
u754022296
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n = input()\nk = list(map(int, list(n)))\ns = sum(n)\nn = int(n)\nif n%k:\n print("No")\nelse:\n print("Yes")', 'n = input()\nk = list(map(int, list(n)))\ns = sum(k)\nn = int(n)\nif n%s:\n print("No")\nelse:\n print("Yes")\n']
['Runtime Error', 'Accepted']
['s631812739', 's543687266']
[9088.0, 9160.0]
[24.0, 30.0]
[104, 105]
p03316
u757030836
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n = int(input())\n\n\nsum = 0\n\nfor i in range(len(n)):\n sum += n[i]\n \nif n % sum ==0:\n print("Yes")\nelse:\n print("No")', 'n = input()\n\n\nsum = 0\n\nfor i in range(len(n)):\n sum += int(n[i])\n \nif int(n) % sum ==0:\n print("Yes")\nelse:\n print("No")\n\n']
['Runtime Error', 'Accepted']
['s136059956', 's125931733']
[2940.0, 2940.0]
[17.0, 17.0]
[119, 126]
p03316
u759412327
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = int(input())\nif N%sum(list(map(int,list(str(a)))))==0:\n print("Yes")\nelse:\n print("No")\n', 'N = int(input())\n\nif N%sum(map(int,str(N)))==0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s815045222', 's647193918']
[2940.0, 9148.0]
[17.0, 30.0]
[94, 82]
p03316
u759848345
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['s = str(input())\n\n ans = 0\n\n for i in s:\n ans = ans + int(i)\n\n b = True if ans % 2 ==0 else False\n\n print(b)', 'if __name__ == "__main__":\n s = str(input())\n\n ans = 0\n\n for i in s:\n ans = ans + int(i)\n\n b = True if int(s) % ans == 0 else False\n\n print(b)', 'if __name__ == "__main__":\n s = str(input())\n\n ans = 0\n\n for i in s:\n ans = ans + int(i)\n\n b = True if ans % 2 == 0 else False\n\n print(b)', 'if __name__ == "__main__":\n s = str(input())\n\n ans = 0\n\n for i in s:\n ans = ans + int(i)\n\n b = True if ans % 2 == 0 else False\n\n print(b)', 'if __name__ == "__main__":\n s = str(input())\n\n ans = 0\n\n for i in s:\n ans = ans + int(i)\n\n b = "Yes" if int(s) % ans == 0 else "No"\n\n print(b)']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s210649392', 's574976937', 's720693232', 's782702476', 's401600419']
[3060.0, 2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 18.0, 20.0, 20.0, 17.0]
[127, 164, 159, 159, 164]
p03316
u760794812
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["S = input()\nl = [int(x) for x in list(str(S))]\ntotal = sum(l)\nif int(S)%total==0:\n print('YES')\nelse:\n print('NO') ", "S = input()\nl = [int(x) for x in list(str(S))]\ntotal = sum(l)\nif int(S)%total==0:\n print('YES')\nelse:\n print('NO') \n", "N = int(input())\nn = N\ns = 0\nwhile n> 0:\n s += n % 10\n n = n//10\n\nif N % s == 0:\n print('Yes')\nelse:\n print('No')"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s293136488', 's908996544', 's242696554']
[2940.0, 2940.0, 2940.0]
[19.0, 18.0, 17.0]
[121, 122, 117]
p03316
u761989513
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['s = input()\nif s % sum(map(int, list(s))):\n print("No")\nelse:\n print("Yes")', 's = input()\nif int(s) % sum(map(int, list(s))):\n print("No")\nelse:\n print("Yes")\n']
['Runtime Error', 'Accepted']
['s370688877', 's126315287']
[2940.0, 2940.0]
[17.0, 17.0]
[77, 83]
p03316
u763177133
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["n = input()\n\nl = [int(i) for i in n]\n\nif sum(l) % int(n) == 0:\n print('Yes')\nelse:\n print('No')", "n = input()\n \nl = [int(i) for i in n]\n \nif int(n) % sum(l) == 0:\n print('Yes')\nelse:\n print('No')"]
['Wrong Answer', 'Accepted']
['s050005060', 's699747091']
[9104.0, 9068.0]
[28.0, 27.0]
[97, 99]
p03316
u766393261
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N=int(input())\nn=list(str(N))\nn=[int(n) for i in n]\nsummer=sum(n)\nif N%summer==0:\n print("Yes")\nelse:\n print("No")', 'N=input()\nwa=0\nfor i in N:\n wa+=int(i)\nif (int(N)%wa)==0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s795200447', 's179875503']
[3056.0, 2940.0]
[17.0, 17.0]
[116, 93]
p03316
u766407523
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["Nstr = input()\nSN = 0\nfor i in N:\n SN += int(i)\nif int(N) % SN == 0:\n print('Yes')\nelse:\n print('No')", "Nstr = input()\nSN = 0\nfor i in Nstr:\n SN += int(i)\nif int(Nstr) % SN == 0:\n print('Yes')\nelse:\n print('No')\n"]
['Runtime Error', 'Accepted']
['s879574140', 's039725949']
[2940.0, 2940.0]
[17.0, 17.0]
[110, 117]
p03316
u767995501
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n = int(raw_input())\nsum = 0\ntmp = n\n\nwhile tmp > 0:\n sum += tmp % 10\n tmp /= 10\n\nif n % sum == 0:\n print("Yes")\nelse:\n print("No")', 'n = int(input())\nsum = 0\ntmp = n\n\nwhile tmp > 0:\n sum += tmp % 10\n tmp /= 10\n\nif n % sum == 0:\n print("Yes")\nelse:\n print("No")', 'n = int(raw_input())\nsum = 0\ntmp = n\n\nwhile tmp > 0:\n sum += tmp % 10\n tmp /= 10\n\nif n % sum == 0:\n print "Yes"\nelse:\n print "No"\n', "N = int(input())\n\ndef S(N):\n if N < 10:\n return N\n return N%10 + S(N//10)\n\nanswer = 'No' if N%S(N) else 'Yes'\nprint(answer)"]
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s098764642', 's510470187', 's797755668', 's654988590']
[2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0, 17.0]
[143, 139, 142, 128]
p03316
u768559443
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n=int(input)\nsum=0\ncnt=n\n\nwhile cnt>0:\n sum+=cnt%10\n cnt/=10\n \nif n%sum==0:\n print("Yes")\nelse:\n print("No")', 'n=int(input())\nsum=0\ncnt=n\n\nwhile cnt>0:\n sum+=cnt%10\n cnt/=10\n \nif n%sum==0:\n print("Yes")\nelse:\n print("No")\n', 'n=int(input())\ns=sum(list(str(n)))\n\nif n%s==0:\n print("Yes")\nelse:\n print("No")', 'n=input()\nprint("No" if int(n)%sum(map(int,input())) else "Yes")', 'n=input()\nprint("No" if int(n)%sum(map(int,n)) else "Yes")\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s099834921', 's286281608', 's321632234', 's450264606', 's202669221']
[2940.0, 2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 18.0, 17.0, 17.0]
[113, 116, 81, 64, 59]
p03316
u773246942
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['A = input()\n\nS = 0\nfor i in range(0,10):\n S += A[i]\n \nif int(A) % S == 0:\n print("Yes")\nelse:\n print("No") \n', 'A = input()\n\nS = 0\nfor i in A:\n S += A[i]\n \nif int(A) % S == 0:\n print("Yes")\nelse:\n print("No") \n', 'A = input()\n\nS = 0\nfor i in A:\n S = S + A[i]\n \nif int(A) % S == 0:\n print("Yes")\nelse:\n print("No") \n', 'A = input()\n\nS = 0\nfor i in range(0,10):\n S += A[i]\n \nif A % S == 0:\n print("Yes")\nelse:\n print("No") \n', 'A = input()\n\nS = 0\nfor i in A:\n S = S + A(i)\n \nif (int(A) % S) == 0:\n print("Yes")\nelse:\n print("No") \n', 'A = input()\n\nS = 0\nfor i in A:\n S = S + int(i)\n \nif (int(A) % S) == 0:\n print("Yes")\nelse:\n print("No") \n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s167436417', 's268253922', 's274467761', 's496843627', 's915263211', 's729613360']
[2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0, 17.0, 17.0, 17.0]
[113, 103, 106, 108, 108, 110]
