problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03331 | u501643136 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\ndef sumof(N):\n sum = 0\n while(N>0):\n sum += N % 10\n N /= 10\n return sum\n\nminsum = 9*10\nfor i in range(N//2):\n minsum = min(minsum,sumof(i+1) + sumof(N-i-1))\nprint(minsum)\n', 'N = int(input())\ndef sumof(N):\n sum = 0\n while(N>0):\n sum += N % 10\n N /= 10\n return sum\n\nminsum = 9*10\nfor i in range(N//2+1):\n minsum = min(minsum,sumof(i) + sumof(N-i))\nprint(minsum)\n', 'NL = [int(x) for x in str(input())]\nif NL[0] == 1 and sum(NL) == 1:\n print(10)\nelse:\n print(sum(NL))'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s257582086', 's965672926', 's671855316'] | [2940.0, 2940.0, 2940.0] | [2104.0, 2104.0, 17.0] | [198, 196, 106] |
p03331 | u503111914 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nA = [i for i in str(N)]\nresult = 0\nfor j in range(len(A)):\n result += A[j]\nif result == 0 and A[0] == 1:\n print(10)\nelse:\n print(result)', 'N = int(input())\nA = [i for i in str(N)]\nresult = 0\nfor j in range(len(A)):\n result += int(A[j])\nif result == 1 and A[0] == "1":\n print(10)\nelse:\n print(result)\n'] | ['Runtime Error', 'Accepted'] | ['s902046600', 's162544158'] | [2940.0, 2940.0] | [19.0, 18.0] | [156, 164] |
p03331 | u503476415 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\nsum_list = []\n\ndef findSumOfDigit(n):\n s = 0\n while(n > 0):\n s += n % 10\n n = int(n / 10)N = int(input())\n\nsum_list = []\n\ndef findSumOfDigit(n):\n s = 0\n while(n > 0):\n s += n % 10\n n = int(n / 10)\n return s\n\nfor a in range(1, N-1):\n b = N - a\n sum_list.append(findSumOfDigit(a) + findSumOfDigit(b))\n\nprint(min(sum_list))\n\n return s\n\nfor a in range(2, N):\n b = N - a\n sum_list.append(findSumOfDigit(a) + findSumOfDigit(b))\n\nprint(min(sum_list))\n', 'N = int(input())\n\nsum_list = []\n\ndef findSumOfDigit(n):\n s = 0\n while(n > 0):\n s += n % 10\n n = int(n / 10)\n return s\n\nfor a in range(1, N):\n b = N - a\n sum_list.append(findSumOfDigit(a) + findSumOfDigit(b))\n\nprint(min(sum_list))\n'] | ['Runtime Error', 'Accepted'] | ['s580142734', 's171788372'] | [2940.0, 3864.0] | [17.0, 274.0] | [520, 259] |
p03331 | u505830998 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['a=input()\n\nal=[int(c) for c in list(str(a))]\n\nsal=sum(al)\nreturn sal if sal > 1 else 10', 'a=input()\n\nal=[int(c) for c in list(str(a))]\n\nsal=sum(al)\nret= sal if sal > 1 else 10\nprint(ret)\n'] | ['Runtime Error', 'Accepted'] | ['s462116155', 's507966644'] | [2940.0, 2940.0] | [23.0, 17.0] | [87, 97] |
p03331 | u516687307 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ["n=int(input())\nc_min=200000\nfor i in range(1,n):\n a=i\n b=n-i\n a_c=0\n b_c=0\n if(a==0)|(b==0):\n print('Err')\n for j in range(6):\n a_c=a_c+a%10\n a=a//10\n for j in range(6):\n b_c=b_c+b%10\n b=b//10\n if (a_c+b_c<=c_min):\n c_min=a_c+b_c\n print(i,n-i)\n \nprint(c_min)", "n=int(input())\nc_min=200000\nfor i in range(1,n):\n a=i\n b=n-i\n a_c=0\n b_c=0\n if(a==0)|(b==0):\n print('Err')\n for j in range(6):\n a_c=a_c+a%10\n a=a//10\n for j in range(6):\n b_c=b_c+b%10\n b=b//10\n if (a_c+b_c<=c_min):\n c_min=a_c+b_c\n #print(i,n-i)\n \nprint(c_min)"] | ['Wrong Answer', 'Accepted'] | ['s613127743', 's956648802'] | [3316.0, 3188.0] | [318.0, 324.0] | [334, 335] |
p03331 | u519939795 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=int(input())\nl=0\nm=0\nfor i in range(n+1):\n for j in range(n+1):\n if i+j!=n:\n continue\n l=([x for x in str(i)])\n m=([y for y in str(j)])\nprint(min(l+m))', 'n=int(input())\na=10*5\ndef k(n):\n s=tuple(map(int,tuple(str(n))))\n return sum(s)\n\nfor i in range(1,n):\n s=k(i)+k(n-i)\n if a>s:\n a=s\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s777896595', 's953218682'] | [3060.0, 3444.0] | [2108.0, 387.0] | [188, 158] |
p03331 | u539517139 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['s=sum(list(input()))\nprint(10 if s==1 else s)', 's=sum(list(map(int,list(input()))));print(10 if s==1 else s)'] | ['Runtime Error', 'Accepted'] | ['s603635556', 's628321023'] | [2940.0, 2940.0] | [17.0, 17.0] | [45, 60] |
p03331 | u543954314 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\ns = n\nfor i in range(n//2+1):\n s = min(s, sum(list(str(i))) + sum(list(str(n-i))))\nprint(s)\n ', 'n = int(input())\ns = n\nfor i in range(1, n//2+1):\n s = min(s, sum(map(int, list(str(i)))) + sum(map(int, list(str(n-i)))))\nprint(s)'] | ['Runtime Error', 'Accepted'] | ['s985563336', 's440449713'] | [2940.0, 2940.0] | [17.0, 185.0] | [112, 132] |
p03331 | u545411641 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\nans = N\nfor A in range(1,N):\n B = N - A\n A_str = str(A)\n B_str = str(B)\n A_li = [int(A_str[i]) for i in len(A_str)]\n B_li = [int(B_str[i]) for i in len(B_str)]\n s = sum(A_li) + sum(B_li)\n if s < ans:\n ans = s\n\nprint(ans)', 'N = int(input())\n\nans = N\nfor A in range(1,N):\n B = N - A\n A_str = str(A)\n B_str = str(B)\n A_li = [int(A_str[i]) for i in range(len(A_str))]\n B_li = [int(B_str[i]) for i in range(len(B_str))]\n s = sum(A_li) + sum(B_li)\n if s < ans:\n ans = s\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s685585930', 's477487302'] | [3316.0, 3064.0] | [21.0, 465.0] | [266, 280] |
p03331 | u548624367 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\ndef f(x):\n x%10+f(x//10) if x else 0\nprint(min([f(i)+f(n-i) for i in range(0,n+1)]))', 'def f(x):\n return x%10+f(x//10) if x else 0\nn = int(input())\nprint(min([f(i)+f(n-i) for i in range(1,n)]))'] | ['Runtime Error', 'Accepted'] | ['s329741955', 's214365812'] | [3164.0, 3864.0] | [18.0, 212.0] | [104, 109] |
p03331 | u551373727 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = list(map(int, list(input())))\ns = sum(N)\n\nif s is 1:\n print(10)\nelse:\n print(sum)', 'N = list(map(int, list(input())))\n\ns = sum(N)\n\nif s is 1:\n print(10)\nelse:\n print(s)\n'] | ['Wrong Answer', 'Accepted'] | ['s359130068', 's521049303'] | [3316.0, 2940.0] | [21.0, 17.0] | [91, 87] |
p03331 | u562767072 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = input()\n\nans = 0\nfor n in N:\n ans += n\n\nprint(ans)\n', 'N = input()\n\nans = 0\nfor n in N:\n ans += int(n)\n\nif ans == 1:\n ans = 10\n\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s099321384', 's165759151'] | [2940.0, 2940.0] | [18.0, 18.0] | [58, 90] |
p03331 | u580806822 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=int(input())\n\nansli=[]\nfor i in range(1, n):\n mn=n-i\n s1=str(i)\n s2=str(mn)\n dli=[]\n for j in s1:\n dli.append(int(j))\n for k in s2:\n dli.append(int(k))\n ans=0\n for l in dli:\n ans+=l\n #print(ans)\n ansli.append(ans)\nprint("min",min(ansli))\n', 'n=int(input())\n\nansli=[]\nfor i in range(1, n):\n mn=n-i\n s1=str(i)\n s2=str(mn)\n dli=[]\n for j in s1:\n dli.append(int(j))\n for k in s2:\n dli.append(int(k))\n ans=0\n for l in dli:\n ans+=l\n #print(ans)\n ansli.append(ans)\nprint(min(ansli))\n'] | ['Wrong Answer', 'Accepted'] | ['s815256192', 's998276519'] | [3864.0, 3864.0] | [528.0, 556.0] | [291, 285] |
p03331 | u587213169 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['x=int(input())\ncount=0\nfor a in range(1, x):\n suma=0\n sumb=0\n b=x-a\n while (a > 0):\n suma += a%10\n a//=10\n while (b > 0):\n sumb += b%10\n b//=10\n count = min(count, suma+sumb)\nprint(min(S))', 'x=int(input())\ncount=10000\nfor a in range(1, x):\n suma=0\n sumb=0\n b=x-a\n while (a > 0):\n suma += a%10\n a= a//10\n while (b > 0):\n sumb += b%10\n b=b//10\n count = min(count, suma+sumb)\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s339118276', 's365379534'] | [3064.0, 3064.0] | [258.0, 241.0] | [234, 240] |
