problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03329 | u131406572 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['s=[1]\nn=int(input())\nfor i in range(1,7):\n s.append(6**i)\nfor i in range(1,6):\n s.append(9**i)\ns.sort(reverse=True)\nprint(s)\nc=0;i=0\nwhile n>0:\n if n<s[i]:\n i+=1\n else:\n n-=s[i]\n c+=1\nprint(c)\n', 'a=[1,6,36,216,1296,7776,46656,9,81,729,6561,59049]\nn=int(input())\ndp=[0]*(n+1)\ndp[0]=0\nfor i in range(1,n+1):\n s=[]\n for j in a:\n if i-j<0:\n continue\n s.append(dp[i-j])\n dp[i]=min(s)+1\nprint(dp[-1])\n'] | ['Wrong Answer', 'Accepted'] | ['s639532744', 's622090606'] | [3064.0, 3828.0] | [17.0, 371.0] | [250, 248] |
p03329 | u134789640 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["import sys\nimport numpy as np\n\n\nN = int(input())\n\ndp = np.zeros(N,dtype=np.int)\ndp[0] = 1\n\nsix_count = 1\nnine_count = 1\n\nfor i in range(1,N):\n a = dp[i-1] + 1\n\n if i == pow(6,six_count):\n six_count = six_count + 1\n if i == pow(9,nine_count):\n nine_count = nine_count + 1\n\n b = float('inf')\n c = float('inf')\n if i>=6:\n for _ in range(six_count):\n b = min(b,dp[i-pow(6,_)]+1)\n\n if i>=9:\n for _ in range(nine_count):\n c = min(c,dp[i-pow(9,_)]+1)\n\n dp[i] = min(a,b,c)\n\nprint(dp[N-1])\n", "import sys\nimport numpy as np\n\n\nN = int(input())\n\ndp = [float('inf')]*(N+1)\ndp[0] = 0\nfor i in range(1,N+1):\n\n power = 1\n while power <= i:\n dp[i] = min(dp[i],dp[i-power]+1)\n power *= 6\n\n power = 1\n while power <= i:\n dp[i] = min(dp[i],dp[i-power]+1)\n power *= 9\nprint(dp[N])\n"] | ['Wrong Answer', 'Accepted'] | ['s278253996', 's986864896'] | [14792.0, 15032.0] | [2109.0, 769.0] | [555, 316] |
p03329 | u139115460 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["num = int(input())\nres = num\nfor i in range(num):\n cc = 0\n t = i\n while(t > 0):\n cc += t%6\n t //=6\n t = num-i\n while(t > 0):\n cc += t%9\n t //=9\n if res > cc:\n print('res:',res)\n print('cc:',cc)\n res = cc\n\nprint(res)\n", "num = int(input())\nres = num\nfor i in range(num):\n cc = 0\n t = i\n while(t > 0):\n cc += t%6\n t //=6\n t = num-i\n while(t > 0):\n cc += t%9\n t //=9\n if res > cc:\n print('res:',res)\n print('cc:',cc)\n res = cc\n\nprint(res)\n", 'num = int(input())\nres = num\nfor i in range(num+1):\n cc = 0\n t = i\n while(t > 0):\n cc += t%6\n t //=6\n t = num-i\n while(t > 0):\n cc += t%9\n t //=9\n if res > cc:\n res = cc\n\nprint(res)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s091859916', 's569421314', 's229092581'] | [3060.0, 3060.0, 3060.0] | [335.0, 305.0, 286.0] | [283, 283, 235] |
p03329 | u160244242 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\n\ndp = [0]*100001\nfor i in range(1, n+1):\n candi = []\n for j in lst:\n if i >= j:\n candi.append(dp[i-j]+1)\n dp[i] = min(candi)\nprint(dp[i])', 'n = int(input())\n\nlst = []\nfor i in range(7):\n lst.append(6**i)\nfor i in range(1, 6):\n lst.append(9**i)\n\ndp = [0]*100001\nfor i in range(1, n+1):\n candi = []\n for j in lst:\n if i >= j:\n candi.append(dp[i-j]+1)\n dp[i] = min(candi)\nprint(dp[i])'] | ['Runtime Error', 'Accepted'] | ['s591950568', 's983905248'] | [3828.0, 3828.0] | [18.0, 340.0] | [181, 274] |
p03329 | u163320134 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\nans=10**10\ndp=[0]*100001\nfor i in range(1,n+1):\n tmp=[dp[i]+1]\n if i>=6**1:\n tmp.append(dp[i-6**1]+1)\n if i>=9**1:\n tmp.append(dp[i-9**1]+1)\n if i>=6**2:\n tmp.append(dp[i-6**2]+1)\n if i>=9**2:\n tmp.append(dp[i-9**2]+1)\n if i>=6**3:\n tmp.append(dp[i-6**3]+1)\n if i>=9**3:\n tmp.append(dp[i-9**3]+1)\n if i>=6**4:\n tmp.append(dp[i-6**4]+1)\n if i>=9**4:\n tmp.append(dp[i-9**4]+1)\n if i>=6**5:\n tmp.append(dp[i-6**5]+1)\n if i>=9**5:\n tmp.append(dp[i-9**5]+1)\n if i>=6**6:\n tmp.append(dp[i-6**6]+1)\n if i>=9**6:\n tmp.append(dp[i-9**6]+1)\n dp[i]=min(tmp)\nprint(dp[n])', 'n=int(input())\nans=10**10\ndp=[0]*100001\nfor i in range(1,n+1):\n tmp=[dp[i-1]+1]\n if i>=6**1:\n tmp.append(dp[i-6**1]+1)\n if i>=9**1:\n tmp.append(dp[i-9**1]+1)\n if i>=6**2:\n tmp.append(dp[i-6**2]+1)\n if i>=9**2:\n tmp.append(dp[i-9**2]+1)\n if i>=6**3:\n tmp.append(dp[i-6**3]+1)\n if i>=9**3:\n tmp.append(dp[i-9**3]+1)\n if i>=6**4:\n tmp.append(dp[i-6**4]+1)\n if i>=9**4:\n tmp.append(dp[i-9**4]+1)\n if i>=6**5:\n tmp.append(dp[i-6**5]+1)\n if i>=9**5:\n tmp.append(dp[i-9**5]+1)\n if i>=6**6:\n tmp.append(dp[i-6**6]+1)\n if i>=9**6:\n tmp.append(dp[i-9**6]+1)\n dp[i]=min(tmp)\nprint(dp[n])'] | ['Wrong Answer', 'Accepted'] | ['s024658885', 's126759997'] | [3956.0, 3956.0] | [298.0, 285.0] | [624, 626] |
p03329 | u168489836 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['cnt = 0\nn = int(input())\nres = n - n%9\ncnt += int(res/9)\nres = res - res%6\ncnt += int(res/6)\ncnt += res\nprint(cnt)', 'N=int(input())\nans=N\nfor i in range(N+1):\n cnt=0\n t=i\n while t>0:\n cnt+=t%6\n t//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans = min(ans,cnt)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s975551126', 's303763491'] | [3060.0, 3060.0] | [17.0, 329.0] | [114, 195] |
p03329 | u173329233 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nlist = []\nfor i in [6,5,4,3,2,1]:\n\n for r in [9,6,]:\n while n > r**i:\n n = n - r**i\n list.append(r**i)\n print(n)\n\n\nlength = len(list) + n\nprint(length)\n', 'n = int(input())\nres = n\nans = 0\nfor i in range(n+1):\n t = i\n cc = 0\n while t >= 1:\n cc = cc + t % 6\n t = t // 6\n\n t = n-i\n while t >= 1:\n cc = cc + t%9\n t = t // 9\n\n\n if res > cc:\n res = cc\n\nprint(res)'] | ['Wrong Answer', 'Accepted'] | ['s183105981', 's780621800'] | [2940.0, 3064.0] | [17.0, 270.0] | [212, 255] |
p03329 | u180058306 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['from math import log\n\nN = int(input())\n\n\ndef func(N, a):\n index = int(log(N) / log(a))\n return a ** index\n\n\ndef search_times_re(N):\n times = 0\n if N < 6:\n times = N\n return times\n elif N < 9:\n times = 1 + (N - 6)\n else:\n N1 = search_times_re(N - func(N, 6))\n N2 = search_times_re(N - func(N, 9))\n if N1 < N2:\n return 1 + N1\n else:\n return 1 + N2\n\nprint(search_times_re(N))', 'N = int(input())\nans = N\nfor i in range(0, N + 1, 6):\n cnt = 0\n j = N - i\n while i > 0:\n cnt += i % 6\n i //= 6\n while j > 0:\n cnt += j % 9\n j //= 9\n ans = min(ans, cnt)\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s663478185', 's030477914'] | [3064.0, 3060.0] | [19.0, 65.0] | [661, 222] |
p03329 | u192908410 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['def times(money, mod):\n ans = 0\n x = 1\n while( x * mod < money):\n x *= mod\n while(money > mod):\n ans += money // x\n money = money % x\n x = x // mod\n return(ans + money)\n\na = []\nb = []\nfor i in range(100001):\n a.append(times(i,6))\n b.append(times(i,9))\n\nc = []\nn = int(input())\nfor i in range(n):\n c.append(a[i]+b[n-i])\nprint(min(c))', 'def times(money, mod):\n ans = 0\n while(money != 0):\n ans += money % mod\n money = money // mod\n return ans\n\nc = []\nn = int(input())\nfor i in range(n+1):\n c.append(times(i,6)+times(n-i,9))\nprint(min(c))'] | ['Wrong Answer', 'Accepted'] | ['s266220424', 's970412660'] | [5508.0, 3864.0] | [408.0, 217.0] | [352, 211] |
p03329 | u201234972 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['from bisect import bisect_right\nN = int(input())\nc = 0\nroku = [6**i for i in range(1,7)]\nkyu = [9**i for i in range(1,6)]\nable = sorted([0,1] + roku + kyu)\nprint(able)\nwhile N != 0:\n N = N - able[bisect_right(able,N)-1]\n c += 1\nprint(c)', 'from bisect import bisect_right\nN = int(input())\nc = 0\ndef croku(N):\n roku =[0,1] + [6**i for i in range(1,7)]\n c = 0\n while N != 0:\n N = N - roku[bisect_right(roku,N)-1]\n c += 1\n return c\n\ndef ckyu(N):\n kyu = [0,1] + [9**i for i in range(1,6)]\n c = 0\n while N != 0:\n N = N - kyu[bisect_right(kyu,N)-1]\n c += 1\n return c\n\nK = 10**5\nfor i in range(0,N+1):\n K = min(K, croku(i) + ckyu(N-i))\nprint(K)'] | ['Wrong Answer', 'Accepted'] | ['s567394346', 's802898799'] | [3188.0, 3064.0] | [19.0, 1388.0] | [242, 452] |
p03329 | u202570162 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["n = int(input())\nc = [1]\nfor i in [6,9]:\n j = 0\n k = 0\n while True:\n j += 1\n k = i**j\n if k > 10**5:\n break\n c += [k]\nprint(c)\nc.sort(reverse=True)\nflag = 0\nfor i in range(len(c)):\n m = int(n//c[i])\n n %= c[i]\n flag += m\n # print('withdraw',c[i],m,'times and sum is',flag)\nprint(flag)\n", '\n#D\n\ndef sixnine(m):\n ret=[]\n for n in [6,9]:\n tmp=1\n while True:\n tmp*=n\n if tmp<=m:\n ret.append(tmp)\n else:\n break\n ret.sort()\n return ret\n\n\nN=int(input())\ndp=[0 for i in range(N+1)]\nfor i in range(1,N+1):\n if i<=5:\n dp[i]=i\n continue\n sn=sixnine(i)\n if i in sn:\n dp[i]=1\n continue\n ans=10**19\n for k in sn:\n ans=min(ans,dp[k]+dp[i-k])\n dp[i]=ans\n# print(dp)\nprint(dp[-1])'] | ['Wrong Answer', 'Accepted'] | ['s754683287', 's060310416'] | [3064.0, 3864.0] | [17.0, 650.0] | [345, 516] |
p03329 | u218843509 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\n\nans = 0\n\nmod_list = [59409, 46656, 7776, 6561, 1296, 729, 216, 81, 36, 9, 6]\n\nfor i in mod_list:\n\tprint(n // i)\n\tans += n // i\n\tn = n % i\n\nprint(ans + n)', 'n = int(input())\n\nans = 0\nmod_base = [59049, 46656, 7776, 6561, 1296, 729, 216, 81, 36, 9, 6, 1]\nmod_list = [59049, 46656, 7776, 6561, 1296, 729, 216, 81, 36, 9, 6, 1]\nans_list = [0 for _ in range(100000)]\n\nfor mod in mod_base:\n\tans_list[mod - 1] = 1\n\nfor i in range(10000):\n\tif ans_list[n - 1] != 0:\n\t\tbreak\n\tnew_mod_list = []\n\tfor j in mod_list:\n\t\tfor k in mod_base:\n\t\t\tif j + k <= 100000 and ans_list[j + k - 1] == 0:\n\t\t\t\tnew_mod_list.append(j + k)\n\t\t\t\tans_list[j + k - 1] = i + 2\n\tmod_list = sorted(new_mod_list, reverse=True)\n\nprint(ans_list[n - 1])'] | ['Wrong Answer', 'Accepted'] | ['s459165038', 's302761263'] | [3060.0, 5472.0] | [17.0, 308.0] | [171, 554] |
p03329 | u220843654 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["# -*- coding: utf-8 -*-\n\nimport os\nimport sys\n\ndef main():\n n = int(input())\n l1 = lis(n, 9)\n l2 = lis(n, 6)\n print(l1)\n print(l2)\n l1.extend(l2)\n l1 = list(set(l1))\n l1.sort(key=int, reverse=True)\n print(minus(n, l1))\n\ndef lis(n, i):\n count = 0\n res = []\n oi = i\n while i < n:\n res.append(i)\n i = i * oi\n count = count + 1\n return res\n\ndef minus(n, l):\n minus_count = 0\n for i in l:\n while n > i:\n if n - i > 0:\n n = n - i\n minus_count = minus_count + 1\n else:\n break\n print(i, n)\n return minus_count, n\n\nif __name__ == '__main__':\n main()", "# -*- coding: utf-8 -*-\n\nimport os\nimport sys\n\ndef main():\n n = int(input())\n l1 = lis(n, 9)\n l2 = lis(n, 6)\n l1.extend(l2)\n l1 = list(set(l1))\n l1.sort(key=int, reverse=True)\n print(minus(n, l1))\n\ndef lis(n, i):\n count = 0\n res = []\n oi = i\n while i < n:\n res.append(i)\n i = i * oi\n count = count + 1\n return res\n\ndef minus(n, l):\n minus_count = 0\n for i in l:\n while n > i:\n if n - i > 0:\n n = n - i\n minus_count = minus_count + 1\n else:\n break\n return minus_count, n\n\nif __name__ == '__main__':\n main()", "# -*- coding: utf-8 -*-\n\ndef main():\n n = int(input())\n li = dp(n)\n print(li)\n print(li[n])\n\ndef dp(n):\n inf=float('inf')\n dp = [inf for i in range(n+1)]\n dp[0] = 0\n money_list = get_money_list()\n for i in range(1, n + 1):\n for pay in money_list:\n if pay > i:\n continue\n else:\n dp[i] = min(dp[i - pay] + 1, dp[i])\n return dp\n\ndef create_list(n):\n i = 1\n money_list = []\n while i < 100000:\n money_list.append(i)\n i = i * n\n return money_list\n\ndef get_money_list():\n li = create_list(9)\n li.extend(create_list(6))\n li = list(set(li))\n li.sort(key=int, reverse=True)\n return li\n\nif __name__ == '__main__':\n main()", "# -*- coding: utf-8 -*-\n\ndef main():\n n = int(input())\n li = dp(n)\n print(li[n])\n\ndef dp(n):\n inf=float('inf')\n dp = [inf for i in range(n+1)]\n dp[0] = 0\n money_list = get_money_list()\n for i in range(1, n + 1):\n for pay in money_list:\n if pay > i:\n continue\n else:\n dp[i] = min(dp[i - pay] + 1, dp[i])\n return dp\n\ndef create_list(n):\n i = 1\n money_list = []\n while i < 100000:\n money_list.append(i)\n i = i * n\n return money_list\n\ndef get_money_list():\n li = create_list(9)\n li.extend(create_list(6))\n li = list(set(li))\n li.sort(key=int, reverse=True)\n return li\n\nif __name__ == '__main__':\n main()"] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s168679484', 's449118948', 's969117266', 's948259204'] | [3064.0, 3064.0, 5012.0, 3992.0] | [18.0, 19.0, 328.0, 317.0] | [696, 648, 743, 729] |
p03329 | u227082700 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\na=n\nfor i in range(n+1):\n ni,si=i,n-i\n m=0\n while ni!=0:m+=ni%6;ni//=6\n while si!=0:m+=si%6;si//=6\n a=min(a,m)\nprint(a)', 'n=int(input())\na=n\nfor i in range(n+1):\n ni,si=i,n-i\n m=0\n while ni!=0:m+=ni%9;ni//=9\n while si!=0:m+=si%6;si//=6\n a=min(a,m)\nprint(a)\n'] | ['Wrong Answer', 'Accepted'] | ['s854512336', 's178998150'] | [2940.0, 2940.0] | [377.0, 329.0] | [139, 140] |