p03316
u774160580
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nif int(N) % sum([int(N[i] for i in range(len(N)))]) == 0:\n print("Yes")\nelse:\n print("No")\n', 'S = input()\nT = input()\nif S == T:\n print("Yes")\n exit()\nfor i in range(N):\n S = S[-1] + S[0 : len(S) - 1]\n if S == T:\n print("Yes")\n exit()\nprint("No")\n', 'N = input()\nif int(N) % sum([int(N[i]) for i in range(len(N))]) == 0:\n print("Yes")\nelse:\n print("No")\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s036030936', 's288951919', 's522986717']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[109, 179, 109]
p03316
u779728630
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = input()\nsN = 0\n\nfor i in N:\n sN += int(i)\n\nprint('Yes') if int(N) // sN == 0 else print('No')", "N = input()\nsN = 0\n\nfor i in N:\n sN += int(i)\n\nprint('Yes') if int(N) % sN == 0 else print('No')\n"]
['Wrong Answer', 'Accepted']
['s039215716', 's266247461']
[2940.0, 2940.0]
[17.0, 17.0]
[98, 98]
p03316
u780475861
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["n = int(input())\n\nh = sum(list(str(n)))\n\nprint('Yes' if n % h == 0 else 'No')", "n = int(input())\nh = sum(map(int, list(str(n))))\n\nprint('Yes' if n % h == 0 else 'No')"]
['Runtime Error', 'Accepted']
['s953575990', 's219655220']
[2940.0, 3188.0]
[17.0, 18.0]
[77, 86]
p03316
u780698286
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['def s(n):\n x = 0\n for i in range(len(n)):\n x += int(n[i])\n return x\nn = input()\nprint("Yes") if n % s(n) == 0 else print("No")\n', 'def s(n):\n x = 0\n for i in range(len(n)):\n x += int(n[i])\n return x\nn = input()\nprint("Yes" if n % s(n) == 0 else "No")', 'def s(n):\n x = 0\n for i in range(len(n)):\n x += int(n[i])\n return x\nn = input()\nprint("Yes") if int(n) % s(n) == 0 else print("No")\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s757954722', 's927734403', 's183712174']
[9152.0, 9060.0, 9140.0]
[24.0, 30.0, 29.0]
[133, 125, 138]
p03316
u787562674
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nmod = int(N[0] + N[1] + N[2])\n\nprint("Yes" if int(N) % mod == 0 else "No")', 'N = input()\nmod = int(N[0] + N[1] + N[2])\n\nprint("Yes" if int(N) % mod == 0 else "No")', 'N = input()\nsum = 0\n\nfor i in range(len(N)):\n sum += int(N[i])\nprint("Yes" if int(N) % sum == 0 else "No")\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s775694722', 's959860069', 's121217825']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[86, 86, 110]
p03316
u790301364
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['def main14():\n strbuf = input(\'\');\n num = int(strbuf);\n kari = num;\n peku = 0;\n while(True):\n iti = int(kari % 10);\n peku = iti;\n if(iti<10):\n break;\n kari = (kari - iti) / 10;\n if((int(num % peku) == 0)):\n print("Yes");\n else:\n print("No");\n\ndef main15():\n strbuf1 = input(\'\');\n strbuf2 = input(\'\');\n buf1 = [];\n buf2 = []\n for i in range(2):\n\n\nif __name__ == \'__main__\':\n main14()', 'def main14():\n strbuf = input(\'\');\n num = int(strbuf);\n kari = num;\n peku = 0;\n while(True):\n iti = int(kari % 10);\n peku = peku + iti;\n if(kari<10):\n break;\n kari = (kari - iti) / 10;\n if((int(num % peku) == 0)):\n print("Yes");\n else:\n print("No");\n\ndef main15():\n strbuf1 = input(\'\');\n strbuf2 = input(\'\');\n buf1 = [];\n buf2 = [];\n for i in range(2):\n buf1.append(int(strbuf1[i]));\n for i in range(buf1[0]):\n buf2.append(int(strbuf2[i]));\n\n\nif __name__ == \'__main__\':\n main14()']
['Runtime Error', 'Accepted']
['s717746650', 's867511692']
[3060.0, 3064.0]
[17.0, 17.0]
[474, 588]
p03316
u794652722
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\n\nsumN = 0\nfor i in N:\n sumN += int(i)\n\nif sumN%int(N) == 0:\n print("Yes")\nelse:\n print("No")\n', 'N = input()\n\nsumN = 0\nfor i in N:\n sumN += int(i)\n\nif int(N)%sumN == 0:\n print("Yes")\nelse:\n print("No")\n']
['Wrong Answer', 'Accepted']
['s899673374', 's811822733']
[2940.0, 2940.0]
[17.0, 17.0]
[114, 114]
p03316
u798316285
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n=int(input())\nprint("No" if n%sum(map(int,str(n))) else "No")', 'n=int(input())\nprint("No" if n%sum(map(int,str(n))) else "Yes")']
['Wrong Answer', 'Accepted']
['s633949915', 's494432367']
[2940.0, 2940.0]
[17.0, 17.0]
[62, 63]
p03316
u799691369
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["def divide(n):\n if len(str(n)) <= 1:\n return n\n\n out = n % 10\n print(n)\n return out + divide(n//10)\n\nn = int(input())\nsn = divide(n)\n\nprint('Yes' if int(n) % sn == 0 else 'No')\n", "n = input()\nsn = sum(map(int, n))\n\nprint('Yes' if n % sn == 0 else 'No')", "def divide(n):\n if len(str(n)) <= 1:\n return n\n\n out = n % 10\n \n return out + divide(n//10)\n\nn = int(input())\nsn = divide(n)\n\nprint('Yes' if int(n) % sn == 0 else 'No')\n"]
['Wrong Answer', 'Runtime Error', 'Accepted']
['s187443584', 's248953763', 's417975787']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[196, 72, 188]
p03316
u800058906
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["n=int(input())\ns=list(str(n))\na=n%(sum(s))\n\nif a==0:\n print('Yes')\nelse:\n print('No')", "n=int(input())\ns=list(str(n))\na=n%(sum(s))\n\nif a==0:\n print('Yes')\nelse:\n print('No')", "n=int(input())\ns=list(str(n))\nfor i in range(len(s)):\n s[i]=int(s[i])\nb=sum(s)\na=n%b\n\nif a==0:\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s683806450', 's919170399', 's768190774']
[9168.0, 9160.0, 9188.0]
[26.0, 27.0, 28.0]
[87, 87, 130]
p03316
u804085889
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['def S_n(n):\n num = []\n sum = 0\n while n != 0:\n num.append(n % 10)\n n = int(n / 10)\n for i in num:\n sum += i\n\n return sum\n\nif __name__ == "__main__" :\n num = int(input())\n wa = S_n(num)\n # print(wa)\n if(num % wa == 0): print("YES")\n else: print("NO")\n ', 'n=input()\nprint("Yes" if int(n)%sum(map(int, n))==0 else "No")']
['Wrong Answer', 'Accepted']
['s982375074', 's987642901']
[3064.0, 2940.0]
[17.0, 17.0]
[307, 62]
p03316
u807772568
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['a = list(input())\nsu = 0\ns = 0\nk = 0\nfor i in a:\n s += int(i)\na.reverse()\nfor i in a:\n su += i*pow(10,k)\n k += 1\n \nif su % s == 0:\n print("Yes")\nelse:\n print("No")', 'a = list(input())\nsu = 0\ns = 0\nk = 0\nfor i in a:\n s += int(i)\na.reverse()\nfor i in a:\n su += int(i)*pow(10,k)\n k += 1\n \nif su % s == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s537886258', 's643865976']
[3060.0, 3060.0]
[17.0, 17.0]
[169, 174]
p03316
u809108154
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['s=input()\nsum=0\nfor i in range(len(s)):\n sum+=int(s[i])\nif int(s)/sum==0:\n print("Yes")\nelse:\n print("No")', 's=input()\nsum=0\nfor i in range(len(s)):\n sum+=int(s[i])\nif int(s)%sum==0:\n print("Yes")\nelse:\n print("No")']
['Wrong Answer', 'Accepted']
['s304044188', 's915956296']
[2940.0, 2940.0]
[17.0, 17.0]
[110, 110]
