problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03317
u623819879
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int,input().split())\nprint((n-1+k)//(k-1))', 'n,k=map(int,input().split())\nprint(int((n-1)/(k-1)))', 'n,k=map(int,input().split())\nprint((n-1)//(k-1))', 'n,k=map(int,input().split())\nprint(int((n-1)/k))', 'n,k=map(int,input().split())\nprint(int((n-1)/k))', 'n,k=map(int,input().split())\nprint(int((n-1)/(k-1))', 'n,k=map(int,input().split())\nprint((n+k-3)//(k-1))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s026671942', 's109836776', 's139798426', 's153923352', 's218207039', 's529908567', 's732608853']
[2940.0, 2940.0, 2940.0, 3060.0, 2940.0, 2940.0, 2940.0]
[17.0, 18.0, 17.0, 20.0, 18.0, 17.0, 17.0]
[50, 52, 48, 48, 48, 51, 50]
p03317
u631914718
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = LI()\na = LI()\nl = len(a[:a.index(1)])\nr = len(a[a.index(1):])\n\nif l == 0:\n left = 0\nelif l < k:\n left = 1\nelse:\n left = math.ceil((l - k) / (k - 1)) + 1\n\nif r == 0:\n right = 0\nelif r < k:\n right = 1\nelse:\n right = math.ceil((r - k) / (k - 1)) + 1\n\nprint(left + right)', 'import math\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\n\nn, k = LI()\na = LI()\nl = len(a[:a.index(1)])\nr = len(a[a.index(1):])\n\nleft = math.ceil((l - k) / (k - 1)) + 1\nright = math.ceil((r - k) / (k - 1)) + 1\n\nprint(left + right)', 'n, k = LI()\na = LI()\nl = len(a[:a.index(1)]) + 1\nr = len(a[a.index(1):])\n\nif l == 1:\n left = 0\nelif l < k:\n left = 1\nelse:\n left = math.ceil((l - k) / (k - 1)) + 1\n\nif r == 1:\n right = 0\nelif r < k:\n right = 1\nelse:\n right = math.ceil((r - k) / (k - 1)) + 1\n\nprint(left + right)', 'import math, sys\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\n\n\nn, k = LI()\na = LI()\n\nresult = math.ceil((n - k) / (k - 1)) + 1\n\nprint(result)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s015898062', 's372012616', 's831199316', 's305640161']
[3064.0, 3064.0, 3064.0, 13876.0]
[17.0, 17.0, 17.0, 45.0]
[292, 249, 296, 161]
p03317
u634208461
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\ncount = 0\nfor i in range(int(N / (K - 1))):\n if i * (K - 1) + K <= N - 1:\n m = min(A[i * (K - 1):i * (K - 1) + K])\n for j in range(i * (K - 1), i * (K - 1) + K):\n A[j] = m\n count += 1\n else:\n m = min(A[N - K:N])\n for j in range(N - K, N):\n A[j] = m\n print(A)\ncount += 1\nA.reverse()\na = 0\nfor i in range(1, N):\n if A[i] != A[0]:\n a = i\n break\nif a != 0:\n count += int((N - a) / (K - 1))\nprint(count)\n', 'import math\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nprint(math.ceil((N - 1) / (K - 1)))\n']
['Runtime Error', 'Accepted']
['s658656090', 's280138798']
[141088.0, 13812.0]
[1862.0, 39.0]
[554, 117]
p03317
u636162168
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int,input().split())\na=list(map(int,input().split()))\ntmp=min(a)\ncount_min=Counter(a)[tmp]\nkazu=n-count_min\nif kazu%(k-1)==0:\n print(kazu//(k-1))\nelse:\n print(kazu//(k-1)+1)', 'from collections import Counter\nn,k=map(int,input().split())\na=list(map(int,input().split()))\ntmp=min(a)\ncount_min=Counter(a)[tmp]\nkazu=n-count_min\nif kazu%(k-1)==0:\n print(kazu//(k-1))\nelse:\n print(kazu//(k-1)+1)']
['Runtime Error', 'Accepted']
['s669613594', 's271072389']
[13880.0, 19936.0]
[43.0, 56.0]
[187, 219]
p03317
u637918426
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\n\nN, K = map(int, input().split())\nA = list(input().split())\nA_lis = [int(A[i]) for i in range(N)]\nindex = A_lis.index(1)\n\nif N == K:\n print(1)\nelse:\n left = math.ceil(index / (K-1))\n leftamari = index % (K-1)\n right = math.ceil(max(0, N - K - index + leftamari) / (K-1))\n print(left + right)\n ', 'import math\n\nN, K = map(int, input().split())\nA = list(input().split())\nA_lis = [int(A[i]) for i in range(N)]\nindex = A_lis.index(1)\n\nif N == K:\n print(1)\nelse:\n left = math.ceil(index / (K-1))\n leftamari = index % (K-1)\n right = math.ceil(max(0, N - 1 - index - (K - 1 - leftamari if leftamari != 0 else 0)) / (K-1))\n print(left + right)\n ']
['Wrong Answer', 'Accepted']
['s586182166', 's691113034']
[13796.0, 13924.0]
[50.0, 48.0]
[323, 358]
p03317
u638902622
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['from sys import stdin\n\nN, K = [int (x) for x in stdin.readline().rstrip().split()]\nA = [int (x) for x in stdin.readline().rstrip().split()]\n\nfront = 0\ntail = 0\ncount = 0\n\nfor i in range(N):\n if A[i] == 1:\n break\n else:\n front += 1\ntail = N - (front + 1)\n\ncount += (front + 1)//2\ncount += (tail + 1)//2\n\nif front == 1:\n count += 1\nif tail == 1:\n count += 1\n\nprint(count)\n', 'from sys import stdin\n\nN, K = [int (x) for x in stdin.readline().rstrip().split()]\nA = [int (x) for x in stdin.readline().rstrip().split()]\n\nfront = 0\ntail = 0\ncount = 0\n\nfor i in range(N):\n if A[i] == 1:\n break\n else:\n front += 1\ntail = N - (front + 1)\n\ncount += (front + 1)//2\ncount += (tail + 1)//2\nif front <= 1:\n count += 1\nif tail <= 1:\n count += 1\n\nprint(count)\n', "import sys\n\ndef IS(): return sys.stdin.readline().rstrip()\ndef II(): return int(IS())\ndef MII(): return list(map(int, IS().split()))\n#======================================================#\ndef main():\n n, k = MII()\n aa = MII()\n print((-(-(n-1)//(k-1))) if n > 3 else 1)\n\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s888378184', 's916421135', 's528501279']
[13880.0, 13880.0, 14008.0]
[55.0, 54.0, 39.0]
[396, 395, 327]
p03317
u648901783
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int,input().split())\nA = list(map(int, input().split()))\n\nmin_ind = A.index(1)\n\n\nprint((N-1)//(K-1))', 'N,K = map(int,input().split())\nA = list(map(int, input().split()))\n\nmin_ind = A.index(1)\n\nprint(int((N-1)/(K-1)) if (N-1)%(K-1)==0 else (N-1)//(K-1)+1)']
['Wrong Answer', 'Accepted']
['s010290967', 's383180329']
[13880.0, 14008.0]
[40.0, 42.0]
[110, 151]
p03317
u656487313
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
["\n\nN, K = map(int, input().split())\nA = [input().split()]\n\n# if N == K:\n# print(1)\n# elif N - K == 1:\n# print(2)\n# else:\n# print(N/K-1)\ni = 1\nwhile N-K > 0:\n N = N-K +1\n i = i+1\n print('Nの中身'+str(N))\n print('iの中身'+str(i))\n\nprint(i)\n\n\n # if N != K:\n \n \n # else:\n \n \n\n# if N == K:\n# print(1)\n# elif N - K <= N/2 :\n# print(2)\n# else:\n\n\n# 8 2\n# 5\n#\n# 8 3\n# 4\n#\n# 8 4\n# 3\n#\n# 8 5\n# 2\n#\n# 8 6\n# 2\n# 8 7\n\n# 7 2\n# 4\n#\n# 7 3\n#\n", '\n\nN, K = map(int, input().split())\nA = [input().split()]\ni = 1\nwhile N-K > 0:\n N = N-K +1\n i = i+1\n\nprint(i)\n\n\n # if N != K:\n \n \n # else:\n \n \n\n# if N == K:\n# print(1)\n# elif N - K <= N/2 :\n# print(2)\n# else:\n\n\n# 8 2\n# 5\n#\n# 8 3\n# 4\n#\n# 8 4\n# 3\n#\n# 8 5\n# 2\n#\n# 8 6\n# 2\n# 8 7\n\n# 7 2\n# 4\n#\n# 7 3\n#\n']
['Wrong Answer', 'Accepted']
['s830715842', 's201543811']
[10736.0, 10420.0]
[125.0, 35.0]
[613, 461]
p03317
u657541767
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = [int(x) for x in input().split()]\nminIndex = A.index(min(A))\nif K == len(A):\n print(1)\nelse:\n if K == 2:\n cnt1 = (minIndex+1) - 1\n cnt2 = (len(A)-minIndex) - 1\n else:\n cnt1 = (minIndex+1)//(K-1)\n cnt2 = (len(A)-minIndex)//(K-1)\n print(cnt1, cnt2)\n print(cnt1 + cnt2)\n', 'import math\nN, K = map(int, input().split())\nA = [int(x) for x in input().split()]\nminIndex = A.index(min(A))\nif K == len(A):\n print(1)\nelse:\n print(math.ceil((N-1)/(K-1)))\n']
['Wrong Answer', 'Accepted']
['s928373568', 's700996106']
[13880.0, 13812.0]
[46.0, 45.0]
[348, 179]
p03317
u658113376
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['Len, Split = map(int,input().split())\nNums = map(int,input().split())\nprint(Len/(Split-1))', 'Len, Split = map(int, input().split())\n_res = Len % Split\nif _res:\n print(int((Len / (Split - 1))) + 1)\nelse:\n print(int((Len / (Split - 1))))\n', 'Len, Split = map(int, input().split())\n_res = (Len - 1) % (Split - 1)\nif _res:\n res = int(((Len - 1) // (Split - 1)) + 1)\n print(res)\nelse:\n res = int((Len - 1) // (Split - 1))\n print(res)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s512787989', 's935654816', 's314130301']
[10420.0, 3060.0, 3060.0]
[27.0, 19.0, 17.0]
[90, 149, 200]
p03317
u665038048
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import statistics\n\n\ndef calculate_median(lst):\n lst.sort()\n median_right = lst[int(len(lst)/2)]\n median_left = lst[int(len(lst)/2)-1]\n return median_right, median_left\n\n\nN = int(input())\nX = list(map(int, input().split()))\nX_copy = X.copy()\nmedian_right, median_left = calculate_median(X)\nfor i in range(N):\n if X_copy[i] >= median_right:\n print(median_left)\n elif X_copy[i] < median_right:\n print(median_right)', 'def calculate_median(lst):\n lst.sort()\n median_right = lst[int(len(lst)/2)]\n median_left = lst[int(len(lst)/2)-1]\n return median_right, median_left\n\n\nN = int(input())\nX = list(map(int, input().split()))\nX_copy = X.copy()\nmedian_right, median_left = calculate_median(X)\nfor i in range(N):\n if X_copy[i] >= median_right:\n print(median_left)\n elif X_copy[i] < median_right:\n print(median_right)', 'from math import ceil\nn, k = map(int, input().split())\na = list(map(int, input().split()))\nprint(ceil((n-1)/(k-1)))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s593664988', 's779462800', 's204526188']
[5148.0, 3064.0, 13812.0]
[36.0, 18.0, 41.0]
[443, 423, 115]
p03317
u670180528
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k,*l=map(int,open(0).read().split());i=l.index(1);k-=1;print(i//k+(n-i-1)//k)', 'from math import*\nn,k=map(int,input().split())\nprint(ceil(~-n/~-k))']
['Wrong Answer', 'Accepted']
['s540262601', 's566541238']
[13940.0, 3060.0]
[41.0, 18.0]
[79, 67]
p03317
u686036872
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nprint(1+(N-K)//(K-1))\n\ncnt = 1\nlength = K\nwhile True:\n if length >= N:\n print(cnt)\n break\n length += K-1 \n cnt += 1', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\ncnt = 1\nlength = K\nwhile True:\n if length >= N:\n print(cnt)\n break\n length += K-1 \n cnt += 1']
['Wrong Answer', 'Accepted']
['s428418637', 's749131708']
[13880.0, 13880.0]
[48.0, 49.0]
[208, 185]
p03317
u686230543
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\nprint((n - 1) // (k - 1))', 'n, k = map(int, input().split())\nprint(1 + (n - 2) // (k - 1))']
['Wrong Answer', 'Accepted']
['s518134200', 's678772018']
[3060.0, 3060.0]
[17.0, 17.0]
[58, 62]
p03317
u689322583
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['#coding: utf-8\n \nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n \nif(N==K):\n ans = 1\n \nprint(ans)', "N, K = list(map(int, input().strip().split(' ')))\nA = list(map(int, input().strip().split(' ')))\n\n\nmin_idx = A.index(min(A))\n\nif min_idx < K:\n min_idx = K - 1\n\n\nelif (N - 1 - min_idx) < K:\n min_idx = N - K\n\n\nelse:\n pass\n\nleft_step = min_idx //(K - 1)\nif(min_idx %(K - 1) != 0):\n left_step += 1\n\nright_step = (N - 1 - min_idx) // (K - 1)\nif((N - 1 - min_idx) % (K - 1) != 0):\n right_step += 1\n\nprint(left_step + right_step +1 )", '#coding: utf-8\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(N):\n if(A[i] == 1):\n one = i\n \n\nans = []\n\nfor i in range(K):\n start = one - (K - 1) + i\n end = one + i\n\n before = start\n after = N - (end+1)\n\n before_num = before//(K-1)\n if(before%(K-1) != 0):\n before_num += 1\n\n after_num = after//(K-1)\n if(after%(K-1) != 0):\n after_num += 1\n\n answer = before_num + after_num + 1\n ans.append(answer)\n\nprint(min(ans))']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s329701400', 's778679471', 's753146911']
[14004.0, 14008.0, 14008.0]
[40.0, 42.0, 168.0]
[122, 627, 544]
p03317
u689701565