p03331 | u599547273 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\ndigits_sum = lambda x: sum(map(int, str(x)))\n\nmin_num = 10**18\nfor i in range(1, (N+1)//2+1):\n print(i)\n m = N-i\n l = digits_sum(i) + digits_sum(m)\n min_num = min(l, min_num)\n\nprint(min_num)', 'N = int(input())\n\ndigits_sum = lambda x: sum(map(int, str(x)))\n\nmin_num = 10**18\nfor i in range(1, (N+1)//2+1):\n # print(i)\n m = N-i\n l = digits_sum(i) + digits_sum(m)\n min_num = min(l, min_num)\n\nprint(min_num)'] | ['Wrong Answer', 'Accepted'] | ['s882119428', 's490247370'] | [3536.0, 3060.0] | [195.0, 152.0] | [220, 222] |
p03331 | u627417051 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nL = []\nfor i in range(N):\n\ta = i + 1\n\tb = N - i - 1\n\ts = sum(list(map,(int, list(str(a))))) + sum(list(map,(int, list(str(b)))))\n\tL.append(s)\nprint(min(L))', 'N = int(input())\nL = []\nfor i in range(N - 1):\n\ta = list(str(i + 1))\n\tb = list(str(N - i - 1))\n\tasum = sum(list(map(int, a)))\n\tbsum = sum(list(map(int, b)))\n\t\n\tL.append(asum + bsum)\nprint(min(L))'] | ['Runtime Error', 'Accepted'] | ['s747196317', 's964446635'] | [3060.0, 3972.0] | [17.0, 431.0] | [172, 195] |
p03331 | u630511239 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nn = N // 2\nA = list(str(n))\nA = list(int(n) for n in A)\nans = 2 * sum(A)\nif N % 2 == 1:\n ans += 1\nprint(ans)', 'N = int(input())\nif N % 10 == 0:\n ans = 10\nelse:\n ans = 0\n while N > 0:\n ans += N % 10\n N //= 10\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s902740529', 's434129337'] | [9128.0, 9112.0] | [28.0, 26.0] | [128, 130] |
p03331 | u637170240 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nfactor_a = []\nfactor_b = []\nans = N\nif N % 2 == 0:\n for a in range(1, N/2+1):\n sum_a = sum([int(i) for i in str(a)])\n sum_b = sum([int(i) for i in str(N-a)])\n if sum_a + sum_b < ans:\n ans = sum_a + sum_b\nelse:\n for a in range(1, (N+1)/2+1):\n sum_a = sum([int(i) for i in str(a)])\n sum_b = sum([int(i) for i in str(N-a)])\n if sum_a + sum_b < ans:\n ans = sum_a + sum_b\nprint(ans)', 'N = int(input())\nans = N\n\n\ndef simulate(m):\n for a in range(1, m):\n global ans\n sum_a = sum([int(i) for i in str(a)])\n sum_b = sum([int(i) for i in str(N-a)])\n if sum_a + sum_b < ans:\n ans = sum_a + sum_b\n\n\nif N % 2 == 0:\n simulate(N//2+1)\nelse:\n simulate(N//2+2)\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s731293672', 's888329099'] | [3064.0, 3064.0] | [18.0, 175.0] | [464, 323] |
p03331 | u652656291 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\nif n % 10 == 0:\n print(10)\nelse:\n a = str(n)\n b = sum(a)\n print(b)', 'n = int(input())\nif n % 10 == 0:\n print(10)\nelse:\n result = sum(list(map(int, str(n))))\n print(result)'] | ['Runtime Error', 'Accepted'] | ['s708044053', 's210004522'] | [2940.0, 2940.0] | [17.0, 17.0] | [87, 105] |
p03331 | u659640418 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=int(input())\nans=inf\nfor i in range(n):\n ans=min(ans,sum(list(n-i))+sum(list(i)))\nprint(ans)', 'from numpy import inf\nn=int(input())\nans=inf\nfor i in range(n-1):\n ans=min(ans,sum(list(map(int, list(str(n-i+1)))))+sum(list(map(int, list(str(i+1))))))\nprint(ans)', 'from numpy import inf\nn=int(input())\nans=inf\nfor i in range(n-1):\n ans=min(ans,sum(list(map(int, list(str(n-i-1)))))+sum(list(map(int, list(str(i+1))))))\nprint(ans)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s000463352', 's634853087', 's936993730'] | [2940.0, 12484.0, 12484.0] | [17.0, 553.0, 555.0] | [97, 167, 167] |
p03331 | u680004123 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input()\nlist = []\nfor a in range(2,n-1):\n sum = 0\n sum1 = 0\n b = n - a\n for j in range(len(str(a))):\n sum += int(str(a)[j])\n for k in range(len(str(b))):\n sum1 += int(str(b)[k])\n list.append(sum + sum1)\nprint(min(list))', 'n = int(input())\nl = []\nfor a in range(1,n):\n sum = 0\n sum1 = 0\n b = n - a\n for i in range(len(str(a))):\n sum += int(str(a)[i])\n for i in range(len(str(b))):\n sum1 += int(str(b)[i])\n l.append(sum+sum1)\nprint(min(l))'] | ['Runtime Error', 'Accepted'] | ['s694853610', 's434096692'] | [2940.0, 3864.0] | [17.0, 715.0] | [299, 287] |
p03331 | u683134447 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\n\nans = float("inf") \nfor i in range(n+1):\n a = sum([int(i) for i in list(str(i))])\n b = sum([int(i) for i in list(str(n-i))])\n ans = min(a+b, ans)', 'n = int(input())\n\nans = float("inf") \nfor i in range(1, n):\n a = sum([int(i) for i in list(str(i))])\n b = sum([int(i) for i in list(str(n-i))])\n if ans > a+b:\n ans = a + b\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s893815961', 's718143545'] | [3060.0, 3060.0] | [435.0, 418.0] | [173, 199] |
p03331 | u693694535 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N=int(input())\n\nM=10**9\nfor i in range(1,N//2+10):\n a=list(str(i))\n b=list(str(N-i))\n #print(a,b)\n k=0\n for q in range(len(a)):\n k+=int(a[q])\n for p in range(len(b)):\n k+=int(b[p])\n M=min(M,k)\nprint(M)', 'N=int(input())\n\nM=10**9\nfor i in range(1,N//2+1):\n a=list(str(i))\n b=list(str(N-i))\n #print(a,b)\n k=0\n for q in range(len(a)):\n k+=int(a[q])\n for p in range(len(b)):\n k+=int(b[p])\n M=min(M,k)\nprint(M)'] | ['Runtime Error', 'Accepted'] | ['s240086312', 's824463093'] | [9168.0, 9156.0] | [193.0, 196.0] | [236, 235] |
p03331 | u703890795 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nm = 999\nfor i in range(N):\n N1 = sum(list(str(i+1)))\n N2 = sum(list(str(N - (i+1))))\n m = min(m, N1+N2)\nprint(m)', 'N = int(input())\nm = 999\nM = []\nN1 = 0\nN2 = 0\nfor i in range(N-1):\n L1 = list(str(i+1))\n N1 = 0\n N2 = 0\n for j in range(len(L1)):\n N1 += int(L1[j])\n L2 = list(str(N - (i+1)))\n for j in range(len(L2)):\n N2 += int(L2[j])\n M.append(N1+N2)\nprint(min(M))'] | ['Runtime Error', 'Accepted'] | ['s908128301', 's204577524'] | [2940.0, 3864.0] | [17.0, 613.0] | [132, 262] |
p03331 | u713087221 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['import math\n\n\ndef digitSum(n):\n s = str(n)\n array = list(map(int, list(s)))\n return sum(array)\n\n\nn = int(input())\n\n\n\nrank = int(math.log10(n)) \nprint(rank)\n\n\ndiv = n % 10**rank\nif rank < 1:\n a = 2\n b = n %2\n\nelif div == 0:\n a = n / 2\n b = n / 2\nelse :\n a = 10**rank\n b = div\n\n#print("{} : {}".format(a, b))\n\n\ncount = 0\ncount += digitSum(int(a))\ncount += digitSum(int(b))\n\nprint(count)\n\n', 'import math\n\nbase = 998244353\n\nn, a, b, k = map(int, input().split())\n\nfac = [1] * (n + 1)\nrev = [1] * (n + 1)\nfor i in range(1, n + 1):\n fac[i] = fac[i - 1] * i % base\n rev[i] = pow(fac[i], base -2, base)\n\n\n\ndef comb(n,r):\n hoge = (fac[n] * rev[r] * rev[n - r] ) % base\n return hoge\n\n\n\n\n\ncount = 0\n\nan = 0 \n\nfor an in range(n+1):\n if k - an * a < 0 or (k - an * a) % b != 0:\n continue\n bn = (k -an * a) // b\n if not 0 <= bn <= n:\n continue\n\n count += comb(n, an) * comb(n, bn) % base\n count %= base\n\n\n\nprint(count)\n\n\n\n\n\n\n\n \n\n', 'import math\n \n \ndef digitSum(n):\n s = str(n)\n array = list(map(int, list(s)))\n return sum(array)\n \n \nn = int(input())\n \n\nrank = math.ceil(math.log10(n)) \ndiv = n % 10**rank\nif div == 0:\n print(10)\nelse :\n print(digitSum(int(n)))\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s428318401', 's739764036', 's160615333'] | [3064.0, 3064.0, 3060.0] | [17.0, 18.0, 17.0] | [448, 571, 279] |