p03329 | u239528020 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['#!/usr/bin/env python3\n# import math\nn = int(input())\n\nans = [-1]*(n+1)\n\nans[0] = 0\nfor i in range(1, n):\n num = i\n data = ans[i-1]+1\n for j in range(8):\n index = i-6**j\n if index < 0:\n break\n data = min(data, ans[index]+1)\n for j in range(8):\n index = i-9**j\n if index < 0:\n break\n data = min(data, ans[index]+1)\n ans[i] = data\nprint(ans)\n', '#!/usr/bin/env python3\n# import math\nn = int(input())\n\nans = [-1]*(n+1)\n\nans[0] = 0\nfor i in range(1, n+1):\n num = i\n data = ans[i-1]+1\n for j in range(8):\n index = i-6**j\n if index < 0:\n break\n data = min(data, ans[index]+1)\n for j in range(8):\n index = i-9**j\n if index < 0:\n break\n data = min(data, ans[index]+1)\n ans[i] = data\nprint(ans[-1])\n'] | ['Wrong Answer', 'Accepted'] | ['s028311181', 's552725439'] | [10372.0, 9656.0] | [652.0, 670.0] | [419, 425] |
p03329 | u243572357 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nlst_take = []\nmax_val = 100000\nused = []\nfor i in range(1,15):\n if 6 ** i <= max_val:\n lst_take.append(6**i)\n if 9 ** i <= max_val:\n lst_take.append(9**i) \nlst_take = sorted(set(lst_take), reverse=True)\nwhile True:\n if n==0:\n break\n \n flag = True\n for i in lst_take:\n if i <= n and i not in used:\n n -= i\n count += 1\n used.append(i)\n flag = False\n break\n if flag:\n count += n\n break\nprint(count)', 'import math\nn = int(input())\ncount = 0\nwhile count != 0:\n max_value = 1\n for i in range(1, n):\n if math.log(i, 6) == int(math.log(i, 6)) or math.log(i, 9) == int(math.log(i, 9)):\n \tmax_value = max(max_value, i)\n n = n - max_value\n count += 1\nprint(count)', 'import math\nn = int(input())\ncount = 0\nlst = []\nwhile n != 0:\n max_value = 1\n for i in range(1, n):\n if i in max_value:\n continue\n if math.log(i, 6) == int(math.log(i, 6)) or math.log(i, 9) == int(math.log(i, 9)):\n \tmax_value = max(max_value, i)\n n = n - max_value\n lst.add(max_value)\n count += 1\nprint(count)', 'import math\nn = int(input())\ncount = 0\nwhile n != 0:\n max_value = 1\n for i in range(1, n+1):\n if math.log(i, 6) == int(math.log(i, 6)) or math.log(i, 9) == int(math.log(i, 9)):\n \tmax_value = max(max_value, i)\n n = n - max_value\n lst.add(max_value)\n count += 1\nprint(count)', 'N=int(input())\nans=N\nfor i in range(N+1):\n cnt=0\n t=i\n while t>0:\n cnt+=t%6\n t//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans = min(ans,cnt)\nprint(ans)'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s056010374', 's065796981', 's357310751', 's407199543', 's577508274'] | [9020.0, 3060.0, 3064.0, 3060.0, 9192.0] | [22.0, 17.0, 17.0, 170.0, 213.0] | [466, 264, 328, 283, 195] |
p03329 | u244416763 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\ndp = [100000000000 for _ in range(n+1)]\ndp[0] = 0\nfor i in range(n):\n dp[i+1] = min(dp[i]+1,dp[i+1])\n six = 0\n nine = 0\n while (6**six < i):\n dp[i+1] = min(dp[(i+1) - 6**six] + 1,dp[i+1])\n six += 1\n while (9**nine < i):\n dp[i+1] = min(dp[(i+1) - 9**nine] + 1,dp[i+1])\n nine += 1\nprint(dp[-1])', 'n = int(input())\ndp = [100000000000 for _ in range(n+1)]\ndp[0] = 0\nfor i in range(1,n+1):\n dp[i] = min(dp[i-1]+1,dp[i])\n six = 0\n nine = 0\n while (6**six <= i):\n dp[i] = min(dp[i - 6**six] + 1,dp[i])\n six += 1\n while (9**nine <= i):\n dp[i] = min(dp[i - 9**nine] + 1,dp[i])\n nine += 1\nprint(dp[n])'] | ['Wrong Answer', 'Accepted'] | ['s340732872', 's121980298'] | [3864.0, 3864.0] | [1230.0, 1138.0] | [352, 339] |
p03329 | u246820565 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['dpの基本形\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nn = int(input())\npre_list = [1,6,9,36,81,216,729,1296,6561,7776,46656,59049]\n\n\ndp = [n]*(n+1)\n\ndp[0] = 0\n\n\n\nfor i in range(1,n+1):\n\n\tfor j in pre_list:\n\t\tif i - j >= 0:\n\t\t\tdp[i] = min(dp[i],dp[i-j]+1)\n\nprint(dp[n])\n', '\nn = int(input())\npre_list = [1,6,9,36,81,216,729,1296,6561,7776,46656,59049]\n \n\ndp = [n]*(n+1)\n\ndp[0] = 0\n \n \n\nfor i in range(1,n+1):\n\n\tfor j in pre_list:\n\t\tif i - j >= 0:\n\t\t\tdp[i] = min(dp[i],dp[i-j]+1)\n \nprint(dp[n])'] | ['Runtime Error', 'Accepted'] | ['s836800970', 's158337116'] | [3064.0, 3828.0] | [18.0, 539.0] | [1084, 429] |
p03329 | u254871849 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['\n# created: 2019-11-08 02:12:52(JST)\n## internal modules\nimport sys\n# import collections\nimport math\n# import string\n\n# import re\n# import itertools\n# import statistics\n# import functools\n\n## external modules\n# import scipy.special # if use comb function on AtCoder, \n# import scipy.misc # select scipy.misc.comb (old version) \n\ndef main():\n n = int(sys.stdin.readline().rstrip())\n count = 0\n for _ in range(n):\n if n < 6:\n count += n\n break\n elif n >= 15 or 12 > n >= 6:\n n -= max(6 ** math.floor(math.log(n, 6)), 9 ** math.floor(math.log(n, 9)))\n count += 1\n elif 15 > n >= 12:\n n -= 6\n count += 1\n\n print(n)\n print(count)\n\nif __name__ == "__main__":\n # execute only if run as a script\n main()\n', "import sys\n\ndef count(n, b):\n res = 0\n while n:\n res += n % b\n n //= b\n return res\n\nn = int(sys.stdin.readline().rstrip())\n\ndef main():\n res = float('inf')\n for i in range(n + 1):\n res = min(res, count(i, 6) + count(n - i, 9))\n print(res)\n\nif __name__ == '__main__':\n main()"] | ['Wrong Answer', 'Accepted'] | ['s492162001', 's099155998'] | [3064.0, 3060.0] | [18.0, 210.0] | [915, 317] |
p03329 | u255067135 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import math\ndef dfs(cost, N):\n if N<6 :\n return cost+N\n else:\n ret0 = 6 ** math.floor(math.log(N, 6))\n ret1 = 9 ** math.floor(math.log(N, 9))\n return min(dfs(cost+1, N-ret0), dfs(cost+1, N-ret1))\n\nN = int(input())', 'def dfs(cost, N):\n if N<6 :\n return cost+N\n else:\n ret0 = 6 ** math.floor(math.log(N, 6))\n ret1 = 9 ** math.floor(math.log(N, 9))\n if (ret0>1) and (ret1>1):\n return min(dfs(cost+1, N-ret0), dfs(cost+1, N-ret1))\n else:\n ret = max(ret0, ret1)\n return dfs(cost+1, N-ret)\n\nN = int(input())\nprint(dfs(0, N))', '\nN = int(input())\ndp = {}\nfor n in range(N+1):\n if n == 0:\n dp[0] = 0\n else:\n res = n\n pow6 = 1\n while n - pow6 >= 0:\n res = min(res, dp[n-pow6] +1)\n pow6 *= 6\n pow9 = 1\n while n -pow9 >= 0:\n res = min(res, dp[n-pow9] +1)\n pow9 *= 9\n dp[n] = res\nprint(dp[N])'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s090633797', 's906464073', 's509030582'] | [3060.0, 3064.0, 15088.0] | [18.0, 18.0, 617.0] | [247, 376, 370] |
p03329 | u256833330 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\nnl=[9**i for i in range(1,6)]\nsl=[6**i for i in range(1,7)]\nl = sorted(nl+sl)[::-1]\nx=0\nfor i in l:\n while True:\n if i <=n:\n n=n-i\n x+=1\n print(n)\n else:\n break\nprint(x+n)\n', 'n=int(input())\nnl=[9**i for i in range(1,6)]\nsl=[6**i for i in range(1,7)]\nl = sorted(nl+sl)[::-1]\nprint(l)\nx=0\nfor i in l:\n while True:\n if i <=n:\n n=n-i\n x+=1\n print(n)\n else:\n break\nprint(x+n)\n', 'n=int(input())\nnl=[9**i for i in range(1,6)][::-1]\nsl=[6**i for i in range(1,7)][::-1]\na=n\nfor i in range(n+1):\n totals=0\n ps=i\n for j in sl:\n if ps >= j:\n totals+=ps//j\n ps= ps-ps//j*j\n totaln=0\n pn=n-i\n for k in nl:\n if pn >=k:\n totaln+= pn //k\n pn=pn-pn//k*k\n a=min(a,totals+totaln+ps+pn)\nprint(a)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s168448892', 's857731718', 's440066279'] | [3060.0, 3060.0, 3064.0] | [19.0, 18.0, 440.0] | [248, 257, 380] |
p03329 | u261082314 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['L=[1]\nn=int(input())\nx = 6\ny = 9\nwhile x <= n:\n L.append(x)\n x *= 6\nwhile y <= n:\n L.append(y)\n y *= 9\nL.sort()#[1,6,9,36,81]\ndp = [float("Inf")]*(n+1)\ndp[0] = 0\nfor i in range(n+1):#0~81\n for j in L:#1,6,9\n dp[i+j] = min(dp[i+j],dp[i]+1)#dp=[0,1,...1,.1]\nprint(dp[n])', 'L=[1]\nn=int(input())\nx = 6\ny = 9\nwhile x <= n:\n L.append(x)\n x *= 6\nwhile y <= n:\n L.append(y)\n y *= 9\nL.sort()#[1,6,9,36,81]\ndp = [float("Inf")]*(n+1)\ndp[0] = 0\nfor i in range(n+1):#0~81\n for j in L:#1,6,9\n if i+j <= n:\n dp[i+j] = min(dp[i+j],dp[i]+1)#dp=[0,1,...1,.1]\n else:\n break\nprint(dp[n])'] | ['Runtime Error', 'Accepted'] | ['s330909392', 's194617935'] | [9524.0, 9588.0] | [194.0, 475.0] | [276, 317] |
p03329 | u267325300 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\n\n\ndef get_rest(base, target):\n i = 0\n while base**i < target:\n i += 1\n return target - base**(i - 1)\n\n\ndef greedy(base, target):\n count = 0\n rest = target\n while rest >= base:\n rest = get_rest(base, rest)\n count += 1\n return count + rest\n\n\nMin = float("inf")\nfor i in range(N + 1):\n Min = min(Min, greedy(6, i) + greedy(9, N - i))\n\nprint(Min)\n', 'N = int(input())\n\n\ndef hoge(kind, target):\n i = 0\n while kind**i <= target:\n i += 1\n rest = target - kind**(i - 1)\n return rest\n\n\ndef search(count, target):\n if target <= 5:\n return count + target\n six_rest = hoge(6, target)\n nine_rest = hoge(9, target)\n return min(search(count + 1, six_rest), hoge(count + 1, nine_rest))\n\n\nprint(search(0, N))\n', 'N = int(input())\n\n\ndef count(base, total):\n count = 0\n exp = 1\n while exp * base <= total:\n exp *= base\n remain = total\n while exp != 1:\n count += remain // exp\n remain %= exp\n exp //= base\n count += remain\n return count\n\n\nMin = float("inf")\nfor i in range(N + 1):\n c = 0\n c += count(6, i)\n c += count(9, N - i)\n Min = min(Min, c)\nprint(Min)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s060319712', 's322827734', 's463458843'] | [3060.0, 2940.0, 3064.0] | [2104.0, 2104.0, 417.0] | [405, 383, 403] |
p03329 | u271934630 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nans = N\nfor i in range(N+1):\n cnt = 0\n while i > 0:\n cnt += i % 6\n i //= 6\n j = N-i\n while j > 0:\n cnt += j % 9\n j //= 9\n ans = min(ans, cnt)\nprint(ans)\n', 'n = int(input())\n\nans = n\nfor i in range(n+1):\n count = 0\n t = i\n while(t):\n count += t % 6\n t = int(t/6)\n t = n-i\n while(t):\n count += t % 9\n t = int(t/9)\n ans = min(ans, count)\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s033806800', 's795534495'] | [2940.0, 3060.0] | [342.0, 457.0] | [213, 236] |
p03329 | u276468459 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nwd = []\nfor i in range(1, 7):\n wd.append(6**i)\nfor i in range(1, 6):\n wd.append(9**i)\nwd.append(1)\n\ndp = [N]*(N+1)\ndp[0] = 0\n\nfor i in range(len(wd)):\n for j in range(i, N+1):\n dp[j] = min(dp[j], dp[j-i]+1)\n\nprint(dp[N])', 'N = int(input())\nwd = []\nfor i in range(1, 7):\n wd.append(6**i)\nfor i in range(1, 6):\n wd.append(9**i)\nwd.append(1)\n\ndp = [N]*(N+1)\ndp[0] = 0\n\nfor i in wd:\n for j in range(i, N+1):\n dp[j] = min(dp[j], dp[j-i]+1)\n\nprint(dp[N])'] | ['Wrong Answer', 'Accepted'] | ['s657924061', 's295672364'] | [6900.0, 4276.0] | [525.0, 434.0] | [253, 241] |
p03329 | u278430856 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\ncount = 0\nitr = 1\n\nwhile(N >= 9 or N >= 6):\n itr = 1\n flag = 0\n itr2 = 0\n while(N >= 9**itr or N >= 6**itr):\n itr += 1\n if N < 9**itr and flag == 0:\n itr2 = itr-1\n flag = 1\n if flag == 1:\n if 9**itr2 > 6**(itr-1):\n N = N - 9**itr2\n print(N, 9**itr2, 9)\n else:\n N = N - 6**(itr-1)\n print(N, 6**(itr-1), 6)\n else:\n if 9**(itr-1) > 6**(itr-1):\n N = N - 9**(itr-1)\n print(N, 9**(itr-1), 9)\n else:\n N = N - 6**(itr-1)\n print(N, 6**(itr-1), 6)\n count += 1\n if N == 0:\n break\nif N > 0:\n count += N\nprint(count)\n', "from itertools import count, takewhile\n\ndef calc(N, d={}):\n if N < 6:\n return N\n if N in d:\n return d[N]\n\n max9 = max(takewhile(lambda x: x<=N, (9**i for i in count())))\n max6 = max(takewhile(lambda x: x<=N, (6**i for i in count())))\n\n d[N] = min(calc(N-max9), calc(N-max6))+1\n #print(N, ':', d[N])\n return d[N]\n\nprint(calc(int(input())))\n"] | ['Wrong Answer', 'Accepted'] | ['s896999173', 's963926278'] | [3064.0, 3060.0] | [18.0, 18.0] | [707, 374] |
p03329 | u314089899 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import copy\nimport itertools\n\nN = int(input())\nsix_nines = set()\n\n\nfor i in range(1,6):\n a = 6**i\n if a <= N and a not in six_nines:\n six_nines.add(a)\n for j in range(1,N//a):\n six_nines.add(a*j)\n a = 9**i\n if a <= N and a not in six_nines:\n six_nines.add(a)\n for j in range(1,N//a):\n six_nines.add(a*j)\n\ncomb_six_nines = copy.copy(six_nines)\n\n\nfor comb in itertools.combinations(six_nines,2):\n if comb[0]+comb[1] <= N and comb[0]+comb[1] not in comb_six_nines:\n comb_six_nines.add(comb[0]+comb[1])\n\n\n#comb_six_nines.sort(reverse=True)\n#comb_six_nines.append(1)\nsix_nines = list(six_nines)\nsix_nines.sort(reverse=True)\nsix_nines.append(1)\n\n#print(comb_six_nines)\nprint(six_nines)\n\n\nans = 0\nwhile N != 0:\n for comb in six_nines:\n if N >= comb:\n print(N,comb)\n if N \n N -= comb\n ans += 1\n\nprint(ans)', '#99c\nimport math\n\nN = int(input()) #<=100000\n\n\n\n\nsingle_withdraw_set = set()\nsingle_withdraw_set.add(1)\nsingle_withdraw_set |= {6**i for i in range(1,2 + int(math.log(N,6)))}\nsingle_withdraw_set |= {9**i for i in range(1,2 + int(math.log(N,9)))}\n#print(single_withdraw_set)\n\n\nwithdraw_dict = {int(-i):10**9+7 for i in range(1,1 + max(single_withdraw_set)) }\nwithdraw_dict[0] = 0\n\n\nfor i in range(1,N+1):\n if i in single_withdraw_set:\n \n withdraw_dict[i] = 1\n else:\n \n withdraw_dict[i] = 1 + min([withdraw_dict[i-j] for j in single_withdraw_set])\n \n #print(i,":",withdraw_dict[i])\n \n#print(withdraw_dict)\nprint(withdraw_dict[N])'] | ['Runtime Error', 'Accepted'] | ['s815662250', 's811006829'] | [3064.0, 51040.0] | [18.0, 360.0] | [1007, 1092] |