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['#coding: utf-8\n\ninputN, inputK = map(int, input().split())\ninputA = list(map(int, input().split()))\nminNumber = inputN\nminPos = 0\n\nfor i in range(len(inputA)):\n if inputA[i] < minNumber:\n minNumber = inputA[i]\n minPos = i\n\nsplitNumber = (inputN+1) / (inputK-1)\nprint (splitNumber)\n\n', '#coding: utf-8\n\ninputN, inputK = map(int, input().split())\ninputA = list(map(int, input().split()))\nminNumber = inputN\nminPos = 0\n\nif inputN == inputK:\n print (1)\nelif inputN <= (inputK-1)*10 + 1:\n for i in range(2, 11):\n if inputN <= (inputK - 1) * i + 1:\n print (i)\nelse:\n\n for i in range(len(inputA)):\n if inputA[i] < minNumber:\n minNumber = inputA[i]\n minPos = i\n\n splitNumber = (inputN + 1) / (inputK - 1)\n print (int(splitNumber))\n', '#coding: utf-8\n\ninputN, inputK = map(int, input().split())\ninputA = list(map(int, input().split()))\nminNumber = inputN\nminPos = 0\n\nif inputN == inputK:\n print (1)\nelse:\n\n if inputN > (inputK-1)*10 + 1:\n for i in range(len(inputA)):\n if inputA[i] < minNumber:\n minNumber = inputA[i]\n minPos = i\n\n splitNumber = (inputN + 1) / (inputK - 1)\n print (int(splitNumber))\n else:\n for i in range(2, 11):\n if inputN <= (inputK-1)*i + 1:\n print (i)\n\n', '#coding: utf-8\n\ninputN, inputK = map(int, input().split())\ninputA = list(map(int, input().split()))\nminNumber = inputN\nminPos = 0\n\nif inputN == inputK:\n print (1)\nelif inputN <= (inputK-1)*100000 + 1:\n for i in range(2, 100001):\n if inputN <= (inputK-1)*i + 1:\n print (i)\n break\nelse:\n\n for i in range(len(inputA)):\n if inputA[i] < minNumber:\n minNumber = inputA[i]\n minPos = i\n\n splitNumber = (inputN + 1) / (inputK - 1)\n print (int(splitNumber))\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s051169588', 's081155011', 's662030596', 's005445328']
[14008.0, 14008.0, 14004.0, 14008.0]
[49.0, 47.0, 47.0, 46.0]
[299, 499, 543, 521]
p03317
u695079172
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k = map(int,input().split())\n\nlst = list(map(int,input().split()))\n\nid_one = lst.index(1)\nleft_length = len(lst[0:id_one])\n#print(left_length)\nright_length = len(lst[id_one:])-1\n#print(right_length)\n\ncounter = 0\nmn = min(left_length,right_length)\nmx = max(left_length,right_length)\n\nmx -= mn % (k-1)\n\nwhile mn > 0:\n counter += 1\n mn -= k-1\n\nmx -= mn % (k-1)\n\nwhile mx > 0:\n counter += 1\n mx -= k-1\n\n\n\n\nprint(counter)', '#n=6 k=4\n#\n# 3 1 2 4 5 6\n\n\nn,k = map(int,input().split())\nlst = list(map(int,input().split()))\n\nid_of_one = lst.index(1) \n\nleft = len(lst[0:id]) \nright = len(lst[id+1:]) \ntotal = left + right\n\namari = max(left%(k-1),right%(k-1))\ntotal -= amari\n\n\n\ncounter = 0\nwhile total > 0:\n counter += 1\n total -= k - 1\n\nprint(counter)', 'n,k = map(int,input().split())\n\nlst = list(map(int,input().split()))\n\nid_one = lst.index(1)\nleft_length = len(lst[0:id_one]-1)\nright_length = len(lst[id_one:]-1)\n\ncounter = 0\n\nif left_length > 0:\n left_length -= k\n counter += 1\n\nwhile left_length > 0:\n counter += 1\n left_length -= k-1\n\nif right_length > 0:\n counter += 1\n right_length -= k\n\nwhile right_length > 0:\n counter += 1\n right_length -= k-1\n\nprint(counter)', 'n,k = map(int,input().split())\n\nlst = list(map(int,input().split()))\n\nid_one = lst.index(1)\nleft_length = len(lst[0:id_one])\nprint(left_length)\nright_length = len(lst[id_one:])-1\nprint(right_length)\ncounter = 0\n\n\nif min(left_length,right_length) < k-1:\n if left_length < right_length:\n right_length -= left_length%(k-1)\n else:\n left_length -= right_length%(k-1)\n\n\nwhile left_length > 0:\n counter += 1\n left_length -= k-1\n\n\nwhile right_length > 0:\n counter += 1\n right_length -= k-1\n\nprint(counter)', 'n,k = map(int,input().split())\n\nlst = list(map(int,input().split()))\n\nid_one = lst.index(1)\nleft_length = len(lst[0:id_one])\n#print(left_length)\nright_length = len(lst[id_one:])-1\n#print(right_length)\n\ncounter = 0\nmn = min(left_length,right_length)\nmx = max(left_length,right_length)\ntotal = mn + mx\ntotal -= mn % (k-1)\n\nwhile total > 0:\n total -= k-1\n counter += 1\n\n\n\nprint(counter)', 'n,k = map(int,input().split())\nlst = list(map(int,input().split()))\n\nid_of_one = lst.index(1) \n\nleft = len(lst[0:id_of_one]) \nright = len(lst[id_of_one+1:]) \ntotal = left + right\n\namari = max(left%(k-1),right%(k-1))\ntotal -= amari\n\n\n\ncounter = 0\nwhile total > 0:\n counter += 1\n total -= k - 1\n\nprint(counter)', 'n,k = map(int,input().split())\nlst = list(map(int,input().split()))\n\nid_of_one = lst.index(1) \n\nleft = len(lst[0:id_of_one]) \nright = len(lst[id_of_one+1:]) \ntotal = left + right\n\n\n\n\n\ncounter = 0\nwhile total > 0:\n counter += 1\n total -= k - 1\n\nprint(counter)']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s031992923', 's065870159', 's582425438', 's662413869', 's732078030', 's883649202', 's152943234']
[14008.0, 13880.0, 13880.0, 14008.0, 13880.0, 14008.0, 13812.0]
[50.0, 44.0, 42.0, 48.0, 50.0, 50.0, 48.0]
[431, 459, 441, 530, 390, 446, 396]
p03317
u698479721
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import sys\nN,K = map(int, input().split())\nlis = [int(i) for i in input().split()]\nif N == 1:\n print(1)\n sys.exit()\nind = lis.index(1)+1\npre = ind-1\npos = N-ind\nif pre%(K-1)==0:\n a = pre//(K-1)\nelse:\n a = pre//(K-1)+1\nif pos%(K-1)==0:\n b = pos//(K-1)\nelse:\n b = pos//(K-1)+1\nprint(1+a+b)', 'import sys\nN,K = map(int, input().split())\nlis = [int(i) for i in input().split()]\nif N == 1:\n print(1)\n sys.exit()\nind = lis.index(1)+1\nprint(ind)\npre = ind-1\npos = l-ind-1\nif pre%(K-1)==0:\n a = pre//(K-1)\nelse:\n a = pre//(K-1)+1\nif pos%(K-1)==0:\n b = pos//(K-1)\nelse:\n b = pos//(K-1)+1\nprint(1+a+b)', 'import sys\nN,K = map(int, input().split())\nlis = [int(i) for i in input().split()]\nif N == 1:\n print(0)\n sys.exit()\nif N<=K:\n print(1)\n sys.exit()\nind = lis.index(1)+1\nif (N-1)%(K-1)==0:\n print(int((N-1)/(K-1)))\nelse:\n print(int((N-1)//(K-1))+1)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s122272621', 's778370147', 's406524363']
[13812.0, 13880.0, 13880.0]
[44.0, 45.0, 47.0]
[293, 306, 251]
p03317
u716043626
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nn, k = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.ceil(n-1)/(k-1))', 'import math\nn, k = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.ceil((n-1)/(k-1)))']
['Wrong Answer', 'Accepted']
['s508648458', 's195305435']
[13812.0, 13812.0]
[39.0, 39.0]
[106, 108]
p03317
u723590269
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['def function(n,k,a):\n ind1 = a.index(1)\n pre = len(a[:ind1])\n ex = len(a[ind1:]) \n ans = -(-pre//(k-1)) + -(-ex//(k-1))\n if n == k:\n ans = 1\n return int(ans)\n\nprint(function(n,k,a))', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\n\nans = -(-(n-1)//(k-1))\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s900269496', 's259401704']
[3060.0, 13812.0]
[17.0, 39.0]
[209, 101]
p03317
u731368968
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int, input().split())\na=map(int, input().split())\nprint(N-K+1)', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\nans = 0\nfor i in range(1, n, k - 1):\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s136275984', 's311609979']
[10420.0, 14004.0]
[26.0, 45.0]
[70, 129]
p03317
u734816542
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nn, m = map(int, input().split())\ns = map(int, input().split())\nprint(math.ceil(m-1/2))', 'import math\nn, m = map(int, input().split())\ns = map(int, input().split())\nprint(math.ceil((n-1)/(m-1)))\n']
['Wrong Answer', 'Accepted']
['s019372906', 's306954853']
[10420.0, 10420.0]
[25.0, 26.0]
[98, 105]
p03317
u738835924
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, k = map(int, input().split())\nnum = input().rstrip().split()\n\nt = 0\n\nfor i in range(N):\n if num[i] == "1":\n one = i\n break\n \nleft = one\nright = N - one - 1\n\nif left + right + 1 <= k:\n t = 1\n left=0\n right=0\n \nelif left <= k - 1:\n left = 0\n right -= (k - 1) - left - 1\n t += 1\n \nelif right <= k - 1:\n right = 0\n left -= (k - 1) - right - 1\n t+=1\n\n\nwhile(right > 0):\n right -= (k-1)\n t += 1\n\nwhile(left > 0):\n left -= (k-1)\n t += 1\n\n\nprint(t)', 'N, k = map(int, input().split())\nnum = input().rstrip().split()\n\nt = 0\n\nfor i in range(N):\n if num[i] == "1":\n one = i\n break\n \nleft = one\nright = N - one - 1\n\nif left + right + 1 <= k:\n t = 1\n left=0\n right=0\n \nelif left < k - 1:\n left = 0\n right -= (k - 1) - left\n t += 1\n \nelif right < k - 1:\n right = 0\n left -= (k - 1) - right\n t+=1\n\n\nwhile(right > 0):\n right -= (k-1)\n t += 1\n\nwhile(left > 0):\n left -= (k-1)\n t += 1\n\n\nprint(t)', 'N, k = map(int, input().split())\nnum = input().rstrip().split()\n\nt = 0\n\nfor i in range(N):\n if num[i] == "1":\n one = i\n break\n \nleft = one\nright = N - one - 1\n\nif N == k:\n t = 1\n left=0\n right=0\n \nelif left < k - 1:\n left = 0\n right -= (k - 1) - left\n t += 1\n \nelif right < k - 1:\n right = 0\n left -= (k - 1) - right\n t+=1\n\n\nwhile(right > 0):\n right -= (k-1)\n t += 1\n\nwhile(left > 0):\n left -= (k-1)\n t += 1\n\n\nprint(t)', 'N, k = map(int, input().split())\nnum = input().rstrip().split()\n\nt = 0\n\nfor i in range(N):\n if num[i] == "1":\n one = i\n break\n \nN -= 1\n\n\nwhile(N > 0):\n N -= (k-1)\n t += 1\n\n\n\nprint(t)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s420815303', 's641144206', 's737243648', 's262900634']
[10420.0, 10420.0, 10420.0, 9848.0]
[35.0, 37.0, 35.0, 35.0]
[468, 458, 443, 194]
p03317
u747602774
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int,input().split())\nA = list(map(int,input().split()))\nind = A.index(1)\nans = (ind+K-2)//(K-1)+(N-1-ind+K-2)//(K-1)\nif (ind+K-2)%(K-1)+(N-1-ind+K-2)%(K-1) <= K-1:\n ans -= 1\nprint(ans)\n', 'N,K=map(int,input().split())\nprint((N-2)//(K-1))', 'N,K=map(int,input().split())\nprint((N-2)//(K-1)+1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s548421882', 's563314528', 's025699480']
[13880.0, 2940.0, 2940.0]
[40.0, 17.0, 17.0]
[199, 48, 50]
p03317
u762420987
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nAlist = list(map(int, input().split()))\nsplit_index = Alist.index(1)\nleft_l, right_l = split_index, N - split_index - 1\nprint(left_l, right_l)\nif N <= K:\n print(1)\nelse:\n print(left_l // (K - 1) + int(left_l % (K - 1) != 0) + right_l // (K - 1) + int(right_l % (K - 1) != 0))\n', 'N, K = map(int, input().split())\nAlist = list(map(int, input().split()))\nprint((N - 1) // (K - 1) + int((N - 1) % (K - 1) != 0))\n']
['Wrong Answer', 'Accepted']
['s686175905', 's082353851']
[13880.0, 14004.0]
[41.0, 40.0]
[315, 129]
p03317
u764956288
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\nAs = list(map(int, input().split()))\n\nidx = As.index(i)\nleft = idx\nright = n - idx - 1\n\nn_l = (left + k - 1) // (k - 1)\nn_r = (right + k - 1) // (k - 1)\n\nprint(n_l + n_r)', 'n, k = map(int, input().split())\nAs = list(map(int, input().split()))\n\nidx = As.index(min(As))\nleft = idx\n\nn_l = (left + k - 2) // (k - 1)\n\nright = n - ((n_l) * (k-1)) - 1\n\nn_r = (right + k - 2) // (k - 1)\n\nprint(n_l + n_r)']
['Runtime Error', 'Accepted']
['s992684918', 's137640326']
[13880.0, 14008.0]
[40.0, 43.0]
[203, 223]
p03317
u770077083
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\na = list(map(int, input().split()))\nmin_idx = a.index(1)\nmin_count = n\nfor i in range(min_idx-2, min_idx+3):\n if 0 <= i < n - 2:\n s_idx = l_idx = min_idx\n if s_idx > 0: s_idx = i\n if l_idx < n: l_idx = i + 2\n print("Start: {}..{}".format(s_idx, l_idx))\n count = 1\n while s_idx > 0:\n s_idx -= 2\n count += 1\n print("s_idx: {}..{}".format(s_idx, l_idx))\n while l_idx < n - 1:\n l_idx += 2\n count += 1\n print("l_idx: {}..{}".format(s_idx, l_idx))\n if min_count > count: min_count = count\nprint(min_count)', 'from math import ceil\nn, k = map(int, input().split())\nprint(ceil((n-1)/(k-1)))']
['Wrong Answer', 'Accepted']
['s327093579', 's230316917']
[13812.0, 3060.0]
[369.0, 17.0]
[657, 79]
p03317
u774160580
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = list(map(int, input().split()))\nA = [int(a) for a in input().split()]\nprint((N - 1 + K - 2) / (K - 1))\n', 'N, K = list(map(int, input().split()))\nA = [int(a) for a in input().split()]\nprint((N - 2) // (K - 1) + 1)\n']
['Wrong Answer', 'Accepted']
['s026579963', 's400791318']
[13880.0, 13880.0]
[45.0, 44.0]
[110, 107]
p03317
u780698286
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\na = list(map(int, input().split()))\nans = (n-1)/(k-1)\nif ans % 1 == 0:\n print(int(ans))\nelse:\n print(ans // 1 + 1)', 'from math import ceil\nn, k = map(int, input().split())\na = list(map(int, input().split()))\nprint(ceil((n-1)/(k-1)))']