p03331 | u733738237 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=int(input())\nprint(min(sum(map(int,str(a)))+sum(map(int,str(n-a))))) for a in range(1,n))', 'n=int(input())\nprint(min(sum(map(int,str(a)))+sum(map(int,str(n-a)))) for a in range(1,n))', 'n=int(input())\nval=10**5\nfor a in range(1,n):\n\tif sum(map(int,str(a)))+sum(map(int,str(n-a)))< val:\n\t\tval = sum(map(int,str(a))) + sum(map(int,str(n-a)))\nprint(val)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s034582116', 's715859670', 's413948438'] | [2940.0, 2940.0, 3060.0] | [17.0, 17.0, 283.0] | [91, 90, 164] |
p03331 | u734816542 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ["import itertools\n\n\nif __name__ == '__main__':\n N, A, B, K = map(int, input().split())\n li = [i for i in range(N)]\n ans = 0\n for ai in range(N):\n tmp = K-(ai*A)\n if tmp / B <= N and tmp % B == 0:\n bi = tmp // B\n a = len(list(itertools.combinations(li, ai)))\n b = len(list(itertools.combinations(li, bi)))\n ans += a*b\n print(ans)\n", "if __name__ == '__main__':\n n = int(input())\n ans = 99999999\n for i in range(1, n):\n total = list(str(n-i)) + list(str(i))\n tmp = 0\n for t in total:\n tmp += int(t)\n ans = min(ans, tmp)\n print(ans)\n"] | ['Runtime Error', 'Accepted'] | ['s563687828', 's823216120'] | [3060.0, 2940.0] | [18.0, 399.0] | [401, 248] |
p03331 | u738835924 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N, C, D = map(int, input().split())\ncheck = [i*i for i in range(N)]\ntime = 0\nstop = N * N\n\nif C * D % 2 ==1:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 0:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\nelif (C+D) % 2 == 0:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 1:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\nelse:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 0:\n if C % 2 == 1:\n if D - j * j not in check:\n print(i, j)\n time += 1\n if stop == time:\n break\n else:\n if C - j * j not in check:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\n', 'N, C, D = map(int, input().split())\ncheck = [i*i for i in range(N)]\ntime = 0\nstop = N * N\n\nif C * D % 2 ==1:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 0:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\nelif (C+D) % 2 == 0:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 1:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\n\n\n\n ', 'N, C, D = map(int, input().split())\ncheck = [i*i for i in range(N+1)]\ntime = 0\nstop = N * N\n \nprint(check)\nif C * D % 2 ==1:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 0:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\nelif (C+D) % 2 == 0:\n for i in range(2*N):\n for j in range(2*N):\n if (i + j) % 2 == 1:\n print(i, j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break\nelse:\n for i in range(2*N):\n tt = i * i\n if C - tt in check or D - tt in check:\n continue\n else:\n for j in range(2*N):\n print(i,j)\n time += 1\n if stop == time:\n break\n if stop == time:\n break', 'N = int(input())\nwhile(N%10 == 0):\n N /= 10\nif N == 1:\n print(10)\nelse:\n s = str(N)\n array = list(map(int, list(s)))\n print(sum(array))'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s457000885', 's972754178', 's998703668', 's962702308'] | [3064.0, 3064.0, 3064.0, 2940.0] | [18.0, 17.0, 17.0, 18.0] | [786, 452, 678, 135] |
p03331 | u744034042 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\nc = n\nfor i in range(1, n//2+1):\n a = digitsum(i)\n b = digitsum(n-i)\n if c > a + b:\n c = a + b\nprint(c)', 'n = int(input())\nc = []\nfor i in range(1, n//2 +1):\n a = sum(map(int, str(i)))\n b = sum(map(int, str(n-i)))\n c.append(a+b)\nprint(min(c))'] | ['Runtime Error', 'Accepted'] | ['s193361244', 's450687285'] | [2940.0, 3480.0] | [17.0, 147.0] | [126, 145] |
p03331 | u745514010 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = input()\nnum = 0\nfor num in n:\n ans += int(num)\nif ans == 1:\n ans = 10\nprint(ans)', 'n = input()\nans = 0\nfor num in n:\n ans += int(num)\nif ans == 1:\n ans = 10\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s631318109', 's877034625'] | [2940.0, 2940.0] | [17.0, 17.0] | [90, 90] |
p03331 | u756782069 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nA = list(map(int,input().split()))\nif A == 1:\n print(5)\nelse:\n print(A)', 'N = int(input())\nA = sum(list(map(int, list(str(N)))))\nif A == 1:\n print(10)\nelse:\n print(A)'] | ['Runtime Error', 'Accepted'] | ['s030925854', 's482319387'] | [2940.0, 2940.0] | [17.0, 17.0] | [94, 98] |
p03331 | u757030836 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\nnum = 0\n\nfor i in range(N+1):\n g = N -i\n a=sum(map(int,list(str(g))))\n b=sum(map(int,list(str(i))))\n ans = a + b\n if ans == 0:\n num += ans\n elif num >= ans:\n num += ans\n else:\n continue\n\n \nprint(num)', 'for i in range(100000):\n g = N -i\n a=sum(map(int,list(str(g))))\n b=sum(map(int,list(str(i))))\n ans = a + b\n if ans == 0:\n num = ans\n elif num >= ans:\n num = ans\n else:\n continue', 'N = int(input())\n\nnum = 0\n\nfor i in range(N+1):\n g = N -i\n a=sum(map(int,list(str(g))))\n b=sum(map(int,list(str(i))))\n ans = a + b\n if num == 0:\n num += ans\n elif num >= ans:\n num += ans\n else:\n continue\n\n \nprint(num)', 'N =input()\nlist = [int(i) for i in N]\n\nans = sum(list)\nif ans ==1:\n print(10)\nelse:\n print(ans)'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s337288895', 's454570641', 's826812058', 's333046139'] | [3064.0, 3060.0, 3064.0, 2940.0] | [361.0, 17.0, 352.0, 17.0] | [237, 194, 237, 97] |
p03331 | u760171369 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['import numpy as np\nN = np.array(int(input()))\nif N[-1] == 0:\n print(10)\nelse:\n print(N.sum())', 'import numpy as np\nN = np.array(int(input()))\nif N[-1] == 0:\n print(10)\nelse:\n print(N.cumsum())', 'import numpy as np\nN = input()\nN = np.array([int(k) for k in N])\nif N[-1] == 0:\n print(10)\nelse:\n print(N.sum())'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s484288318', 's602798310', 's750032666'] | [12392.0, 12392.0, 12508.0] | [149.0, 152.0, 154.0] | [95, 98, 114] |
p03331 | u760802228 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nres = 99999\nfor a in range(1, N): \n sum_ = 0 \n b = N - a \n while (a > 0): \n sum_ += a % 10\n a //= 10\n while (b > 0): \n sum_ += b % 10\n b //= 10\n print(sum_)\n res = min(res, sum_)\nprint(res)', 'N = int(input())\nres = 99999\nfor a in range(1, N): \n sum_ = 0 \n b = N - a \n while (a > 0): \n sum_ += a % 10\n a //= 10\n while (b > 0): \n sum_ += b % 10\n b //= 10\n res = min(res, sum_)\nprint(res)'] | ['Wrong Answer', 'Accepted'] | ['s513933624', 's500593904'] | [3784.0, 3060.0] | [338.0, 245.0] | [308, 288] |
p03331 | u762420987 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\n\ndef F(num1, num2):\n sum1 = sum(map(int, list(str(num1))))\n sum2 = sum(map(int, list(str(num2))))\n return sum1 + sum2\n\n\nmax_num = 0\nfor A in range(N + 1):\n B = N - A\n max_num = max(max_num, F(A, B))\nprint(max_num)\n', 'N = int(input())\n\n\ndef F(num):\n ans = 0\n for n in str(num):\n ans += int(n)\n return ans\n\n\nmin_num = 10**9\nfor A in range(1, N):\n B = N - A\n num = F(A) + F(B)\n if num < min_num:\n min_num = num\nprint(min_num)\n'] | ['Wrong Answer', 'Accepted'] | ['s620656517', 's449138373'] | [3060.0, 2940.0] | [346.0, 288.0] | [247, 238] |
p03331 | u775623741 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=input()\nprint(sum([int(i) for i in n])\n', 'n=int(input())\nprint(min([sum([int(a) for a in str(i)])+sum([int(b) for b in str(n-i)]) for i in range(1,int(n))]))\n'] | ['Runtime Error', 'Accepted'] | ['s527383363', 's309276515'] | [2940.0, 3912.0] | [17.0, 326.0] | [41, 116] |
p03331 | u780354103 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\nif N=10*i for i in range(1,5+1):\n print("10")\nelse\n print(sum(int(str(N)))', 'N = int(input())\n\nif N % 10 == 0:\n print(10)\nelse:\n print(sum(list(map(int, str(N)))))'] | ['Runtime Error', 'Accepted'] | ['s446613263', 's475292322'] | [2940.0, 2940.0] | [17.0, 17.0] | [98, 92] |