p03329 | u325282913 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nbank = [59049, 46656, 7776, 6561, 1296, 729, 216, 81, 36, 9, 6, 1]\nans = 0\nwhile N != 0:\n for i in bank:\n if 6 <= N <= 14:\n N -= 6\n ans += 1\n # print(6,N)\n break\n if i <= N:\n N -= i\n ans += 1\n # print(i,N)\n break\nprint(ans)', 'N = int(input())\nbank = [59049, 46656, 7776, 6561, 1296, 729, 216, 81, 36, 9, 6, 1]\nans = 0\nwhile N != 0:\n for i in bank:\n if i <= N:\n N -= i\n ans += 1\n print(i,N)\n break\nprint(ans)', 'import sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nmemo = [-1]*(N+1)\ndef rec(n):\n if n == 0:\n return 0\n if memo[n] != -1:\n return memo[n]\n res = n\n m = 1\n while m <= n:\n res = min(res,rec(n-m)+1)\n m *= 6\n m = 1\n while m <= n:\n res = min(res,rec(n-m)+1)\n m *= 9\n memo[n] = res\n return memo[n]\n\nprint(rec(N))'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s194981844', 's268756259', 's054429657'] | [3060.0, 3060.0, 89716.0] | [17.0, 17.0, 625.0] | [345, 235, 381] |
p03329 | u327532412 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nimport sys\nsys.setrecursionlimit(100000)\ndp = [-1] * (N + 1)\ndef rec(n):\n if n == 0:\n return 0\n if dp[n] != -1:\n return dp[n]\n res = n\n i = 0\n while n >= i ** 6:\n pow6 = i ** 6\n res = min(res, rec(n - pow6) + 1)\n i += 1\n\n j = 0\n while n >= j ** 9:\n pow9 = j ** 9\n res = min(res, rec(n - pow9) + 1)\n i += 1\n\n dp[n] = res\n return dp[n]\nprint(rec(N))', 'import sys\nsys.setrecursionlimit(10**6)\nN = int(input())\ndp = [-1] * (N + 1)\n\ndef rec(n):\n if n == 0:\n return 0\n if dp[n] != -1:\n return dp[n]\n res = n\n i = 0\n while n >= 6 ** i:\n pow6 = 6 ** i\n res = min(res, rec(n - pow6) + 1)\n i += 1\n j = 0\n while n >= 9 ** j:\n pow9 = 9 ** j\n res = min(res, rec(n - pow9) + 1)\n j += 1\n dp[n] = res\n return res\nprint(rec(N))'] | ['Runtime Error', 'Accepted'] | ['s116526085', 's718347754'] | [97492.0, 89716.0] | [292.0, 1193.0] | [447, 443] |
p03329 | u329407311 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\ndone = []\n\narr = [N]\nans = 0\nstop = 0\n \n\nwhile arr:\n\n a = arr.pop(0)\n\n done.append(a)\n\n Next = []\n if a-1 >= 0:\n Next.append(a-1)\n if a-6 >= 0:\n Next.append(a-6)\n if a-36 >= 0:\n Next.append(a-36)\n if a-216 >= 0:\n Next.append(a-216)\n if a-1296 >= 0:\n Next.append(a-1296)\n if a-7776 >= 0:\n Next.append(a-7776)\n if a-46656 >= 0:\n Next.append(a-46656)\n if a-9 >= 0:\n Next.append(a-9)\n if a-81 >= 0:\n Next.append(a-81)\n if a-729 >= 0:\n Next.append(a-729)\n if a-6561 >= 0:\n Next.append(a-6561)\n if a-59049 >= 0:\n Next.append(a-59049)\n \n for i in Next:\n if i in done:\n continue\n elif i in arr:\n continue\n else:\n arr.append(i)\n if i == 0:\n stop = 1\n break\n ans += 1\n if stop == 1:\n break\n\nprint(ans)', 'def knapsack(N,W,weight,value):\n \n dp=[[10**7 for i in range(W+1)] for j in range(N+1)]\n for i in range(W+1):\n dp[0][i]=i\n #DP\n for i in range(N):\n for w in range(W+1):\n if weight[i]<=w: \n dp[i+1][w]=min(dp[i+1][w-weight[i]]+value[i], dp[i][w])\n else:\n dp[i+1][w]=dp[i][w]\n \n \n return dp[N][W]\n\nN = 12\nW = int(input())\nweight = [1,6,36,216,1296,7776,46656,9,81,729,6561,59049]\nvalue = [1,1,1,1,1,1,1,1,1,1,1,1,1]\n\na = knapsack(N,W,weight,value)\n\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s662237121', 's085026494'] | [3316.0, 27032.0] | [2104.0, 541.0] | [1184, 581] |
p03329 | u329865314 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nsixs = [6,36,216,1296,7776,46656]\nnines = [9,81,729,6561,59049]\nlis = [0] + [100000 for i in range(170000)]\nfor i in range(0,100001):\n for j in sixs:\n if lis[i+j] > lis[i]+1:\n lis[i+j] = lis[i] + 1\n for j in nines:\n if lis[i+j] > lis[i]+1:\n lis[i+j] = lis[i] + 1\nprint(lis[n])', 'n = int(input())\nsixs = [6,36,216,1296,7776,46656]\nnines = [9,81,729,6561,59049]\nlis = [i for i in range(170000)]\nfor i in range(0,100001):\n for j in sixs:\n if lis[i+j] > lis[i]+1:\n lis[i+j] = lis[i] + 1\n for j in nines:\n if lis[i+j] > lis[i]+1:\n lis[i+j] = lis[i] + 1\nprint(lis[n])'] | ['Wrong Answer', 'Accepted'] | ['s643457251', 's788529124'] | [5784.0, 9752.0] | [306.0, 297.0] | [301, 290] |
p03329 | u335295553 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\n\ndef hikidashi(n):\n if 35 >= n:\n tmp1 = n//9 + (n%9)//6 + (n%9)%6\n tmp2 = n//6 + n%6\n\n if tmp1 == tmp2:\n if n >= 9:\n return 9\n elif n >= 6:\n return 6\n else:\n return 1\n elif tmp1 > tmp2:\n if n >= 6:\n return 6\n else:\n return 1\n else:\n if n >= 9:\n return 9\n else:\n return 1\n\n else:\n count = 0\n while True:\n tmp = pow(9, count)\n if tmp > n:\n break\n n9 = tmp\n count += 1\n\n count = 0\n while True:\n tmp = pow(6, count)\n if tmp > n:\n break\n n6 = tmp\n count += 1\n return max(n6, n9)\n\n\nresult = 0\nwhile N != 0:\n result += 1\n print(N,hikidashi(N))\n N = N - hikidashi(N)\nprint(result)\n \n', 'N = int(input())\n\nresult = N\nfor i in range(0,N+1):\n count = 0\n tmp = i \n while tmp > 0:\n count += tmp%6\n tmp //= 6\n tmp = N - i \n while tmp > 0:\n count += tmp%9\n tmp //=9\n \n if result > count:\n result = count\n\nprint(result)'] | ['Wrong Answer', 'Accepted'] | ['s958095959', 's665278540'] | [3064.0, 3060.0] | [18.0, 358.0] | [980, 280] |
p03329 | u344813796 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['dp=[0 for i in range(100010)]\ndp[0]=0\nfor n in range(1,100001):\n dp[n]=200000\n power=1\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=6\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=9\n\nn=int(input())\nprint(dp[n])', 'dp=[1000000 for i in range(100010)]\ndp[0]=0\nfor n in range(1,11):\n power=1\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=6\n power=1\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=9\n\ni=int(input())\nprint(dp[i])', 'n=int(input())\ndp=[0 for i in range(100010)]\ndp[0]=0\nfor i in range(100000):\n dp[i]=200000\n power=1\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=6\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=9\n\nprint(dp[n])', 'dp=[1000000 for i in range(100010)]\ndp[0]=0\nfor n in range(1,100010):\n power=1\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=6\n power=1\n while(power<=n):\n dp[n]=min(dp[n],dp[n-power]+1)\n power*=9\n\ni=int(input())\nprint(dp[i])'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s341238211', 's445725900', 's960156533', 's211477499'] | [3956.0, 3956.0, 3956.0, 3956.0] | [409.0, 22.0, 426.0, 720.0] | [251, 248, 249, 252] |
p03329 | u354638986 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["nine, six = [9 ** i for i in range(1, 6)], [6 ** i for i in range(1, 7)]\n\n\ndef minimize(n, a_idx, b_idx, t):\n if n == 0:\n return t\n elif a_idx == -1 and b_idx == -1:\n return t + n\n\n t1, t2 = 100000, 100000\n if a_idx != -1:\n p = n // nine[a_idx]\n t1 = minimize(n-p*nine[a_idx], a_idx-1, b_idx, t+p)\n\n if b_idx != -1:\n q = n // six[b_idx]\n t2 = minimize(n-q*six[b_idx], a_idx, b_idx-1, t+q)\n\n return min(t1, t2, t+n-1)\n\n\ndef main():\n n = int(input())\n\n cnt9, cnt6 = 0, 0\n while 9 ** (cnt9+1) <= n:\n cnt9 += 1\n\n while 6 ** (cnt6+1) <= n:\n cnt6 += 1\n\n t = minimize(n, cnt9-1, cnt6-1, 0)\n\n print(t)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n n = int(input())\n\n min_t = 100000\n for i in range(n+1):\n x, six = i, 0\n while x > 0:\n six += x % 6\n x //= 6\n\n y, nine = n - i, 0\n while y > 0:\n nine += y % 9\n y //= 9\n\n if six + nine < min_t:\n min_t = six + nine\n\n print(min_t)\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s640516241', 's003364738'] | [3064.0, 3060.0] | [18.0, 202.0] | [726, 382] |
p03329 | u367130284 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import itertools as i\nn=int(input())\ncount=[]\ndef f(x):\n if x==0:\n return count\n b=list(i.takewhile(lambda i:9**i<=x,(i for i in range(100))))[-1]\n c=list(i.takewhile(lambda i:6**i<=x,(i for i in range(100))))[-1]\n if 9**b>6**c:\n count.append(b)\n return f(x-9**b)\n else:\n count.append(c)\n return f(x-6**c)\n\nprint(f(n))', 'n=int(input())\nfrom copy import*\nans=[]\nfor i in range(n+1): \n count=0\n money6=i\n money9=n-i\n while money6:\n count+=money6%6\n money6//=6\n while money9:\n count+=money9%9\n money9//=9\n ans.append(count)\nprint(min(ans))\n'] | ['Wrong Answer', 'Accepted'] | ['s966499054', 's201374959'] | [3064.0, 4348.0] | [20.0, 324.0] | [368, 321] |
p03329 | u374103100 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["N = int(input())\n\nM = 100000\n\nc = [59049, 46656, 7776, 6561, 1296, 729, 216, 81, 36, 9, 6, 1]\n\n\n# val = 9 ** i\n# if val <= M:\n# print(val)\n# c.append(val)\n#\n\n# val = 6 ** i\n# if val <= M:\n# print(val)\n# c.append(val)\n\ncount = 0\nrest = N\n\nfor i in c:\n if rest // i > 0:\n count += rest // i\n print(str(i) + ', ' + str(rest // i) + ' times, rest = ' + str(rest % i))\n rest = rest % i\n\n if rest == 0:\n break\n\nprint(count)", "\n\ndef main():\n max_val = 10**5 + 1\n dp = [i for i in range(max_val)]\n\n for i in range(max_val):\n p = 1\n while p < max_val:\n dp[i] = min(dp[i], dp[i - p] + 1)\n p *= 6\n p = 1\n while p < max_val:\n dp[i] = min(dp[i], dp[i - p] + 1)\n p *= 9\n\n N = int(input())\n print(dp[N])\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s194376175', 's554025321'] | [3064.0, 7064.0] | [19.0, 428.0] | [541, 447] |
p03329 | u375616706 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import math\nn = (int)(input())\n\nans = n\nl = (int)(math.log(n, 9)+1)\n\nfor i in range(n+1):\n tmp_ans = 0\n a_six = i\n a_nine = n-i\n for i in reversed(range(-1, 6)):\n tmp = a_six//6**i\n tmp_ans += tmp\n a_six -= tmp*6**i\n a_nine += a_six\n for i in reversed(range(-1, 5)):\n tmp = a_nine//9**i\n tmp_ans += tmp\n a_nine -= tmp*9**i\n if ans > tmp_ans:\n ans = tmp_ans\n\nprint(ans)\n', 'import math\nn = (int)(input())\n\nans = n\nl = (int)(math.log(n, 9)+1)\n\nfor i in range(n+1):\n tmp_ans = 0\n a_six = i\n a_nine = n-i\n for i in reversed(range(7)):\n tmp = a_six//6**i\n tmp_ans += tmp\n a_six -= tmp*6**i\n a_nine += a_six\n for i in reversed(range(7)):\n tmp = a_nine//9**i\n tmp_ans += tmp\n a_nine -= tmp*9**i\n if ans > tmp_ans:\n ans = tmp_ans\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s789076241', 's922482641'] | [3188.0, 3064.0] | [1316.0, 1174.0] | [397, 389] |
p03329 | u422104747 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import zlib\nsol=b"x\\x9c\\xed\\x9dm\\x8f\\xe36\\x0c\\x84\\x7fk\\xaf\\xed%\\x96\\xb7\\xbd\\xeb\\xff\\xffR\\xc1\\xc1\\x12\\x01\\xb8\\x1e\\xd8c.3\\x8a\\x08\\x18\\x0b\\xc3\\xd4\\x0bE=\\x19\\xcbT6\\xfe\\xe3\\xc7\\x9f\\x7f\\xfd\\xfd\\xb3\\xff\\xe9G?{\\x1c\\xfd\\xca\\xe3\\xf8\\xfb\\xe7\\xad\\x1f[\\x91\\xdb\\x97\\xa6~\\xfc\\xbc\\xdd\\xfb\\xb1\\x15\\xb9?\\x9a\\xda+\\xdcOz\\x99\\x87\\xf5Q\\xd8\\xb7\\xd3On\\xf7\\xe5a\\xed\\\'g\\x0b\\x9bI\\xc4\\x8d~\\xf4+\\x0f\\xeb}i\\x0fk?9[\\xd8L"n\\xf4\\xa3_yX\\x97\\xb6>\\xac\\xfd\\xe4la3\\x85\\xbbq\\nZo\\xb2..\\x02`&k\\xf0=\\x000\\x93M\\x81\\x1a\\x00\\x9c\\x1b"\\xd8\\x80\\xb1\\x9f\\xea\\xfd\\x88\\xcfV\\xd8\\x84\\xd17h\\xbd\\x1f\\xf1\\xd9\\x17\\xf6S`\\x91\\xb7\\x01r\\x00\\x84\\xbb\\x01\\xb0\\xf1\\x85\\xcd\\xd4\\x8fnzX\\xdb\\xfa\\xf1\\xcc\\x18\\xc7a\\xb8\\x1b\\x1c6\\xbe\\xf7\\xef\\xd3\\x8dS\\xbd\\xab\\x01`q\\xf6\\\'"\\x00\\xf8.@a3\\x89`\\x03"\\xa6\\x8f\\r0Y\\x9c\\xa3\\x00\\x08\\xa7\\x17`\\x03L\\xfd\\xa4\\x13\\xf5\\x8c\\xd6\\x91Z\\x80C\\xae\\x96\\xb9\\xe1O8l@\\x10\\xb8\\x8f\\xb9\\xf7\\xd9\\x86\\x93\\x89\\r\\xa7\\x1bC\\x03\\xe0\\x1d\\xebG\\xbf\\xd2\\x0f`\\x12\\xc1\\x06\\xc4yhl\\xc0\\x14db\\xe3{\\xbf\\x88\\xcdf\\xf9\\xe7\\xb9\\x9d\\x97\\xd42\\x93]\\xe9\\\'\\xfdJ?\\xe1\\xb0\\x01A\\xe0\\xc4\\x01\\xf8\\x9c\\x89\\r\\x08&\\x07\\x80\\xc5\\xd9O\\x81\\x08\\x00\\xde\\xd4\\x8f~\\xa5\\x1f\\xc0$\\x82\\r\\x18\\xce\\xd0\\xd8\\x80)\\x18\\x1a\\x9b\\xcd\\xf2\\xefs;/\\xa9e&\\xbb\\xd2O\\xfa\\x95~\\xc2a\\x03\\x82\\xc0\\x89\\x03\\xf09\\x13\\x1b\\x10L\\x0e\\x00\\x8b\\xb3\\x9f\\x02\\x11\\x00\\xbc\\xa9\\x1f\\xfdJ?\\x80)\\x1c\\x1b\\xfd\\x84\\xe4\\xd0y\\xec\\xdb\\xfeb\\x9b[\\x99\\x8b\\xb8\\x01n\\x9a\\xdc\\x1d6\\xdc\\r\\x91\\xcc\\x92\\x7f\\xa8y\\x0f\\x00n\\xfb\\x0f5\\x99\\x00L(_"\\xfb)\\xdc\\x13\\xbd\\x88\\x1b\\x1e\\xda\nprint(zlib.decompress(sol)[int(input())]-97)', 'l=[100000 for i in range(100001)]\nl[0]=0\ndif=[1,6,9,36,81,216,729,1296,6561,7776,46656,59049]\nfor i in range(1,100001):\n\tfor j in dif:\n\t\tif j>i:\n\t\t\tbreak\n\t\tl[i]=min(l[i],l[i-j]+1)\nn=int(input())\nprint(l[n])'] | ['Runtime Error', 'Accepted'] | ['s221221156', 's740805379'] | [3060.0, 3956.0] | [17.0, 524.0] | [9340, 206] |
p03329 | u427984570 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['a = int(input())\nl1 = [6**i for i in range(7)]\nl2 = [9**i for i in range(7)]\nl = sorted(l1 + l2)\nl.pop(0)\nl.pop(-1)\ncnt = 0\nprint(l)\nwhile a != 0:\n print(a)\n for i in range(len(l)):\n if a - l[i] < 0:\n a -= l[i-1]\n cnt += 1\n break\n \nprint(cnt)', 'a = int(input())\nl = [6**i for i in range(10) if 6**i < 10**5]\nl += [9**i for i in range(10) if 9**i < 10**5]\nl = sorted(list(set(l)))\n\nans = [10 ** 9 for i in range(a+1)]\nans[0] = 0\n\nfor i in range(a):\n for j in l:\n# print(j)\n if i + j <= a:\n ans[i+j] = min(ans[i] + 1, ans[i+j])\n\nprint(ans[a])'] | ['Wrong Answer', 'Accepted'] | ['s635307391', 's498615096'] | [8764.0, 3864.0] | [2104.0, 596.0] | [265, 307] |