['Wrong Answer', 'Accepted']
['s169831397', 's716302043']
[20500.0, 20496.0]
[50.0, 54.0]
[162, 115]
p03317
u781262926
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import sys\nfrom math import ceil\ninputs = sys.stdin.readlines()\n\nn, k = map(int, inputs[0].split())\nA = list(map(int, inputs[1].split()))\n\nif n == k:\n print(1)\nelse:\n former = index_min(A)[0]\n latter = n - 1 - former\n ceil(former / (k-1)), ceil(latter / (k-1))\n print(ceil(former / (k-1)) + ceil(latter / (k-1)))', 'import sys\nfrom math import ceil\ninputs = sys.stdin.readlines()\n\nn, k = map(int, inputs[0].split())\nA = list(map(int, inputs[1].split()))\n\nif n == k:\n print(1)\nelse:\n former = index_min(A)[0]\n latter = n - 1 - former\n ceil(former / (k-1)), ceil(latter / (k-1))\n print(ceil(former / (k-1)) + ceil(latter / (k-1)))', 'import sys\nfrom math import ceil\ninputs = sys.stdin.readlines()\n\nn, k = map(int, inputs[0].split())\nA = list(map(int, inputs[1].split()))\n\nprint(ceil((n-k)/(k-1))+1)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s011051748', 's160415129', 's354485533']
[13992.0, 13992.0, 13992.0]
[39.0, 40.0, 40.0]
[327, 327, 165]
p03317
u790301364
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
["import math\ndef main15():\n strbuf1 = input('');\n strbuf2 = input('');\n strbufs1 = strbuf1.split();\n strbufs2 = strbuf2.split();\n buf1 = [];\n buf2 = [];\n ba = 0;\n for i in range(2):\n buf1.append(int(strbufs1[i]));\n for i in range(buf1[0]):\n buf2.append(int(strbufs2[i]));\n if(buf2[i] == 1):\n ba = i;\n break;\n are = buf1[1] - 1;\n kai1 = ceil(ba/are);\n kk = ba - are * kai1;\n kai2 = ceil((buf1[0] -(ba+1+kk))/are)\n print(int(kai1+kai2));\n\ndef main16():\n strbuf = input('');\n num = int(strbuf);\n kazu = 0;\n number = 1;\n while(kazu<num):\n\n\n kazu = kazu + 1;\n\n number = number + 1;\n\n\nif __name__ == '__main__':\n main15()", "def main15():\n strbuf1 = input('');\n strbuf2 = input('');\n strbufs1 = strbuf1.split();\n strbufs2 = strbuf2.split();\n buf1 = [];\n buf2 = [];\n ba = 0;\n for i in range(2):\n buf1.append(int(strbufs1[i]));\n for i in range(buf1[0]):\n buf2.append(int(strbufs2[i]));\n if(buf2[i] == 1):\n ba = i;\n break;\n are = buf1[1] - 1;\n kai1 = math.ceil(ba/are);\n kk = ba - are * kai1;\n kai2 = math.ceil((buf1[0] -(ba+1+kk))/are)\n print(int(kai1+kai2));\n\ndef main16():\n strbuf = input('');\n num = int(strbuf);\n kazu = 0;\n number = 1;\n while(kazu<num):\n\n\n kazu = kazu + 1;\n\n number = number + 1;\n\n\nif __name__ == '__main__':\n main15()", "import math\ndef main15():\n strbuf1 = input('');\n strbuf2 = input('');\n strbufs1 = strbuf1.split();\n strbufs2 = strbuf2.split();\n buf1 = [];\n buf2 = [];\n ba = 0;\n for i in range(2):\n buf1.append(int(strbufs1[i]));\n for i in range(buf1[0]):\n buf2.append(int(strbufs2[i]));\n if(buf2[i] == 1):\n ba = i;\n break;\n are = buf1[1] - 1;\n kai1 = math.ceil(ba/are);\n kk = are * kai1 - ba;\n kai2 = math.ceil((buf1[0] -(ba+1+kk))/are)\n print(int(kai1+kai2));\n\ndef main16():\n strbuf = input('');\n num = int(strbuf);\n kazu = 0;\n number = 1;\n while(kazu<num):\n\n\n kazu = kazu + 1;\n\n number = number + 1;\n\n\nif __name__ == '__main__':\n main15()"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s564001698', 's669282150', 's859248504']
[12724.0, 12792.0, 12724.0]
[50.0, 50.0, 50.0]
[731, 729, 741]
p03317
u794652722
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\n\nN,K = map(int,input().split())\nA = list(map(int,input().split()))\n\nprint(math.floor((N-1)/(K-1)))\n', 'import math\n\nN,K = map(int,input().split())\nA = list(map(int,input().split()))\n\nprint(math.ceil((N-1)/(K-1)))\n']
['Wrong Answer', 'Accepted']
['s551429310', 's916353997']
[13812.0, 13812.0]
[41.0, 39.0]
[111, 110]
p03317
u799065076
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['def f(m,n):\n ret=m/n\n ret_=int(ret)\n if ret_==ret:\n return ret_\n else:\n return ret_+1\n \nN,K=list(map(int,input().split()))\na=np.array(list(map(int,input().split())))\nprint(f(np.sum(a!=min(a)),K-1))', 'import numpy as np\n\ndef f(m,n):\n ret=m/n\n ret_=int(ret)\n if ret_==ret:\n return ret_\n else:\n return ret_+1\n \nN,K=list(map(int,input().split()))\na=np.array(list(map(int,input().split())))\nprint(f(np.sum(a!=min(a)),K-1))']
['Runtime Error', 'Accepted']
['s420703572', 's159437345']
[3060.0, 23972.0]
[18.0, 299.0]
[228, 248]
p03317
u801359367
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['A,B = map(int,input().split())\nprint(math.ceil((A-B)/(B-1))+1)', 'A,B = list(map(int,input().split()))\n_ =input()\nprint(math.ceil((A-B)/(B-1))+1)', 'A,B = list(map(int,input().split()))\nprint(math.ceil((A-B)/(B-1))+1)', 'import math\nA,B = list(map(int,input().split()))\n_ =input()\nprint(math.ceil((A-B)/(B-1))+1)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s110679846', 's314585460', 's486719057', 's090870638']
[3060.0, 4724.0, 3060.0, 4724.0]
[18.0, 18.0, 18.0, 19.0]
[62, 79, 68, 91]
p03317
u809108154
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k=map(int,input().split())\na=list(map(int,input().split()))\nprint((n-1)//(k-1))', 'n,k=map(int,input().split())\na=(n-1)/(k-1)\nif a!=int(a):\n print(int(a)+1)\nelse:\n print(int(a))']
['Wrong Answer', 'Accepted']
['s513907709', 's101133828']
[13880.0, 3060.0]
[40.0, 17.0]
[82, 100]
p03317
u814271993
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['a,b=map(int, input().split())\nc=list(map(int, input().split()))\nd -= 1\nprint(a//d)', 'import math\nn, k = map(int,input().split())\ninput()\nprint(math.ceil((n-1)/(k-1)))']
['Runtime Error', 'Accepted']
['s788442096', 's707451446']
[20284.0, 10140.0]
[46.0, 32.0]
[82, 81]
p03317
u814986259
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K=map(int,input().split())\nimport math\nA=int(input().split())\nans=1\nans+=math.ceil(N-K)/(K-1)\nprint(ans)', 'N,K=map(int,input().split())\nimport math\nA=list(map(int,input().split()))\nans=1\nans+=math.ceil(N-K)/(K-1)\nprint(ans)', 'N,K=map(int,input().split())\nimport math\nA=list(map(int,input().split()))\nans=1\nans+=math.ceil((N-K)/(K-1))\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s715315299', 's731285070', 's786601805']
[10420.0, 13812.0, 13812.0]
[24.0, 40.0, 40.0]
[106, 116, 118]
p03317
u818213347
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k = map(int,input().split())\nA = list(map(int,input.split()))\n\nif (n-1)%%(k-1) == 0:\n print(n-1/k-1)\nelse:\n print((n-1//k-1)+1)\n \n\n\n\n\n', 'n,k = map(int,input().split())\nA = list(map(int,input().split()))\n\nprint(-((1-n)//(k-1)))\n']
['Runtime Error', 'Accepted']
['s684719558', 's533505009']
[9016.0, 20512.0]
[22.0, 48.0]
[139, 90]
p03317
u820560680
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\ndef kiriage(a, b): \n return (a + b - 1) // b\n\nprint(kiriage((N - 1, K - 1)))\n', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\ndef kiriage(a, b): \n return (a + b - 1) // b\n\nprint(kiriage(N - 1, K - 1))\n']
['Runtime Error', 'Accepted']
['s451834286', 's043263259']
[14008.0, 14008.0]
[41.0, 42.0]
[162, 160]
p03317
u826929627
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int,input().split())\nA = list(map(int,input().split()))\n\ninf = 10 ** 18\n\nfor i in range(1,inf):\n N -= (K - 1)a\n if N <= 1:\n print(i)\n break\n ', 'N,K = map(int,input().split())\nA = list(map(int,input().split()))\n\ninf = 10 ** 18\n\nfor i in range(1,inf):\n N -= (K - 1)\n if N <= 1:\n print(i)\n break\n ']
['Runtime Error', 'Accepted']
['s960454637', 's758983287']
[2940.0, 13880.0]
[17.0, 46.0]
[160, 159]
p03317
u842964692
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K=map(int,input().split())\nA=list(map(int,input.split()))\n\nans=1\nX=N-K\n\nwhile X>0:\n X-=K-1\n ans+=1\nprint(ans)', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\n\nans=1\nX=N-K\n\nwhile X>0:\n X-=K-1\n ans+=1\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s048989666', 's536940709']
[3060.0, 13880.0]
[17.0, 46.0]
[113, 116]
p03317
u853010060
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = [int(x) for x in input().split()]\nans = 1\nif N == K:\n print(1)\n exit()\nelse:\n if (N-K+1)%K == 0:\n ans += N-K+1\n else:\n ans += (N-K+1)%K+1\nprint(ans)\n', 'N, K = map(int, input().split())\nA = [int(x) for x in input().split()]\nans = 1\nn = (N-K)//(K-1)\nans += n\nif N-K-n*(K-1) > 0:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s762258562', 's071831370']
[13880.0, 13880.0]
[44.0, 44.0]
[212, 149]
p03317
u853900545
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nn,k = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.floor((n-1)/(k-1)))\n', 'import math\nn,k = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.floor((n-1)//(k-1)))\n', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nprint((n-1)//(k-1))', 'import math\nn,k = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.ceil((n-1)/(k-1)))\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s267169236', 's708604471', 's709064984', 's254658288']
[13812.0, 13812.0, 13880.0, 13812.0]
[43.0, 41.0, 40.0, 39.0]
[109, 110, 85, 108]
p03317
u855380359
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nif (n-k)%(k-1) ==0:\n print((n-k)//(k-1)+1)\nelse:\n print((n-k)//(k-1)+3)\n ', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nx = n//(k-1) + 1\nprint(x)', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nif (n-k)%(k-1) == 0:\n print((n-k)//(k-1)+1)\nelse:\n print((n-k)//(k-1)+2)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s178150974', 's312467118', 's795240021']
[13880.0, 13880.0, 13880.0]
[43.0, 40.0, 40.0]
[146, 95, 144]
p03317
u857070771
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int,input().split())\n*a,=map(int,input().split())\nprint(((n-2)//(k-1)+1)', 'n,k=map(int,input().split())\n*a,=map(int,input().split())\nprint((n-2)//(k-1)+1)']
['Runtime Error', 'Accepted']
['s600794962', 's552600057']
[2940.0, 13880.0]
[17.0, 40.0]
[80, 79]
p03317
u858523893
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\na = list(map(int, input().split()))\n\namin = min(a)\n\nif len(myarr) == myarr.count(amin) :\n print("0")\nelse :\n if K == 1 : \n print(N - myarr.count(amin))\n else :\n if (N - a.count(amin)) % (K - 1) == 0 :\n print((N - a.count(amin)) // (K - 1))\n else :\n print((N - a.count(amin)) // (K - 1) + 1)', 'N, K = map(int, input().split())\na = list(map(int, input().split()))\n\namin = min(a)\n\nif len(myarr) == myarr.count(amin) :\n print("0")\nelse :\n if K == 1 : \n print(N - myarr.count(amin))\n else :\n if (N - a.count(amin)) % (K - 1) == 0 :\n print((N - a.count(amin)) // (K - 1))\n else :\n print((N - a.count(amin)) // (K - 1) + 1)', 'N, K = map(int, input().split())\na = list(map(int, input().split()))\n\namin = min(a)\n\nif len(a) == a.count(amin) :\n print("0")\nelse :\n if K == 1 : \n print(N - a.count(amin))\n else :\n if (N - a.count(amin)) % (K - 1) == 0 :\n print((N - a.count(amin)) // (K - 1))\n else :\n print((N - a.count(amin)) // (K - 1) + 1)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s026481427', 's489593910', 's237792433']
[13812.0, 14008.0, 14008.0]
[42.0, 43.0, 46.0]
[375, 375, 363]
p03317
u867826040
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['//#define _GLIBCXX_DEBUG\n//\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n,k; cin >> n >> k;\n int a[n]; for (int i = 0; i<n; i++) cin >> a[i];\n cout << (((n-k)+(k-2))/(k-1))+1 << "\\n";\n}', '//#define _GLIBCXX_DEBUG\n//\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n,k; cin >> n >> k;\n int a[n];\n cout << (((n-k)+(k-2))/(k-1))+1 << "\\n";\n}', 'import math\n\nn,k = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.ceil((n-1)/(k-1)))\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s636876510', 's933652427', 's901820705']
[8768.0, 9000.0, 20312.0]
[21.0, 25.0, 50.0]
[337, 298, 109]
p03317
u868600519
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nprint(ceil((N - 1) / (K - 1)))\n', 'from math import ceil\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nprint(ceil((N - 1) / (K - 1)))\n']
['Runtime Error', 'Accepted']
['s958047974', 's734135688']
[14004.0, 13812.0]
[40.0, 43.0]
[101, 124]