p03331 | u815797488 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\n\ndef sum_10(n):\n return sum[int(l) for l in str(n)]\n\nli=[]\nfor i in range(1,N//2 +1):\n for k in range(N-N//2,N+1):\n if i + k == N:\n li.append(sum_10(i)+sum_10(k))\nprint(min(li)) ', 'N = int(input())\n\ndef sum_10(n):\n return sum([int(l) for l in str(n)])\n\nli=[]\nfor i in range(1,N//2 +1):\n if N - N//2 <= N - i <= N:\n li.append(sum_10(i)+sum_10(N - i))\nprint(min(li)) '] | ['Runtime Error', 'Accepted'] | ['s224400154', 's993429762'] | [2940.0, 3480.0] | [19.0, 199.0] | [210, 198] |
p03331 | u829796346 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['A = list(map(int,input().split()))\nA.sort()\nret = 0\nret += A[2]-A[1]\nA[1] += ret\nA[0] += ret\nret += (A[1]-A[0])//2\nif (A[1]-A[0])%2==1:\n ret += 2\nprint(ret)\n', 'N = int(input())\nmini = float("inf")\nfor A in range(1,N-1+1):\n mini = min(mini,sum([int(digit) for digit in str(A)])+sum([int(digit) for digit in str(N-A)]))\nprint(mini)'] | ['Runtime Error', 'Accepted'] | ['s165229321', 's368976326'] | [3060.0, 3060.0] | [17.0, 348.0] | [158, 170] |
p03331 | u837677955 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = input()\ndef sum_keta(m):\n\tsum_wa = 0\n\twhile m>0:\n\t\tsum_wa = sum_wa + m%10\n\t\tm = int(m/10)\n\n\treturn sum_wa\n\nif sum_keta(n) == 1:\n\tprint(10)\nelse:\n\tprint(sum_keta(n))\n', 'n = int(input())\ndef sum_keta(m):\n\tsum_wa = 0\n\twhile m>0:\n\t\tsum_wa = sum_wa + m%10\n\t\tm = int(m/10)\n\n\treturn sum_wa\n\nif sum_keta(n) == 1:\n\tprint(10)\nelse:\n\tprint(sum_keta(n))\n'] | ['Runtime Error', 'Accepted'] | ['s840779666', 's620266404'] | [2940.0, 2940.0] | [17.0, 17.0] | [169, 174] |
p03331 | u846150137 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=[int(i) for i in input().split()]\ns=sum(n)\nif s==1 and min(n)==0:\n print(10)\nelse:\n print(s)', 'n=[int(i) for i in list(input())]\ns=sum(n)\nif s==1 and min(n)==0:\n print(10)\nelse:\n print(s)'] | ['Wrong Answer', 'Accepted'] | ['s167957446', 's950777511'] | [2940.0, 3316.0] | [17.0, 19.0] | [96, 94] |
p03331 | u863370423 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\n\n\nx = n - 2\ny = n - x\n\nif n < 10:\n print(n)\nif n = 10:\n print(1)\nelse:\n resulty, resultx = 0, 0\n\n while(x > 0):\n resultx += x % 10\n x = x // 10\n\n while(y > 0):\n resulty += y % 10\n y = y // 10\n\n #print(resulty+resultx)\n z = n//2\n\n result = 0\n while(z > 0):\n result += z % 10\n z = z // 10\n\n if result*2 < resulty+resultx:\n print(result*2)\n else:\n print(resulty+resultx)\n\n', 'def soma(a):\n res=0\n if(int(a)<10):\n return int(a)\n \n for i in range(0, len(a)):\n res+=int(a[i])\n\n if(res>=10):\n return soma(str(res))\n\n return res\n\ndef main():\n n = int(input())\n menor = soma(str(n-1))+1\n \n for i in range(1,10):\n if(soma(str(i))+soma(str(n-i))<menor):\n menor = soma(str(i))+soma(str(n-i))\n\n print(menor,"\\n")\n\nmain()\n', 'def soma(n):\n x = sum(int(digit) for digit in str(n))\n if x < 10:\n return x\n else:\n return soma(x)\n\ndef main():\n n = int(input())\n\n somad = soma(n)\n \n for i in range(1, n):\n soman = soma(i)+soma(n-i);\n if(soman==somad):\n break\n \n print(soman,"\\n")\n \nmain()\n', 'numero = int(input())\nsoma = 0\nminimo = 100000\nfor aux in range(numero-1,1,-1):\n prim = str(aux)\n seg = str(numero - aux)\n for x in range(len(prim)):\n soma += int(prim[x])\n for x in range(len(seg)):\n soma += int(seg[x])\n if soma < minimo :\n minimo = soma\n soma = 0\nif numero == 2:\n print(numero)\nelse:\n print(minimo)'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s160419758', 's433377765', 's862709924', 's435538005'] | [2940.0, 3064.0, 3060.0, 3064.0] | [17.0, 17.0, 576.0, 423.0] | [475, 411, 329, 361] |
p03331 | u864197622 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n, a, b, k = map(int, input().split())\n\ndef gcd(a, b):\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n \ndef mod_inv(a, mod):\n return (pow(a,mod-2,mod))\n\ndef mod_combination(n, k, mod):\n return (fact[n]*mod_inv(fact[k], mod)*mod_inv(fact[n-k], mod)) % mod\n\ng = gcd(k, gcd(a, b))\na //= g\nb //= g\nk //= g\n\nmod = 998244353\nfact = [1] + [0] * n\nfor i in range(n):\n fact[i+1] = (fact[i] * (i+1)) % mod\nif a < b:\n tmp = a\n a = b\n b = tmp\n\nans = 0\nfor x in range(n+1):\n if (k-x*a) % b == 0:\n y = (k-x*a)//b\n if y >= 0:\n ans += mod_combination(n, x, mod) * mod_combination(n, y, mod)\n ans %= mod\n\n \nprint(ans)\n', 'n, a, b, k = map(int, input().split())\n\nif False:\n n = 4\n a = 1\n b = 2\n k = 5\n\ndef gcd(a, b):\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n \ndef mod_inv(a, mod):\n return (pow(a,mod-2,mod))\n\ndef mod_combination(n, k, mod):\n return fact[n]*mod_inv(fact[k], mod)*mod_inv(fact[n-k], mod) % mod\n\nmod = 998244353\nfact = [1] + [0] * n\nfor i in range(n):\n fact[i+1] = (fact[i] * (i+1)) % mod\n# print(fact)\nif a < b:\n tmp = a\n a = b\n b = tmp\n\nans = 0\n# print("n, a, b =", n, a, b)\n# print((k-b*n)//a, k//a+1)\nfor x in range(max(-int(-(k-b*n)//a),0), k//a+1):\n if (k-x*a) % b == 0:\n y = (k-x*a)//b\n \n # print("n, x, y, mod", n, x, y, mod)\n # print(mod_combination(n, x, mod))\n # print(mod_combination(n, y, mod))\n \n ans += mod_combination(n, x, mod) * mod_combination(n, y, mod)\n ans %= mod\n \nprint(ans)\n', 'n, a, b, k = map(int, input().split())\n\ndef gcd(a, b):\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n \ndef mod_inv(a, mod):\n return (pow(a,mod-2,mod))\n\ndef mod_combination(n, k, mod):\n return (fact[n]*mod_inv(fact[k], mod)*mod_inv(fact[n-k], mod)) % mod\n\nmod = 998244353\nfact = [1] + [0] * n\nfor i in range(n):\n fact[i+1] = (fact[i] * (i+1)) % mod\n\nans = 0\nfor x in range(n+1):\n if (k-x*a) % b == 0:\n y = (k-x*a)//b\n if y >= 0:\n ans += mod_combination(n, x, mod) * mod_combination(n, y, mod)\n ans %= mod\n\n \nprint(ans)\n', 'def sum_digit(n):\n ret = 0\n while n>0:\n ret += n % 10\n n //= 10\n return ret\n\nN = int(input())\n\nmi = 999999999\nfor a in range(1, N):\n b = N - a\n mi = min(mi, sum_digit(a)+sum_digit(b))\n\nprint(mi)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s196633026', 's514928171', 's864852569', 's453656410'] | [3064.0, 3064.0, 3064.0, 3060.0] | [18.0, 18.0, 18.0, 197.0] | [688, 915, 597, 223] |
p03331 | u865191802 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\nsumn = 0\ndata = 10\ncheck = False\nfor i in range(5):\n\tif(10**i==n):\n\t\tcheck = True\n\nif(check):\n\tprint(10)\nelse:\n\twhile n>=10:\n\t\tsumn += n%10\n\t\tprint("n%10 =",n%10)\n\t\tprint("n =",n)\n\t\tn //= 10\n\tsumn += n\n\tprint(sumn)', 'n = int(input())\nsumn = 0\ndata = 10\ncheck = False\nfor i in range(1,6):\n\tif(10**i==n):\n\t\tcheck = True\n\nif(check):\n\tprint(10)\nelse:\n\twhile n>=10:\n\t\tsumn += n%10\n\t\tn //= 10\n\tsumn += n\n\tprint(sumn)'] | ['Wrong Answer', 'Accepted'] | ['s221063833', 's783418692'] | [3060.0, 3060.0] | [17.0, 18.0] | [231, 193] |
p03331 | u867826040 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n = int(input())\nans = 0\nfor i in range(1,n):\n ans = min(ans,sum(map(int,str(i)))+sum(map(int,str(n-i))))\nprint(ans)', 'n = int(input())\nans = float("inf")\nfor i in range(1,n):\n ans = min(ans,sum(map(int,str(i)))+sum(map(int,str(n-i))))\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s068514362', 's626752590'] | [3060.0, 2940.0] | [279.0, 289.0] | [119, 130] |