p03316
u814663076
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["\n# B - Digit Sums\n\nfrom sys import stdin\ninput = stdin.readline\n\nN = input()\nS = 0\nfor i in N:\n S += int(i)\n\nif int(N) % S == 0:\n print('Yes')\nelse:\n print('No')", "import bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub, itemgetter\nimport numpy as np\n\nsys.setrecursionlimit(10000)\n\ndef read_int():\n\treturn int(sys.stdin.readline().strip())\n\ndef read_int_n():\n\treturn [int(x) for x in sys.stdin.readline().strip().split()]\n\ndef read_float():\n\treturn float(sys.stdin.readline().strip())\n\ndef read_float_n():\n\treturn [float(x) for x in sys.stdin.readline().strip().split()]\n\ndef read_str():\n\treturn sys.stdin.readline().strip()\n\ndef read_str_n():\n\treturn [str(x) for x in sys.stdin.readline().strip().split()]\n\ndef error_print(*args):\n\tprint(*args, file=sys.stderr)\n\ndef mt(f):\n\timport time\n\tdef wrap(*args, **kwargs):\n\t\ts = time.time()\n\t\tret = f(*args, **kwargs)\n\t\te = time.time()\n\t\terror_print(e - s, 'sec')\n\t\treturn ret\n\treturn wrap\n\n@mt\ndef slv(N):\n\tS = 0\n\tfor i in N:\n\t\tS += int(i)\n\t\t\n\tif int(N) % S == 0:\n\t\tans = 'Yes'\n\telse:\n\t\tans = 'No'\n\t\t\n\treturn ans\n\ndef main():\n\tN = read_str()\n\tprint(slv(N))\n\nif __name__ == '__main__':\n\tmain()"]
['Runtime Error', 'Accepted']
['s967628998', 's874914868']
[2940.0, 16420.0]
[18.0, 205.0]
[200, 1224]
p03316
u816631826
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n=int(input())\ntot=0\nwhile(n>0):\n dig=n%10\n tot=tot+dig\n n=n/10\nif (n%tot)==0 :\n print(\'True\')\nelif (n%tot)!=0:\n print("False")', 'num = int(input())\nnum2 = num\nsum = 0\nwhile num2 > 0:\n sum += num2 % 10\n num2 /= 10\n\nif (num % sum) == 0:\n print("Yes")\nelse:\n print("No")', "a=input()\nsum=0\nfor i in a:\n sum=sum+ord(i)-48\n\na=int(a)\nif(a%sum==0):\n print('Yes')\nelse:\n print('No')"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s055191388', 's510273392', 's446012836']
[3060.0, 2940.0, 9112.0]
[19.0, 17.0, 26.0]
[140, 142, 112]
p03316
u818213347
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['nlist = list(map(int,input()))\nrev_n = reversed(nlist)\nsn = sum(nlist)\nn = 0\n\nfor i in range(len(nlist)):\n n += rev_n[i]*(10**i) \nif n%sn == 0:\n print("Yes")\nelse:\n print("No")', 'nlist = list(map(int,input()))\nrev_n = list(reversed(nlist))\nsn = sum(nlist)\nn = 0\n\nfor i in range(len(nlist)):\n n += rev_n[i]*(10**i) \nif n%sn == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s814506375', 's817484930']
[8972.0, 9076.0]
[26.0, 31.0]
[185, 191]
p03316
u831752983
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['def s(n):\n\trtn=0\n while n>0:\n \trtn+=n%10\n n//10\n return rtn\nn=int(input())\nprint("Yes" if n%s(n)==0 else "No") ', "def s(n):\n rtn=0\n while n>0:\n rtn += n%10\n n//=10\n return rtn\nx=int(input())\nprint('Yes' if x%s(x)==0 else 'No')"]
['Runtime Error', 'Accepted']
['s325714403', 's992821461']
[2940.0, 2940.0]
[17.0, 17.0]
[127, 135]
p03316
u840958781
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n=int(input())\na=0\nfor i in range(len(a)):\n a+=str(n)[i]\nif n%a==0:\n print("Yes")\nelse:\n print("No")', 'n=int(input())\na=0\nfor i in range(len(str(n))):\n a+=int(str(n)[i])\nif n%int(a)==0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s549790589', 's779524593']
[3060.0, 3060.0]
[19.0, 17.0]
[109, 124]
p03316
u846150137
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['s=input()\nprint("Yes" if int(s) % sum(list(s)) ==0 else "No")', 's=input()\nprint("Yes" if int(s) % sum(list(map(int,list(s)))) ==0 else "No")']
['Runtime Error', 'Accepted']
['s321579937', 's733929770']
[2940.0, 2940.0]
[17.0, 17.0]
[61, 76]
p03316
u848647227
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['a = int(input())\nar = list(input())\nb = 0\nfor r in ar:\n b += int(r)\nif a % b == 0:\n print("Yes")\nelse:\n print("No")', 'b = input()\na = int(b)\nar = list(b)\nb = 0\nfor r in ar:\n b += int(r)\nif a % b == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s639885488', 's909304929']
[2940.0, 3060.0]
[18.0, 17.0]
[118, 118]
p03316
u855380359
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["n = int(input())\ns = 0\nx = len(n)\nfor i in range(x):\n a = n[-1 * i]\n s = s+ a\n \nif n%a == 0:\n print('Yes')\nelse:\n print('No')", "N = input()\nNa = int(N)\n\ndef S(N):\n r = list(N)\n p = sum(map(int, r))\n return p\n\nif Na%(S(N)) == 0:\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Accepted']
['s922508478', 's369087491']
[2940.0, 2940.0]
[17.0, 17.0]
[130, 137]
p03316
u855985627
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N=int(input())\nn=N\ni=1\ns=0\nwhile n>0:\n s+=n%10\n n=n//10\nprint(s)\nif N%s==0:\n print('Yes')\nelse:\n print('No')", "N=int(input())\nn=N\ni=1\ns=0\nwhile n>0:\n s+=n%10\n n=n//10\nif N%s==0:\n print('Yes')\nelse:\n print('No')"]
['Wrong Answer', 'Accepted']
['s592264062', 's989299887']
[3060.0, 2940.0]
[17.0, 17.0]
[112, 103]
p03316
u858670323
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n = input()\ns = 0\nfor x in str(n):\n s += int(x)\nif int(n)%s:\n print("Yes")\nelse:\n print("No")', 'n = input()\ns = 0\nfor x in str(n):\n s += int(x)\nif int(n)%s==0:\n print("Yes")\nelse:\n print("No")\n']
['Wrong Answer', 'Accepted']
['s340106499', 's480489009']
[9156.0, 9160.0]
[28.0, 27.0]
[96, 100]
p03316
u859897687
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['a=input()\nb=int(a)\nc=0\nfor i in range(len(a)):\n c+=int(a[i])\nprint("YNeos"[b%c!=1::2])', 'a=input()\nb=int(a)\nc=0\nfor i in range(len(a)):\n c+=int(a[i])\nprint("YNeos"[b%c!=0::2])']
['Wrong Answer', 'Accepted']
['s596326304', 's595961308']
[2940.0, 2940.0]
[17.0, 18.0]
[87, 87]
p03316
u863370423
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['num = int(input())\nnum2 = num\nsum = 0\nwhile num2 > 0:\n sum += num2 % 10\n num2 /= 10\n\nprint("Yes" if sum == num else "No")', 'n=int(input())\nn=str(n)\ns=0\nfor i in n:\n s+=int(i)\nif (int(n)%s==0):\n print("Yes")\nelse:\n print("No")\n']
['Wrong Answer', 'Accepted']
['s997589242', 's749318954']
[2940.0, 9032.0]
[17.0, 24.0]
[123, 111]
p03316
u870518235
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = int(input())\ns = list(str(N))\nS = 0\nfor i in range(len(s)):\n S += s[i]\n\nif N % S == 0:\n print("Yes")\nelse:\n print("No")', 's = str(input())\nN = int(S)\nS = sum(list(s))\nif N % S == 0:\n print("Yes")\nelse:\n print("No")', 's = str(input())\nN = int(s)\nS = sum(list(s))\nif N % S == 0:\n print("Yes")\nelse:\n print("No")\n', 'N = int(input())\ns = list(str(N))\nS = 0\nfor i in range(len(s)):\n S += int(s[i])\n\nif N % S == 0:\n print("Yes")\nelse:\n print("No")\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s311133584', 's469437123', 's495016660', 's259233011']
[9044.0, 9128.0, 9184.0, 9140.0]
[25.0, 26.0, 23.0, 28.0]
[132, 98, 99, 138]
p03316
u874333466