p03317
u875855656
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int,input().split())\nl=[int(i) for i in input().split()]\nc=0\nmn=min(l)\nwhile len(l)>=1:\n if mn==min(l):\n m=l.index(min(l))\n if m==0:\n l=l[m+1:]\n elif m+l[k-1::-1].index(min(l))==len(l):\n c+=m//(k-1)\n if m%(k-1)!=0:\n c+=1\n l=l[m+1:]\n else:\n c+=1\n l=l[k:]\n else:\n c+=len(l)//(k-1)\n if len(l)%(k-1)!=0:\n c+=1\n l=[]', 'n,k=map(int,input().split())\nl=[int(i) for i in input().split()]\nc=0\nmn=min(l)\nwhile len(l)>=1:\n if mn==min(l):\n m=l.index(min(l))\n if m!=0:\n if l[:k].count(mn)==1:\n c+=m//(k-1)\n if m%(k-1)!=0:\n c+=1\n l=l[m+1:]\n else:\n c+=1\n l=l[k:]\n else:\n l=l[m+1:]\n else:\n print("start",l)\n print(m,len(l)//(k-1),len(l)%(k-1))\n c+=len(l)//(k-1)\n if len(l)%(k-1)!=0:\n c+=1\n l=[]\nprint(c)', 'n,k=map(int,input().split())\nl=[int(i) for i in input().split()]\nc=0\nr=0\nmn=min(l)\nwhile len(l)>=1:\n if mn==min(l):\n m=l.index(mn)\n if m==0:\n l=l[1:]\n if not mn in l[:k]:\n r+=1\n l=l[k:]\n else:\n c+=(r*k+m)//(k-1)\n if (r*k+m)%(k-1)!=0:\n c+=1\n l=l[m:]\n r=0\n else:\n c+=(r*k+len(l))//(k-1)\n if (r*k+len(l))%(k-1)!=0:\n c+=1\n l=[]\nprint(c)', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\ng=1\nwhile k+(k-1)*(g-1)< n:\n g+=1\nprint(g)']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s073016063', 's117117754', 's896775114', 's943186746']
[13880.0, 13812.0, 13880.0, 14008.0]
[52.0, 2104.0, 2104.0, 50.0]
[384, 462, 402, 105]
p03317
u902151549
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['# coding: utf-8\nimport re\nimport math\nfrom collections import defaultdict\nfrom collections import deque\nfrom fractions import Fraction\nimport itertools\nfrom copy import deepcopy\nimport random\nimport time\nimport os\nimport queue\nimport sys\nimport datetime\nfrom functools import lru_cache\n#@lru_cache(maxsize=None)\nreadline=sys.stdin.readline\nsys.setrecursionlimit(2000000)\n#import numpy as np\nalphabet="abcdefghijklmnopqrstuvwxyz"\nmod=int(10**9+7)\ninf=int(10**20)\ndef yn(b):\n if b:\n print("yes")\n else:\n print("no")\ndef Yn(b):\n if b:\n print("Yes")\n else:\n print("No")\ndef YN(b):\n if b:\n print("YES")\n else:\n print("NO")\nclass union_find():\n def __init__(self,n):\n self.n=n\n self.P=[a for a in range(N)]\n self.rank=[0]*n\n \n def find(self,x):\n if(x!=self.P[x]):self.P[x]=self.find(self.P[x])\n return self.P[x]\n \n def same(self,x,y):\n return self.find(x)==self.find(y)\n \n def link(self,x,y):\n if self.rank[x]<self.rank[y]:\n self.P[x]=y\n elif self.rank[y]<self.rank[x]:\n self.P[y]=x\n else:\n self.P[x]=y\n self.rank[y]+=1\n \n def unite(self,x,y):\n self.link(self.find(x),self.find(y))\n \n def size(self):\n S=set()\n for a in range(self.n):\n S.add(self.find(a))\n return len(S)\ndef is_pow(a,b):\n now=b\n while now<a:\n now*=b\n if now==a:return True\n else:return False\ndef getbin(num,size):\n A=[0]*size\n for a in range(size):\n if (num>>(size-a-1))&1==1:\n A[a]=1\n else:\n A[a]=0\n return A\ndef get_facs(n,mod_=0):\n A=[1]*(n+1)\n for a in range(2,len(A)):\n A[a]=A[a-1]*a\n if(mod_>0):A[a]%=mod_\n return A\ndef comb(n,r,mod,fac):\n if(n-r<0):return 0\n return (fac[n]*pow(fac[n-r],mod-2,mod)*pow(fac[r],mod-2,mod))%mod\ndef next_comb(num,size):\n x=num&(-num)\n y=num+x\n z=num&(~y)\n z//=x\n z=z>>1\n num=(y|z)\n if(num>=(1<<size)):return False\n else:return num\ndef get_primes(n,type="int"):\n if n==0:\n if type=="int":return []\n else:return [False]\n A=[True]*(n+1)\n A[0]=False\n A[1]=False\n for a in range(2,n+1):\n if A[a]:\n for b in range(a*2,n+1,a):\n A[b]=False\n if(type=="bool"):return A\n B=[]\n for a in range(n+1):\n if(A[a]):B.append(a)\n return B\ndef is_prime(num):\n if(num<=1):return False\n i=2\n while i*i<=num:\n if(num%i==0):return False\n i+=1\n return True\ndef ifelse(a,b,c):\n if a:return b\n else:return c\ndef join(A,c=""):\n n=len(A)\n A=list(map(str,A))\n s=""\n for a in range(n):\n s+=A[a]\n if(a<n-1):s+=c\n return s\ndef factorize(n,type_="dict"):\n b = 2\n list_ = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n list_.append(b)\n b+=1\n if n > 1:list_.append(n)\n if type_=="dict":\n dic={}\n for a in list_:\n if a in dic:\n dic[a]+=1\n else:\n dic[a]=1\n return dic\n elif type_=="list":\n return list_\n else:\n return None\ndef pm(x):\n return x//abs(x)\ndef inputintlist():\n return list(map(int,input().split()))\n######################################################################################################\ndef main():\n N,K=inputintlist()\n A=inputintlist()\n K-=1\n ans=N//K\n if N%K!=1:ans+=1\n print(ans)\nmain()\n', '# coding: utf-8\nimport re\nimport math\nfrom collections import defaultdict\nfrom collections import deque\nfrom fractions import Fraction\nimport itertools\nfrom copy import deepcopy\nimport random\nimport time\nimport os\nimport queue\nimport sys\nimport datetime\nfrom functools import lru_cache\n#@lru_cache(maxsize=None)\nreadline=sys.stdin.readline\nsys.setrecursionlimit(2000000)\n#import numpy as np\nalphabet="abcdefghijklmnopqrstuvwxyz"\nmod=int(10**9+7)\ninf=int(10**20)\ndef yn(b):\n if b:\n print("yes")\n else:\n print("no")\ndef Yn(b):\n if b:\n print("Yes")\n else:\n print("No")\ndef YN(b):\n if b:\n print("YES")\n else:\n print("NO")\nclass union_find():\n def __init__(self,n):\n self.n=n\n self.P=[a for a in range(N)]\n self.rank=[0]*n\n \n def find(self,x):\n if(x!=self.P[x]):self.P[x]=self.find(self.P[x])\n return self.P[x]\n \n def same(self,x,y):\n return self.find(x)==self.find(y)\n \n def link(self,x,y):\n if self.rank[x]<self.rank[y]:\n self.P[x]=y\n elif self.rank[y]<self.rank[x]:\n self.P[y]=x\n else:\n self.P[x]=y\n self.rank[y]+=1\n \n def unite(self,x,y):\n self.link(self.find(x),self.find(y))\n \n def size(self):\n S=set()\n for a in range(self.n):\n S.add(self.find(a))\n return len(S)\ndef is_pow(a,b):\n now=b\n while now<a:\n now*=b\n if now==a:return True\n else:return False\ndef getbin(num,size):\n A=[0]*size\n for a in range(size):\n if (num>>(size-a-1))&1==1:\n A[a]=1\n else:\n A[a]=0\n return A\ndef get_facs(n,mod_=0):\n A=[1]*(n+1)\n for a in range(2,len(A)):\n A[a]=A[a-1]*a\n if(mod_>0):A[a]%=mod_\n return A\ndef comb(n,r,mod,fac):\n if(n-r<0):return 0\n return (fac[n]*pow(fac[n-r],mod-2,mod)*pow(fac[r],mod-2,mod))%mod\ndef next_comb(num,size):\n x=num&(-num)\n y=num+x\n z=num&(~y)\n z//=x\n z=z>>1\n num=(y|z)\n if(num>=(1<<size)):return False\n else:return num\ndef get_primes(n,type="int"):\n if n==0:\n if type=="int":return []\n else:return [False]\n A=[True]*(n+1)\n A[0]=False\n A[1]=False\n for a in range(2,n+1):\n if A[a]:\n for b in range(a*2,n+1,a):\n A[b]=False\n if(type=="bool"):return A\n B=[]\n for a in range(n+1):\n if(A[a]):B.append(a)\n return B\ndef is_prime(num):\n if(num<=1):return False\n i=2\n while i*i<=num:\n if(num%i==0):return False\n i+=1\n return True\ndef ifelse(a,b,c):\n if a:return b\n else:return c\ndef join(A,c=""):\n n=len(A)\n A=list(map(str,A))\n s=""\n for a in range(n):\n s+=A[a]\n if(a<n-1):s+=c\n return s\ndef factorize(n,type_="dict"):\n b = 2\n list_ = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n list_.append(b)\n b+=1\n if n > 1:list_.append(n)\n if type_=="dict":\n dic={}\n for a in list_:\n if a in dic:\n dic[a]+=1\n else:\n dic[a]=1\n return dic\n elif type_=="list":\n return list_\n else:\n return None\ndef pm(x):\n return x//abs(x)\ndef inputintlist():\n return list(map(int,input().split()))\n######################################################################################################\ndef main():\n N,K=inputintlist()\n A=inputintlist()\n N-=1\n K-=1\n ans=(N+K-1)//K\n print(ans)\nmain()\n']
['Wrong Answer', 'Accepted']
['s877191477', 's277757179']
[17120.0, 17120.0]
[66.0, 63.0]
[3551, 3545]
p03317
u905582793
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int, input().split())\nA = list(map(int, input().split()))\nprint((N-1)//(K-1))', 'N,K = map(int, input().split())\nA = list(map(int, input().split()))\nprint((N-1+K-1-1)//(K-1))']
['Wrong Answer', 'Accepted']
['s280308641', 's847479129']
[14008.0, 14004.0]
[41.0, 41.0]
[87, 93]
p03317
u906428167
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k = map(int,input().split())\n\nif n == k:\n print(1)\nelse:\n c = 1\n a = n-k\n while a > 0:\n c = +1\n a -= k-1\n print(c)', 'n,k = map(int,input().split())\n\nif n == k:\n print(1)\nelse:\n c = 1\n a = n-k\n while a > 0:\n c += 1\n a -= k-1\n print(c)']
['Wrong Answer', 'Accepted']
['s297062099', 's203352246']
[3060.0, 3060.0]
[23.0, 27.0]
[127, 127]
p03317
u908349502
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int,input().split())\na = list(map(int,input().split()))\nplace = 0\nfor i in range(n):\n if a[i] == 1:\n place = i+1\n\nl = (place-1)//(k-1) if (place-1)%(k-1)==0 else (place-1)//(k-1)+1\na = k-1-(place-1)%(k-1)\nr = (n-place)//(k-1) if (n-place)%(k-1)==0 else (n-place)//(k-1)+1\na += k-1-(n-place)%(k-1)\n\nif a < k-1:\n print(l+r)\nelse:\n print(l+r-a//(k-1))', 'n, k = map(int,input().split())\na = list(map(int,input().split()))\nc = 0 if (n-1)%(k-1)==0 else 1\nans = (n-1)//(k-1) + c\nprint(ans)']
['Wrong Answer', 'Accepted']
['s253697516', 's773818294']
[14008.0, 13880.0]
[49.0, 40.0]
[365, 131]
p03317
u909991537
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import numpy as np\nimport math\n\nn, k = (int(i) for i in input().split()) \nx_list = [int(i) for i in input().split()] \n\nmin_num = min(x_list)\ngroup_list = []\n\ncount = 0\nfor x in x_list:\n if x == min_num:\n group_list.append(count)\n count = 0\n continue\n count += 1\n\nif x != min_num:\n group_list.append(count)\nprint(group_list)\nans = 0\nfor count in group_list:\n ans += math.ceil(count / (k - 1))\n \nprint(ans)\n \n \n \n\n', 'import math\nn, k = (int(i) for i in input().split()) \nprint(math.ceil((n-1)/(k-1)))']
['Wrong Answer', 'Accepted']
['s255619226', 's190708715']
[23424.0, 3060.0]
[188.0, 18.0]
[432, 84]
p03317
u918601425
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K=[int(s) for s in input().split()]\nls=[int(s) for s in input().split()]\ndef ceil(n,m):\n if n%m==0:\n return n//m\n else:\n return (n//m)+1\na=ls.index(1)\nif K==N:\n print(1)\nelif (K==N-1 and (a==0 or a==N-1)):\n print(1):\nelse:\n print(ceil(a,K-1)+ceil(N-a-1,K-1))\n\n\n', 'N,K=[int(s) for s in input().split()]\nprint((N+K-3)//(K-1))']
['Runtime Error', 'Accepted']
['s375540825', 's066389590']
[2940.0, 3060.0]
[17.0, 17.0]
[274, 59]
p03317
u924406834
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = map(int,input().split())\nA = list(map(int,input().split()))\nprint((N-K)//(K-1)+1)', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nif (n - 1) % (k - 1) == 0:\n print((n-1) // (k-1))\nelse:\n print((n-1) // (k-1) + 1)']
['Wrong Answer', 'Accepted']
['s066613397', 's367596588']
[14008.0, 13880.0]
[40.0, 39.0]
[87, 150]
p03317
u928758473
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import os\nimport sys\nfrom collections import defaultdict, Counter\nfrom itertools import product, permutations,combinations, accumulate\nfrom operator import itemgetter\nfrom bisect import bisect_left,bisect\nfrom heapq import heappop,heappush,heapify\nfrom math import ceil, floor, sqrt\nfrom copy import deepcopy\n\ndef main():\n n,k = map(int, input().split())\n a_list = list(map(int, input().split()))\n if n == k:\n print(1)\n else:\n print(ceil(n/k) + 1)\n\nif __name__ == "__main__":\n main()', 'import os\nimport sys\nfrom collections import defaultdict, Counter\nfrom itertools import product, permutations,combinations, accumulate\nfrom operator import itemgetter\nfrom bisect import bisect_left,bisect\nfrom heapq import heappop,heappush,heapify\nfrom math import ceil, floor, sqrt\nfrom copy import deepcopy\n\ndef main():\n n,k = map(int, input().split())\n a_list = list(map(int, input().split()))\n print(ceil((n-1)/(k-1)))\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Accepted']
['s396610199', 's226868266']
[14516.0, 14324.0]
[46.0, 44.0]
[512, 470]
p03317
u928784113
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nprint((N-1) // (K-1))', 'N,K = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i in range(1,10**5+1):\n if i >= (N-K)/(K-1) + 1:\n print(i)\n exit()']
['Wrong Answer', 'Accepted']