p03329 | u428397309 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['# -*- coding: utf-8 -*-\n\nN = int(input())\n\nans = N\nfor i in range(N // 9 + 1):\n nine = i * 9\n six = N - nine\n tmp_ans = 0\n print(nine, six)\n while nine > 0:\n tmp_ans += nine % 9\n nine = nine // 9\n while six > 0:\n tmp_ans += six % 6\n six = six // 6\n ans = min(tmp_ans, ans)\n\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\nN = int(input())\n\nans = N\nfor i in range(N // 9 + 1):\n nine = i * 9\n six = N - nine\n tmp_ans = 0\n while nine > 0:\n tmp_ans += nine % 9\n nine = nine // 9\n while six > 0:\n tmp_ans += six % 6\n six = six // 6\n ans = min(tmp_ans, ans)\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s956372400', 's811630760'] | [3460.0, 3060.0] | [63.0, 53.0] | [334, 313] |
p03329 | u440161695 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['A=[1,6,36,216,1296,7776,46656,9,81,729,6561,59049]\nN=int(input())\nans=0\nwhile N!=0:\n N-=max([a for _ in A if A<=N])\n ans+=1\nprint(ans)', 'N=int(input())\ndp=[float("INF")]*(N+2)\ndp[0]=0\na,b,c=1,1,0\nfor i in range(1,N+1):\n if i==6*a:\n a*=6\n if i==9*b:\n b*=9\n dp[i]=min(dp[i],dp[i-1],dp[i-a],dp[i-b])+1\nprint(dp[N])'] | ['Runtime Error', 'Accepted'] | ['s549770051', 's099215479'] | [3060.0, 3828.0] | [18.0, 98.0] | [136, 241] |
p03329 | u440904221 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\n\ndef search(n,num):\n i = 1\n while True:\n if n < num**i:\n return i-1\n i += 1\n \nans = n\nfor i1 in range(0,6):\n for i2 in range(0,6):\n for i3 in range(0,6):\n for i4 in range(0,6):\n for i5 in range(0,6):\n for i6 in range(0,6):\n res = n\n res -= (6**1)*i1+(6**2)*i2+(6**3)*i3+(6**4)*i4+(6**5)*i5+(6**6)*i6\n if res > 0:\n count = i1+i2+i3+i4+i5+i6\n for i in reversed(range(1,6)):\n cnt = int(res / (9**i))\n res -= (9**i) * cnt\n count += cnt\n if ans > count:\n ans = count\nprint(ans)', 'n = int(input())\n\ndef search(n,num):\n i = 1\n while True:\n if n < num**i:\n return i-1\n i += 1\n \nans = n\nfor i1 in range(0,6):\n for i2 in range(0,6):\n for i3 in range(0,6):\n for i4 in range(0,6):\n for i5 in range(0,6):\n for i6 in range(0,6):\n res = n\n res -= (6**1)*i1+(6**2)*i2+(6**3)*i3+(6**4)*i4+(6**5)*i5+(6**6)*i6\n if res >= 0:\n count = i1+i2+i3+i4+i5+i6\n while res > 6:\n i = search(res,9)\n cnt = int(res / (9**i))\n res -= (9**i) * cnt\n count += cnt\n count += res\n if ans > count:\n ans = count\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s217540598', 's015754265'] | [3064.0, 3064.0] | [130.0, 200.0] | [896, 932] |
p03329 | u455104068 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['def tans(N, sei):\n import math\n sin = int(math.log(N,9))\n cos = int(math.log(N,6))\n count = sei\n if ((sin != 0) and (cos != 0)):\n if N < 15:\n if N >= 12:\n count += 2\n b2 = N - 12\n return tans(b2, count)\n elif (math.pow(9, sin) > math.pow(6,cos)):\n c = int(N - math.pow(9,sin))\n count += 1\n return tans (c, count)\n else:\n c2 = int(N - math.pow(6,cos))\n count += 1\n return tans (c2, count)\n else:\n count += N\n return count\n\nn1 = int(input())\nprint(tans(n1, 0))', 'from itertools import count, takewhile, dropwhile\n \ndef dfs(n, max9, max6, d={0:0}):\n if n in d: \n return d[n]\n \n max9 = next(dropwhile(lambda x: x>n, (max9 / 9**i for i in count())))\n max6 = next(dropwhile(lambda x: x>n, (max6 / 6**i for i in count())))\n d[n] = min(dfs(n-max9, max9, max6), dfs(n-max6, max9, max6)) + 1\n return d[n]\n \nn = int(input())\n \nmax9 = max(takewhile(lambda x: x<=n, (9**i for i in count())))\nmax6 = max(takewhile(lambda x: x<=n, (6**i for i in count())))\n \nprint(dfs(n, max9, max6))\n'] | ['Runtime Error', 'Accepted'] | ['s999280574', 's758731503'] | [3188.0, 3064.0] | [18.0, 18.0] | [535, 530] |
p03329 | u482680085 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\ncount = 0\nans = []\nfor i in range(N+1):\n count1 = 0\n count2 = 0\n N1 = N - i\n x = i\n while x:\n count1 += x % 6\n x //= 6\n while N1\n count2 += x % 9\n N1 //= 9\n count = count1 + count2\n ans.append(count)\nprint(min(ans))\n', 'N = int(input())\ncount = 0\nans = []\nfor i in range(N+1):\n count1 = 0\n count2 = 0\n N1 = N - i\n x = i\n while x:\n count1 += x % 6\n x //= 6\n while N1\n count2 += N1 % 9\n N1 //= 9\n count = count1 + count2\n ans.append(count)\nprint(min(ans))\n', 'N = int(input())\ncount = 0\nans = []\nfor i in range(N+1):\n count1 = 0\n count2 = 0\n N1 = N - i\n x = i\n while x:\n count1 += x % 6\n x //= 6\n while N1:\n count2 += N1 % 9\n N1 //= 9\n count = count1 + count2\n ans.append(count)\nprint(min(ans))\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s328161585', 's450287908', 's149084091'] | [2940.0, 2940.0, 3864.0] | [17.0, 17.0, 308.0] | [285, 286, 287] |
p03329 | u503228842 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nnums = [1]\ndef under_nums(N,m):\n nums = []\n i = 1\n while m**i <= N:\n nums.append(m**i)\n i += 1\n return nums\nall_nums = nums+under_nums(N,6)+under_nums(N,9)\nall_nums.sort(reverse=True)\nprint(all_nums)\ncnt = 0\nidx = 0\nmoney = N\na = []\nwhile money > 0:\n while money >= all_nums[idx]:\n #print(all_nums[idx])\n\n money -= all_nums[idx]\n a.append(all_nums[idx])\n #print("money="+str(money))\n cnt += 1\n idx += 1\nprint(cnt)\n# print(a)\n# print(sum(a))', "N = int(input())\nmemo = [-1]*(N+1)\nimport sys\nsys.setrecursionlimit(10**8)\ndef rec(n):\n if n == 0:return 0\n if memo[n] != -1:return memo[n]\n\n res = float('inf')\n\n pow6 = 1\n while pow6 <= n:\n res = min(res,rec(n-pow6)+1)\n pow6 *= 6\n\n pow9 = 1\n while pow9 <= n:\n res = min(res,rec(n-pow9)+1)\n pow9 *= 9\n\n memo[n] = res\n return memo[n]\n\nprint(rec(N))"] | ['Wrong Answer', 'Accepted'] | ['s208321349', 's422834985'] | [3064.0, 92020.0] | [18.0, 650.0] | [524, 402] |
p03329 | u513081876 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nans = 0\na = [9**i for i in range(1, 6)]\nb = [6**i for i in range(1, 7)]\nab = a+b\nab.sort(reverse=True)\nwhile N >= 6:\n for i in ab:\n if N >= i:\n N = N - i\n ans += 1\n break\nprint(ans+N)\nprint(ans)\nprint(N)', 'N = int(input())\n\ndp = [int(i) for i in range(N+1)]\nB6 = [6**i for i in range(1,7)]\nB9 = [9**i for i in range(1,6)]\nL = B6 + B9\nL = sorted(list(set(L)))\n\nfor i in L:\n for j in range(1, N+1):\n if j - i >= 0:\n dp[j] = min(dp[j], dp[j-i] + 1)\nprint(dp[N])\n'] | ['Wrong Answer', 'Accepted'] | ['s720349283', 's033848414'] | [3060.0, 7064.0] | [17.0, 522.0] | [263, 274] |
p03329 | u514383727 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nws = [1]\nws += [6**i for i in range(1, 8)]\nws += [9**i for i in range(1, 6)]\nws = sorted(set(ws))\n\nprint(ws)\nINF = 10**5\ndp = [INF] * (n+1)\ndp[0] = 0\nfor i in range(n+1):\n for w in ws:\n if i + w <= n:\n dp[i+w] = min(dp[i]+1, dp[i+w])\nprint(dp[-1])', 'n = int(input())\nws = [1]\nws += [6**i for i in range(1, 8)]\nws += [9**i for i in range(1, 6)]\nws = sorted(set(ws))\n\nINF = 10**5\ndp = [INF] * (n+1)\ndp[0] = 0\nfor i in range(n+1):\n for w in ws:\n if i + w <= n:\n dp[i+w] = min(dp[i]+1, dp[i+w])\nprint(dp[-1])\n'] | ['Wrong Answer', 'Accepted'] | ['s482811196', 's695076310'] | [3828.0, 3956.0] | [724.0, 625.0] | [285, 276] |
p03329 | u518042385 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\nnum6=6\nnum9=9\nwhile num6<=n:\n l.append(num6)\n num6*=6\nwhile num9<=n:\n l.append(num9)\n num9*=9\ncount=[0,1,2,3,4,5,1,2,3,1,2,3]\nfor i in range(12,n+1):\n min=100000\n for j in l:\n if i-j<0:\n pass\n else:\n if min>count[i-j]+1:\n min=count[i-j]+1\n count.append(min)\nprint(count[n])', 'l=[1]\nfor i in range(1,6):\n l.append(9**i)\nfor i in range(1,7):\n l.append(6**i)\nl=sorted(l)\ni=int(input())\nc=0\nfor j in range(1,len(l)+1):\n if i>=l[-j]:\n i=i%l[-j]\n c+=i//l[-j]\n elif i==0:\n break\nprint(c)\n \n \n\n ', 'n=int(input())\nnum6=6\nnum9=9\nl=[]\nwhile num6<=n:\n l.append(num6)\n num6*=6\nwhile num9<=n:\n l.append(num9)\n num9*=9\ncount=[0,1,2,3,4,5,1,2,3,1,2,3]\nfor i in range(12,n+1):\n min=100000\n for j in l:\n if i-j<0:\n pass\n else:\n if min>count[i-j]+1:\n min=count[i-j]+1\n count.append(min)\nprint(count[n])\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s404370361', 's517244434', 's855699272'] | [3064.0, 3060.0, 3876.0] | [17.0, 17.0, 296.0] | [318, 229, 324] |
p03329 | u528005130 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['# coding: utf-8\n# Your code here!\nimport math\nfrom collections import defaultdict\n \nN = int(input())\n \nmemo = defaultdict(lambda: -1)\nmemo[0] = 0\ndef recursive(n):\n if memo[n] != -1:\n return memo[n]\n \n min_num_operation = n\n \n index = 0\n temp_n = n\n while temp_n > 0:\n if temp_n % 9 == 0:\n index += 1\n temp_n /= 9\n else:\n break\n if index > 0:\n min_num_operation = min(min_num_operation, 1 + recursive(int(n - math.pow(9, index))))\n \n index = 0\n temp_n = n\n while temp_n > 0:\n if temp_n % 6 == 0:\n index += 1\n temp_n /= 6\n else:\n break\n if index > 0:\n min_num_operation = min(min_num_operation, 1 + recursive(int(n - math.pow(6, index))))\n \n memo[n] = min_num_operation\n \n return min_num_operation\n \nprint(recursive(N))', '# coding: utf-8\n# Your code here!\nimport math\nfrom collections import defaultdict\n \nN = int(input())\n \nmemo = defaultdict(lambda: -1)\nmemo[0] = 0\ndef recursive(n):\n if memo[n] != -1:\n return memo[n]\n \n min_num_operation = n\n \n index = 0\n temp_n = n\n while temp_n > 0:\n if temp_n % 9 == 0:\n index += 1\n temp_n //= 9\n else:\n index += int(math.log(temp_n, 9))\n break\n if index > 0:\n min_num_operation = min(min_num_operation, 1 + recursive(int(n - math.pow(9, index))))\n \n index = 0\n temp_n = n\n while temp_n > 0:\n if temp_n % 6 == 0:\n index += 1\n temp_n //= 6\n else:\n index += int(math.log(temp_n, 6))\n break\n if index > 0:\n min_num_operation = min(min_num_operation, 1 + recursive(int(n - math.pow(6, index))))\n \n memo[n] = min_num_operation\n \n return min_num_operation\n \nprint(recursive(N))'] | ['Wrong Answer', 'Accepted'] | ['s267875598', 's433785099'] | [4020.0, 3316.0] | [32.0, 22.0] | [892, 986] |
p03329 | u539517139 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\nk=[59049,46646,7776,6561,1296,729,216,81,36,9,6]\nc=0\nwhile n>6:\n for i in k:\n if n-i>0:\n n=n-i\n c+1\nc+=n\nprint(n)', 'n=int(input())\nb=[1,6,36,216,1296,7776,46656]\nq=[9,81,729,6561,59049]\nd=[100000]*(n+1)\nd[0]=0\nfor i in range(n):\n for j in b:\n if i+j<=n:\n d[i+j]=min(d[i+j],d[i]+1)\n for k in q:\n if i+k<=n:\n d[i+k]=min(d[i+k],d[i]+1)\nprint(d[n])'] | ['Wrong Answer', 'Accepted'] | ['s969744802', 's289815830'] | [2940.0, 3828.0] | [17.0, 658.0] | [142, 246] |
p03329 | u540761833 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\ndp = [[float(\'inf\') for i in range(N+1)] for j in range(3)]\ndp[0][0] = 0\ndp[2][0]= 0\ndef below_power(n,a):\n "n以下になるa**xのxの最大値を求める"\n x = 0\n while n >= a**x:\n x += 1\n return x-1\nnine = below_power(N,9)\nsix = below_power(N,6)\nfor i in range(nine,0,-1):\n dp[1][9**i] = 1\n x= (9**i)\n for j in range(x,N+1):\n dp[1][j] = min(dp[1][j],dp[1][j-x]+1)\nfor i in range(1,six+1):\n dp[2][6**i] = 1\n x= (6**i)\n for j in range(N+1):\n if j >= 9:\n dp[2][j] = min(dp[2][j],dp[2][j-x]+1)\n if j >= x:\n dp[2][j] = min(dp[2][j],dp[1][j-x]+1)\nprint(dp)\nans = dp[2][N]\nfor i in range(1,min(N+1,6)):\n ans = min(ans,dp[2][N-i]+i)\nprint(ans)\n', 'N = int(input())\ndp = [float(\'inf\') for i in range(N+1)]\ndp[0] = 0\nif N >= 6:\n dp[6] = 1\ndef below_power(n,a):\n "n以下になるa**xのxの最大値を求める"\n x = 0\n while n >= a**x:\n x += 1\n return x-1\nnine = below_power(N,9)\nsix = below_power(N,6)\nfor i in range(six,0,-1):\n for j in range(N+1):\n if j - 6**i >= 0:\n dp[j] = min(dp[j],dp[j-6**i]+1)\n if j - 9**i >= 0:\n dp[j] = min(dp[j],dp[j-9**i]+1) \nans = dp[N]\nfor i in range(1,min(N+1,6)):\n ans = min(ans,dp[N-i]+i)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s844992951', 's425796871'] | [17152.0, 6296.0] | [986.0, 1154.0] | [741, 556] |
p03329 | u543954314 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nans = n\nl9 = [9**i for i in range(6,0,-1)]\nl6 = [6**i for i in range(7,-1,-1)]\nfor i in range(n//9+1):\n x9 = i*9\n x61= n-x9\n csum = 0\n for x in l9:\n csum += x9//x\n x9 %= x\n for x in x61:\n csum += x61//x\n x61 %= x\n if ans > csum:\n ans = csum\nprint(ans) ', 'n = int(input())\nans = n\nl9 = [9**i for i in range(6,0,-1)]\nl6 = [6**i for i in range(7,-1,-1)]\nfor i in range(n//9+1):\n x9 = i*9\n x61= n-x9\n csum = 0\n for x in l9:\n csum += x9//x\n x9 %= x\n for x in l6:\n csum += x61//x\n x61 %= x\n if ans > csum:\n ans = csum\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s671455003', 's977276797'] | [3064.0, 3064.0] | [18.0, 57.0] | [293, 288] |
p03329 | u545368057 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nxs = [1]\ni = 1\nwhile N > 6**i:\n if 9**i < N:\n xs.append(9**i)\n xs.append(6**i)\n i += 1\nX = sorted(xs)\nprint(X)\n\n\ndp = [10000000000] * 1008000\ndp[1] = 1\nfor i in range(N):\n for x in X:\n dp[i+x] = min(dp[i]+1, dp[i+x])\nprint(dp[N])', 'N = int(input())\nn6 = 1\nn9 = 1\nli = []\nwhile 9**n9 <= N:\n li.append(9**n9)\n n9 += 1\nwhile 6**n6 <= N:\n li.append(6**n6)\n n6 += 1\n\nli.sort()\nINF = 10**10\n\ndp = [[i for i in range(N+1)] for i in range(len(li) + 1)]\ndp = [i for i in range(N+1)]\n\n\nfor i,l in enumerate(li):\n for j in range(N+1):\n if j+l > N : continue\n dp[j+l] = min(dp[j+l], dp[j]+1)\nprint(dp[N])\n'] | ['Wrong Answer', 'Accepted'] | ['s009067666', 's727963758'] | [10868.0, 54436.0] | [569.0, 621.0] | [302, 411] |