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = int(input())\nS = 0\n\nfor i in range(len(str(N))):\n S += int(str(S)[i])\n \nif N % S == 0:\n print('Yes')\nelse:\n print('No')", "N = int(input())\nS = 0\n\nfor i in range(len(str(N))):\n S += int(str(N)[i])\n \nif N % S == 0:\n print('Yes')\nelse:\n print('No')\n\n"]
['Runtime Error', 'Accepted']
['s813275764', 's655321492']
[9164.0, 9144.0]
[24.0, 25.0]
[127, 129]
p03316
u875769753
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = input()\nnum = int(N)\nNls = list(N)\nsum1 = sum([int(i) for in Nls])\nif num%sum1 == 0:\n print('Yes')\nelse:\n print('No')", "N = input()\nnum = int(N)\nNls = list(N)\nsum1 = sum(Nls)\nif num%sum1 == 0:\n print('Yes')\nelse:\n print('No')", "N = input()\nnum = int(N)\nNls = list(N)\nsum1 = sum([int(i) for i in Nls])\nif num%sum1 == 0:\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s877419205', 's901686009', 's555649688']
[8996.0, 9100.0, 9084.0]
[25.0, 26.0, 27.0]
[123, 107, 125]
p03316
u881557500
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['s=input()\nn=int(s)\nsn=0\nfor d in s:\n sn+=int(d)\nif n%sn==0:\n Print("Yes")\nelse:\n print("No")', 's=input()\nn=int(s)\nsn=0\nfor d in s:\n sn+=int(d)\nif n%sn==0:\n print("Yes")\nelse:\n print("No")\n']
['Runtime Error', 'Accepted']
['s978019614', 's229184084']
[2940.0, 2940.0]
[17.0, 17.0]
[95, 96]
p03316
u887207211
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nn = sum(list(map(int,N)))\nif(N%n == 0):\n print("Yes")\nelse:\n print("No")', 'N = input()\n\ndef num(n):\n return list(map(int,n))\n\nif(N%sum(num(N)) == 0):\n print("Yes")\nelse:\n print("No")', 'N = int(input())\nif(N%sum(list(map(int,str(N)))) == 0):\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Runtime Error', 'Accepted']
['s202166094', 's518317859', 's408959752']
[2940.0, 2940.0, 2940.0]
[18.0, 18.0, 18.0]
[86, 110, 90]
p03316
u896726004
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n, n_origin, s, keta;\n cin >> n;\n n_origin = n;\n s = 0;\n keta = 10;\n\n while (n >= 1) {\n s += n%10;\n n /= keta;\n }\n\n if (n_origin%s == 0) {\n cout << "Yes" << endl;\n }\n else {\n cout << "No" << endl;\n }\n}', "n = int(input())\nn_origin = n\n\ns = 0\nketa = 10\n\nwhile n >= 1:\n s += n%10\n n //= keta\n\nif n_origin%s==0:\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Accepted']
['s140211803', 's483905910']
[2940.0, 2940.0]
[17.0, 17.0]
[327, 148]
p03316
u905582793
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = int(input())\nfor i in range(12):\nwa = 0\n if N // 10 ** i == 0:\n break\n else:\n wa += N // 10 ** i\n\nif N % wa == 0:\n print("Yes")\nelse:\n print("No")', 'N = int(input())\nwa = 0\nfor i in range(12):\n if N // 10 ** i == 0:\n break\n else:\n wa += N // 10 ** i\n\nif N % wa == 0:\n print("Yes")\nelse:\n print("No")', 'N = int(input())\nwals = list(str(N))\nwals = [int(s) for s in wals]\nwa = sum(wals)\n\nif N % wa == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s296416253', 's516094270', 's873769493']
[2940.0, 2940.0, 2940.0]
[17.0, 18.0, 18.0]
[160, 160, 133]
p03316
u910341281
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['S= input().split() \n\nprint(S)\na=0\n\nsum=0\nfor i in S[0]:\n\t\n\tsum=sum+int(i)\n\n\n\nanser=int(S[0])%sum\n\n\n\n\n\n\nif anser == 0:\n\tprint("Yes")\n\nelse : print("No")', 'S= input().split() \n \n\na=0\n \nsum=0\nfor i in S[0]:\n\t\n\tsum=sum+int(i)\n \n \n \nanser=int(S[0])%sum\n \n \n \n \n \n \nif anser == 0:\n\tprint("Yes")\n \nelse : print("No")']
['Wrong Answer', 'Accepted']
['s274661781', 's859019643']
[3060.0, 2940.0]
[17.0, 17.0]
[151, 155]
p03316
u918601425
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N=int(input())\nn=N\nsum=0\nwhile(N>0):\n sum+=N%10\n N=N//10\nif sum%n==0:\n print("Yes")\nelse:\n print("No")\n', 'N=int(input())\nn=N\nsum=0\nwhile(N>0):\n sum+=N%10\n N=N//10\nif n%sum==0:\n print("Yes")\nelse:\n print("No")\n']
['Wrong Answer', 'Accepted']
['s034848722', 's905503115']
[2940.0, 2940.0]
[17.0, 17.0]
[107, 107]
p03316
u919633157
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["#copy code\n\nn=input()\nprint('Yes' if int(n)%sum(map(int,n)) else 'No')", "#copy code\n\nn=input()\nprint('Yes' if int(n)%sum(map(int,n))==0 else 'No')"]
['Wrong Answer', 'Accepted']
['s969444339', 's139164199']
[2940.0, 2940.0]
[17.0, 17.0]
[70, 73]
p03316
u922449550
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = input()\nS = 0\nfor n in N:\n S += int(n)\n\nif S % N:\n print('No')\nelse:\n print('Yes')", "N = input()\nS = 0\nfor n in N:\n S += int(n)\n\nif S % int(N):\n print('No')\nelse:\n print('Yes')", "N = input()\nS = 0\nfor n in N:\n S += int(n)\n\nif int(N) % S:\n print('No')\nelse:\n print('Yes')"]
['Runtime Error', 'Wrong Answer', 'Accepted']
['s671637556', 's791561338', 's681972332']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[89, 94, 94]
p03316
u923712635
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = input()\ns = 0\nfor i in N:\n s+=int(i)\nif(N%s == 0):\n print('Yes')\nelse:\n print('No')", "N = input()\ns = 0\nfor i in N:\n s+=int(i)\nif(int(N)%s == 0):\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Accepted']
['s505707469', 's782693823']
[2940.0, 2940.0]
[17.0, 18.0]
[90, 95]
p03316
u923794601
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nS = sum(map(int, N))\n\nif N % S == 0:\n print("Yes")\nelse:\n print("No")', 'N = input()\nS = sum(map(int, N))\n\nif int(N) % S == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s827377365', 's216928298']
[2940.0, 2940.0]
[17.0, 17.0]
[87, 92]
p03316
u924308178
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['# coding: utf-8\n# Your code here!\n\ns = input()\nprint(sum(list(map(int,s))))', "# coding: utf-8\n# Your code here!\n\ns = input()\nprint('Yes' if int(s)%sum(list(map(int,s)))==0 else 'No')"]
['Wrong Answer', 'Accepted']
['s584883727', 's249606737']
[2940.0, 2940.0]
[18.0, 17.0]
[75, 104]
p03316
u924828749
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n = int(input())\n\ndef check(p):\n c = 0\n while p > 0:\n c += p % 10\n p //= 10\n return c\n\nif n % check(p) == 0:\n print("Yes")\nelse:\n print("No")', 'n = int(input())\n \ndef check(p):\n c = 0\n while p > 0:\n c += p % 10\n p //= 10\n return c\n \nif n % check(n) == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s515717534', 's441106625']
[9076.0, 9128.0]
[22.0, 29.0]
[152, 154]
p03316
u928784113
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['# -*- coding: utf-8 -*-\nS = str(input())\nL = []\nfor i in range(len(S)):\n L.append(S[i])\nM = sum(L)\nif int(S) % M == 0:\n print("Yes")\nelse:\n print("No")', '# -*- coding: utf-8 -*-\nS = str(input())\nL = []\nfor i in range(len(S)):\n L.append(int(S[i]))\nM = sum(L)\nif int(S) % M == 0:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s931885324', 's381872395']
[2940.0, 2940.0]
[18.0, 18.0]
[154, 159]
p03316
u934246119