['s333283942', 's586103915']
[14004.0, 14004.0]
[42.0, 54.0]
[94, 154]
p03317
u933341648
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\na = input()\n\nprint((n-1)//(k-1))', 'n, k = map(int, input().split())\na = input()\n\nprint((n-1)//(k-1) if n > k else 1)', 'n, k = map(int, input().split())\na = input()\n\nprint(((n-1)+(k-2))//(k-1))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s171247338', 's257840580', 's330084578']
[4724.0, 4724.0, 4724.0]
[18.0, 18.0, 18.0]
[65, 81, 73]
p03317
u934246119
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n, k = map(int, input().split())\na_tmp = input().split()\na = [[] for i in range(n)]\nfor i in range(n):\n a[i] = int(a_tmp[i])\nif n != k:\na1 = a.index(1)\nsol = 0\na_left = a1\na_right = len(a)-1-a1\nif a_left % (k-1) == 0:\n sol += int(a_left / (k-1))\nelse:\n sol += int(a_left / (k-1)) + 1\nif a_right % (k-1) == 0:\n sol += int(a_right / (k-1))\nelse:\n sol += int(a_right / (k-1)) + 1\n\nif sol != 0:\n print(sol)\nelse:\n print(1)\n', 'n, k = map(int, input().split())\na_tmp = input().split()\na = [[] for i in range(n)]\nfor i in range(n):\n a[i] = int(a_tmp[i])\na1 = a.index(1)\nif a1 < k or n-1-k < a1:\n if n-k+1 % k == 0:\n sol = (n-k+1) / k + 1\n else:\n sol = (n-k+1) / k + 2\n print(sol)\nelse:\n sol = 0\n a_left = a1\n a_right = len(a)-1-a1\n if a_left % (k-1) == 0:\n sol += int(a_left / (k-1))\n else:\n sol += int(a_left / (k-1)) + 1\n if a_right % (k-1) == 0:\n sol += int(a_right / (k-1))\n else:\n sol += int(a_right / (k-1)) + 1\n print(sol)\n', '\nn, k = map(int, input().split())\na_tmp = input().split()\na = []\nfor _ in a_tmp:\n a.append(int(_))\ng = 1\nwhile n > (k + (k-1)*(g-1)):\n g += 1\nprint(g)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s795154265', 's872365436', 's576560862']
[2940.0, 17208.0, 13812.0]
[17.0, 75.0, 63.0]
[440, 579, 225]
p03317
u940102677
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k = map(int,input().split())\nprint((n-1)//(k-1))', 'n,k = map(int,input().split())\nprint((n-1)//(k-1) + ((n-1)%(k-1) > 0))']
['Wrong Answer', 'Accepted']
['s448569741', 's296719545']
[2940.0, 3060.0]
[19.0, 17.0]
[50, 70]
p03317
u941434715
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['#coding: utf-8\nimport math\nimport heapq\nimport bisect\nimport numpy as np\nfrom collections import Counter\n#from scipy.misc import comb\n\nN,K = map(int, input().split())\nA = list(map(int, input().split()))\n\nans = math.floor((N-1)/(K-1))\nprint(ans)', '#coding: utf-8\nimport math\nimport heapq\nimport bisect\nimport numpy as np\nfrom collections import Counter\n#from scipy.misc import comb\n\nN,K = map(int, input().split())\nA = list(map(int, input().split()))\n\nans = math.ceil((N-1)/(K-1))\nprint(ans)']
['Wrong Answer', 'Accepted']
['s049573053', 's889230662']
[23464.0, 23464.0]
[173.0, 172.0]
[244, 243]
p03317
u941489790
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\n\nN,K=list(map(int, input().split()))\nA=list(map(int, input().split()))\n\nif(N!=K):\n print(math.ceil(N/(K-1)))\nelse if((N+1)/K==2):\n print(2)\nelse:\n print(1)', 'import math\n\nN,K=list(map(int, input().split()))\nA=list(map(int, input().split()))\n\n\nprint(math.ceil((N-1)/(K-1)))']
['Runtime Error', 'Accepted']
['s743992103', 's584198895']
[2940.0, 13812.0]
[18.0, 39.0]
[176, 114]
p03317
u941753895
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time\n\nsys.setrecursionlimit(10**7)\ninf=10**20\nmod=10**9+7\n\ndef LI(): return list(map(int,input().split()))\ndef I(): return int(input())\ndef LS(): return input().split()\ndef S(): return input()\n\ndef main():\n a,b=LI()\n l=LI()\n\n return -(-(a-1)//b)\n\nprint(main())\n', 'import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time\n\nsys.setrecursionlimit(10**7)\ninf=10**20\nmod=10**9+7\n\ndef LI(): return list(map(int,input().split()))\ndef I(): return int(input())\ndef LS(): return input().split()\ndef S(): return input()\n\ndef main():\n n,k=LI()\n l=LI()\n\n c=1\n n-=k\n\n while True:\n if n<=0:\n break\n\n n-=(k-1)\n c+=1\n\n return c\n\nprint(main())\n']
['Wrong Answer', 'Accepted']
['s940060006', 's006227057']
[16300.0, 16296.0]
[97.0, 68.0]
[348, 414]
p03317
u957722693
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import numpy\nn,r=map(int,input().split())\nl=list(map(int,input().split()))\nkey=l.index(1)\nans=numpy.ceil((1+key)/r)+numpy.ceil((n-key+2)/r)\nprint(int(ans))', 'import numpy\nn,r=map(int,input().split())\nl=list(map(int,input().split()))\nans=numpy.ceil((n-1)/(r-1))\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s972982433', 's899381284']
[25860.0, 26280.0]
[336.0, 352.0]
[155, 118]
p03317
u970899068
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import numpy as np\nn,k=map(int, input().split())\na=list(map(int, input().split()))\n\n\nprint(-(-(n-1))//(k-1))', 'n,k=map(int, input().split())\na=list(map(int, input().split()))\n \nprint(-(-(n-1)//(k-1)))\n']
['Wrong Answer', 'Accepted']
['s902419216', 's834946617']
[23364.0, 13880.0]
[172.0, 39.0]
[108, 90]
p03317
u977193988
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nn.k=map(int,input().split())\nA=[int(i) for i in input().split()]\nprint(math.ceil(n/k))\n', 'import math\nn,k=map(int,input().split())\nA=[int(i) for i in input().split()]\nprint(1+math.ceil((n-k)/(k-1)))\n']
['Runtime Error', 'Accepted']
['s677833020', 's212615310']
[2940.0, 13812.0]
[17.0, 43.0]
[99, 109]
p03317
u978313283
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N,K=map(int,input().split())\nA=list(map(int,input().split())) \nprint((N-K)//(K-1)+1+0 if (N-K)%(K-1)==0 else 1)\n', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\nprint((N-K)%2+2)', 'N,K=map(int,input().split())\nA=list(map(int,input().split())) \nprint((N-K)//(K-1) + 1 if (N-K)%(K-1)==0 else (N-K)//(K-1) + 2 )\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s156992202', 's634886053', 's197973373']
[13880.0, 13812.0, 14008.0]
[41.0, 41.0, 41.0]
[112, 78, 128]
p03317
u979823197
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k =int(x) for x in input().split()\ns = list(int(y) for y in input().split())\ndef min(a):\n min = 1000000\n for i in range(len(a)):\n if min > a[i]:\n min = a[i]\n index = i\n return index\nc = min(s)\nnum = (c-1)//k + (len(s)-c)//k +2\nprint(num)\n\n\n \n', 'nk=list(map(int, input().split()))\na=list(map(int, input().split()))\nn=nk[0]\nk=nk[1]\ndef min(A):\n min=1000000\n for x in range(len(A)):\n if A[x]<=min:\n min=A[x]\n return min\nm=0\nfor i in range(n):\n if a[i]==1:\n m=i\nl=[]\nif n<=k:\n l.append(1)\nelse:\n for j in range(k):\n if j<k-1:\n l.append(100000)\n elif j>=k-1 and j%(k-1)==0 and (n-j-1)%(k-1)==0:\n l.append(j//(k-1)+(n-j-1)//(k-1))\n elif j>=k-1 and j%(k-1)!=0 and (n-j-1)%(k-1)!=0:\n l.append(j//(k-1)+1+(n-j-1)//(k-1)+1)\n elif j>=k-1 and j%(k-1)!=0 and (n-j-1)%(k-1)==0:\n l.append(j//(k-1)+1+(n-j-1)//(k-1))\n elif j>=k-1 and j%(k-1)==0 and (n-j-1)%(k-1)!=0:\n l.append(j//(k-1)+(n-j-1)//(k-1)+1)\nprint(min(l))']
['Runtime Error', 'Accepted']
['s632458071', 's836950787']
[2940.0, 14008.0]
[17.0, 60.0]
[265, 713]
p03317
u982591663
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K > 3\n \nprint(114514)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K > 50\n \nprint(114514)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K > 10\n \nprint(114514)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K == 3\n \nprint(114514)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n\nassert K > 100\n\nprint(114514)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K > 5\n \nprint(114514)', 'import math\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n\nif N == K:\n print(1)\n quit()\nelse:\n one_index = A.index(1)\n l = one_index \n r = N - one_index - 1 \n\n assert l % 3 == 0\n \n print(114514)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K > 2\n \nprint(114514)', 'import math\n \nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nif N == K:\n print(1)\n quit()\nelse:\n one_index = A.index(1)\n l = one_index \n r = N - one_index - 1 \n \n assert N % 3 == 0', 'import math\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n\nif N == K:\n print(1)\n quit()\nelse:\n one_index = A.index(1)\n l = one_index \n r = N - one_index - 1 \n\n assert r % 3 == 0\n \n print(114514)\n', 'import math\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n\nif N == K:\n print(1)\n quit()\nelse:\n one_index = A.index(1)\n l = one_index \n r = N - one_index - 1 \n\n assert r % 3 == 1\n \n print(114514)\n', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n \nassert K == 3\nassert N < 100\n \nprint(114514)', 'import math\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n\nif N == K:\n print(1)\n quit()\nelse:\n one_index = A.index(1)\n l = one_index \n r = N - one_index - 1 \n\n assert l < r\n\n print(114514)\n', 'import math\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\n\nleast_g = (N-1) / (K-1)\n\nif least_g.is_integer():\n print(int(least_g))\nelse:\n print(int(least_g)+1)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s108766785', 's142684268', 's191421264', 's304110009', 's393111895', 's557771900', 's591866059', 's621356754', 's627909190', 's628063926', 's800271102', 's814552338', 's997467242', 's952200623']
[14008.0, 13880.0, 14008.0, 13880.0, 13880.0, 13880.0, 13812.0, 13812.0, 13812.0, 13812.0, 13812.0, 14008.0, 13812.0, 13812.0]
[40.0, 41.0, 41.0, 41.0, 39.0, 43.0, 41.0, 40.0, 41.0, 42.0, 41.0, 41.0, 41.0, 41.0]
[107, 108, 108, 108, 107, 107, 314, 107, 294, 315, 315, 123, 306, 197]
p03317
u983967747
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
["import sys\n\n\ndef solve(n, k, as):\n if (n-1)%(k-1)==0:\n return (n-1)/(k-1)\n else:\n return round((n-1)/(k-1))\n\n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n [str_n, str_k] = line.split(' ')\n line = sys.stdin.readline().rstrip()\n as = line.split(' ')\n return (int(str_n), int(str_k), [int(a) for a in as])\n\ndef main():\n n, k, as = readQuestion()\n answer = solve(n, k, as)\n print(answer)\n \nif __name__ == '__main__':\n main()", "import sys\n\n\ndef solve(n, k, as1):\n if (n-1)%(k-1)==0:\n return (n-1)//(k-1)\n else:\n return (n-1)//(k-1)+1\n\n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n [str_n, str_k] = line.split(' ')\n line = sys.stdin.readline().rstrip()\n as1 = line.split(' ')\n return (int(str_n), int(str_k), [int(a) for a in as1])\n\ndef main():\n n, k, as1 = readQuestion()\n answer = solve(n, k, as1)\n print(answer)\n \nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s926559260', 's287862031']
[2940.0, 14900.0]
[17.0, 43.0]
[645, 647]
p03317
u992519990
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import math\nN,K = map(int,input().split())\na = list(map(int,input().split()))\nprint(N,K)\nprint(math.ceil((N-1)/(K-1)))', 'import math\nN,K = map(int,input().split())\na = list(map(int,input().split()))\nprint(math.ceil((N-1)/(K-1)))']
['Wrong Answer', 'Accepted']
['s314410654', 's308789463']
[13812.0, 13812.0]
[40.0, 40.0]
[118, 107]
p03318
u007550226
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['import heapq\ndef sk(k):\n tempk = k\n ret = 0\n while tempk!=0:\n ret+=tempk%10\n tempk//=10\n return ret\nk= int(input())\nansl = []\nheapq.heapify(ansl)\nmmin = 99999999.0\nfor i in range(1,3*k+1):\n if i%10==0:pass\n else:\n temp = i/sk(i)\n heapq.heappush(ansl,(temp,i))\n mmin = min(mmin,temp)\nneedcalc=0\ni=1\nwhile len(ansl)!=0:\n tempa = heapq.heappop(ansl)\n print(i,tempa[1])\n if i==k:break\n i+=1', "def sk(k):\n tk = k\n ret = 0\n while tk!=0:\n ret+=tk%10\n tk//=10\n return ret\nan = []\nfor i in range(1,100):\n tp = i/sk(i)\n if len(an)==0:an.append((i,tp))\n else:\n ls=an[-1]\n if ls[1]>tp:an[-1]=(i,tp)\n else:an.append((i,tp))\nfor j in range(15):\n for i in range(100,1000):\n ns=str(i)+''.join(['9']*j)\n nm=int(ns)\n tp=nm/sk(nm)\n if an[-1][1] > tp:\n while an[-1][1]>tp:\n an.pop()\n an.append((nm,tp))\nfor i in range(int(input())):print(an[i][0])"]
['Wrong Answer', 'Accepted']
['s641732994', 's505753054']
[9388.0, 9056.0]
[28.0, 56.0]
[451, 558]
p03318
u121921603