p03329 | u548303713 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import sys\nsys.setrecursionlimit(10**9)\n\nn=int(input())\nmaxn=110000\nmemo=[-1 for i in range(maxn)]\ndef rec(n):\n if n==0:\n return 0\n if memo[n]!=-1:\n return memo[n]\n res=n\n i=1\n while i<=n:\n res=min(res,rec(n-i)+1)\n i*=6\n j=1\n while i<=n:\n res=min(res,rec(j-i)+1)\n j*=9\n memo[n]=res\n return memo[n]\nprint(rec(n))', 'n=int(input())\nmaxn=110000\ndp=[n for i in range(maxn)] \ndp[0]=0\nfor i in range(n): \n pow6=1\n while i+pow6<=n:\n dp[i+pow6]=min(dp[i+pow6],dp[i]+1)\n pow6*=6\n pow9=1\n while i+pow9<=n:\n dp[i+pow9]=min(dp[i+pow9],dp[i]+1)\n pow9*=9\nprint(dp[n])'] | ['Wrong Answer', 'Accepted'] | ['s341911969', 's170499313'] | [89880.0, 3992.0] | [481.0, 731.0] | [380, 348] |
p03329 | u559103167 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N=int(input())\nans=0\nfor i in range(N+1):\n cnt=0\n while i>0:\n cnt+=i%6\n i//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans=min(ans,cnt)\nprint(ans)', 'N=int(input())\nans=N\nfor i in range(N+1):\n cnt=0\n while i>0:\n cnt+=i%6\n i//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans=min(ans,cnt)\nprint(ans)', 'N = int(input())\nans = N\nfor i in range(N+1):\n cnt = 0\n t = i\n while t>0:\n cnt+=t%6\n t//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans = min(ans,cnt)\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s240742655', 's254910405', 's458470811'] | [3060.0, 3060.0, 3060.0] | [404.0, 325.0, 352.0] | [185, 185, 203] |
p03329 | u576432509 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\n\nn9=9**5\nn6=6**6\n\nk9=5+1\nk6=6+1\nn9=9**k9\nsmin=n\nfor i9 in range(n9):\n ii9=i9\n s=0\n m=0\n astr=""\n for ii in range(1,k9+1):\n r9=ii9%9\n ii9=(ii9-r9)//9 \n s=s*9+r9\n m=m+r9\n astr=astr+str(r9)\n# print("i9",i9,"astr",astr,"s",s,"m",m)\n \n nr=n-s\n nr1=nr\n# print("nr",nr,"m",m)\n \n if nr==0:\n snra=m\n# print(nr,m)\n elif nr>0:\n snra=m\n for jj in range(k6,-1,-1):\n nra=nr1//(6**jj)\n nr1=nr1%(6**jj)\n snra=snra+nra\n\n if smin>snra:\n smin=snra\nprint(smin)', 'n=int(input())\n\n#n=44852\nn9=9**5\nn6=6**6\n\n#n9=9**3\n#n6=6**4\n\nk9=5\nk6=6\nn9=9**k9\nsmin=n\nfor i9 in range(n9):\n ii9=i9\n s=0\n m=0\n astr=""\n for ii in range(1,k9+1):\n r9=ii9%9\n ii9=(ii9-r9)//9 \n s=s*9+r9\n m=m+r9\n astr=astr+str(r9)\n# print("i9",i9,"astr",astr,"s",s,"m",m)\n \n nr=n-s\n nr1=nr\n# print("nr",nr,"m",m)\n \n if nr<=0:\n print(m)\n else:\n snra=m\n for jj in range(k6,-1,-1):\n nra=nr1//(6**jj)\n nr1=nr1%(6**jj)\n snra=snra+nra\n\n if smin>snra:\n smin=snra\n print(smin)', 'n=int(input())\n\nres=n\nfor i in range(n+1):\n cc=0\n t=i\n while t>0:\n cc=cc+t%6\n t=t//6\n t=n-i\n while t>0:\n cc=cc+t%9\n t=t//9\n if res>cc:\n res=cc\n\nprint(res)\n'] | ['Time Limit Exceeded', 'Wrong Answer', 'Accepted'] | ['s288554484', 's614738936', 's273605022'] | [3064.0, 3884.0, 3060.0] | [2107.0, 638.0, 276.0] | [646, 662, 208] |
p03329 | u585742242 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['# -*- coding: utf-8 -*-\nimport sys\nimport functools\nsys.setrecursionlimit(10**6)\n\n# N = int(input())\nMAXN = 10**5\nsix_ps = [6**i for i in range(1, 7)]\nnine_ps = [9**i for i in range(1, 6)]\n\n\[email protected]_cache(maxsize=None)\ndef rec(n):\n if n < 6:\n return n\n\n if n in six_ps or n in nine_ps:\n return 1\n\n six_tmps = [1 + rec(n - six_p) if six_p < n else MAXN for six_p in six_ps]\n six_tmp = min(six_tmps)\n\n nine_tmps = [\n 1 + rec(n - nine_p) if nine_p < n else MAXN for nine_p in nine_ps\n ]\n nine_tmp = min(nine_tmps)\n\n return min(six_tmp, nine_tmp)\n', '# -*- coding: utf-8 -*-\nN = int(input())\nINF = 10**6\n\ndp = [INF] * (N + 100)\ndp[0] = 0\n\nfor n in range(1, N + 1):\n dp[n] = dp[n - 1] + 1\n\n power = 6\n while n - power >= 0:\n dp[n] = min(1 + dp[n - power], dp[n])\n power *= 6\n\n power = 9\n while n - power >= 0:\n dp[n] = min(1 + dp[n - power], dp[n])\n power *= 9\n\nprint(dp[N])\n'] | ['Wrong Answer', 'Accepted'] | ['s201613548', 's691962494'] | [3828.0, 3828.0] | [275.0, 565.0] | [595, 366] |
p03329 | u591295155 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['INF = 10 ** 20\n\nW,N = map(int,input().split())\ncoin_list = [1] + [6**i for i in range(1, 7)] + [9**i for i in range(1, 6)]\ndp = [INF]*(W+1)\ndp[0] = 0\n \nfor coin in coin_list:\n for i in range(coin,W+1):\n dp[i] = min(dp[i], dp[i-coin]+1)\n \nprint(dp[W])', 'INF = 10 ** 20\n\nN = int(input())\ncoin_list = [1] + [6**i for i in range(1, 7)] + [9**i for i in range(1, 6)]\ndp = [INF]*(W+1)\ndp[0] = 0\n \nfor coin in coin_list:\n for i in range(coin,W+1):\n dp[i] = min(dp[i], dp[i-coin]+1)\n \nprint(dp[W])', 'INF = 10 ** 20\n\nN = int(input())\ncoin_list = [1] + [6**i for i in range(1, 7)] + [9**i for i in range(1, 6)]\ndp = [INF]*(N+1)\ndp[0] = 0\n \nfor coin in coin_list:\n for i in range(coin,N+1):\n dp[i] = min(dp[i], dp[i-coin]+1)\n \nprint(dp[N])'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s255936540', 's371053891', 's069990399'] | [3064.0, 3064.0, 6900.0] | [17.0, 18.0, 458.0] | [260, 246, 246] |
p03329 | u597374218 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N=int(input())\nans=N\nfor i in range(N+1):\n j=N-i\n cnt=0\n while i>0:\n cnt+=i%6\n i//=6\n print(cnt,j)\n while j>0:\n cnt+=j%9\n j//=9\n print(i,cnt)\n ans=min(ans,cnt)\nprint(ans)', 'N=int(input())\nans=N\nfor i in range(N+1):\n count=0\n t=i\n while t>0:\n count+=t%6\n t//=6\n t=N-i\n while t>0:\n count+=t%9\n t//=9\n ans=min(ans,count)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s706161322', 's545510849'] | [4852.0, 9012.0] | [552.0, 214.0] | [219, 201] |
p03329 | u597455618 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nans = 0\na = [0] * 12\nfor i in range(1, 7):\n print(i)\n a[2*(i-1)] += max((9**(i-1)), (6**i))\n a[2*(i-1)-1] += min((9**(i-1)), (6**i))\nprint(a)\nfor i in a:\n if (n//i) != 0:\n ans += n//i\n n -= n//i * i\n\nprint(ans)', 'import bisect as bi\n\ndef ref(n):\n if n < 6:\n return n\n else:\n s6 = l6[bi.bisect(l6, n)-1]\n s9 = l9[bi.bisect(l9, n)-1]\n return min(n//s6 + ref(n%s6), 1+ref(n-s9))\n\nl6 = [6**i for i in range(7)]\nl9 = [9**i for i in range(6)]\nprint (ref(int(input())))'] | ['Wrong Answer', 'Accepted'] | ['s179693523', 's208992833'] | [3188.0, 3064.0] | [19.0, 19.0] | [237, 263] |
p03329 | u600402037 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\ni=1\ncount=0\nn6=1\nn9=1\nl=[1]\nwhile True:\n if 9**i>n:\n n9=i-1\n break\n i+=1\ni=1\nwhile True:\n if 6**i>n:\n n6=i-1\n break\n i+=1\nfor i in range(n6):\n l.append(6**(i+1))\nfor i in range(n9):\n l.append(9**(i+1))\nl.sort(reverse=True)\nfor i in l:\n count+=n//i\n n%=i\n print(count)\nprint(count)\n', 'N=int(input())\nans=N\nfor i in range(N+1):\n cnt=0\n while i>0:\n cnt+=i%6\n i//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans=min(ans,cnt)\nprint(ans)', '# coding: utf-8\nimport sys\n\nsr = lambda: sys.stdin.readline().rstrip()\nir = lambda: int(sr())\nlr = lambda: list(map(int, sr().split()))\n\nN = ir()\nanswer = N\n\nfor i in range(N+1):\n temp = 0\n six_pay = i\n while six_pay:\n temp += six_pay%6\n six_pay //= 6\n nine_pay = N - i\n while nine_pay:\n temp += nine_pay%9\n nine_pay //= 9\n if temp < answer:\n answer = temp\n\nprint(answer)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s067282705', 's111845520', 's933249642'] | [3064.0, 2940.0, 3064.0] | [17.0, 313.0, 326.0] | [351, 185, 480] |
p03329 | u607075479 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nsix = [6**i for i in range(7)]\nnine = [9**i for i in range(6)]\nL = []\nfor s in six:\n L.append(s)\nfor s in nine[1:]:\n L.append(s)\nL.sort(reverse=True)\nans = 0\nfor l in L:\n while N > 0:\n ans += N // l\n N %= l\nprint(ans)', 'import sys\nimport math\nfrom collections import deque\n\nsys.setrecursionlimit(1000000)\nMOD = 10 ** 9 + 7\ninput = lambda: sys.stdin.readline().strip()\nNI = lambda: int(input())\nNMI = lambda: map(int, input().split())\nNLI = lambda: list(NMI())\nSI = lambda: input()\n\n\ndef make_grid(h, w, num): return [[int(num)] * w for _ in range(h)]\n\n\ndef get_num_draw(n, x):\n res = 0\n while n > 0:\n res += n % x\n n = n // x\n return res\n\n\ndef main():\n N = NI()\n ans = 10**10\n for i in range(0, N+1, 6):\n ans = min(get_num_draw(N-i, 9) + get_num_draw(i//6, 6), ans)\n print(ans)\n\n\nif __name__ == "__main__":\n main()'] | ['Time Limit Exceeded', 'Accepted'] | ['s659214406', 's320422392'] | [9100.0, 9368.0] | [2205.0, 51.0] | [243, 639] |
p03329 | u611368136 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\nans = 0\n\nl = []\np = 0\nwhile True:\n power = pow(9, p)\n if power > n:\n break\n else:\n l.append(power)\n p += 1\np = 0\nwhile True:\n power = pow(6, p)\n if power > n:\n break\n else:\n l.append(power)\n p += 1\nl = list(set(l))\nl.sort()\nl.reverse()\nprint(l)\n\nfor i in l:\n d = n // i\n n -= d * i\n ans += d\n print(i, d)\n\nprint(ans)\n', 'n = int(input())\n\ndp = [0]\n\nfor i in range(1, n+1):\n dp.append(100000)\n power = 1\n while (i - power >= 0):\n dp[i] = min(dp[i], 1 + dp[i - power])\n power *= 6\n\n power = 9\n while (i - power >= 0):\n dp[i] = min(dp[i], 1 + dp[i - power])\n power *= 9\n\nprint(dp[n])\n \n'] | ['Wrong Answer', 'Accepted'] | ['s808991307', 's705646093'] | [3064.0, 3860.0] | [17.0, 608.0] | [398, 308] |
p03329 | u614181788 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\ndp = [float("Inf")]*(n+1)\ndp[0] = 0\nfor i in range(n):\n if dp[i] == float("Inf"):\n pass\n else:\n for j in range(1,n//6):\n if i + 6**j > n:\n break\n dp[i+6**j] = min(dp[i+6**j], dp[i] + 1)\n for j in range(1,n//9):\n if i + 9**j > n:\n break\n dp[i+9**j] = min(dp[i+9**j], dp[i] + 1)\nans = n\nfor i in range(max(0, n-5), n+1):\n ans = min(ans, dp[i]+n-i)\nprint(ans)\nprint(dp)', 'n = int(input())\ndp = [float("Inf")]*(n+1)\nfor i in range(min(6, n+1)):\n dp[i] = i\nfor i in range(n):\n for j in range(1,n//6+1):\n if i + 6**j > n:\n break\n dp[i+6**j] = min(dp[i+6**j], dp[i] + 1)\n for j in range(1,n//9+1):\n if i + 9**j > n:\n break\n dp[i+9**j] = min(dp[i+9**j], dp[i] + 1)\nprint(dp[-1])'] | ['Wrong Answer', 'Accepted'] | ['s012269145', 's635911655'] | [10608.0, 9592.0] | [383.0, 1003.0] | [487, 360] |
p03329 | u619458041 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["import sys\n\ndef f(n):\n X6 = []\n X9 = []\n for i in range(1, 10):\n if n >= 6**i:\n X6.append(6**i)\n if n >= 9**i:\n X9.append(9**i)\n return X6, X9\n\n\ndef main():\n input = sys.stdin.readline\n N = int(input())\n X6, X9 = f(N)\n X = [1] + X6 + X9\n dp = [0 for _ in range(N+1)]\n for i in range(1, N+1):\n can = []\n for x in X:\n can.append(dp[i-x] + 1)\n dp[i] = min(can)\n print(dp[N])\n\nif __name__ == '__main__':\n main()", "import sys\nfrom itertools import count, takewhile\n\ndef dfs(n, d={}):\n if n < 6:\n return n\n if n in d:\n return d[n]\n\n max9 = max(takewhile(lambda x: x<=n, (9**i for i in count())))\n max6 = max(takewhile(lambda x: x<=n, (6**i for i in count())))\n d[n] = min(dfs(n-max9), dfs(n-max6)) + 1\n return d[n]\n\n\ndef main():\n input = sys.stdin.readline\n N = int(input())\n print(dfs(N))\n \nif __name__ == '__main__':\n main()"] | ['Wrong Answer', 'Accepted'] | ['s965291490', 's226185898'] | [3864.0, 3064.0] | [235.0, 20.0] | [449, 427] |
p03329 | u620846115 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\ndef f(x):\n ans=0\n while x >0:\n ans+=x%6\n x = x//6\n return ans\ndef g(x):\n ans=0\n while x >0:\n ans+=x%9\n x = x//9\n return ans\nans = n\nfor i in range(n+1):\n ans = min(ans,f(n-i),g(i))\nprint(ans)\n\n', 'n=int(input())\ndef f(x):\n ans=0\n while x>0:\n ans+=x%6\n x=x//6\n return ans\ndef g(x):\n ans=0\n while x>0:\n ans+=x%9\n x=x//9\n return ans\nans=n\nfor i in range(n+1): \n ans=min(ans,f(i)+g(n-i))\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s413608597', 's519927018'] | [8996.0, 9096.0] | [152.0, 152.0] | [229, 244] |
p03329 | u623687794 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\nw=[1,6,9,36,81,216,729,1296,6561,7776,46656,59049]\nans=0\nfor i in range(11,0,-1):\n ans+=(n//w[i])\n n-=ans*w[i]\nprint(ans)', 'n=int(input())\nINF=10**7\nw=[1,6,9,36,81,216,729,1296,6561,7776,46656,59049]\ndp=[INF]*100001\ndp[0]=0\nfor i in range(100001):\n for j in w:\n if i+j>100000:continue\n dp[i+j]=min(dp[i]+1,dp[i+j])\nprint(dp[n])'] | ['Wrong Answer', 'Accepted'] | ['s853267453', 's465180392'] | [3060.0, 3828.0] | [17.0, 708.0] | [138, 210] |