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["n = int(input())\nnum = []\ntmp = n\nwhile 1:\n if tmp == 0:\n break\n num.append(int(tmp % 10))\n tmp //= 10\ns = sum(num)\nif n % s == 0:\n print('YES')\nelse:\n print('NO')\n", "n = int(input())\nnum = []\ntmp = n\nwhile 1:\n if tmp == 0:\n break\n num.append(int(tmp % 10))\n tmp //= 10\ns = sum(num)\nif n % s == 0:\n print('Yes')\nelse:\n print('No')\n"]
['Wrong Answer', 'Accepted']
['s760709450', 's822833558']
[2940.0, 2940.0]
[18.0, 17.0]
[186, 186]
p03316
u935845450
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['#include<bits/stdc++.h>\n\nusing namespace std;\nchar a[15];\nint main(){\n scanf("%s", a);\n int lsum = 0, sum = 0;\n for(int i = 0; i < strlen(a); i++){\n lsum += a[i] - \'0\';\n sum = sum * 10 + a[i] - \'0\';\n }\n if(sum % lsum == 0) printf("Yes\\n");\n else printf("No\\n");\n}\n', "s = input()\nprint(['Yes', 'No'][int(s) % sum(map(int, s)) != 0])"]
['Runtime Error', 'Accepted']
['s777397833', 's625829481']
[2940.0, 3060.0]
[17.0, 19.0]
[298, 64]
p03316
u936985471
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['n=input()\ns=0\nfor i in range(len(n)):\n s=s+int(n[i])\nprint(("No","Yes")[int(n)%s==0]', 'n=input()\ns=0\nfor i in range(len(n)):\n s=s+int(n[i])\nprint(("No","Yes")[int(n)%s==0])\n']
['Runtime Error', 'Accepted']
['s965840448', 's898852190']
[2940.0, 2940.0]
[17.0, 17.0]
[85, 87]
p03316
u941884460
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["n = int(input())\ntotal = 0\nfor i in range(len(str(n))):\n total += str(n)[i]\nif N%total == 0:\n print('Yes')\nelse:\n print('No')", "n = int(input())\ntotal = 0\nfor i in range(len(str(n))):\n total += int(str(n)[i])\nif n%total == 0:\n print('Yes')\nelse:\n print('No')"]
['Runtime Error', 'Accepted']
['s932051900', 's686447003']
[2940.0, 2940.0]
[17.0, 17.0]
[128, 133]
p03316
u952022797
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['# -*- coding: utf-8 -*-\nimport sys\nimport copy\nimport collections\nfrom bisect import bisect_left\nfrom bisect import bisect_right\nfrom collections import defaultdict\nfrom heapq import heappop, heappush\nimport numpy as np\nimport statistics\nfrom statistics import mean, median,variance,stdev\nimport math\n\ndef main():\n\tN = list(input())\n\t\n\tto = 0\n\tfor i in N:\n\t\tto += int(i)\n\t\n\tif N % to == 0:\n\t\tprint("Yes")\n\telse:\n\t\tprint("No")\n\t\n\t\nif __name__ == "__main__":\n\tmain()\n', '# -*- coding: utf-8 -*-\nimport sys\nimport copy\nimport collections\nfrom bisect import bisect_left\nfrom bisect import bisect_right\nfrom collections import defaultdict\nfrom heapq import heappop, heappush\nimport numpy as np\nimport statistics\nfrom statistics import mean, median,variance,stdev\nimport math\n\ndef main():\n\tN = list(input())\n\t\n\t\n\tto = 0\n\tNN = ""\n\tfor i in N:\n\t\tto += int(i)\n\t\tNN += i\n\t\n\tif int(NN) % to == 0:\n\t\tprint("Yes")\n\telse:\n\t\tprint("No")\n\t\n\t\nif __name__ == "__main__":\n\tmain()\n']
['Runtime Error', 'Accepted']
['s829440296', 's603247556']
[13248.0, 13224.0]
[158.0, 159.0]
[465, 492]
p03316
u955251526
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["s_string = input()\ns_charlist = list(s_string)\ns_int = int(s_string)\ns_sum10 = sum(list(map(int, s_charlist)))\nif s_int % s_sum10 == 0:\n print('YES')\nelse:\n print('NO')", "s_string = input()\ns_charlist = list(s_string)\ns_int = int(s_string)\ns_sum10 = sum(list(map(int, s_charlist)))\nif s_int % s_sum10 == 0:\n print('Yes')\nelse:\n print('No')"]
['Wrong Answer', 'Accepted']
['s880905548', 's215920802']
[2940.0, 3060.0]
[18.0, 20.0]
[174, 174]
p03316
u960171798
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nS = 0\nfor n in N:\n S += n\nN = int(N)\nprint("Yes" if N%S == 0 else "No")\n', 'N = input()\nS = 0\nfor n in N:\n S += n\nN = int(N)\nprint("Yes" if N%S == 0 else "No")', 'n = input()\nN = int(n)\nn = list(n)\nfor i in range(len(n)):\n n[i] = int(n[i])\nsum_n = sum(n)\nif N%sum_n==0:\n print("Yes")\nelse:\n print("No")\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s158216320', 's972970956', 's493139484']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[85, 84, 149]
p03316
u963903527
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['s = input()\na = list(s)[0]\nb = list(s)[1]\nsn = a + b\nsn = int(sn)\ns = int(s)\n\nif s % sn == 0:\n print("YES")\nelse:\n print("NO")', 's = input()\nl = list(s)\nsn = 0\nfor x in l:\n sn += int(x)\n\nsn = int(sn)\ns = int(s)\n\nif s % sn == 0:\n print("Yes")\nelse:\n print("No")']
['Wrong Answer', 'Accepted']
['s366752308', 's421488441']
[3060.0, 3060.0]
[17.0, 18.0]
[128, 134]
p03316
u967835038
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["a=int(input())\nn=list(str(a))\nN=map(int,n)\nan=0\nlena=len(n)\nfor i in range(lena):\n an += N[i]\nif a % an ==0:\n print('Yes')\nelse:\n print('No')\n", "n=str(input())\na=0\nfor i in n:\n a += int(i)\nif int(n)%a==0:\n print('Yes')\nelse:\n print('No')\n"]
['Runtime Error', 'Accepted']
['s540703198', 's747881282']
[3060.0, 2940.0]
[17.0, 17.0]
[151, 102]
p03316
u978494963
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nans = 0\nfor n in N:\n ans += int(n)\nif int(N) % ans == 0:\n print("Yes")\nelse:s\n print("No")', 'N = input()\nans = 0\nfor n in N:\n ans += int(n)\nif N % ans == 0:\n print("Yes")\nelse:s\n print("No")', 'N = input()\nans = 0\nfor n in N:\n ans += int(n)\nif int(N) % ans == 0:\n print("Yes")\nelse:\n print("No") ']
['Runtime Error', 'Runtime Error', 'Accepted']
['s019958865', 's066158812', 's198851618']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[105, 100, 105]
p03316
u980492406
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
["N = list(input())\nn = int(''.join(N))\nsn = 0\nfor i in N :\n sn += int(i)\nif sn % n == 0 :\n print('Yes')\nelse :\n print('No')", "N = list(input())\nn = int(''.join(N))\nsn = 0\nfor i in N :\n sn += int(i)\nif n % sn == 0 :\n print('Yes')\nelse :\n print('No')"]
['Wrong Answer', 'Accepted']
['s950142031', 's604213787']
[2940.0, 2940.0]
[17.0, 17.0]
[131, 131]
p03316
u996749146
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['\n# B - Digit Sums\n\n# B_Digit_Sums.py\n\nN = int(input())\nstr_N = str(N)\n\nS_N = 0\nfor i in range(len(str_N)):\n S_N += ( N % (10 ** (i+1)) ) // ( N // (10 ** i) )\nprint(S_N)\n', '\n# B - Digit Sums\n\n# B_Digit_Sums.py\n\nN = int(input())\nstr_N = str(N)\n\nS_N = 0\nfor i in range(str_N):\n S_N += ( N % (10 ** (i+1)) ) // ( N // (10 ** i) )\nprint(S_N)\n', "\n# B - Digit Sums\n\n# B_Digit_Sums.py\n\nN = int(input())\nstr_N = str(N)\n\nS_N = 0\nfor i in range(len(str_N)):\n S_N += ( N % (10 ** (i+1)) ) // (10 ** i)\n\nif N % S_N == 0:\n print('Yes')\nelse:\n print('No')\n"]
['Wrong Answer', 'Runtime Error', 'Accepted']
['s259744223', 's823583971', 's184025788']
[2940.0, 3064.0, 2940.0]
[17.0, 17.0, 17.0]
[229, 224, 266]
p03316
u999449420
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(101) = 1 + 0 + 1 = 2. Given an integer N, determine if S(N) divides N.