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['m=float("INF")\nsunukes=[]\nfor i in range(15,-1,-1):\n for j in range(100,10,-1):\n #print(i,j)\n sunuke=j*(10**i)-1\n s=str(sunuke)\n sn=0\n for k in range(len(s)):\n sn+=int(s[k])\n x=sunuke/sn\n #print(sn,x,i,j,j*10**i-1)\n if x<=m :\n m=x\n sunukes.append(sunuke)\nfor i in range(9,0,-1):\n sunukes.append(i)\nk=int(input())\n\nprint(sunukes[-k])\n', 'm=float("INF")\nsunukes=[]\nfor i in range(7,-1,-1):\n for j in range(1000,10,-1):\n #print(i,j)\n sunuke=j*(100**i)-1\n s=str(sunuke)\n sn=0\n for k in range(len(s)):\n sn+=int(s[k])\n x=sunuke/sn\n \n if x<=m :\n m=x\n sunukes.append(sunuke)\nfor i in range(9,0,-1):\n sunukes.append(i)\nsunukes=sunukes[::-1]\nk=int(input())\n\nfor i in range(k):\n print(sunukes[i])']
['Wrong Answer', 'Accepted']
['s361261858', 's069909017']
[3060.0, 3188.0]
[23.0, 51.0]
[443, 477]
p03318
u160244242
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
["k = int(input())\n\ndef func(a):\n s = 0\n for i in str(a):\n s += int(i)\n return a/s\n\ncandidate_lst = []\nfor i in range(18):\n for j in range(1, 150):\n candidate_lst.append(int(str(j) + '9' * i))\ncandidate_lst = sorted(candidate_lst)\n\ncount = 0\nindex = -1\nsnuke = 1\nwhile count < k:\n min_snuke = 10**100\n for m, i in enumerate(candidate_lst[index+1:]):\n if i > 100*snuke:\n break\n po_snuke = func(i)\n if min_snuke > po_snuke:\n min_snuke = po_snuke\n next_snuke = i\n next_index = m\n print(next_snuke)\n snuke = next_snuke\n index = index + next_index + 2\n count += 1 ", "k = int(input())\n\ndef func(a):\n s = 0\n for i in str(a):\n s += int(i)\n return a/s\n\ncandidate_lst = []\nfor i in range(18):\n for j in range(1, 150):\n candidate_lst.append(int(str(j) + '9' * i))\ncandidate_lst = sorted(list(set(candidate_lst)))\n\ncount = 0\nindex = -1\nsnuke = 1\nwhile count < k:\n min_snuke = 10**100\n for m, i in enumerate(candidate_lst[index+1:]):\n if i > 100*snuke:\n break\n po_snuke = func(i)\n if min_snuke > po_snuke:\n min_snuke = po_snuke\n next_snuke = i\n next_index = m\n print(next_snuke)\n snuke = next_snuke\n index = index + next_index + 1\n count += 1 "]
['Wrong Answer', 'Accepted']
['s775653137', 's501263967']
[3188.0, 3312.0]
[688.0, 584.0]
[676, 687]
p03318
u163320134
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
["k=int(input())\nans=[]\nfor i in range(1,10): \n ans.append(str(i))\n \nfor i in range(1,10): \n ans.append(str(i)+'9')\n \nfor i in range(1,10): \n ans.append(str(i)+'99')\n \nfor i in range(10): \n ans.append('1'+str(i)+'99')\nfor i in range(2,10): \n ans.append(str(i)+'999')\n \nfor i in range(1,3): \n for j in range(10):\n ans.append(str(i)+str(j)+'999')\nfor i in range(3,10): \n ans.append(str(i)+'9999')\n \nfor i in range(1,4): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999')\nfor i in range(4,10): \n ans.append(str(i)+'99999')\n \nfor i in range(1,5): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999')\nfor i in range(5,10): \n ans.append(str(i)+'999999')\n\nfor i in range(1,6): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999')\nfor i in range(6,10): \n ans.append(str(i)+'9999999')\n \nfor i in range(1,7): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999')\nfor i in range(7,10): \n ans.append(str(i)+'99999999')\n\nfor i in range(1,8): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999')\nfor i in range(8,10): \n ans.append(str(i)+'999999999')\n\nfor i in range(1,9): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999999')\nfor i in range(9,10): \n ans.append(str(i)+'9999999999')\n \nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999999')\nfor i in range(10,10): \n ans.append(str(i)+'99999999999')\n\nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999999')\nfor i in range(10,10): \n ans.append(str(i)+'999999999999')\n \nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999999999')\nfor i in range(10,10): \n ans.append(str(i)+'9999999999999')\n\nfor i in range(10): \n ans.append('10'+str(i)+'999999999999')\nfor i in range(1,10): \n ans.append('1'+str(i)+'9999999999999')\nfor i in range(2,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999999999')\n \nfor val in ans[300:k]:\n print(val)\n", "k=int(input())\nans=[]\nfor i in range(1,10): \n ans.append(str(i))\n \nfor i in range(1,10): \n ans.append(str(i)+'9')\n \nfor i in range(1,10): \n ans.append(str(i)+'99')\n \nfor i in range(10): \n ans.append('1'+str(i)+'99')\nfor i in range(2,10): \n ans.append(str(i)+'999')\n \nfor i in range(1,3): \n for j in range(10):\n ans.append(str(i)+str(j)+'999')\nfor i in range(3,10): \n ans.append(str(i)+'9999')\n \nfor i in range(1,4): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999')\nfor i in range(4,10): \n ans.append(str(i)+'99999')\n \nfor i in range(1,5): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999')\nfor i in range(5,10): \n ans.append(str(i)+'999999')\n\nfor i in range(1,6): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999')\nfor i in range(6,10): \n ans.append(str(i)+'9999999')\n \nfor i in range(1,7): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999')\nfor i in range(7,10): \n ans.append(str(i)+'99999999')\n\nfor i in range(1,8): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999')\nfor i in range(8,10): \n ans.append(str(i)+'999999999')\n\nfor i in range(1,9): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999999')\nfor i in range(9,10): \n ans.append(str(i)+'9999999999')\n \nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999999')\nfor i in range(10,10): \n ans.append(str(i)+'99999999999')\n\nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999999')\nfor i in range(10,10): \n ans.append(str(i)+'999999999999')\n \nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999999999')\nfor i in range(10,10): \n ans.append(str(i)+'9999999999999')\n\nfor i in range(10): \n ans.append('10'+str(i)+'999999999999')\nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999999999')\n \nfor val in ans[300:k]:\n print(val)", "k=int(input())\nans=[]\nfor i in range(1,10): \n ans.append(str(i))\n \nfor i in range(1,10): \n ans.append(str(i)+'9')\n \nfor i in range(1,10): \n ans.append(str(i)+'99')\n \nfor i in range(10): \n ans.append('1'+str(i)+'99')\nfor i in range(2,10): \n ans.append(str(i)+'999')\n \nfor i in range(1,3): \n for j in range(10):\n ans.append(str(i)+str(j)+'999')\nfor i in range(3,10): \n ans.append(str(i)+'9999')\n \nfor i in range(1,4): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999')\nfor i in range(4,10): \n ans.append(str(i)+'99999')\n \nfor i in range(1,5): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999')\nfor i in range(5,10): \n ans.append(str(i)+'999999')\n\nfor i in range(1,6): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999')\nfor i in range(6,10): \n ans.append(str(i)+'9999999')\n \nfor i in range(1,7): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999')\nfor i in range(7,10): \n ans.append(str(i)+'99999999')\n\nfor i in range(1,8): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999')\nfor i in range(8,10): \n ans.append(str(i)+'999999999')\n\nfor i in range(1,9): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999999')\nfor i in range(9,10): \n ans.append(str(i)+'9999999999')\n \nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999999')\nfor i in range(10,10): \n ans.append(str(i)+'99999999999')\n\nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'99999999999')\nfor i in range(10,10): \n ans.append(str(i)+'999999999999')\n \nfor i in range(1,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'999999999999')\nfor i in range(10,10): \n ans.append(str(i)+'9999999999999')\n\nfor i in range(10): \n ans.append('10'+str(i)+'999999999999')\nfor i in range(1,10): \n ans.append('1'+str(i)+'9999999999999')\nfor i in range(2,10): \n for j in range(10):\n ans.append(str(i)+str(j)+'9999999999999')\n \nfor val in ans[:k]:\n print(val)"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s355336521', 's895356746', 's468920362']
[3316.0, 3316.0, 3316.0]
[18.0, 19.0, 20.0]
[2280, 2203, 2275]
p03318
u236127431
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['import math\nK=int(input())\nk=0\nm=0\ndef D(x):\n s=str(x)\n array=list(map(int,list(s)))\n return sum(array)\nN=1\nS=1\na=0\nprint(N)\nwhile k<=K:\n N+=10**a\n S=D(N)\n if a<math.log10(N/S):\n a+=1\n N=(N//10**a+1)*10**a-1 \n S=D(N)\n print(N)\n k+=1\n \n \n', 'import math\nK=int(input())\nk=2\nm=0\ndef D(x):\n s=str(x)\n array=list(map(int,list(s)))\n return sum(array)\nN=1\nS=1\na=0\nprint(1)\nwhile k<=K:\n N+=10**a\n S=D(N)\n if a<math.log10(N/S):\n a+=1\n N=(N//10**a+1)*10**a-1\n S=D(N)\n print(N)\n k+=1\n \n \n']
['Wrong Answer', 'Accepted']
['s976926796', 's466173433']
[3188.0, 3188.0]
[24.0, 24.0]
[258, 257]
p03318
u334712262
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
["# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\n\nsys.setrecursionlimit(10000)\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\ndef S(n):\n s = 0\n while n != 0:\n s += n % 10\n n //= 10\n return s\n\n# @mt\ndef slv(K):\n ans = [(-1, 0)]\n for i in range(16):\n if i < 5:\n a = 1\n else:\n a = 5\n for j in range(1, 10**a):\n b = (10**(i-a+1))*j + (10**(i-a+1)-1)\n s = S(b)\n \n while ans[-1][1] > b/s:\n ans.pop()\n ans.append((b, b/s))\n # print(ans[-1])\n ans.pop(0)\n\n \n return '\\n'.join(map(str, map(lambda x: x[0], ans[:K])))\n\n\ndef main():\n K = read_int()\n print(slv(K))\n\nif __name__ == '__main__':\n main()\n", "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\n\nsys.setrecursionlimit(10000)\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\ndef S(n):\n s = 0\n while n != 0:\n s += n % 10\n n //= 10\n return s\n\n# @mt\ndef slv(K):\n ans = [(i, i/S(i)) for i in range(1, 10)]\n for i in range(16):\n a = i\n if a > 5:\n a = 5\n for j in range(1, 10**a):\n b = (10**(i-a+1))*j + (10**(i-a+1)-1)\n s = S(b)\n \n while ans[-1][1] > b/s or ans[-1][0] == b:\n ans.pop()\n ans.append((b, b/s))\n # print(ans[-1])\n \n # for r in ans:\n \n error_print(len(ans))\n \n return '\\n'.join(map(str, map(lambda x: x[0], ans[:K])))\n\n\ndef main():\n K = read_int()\n print(slv(K))\n\nif __name__ == '__main__':\n main()\n", "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\n\nsys.setrecursionlimit(10000)\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\ndef S(n):\n s = 0\n while n != 0:\n s += n % 10\n n //= 10\n return s\n\n# @mt\ndef slv(K):\n ans = [(i, i/S(i)) for i in range(1, 10)]\n for i in range(16):\n a = i\n if a > 4:\n a = 4\n for j in range(1, 10**a):\n b = (10**(i-a+1))*j + (10**(i-a+1)-1)\n if b < 10**(i-1):\n continue\n s = S(b)\n \n while ans[-1][1] > b/s or ans[-1][0] == b:\n (ans.pop())\n ans.append((b, b/s))\n # print(ans[-1])\n \n # for r in ans:\n \n error_print(len(ans))\n \n return '\\n'.join(map(str, map(lambda x: x[0], ans[:K])))\n\n\ndef main():\n K = read_int()\n print(slv(K))\n\nif __name__ == '__main__':\n main()\n"]
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
['s343074536', 's672354438', 's290270431']
[5456.0, 5452.0, 5452.0]
[2104.0, 2104.0, 413.0]
[1576, 1686, 1743]
p03318
u368780724
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['N = int(input())\nM = N//10\nk = N%10\nd=0\nfor j in range (M):\n for i in range(2,11):\n print(i*10**d-1)\n d += 1 \nif k != 0:\n for i in range(2,2+k):\n print(i*10**d-1)', 'def R(x):\n return x / sum(map(int, str(x)))\nK = int(input())\nD = 0\nl = 0\nfor i in range(K):\n D += 10**l\n print(D)\n if 10**l < R(D+10**l):\n l += 1']
['Wrong Answer', 'Accepted']
['s207211113', 's671221431']
[3060.0, 3060.0]
[17.0, 20.0]
[185, 164]
p03318
u381416158
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['import math\n\ndef s(n):\n ret = 0\n\n while n > 0:\n ret += n % 10\n n = n // 10\n \n return ret\n\ndef snuke(n):\n candidate = []\n\n for d in range(int(math.log(n, 10)) + 2):\n x = n - (n % 10**d) + (10**d - 1)\n candidate.append(x)\n \n min_value = candidate[0] / s(candidate[0])\n ans = candidate[0]\n for c in candidate[1:]:\n tmp = c / s(c)\n if tmp < min_value:\n min_value = tmp\n ans = c\n \n return ans\n\nprint(snuke(10248))\n ', 'import math\n\ndef s(n):\n ret = 0\n\n while n > 0:\n ret += n % 10\n n = n // 10\n \n return ret\n\ndef snuke(n):\n candidate = []\n\n for d in range(int(math.log(n, 10)) + 2):\n x = n - (n % 10**d) + (10**d - 1)\n candidate.append(x)\n \n min_value = candidate[0] / s(candidate[0])\n ans = candidate[0]\n for c in candidate[1:]:\n tmp = c / s(c)\n if tmp < min_value:\n min_value = tmp\n ans = c\n \n return ans\n\nK = int(input())\n\nN = 0\nfor i in range(K):\n N = snuke(N + 1)\n print(N)\n ']