p03329 | u626337957 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\nINF = 10**6\ndp = [INF] * (N+1)\nfor i in range(9):\n if i < 6:\n dp[i] = i\n elif i < 9:\n dp[i] = i%6+1\n\nfor i in range(N):\n n = m = 1\n while i+9*n <= N:\n dp[i+9*n] = min(dp[i+9*n], dp[i] + 1)\n n += 1\n while i+6*m <= N:\n dp[i+6*m] = min(dp[i+6*m], dp[i] + 1)\n m += 1\nprint(dp[N])\n \n', 'N = int(input())\n\nd_list = [1]\n\na = 1\nwhile True:\n if 6**a <= N:\n d_list.append(6**a)\n a += 1\n else:\n break\na = 1\nwhile True:\n if 9**a <= N:\n d_list.append(9**a)\n a += 1\n else:\n break\nd_list.sort(key=lambda x:-x)\nrest = N\ncnt = 0\nwhile True:\n if rest < 6:\n cnt = rest\n print(cnt)\n break\n else:\n for num in d_list:\n if rest >= num:\n cnt += 1\n rest -= num\n break', 'N = int(input())\nINF = 10**6\ndp = [INF] * (max(9, N)+1)\nfor i in range(10):\n if 0 < i < 6:\n dp[i] = i\n elif i < 9:\n dp[i] = i%6+1\n else:\n dp[i] = 1\nfor i in range(N):\n n = m = 1\n for j in range(1, 6):\n dp[i+j] = min(dp[i+j], dp[i] + j)\n while i+9**n <= N:\n dp[i+9**n] = min(dp[i+9**n], dp[i] + 1)\n n += 1\n while i+6**m <= N:\n dp[i+6**m] = min(dp[i+6**m], dp[i] + 1)\n m += 1\nprint(dp[N])\n', 'N = int(input())\n\nd_list = [1]\n\na = 1\nwhile True:\n if 6**a <= N:\n d_list.append(6**a)\n a += 1\n else:\n break\na = 1\nwhile True:\n if 9**a <= N:\n d_list.append(9**a)\n a += 1\n else:\n break\nd_list.sort(key=lambda x:-x)\nrest = N\ncnt = 0\nwhile True:\n if rest < 6:\n cnt += rest\n print(cnt)\n break\n else:\n for num in d_list:\n if rest >= num:\n print(num)\n cnt += 1\n rest -= num\n break\n', 'N = int(input())\nINF = 10**6\ndp = [INF] * (N+1)\nfor i in range(10):\n if i < 6:\n dp[i] = i\n elif i < 9:\n dp[i] = i%6+1\n else:\n dp[i] = 1\nfor i in range(N):\n n = m = 1\n while i+9*n > N:\n dp[i+9*n] = min(dp[i+9*n], dp[i] + 1)\n n += 1\n while i+6*m > N:\n dp[i+6*m] = min(dp[i+6*m], dp[i] + 1)\n m += 1\nprint(dp[N])\n \n', 'N = int(input())\nINF = 10**6\ndp = [INF] * (max(9, N))\nfor i in range(10):\n if 0 < i < 6:\n dp[i] = i\n elif i < 9:\n dp[i] = i%6+1\nfor i in range(N):\n n = m = 1\n while i+9**n <= N:\n dp[i+9**n] = min(dp[i+9**n], dp[i] + 1)\n n += 1\n while i+6**m <= N:\n dp[i+6**m] = min(dp[i+6**m], dp[i] + 1)\n m += 1\nprint(dp[N])\n', 'N = int(input())\nINF = 10**6\ndp = [INF] * (max(9, N)+1)\ndp[0] = 0\nfor i in range(N):\n n = m = 0\n while i+9**n <= N:\n dp[i+9**n] = min(dp[i+9**n], dp[i] + 1)\n n += 1\n while i+6**m <= N:\n dp[i+6**m] = min(dp[i+6**m], dp[i] + 1)\n m += 1\nprint(dp[N])\n'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s209764170', 's362161180', 's389538286', 's468478083', 's773039416', 's997435537', 's401636670'] | [3828.0, 3064.0, 3828.0, 3064.0, 3828.0, 3828.0, 3828.0] | [2104.0, 17.0, 1593.0, 17.0, 47.0, 618.0, 1445.0] | [321, 422, 419, 443, 341, 333, 262] |
p03329 | u633548583 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n,k=map(int,input().split())\nh=list(map(int,input().split()))\ndp=[10**5]*n\ndp[0]=0\nfor i in range(n):\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=6\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=9\nprint(dp[n-1])', 'n=int(input())\ndp=[10**5]*n\ndp[0]=0\nfor i in range(n+1):\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=6\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=9\nprint(dp[n])\n', 'n=int(input())\ndp=[10**5]*n\ndp[0]=0\nfor i in range(n+1):\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=6\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=9\nprint(dp[n+1])\n', 'n=int(input())\ndp=[10**5]*n\ndp[0]=0\nfor i in range(n):\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=6\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=9\nprint(dp[n-1])\n', 'n=int(input())\ndp=[10**5]*(n+1)\ndp[0]=0\nfor i in range(n+1):\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=6\n pow=1\n while pow<=n:\n dp[i]=min(dp[i],dp[i-pow]+1)\n pow*=9\nprint(dp[n])\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s277667225', 's429801531', 's699477612', 's795115385', 's032147811'] | [3064.0, 3828.0, 3828.0, 3828.0, 3828.0] | [18.0, 683.0, 660.0, 780.0, 823.0] | [276, 230, 232, 230, 234] |
p03329 | u639592190 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N=int(input())\nans=0\nn=10\ns=10\nwhile N>=6:\n if N-max(6**s,9**n)>=0:\n N-=max(6**s,9**n)\n print(n,s,N)\n ans+=1\n else:\n bl=int(6**s<9**n)\n n-=bl\n s-=1-bl\n if n==0 and s==0:\n break\nprint(N)\nprint(ans+N)\n ', 'N=int(input())\nans=N\nfor i in range(N+1):\n cnt=0\n s=i\n while s>0:\n cnt+=s%6\n s//=6\n n=N-i\n while n>0:\n cnt+=n%9\n n//=9\n ans=min(ans,cnt)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s428362402', 's878293349'] | [3064.0, 3060.0] | [17.0, 348.0] | [227, 193] |
p03329 | u652656291 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\n\narr6 = []\nfor i in range(10):\n\tarr6.append(6**i)\n\narr9 = []\nfor i in range(10):\n\tarr9.append(9**i)\n\n\nans = float("inf")\nfor i in range(n+1):\n\tcount = 0\n\ttmp = i\n\twhile tmp > 0:\n\t\tt = 0\n\t\twhile arr6[t] <= tmp:\n\t\t\tt+=1\n\n\t\ttmp -= arr6[t-1]\n\t\tcount += 1\n\n\ttmp = n-i\n\twhile tmp > 0:\n\t\tt = 0\n\t\twhile arr9[t] <= tmp:\n\t\t\tt += 1\n\t\ttmp -= arr9[t-1]\n\t\tcount += 1\n\n\tans = min(ans,count)\n\nprint ans\n', 'import numpy as np\nN = int(input())\n\ncoin = [6**n for n in range(10) if 6**n <= N]\ncoin += [9**n for n in range(10) if 9**n <= N]\n\ndp = np.zeros(N+1, dtype=np.int32)\ndp += 10**9\ndp[0] = 0\n\nfor c in coin:\n for _ in range(9):\n dp[c:] = np.minimum(dp[:-c] + 1, dp[c:])\n\nanswer = dp[-1]\nprint(answer)\n'] | ['Runtime Error', 'Accepted'] | ['s215247306', 's815555980'] | [3064.0, 13636.0] | [17.0, 188.0] | [404, 301] |
p03329 | u654386293 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['def solve():\n n = int(input())\n dp = [0 for _ in range(n+1)] \n\n for i in range(1, n+1):\n options = find_options(i)\n selected = min(map(lambda x: [x, dp[i - x]], options), key=lambda x: x[1])\n print(selected)\n dp[i] = dp[i-selected[0]] + 1\n\n print(dp[n])\n\ndef find_options(n):\n sixs = find_sixs(n)\n nines = find_nines(n)\n options = [1]\n options.extend(sixs)\n options.extend(nines)\n return options\n\n\ndef find_sixs(n):\n sixs = 1\n powers = [] \n count = 0\n while n > sixs:\n count += 1\n sixs *= 6\n powers.append(sixs)\n \n if len(powers) == 0:\n return powers\n else:\n powers.pop()\n return powers\n\ndef find_nines(n):\n nines = 1\n powers = [] \n count = 0\n while n > nines:\n count += 1\n nines *= 9\n powers.append(nines)\n \n if len(powers) == 0:\n return powers\n else:\n powers.pop()\n return powers\n\nif __name__ == "__main__":\n solve()', 'def solve():\n n = int(input())\n dp = [0 for _ in range(n+1)] \n print(find_options(91414))\n\n for i in range(1, n+1):\n options = find_options(i)\n selected = min(map(lambda x: [x, dp[i - x]], options), key=lambda x: x[1])\n dp[i] = selected[1] + 1\n\n print(dp[n])\n\ndef find_options(n):\n sixs = find_sixs(n)\n nines = find_nines(n)\n options = [1]\n options.extend(sixs)\n options.extend(nines)\n return options\n\n\ndef find_sixs(n):\n sixs = 1\n powers = [] \n count = 0\n while n > sixs:\n count += 1\n sixs *= 6\n powers.append(sixs)\n \n if len(powers) == 0:\n return powers\n else:\n powers.pop()\n return powers\n\ndef find_nines(n):\n nines = 1\n powers = [] \n count = 0\n while n > nines:\n count += 1\n nines *= 9\n powers.append(nines)\n \n if len(powers) == 0:\n return powers\n else:\n powers.pop()\n return powers\n\nif __name__ == "__main__":\n solve()', 'def solve():\n n = int(input())\n dp = [0 for _ in range(n+1)] \n\n for i in range(1, n+1):\n options = find_options(i)\n selected = min(map(lambda x: [x, dp[i - x]], options), key=lambda x: x[1])\n dp[i] = selected[1] + 1\n\n print(dp[n])\n\ndef find_options(n):\n sixs = find_sixs(n)\n nines = find_nines(n)\n options = [1]\n options.extend(sixs)\n options.extend(nines)\n return options\n\n\ndef find_sixs(n):\n sixs = 1\n powers = [] \n count = 0\n while n > sixs:\n count += 1\n sixs *= 6\n powers.append(sixs)\n \n if sixs == n:\n return powers\n else:\n powers.pop()\n return powers\n\ndef find_nines(n):\n nines = 1\n powers = [] \n count = 0\n while n > nines:\n count += 1\n nines *= 9\n powers.append(nines)\n \n if nines == n:\n return powers\n else:\n powers.pop()\n return powers\n\nif __name__ == "__main__":\n solve()'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s128859202', 's820014565', 's666832818'] | [4708.0, 3992.0, 3992.0] | [1010.0, 765.0, 776.0] | [997, 998, 954] |
p03329 | u667024514 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["n = int(input())\n\nlis = [1, 6, 36, 216, 1296, 7776, 46656,\n 9, 81, 729, 6561, 59049]\nm = len(c)\n\ndp = [float('inf') for _ in range(n+1)]\ndp[0] = 0\n\nfor j in range(1,n+1):\n temp = []\n for i in range(m):\n if j < c[i]:\n continue\n else:\n temp.append(dp[j-lis[i]]+1)\n dp[j] = min(temp)\n\nprint(dp[n])\n", "n = int(input())\n\nlis = [1, 6, 36, 216, 1296, 7776, 46656,\n 9, 81, 729, 6561, 59049]\nm = len(c)\n\ndp = [float('inf') for _ in range(n+1)]\ndp[0] = 0\n\nfor j in range(1,n+1):\n temp = []\n for i in range(m):\n if j < lis[i]:\n continue\n else:\n temp.append(dp[j-lis[i]]+1)\n dp[j] = min(temp)\n\nprint(dp[n])\n", 'n = int(input())\nlis = [1, 6, 36, 216, 1296, 7776, 46656,9, 81, 729, 6561, 59049]\nlis.sort(reverse=True)\ndp = [10 ** 10 for i in range(n+1)]\ndp[0] = 0\nfor i in range(n):\n for num in lis:\n try:\n dp[i+num] = min(dp[i+num],dp[i]+1)\n except:\n continue\nprint(dp[n])'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s401214960', 's801142033', 's266903667'] | [3064.0, 3064.0, 3864.0] | [17.0, 17.0, 546.0] | [344, 346, 277] |
p03329 | u669173971 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n=int(input())\n\ndef solve():\n inf=10**7\n dp=[inf]*(n+1)\n dp[0]=0\n \n for i in range(1,n+1):\n power=1\n while power<=i:\n dp[i]=min(dp[i],dp[i-power]+1)\n power*=6\n #print(dp)\n\n \n for i in range(1,n+1):\n power2=1\n while power2<=i:\n dp[i]=min(dp[i],dp[i-power2]+1)\n power2*=9\n print(dp)\n return dp[n]\n\nprint(solve())', 'n=int(input())\n\ndef solve():\n inf=10**7\n dp=[inf]*(n+1)\n dp[0]=0\n \n for i in range(1,n+1):\n power=1\n while power<=i:\n dp[i]=min(dp[i],dp[i-power]+1)\n power*=6\n #print(dp)\n\n \n for i in range(1,n+1):\n power2=1\n while power2<=i:\n dp[i]=min(dp[i],dp[i-power2]+1)\n power2*=9\n return dp[n]\n\nprint(solve())'] | ['Wrong Answer', 'Accepted'] | ['s728966260', 's643176409'] | [4848.0, 3828.0] | [390.0, 381.0] | [483, 469] |
p03329 | u677440371 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\ndp = [int(i) for i in range(10 ** 5 + 1)]\n\nfor i in [6,9]:\n v = i\n while v < 10 ** 5:\n for j in range(len(dp)):\n if j+v <= 10 ** 5:\n dp[j+v] =min(dp[j]+1,dp[j+v])\n v *= i \n \nprint(dp[10**5])', 'n = int(input())\n\nmax_range = 10 ** 5\ndp = [int(i) for i in range(max_range + 1)]\n\nfor i in [6,9]:\n check = i\n while check < max_range:\n for j in range(max_range + 1):\n if j - check >= 0:\n dp[j] = min(dp[j],dp[j-check] + 1)\n\n check = check *\n \nprint(dp[n])', 'n = int(input())\nmax_n = 10 ** 5\ndp = [int(i) for i in range(max_n + 1)]\n\nfor i in (6,9):\n v = i\n while v < max_n:\n for j in range(len(dp)):\n if j + v < max_n:\n dp[j+v] = min(dp[j+v],dp[j]+1)\n v *= i\n \ndp[n]', 'n = int(input())\n\nmax_range = 10 ** 5\ndp = [int(i) for i in range(max_range + 1)]\n\nfor i in [6,9]:\n check = i\n while check < max_range:\n for j in range(max_range + 1):\n if j - check >= 0:\n dp[j] = min(dp[j],dp[j-check] + 1)\n\n check = check * i\n \nprint(dp[n])'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s213589762', 's274957739', 's505949282', 's893136267'] | [7064.0, 2940.0, 7064.0, 7064.0] | [591.0, 17.0, 737.0, 687.0] | [261, 310, 260, 312] |
p03329 | u680851063 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['l_6 = []\n_ = 1\nwhile 6**_ < 100000:\n l_6.append(6**_)\n _ += 1\nl_6.sort(reverse = 1)\n\nl_9= []\n_ = 1\nwhile 9**_ < 100000:\n l_9.append(9**_)\n _ += 1\nl_9.sort(reverse = 1)\nprint(l_6, l_9)\n\nn = int(input())\n\nw = 0\nz = []\nfor i in range(n+1):\n x = i\n for j in range(len(l_6)):\n while l_6[j] <= x:\n x -= l_6[j]\n w += 1\n else:\n w += x\n \n y = n-i\n for k in range(len(l_9)):\n while l_9[k] <= y:\n y -= l_9[k]\n w += 1\n else:\n w += y\n\n z.append(w)\n w = 0\n\nprint(min(z))', 'n = int(input())\n\ndp = [0] + [100000]*n\n\nptn = [1]\n_ = 1\nwhile 6**_ < 100000:\n ptn.append(6**_)\n _ += 1\n\n_ = 1\nwhile 9**_ < 100000:\n ptn.append(9**_)\n _ += 1\n\nfor i in range(1,n+1):\n for j in ptn:\n if i-j >= 0:\n dp[i] = min(dp[i], dp[i-j]+1)\nprint(dp[-1])'] | ['Wrong Answer', 'Accepted'] | ['s077728597', 's941738018'] | [3992.0, 4596.0] | [982.0, 568.0] | [567, 288] |
p03329 | u681340020 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n_max = 100000\n\nbs = [(6 ** i, 6) for i in range (1, 10)]\nbs.extend([(9 ** i, 9) for i in range (1, 10)])\nbs = list(sorted(filter(lambda x: x[0] <= n_max, bs)))\nbms = []\ns = 5\nfor b, i in bs:\n s += b * (i - 1)\n bms.append((b, i, s))\n\n#print(bs)\n\n\n#m = 44852\nm = int(input())\n\nstack = [(m, 0, len(bms) - 1)]\n\nresult = 10000\nwhile stack:\n m, n, bms_i = stack.pop()\n steps += 1\n b, i, s = bms[bms_i]\n #print(m, n, bms_i, b, i, s)\n\n if n > result:\n #print("skip!", m, n, bms_i)\n continue\n if m > s:\n continue\n if bms_i < 0:\n if m <= 6 and m + n < result:\n result = m + n\n # print(\'get result!\', result)\n continue\n\n for j in range(i):\n next_m = m - b * j\n if next_m >= 0 and n + j < result:\n stack.append((next_m, n + j, bms_i - 1))\n\nprint(result)\n', 'n_max = 100000\n\nbs = [(6 ** i, 6) for i in range (1, 10)]\nbs.extend([(9 ** i, 9) for i in range (1, 10)])\nbs = list(sorted(filter(lambda x: x[0] <= n_max, bs)))\nbms = []\ns = 5\nfor b, i in bs:\n s += b * (i - 1)\n bms.append((b, i, s))\n\n#print(bs)\n\n\n#m = 44852\nm = int(input())\n\nstack = [(m, 0, len(bms) - 1)]\n\nresult = 10000\nwhile stack:\n m, n, bms_i = stack.pop()\n b, i, s = bms[bms_i]\n #print(m, n, bms_i, b, i, s)\n\n if n > result:\n #print("skip!", m, n, bms_i)\n continue\n if m > s:\n continue\n if bms_i < 0:\n if m <= 6 and m + n < result:\n result = m + n\n # print(\'get result!\', result)\n continue\n\n for j in range(i):\n next_m = m - b * j\n if next_m >= 0 and n + j < result:\n stack.append((next_m, n + j, bms_i - 1))\n\nprint(result)\n'] | ['Runtime Error', 'Accepted'] | ['s166202407', 's256761245'] | [3064.0, 3064.0] | [18.0, 21.0] | [898, 883] |