['N = input()\nn = int(N)\nwaru = 0\nfor i in N:\n waru += int(i)\n print(waru)\n\nif((n % waru) == 0):\n print("YES")\nelse:\n print("NO")', 'N = input()\nn = int(N)\nwaru = 0\nfor i in N:\n waru += int(i)\n print(waru)\n\nif((n % waru) == 0):\n print("Yes")\nelse:\n print("No")\n', 'N = input()\nn = int(N)\nwaru = 0\nfor i in N:\n waru += int(i)\n\nif((n % waru) == 0):\n print("Yes")\nelse:\n print("No")\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s213089466', 's526656990', 's263403061']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[139, 140, 124]
p03317
u004025573
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\n\nN,K=map(int, input().split())\n\nA=list(map(int, input().split()))\n\n\nfor i in range(N):\n if A[i]==1:\n min_a=i+1\n break\n\nx = min_a-1\ny = N-min_a\n\n\nans=math.ceil(x/(K-1))+math.ceil(y/(K-1))\n\nif x>y:\n x=x-math.ceil(K/2)\n y=y-math.floor(K/2)\nelse:\n y=y-math.ceil(K/2)\n x=x-math.floor(K/2)\n \nans1=1+math.ceil(x/(K-1))+math.ceil(y/(K-1))\n\nif ans>ans1:\n print(ans1)\nelse:\n print(ans)', 'N,K=map(int, input().split())\n\nA=list(map(int, input().split()))\n\n\nfor i in range(N):\n if A[i]==1:\n min_a=i+1\n break\n\nx = min_a-1\ny = N-min_a\n\n\nansa=x//(K-1)+y//(K-1)\n\nif x%(K-1)>0:\n ansa=ansa+1\nif y%(K-1)>0:\n ansa=ansa+1\n\n\n#\n#if x==y and K%2==1:\n# if (x-kk)%(K-1)==0 and (y-kk)%(K-1)==0:\n\n\nkk1 = (K-1)//2\nkk0 = K-kk1\n\nif x>y:\n x=x-kk0\n y=y-kk1\nelse:\n x=x-kk1\n y=y-kk0\n\nansb = 1+x//(K-1)+y//(K-1)\n\nif x%(K-1)>0:\n ansb=ansb+1\nif y%(K-1)>0:\n ansb=ansb+1\n\nif ansa>ansb:\n ans=ansb\nelse:\n ans=ansa\n\nif N==K:\n ans = 1\n\nprint(ans)\n', 'import math\n\nN,K=map(int, input().split())\n\nA=list(map(int, input().split()))\n\n\n\nprint(math.ceil((N-1)/(K-1)))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s061845933', 's676969100', 's102151763']
[13812.0, 14008.0, 13812.0]
[46.0, 45.0, 40.0]
[425, 610, 110]
p03317
u007263493
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n , k = map(int,input().split())\nprint((n-1)//(k-2)+1)', 'n , k = map(int,input().split())\nprint((n-1)//k-2+1)', 'n , k = map(int,input().split())\nl = list(map(int,input().split()))\nm = l.index(min(l))\nif k <= m:\n ans = (m + 1) //k + 1 + (n -m) // k +1\nif k > m:\n o = k - m \n ans = (k - o) // k + 1', 'n , k = map(int,input().split())\nprint((n-2)//(k-1)+1)']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s056596936', 's198761376', 's524726522', 's605295107']
[3060.0, 2940.0, 14008.0, 3060.0]
[18.0, 18.0, 43.0, 17.0]
[54, 52, 193, 54]
p03317
u013629972
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\n\nN, K = LI()\nA = LI()\n\nif N == K:\n print(1)\n exit()\nresult = 0\nN -= K\nresult += 1\nresult += N / (K-1)\nif N % (K-1) != 0:\n result = round(result) + 1\n\nprint(result)\n', '# import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\n\n# inf = 10 ** 20\n# eps = 1.0 / 10**10\n# mod = 10**9+7\n# dd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\n# ddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\n# def LI(): return [int(x) for x in sys.stdin.readline().split()]\n# def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\n# def LF(): return [float(x) for x in sys.stdin.readline().split()]\n\n\n\n\n\n\n# N, K = LI()\n# A = LI()\n\n# if N == K:\n# print(1)\n# exit()\n# N -= K\n\n# if result % 1 != 0:\n# result //= 1\n# result += 1\n\n# print(int(result))\n\n\n\nimport math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\n\nN, K = LI()\nA = LI()\n\nif N == K:\n print(1)\n exit()\nresult = 0\nN -= K\nresult += 1\nresult += N / (K-1)\nif N % (K-1) != 0:\n result = int(result)\n\nprint(result)\n', 'import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\n\nN, K = LI()\nA = LI()\n\nif N == K:\n print(1)\n exit()\nresult = 0\nN -= K\nresult += 1\nresult += N / (K-1)\nif N % (K-1) != 0:\n result = int(result)\n\nprint(int(result))\n', '# import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\n\n# inf = 10 ** 20\n# eps = 1.0 / 10**10\n# mod = 10**9+7\n# dd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\n# ddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\n# def LI(): return [int(x) for x in sys.stdin.readline().split()]\n# def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\n# def LF(): return [float(x) for x in sys.stdin.readline().split()]\n\n\n\n\n\n\n# N, K = LI()\n# A = LI()\n\n# if N == K:\n# print(1)\n# exit()\n# N -= K\n\n# if result % 1 != 0:\n# result //= 1\n# result += 1\n\n# print(int(result))\n\n\n\nimport math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\n\nN, K = LI()\nA = LI()\n\nif N == K:\n print(1)\n exit()\nresult = 0\nN -= K\nresult += 1\nresult += N / (K-1)\nif N % (K-1) != 0:\n result = int(result) + 1\n\nprint(int(result))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s389422311', 's708056324', 's989368932', 's989179099']
[16276.0, 16272.0, 16280.0, 16272.0]
[68.0, 71.0, 70.0, 68.0]
[877, 1817, 876, 1825]
p03317
u017624958
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\n# print(N, K, A)\n\nanswer = N / (K - 1)\n\nprint(answer)\n', 'import math\n\nN, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\n# print(N, K, A)\n\nanswer = math.ceil((N - 1)/ (K - 1))\n\nprint(answer)\n']
['Wrong Answer', 'Accepted']
['s127160820', 's593186647']
[13880.0, 13812.0]
[41.0, 40.0]
[129, 158]
p03317
u019578976
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N , K = map(int, input().split(" "))\nA = list(map(int, input().split(" ")))\nprint(ceil((N-1)/(K-1)))', 'import math\nN , K = map(int, input().split(" "))\nA = list(map(int, input().split(" ")))\nprint(math.ceil((N-1)/(K-1)))']
['Runtime Error', 'Accepted']
['s358832267', 's085227854']
[13880.0, 13812.0]
[41.0, 39.0]
[100, 117]
p03317
u020390084
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import sys\n\ndef solve(N: int, K: int, A: "List[int]"):\n \n cur = K\n answer = 1\n while K < N:\n cur+=K-1\n answer +=1\n print(answer)\n return\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n K = int(next(tokens)) # type: int\n A = [int(next(tokens)) for _ in range(N)] # type: "List[int]"\n solve(N, K, A)\n\nif __name__ == \'__main__\':\n main()\n', '#!/usr/bin/env python3\nimport sys\nimport math\ndef solve(N: int, K: int, A: "List[int]"):\n \n cur = K\n answer = 1 + math.ceil((N-K)/(K-1))\n print(answer)\n return\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n K = int(next(tokens)) # type: int\n A = [int(next(tokens)) for _ in range(N)] # type: "List[int]"\n solve(N, K, A)\n\nif __name__ == \'__main__\':\n main()\n']
['Time Limit Exceeded', 'Accepted']
['s168371592', 's494518943']
[14000.0, 14452.0]
[2104.0, 53.0]
[568, 574]
p03317
u021548497
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\na = [int(x) for x in input().split()]\nprint((n-1)//(k-1))', 'n, k = map(int, input().split())\na = [int(x) for x in input().split()]\nminimum = 10**9\nindex = -1\nfor i in range(n):\n if minimum > a[i]:\n index = i\n minimum = a[i]\nans = 1+(i-1)//(k-1)+(n-i-1)//(k-1)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s914993106', 's011751529']