['Wrong Answer', 'Accepted']
['s564969586', 's472814853']
[8936.0, 9140.0]
[26.0, 45.0]
[529, 586]
p03318
u407160848
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['def s(n):\n\tsum = 0\n\tfor c in str(n):\n\t\tsum += int(c)\n\treturn sum\n\ndef isSunuke(n):\n\tfor m in range(n+1, n * 100):\n\t\tif (n / s(n)) > (m / s(m)):\n\t\t\treturn False\n\treturn True\n\nk = int(input())\nfound=0\nn = 1\nwhile(found < k):\n\tsn = str(n)\n\tlength = len(sn)\n\tnines = 0\n\tfor c in sn:\n\t\tif c == "9":\n\t\t\tnines += 1\n\tif nines < length / 2:\n\t\tn += 1\n\t\tcontinue\n\tif isSunuke(n):\n\t\tprint(n)\n\t\tfound+=1\n\tn += 1', 'import math\n\n\ndef s(n):\n\tsum = 0\n\tfor c in str(n):\n\t\tsum += int(c)\n\treturn sum\n\nk = int(input())\nfound=0\n\ndef next_sunuke(n, s_n, s_n_div):\n\n\tglobal found\n\n\tif n == 1:\n\t\treturn\n\n\tlog_n = int(math.log(n,10))\n\tm = n - 10 ** int(log_n // 1.25)\n\n\twhile m >= 1:\n\t\ts_m = s(m)\n\t\ts_mplus1 = s(m + 1)\n\n\t\tif (s_m < s_mplus1 or (s_n - s_m != 1 and s_n - s_m != -8 and s_n - s_m != -17)) and m > 9:\n\t\t\tm -= 10 ** int(log_n // 1.25)\n\t\t\tcontinue\n\n\t\t# print("check: " + str(m))\n\n\t\ts_m_div = m / s(m)\n\n\t\tif s_m_div <= s_n_div:\n\t\t\tnext_sunuke(m, s_m, s_m_div)\n\t\t\tif found >= k:\n\t\t\t\treturn\n\n\t\t\tfound += 1\n\t\t\t# print("{0:d}".format(m), "{0:+d}".format(n-m), "{0:d}".format(s_m), s_m_div)\n\t\t\tprint(m)\n\t\t\tbreak\n\n\n\t\tm -= 10 ** int(log_n // 1.25)\n\n\n\ncurrent_sunuke = 999999999999999\ns_current_sunuke = s(current_sunuke)\ns_current_sunuke_div = current_sunuke / s_current_sunuke\n\n# start = datetime.datetime.now()\nnext_sunuke(current_sunuke, s_current_sunuke, s_current_sunuke_div)\nif found < k:\n\tprint(current_sunuke)\n# end = datetime.datetime.now()\n# print(str(end-start))\n']
['Wrong Answer', 'Accepted']
['s730572353', 's584532833']
[3064.0, 3828.0]
[2104.0, 347.0]
[398, 1099]
p03318
u434208140
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['from math import log10 as l\ns=lambda f:sum(map(int,list(str(f))))\np=lambda a,j:(a//10**(j+1)+1)*10**(j+1)-1\nn=int(input())\na=1\nfor i in range(n):\n print(a)\n if(a<10):\n a+=1\n continue\n a+=1\n k=[p(a,j) for j in range(int(l(a)))]\n o=[p(a,j)/s(p(a,j)) for j in range(int(l(a)))]\n a=k[o.index(min(o))]', 'from math import log10 as l\ns=lambda f:sum(map(int,list(str(f))))\np=lambda a,j:(a//10**(j+1)+1)*10**(j+1)-1\nn=int(input())\na=1\nfor i in range(n):\n print(a)\n if(a<9):\n a+=1\n continue\n a+=1\n k=[p(a,j) for j in range(int(l(a)))]\n o=[p(a,j)/s(p(a,j)) for j in range(int(l(a)))]\n a=k[o.index(min(o))]']
['Wrong Answer', 'Accepted']
['s709863728', 's678207470']
[3316.0, 3572.0]
[63.0, 66.0]
[308, 307]
p03318
u473633103
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['# coding: utf-8\n# Your code here!\nk = int(input())\nk = 100\ncount = 0\nans = []\nminN = 10**15\n\nfor i in reversed(range(5)):\n for j in reversed(range(1,10**4)):\n num = str(j)+"9"*i*3\n n = sum([int(k) for k in num])\n n = int(num)/n\n if(num == "379999"):\n print("tes")\n if(minN > n or n==1):\n minN = n\n ans.append(num)\n\nprint(len(ans[0]),len(ans))\n\nfor i in list(reversed(ans))[:k]:\n print(i)', '# coding: utf-8\n# Your code here!\nk = int(input())\n\ncount = 0\nans = []\nminN = 10**15\n\nfor i in reversed(range(12)):\n for j in reversed(range(1,10**4)):\n num = str(j)+"9"*i\n n = sum([int(k) for k in num])\n n = int(num)/n\n if(minN > n or n==1):\n minN = n\n ans.append(num)\n \n \nprint(len(ans[0]))\nfor i in list(reversed(ans))[:k]:\n print(i)', '# coding: utf-8\n# Your code here!\nk = int(input())\nk = 100\ncount = 0\nans = []\nminN = 10**15\n\nfor i in reversed(range(5)):\n for j in reversed(range(1,10**4)):\n num = str(j)+"9"*i*3\n n = sum([int(k) for k in num])\n n = int(num)/n\n if(minN > n or n==1):\n minN = n\n ans.append(num)\n\nfor i in list(reversed(ans))[:k]:\n print(i)', '# coding: utf-8\n# Your code here!\nk = int(input())\n\ncount = 0\nans = []\nminN = 10**15\n\nfor i in reversed(range(15)):\n for j in reversed(range(1,100)):\n num = str(j)+"9"*i\n n = sum([int(k) for k in num])\n n = int(num)/n\n if(minN > n):\n minN = n\n ans.append(num)\n \nfor i in list(reversed(ans))[:k]:\n print(i)', '# coding: utf-8\n# Your code here!\nk = int(input())\nans = 10**15\nli = []\nfor i in reversed(list(range(1,10**15))):\n snk = sum([int(j) for j in str(i)])\n if(ans >= i/snk):\n ans = i/snk\n li.append(i)\n \nfor i in list(reversed(li))[:k]:\n print(i)', '# coding: utf-8\n# Your code here!\nk = int(input())\n\ncount = 0\nans = []\nminN = 10**15\n\nfor i in reversed(range(10)):\n for j in reversed(range(1,10**5)):\n num = str(j)+"9"*i\n n = sum([int(k) for k in num])\n n = int(num)/n\n if(minN > n or n==1):\n minN = n\n ans.append(num)\n\nprint(len(ans[0]))\nfor i in list(reversed(ans))[:k]:\n print(i)', '# coding: utf-8\n# Your code here!\nk = int(input())\ncount = 0\nans = []\nminN = 10**15\n\nfor i in reversed(range(13)):\n minN = 10**15\n for j in reversed(range(1,10**3)):\n num = str(j)+"9"*i\n n = sum([int(k) for k in num])\n n = int(num)/n\n if(minN > n or n==1):\n minN = n\n ans.append(int(num))\n\nfor i in list(sorted(list(set(ans))))[:k]:\n print(i)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Time Limit Exceeded', 'Accepted']
['s365938545', 's371376997', 's383636637', 's528204101', 's747744313', 's852914941', 's323716387']
[3064.0, 3064.0, 3060.0, 3060.0, 3060.0, 3064.0, 3188.0]
[186.0, 407.0, 185.0, 22.0, 17.0, 2104.0, 59.0]
[461, 414, 378, 372, 271, 389, 401]
p03318
u496344397
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['import sys \n\nK = int(input())\n\nif K <= 0:\n sys.exit(0)\n\nstep = 1 \nsnuke = 1 \n\nwhile K >= 0:\n if step < snuke/sum(map(int, str(snuke))):\n snuke += 9 * step\n step *= 10\n else:\n print(snuke)\n snuke += step\n K -= 1', 'import sys \n\nK = int(input())\n\nif K <= 0:\n sys.exit(0)\n\nstep = 1 \nsnuke = 1 \n\nwhile K > 0:\n if step < snuke/sum(map(int, str(snuke))):\n snuke += 9 * step\n step *= 10\n else:\n print(snuke)\n snuke += step\n K -= 1']
['Wrong Answer', 'Accepted']
['s515083874', 's316944658']
[3188.0, 3060.0]
[19.0, 20.0]
[254, 253]
p03318
u497046426
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
["K = int(input())\n\nif K < 10:\n num_list = [i for i in range(1, K+1)]\n print(*num_list, sep='\\n')\nelse:\n num_list = [i for i in range(1, 10)]\n n = 19\n digits = 2\n while len(num_list) < K:\n num_list.append(n)\n if str(n+1)[0] > 3:\n digits += 1\n n += 10**(digits - 1)\n print(*num_list, sep='\\n')", "def digit_sum(number):\n ans = 0\n for n in str(number):\n ans += int(n)\n return ans\n\ndef obj_func(number):\n return number/digit_sum(number)\n\nK = int(input())\nnum_list = []\nd = 1\nn = 1\n\nfor i in range(K):\n num_list.append(n)\n if obj_func(n + 10**(d-1)) > obj_func(n + 10**d):\n d += 1\n n += 10**(d-1)\n\nprint(*num_list, sep='\\n')\n"]
['Runtime Error', 'Accepted']
['s184045417', 's446300519']
[3064.0, 3188.0]
[18.0, 25.0]
[343, 360]
p03318
u517152997
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['# -*- coding: utf-8 -*-\n# \nimport math\nimport sys\nimport itertools\nimport numpy as np\nfrom operator import itemgetter\n\nk =int(input())\nnmax=0\ns = []\nfor i in range(1,200):\n for j in range(14):\n p = i\n for ii in range(j):\n p=p*10+9\n q = i // 100 + (i // 10) % 10 + i % 10 + 9*j\n r = p / q\n\n s.append((p,q,r))\n\ns= sorted( s, key=itemgetter(2) )\nprint(s)\nnum=0\nfor a in s :\n if a[0] > nmax:\n nmax = a[0]\n print(nmax)\n num += 1\n if num >= k :\n break \n \n', '# -*- coding: utf-8 -*-\n# \nimport math\nimport sys\nimport itertools\nimport numpy as np\nfrom operator import itemgetter\n\nk =int(input())\nnmax=0\ns = []\nfor i in range(1,200):\n for j in range(14):\n p = i\n for ii in range(j):\n p=p*10+9\n q = i // 100 + (i // 10) % 10 + i % 10 + 9*j\n r = p / q\n\n s.append((p,q,r))\n\ns= sorted( s, key=itemgetter(2) )\n#print(s)\nnum=0\nfor a in s :\n if a[0] > nmax:\n nmax = a[0]\n print(nmax)\n num += 1\n if num >= k :\n break \n \n']
['Wrong Answer', 'Accepted']
['s684630800', 's666693794']
[22296.0, 21656.0]
[1621.0, 308.0]
[543, 544]
p03318
u533885955
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['\nK = int(input())\nketa = 1\nnow = 1\ndef sunuke(n):\n a = 0\n for i in str(n):\n a+=int(i)\n return(n/a)\ncount=0\nwhile count < k:\n if sunuke(ima) <= sunuke(ima+keta):\n print(ima)\n ima += keta\n count += 1\n else:\n ima += 9*keta\n keta *= 10\n\n', '\nK = int(input())\nketa = 1\nnow = 1\ndef sunuke(n):\n a = 0\n for i in str(n):\n a+=int(i)\n return(n/a)\ncount=0\nwhile count < k:\n if sunuke(now) <= sunuke(now+keta):\n print(now)\n now+=keta\n count+=1\n else:\n now+=9*keta\n keta *= 10\n\n', '\nK=int(input())\nketa=1\nnow=1\ncount=0\n\ndef sunuke(n):\n a=0\n for i in str(n):\n a+=int(i)\n return(n/a)\n\nwhile count < K:\n if sunuke(now) <= sunuke(now+keta):\n print(now)\n now+=keta\n count+=1\n else:\n now+=9*keta\n keta*=10\n\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s103156694', 's189237679', 's075441070']
[2940.0, 2940.0, 3188.0]
[17.0, 18.0, 22.0]
[298, 292, 284]
p03318
u547167033
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['k=input()\na=0\nb=1\nfor i in range(k):\n a+=b\n print(a)\n if b<(a+b)/sum(map(int,str(a+b))):\n b*=10', 'k=int(input())\na=0\nb=1\nfor i in range(k):\n a+=b\n print(a)\n if b<(a+b)/sum(map(int,str(a+b))):\n b*=10']
['Runtime Error', 'Accepted']
['s486905655', 's993293613']
[3060.0, 3188.0]
[17.0, 20.0]
[101, 106]
p03318
u594859393
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
["from itertools import chain, count, islice\n\ndef f():\n j = int(input())\n cs = '123456789'\n xs = ['123456789', (c+'9' for c in cs)] \n for x in chain(*xs):\n if j == 0: return\n yield x\n j -= 1\n\n for i in count(2):\n for n in range(i-1, i*10-1):\n if j == 0: return\n yield str(n)+('9'*i)\n j -= 1\n\nz = list(f())", 'from math import log, floor\nfrom itertools import accumulate, chain, islice, repeat\n \nk = int(input())\n \ndef f(n):\n ds = range(int(log(n+1, 10))+1)\n xs = [(10**(d+1))*floor(n/(10**(d+1)) + 1) - 1 for d in ds]\n return min(xs, key=lambda n:n / sum(map(int, str(n))))\n \nsnukes = chain(range(1, 9), accumulate(repeat(9), lambda x,_:f(x+1)))\n \nfor x in islice(snukes, k):\n print(x)']
['Wrong Answer', 'Accepted']
['s755571457', 's156735101']
[3060.0, 3188.0]
[20.0, 47.0]
[379, 388]
p03318
u619458041
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
["import sys\n\ndef S(n):\n return n / sum(map(int, str(n)))\n\n\ndef f(n):\n d = 0\n C = [n]\n while S(n) > (10**(d-1) / (9*d)):\n c = 10**(d+1) * (n // 10**(n+1) + 1) - 1\n C.append(c)\n \n Smin = float('inf')\n res = 0\n for c in C:\n if S(c) < Smin:\n res = c \n return res\n \ndef main():\n input = sys.stdin.readline\n K = int(input())\n ans = 1\n while _ in range(K):\n print(ans)\n ans = f(ans+1)\n\n\nif __name__ == '__main__':\n main()", "import sys\n\ndef S(n):\n return n / sum(map(int, str(n)))\n\n\ndef f(n):\n d = 0\n C = [n]\n while S(n) > (10**d / 9*(d+1)):\n c = 10**(d+1) * (n // 10**(d+1) + 1) - 1\n C.append(c)\n d += 1\n Smin = float('inf')\n res = 0\n for c in C:\n if S(c) < Smin:\n Smin = S(c)\n res = c \n return res\n\n\ndef main():\n input = sys.stdin.readline\n K = int(input())\n ans = 1\n for _ in range(K):\n print(ans)\n ans = f(ans+1)\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s312991580', 's692347983']
[3064.0, 3188.0]
[17.0, 82.0]
[449, 470]
p03318
u620480037