p03329 | u684026548 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['arr = [1]\nfor i in range(1, 10):\n if 6 ** i < 100000:\n arr.append(6 ** i)\n if 9 ** i < 100000:\n arr.append(9 ** i)\n\narr.sort(reverse=True)\n\nn = 44852\n#n = 127\n# n=3\n\n\ndef wari(k, l=0):\n # print(k)\n if k == 0:\n return l\n i = 0\n while k < arr[i]:\n i += 1\n a = int(k / arr[i])\n b = k % arr[i]\n wari1 = wari(b, a+l)\n\n if i < len(arr)-1:\n c = int(k / arr[i+1])\n d = k % arr[i+1]\n wari2 = wari(d, c+l)\n if wari1 < wari2:\n return wari1\n else:\n return wari2\n return wari1\n\n\nprint(wari(n))\n\n\n', 'n = 44852\n# n = 127\n# n=3\n\ndef wari(n):\n res = n\n for i in range(n):\n cc = 0\n t = i\n while t > 0:\n cc += t % 6\n t = t // 6\n t = n - i\n while t > 0:\n cc += t % 9\n t = t // 9\n if res > cc:\n res = cc\n return res\n\nprint(wari(n))\n\n\n', 'n = int(input())\n\ndef sol(n):\n res = n\n for i in range(n+1):\n cc = 0\n t = i\n while t > 0:\n cc += t % 6\n t = t // 6\n t = n - i\n while t > 0:\n cc += t % 9\n t = t // 9\n if res > cc:\n res = cc\n return res\n\nprint(sol(n))'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s038008655', 's723156740', 's630757559'] | [3064.0, 2940.0, 3064.0] | [18.0, 91.0, 188.0] | [601, 333, 321] |
p03329 | u686036872 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if N <= i:\n N=N-i\n count=+1\n if N==0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N==0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsort(list, reverse=True)\nN=int(input())\ncount=0\nfor i in range(19):\n if N <= i:\n N=N-i\n count=+1\n if N==0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**j)\nlist=sorted(list, reverse=True)\nN=44852\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\nprint(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if N <= i:\n N=N-i\n count+=1\n if N==0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N == 0:\n break\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N==0:\n break\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsort(list, reverse=True)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**j)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i < N:\n N=N-i\n count+=1\n if i == N:\n count+=1\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**j)\nlist=sorted(list, reverse=True)\nprint(list)\nN=128\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N == 0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**j)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N == 0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in range(19):\n if N <= i:\n N=N-i\n count=+1\n if N==0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N==0:\n break\nprint(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N == 0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i < N:\n N=N-i\n count+=1\n if i == N:\n count+=1\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N==0:\n print(count)', 'list=[1, 1, 1, 1, 1]\nfor i in range(1, 7):\n list.append(6**i)\nfor j in range(1, 7):\n list.append(9**i)\nsorted(list, reverse=True)\nN=int(input())\ncount=0\nfor i in list:\n if i <= N:\n N=N-i\n count+=1\n if N==0:\n print(count)\n else:\n continue', 'N = int(input())\n\ndp = list(range(0, N+1))\n\nfor i in range(1, N+1):\n for j in [6, 9]:\n for k in range(1, N):\n if 0 <= i-j**k:\n dp[i] = min(dp[i], dp[i-j**k]+1)\n else:\n break\n\nprint(dp[-1]) '] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s261784515', 's268517354', 's406761192', 's409678670', 's430984278', 's445259893', 's449960828', 's484865367', 's506599904', 's530721869', 's585019728', 's620195522', 's632894938', 's637169479', 's663209486', 's686596431', 's716747815', 's732714373', 's814676711', 's997244195', 's169462212'] | [2940.0, 2940.0, 2940.0, 2940.0, 3060.0, 2940.0, 3064.0, 2940.0, 3064.0, 2940.0, 2940.0, 3064.0, 3064.0, 3064.0, 2940.0, 2940.0, 3064.0, 3064.0, 2940.0, 2940.0, 8692.0] | [17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 17.0, 17.0, 17.0, 18.0, 21.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 1179.0] | [241, 104, 241, 244, 226, 241, 251, 146, 205, 255, 129, 247, 249, 239, 246, 247, 239, 247, 241, 270, 251] |
p03329 | u690037900 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import bisect as bi\n\nli6 = [6 ** i for i in range(7)]\nli9 = [9 ** i for i in range(6)]\nprint(li6)\nprint(li9)\n\ndef s69(n):\n if n < 6:\n return n\n else:\n s6 = li6[bi.bisect(li6, n) - 1]\n s9 = li9[bi.bisect(li9, n) - 1]\n return min(n // s6 + s69(n % s6), 1 + s69(n - s9))\n\n\nprint(s69(int(input())))', 'li6 = [6 ** i for i in range(7)]\nli9 = [9 ** i for i in range(6)]\n\ndef s69(n):\n if n < 6:\n return n\n else:\n s6 = li6[bi.bisect(li6, n) - 1]\n s9 = li9[bi.bisect(li9, n) - 1]\n return min(n // s6 + s69(n % s6), 1 + s69(n - s9))\n\n\nprint(s69(int(input())))\n\n', 'import bisect as bi\n\nli6 = [6 ** i for i in range(7)]\nli9 = [9 ** i for i in range(6)]\n\ndef s69(n):\n if n < 6:\n return n\n else:\n s6 = li6[bi.bisect(li6, n) - 1]\n s9 = li9[bi.bisect(li9, n) - 1]\n return min(n // s6 + s69(n % s6), 1 + s69(n - s9))\n\n\nprint(s69(int(input())))'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s368371366', 's590560602', 's123236512'] | [3064.0, 3060.0, 3060.0] | [20.0, 18.0, 18.0] | [328, 287, 306] |
p03329 | u698176039 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\n\nl1 = 2 ** 30\np6 = [1] * 6\np9 = [1] * 5\nfor i in range(1,7):\n p6[i] = p6[i-1] * 6\n if i < 6 : p9[i] = p9[i-1] * 9\n\ndp = [l1] * (N+1)\ndp[0] = 0\n\nfor i in range(1,N+1):\n for j in p6:\n if j>i: break\n dp[i] = min(dp[i],dp[i-j]+1)\n \n for j in p9:\n if j>i: break\n dp[i] = min(dp[i],dp[i-j]+1)\n \nprint(dp[N])', 'N = int(input())\n\nl1 = 2 ** 30\np6 = [1] * 7\np9 = [1] * 6\nfor i in range(1,7):\n p6[i] = p6[i-1] * 6\n if i < 6 : p9[i] = p9[i-1] * 9\n\ndp = [l1] * (N+1)\ndp[0] = 0\n\nfor i in range(1,N+1):\n for j in p6:\n if j>i: break\n dp[i] = min(dp[i],dp[i-j]+1)\n \n for j in p9:\n if j>i: break\n dp[i] = min(dp[i],dp[i-j]+1)\n \nprint(dp[N])'] | ['Runtime Error', 'Accepted'] | ['s985192720', 's466730660'] | [3064.0, 3828.0] | [19.0, 591.0] | [372, 372] |
p03329 | u698479721 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\ni = 0\nj = 0\na = [1,6,36,216,1296,7776,46656,9,81,729,6561,59049]\nb = a.sort(reverse=True)\nwhile N > 0:\n if a[j] > N:\n j += 1\n if a[j] = N:\n N = 0\n i += 1\n print(i)\n if a[j] < N:\n N = N-a[j]\n i += 1\n', 'N = int(input())\ndef six(n):\n i = 0\n while n%6 == 0:\n n = n//6\n i += 1\n return i\n\ndef nine(n):\n i = 0\n while n%9 == 0:\n n = n//9\n i += 1\n return i\n\ndef ans(n):\n if n-6**six(n)==0:\n return 1\n elif n-9**nine(n)==0:\n return 1\n else:\n return max(six(n)+ans(n-6**six(n)),nine(n)+ans(n-9**nine(n)))\n\nans(44852)\n \n ', 'N = int(input())\na = [1,6,36,216,1296,7776,46656]\nb = [1,9,81,729,6561,59049]\ndef ans(n):\n if n<=0:\n return 1000\n elif n in a or n in b:\n return 1\n else:\n return(min(ans(n-1),ans(n-6),ans(n-36),ans(n-216),ans(n-1296),ans(n-7776),ans(n-46656),ans(n-9),ans(n-81),ans(n-729),ans(n-6561),ans(n-59049))+1)\nm = 1\nwhile m <= N:\n ans(m)\nprint(ans(N))\n ', 'N = int(input())\na = [1,6,36,216,1296,7776,46656]\nb = [1,9,81,729,6561,59049]\ndef six(n):\n i = 0\n if n < a[i]:\n return i-1\n else:\n i += 1\ndef nine(n):\n i = 0\n if n < b[i]:\n return i-1\n else:\n i += 1\ndef ans(n):\n if n in a or n in b:\n return 1\n else:\n return(min(six(n)+ans(n-6**six(n)),(nine(n)+ans(n-9**nine(n))\n \nprint(ans(44852))', 'N = int(input())\ndef cn(X, n):\n if (int(X/n)):\n return cn(int(X/n), n)+str(X%n)\n return str(X%n)\ndef su(n):\n ans = 0\n for chara in n:\n ans += int(chara)\n return ans\nlis = []\ni = 0\nwhile i <= N:\n lis.append(su(cn(i,6))+su(cn(N-i,9)))\n i += 1\nprint(min(lis))'] | ['Runtime Error', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Runtime Error', 'Accepted'] | ['s114176435', 's120771103', 's513309431', 's829796378', 's312303116'] | [2940.0, 3064.0, 3064.0, 3064.0, 3864.0] | [17.0, 2104.0, 2104.0, 18.0, 996.0] | [236, 344, 358, 397, 277] |
p03329 | u698771758 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N=int(input())\ndef cou(n,x):\n i=0\n while(n>0):\n i+=n%x\n n//=x\n return i\nans=N\nfor i in range(N+1):\n ans=min(ans,cou(j,6)+cou(N-j,9))\nprint(ans)', 'N=int(input())\ndef cou(n,x):\n i=0\n while(n>0):\n i+=n%x\n n//=x\n return i\nans=N\nfor j in range(N+1):\n ans=min(ans,cou(j,6)+cou(N-j,9))\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s022229547', 's849197280'] | [3060.0, 3060.0] | [17.0, 231.0] | [169, 169] |
p03329 | u701318346 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['\n\nN = int(input())\n\n\ndp = [10 ** 5] * N\nsix = [6 ** x for x in range(8)]\nnine = [9 ** x for x in range(6)]\n\n\ndp[0] = 1\n\n\nfor i in range(1, N):\n \n for s in six:\n if i + s >= N:\n break\n dp[i + s] = min(dp[i + s], dp[i] + 1)\n \n for n in nine:\n if i + n >= N:\n break\n dp[i + n] = min(dp[i + n], dp[i] + 1)\n\n\nprint(dp[N - 1])\n', '\n\nN = int(input())\n\n\ndp = [10 ** 5] * (N + 1)\n\n\nsix = []\nc = 0\nwhile True:\n w = 6 ** c\n if w > N:\n break\n six.append(w)\n c += 1\nnine = []\nc = 0\nwhile True:\n w = 9 ** c\n if w > N:\n break\n nine.append(w)\n c += 1\n\n\ndp[0] = 0\n\n\nfor i in range(N + 1):\n \n for s in six:\n if i + s > N:\n break\n dp[i + s] = min(dp[i + s], dp[i] + 1)\n \n for n in nine:\n if i + n > N:\n break\n dp[i + n] = min(dp[i + n], dp[i] + 1)\n\n\nprint(dp[N])\n'] | ['Wrong Answer', 'Accepted'] | ['s044491292', 's974248845'] | [3828.0, 3828.0] | [746.0, 741.0] | [637, 803] |
p03329 | u703442202 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = input().split()\ncand = [1]\nfor i in range(1,6):\n for j in range(1,7):\n cand.append(6**j)\n cand.append(9**i)\nimport bisect \ncount = 0\ncand.sort()\nwhile n > 0:\n\tindex = bisect.bisect_left(cand, n)\n if index != 0\n n = n - cand[index-1]\n count += 1\n else:\n n -= 1\n count += 1\nprint(count)\n \n\n\n ', 'n = int(input())\ncand = [1]\nfor i in range(1,7):\n cand.append(6**i)\nfor j in range(1,6):\n cand.append(9**j)\ncand.sort()\ndp = []\nfor c in cand:\n hoge = []\n for i in range(n+1):\n if i % c == 0:\n hoge.append(i//c)\n else:\n hoge.append(i)\n dp.append(hoge)\nfor a in range(1,12):\n for b in range(1,n+1):\n if b >= cand[a]:\n \tdp[a][b] = min(dp[a-1][b],dp[a][b - cand[a]] + 1)\n else:\n dp[a][b] = dp[a-1][b]\n \nprint(dp[-1][n])\n \n\n \n\n \n \n\n '] | ['Runtime Error', 'Accepted'] | ['s823148718', 's524146706'] | [2940.0, 50408.0] | [17.0, 946.0] | [332, 490] |
p03329 | u710952331 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N = int(input())\n\nres = 100000\n\nfor i in range(N+1):\n t = i\n cc = 0\n while t>0:\n cc += t%6\n t = int(t/6)\n t = N-i\n while t>0:\n cc += t%9\n t = int(t/9)\n if res > cc:\n res = cc\n\nprint(cc)\n ', 'N = int(input())\n\nres = 100000\n\nfor i in range(N+1):\n cc = 0\n t = i\n while t>0:\n cc += t%6\n t = int(t/6)\n t = N-i\n while t>0:\n cc += t%9\n t = int(t/9)\n if res > cc:\n res = cc\n\nprint(res)\n '] | ['Wrong Answer', 'Accepted'] | ['s677164924', 's796988844'] | [3316.0, 3060.0] | [422.0, 430.0] | [209, 210] |
p03329 | u716649090 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N=int(input())\nans=N\nfor i in range(N+1):\n cnt=0\n while i>0:\n cnt+=i%6\n i//=6\n j=N-i\n while j>0:\n cnt+=j%9\n j//=9\n ans=min(ans,cnt)\nprint(ans)', 'N = int(input())\nans = N\nfor i in range(N + 1):\n cnt = 0\n t = i\n while t > 0:\n cnt += t % 6\n t //= 6\n j = N - i\n while j > 0:\n cnt += j % 9\n j //= 9\n ans = min(ans, cnt)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s739557034', 's901289220'] | [3060.0, 3060.0] | [323.0, 343.0] | [185, 226] |
p03329 | u726872801 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import sys\nimport heapq, math\nfrom itertools import zip_longest, permutations, combinations, combinations_with_replacement\nfrom itertools import accumulate, dropwhile, takewhile, groupby\nfrom functools import lru_cache\nfrom copy import deepcopy\n\nN = int(input())\n\ndp = [N] * (N + 1)\ndp[0] = 0\nfor i in range(N):\n dp[i + 1] = min(dp[i + 1], dp[i] + 1)\n six = 6\n nine = 9\n for p in range(20):\n if i + six <= N:\n dp[i + six] = min(dp[i + six], dp[i] + 1)\n if i + nine <= N:\n dp[i + nine] = min(dp[i + nine], dp[i] + 1)\n six *= six\n nine *= nine\n\nprint(dp[N])', 'import sys\nimport heapq, math\nfrom itertools import zip_longest, permutations, combinations, combinations_with_replacement\nfrom itertools import accumulate, dropwhile, takewhile, groupby\nfrom functools import lru_cache\nfrom copy import deepcopy\n\nN = int(input())\n\ndp = [N] * (N + 1)\ndp[0] = 0\nfor i in range(N):\n dp[i + 1] = min(dp[i + 1], dp[i] + 1)\n six = 6\n nine = 9\n for p in range(10):\n if i + six <= N:\n dp[i + six] = min(dp[i + six], dp[i] + 1)\n if i + nine <= N:\n dp[i + nine] = min(dp[i + nine], dp[i] + 1)\n six *= 6\n nine *= 9\n\nprint(dp[N])\n'] | ['Time Limit Exceeded', 'Accepted'] | ['s192240456', 's617483437'] | [6664.0, 4468.0] | [2104.0, 883.0] | [617, 613] |