[13880.0, 13812.0]
[44.0, 55.0]
[90, 217]
p03317
u026102659
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split(" "))\nnums = list(input().split(" "))\na = nums.index("1")\nl = (a+1) / (K-1)\nr = (N-a) / (K-1)\nprint(l + r)', 'N, K = map(int, input().split(" "))\nif (N-1) / (K-1) == int((N-1) / (K-1)):\n ans = int((N-1)/(K-1))\nelse:\n ans = int((N-1)/(K-1)) + 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s629785385', 's343828104']
[10612.0, 3060.0]
[27.0, 17.0]
[136, 146]
p03317
u026155812
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nN, K = map(int, input().split())\nA = [int(i) for i in input().split()]\nind = A.index(1)\nif (ind%(K-1) + (N-ind-1)%(K-1)+1)%(K-1) == 0:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1))-1)\nelse:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1)))', '実装無理\nimport math\nN, K = map(int, input().split())\nA = [int(i) for i in input().split()]\nind = A.index(1)\nif (ind%(K-1) + (N-ind-1)%(K-1))%(K-1) == 0:\n print(math.floor(ind/(K-1)) + math.floor((N-ind-1)/(K-1))+1)\nelse:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1)))', '実装無理\nimport math\nN, K = map(int, input().split())\nA = [int(i) for i in input().split()]\nind = A.index(1)\nif (ind%(K-1) + (N-ind-1)%(K-1)) <= K-1:\n print(math.floor(ind/(K-1)) + math.floor((N-ind-1)/(K-1))+1)\nelse:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1)))', 'import math\nN, K = map(int, input().split())\nA = [int(i) for i in input().split()]\nind = A.index(1)\nif (ind%(K-1) + (N-ind-1)%(K-1))%(K-1) == 1:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1))-1)\nelse:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1)))', 'import math\nN, K = map(int, input().split())\nA = [int(i) for i in input().split()]\nind = A.index(1)\nif K == 2:\n print(N-1)\nelse:\n if (ind%(K-1) + (N-ind-1)%(K-1)+1) <= K-1:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1))-1)\n else:\n print(math.ceil(ind/(K-1)) + math.ceil((N-ind-1)/(K-1)))', 'import math\nN, K = map(int, input().split())\nA = [int(i) for i in input().split()]\nind = A.index(1)\nprint(math.ceil((ind + (N-ind-1))/(K-1)))']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s088704997', 's198412451', 's392431027', 's883267806', 's945800553', 's092781123']
[13812.0, 3064.0, 3064.0, 13812.0, 13812.0, 13812.0]
[44.0, 17.0, 19.0, 47.0, 44.0, 45.0]
[276, 289, 285, 274, 320, 141]
p03317
u026686258
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nmin_idx = A.index(min(A))\n\nleftnum = min_idx\nrightnum = N - (min_idx + 1)\nprint((leftnum + rightnum) // (K - 1))', 'N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nmin_idx = A.index(min(A))\n\nif K >= N:\n print(1)\nelse:\n if ((N-1)%(K-1)):\n print((N - 1)// (K - 1))\n else:\n print((N - 1) // (K - 1) + 1)', 'N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nmin_idx = A.index(min(A))\n\nif K >= N:\n print(1)\nelse:\n if (n-1)%(k-1):\n print((N - 1) // (K - 1) + 1)\n else:\n print((N - 1)// (K - 1))', 'N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nmin_idx = A.index(min(A))\n\nif K >= N:\n print(1)\nelse:\n if ((N-1)%(K-1) == 0):\n print((N - 1)// (K - 1))\n else:\n print((N - 1) // (K - 1) + 1)']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s475456096', 's597757024', 's822765914', 's261926097']
[14008.0, 13880.0, 13880.0, 13880.0]
[42.0, 43.0, 43.0, 43.0]
[183, 230, 228, 235]
p03317
u026788530
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
["N,K =[int(i) for i in input().split(' ')]\n\nA = [int(i) for i in input().split(' ')]\n\nans =0\nif (N-1)%(k-1) ==0:\n ans = (N-1)//(k-1)\nelse:\n ans = (N-1)//(k-1) +1\nprint(ans)\n", "N,K =[int(i) for i in input().split(' ')]\n\nA = [int(i) for i in input().split(' ')]\n\nans =0\nif (N-1)%(K-1) ==0:\n ans = (N-1)//(K-1)\nelse:\n ans = (N-1)//(K-1) +1\nprint(ans)\n"]
['Runtime Error', 'Accepted']
['s593004267', 's171875894']
[13880.0, 13880.0]
[43.0, 43.0]
[515, 515]
p03317
u028554976
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k,*_=map(int,open(0).read().split())\nprint(-~n//-~k)', 'n,k,*_=map(int,open(0).read().split())\nprint(~-n//~-k)', 'a,b=int(input())\nfor x in input().split():\n print(x)', 'n,k=map(int,open(0).split())\nprint(0--~-n//~-k)', 'n,k=int(input().split());print(0--~-n//~-k)', "print(eval('0--~-'+''.join([i if i!=' 'else'//~-'for i in input()])))"]
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s286770939', 's389273532', 's458475752', 's635740156', 's972077680', 's538413246']
[20116.0, 20004.0, 9156.0, 8952.0, 8940.0, 9092.0]
[49.0, 48.0, 26.0, 25.0, 24.0, 28.0]
[54, 54, 53, 47, 43, 69]
p03317
u046585946
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int,input().split())\na=list(map(int,input().split()))\none_p=a.index(1)\nans=0\nif n!=k:\n ans=ans+(one_p)//(k-1) if (one_p)%(k-1)==0 else ans+(one_p)//(k-1)+1\n ans=ans+(n-one_p)//(k-1) if (n-one_p)%(k-1)==0 else ans+(n-one_p)//(k-1)+1\n if (n-k)//k==0:\n ans=ans-1\nelse:\n ans=1\nprint(ans)', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\none_p=a.index(1)\nans=0\nif n!=k:\n ans=ans+(one_p)//(k-1) if (one_p)%(k-1)==0 else ans=ans+(one_p)//(k-1)+1\n ans=ans+(n-one_p)//(k-1) if (n-one_p)%(k-1)==0: else ans=ans+(n-one_p)//(k-1)+1\nelse:\n ans=1\nprint(ans)', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\none_p=a.index(1)\nans=0\nif n!=k:\n ans=ans+(one_p)//(k-1) if (one_p)%(k-1)==0 else ans+(one_p)//(k-1)+1\n ans=ans+(n-one_p)//(k-1) if (n-one_p)%(k-1)==0: else ans+(n-one_p)//(k-1)+1\nelse:\n ans=1\nprint(ans)', 'n,k=map(int,input().split())\nans=1\nwhile n>ans*(k-1)+1:\n ans=ans+1\nprint(ans)']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s230896154', 's234803171', 's587252564', 's104649868']
[13880.0, 2940.0, 2940.0, 3060.0]
[40.0, 17.0, 18.0, 27.0]
[298, 275, 267, 78]
p03317
u050024609
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['[N, K] = map(int, input().split())\nA = input()\ncount = 1\nwhile N != 1:\n\tN = N // K + (1 if N - N*(N // K) != 0 else 0)\n\tcount = count + 1\nprint((K**(count - 1) - 1)//(K - 1))\n', '[N, K] = map(int, input().split())\nA = list(map(int, input().split()))\nprint(-(-(N - 1) // (K - 1)))\n']
['Wrong Answer', 'Accepted']
['s210301171', 's334027871']
[4280.0, 14004.0]
[19.0, 41.0]
[176, 101]
p03317
u050708958
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = [int(i) for i in input().split()]\ninput()\nif n == k:\n print(1)\n exit()\nc = 1\ni = 1\nwhile c <= n:\n c += k\n i += 1\nprint(i)\n', 'n, k = [int(i) for i in input().split()]\ninput()\nif n == k:\n print(1)\n exit()\nc = 1\ni = 1\nwhile c <= n:\n c += k - 1\n i += 1\nprint(i)', 'import math\nn, k = map(int, input().split())\nprint(math.ceil((n-k) / (k - 1) + 1))\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s730709288', 's785621397', 's489055603']
[4724.0, 4280.0, 3060.0]
[23.0, 29.0, 17.0]
[141, 144, 83]
p03317
u052332717
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int,input().split())\na_list = list(map(int,input().split()))\n\nif (N-1)%(K-1) == 0:\n print(N//(K-1))\nelse:\n print(N//(K-1)+1)', 'N,K = map(int,input().split())\na_list = list(map(int,input().split()))\n\nif (N-1)%(K-1) == 0:\n print((N-1)//(K-1))\nelse:\n print((N-1)//(K-1)+1)']