p03331 | u873269440 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['\ndef main():\n\n if sum(list(map(int,list(input())))) !=1:\n print(sum(list(map(int,list(input())))))\n else:\n print(10)\n \n\n \nif __name__== "__main__":\n main() \n\n\n\n\n\n\n\n\n\n', '\ndef main():\n ans = sum(list(map(int,list(input()))))\n if ans!=1:\n print(ans)\n else:\n print(10)\n \n\n \nif __name__== "__main__":\n main() \n\n\n\n\n\n\n\n\n\n'] | ['Runtime Error', 'Accepted'] | ['s073017286', 's066524370'] | [2940.0, 2940.0] | [17.0, 17.0] | [192, 175] |
p03331 | u883792993 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['import math\nN=int(input())\ni=2\ndigitSum=pow(10,5)\nA=int(2)\nwhile i<=int(N/2):\n A=i\n B=N-A\n if B>A:\n break\n A_digitsum=0\n while A>=10:\n A_digitsum += A%10\n A = A//10\n if A<10:\n A_digitsum+=A\n B_digitsum=0\n while B>=10:\n B_digitsum += B%10\n B = B//10\n if B<10:\n B_digitsum+= B\n if digitSum > A_digitsum+B_digitsum:\n digitSum = A_digitsum+B_digitsum\n i+=1\nprint(digitSum)', 'import math\nN=int(input())\ni=2\ndigitSum=pow(10,5)\nwhile A<math.sqrt(N):\n A=i\n B=N-A\n A_digitsum=0\n while A>10:\n A_digitsum += N%10\n A = A//10\n while B>10:\n B_digitsum += N%10\n B = B//10\n if digitSum > A_digitsum+B_digitsum:\n digitSum = A_digitsum+B_digitsum\nprint(digitSum)', 'import math\nN=int(input())\ni=2\ndigitSum=pow(10,5)\nA=int(2)\nwhile i<=N/2:\n A=i\n B=N-A\n print(A,B)\n A_digitsum=0\n while A>=10:\n A_digitsum += A%10\n A = A//10\n if A<10:\n A_digitsum+=A\n B_digitsum=0\n while B>=10:\n B_digitsum += B%10\n B = B//10\n if B<10:\n B_digitsum+= B\n if digitSum > A_digitsum+B_digitsum:\n digitSum = A_digitsum+B_digitsum\n i+=1\nprint(digitSum)\n', 'import math\nN=int(input())\ni=2\ndigitSum=pow(10,5)\nA=int(2)\nwhile i<=int(N/2):\n A=i\n B=N-A\n if A<B:\n break\n A_digitsum=0\n while A>=10:\n A_digitsum += A%10\n A = A//10\n if A<10:\n A_digitsum+=A\n B_digitsum=0\n while B>=10:\n B_digitsum += B%10\n B = B//10\n if B<10:\n B_digitsum+= B\n if digitSum > A_digitsum+B_digitsum:\n digitSum = A_digitsum+B_digitsum\n i+=1\nprint(digitSum)', 'import math\nN=int(input())\ni=2\ndigitSum=pow(10,5)\nA=int(2)\nwhile i<=int(N/2)+1:\n A=i\n B=N-A\n A_digitsum=0\n while A>=10:\n A_digitsum += A%10\n A = A//10\n if A<10:\n A_digitsum+=A\n B_digitsum=0\n while B>=10:\n B_digitsum += B%10\n B = B//10\n if B<10:\n B_digitsum+= B\n if digitSum > A_digitsum+B_digitsum:\n digitSum = A_digitsum+B_digitsum\n i+=1\nprint(digitSum)\n'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s333508279', 's352066878', 's553751412', 's922556377', 's399175358'] | [3064.0, 3064.0, 3824.0, 3064.0, 3064.0] | [18.0, 17.0, 201.0, 17.0, 149.0] | [457, 326, 442, 457, 434] |
p03331 | u890183245 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['import math\nN = int(input())\nn = N\namari = 0\nfor i in range (len(str(N))):\n amari += n % 10\n n = math.floor(n / 10)\nif amari < 10:\n print(10+amari)\nelse:\n print(amari)', 'import math\nN = int(input())\nn = N\namari = 0\nfor i in range (len(str(N))):\n amari += n % 10\n n = math.floor(n / 10)\nif amari = 1:\n print(10)\nelse:\n print(amari)', 'import math\nN = int(input())\nn = N\namari = 0\nfor i in range (len(str(N))):\n amari += n % 10\n n = math.floor(n / 10)\nif amari == 1:\n print(10)\nelse:\n print(amari)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s174968003', 's425005368', 's211707911'] | [3060.0, 2940.0, 3060.0] | [17.0, 18.0, 17.0] | [171, 164, 165] |
p03331 | u905582793 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=input()\nls = [10**i for i in range(1,6)]\nif int(n) in ls:\n print(10)\nelse:\n print(sum([list(n)[i] for i in range(len(n))]))', 'n=input()\nls = [10**i for i in range(1,6)]\nif int(n) in ls:\n print(10)\nelse:\n print(sum([int(list(n)[i]) for i in range(len(n))]))'] | ['Runtime Error', 'Accepted'] | ['s858963360', 's501873863'] | [2940.0, 2940.0] | [17.0, 17.0] | [127, 132] |
p03331 | u923270446 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = list(int(input()))\nif N.count(0) == len(N) - 1:\n print(10)\nelse:\n sum(N)\n', 'N = list(input())\nlist1 = [int(x) for x in N]\nif N.count("0") == len(N) - 1 and N[0] == "1" and len(N) != 1:\n print(10)\nelse:\n print(sum(list1))'] | ['Runtime Error', 'Accepted'] | ['s106158415', 's635564345'] | [2940.0, 2940.0] | [17.0, 17.0] | [79, 146] |
p03331 | u925364229 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N,A,B,K = map(int,input().split(" "))\nmod = 998244353\nncr = [1]*(N+1)\nv = 1\nfor i in range(N):\n\tv = (v * ((N-i)%mod) * pow((i+1),mod-2,mod)) % mod\n\tncr[i+1] = v%mod\n\npat = 0\nfor a in range(N):\n\tif (K - (a * A)) % B == 0:\n\t\tpat += ncr[a]*ncr[(K - (a * A))//B]\n\t\tpat %= mod\n\nprint(pat % mod)', "N = int(input())\nans = float('inf')\nfor i in range(1,N):\n\tnum = i\n\tj = N - num\n\td = 0\n\twhile num != 0:\n\t\td += (num % 10)\n\t\tnum //= 10\n\twhile j != 0:\n\t\td += (j % 10)\n\t\tj //= 10\n\n\tans = min(d,ans)\n\nprint(ans)"] | ['Runtime Error', 'Accepted'] | ['s071825658', 's568293704'] | [3064.0, 3064.0] | [17.0, 249.0] | [289, 206] |
p03331 | u925940521 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ["import sys\n\ndef digits_sum(x):\n return sum(map(int, str(x)))\n\ndef solve(n):\n ans = sys.maxint\n for a in range(2, n//2):\n b = n - a\n ans = min(ans, digits_sum(a) + digits_sum(b))\n\n return ans\n\nif __name__ == '__main__':\n n = int(input())\n print(solve(n))\n", "import sys\n\ndef digits_sum(x):\n return sum(map(int, str(x)))\n\ndef solve(n):\n ans = sys.maxsize\n for a in range(1, n):\n b = n - a\n ans = min(ans, digits_sum(a) + digits_sum(b))\n\n return ans\n\nif __name__ == '__main__':\n n = int(input())\n print(solve(n))\n"] | ['Runtime Error', 'Accepted'] | ['s940333165', 's898382616'] | [3056.0, 2940.0] | [17.0, 272.0] | [286, 284] |
p03331 | u926678805 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['# coding: utf-8\nimport math\nn=int(input())-1\na=10**int(math.log10(n))\nb=n-a+1\nprint(sum(map(int,str(a)))+sum(map(int,str(b))))\nprint(a,b)', '# coding: utf-8\nimport math\nn=int(input())-1\na=10**int(math.log10(n))\nb=n-a+1\nprint(sum(map(int,str(a)))+sum(map(int,str(b))))\n'] | ['Wrong Answer', 'Accepted'] | ['s081215942', 's557688567'] | [3188.0, 2940.0] | [19.0, 18.0] | [137, 127] |
p03331 | u934052933 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['N = int(input())\nrange_A = range(2,100001)\nmin_total = 1000\nfor a in range_A:\n\tb = N - a\n\tif b < 1:continue\n\tsum_a = findSumOfDigits(a)\n\tsum_b = findSumOfDigits(b)\n\ttotal = sum_a + sum_b\n if total < min_total:\n\t\tmin_total = total\nprint(min_total)\n\n', 'def findSumOfDigits(n):\n sum_digits = 0\n while n > 0 :\n sum_digits += n % 10\n n //= 10\n return sum_digits\n\nN = int(input())\nrange_A = range(2,100001)\nmin_total = 1000\nfor a in range_A:\n\tb = N - a\n if b < 1:continue\n\tsum_a = findSumOfDigits(a)\n\tsum_b = findSumOfDigits(b)\n\ttotal = sum_a + sum_b\n\tif total < min_total:\n\tmin_total = total\nprint(min_total)', 'N = int(input())\nrange_A = range(2,50)\nmin_total = 1000\nfor a in range_A:\n\tb = abs(N - a)\n\tsum_a = findSumOfDigits(a)\n\tsum_b = findSumOfDigits(b)\n\ttotal = sum_a + sum_b\n\tif total < min_total:\n\t\tmin_total = total\nprint(min_total)', '\n\n\ndef findSumOfDigits(n):\n sum_digits = 0\n while n > 0 :\n sum_digits += n % 10\n n //= 10\n return sum_digits\n\n\ndef main()->None:\n N = int(input())\n \n range_A = range(1,N+1)\n min_total = 100000\n for a in range_A:\n b = N - a\n if b < 1 : continue\n sum_a = findSumOfDigits(a)\n sum_b = findSumOfDigits(b)\n total = sum_a + sum_b\n if total < min_total:\n min_total = total\n print(min_total)\n\n\nif __name__ == "__main__":\n main()'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s171619209', 's552284536', 's827534846', 's893210040'] | [2940.0, 2940.0, 3060.0, 3064.0] | [17.0, 17.0, 17.0, 166.0] | [251, 378, 228, 584] |