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['K=int(input())\nfor i in range(1,K):\n if i<=9:\n print(i)\n elif i%10==0:\n pass\n elif i<=19:\n a=(i-10)*10+9\n print(a)\n elif i<=29:\n a=(i-20)*100+99\n print(a)\n elif i<=39:\n a=(i-30)*1000+999\n print(a)\n elif i<=49:\n a=(i-40)*10000+9999\n print(a)\n elif i<=59:\n a=(i-50)*100000+99999\n print(a)\n elif i<=69:\n a=(i-60)*1000000+999999\n print(a)\n elif i<=79:\n a=(i-70)*10000000+9999999\n print(a)\n elif i<=89:\n a=(i-80)*100000000+99999999\n print(a)\n elif i<=99:\n a=(i-90)*1000000000+999999999\n print(a)\n elif i<=109:\n a=(i-100)*10000000000+9999999999\n print(a)\n elif i<=119:\n a=(i-110)*100000000000+99999999999\n print(a)\n elif i<=129:\n a=(i-120)*1000000000000+999999999999\n print(a)\n elif i<=139:\n a=(i-130)*10000000000000+9999999999999\n print(a)\n elif i<=149:\n a=(i-140)*100000000000000+99999999999999\n print(a)\n elif i<=159:\n a=(i-150)*1000000000000000+999999999999999\n print(a)', 'K=int(input())\nD={}\nfor i in range(1,10**4):\n for j in range(12):\n Sunuke=str(i)+("9"*j)\n if len(Sunuke)<=15 and Sunuke not in D:\n S=0\n for k in range(len(Sunuke)):\n S+=int(Sunuke[k])\n D[int(Sunuke)]=S\nD=list(D.items())\nD.sort()\n#print(D[:10])\nimport bisect\n\nd=[10**16 for i in range(len(D))]\nd[0]=0\nans=[0 for i in range(len(D))]\nfor i in range(len(D)):\n ans[bisect.bisect_right(d,D[i][0]/D[i][1])]=D[i][0]\n d[bisect.bisect_right(d,D[i][0]/D[i][1])]=D[i][0]/D[i][1]\n \n#print(ans[:50])\nANS=[]\nMAX=0\nfor i in range(len(ans)):\n if ans[i]>MAX:\n ANS.append(ans[i])\n MAX=ans[i]\n#print(ANS[:100])\nfor i in range(K):\n print(ANS[i])\n#print(d[:10])']
['Wrong Answer', 'Accepted']
['s479745310', 's194911697']
[3064.0, 20404.0]
[18.0, 916.0]
[1143, 733]
p03318
u631277801
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['MAX = 10**15+1\n\ndef find_next_n(n):\n cand = []\n n_str = str(n)\n n_list = list(n_str)\n for i in range(1,len(str(n))+1):\n n_list[-i] = \'9\'\n cand.append(int("".join(n_list)))\n cand_result = [num/snuke(num) for num in cand]\n min_idx = cand_result.index(min(cand_result))\n\n return cand[min_idx]\n \n \ndef snuke(num):\n ans = 0\n while num//10 != 0:\n ans += num%10\n num = num//10\n return ans + num\n\ndef main():\n K = int(input())\n if K<10:\n for i in range(1,K+1):\n print(i)\n else:\n n = 10\n for i in range(K):\n print(i)\n for i in range(10,K+1):\n ans = find_next_n(n)\n print(ans)\n n = ans+i\n \n if n>MAX:\n break\n \n \nif __name__ == "__main__":\n main()', 'MAX = 10**15+1\n\ndef top(num):\n ans = 0\n while num//10 != 0:\n ans += num%10\n num = num//10\n return num\n\n\ndef tail(num):\n sho = num//10\n return num-10*sho\n\ndef get_snuke():\n for i in range(1,MAX):\n if i <= 10:\n yield i\n elif tail(i) == 9:\n if top(i) != top(i+10):\n yield i\n \n\ndef main():\n K = int(input())\n gen = get_snuke()\n\n \n for _ in range(K):\n snuke_num = gen.__next__()\n print(snuke_num)\n\nif __name__ == "__main__":\n main()', 'MAX = 10**15+1\n\ndef find_next_n(n):\n cand = []\n n_str = str(n)\n n_list = list(n_str)\n for i in range(1,len(str(n))+1):\n n_list[-i] = \'9\'\n cand.append(int("".join(n_list)))\n cand_result = [num/snuke(num) for num in cand]\n min_idx = cand_result.index(min(cand_result))\n\n return cand[min_idx]\n \n \ndef snuke(num):\n ans = 0\n while num//10 != 0:\n ans += num%10\n num = num//10\n return ans + num\n\ndef main():\n K = int(input())\n if K<10:\n for i in range(1,K+1):\n print(i)\n else:\n n = 10\n for i in range(1,K+1):\n print(i)\n for i in range(10,K+1):\n ans = find_next_n(n)\n print(ans)\n n = ans+i\n \n if n>MAX:\n break\n \n \nif __name__ == "__main__":\n main()', 'MAX = 10**15+1\n\ndef tail(num):\n sho = num//10\n return num-10*sho\n\ndef get_snuke():\n for i in range(1,MAX):\n if i <= 10:\n yield i\n elif tail(i) == 9:\n yield i\n \n\ndef main():\n K = 100\n gen = get_snuke()\n \n for _ in range(K):\n snuke_num = gen.__next__()\n print(snuke_num)\n\nif __name__ == "__main__":\n main()', 'MAX = 10**15+1\n\ndef tail(num):\n sho = num//10\n return num-10*sho\n\ndef get_snuke():\n for i in range(1,MAX):\n if i <= 10:\n yield i\n elif tail(i) == 9:\n yield i\n \n\ndef main():\n K = int(input())\n gen = get_snuke()\n \n for _ in range(K):\n snuke_num = gen.__next__()\n print(snuke_num)\n\nif __name__ == "__main__":\n main()', 'import sys\nstdin = sys.stdin\n\nsys.setrecursionlimit(10**5)\n\ndef li(): return map(int, stdin.readline().split())\ndef li_(): return map(lambda x: int(x)-1, stdin.readline().split())\ndef lf(): return map(float, stdin.readline().split())\ndef ls(): return stdin.readline().split()\ndef ns(): return stdin.readline().rstrip()\ndef lc(): return list(ns())\ndef ni(): return int(stdin.readline())\ndef nf(): return float(stdin.readline())\n\ndef ds(n:int):\n return sum([int(i) for i in str(n)])\n\ndef snuke(n:int):\n return n/ds(n)\n\ndef cands(n:int):\n ret = []\n nl = len(str(n))\n for i in range(nl):\n ret.append(str(n)[:nl-i-1] + "9"*(i+1))\n \n return ret\n\nk = ni()\n\n\nans = [i for i in range(1,10)]\n\n\ncur = 10\nwhile len(ans) < k:\n cand = cands(cur)\n temp = 10**18\n nex = -1\n for c in cand:\n if snuke(int(c)) <= temp:\n temp = snuke(int(c))\n nex = int(c)\n \n ans.append(nex)\n cur = nex+1\n \nfor ai in ans[:k]:\n print(ai)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s362017330', 's567135572', 's634153067', 's780399822', 's977994504', 's668958884']
[3316.0, 3064.0, 3316.0, 3060.0, 3060.0, 3188.0]
[45.0, 2104.0, 45.0, 17.0, 19.0, 76.0]
[838, 567, 842, 402, 411, 1025]
p03318
u684026548
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['k = int(input())\n\ns = [1, 2, 3, 4, 5, 6, 7, 8]\n\nl = 1\n\nwhile len(s) <= k:\n for i in range(1, 11):\n s.append((10 ** l) * i - 1)\n if len(s) > k:\n break\n l += 1\n\n\nfor i in s:\n print(i)', 'k = int(input())\n\na = 1\nb = 1\n\ndef snk(n):\n s = 0\n for i in str(n):\n s += int(i)\n return n / s\n\nfor _ in range(k):\n print(a)\n if snk(a + 10 ** (b -1)) > snk(a + 10 ** b):\n b += 1\n a += 10 ** (b-1)\n']
['Wrong Answer', 'Accepted']
['s909811390', 's923214870']
[3060.0, 3060.0]
[18.0, 22.0]
[215, 229]
p03318
u724892495
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['k = int(input())\nif k < 10:\n print(k)\n exit()\n\nprint(9 + (k-9)*10)\n', 'k = int(input())\nif k < 10:\n print(k)\n exit()\n\nprint((k-8)*10-1)\n\n\n# return sum(list(map(int, str(n))))\n#\n# l = []\n\n# l.append([i, s(i), i/s(i)])\n#\n# l.sort(key=lambda x:x[2])\n\n# print(l[i])\n#\n# max = 0\n\n# if l[i][0] > max:\n# max = l[i][0]\n# print(l[i][0]+1, end=" ")\n# print()\n', 'k = int(input())\nif k < 10:\n print(k)\n exit()\n\ndef s(n):\n return sum(list(map(int, str(n))))\n\nseeds = [i for i in range(2, 9)]\nfor i in range(16):\n for j in range(1, 10):\n for k in range(10):\n seeds.append((k + j*10) * 10**i)\n\n# print(seeds)\n\nseeds = list(map(lambda x:x-1, seeds))\n\nl = []\nfor i in seeds:\n l.append([i, s(i), i/s(i)])\n#\nl.sort(key=lambda x:x[2])\n\n# print(l[i])\n\nmax = 0\nans = []\nfor i in range(len(l)):\n if l[i][0] > max:\n max = l[i][0]\n ans.append(l[i][0])\n # print(l[i][0], end=" ")\n\nprint(ans[k-1])\n\n# max = 0\n\n# if l[i][0] > max:\n# max = l[i][0]\n# print(l[i][0]+1, end=" ")\n# print()\n', 'k = int(input())\n\n# print(k)\n# exit()\n\ndef s(n):\n return sum(list(map(int, str(n))))\n\nseeds = [i for i in range(1, 10)]\nfor i in range(15):\n for j in range(10):\n for m in range(10):\n for y in range(10):\n seeds.append(int(str(m + j*10 + y*100) + str(9)*i))\n\n# print(seeds)\n\nseeds = [i for i in seeds if i!=0]\n\nl = []\nfor i in seeds:\n l.append([i, s(i), i/s(i)])\n\n\n# l.append([i, s(i), i/s(i)])\n\n\nl.sort(key=lambda x:x[2])\n\n# print(l[i])\n\nmax = 0\nans = []\nfor i in range(len(l)):\n if l[i][0] > max:\n max = l[i][0]\n ans.append(l[i][0])\n # print(l[i][0], end=" ")\n\nfor i in range(k):\n print(ans[i])\n\n# max = 0\n\n# if l[i][0] > max:\n# max = l[i][0]\n# print(l[i][0]+1, end=" ")\n# print()\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s060096659', 's126039458', 's646512561', 's442133601']
[2940.0, 2940.0, 3188.0, 5712.0]
[70.0, 17.0, 26.0, 118.0]
[73, 403, 736, 875]
p03318
u734548018
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['# /user/bin/python\n# -*- coding: utf-8 -*-\nimport sys\n\n\nk = int(input())\nstep = ret = 1\nfor _ in range(k):\n if step < ret / sum(map(int, list(str(ret)))):\n ret += 9*step\n step *= 10\n else:\n print(ret)\n ret += step\n', '# /user/bin/python\n# -*- coding: utf-8 -*-\n\nt = i = 1\nk = int(input()) \n\nfor _ in range(k):\n if t < i / sum(map(int, list(str(i)))):\n i += 9 * t\n t *= 10\n else:\n print(i)\n i += t\n', 't = i = 1\nk = int(input()) \nwhile k:\n if t < i / sum(map(int, list(str(i)))):\n i += 9 * t\n t *= 10\n else:\n print(i)\n i += t\n k -= 1\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s731736989', 's789150982', 's331607937']
[3188.0, 3188.0, 3188.0]
[21.0, 21.0, 20.0]
[228, 193, 149]
p03318
u782098901
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['def dsum(n):\n ret = 0\n while n > 0:\n ret += n % 10\n n //= 10\n return ret\n\n\ndef g(n):\n return n / dsum(n)\n\nK = int(input())\n\nres = []\nbase = 1\nfor i in range(15):\n for j in range(1, 150):\n res.append(base * (j + 1) - 1)\n base *= 10\n\nres.sort()\nres = list(set(res))\n\nans = []\nprint(res[:20])\nfor i, r in enumerate(res):\n flag = true\n for j in range(i + 1, len(res)):\n if g(r) > g(res[j]):\n flag = False\n break\n if flag:\n ans.append(r)\n\nfor k in range(K):\n print(ans[k])\n', 'K = int(input())\n\n\ndef dsum(n):\n return sum(list(map(int, str(n))))\n\n\ndef g(n):\n return n / dsum(n)\n\nj = 1\norder = 1\nfor i in range(K):\n print(j)\n if g(j + 10 ** (order - 1)) > g(j + 10 ** order):\n order += 1\n j += 10 ** (order - 1)\n']
['Runtime Error', 'Accepted']
['s068271922', 's248307849']
[3188.0, 3188.0]
[19.0, 24.0]
[555, 255]
p03318
u832039789
2,000
1,048,576
Let S(n) denote the sum of the digits in the decimal notation of n. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a **Snuke number** when, for all positive integers m such that m > n, \frac{n}{S(n)} \leq \frac{m}{S(m)} holds. Given an integer K, list the K smallest Snuke numbers.
['res = []\nfor digit in range(1,16):\n if digit<=3:\n for i in range(2,11):\n res.append(10**(digit-1)*i-1)\n elif 4<=digit<=12:\n for i in range(11,(digit-2)*10):\n res.append(i*10**(digit-2)-1)\n for i in range(digit-2,11):\n res.append(i*10**(digit-1)-1)\n elif digit==15:\n for i in range(101,110):\n res.append(i*10**(digit-3)-1)\n for i in range(11,101):\n res.append(i*10**(digit-2)-1)\n else:\n for i in range(11,101):\n res.append(i*10**(digit-2)-1)\nprint(res)\n', 'res = []\nfor digit in range(1,16):\n if digit<=3:\n for i in range(2,11):\n res.append(10**(digit-1)*i-1)\n elif 4<=digit<=12:\n for i in range(11,(digit-2)*10):\n res.append(i*10**(digit-2)-1)\n for i in range(digit-2,11):\n res.append(i*10**(digit-1)-1)\n elif digit==15:\n for i in range(101,110):\n res.append(i*10**(digit-3)-1)\n for i in range(11,101):\n res.append(i*10**(digit-2)-1)\n else:\n for i in range(11,101):\n res.append(i*10**(digit-2)-1)\nfor i in range(int(input())):\n print(res[i])\n']
['Wrong Answer', 'Accepted']
['s082526760', 's566338860']
[3064.0, 3188.0]
[17.0, 18.0]
[572, 609]
p03319
u001024152
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import sys\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nif N == K:\n print(1)\n sys.exit()\n\nprint((N-K)//(K-1)+1)\n', 'import sys\nfrom math import ceil\n\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nif N == K:\n print(1)\n sys.exit()\n\nprint(ceil((N-K)/(K-1))+1)\n']
['Wrong Answer', 'Accepted']
['s383238044', 's371310348']
[14008.0, 13812.0]
[40.0, 41.0]
[144, 171]
p03319
u010090035
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['n,k=map(int,input().split())\nh=[]\nfor i in range(n):\n h.append(int(input()))\nh.sort()\n\nans=9999999999999\nfor i in range(n-k+1):\n ans=min(ans,h[i+k-1]-h[i])\nprint(ans)', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\nprint(-(-(n-1)//(k-1)))\n']
['Runtime Error', 'Accepted']
['s784053475', 's142369117']
[4724.0, 13880.0]
[25.0, 41.0]
[172, 86]
p03319
u028973125
2,000
1,048,576
There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable.
['import sys\n\ninput = sys.stdin.readline\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\npos = A.index(1)\nprint(pos)\nans = 0\nleft = pos\nwhile 0 < left:\n left -= K - 1\n ans += 1\nright = pos\nwhile right < N - 1:\n right += K - 1\n ans += 1\n\nprint(ans)', 'import sys\n\ninput = sys.stdin.readline\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nprint((N-2) // (K-1) + 1)']
['Wrong Answer', 'Accepted']
['s895504744', 's089189890']
[20568.0, 20796.0]
[56.0, 50.0]
[279, 134]