['Wrong Answer', 'Accepted']
['s872700455', 's378590140']
[14008.0, 14008.0]
[41.0, 41.0]
[148, 156]
p03317
u052499405
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nn, k = [int(item) for item in input().split()]\na = [int(item) for item in input().split()]\n\nmin_place = a.index(1) + 1\nleft = math.ceil((min_place - 1) / (k-1)) \nif left != 0:\n left_lest = (k-1) - (min_place - 1) % (k-1)\nelse:\n left_lest = 0\nright = math.ceil((n - min_place - left_lest) / (k-1))\n\nprint(left + right)', 'import math\nn, k = [int(item) for item in input().split()]\na = [int(item) for item in input().split()]\n\nmin_place = a.index(1) + 1\nleft = math.ceil((min_place - 1) / (k-1)) \nleft_lest = (k-1) - (min_place - 1) % (k-1)\nright = math.ceil((n - min_place - left_lest) / (k-1))\n\nprint(left + right)', 'import math\nn, k = [int(item) for item in input().split()]\na = [int(item) for item in input().split()]\n\nmin_place = a.index(1) + 1\nleft = math.ceil((min_place - 1) / (k-1)) \nleft_lest = 0\nif left != 0 and (min_place - 1) % (k-1) != 0:\n left_lest = (k-1) - (min_place - 1) % (k-1)\n \nright = math.ceil((n - min_place - left_lest) / (k-1))\nprint(left + right)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s433977444', 's520434339', 's278865018']
[13812.0, 13812.0, 13812.0]
[45.0, 45.0, 45.0]
[331, 293, 358]
p03317
u065079240
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['\nimport math\nN, K = map(int, input().split())\nA = [int(x) for x in input().split()]\nans = math.floor((N - 1) / (K - 1))\nprint(ans)\n', '\nimport math\nN, K = map(int, input().split())\nA = [int(x) for x in input().split()]\nans = math.ceil((N - 1) / (K - 1))\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s177180039', 's520451822']
[13812.0, 13812.0]
[45.0, 43.0]
[254, 253]
p03317
u066620486
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = list(map(int,input().split()))\nA = list(map(int,input().split()))\nprint((N-1)//(K-1))\n', 'N,K = list(map(int,input().split()))\nA = list(map(int,input().split()))\nprint((N+K-3)//(K-1))\n']
['Wrong Answer', 'Accepted']
['s543345126', 's123820549']
[14008.0, 13880.0]
[40.0, 40.0]
[92, 94]
p03317
u073852194
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k = map(int,input().split())\nA = list(map(int,input().split()))\na = A.index(1)\nb = -(-a//(k-1))*(k-1)+1\nif n == k:\n print(1)\nelse:\n print(-(-a//(k-1))-(-(n-b-1)//(k-1)))', 'n,k = map(int,input().split())\nA = list(map(int,input().split()))\na = A.index(1)\nb = -(-a//(k-1))*(k-1)\nif n == k:\n print(1)\nelse:\n print(-(-a//(k-1))-(-(n-b-1)//(k-1)))']
['Wrong Answer', 'Accepted']
['s118800741', 's151260726']
[13880.0, 13880.0]
[41.0, 40.0]
[177, 175]
p03317
u079656139
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int,input().split())\nprint((N-1)//(K-1))', 'N, K = map(int,input().split())\ntmp = (N-1)%(K-1)\nans = (N-1)//(K-1)\nif tmp == 0:\n print(ans)\nelse:\n print(ans + 1)']
['Wrong Answer', 'Accepted']
['s775619513', 's490561879']
[3060.0, 3060.0]
[23.0, 17.0]
[51, 117]
p03317
u083960235
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nN,K=map(int,input().split())\nA=list(map(int,input().split()))\nprint(math.ceil((N-1)/K-1))\n\n\n \n', 'import math\nN,K=map(int,input().split())\nA=list(map(int,input().split()))\nprint(math.ceil((N-1)/(K-1)))\n\n\n \n']
['Wrong Answer', 'Accepted']
['s759999426', 's440232591']
[13812.0, 13812.0]
[40.0, 40.0]
[109, 111]
p03317
u095969144
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['a, b = map(int, input().split())\nc = b - 1\n\nd = a / c\n\nprint(d + 1)', 'import math\na, b = map(int, input().split())\nc = b - 1\n\nd = a / c\n\nprint(math.ceil(d)\n', 'a, b = map(int, input().split())\nc = b - 1\n\nd = a / c\n\nprint(d)', 'import math\na, b = map(int, input().split())\nd = (a-1) / (b-1)\nprint(math.ceil(d))\n']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s488006159', 's876679955', 's928622625', 's556555140']
[3060.0, 2940.0, 3060.0, 2940.0]
[17.0, 18.0, 18.0, 17.0]
[67, 86, 63, 83]
p03317
u102461423
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int,input().split())\n\nanswer = (N-1)//(K-1)+2\nprint(answer)', 'import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN,K = map(int,readline().split())\n\nanswer = (N-1+K-2) // (K-1)\nprint(answer)']
['Wrong Answer', 'Accepted']
['s629459848', 's829437392']
[3060.0, 2940.0]
[17.0, 17.0]
[69, 193]
p03317
u103902792
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k = map(int,input().split())\nA = list(map(int,input().split()))\nimport math\nans = math.ceil(((n-1)/(k-1))\nprint(ans)', 'n,k = map(int,input().split())\nA = list(map(int,input().split()))\nimport math\nans = math.ceil(((n-1)/(k-1)))\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s390239514', 's571150202']
[8992.0, 20544.0]
[24.0, 44.0]
[118, 121]
p03317
u106297876
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['nk=input().split()\nl=input().split()\n\nnk_i=[int(s) for s in nk]\nN=nk_i[0]\nK=nk_i[1]\n\nl_i=[int(s) for s in l]\n\nj=l_i.index(1)\nj\n\nif N==K:\n print(1)\nelse:\n a=1+j//(K-1)+1+(N-1-j)//(K-1)\n print(a)\n', 'nk=input().split()\nl=input().split()\n\nnk_i=[int(s) for s in nk]\nN=nk_i[0]\nK=nk_i[1]\n\nl_i=[int(s) for s in l]\n\nif N==K:\n print(1)\nelse:\n a=-(-(N-1)//(K-1))\n print(a)']
['Wrong Answer', 'Accepted']
['s836840746', 's321977675']
[13880.0, 13880.0]
[45.0, 45.0]
[203, 173]
p03317
u107091170
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K=map(int,input().split())\nA=list(map(int,input().split()))\nans = 1\nN -= K\nwhile N<=0:\n ans += 1\n N -= K-1\nprint(ans)', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\nans = 1\nN -= K\nwhile N>0:\n ans += 1\n N -= K-1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s451119595', 's703520667']
[13880.0, 13880.0]
[2104.0, 46.0]
[121, 121]
p03317
u111202730
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nprint((N+K-3)/(K-1))', 'import math\n\nN, K = map(int, input().split())\ninput()\n\nprint(math.ceil((N-1)/(K-1)))']
['Wrong Answer', 'Accepted']
['s293116330', 's856622904']
[14004.0, 4724.0]
[43.0, 18.0]
[90, 84]
p03317
u111508936
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\n# perm = list(map(int, input().split()))\n\n# print(N)\n\n# print(perm)\n\nif N <= 1:\n print(0)\nelif N <= K:\n print(1)\nelse:\n print(int((N - 1) / (K - 1)))\n', 'N, K = map(int, input().split())\nperm = list(map(int, input().split()))\n\n# print(N)\n\n# print(perm)\n\nif N <= 1:\n print(0)\nelif N <= K:\n print(1)\nelse:\n print(int((N - 1) / (K - 1)))\n', 'N, K = map(int, input().split())\n# perm = list(map(int, input().split()))\n\n# print(N)\n\n# print(perm)\n\nn = N\nret = 0\n\nn = n - K\nret += 1\n\nwhile n > 0:\n n = n - (K - 1)\n ret += 1\n\nprint(ret)\n\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s435119727', 's968499097', 's307584110']
[3060.0, 14004.0, 3060.0]
[17.0, 41.0, 26.0]
[202, 200, 240]