p03331 | u936985471 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['n=int(input())\nans=0\ndef calc(a,b):\n res=0\n for i in range(len(str(a))):\n res+=int(str(a)[i])\n for i in range(len(str(b))):\n res+=int(str(b)[i])\n return res\n \nfor i in range(1,n//2+1):\n a=i\n b=n-a\n ans=min(ans,calc(a,b))\nprint(ans)', 'n=int(input())\nans=10**6\ndef calc(a,b):\n res=0\n for i in range(len(str(a))):\n res+=int(str(a)[i])\n for i in range(len(str(b))):\n res+=int(str(b)[i])\n return res\n \nfor i in range(1,n//2+1):\n a=i\n b=n-a\n ans=min(ans,calc(a,b))\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s051282400', 's220404712'] | [3188.0, 3060.0] | [308.0, 310.0] | [245, 250] |
p03331 | u941753895 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ["n=int(input())\nif n==15:\n exit()\na=0\ns=list(str(n))\nsets=list(set(s))\nsets.sort()\nif len(sets)==2 and sets[0]=='0' and sets[1]=='1':\n print(10)\nelse:\n for i in s:\n a+=int(i)\n print(a)", "n=int(input())\na=0\ns=list(str(n))\nsets=list(set(s))\nsets.sort()\nif len(sets)==2 and sets[0]=='0' and sets[1]=='1':\n print(10)\nelse:\n for i in s:\n a+=int(i)\n print(a)"] | ['Wrong Answer', 'Accepted'] | ['s330421496', 's907436096'] | [3064.0, 3060.0] | [17.0, 17.0] | [190, 171] |
p03331 | u949315872 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['#-------------\nN = int(input())\n#-------------\n\nif N%2 == 0:\n k = N//2\nelse:\n k = (N+1)//2\n\ncmb = []\nfor i in range(1,k+1):\n cmb.append([i , N-i])\n\nprint(cmb) \ndef digitSum(n):\n \n s = str(n)\n \n array = list(map(int, s))\n \n return sum(array)\n\nans = []\nfor i in range(k-1):\n X = digitSum(cmb[i][0])\n Y = digitSum(cmb[i][1])\n ans.append(X+Y)\n\n\nif ans == []:\n print("2")\nelse:\n print(min(ans))', '#-------------\nN = int(input())\n#-------------\n\nif N%2 == 0:\n k = N//2\nelse:\n k = (N+1)//2\n\ncmb = []\nfor i in range(1,k+1):\n cmb.append([i , N-i])\n \ndef digitSum(n):\n \n s = str(n)\n \n array = list(map(int, s))\n \n return sum(array)\n\nans = []\nfor i in range(k-1):\n X = digitSum(cmb[i][0])\n Y = digitSum(cmb[i][1])\n ans.append(X+Y)\n\n\nif ans == []:\n print("2")\nelse:\n print(min(ans))'] | ['Wrong Answer', 'Accepted'] | ['s273016336', 's767096010'] | [17652.0, 16656.0] | [175.0, 171.0] | [512, 501] |
p03331 | u967835038 | 2,000 | 1,048,576 | Takahashi has two positive integers A and B. It is known that A plus B equals N. Find the minimum possible value of "the sum of the digits of A" plus "the sum of the digits of B" (in base 10). | ['aa=[]\naint=[]\na=list(input())\naint=map(int,a)\nif sum(aint)==1:\n print(10)\nelse:\n print(sum(aint))', 'a=int(input())\ns=0\nwhile True:\n if 10**s < a:\n s +=1\n else:\n break\na1=a-10**s\nalist=list(str(a1))\naintlist=map(int,alist)\naa=sum(aintlist)\nprint(s+aa)', 'a=[]\naint=[]\na=list(str(input()))\naint=map(int,a)\nif sum(aint)==1:\n print(10)\nelse:\n print(sum(aint))', 'a=[]\naint=[]\na=list(str(input()))\naint=map(int,a)\nif sum(aint)==1:\n print(10)\nelse:\n print(sum(aint))\n', 'import math\n\nn = int(input())\nsum = 0\nlength = int(math.log10(n) + 1)\n\nfor i in range(length):\n\tsum += n % 10\n\tn = int(n / 10)\n\nif sum == 1:\n\tprint(10)\nelse:\n\tprint(sum)\n'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s263068099', 's276553361', 's497184718', 's631067236', 's013383682'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [21.0, 18.0, 17.0, 17.0, 17.0] | [103, 170, 107, 108, 170] |
p03332 | u013408661 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['n,a,b,k=map(int,input().split())\np=998244353\ndef getinv(n):\n inv=[0]*(n+1)\n inv[1]=1\n for i in range(2,n+1):\n inv[i]=(-(p//i)*inv[p%i])%p\n return inv\ndef getnCr(n):\n inv=getinv(n)\n nCr=[0]*(n+1)\n nCr[0]=1\n for i in range(1,n+1):\n nCr[i]=(nCr[i-1]*(n-i+1)*inv[i])%p\n return nCr\ndef solve(n,a,b,k):\n ans=0\n nCr=getnCr(n)\n for i in range(n+1):\n if (k-a*i)<0 or (k-a*i)%b!=0:\n continue\n j=(k-a*i)//b\n if a*i+b*j==k:\n print(i)\n print(j)\n ans+= nCr[i]*nCr[j]\n ans%=p\n return ans\nprint(solve(n,a,b,k))', 'p=998244353\ndef getinv(n):\n inv = [0]*(n+1)\n \n inv[1] = 1\n for i in range(2,n+1):\n \n inv[i] = (-(p//a)*inv[p%a])%p\n return inv\n\ndef getCmb(n):\n \n inv = getinv(n)\n \n nCr = [0]*(n+1)\n \n nCr[0] = 1\n for i in range(1,n+1):\n \n nCr[i] = (nCr[i-1]*(n-i+1)*inv[i])%p\n return nCr\n\ndef solve(n,a,b,k):\n nCr = getCmb(n)\n ans=0\n for i in range(n+1):\n \n j = (k-a*i)//b\n \n if a*i + b*j == k and 0<=j<=n:\n ans+= (nCr[i]*nCr[j])%p\n ans%= p\n return ans\n\nn,a,b,k=map(int,input().split())\nprint(solve(n,a,b,k))', 'n,a,b,k=map(int,input().split())\np=998244353\ndef getinv(n):\n inv=[0]*(n+1)\n inv[1]=1\n for i in range(2,n+1):\n inv[i]=(-p//i*inv[p%i])%p\n return inv\ndef getnCr(n):\n inv=getinv(n)\n nCr=[0]*(n+1)\n nCr[0]=1\n for i in range(1,n+1):\n nCr[i]=(nCr[i-1]*(n-i-1)*inv[i])%p\n return nCr\ndef solve(n,a,b,k):\n ans=0\n nCr=getnCr(n)\n for i in range(n+1):\n if (k-a*i)%b!=0:\n continue\n j=(k-a*i)//b\n if a*i+b*j==k:\n ans+=(nCr[i]*nCr[j])%p\n ans%=p\n return ans\nprint(solve(n,a,b,k))', 'import math\nn,a,b,k=map(int,input().split())\ndef gcd(x,y):\n if y==0:\n return x\n else:\n return gcd(y,x%y)\np=gcd(a,b)\nans=0\nfor i in range(k//(a+b)):\n if (k-(a+b)*i)%p!=0:\n continue\n else:\n q=gcd(p,k-(a+b)*i)\n A=a//q\n B=b//q\n K=k//q\n A_=(pow(A,B-2,B)*K)%p\n for i in range((n-i-A_)//B):\n ans+=math.factorial(n-i)//(math.factorial(A_+B*i)*math.factorial((k-A_+B*i)//B)*math.factorial(n-i-A_+B*i-(k-A_+B*i)//B))\nprint(ans)', 'n,a,b,k=map(int,input().split())\np=998244353\ndef getinv(n):\n inv=[0]*(n+1)\n inv[1]=1\n for i in range(2,N+1):\n inv[i]=(-p//i*inv[p%i])%p\n return inv\ndef getnCr(n):\n inv=getinv(n)\n nCr=[0]*(n+1)\n nCr[0]=1\n for i in range(1,n+1):\n nCr[i]=(nCr[i-1]*(n-i-1)*inv[i])%p\n return nCr\ndef solve(n,a,b,k):\n ans=0\n nCr=getnCr(n)\n for i in range(n+1):\n j=(k-a*i)//b\n if a*i+b*j==k:\n ans+=nCr[i]+nCr[j]\n ans%=p\n return ans\nprint(solve(n,a,b,k))', 'from math import factorial\nn,a,b,k=map(int,input().split())\ndef gcd(x,y):\n if y==0:\n return x\n else:\n return gcd(y,x%y)\nans=0\np=998244353\nx=gcd(a,b)\nif K%x==0:\n A=a//x\n B=b//x\n K=k//x\n for i in range(n):\n if (K-A*i)%B==0:\n ans+= (factorial(n)//factorial(n-i)//factorial(i))*(factorial(n)//factorial(n-(K-A*i)//B)//factorial((K-A*i)//B))\nprint(ans)\n ', 'p=998244353\ndef getinv(n):\n inv = [0]*(n+1)\n \n inv[1] = 1\n for i in range(2,n+1):\n \n inv[i] = (-(p//i)*inv[p%i])%p\n return inv\n\ndef getCmb(n):\n \n inv = getinv(n)\n \n nCr = [0]*(n+1)\n \n nCr[0] = 1\n for i in range(1,n+1):\n \n nCr[i] = (nCr[i-1]*(n-i+1)*inv[i])%p\n return nCr\n\ndef solve(n,a,b,k):\n nCr = getCmb(n)\n ans=0\n for i in range(n+1):\n \n j = (k-a*i)//b\n \n if a*i + b*j == k and 0<=j<=n:\n ans+= (nCr[i]*nCr[j])%p\n ans%= p\n return ans\n\nn,a,b,k=map(int,input().split())\nprint(solve(n,a,b,k))'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s202421127', 's306915261', 's320753488', 's409752533', 's709606283', 's890531820', 's850001525'] | [26720.0, 7796.0, 26700.0, 6768.0, 5364.0, 3064.0, 26720.0] | [308.0, 282.0, 311.0, 2104.0, 22.0, 17.0, 389.0] | [547, 1059, 505, 453, 465, 370, 1059] |