p03329 | u729133443 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['def s(n,p):\n while n>0:yield n%p;n//=p\nc=lambda*a:sum(s(*a))\nprint(min(c(i,6)+c(n-i,9)for i in range(int(input())+1)))', 'def s(a,b):return[s(a//b,b)+a%b,a][a<b]\nn=int(input());print(min(s(i,6)+s(n-i,9)for i in range(n+1)))', 'def s(n,p):\n while n>0:yield n%p;n//=p\nc=lambda*a:sum(s(*a));n=int(input())print(min(c(i,6)+c(n-i,9)for i in range(n+1)))', 'def solve(n, c):\n if n < 6:\n return n + c\n a = b = 2000000000\n if n % 6 == 0:\n a = solve(n // 6, c + 1)\n if n % 9 == 0:\n b = solve(n // 9, c + 1)\n return min(a, b)\nprint(solve(int(input()), 0))', 'def s(n,p):\n while n>0:yield n%p;n//=p\nc=lambda*a:sum(s(*a));print(min(c(i,6)+c(n-i,9)for i in range(int(input())+1)))', 's=lambda a,b:a*(a<b)or s(a//b,b)+a%b;n=int(input());print(min(s(i,6)+s(n-i,9)for i in range(n+1)))', 's=lambda a,b:a if a<b else s(a//b,b)+a%b;n=int(input());print(min(s(i,6)+s(n-i,9)for i in range(n+1)))'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s078303204', 's106603389', 's297855811', 's720123697', 's970419886', 's976282702', 's183035637'] | [3060.0, 3860.0, 2940.0, 3060.0, 3056.0, 3840.0, 2940.0] | [17.0, 74.0, 17.0, 18.0, 18.0, 78.0, 244.0] | [119, 101, 122, 207, 119, 98, 102] |
p03329 | u747602774 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['from bisect import bisect_right\nN = int(input())\nli = sorted([1]+[6**i for i in range(1,10)]+[9**i for i in range(1,8)])\nprint(li)\nans = N%3\nN -= ans\nwhile N >= 36:\n a = bisect_right(li,N)\n N -= li[a-1]\n ans += 1\nif N == 3:\n ans += 3\nelif N <= 9:\n ans += 1\nelif N <= 18:\n ans += 2\nelif N <= 33:\n ans += 3\nprint(ans)\n', 'N = int(input())\nli = [1]\n\nsix = 1\nwhile six <= N:\n six = six*6\n li.append(six)\n\nnine = 1\nwhile nine <= N:\n nine = nine*9\n li.append(nine)\n\nINF = 10**10\n\ndp = [INF for i in range(N+1)]\ndp[0] = 0\n\nfor i in range(N):\n for num in li:\n if i+num <= N:\n dp[i+num] = min(dp[i+num], dp[i] + 1)\nprint(dp[N])\n'] | ['Wrong Answer', 'Accepted'] | ['s977140624', 's801108573'] | [3064.0, 3864.0] | [18.0, 675.0] | [337, 332] |
p03329 | u754022296 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['d = tuple([1] + [6**i for i in range(1, 7)] + [9**i for i in range(1, 6)])\nM = 10**6+1\nB = [float("inf")]*M\nB[0] = 0\nfor i in range(M):\n for j in d:\n if i+j < M:\n B[i+j] = min(B[i+j], B[i]+1)\nn = int(input())\nprint(B[n])', 'd = tuple([1] + [6**i for i in range(1, 7)] + [9**i for i in range(1, 6)])\nM = 10**5+1\nB = [float("inf")]*M\nB[0] = 0\nfor i in range(M):\n for j in d:\n if i+j < M:\n B[i+j] = min(B[i+j], B[i]+1)\nn = int(input())\nprint(B[n])'] | ['Time Limit Exceeded', 'Accepted'] | ['s857577426', 's891083565'] | [10868.0, 3956.0] | [2104.0, 675.0] | [229, 229] |
p03329 | u756988562 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import sys\nN = int(input())\n# judge = True\nans = 0\ntemp = 9\ntemp_list = [1,2,3,4,5]\nwhile 100000>temp:\n temp_list.append(temp)\n temp *=9 \ntemp = 6\nwhile 100000>temp:\n temp_list.append(temp)\n temp *=6 \ntemp_list=sorted(temp_list)\n# print(temp_list)\nfor i in range(1,len(temp_list)+1):\n if N%temp_list[-i] == 0:\n print(N//temp_list[-i])\n sys.exit() \n else:\n judge = True\n while judge:\n if N - temp_list[-i] > 9 and (temp_list[-i] >5):\n # print(N)\n # print(temp_list[-i])\n N -= temp_list[-i]\n ans+=1\n else:\n judge = False\n# print(N)\n# print(N//9)\n# print(N//6)\n# print(N)\nif N%9 < N%6:\n ans += N//9\n N = N%9\n # N -= 9*N//9\nelse:\n ans += N//6\n N = N%6\n # N -= 6*N//6\n# print(N)\n# print(ans)\nprint(N+ans)\n# print(N)\n# print(ans)\n# print(ans+N)\n\n# temp_9 = []\n# temp_6 = []\n# judge = True\n\n# while judge:\n\n# if N -temp_9[-i] >=0:\n# N -= temp_9[-i]\n# print(N)\n# judge = False\n# print(N) \n\n# # while N > temp:\n# # temp *= 9\n# # ans += 1 \n# # N = N - temp/9\n# # print(N)\n', 'import sys\nN = int(input())\ndp = [ 100000 for i in range(N+1)]\ndp[0] = 0\nfor i in range(1,N+1):\n power = 1\n while power <= i:\n dp[i] = min(dp[i],dp[i-power]+1)\n power *= 6\n power = 1\n while power <= i:\n dp[i] = min(dp[i],dp[i-power]+1)\n power *= 9\n while power <= i:\n dp[i] = min(dp[i],dp[i-power]+1)\n power += 1\nprint(dp[N])\n\n'] | ['Wrong Answer', 'Accepted'] | ['s947058922', 's670340304'] | [3064.0, 3864.0] | [18.0, 612.0] | [1208, 384] |
p03329 | u757446793 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import math\n\nN = int(input())\nmemo = [0]*(N+1)\nmemo[0] = 0\n\nfor i in range(1,N+1):\n\tmemo[i] = memo[i-1]+1\n\tfor j in range(1,iny(math.log(i,6))+1):\n\t\tmemo[i] = min(memo[i],memo[i-pow(6,j)]+1)\n\tfor j in range(1,int(math.log(i,9))+1):\n\t\tmemo[i] = min(memo[i],memo[i-pow(9,j)]+1)\n\nprint(memo[-1])\n', 'import math\n\nN = int(input())\nmemo = [0]*(N+1)\nmemo[0] = 0\n\nfor i in range(1,N+1):\n\tmemo[i] = memo[i-1]+1\n\tj = 1\n\twhile pow(6,j) <= i: \n\t\tmemo[i] = min(memo[i],memo[i-pow(6,j)]+1)\n\t\tj += 1\n\tj = 1\n\twhile pow(9,j) <= i:\n\t\tmemo[i] = min(memo[i],memo[i-pow(9,j)]+1)\n\t\tj += 1\n\nprint(memo[-1])\n'] | ['Runtime Error', 'Accepted'] | ['s526180836', 's139460982'] | [3828.0, 3828.0] | [19.0, 1222.0] | [293, 289] |
p03329 | u759651152 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["#-*-coding:utf-8-*-\nfrom collections import deque\n\ndef nearest_num_six(n):\n temp = 1\n if n < 6:\n return n -1\n else:\n while n > temp:\n temp *= 6\n return n - temp // 6\n\ndef nearest_num_nine(n):\n temp = 1\n if n < 9:\n return n -1\n else:\n while n > temp:\n temp *= 9\n return n - temp // 9\n\ndef any_one(lists):\n if 1 in lists:\n return True\n else:\n return False\n\ndef main():\n \n N = int(input())\n q = deque([N])\n cnt = 0\n j = 1\n\n while not any_one(q):\n print(q)\n for i in range(j):\n n = q.popleft()\n q.append(nearest_num_six(n))\n q.append(nearest_num_nine(n))\n cnt += 1\n j *= 2\n\n print(cnt+1)\n \n\nif __name__ == '__main__':\n main()", "#-*-coding:utf-8-*-\n\ndef main(): \n N = int(input()) \n num_list = set([1]) \n i = 1 \n j = 1 \n while 6 ** i <= N: \n num_list.add(6 ** i) \n i += 1 \n while 9 ** j <= N: \n num_list.add(9 ** j)\n j += 1 \n num_list = list(num_list) \n num_list.sort()\n\n dp = [] \n\n for i in range(1, N+1): \n if i in num_list: \n dp.append(1) \n else: \n temp = [] \n for k in num_list: \n if i - k > 0: \n temp.append(i - k) \n small_dp = [dp[x-1] for x in temp] \n dp.append(min(small_dp) + 1) \n\n print(dp[-1])\n\nif __name__ == '__main__':\n main()"] | ['Wrong Answer', 'Accepted'] | ['s288039281', 's608444402'] | [3808.0, 3992.0] | [48.0, 380.0] | [822, 678] |
p03329 | u761989513 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['n = int(input())\n\nans = 0\nwhile n > 0:\n nine = 0\n while 9 ** nine <= n:\n nine += 1\n\n six = 0\n while 6 ** six <= n:\n six += 1\n\n print(n, max(9 ** (nine - 1), 6 ** (six - 1)))\n n -= max(9 ** (nine - 1), 6 ** (six - 1))\n ans += 1\n\nprint(ans)', 'n = int(input())\n\ndp = [float("inf")] * (n + 1)\n\ndp[0] = 0\n\nfor i in range(n):\n six = 1\n while i + six <= n:\n dp[i + six] = min(dp[i + six], dp[i] + 1)\n six *= 6\n\n nine = 1\n while i + nine <= n:\n dp[i + nine] = min(dp[i + nine], dp[i] + 1)\n nine *= 9\n\nprint(dp[n])'] | ['Wrong Answer', 'Accepted'] | ['s170177412', 's725192965'] | [3064.0, 3828.0] | [17.0, 791.0] | [273, 304] |
p03329 | u762557532 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ["\n\nimport numpy as np\nfrom collections import deque\n#from copy import deepcopy\n\nN = int(input())\n\n## 6^6 < 1e5 < 6^7\n## 9^5 < 1e5 < 9^6\n\n\n\n\n\ndrawable_6 = sorted([6, 6**2, 6**3, 6**4, 6**5, 6**6], reverse=True)\ndrawable_9 = sorted([9, 9**2, 9**3, 9**4, 9**5, 9**6], reverse=True)\nsolver = []\n\nif N < 6:\n print(N)\n exit()\n\ndq = deque()\ndq.append((N,0,[[0,0],[0,0]])) \n\n\nloop_cnt = 0\nwhile dq:\n loop_cnt += 1\n rest, cnt, draw_lst = dq.popleft()\n \n if rest < 6:\n solver.append(rest + cnt)\n continue\n \n if draw_lst[0][1] < 4:\n rest_afterdraw_6 = rest - drawable_6[draw_lst[0][0]]\n if rest_afterdraw_6 >= 0:\n new_draw_lst = [[draw_lst[0][0],draw_lst[0][1]+1],draw_lst[1]]\n dq.append((rest_afterdraw_6,cnt+1,new_draw_lst))\n \n \n if draw_lst[0][0] < 5:\n new_draw_lst = [[draw_lst[0][0]+1,0],draw_lst[1]]\n dq.append((rest,cnt,new_draw_lst))\n \n \n if draw_lst[1][1] < 4:\n rest_afterdraw_9 = rest - drawable_9[draw_lst[1][0]]\n if rest_afterdraw_9 >= 0:\n new_draw_lst = [draw_lst[0],[draw_lst[1][0],draw_lst[1][1]+1]]\n dq.append((rest_afterdraw_9,cnt+1,new_draw_lst))\n \n \n if draw_lst[1][0] < 5:\n new_draw_lst = [draw_lst[0],[draw_lst[1][0]+1,0]]\n dq.append((rest,cnt,new_draw_lst))\n \n\nprint(min(solver))\nprint('n_loop =', loop_cnt)\n\n", '\n\n\n\n\ndef Base_10_to_n(X, n):\n if (int(X/n)):\n return Base_10_to_n(int(X/n), n)+str(X%n)\n return str(X%n)\n\ndef Base_n_to_10(X,n):\n out = 0\n for i in range(1,len(str(X))+1):\n out += int(str(X)[-i])*(n**(i-1))\n return out\n\n\nN = int(input())\n\nafter_draw_9 = []\nfor i in range(N // 9 + 1):\n cost_9 = sum(map(int, Base_10_to_n(9*i,9)))\n after_draw_9.append((N-9*i, cost_9))\n\n\nsolver = []\nfor i in range(len(after_draw_9)):\n cost_6 = sum(map(int, Base_10_to_n(after_draw_9[i][0], 6)))\n solver.append(after_draw_9[i][1] + cost_6)\n \n#print(solver)\nprint(min(solver))'] | ['Wrong Answer', 'Accepted'] | ['s879911083', 's227721825'] | [266344.0, 4152.0] | [2126.0, 127.0] | [2026, 915] |
p03329 | u763968347 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import math\n\nN = int(input())\nans = N\n\nfor N1 in range(N):\n \n count = 0\n N2 = N - N1\n\n while N1 > 0:\n count += N1%6\n N1 = math.floor(N1/6)\n print(N1)\n print(count)\n \n while N2 > 0:\n count += N2%9\n N2 = math.floor(N2/9)\n \n if ans > count:\n ans = count\n\nprint(ans)', 'N = int(input())\nINF = 10**18\n\ndp = [INF]*(N+1)\ndp[0] = 0\nfor i in range(N+1):\n n6 = 6\n n9 = 9\n if i+1 < N+1:\n dp[i+1] = min(dp[i+1],dp[i]+1)\n while n6 < N+1:\n if i+n6 < N+1:\n dp[i+n6] = min(dp[i+n6],dp[i]+1)\n n6 *= 6\n while n9 < N+1:\n if i+n9 < N+1:\n dp[i+n9] = min(dp[i+n9],dp[i]+1)\n n9 *= 9\n\nprint(dp[N])'] | ['Wrong Answer', 'Accepted'] | ['s018757194', 's119873621'] | [5988.0, 3828.0] | [955.0, 828.0] | [331, 379] |
p03329 | u774539708 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['N=int(input())\ndef money(n):\n dp=[n]*(n+1)\n dp[0]=0\n for i in range(1,n+1):\n power=1\n while power<=i:\n dp[i]=min(dp[i],dp[i-power]+1)\n power*=6\n power=1\n while power<=i:\n dp[i]=min(dp[i],dp[i-power]+1)\n power*=9\n print(dp)\n return dp[n]\nprint(money(N))', 'N=int(input())\ndef money(n):\n dp=[n]*(n+1)\n dp[0]=0\n for i in range(1,n+1):\n power=1\n while power<=i:\n dp[i]=min(dp[i],dp[i-power]+1)\n power*=6\n power=1\n while power<=i:\n dp[i]=min(dp[i],dp[i-power]+1)\n power*=9\n return dp[n]\nprint(money(N))'] | ['Wrong Answer', 'Accepted'] | ['s332209529', 's229863063'] | [4848.0, 3828.0] | [393.0, 390.0] | [339, 325] |
p03329 | u776929617 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['import math\n\nN = int(input())\n\nans = 0\n\nc = int(math.pow(N, (1.0/9.0))+1)\n\nwhile c > 0:\n\tif N >= 9**c:\n\t\tN-=9**c\n\t\tans+=1\n\t\tc+=1\n\tc-=1\n\t\nc = int(math.pow(N, (1.0/6.0))+1)\nwhile c > 0:\n\tif N >= 6**c:\n\t\tN-=6**c\n\t\tans+=1\n\t\tc+=1\n\tc-=1\nprint(ans+N)', '\nN = int(input())\n\nans = 100000000000000\nfor i in range(N+1):\n\ttmp_ans = 0\n\tn6 = i\n\twhile n6 > 0:\n\t\ttmp_ans += (n6%6)\n\t\tn6 = n6//6\n\tn9 = N-i\n\twhile n9 > 0:\n\t\ttmp_ans += (n9%9)\n\t\tn9 = n9//9\n\tif tmp_ans < ans:\n\t\tans = tmp_ans\n\t\t\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s192574113', 's260423804'] | [3064.0, 3064.0] | [17.0, 292.0] | [243, 237] |
p03329 | u780962115 | 2,000 | 262,144 | To make it difficult to withdraw money, a certain bank allows its customers to withdraw only one of the following amounts in one operation: * 1 yen (the currency of Japan) * 6 yen, 6^2(=36) yen, 6^3(=216) yen, ... * 9 yen, 9^2(=81) yen, 9^3(=729) yen, ... At least how many operations are required to withdraw exactly N yen in total? It is not allowed to re-deposit the money you withdrew. | ['lists=[0 for j in range(1000)]\nn=int(input())\nnums=0\nwhile nums!=n+1:\n \n \n if nums<6:\n lists[nums]==nums\n nums=+1\n elif nums==6 or nums==36 or nums==216 or nums==1296 or nums==7726 or nums==46656:\n lists[nums]==1\n nums+=1\n elif nums==9 or nums==81 or nums==729 or nums==6561 or nums==59049:\n lists[nums]==1\n nums+=1\n else:\n order6=0\n order9=0\n for k in range(6):\n if 6**(k+1)< nums <6**(k+2):\n order6=k+1\n \n \n break\n else:\n continue\n for j in range(5):\n if 9**(j+1) <nums< 9**(j+2):\n order9=j+1\n \n \n break\n else:\n continue\n lists[nums]=min(min(lists[nums-6**(k)] for k in range(0,order6+1)),min(lists[nums-9**(j)] for j in range(0,order9+1)))\n nums+=1\n \nprint(lists[n])', 'lists=[]\nn=int(input())\nnums=0\nwhile nums<=n+1:\n \n \n if nums<6:\n lists.append(nums)\n nums=+1\n elif nums==6 or nums==36 or nums==216 or nums==1296 or nums==7726 or nums==46656:\n lists.append(1)\n nums+=1\n elif nums==9 or nums==81 or nums==729 or nums==6561 or nums==59049:\n lists.append(1)\n nums+=1\n else:\n order6=0\n order9=0\n for k in range(6):\n if 6**(k+1)< nums <6**(k+2):\n order6=k+1\n \n break\n \n else:\n continue\n \n for j in range(5):\n if 9**(j+1) <nums< 9**(j+2):\n order9=j+1\n \n break\n else:\n continue\n \n add=min(min(lists[n-6**(k)] for k in range(0,order6+1)),min(lists[n-9**(j)] for j in range(0,order9+1)))\n lists.append(add)\n nums+=1\nprint(lists)', '#strange bank\nn=int(input())\ndp=[10**10 for i in range(200000)]\ndp[0]=0\nfor i in range(1,100001):\n for j in range(9):\n num=3**j\n if i>=6**j and dp[i-6**j]+1<dp[i]:\n dp[i]=dp[i-6**j]+1\n if i>=9**j and dp[i-9**j]+1<dp[i]:\n dp[i]=dp[i-9**j]+1\nprint(dp[n])'] | ['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted'] | ['s051347168', 's055662989', 's180034016'] | [3064.0, 102448.0, 4724.0] | [2109.0, 2108.0, 1218.0] | [1101, 1099, 298] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.