p03332 | u062147869 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['from fractions import gcd\nimport sys\nsys.setrecursionlimit(10**7) \n\nN,A,B,K=map(int,input().split())\nmod = 998244353\n\ntable=[1]\na=1\nfor i in range(1,N+1):\n a=(a*pow(i,mod-2,mod))%mod\n table.append(a)\n\nnum=1\nfor i in range(1,N+1):\n num = (num*i) %mod\n\n\nnumber =0\nfor i in range(N):\n if (K-A*i)%B==0:\n j=(K-A*i)//B\n t = (num*num)%mod\n t = (t*table[i])%mod\n t = (t*table[j])%mod\n t = (t*table[N-i])%mod\n t = (t*table[N-j])%mod\n number = (number+t)%mod\nprint(number)', 'N,A,B,K=map(int,input().split())\nmod = 998244353\n\ntable=[1]\na=1\nfor i in range(1,N+1):\n a=(a*pow(i,mod-2,mod))%mod\n table.append(a)\n\nnum=1\nfor i in range(1,N+1):\n num = (num*i) %mod\n\n\nnumber =0\nfor i in range(N+1):\n if (K-A*i)%B==0 and K-A*i>=0:\n j=(K-A*i)//B\n if 0<=j<=N:\n t = (num*num)%mod\n t = (t*table[i])%mod\n t = (t*table[j])%mod\n t = (t*table[N-i])%mod\n t = (t*table[N-j])%mod\n number = (number+t)%mod\nprint(number)'] | ['Runtime Error', 'Accepted'] | ['s044557209', 's171159462'] | [17668.0, 16968.0] | [1723.0, 1974.0] | [563, 554] |
p03332 | u170201762 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ["MOD = 998244353\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\n\nmemo = [0]*(N+1)\nmemo[0] = memo[N] = 1\nfor k in range(1,N//2+1):\n v = memo[k-1]*(N-k+1)*modinv(k,MOD)\n v %= MOD\n memo[k] = memo[N-k] = v\n\nN,A,B,K = map(int,input().split())\nn = 0\n\nfor i in range(N+1):\n j = K-A*i\n if j < 0:\n break\n if (K-A*i)%B==0:\n j //= B\n n+=(memo[i]*memo[j])%998244353\n n%=998244353\nprint(n%998244353)", "N,A,B,K = map(int,input().split())\nn = 0\nMOD = 998244353\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\n\nmemo = [0]*(N+1)\nmemo[0] = memo[N] = 1\nfor k in range(1,N//2+1):\n v = memo[k-1]*(N-k+1)*modinv(k,MOD)\n v %= MOD\n memo[k] = memo[N-k] = v\nfor i in range(N+1):\n j = K-A*i\n if j < 0:\n break\n if j%B==0 and j/B <= N:\n j //= B\n n+=memo[i]*memo[j]\n n%=998244353\nprint(n%998244353)"] | ['Runtime Error', 'Accepted'] | ['s897423128', 's555661427'] | [3064.0, 11708.0] | [17.0, 918.0] | [666, 659] |
p03332 | u201234972 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['def comb(n,k,p):\n \n from math import factorial\n if n<0 or k<0 or n<k: return 0\n if n==0 or k==0: return 1\n a=factorial(n) %p\n b=factorial(k) %p\n c=factorial(n-k) %p\n return (a*power_func(b,p-2,p)*power_func(c,p-2,p))%p\n\ndef power_func(a,b,p):\n \n if b==0: return 1\n if b%2==0:\n d=power_func(a,b//2,p)\n return d*d %p\n if b%2==1:\n return (a*power_func(a,b-1,p ))%p\n\nN, A, B, K = map(int, input().split())\nQ = 998244353\nans = 0\nfor i in range(N+1):\n if (K - A*i)%B == 0 and (K - A*i)/B <= N:\n j = (K - A*i)/B\n ans = (ans + comb(N,i,Q)*comb(N,j,Q))%Q\nprint(ans)', 'Q = 998244353\ndef modpower(a,b,Q):#a^b mod Q\n if b == 0:\n return 1\n if b%2 == 0:\n d = modpower(a,b//2,Q)\n return d*d%Q\n if b%2 == 1:\n return (a*modpower(a,b-1,Q))%Q\ndef factorials(n,Q):\n F = [1]*(n+1)\n R = [1]*(n+1)\n for i in range(n):\n F[i+1] = F[i]*(i+1)%Q\n R[i+1] = R[i]*modpower(i+1,Q-2,Q)\n return F, R\n\nN, A, B, K = map( int, input().split())\nans = 0\nF, R = factorials(N,Q)\nfor i in range( min(K//A, N)+1):\n if (K-A*i)%B == 0:\n print(i)\n j = (K-A*i)//B\n print(F[N]*R[j]%Q*R[N-j]%Q*F[N]*R[i]%Q*R[N-i]%Q)\n ans = (ans + F[N]*R[j]*%QR[N-j]%Q*F[N]*R[i]%Q*R[N-i]%Q)%Q\nprint(ans) \n', 'Q = 998244353\ndef modpower(a,b,Q):#a^b mod Q\n if b == 0:\n return 1\n if b%2 == 0:\n d = modpower(a,b//2,Q)\n return d*d%Q\n if b%2 == 1:\n return (a*modpower(a,b-1,Q))%Q\ndef factorials(n,Q):\n F = [1]*(n+1)\n R = [1]*(n+1)\n for i in range(n):\n F[i+1] = F[i]*(i+1)%Q\n R[i+1] = R[i]*modpower(i+1,Q-2,Q)\n return F, R\n\nN, A, B, K = map( int, input().split())\nans = 0\nF, R = factorials(N,Q)\nprint(F)\nprint(R)\nfor i in range( min(K//A, N)+1):\n if (K-A*i)%B == 0:\n print(i)\n j = (K-A*i)//B\n print(F[N]*R[j]*R[N-j]%Q*F[N]*R[i]*R[N-i]%Q)\n ans = (ans + F[N]*R[j]*R[N-j]%Q*F[N]*R[i]*R[N-i]%Q)%Q\nprint(ans) ', 'Q = 998244353\ndef modpower(a,b,Q):#a^b mod Q\n if b == 0:\n return 1\n if b%2 == 0:\n d = modpower(a,b//2,Q)\n return d*d%Q\n if b%2 == 1:\n return (a*modpower(a,b-1,Q))%Q\ndef factorials(n,Q):\n F = [1]*(n+1)\n R = [1]*(n+1)\n for i in range(n):\n F[i+1] = F[i]*(i+1)%Q\n R[i+1] = R[i]*modpower(i+1,Q-2,Q)\n return F, R\n\nN, A, B, K = map( int, input().split())\nans = 0\nF, R = factorials(N,Q)\n\nfor i in range( min(K//A, N)+1):\n if (K-A*i)%B == 0:\n j = (K-A*i)//B\n ans = (ans + F[N]*R[j]*%QR[N-j]%Q*F[N]*R[i]%Q*R[N-i]%Q)%Q\nprint(ans) \n', 'Q = 998244353\ndef getInv(N):\n inv = [0] * (N + 1)\n inv[0] = 1\n inv[1] = 1\n for i in range(2, N + 1):\n inv[i] = (-(Q // i) * inv[Q%i]) % Q\n return inv\n\nN, A, B, K = map( int, input().split())\nans = 0\ninvs = getInv(N)\nnCk = [1]*(N+1)\nfor i in range(1,N+1):\n nCk[i] = (nCk[i-1]*(N-i+1)*invs[i])%Q\nfor i in range(N+1):\n j = (K-A*i)//B\n if A*i + B*j == K and j <= N and 0 <= j:\n j = (K-A*i)//B\n ans = (ans + nCk[i]*nCk[j])%Q\nprint(ans)'] | ['Time Limit Exceeded', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s149750748', 's342241887', 's699446134', 's720036677', 's193002294'] | [8072.0, 3064.0, 1779524.0, 3064.0, 26720.0] | [2104.0, 17.0, 2231.0, 17.0, 542.0] | [674, 745, 754, 672, 475] |
p03332 | u303019816 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['N, A, B, K = map(int, input().split(" "))\nmod = 998244353\nncr = [1] * (N + 1)\nv = 1\n\nprint(ncr)\nfor i in range(N):\n v = (v * ((N - i) % mod) * pow((i + 1), mod - 2, mod)) % mod\n ncr[i + 1] = v % mod\n\npat = 0\nfor a in range(N + 1):\n if (K - (a * A) < 0):\n break\n if (K - (a * A)) % B == 0 and ((K - (a * A)) // B) <= N:\n pat += ncr[a] * ncr[(K - (a * A)) // B]\n pat %= mod\n\nprint(pat % mod)', 'N, A, B, K = map(int, input().split(" "))\nmod = 998244353\nncr = [1] * (N + 1)\nv = 1\n\nfor i in range(N):\n v = (v * ((N - i) % mod) * pow((i + 1), mod - 2, mod)) % mod\n ncr[i + 1] = v % mod\n\npat = 0\nfor a in range(N + 1):\n if (K - (a * A) < 0):\n break\n if (K - (a * A)) % B == 0 and ((K - (a * A)) // B) <= N:\n pat += ncr[a] * ncr[(K - (a * A)) // B]\n pat %= mod\n\nprint(pat % mod)'] | ['Wrong Answer', 'Accepted'] | ['s641884492', 's865091235'] | [15764.0, 14836.0] | [1828.0, 1808.0] | [422, 411] |
p03332 | u389910364 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['import bisect\nimport heapq\nimport itertools\nimport math\nimport operator\nimport os\nimport re\nimport string\nimport sys\nfrom collections import Counter, deque, defaultdict\nfrom copy import deepcopy\nfrom decimal import Decimal\nfrom fractions import gcd\nfrom functools import lru_cache, reduce\nfrom operator import itemgetter, mul, add, xor\n\nimport numpy as np\nfrom scipy.misc import comb\n\nif os.getenv("LOCAL"):\n sys.stdin = open("_in.txt", "r")\n\nsys.setrecursionlimit(2147483647)\nINF = float("inf")\nIINF = 10 ** 18\nMOD = 998244353\n\n\ndef get_factorials(max, mod=None):\n \n ret = [1]\n n = 1\n if mod:\n for i in range(1, max + 1):\n n *= i\n n %= mod\n ret.append(n)\n else:\n for i in range(1, max + 1):\n n *= i\n ret.append(n)\n return ret\n\n\ndef mod_invs(max, mod):\n \n invs = [1] * (max + 1)\n for x in range(2, max + 1):\n invs[x] = (-(mod // x) * invs[mod % x]) % mod\n return invs\n\n\ndef factorial_invs(max, mod):\n \n ret = []\n r = 1\n for inv in mod_invs(max, mod):\n r = r * inv % mod\n ret.append(r)\n return ret\n\n\nclass Combination:\n def __init__(self, max, mod):\n \n self._factorials = get_factorials(max, mod)\n self._finvs = factorial_invs(max, mod)\n self._mod = mod\n\n def ncr(self, n, r):\n """\n :param int n:\n :param int r:\n :rtype: int\n """\n if n < r:\n return 0\n return self._factorials[n] * self._finvs[r] % self._mod * self._finvs[n - r] % self._mod\n\n\nN, A, B, K = list(map(int, sys.stdin.readline().split()))\ncomb = Combination(max=N, mod=MOD)\nans = 0\n\nfor a in range(N + 1):\n if (K - a * A) % B != 0:\n continue\n b = int((K - a * A) // B)\n if not (0 <= a <= N and 0 <= b <= N):\n continue\n\n s = 0\n \n c = min(a, b)\n # A\n a -= c\n # B\n b -= c\n \n d = N - a - b - c\n \n while c >= 0 and d >= 0:\n s += comb.ncr(N, a) * comb.ncr(N - a, b) * comb.ncr(N - a - b, c)\n a += 1\n b += 1\n c -= 1\n d -= 1\n\n ans += s\n ans %= MOD\nprint(ans)\n', 'import os\nimport sys\n\nif os.getenv("LOCAL"):\n sys.stdin = open("_in.txt", "r")\n\nsys.setrecursionlimit(2147483647)\nINF = float("inf")\nIINF = 10 ** 18\nMOD = 998244353\n\n\ndef get_factorials(max, mod=None):\n \n ret = [1]\n n = 1\n if mod:\n for i in range(1, max + 1):\n n *= i\n n %= mod\n ret.append(n)\n else:\n for i in range(1, max + 1):\n n *= i\n ret.append(n)\n return ret\n\n\ndef mod_invs(max, mod):\n \n invs = [1] * (max + 1)\n for x in range(2, max + 1):\n invs[x] = (-(mod // x) * invs[mod % x]) % mod\n return invs\n\n\ndef factorial_invs(max, mod):\n \n ret = []\n r = 1\n for inv in mod_invs(max, mod):\n r = r * inv % mod\n ret.append(r)\n return ret\n\n\nclass Combination:\n def __init__(self, max, mod):\n \n self._factorials = get_factorials(max, mod)\n self._finvs = factorial_invs(max, mod)\n self._mod = mod\n\n def ncr(self, n, r):\n """\n :param int n:\n :param int r:\n :rtype: int\n """\n if n < r:\n return 0\n return self._factorials[n] * self._finvs[r] % self._mod * self._finvs[n - r] % self._mod\n\n\nN, A, B, K = list(map(int, sys.stdin.readline().split()))\ncomb = Combination(max=N, mod=MOD)\n# ans = 0\n\n# for a in range(N + 1):\n\n# continue\n# b = int((K - a * A) // B)\n# if not (0 <= a <= N and 0 <= b <= N):\n# continue\n#\n\n\n# c = min(a, b)\n# # A\n# a -= c\n# # B\n# b -= c\n\n# d = N - a - b - c\n\n# while c >= 0 and d >= 0:\n\n# a += 1\n# b += 1\n# c -= 1\n# d -= 1\n#\n# ans += s\n# ans %= MOD\n# print(ans)\n\n\n\n\n#\n\n# for a in range(N + 1):\n\n# continue\n# b = int((K - a * A) // B)\n# if not (0 <= a <= N and 0 <= b <= N):\n# continue\n# dp[0][a][b] += 1\n#\n\n# dp[i] += dp[i - 1]\n# dp[i, :-1] += dp[i - 1, 1:]\n# dp[i, :, :-1] += dp[i - 1, :, 1:]\n# dp[i, :-1, :-1] += dp[i - 1, 1:, 1:]\n# print(dp)\n# print(dp[-1][0][0])\n\n\n\nans = 0\nfor a in range(N + 1):\n if (K - a * A) % B != 0:\n continue\n b = int((K - a * A) // B)\n if not (0 <= a <= N and 0 <= b <= N):\n continue\n ans += comb.ncr(N, a) * comb.ncr(N, b)\n ans %= MOD\nprint(ans)\n'] | ['Time Limit Exceeded', 'Accepted'] | ['s867527054', 's296297321'] | [50020.0, 38704.0] | [2110.0, 815.0] | [2607, 3183] |
p03332 | u403301154 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['n, A, B, k = list(map(int, input().split()))\n\nMOD = 998244353\nMAX = 3*10**5+2\n\nfac = [0 for i in range(MAX)]\ninv = [0 for i in range(MAX)]\nifac = [0 for i in range(MAX)]\nfac[0] = 1; fac[1] = 1\ninv[1] = 1\nifac[0] = 1; ifac[1] = 1\n\nfor i in range(2, MAX):\n fac[i] = fac[i-1]*i%MOD\n inv[i] = inv[MOD%i]*(MOD-MOD//i)%MOD\n ifac[i] = ifac[i-1]*inv[i]%MOD\n\ndef nCk(n, k):\n if n<k or n<0 or k<0: return 0\n return (((fac[n]*ifac[k])%MOD)*ifac[n-k])%MOD\n\nans = 0\nfor i in range(n+1):\n if (k-A*i)%B == 0:\n b = (k-A*i)//B\n if 0<=b<=n:\n ans = (ans+nCk(n, i)*nCk(n, b))%MOD\n\nif ans==0:\n print(1)\nelse:\n print(ans)\nprint(nCk(4, 0))', 'n, A, B, k = list(map(int, input().split()))\n\nMOD = 998244353\nMAX = 3*10**5+2\n\nfac = [0 for i in range(MAX)]\ninv = [0 for i in range(MAX)]\nifac = [0 for i in range(MAX)]\nfac[0] = 1; fac[1] = 1\ninv[1] = 1\nifac[0] = 1; ifac[1] = 1\n\nfor i in range(2, MAX):\n fac[i] = fac[i-1]*i%MOD\n inv[i] = inv[MOD%i]*(MOD-MOD//i)%MOD\n ifac[i] = ifac[i-1]*inv[i]%MOD\n\ndef nCk(n, k):\n if n<k or n<0 or k<0: return 0\n return (((fac[n]*ifac[k])%MOD)*ifac[n-k])%MOD\n\nans = 0\nfor i in range(n+1):\n if (k-A*i)%B == 0:\n b = (k-A*i)//B\n if 0<=b<=n:\n ans = (ans+nCk(n, i)*nCk(n, b))%MOD\n\nif ans==0:\n print(1)\nelse:\n print(ans)'] | ['Wrong Answer', 'Accepted'] | ['s724453130', 's984712901'] | [38704.0, 38704.0] | [897.0, 885.0] | [635, 618] |
p03332 | u415905784 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['from scipy.misc import comb\nN,A,B,K = map(int, input().split())\ncount = 0\nP = []\nc = 0\nwhile c < N:\n if K % B == 0:\n if K//B <= N:\n \n P.append([c, K//B])\n K -= A\n c += 1\nfor p in P:\n count += comb(N, p[0], exact=True) * comb(N, p[1], exact=True)\nif count > 998244353:\n count = count % 998244353\nprint(count)', 'import math\ndef divide(A,B,C,D,E):\n F = [B,C,D,E]\n F.sort()\n tail = F[-1]\n F = F[:-1]\n G = 1\n for i in range(A-tail):\n G *= A - i\n for f in F:\n G /= f\n return G\nN,A,B,K = map(int, input().split())\ncount = 0\nNf = math.factorial(N)\nP = []\nc = 0\nwhile c < N:\n if K % B == 0:\n if K//B <= N:\n print((c, K//B))\n P.append([c, K//B])\n K -= A\n c += 1\nfor p in P:\n for G in range(min(p[0],p[1]) + 1):\n W = N - p[0] - p[1] + G\n if W >= 0:\n #divider = math.factorial(p[0]-G) * math.factorial(p[1]-G) * math.factorial(G) * math.factorial(W)\n pattern = divide(Nf, math.factorial(p[0]-G), math.factorial(p[1]-G), math.factorial(G), math.factorial(W))\n count += pattern\ncount *= 10 ** k\nif count > 998244353:\n count = count % 998244353\nprint(count)', 'def fib(n, p):\n F = [1] * (n + 1)\n for i in range(2, n + 1):\n F[i] = F[i - 1] * i % p\n return F\ndef finv(F, p):\n N = len(F) - 1\n Finv = list(F)\n Finv[-1] = pow(F[-1], p - 2, p)\n for i in range(N - 1, -1, -1):\n Finv[i] = Finv[i + 1] * (i + 1) % p\n return Finv\ndef comb(F, Finv, n, a, p):\n return F[n] * Finv[a] * Finv[n - a] % p\nN, A, B, K = map(int, input().split())\np = 998244353\nF = fib(N, p)\nFinv = finv(F, p)\ncnt = 0\nfor a in range(min(N + 1, K // A + 1)):\n _A = A * a\n if _A > K:\n continue\n if (K - _A) % B > 0:\n continue\n b = (K - _A) // B\n if b > N:\n continue\n cnt += comb(F, Finv, N, a, p) * comb(F, Finv, N, b, p)\n cnt %= p\nprint(cnt)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s281144392', 's385872447', 's455247358'] | [50960.0, 46116.0, 26996.0] | [2111.0, 2106.0, 546.0] | [341, 785, 674] |
p03332 | u478870821 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['from sys import exit, setrecursionlimit, stderr\nfrom functools import reduce\nfrom itertools import *\nfrom collections import defaultdict\nfrom bisect import bisect\n\ndef read():\n return int(input())\n\ndef reads():\n return [int(x) for x in input().split()]\n\nP = 998244353\nMM = 10**6\n\nfact = [1]\nfor i in range(1, MM):\n fact.append((fact[i-1] * i) % P)\n\ndef inv(x):\n return pow(x, P-2, P)\n\ndef comb(n, k):\n print(n, k)\n assert 0 <= k <= n\n return (fact[n] * inv(fact[k]) * inv(fact[n-k])) % P\n\nsetrecursionlimit(100000)\n\nN, A, B, K = reads()\n\nresult = 0\nfor x in range(N+1):\n if (K - A * x) % B != 0:\n continue\n y = (K - A * x) // B\n if not (0 <= y <= N):\n continue\n result = (result + comb(N, x) * comb(N, y)) % P\n\nprint(result)', 'def read():\n return int(input())\n\ndef reads():\n return [int(x) for x in input().split()]\n\nP = 998244353\n\nN, A, B, K = reads()\n\ndef inv(n):\n return pow(n, P-2, P)\n\nfact = [1] * (N+1)\nfor i in range(1, N+1):\n fact[i] = fact[i-1] * i % P\n\ninvfact = [inv(fact[N])] * (N+1)\nfor i in range(N, 0, -1):\n invfact[i-1] = invfact[i] * i % P\n\ndef comb(n, k):\n \n return fact[n] * invfact[k] * invfact[n-k] % P\n\nresult = 0\nfor x in range(N+1):\n y, r = divmod(K - A * x, B)\n if r == 0 and 0 <= y <= N:\n result = result + comb(N, x) * comb(N, y) % P\n\nprint(result % P)'] | ['Wrong Answer', 'Accepted'] | ['s414814000', 's398147651'] | [46284.0, 26740.0] | [2106.0, 567.0] | [741, 584] |
p03332 | u497625442 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ["from functools import lru_cache\n\nL = input().split()\nsprime = 998244353 # approx 10**9\nN = int(L[0])\nA = int(L[1])\nB = int(L[2])\nK = int(L[3])\n\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\n@lru_cache(maxsize=N)\ndef factorial(m):\n\ta = 1\n\tfor i in range(1,m):\n\t\ta = (a*i) % sprime\n\treturn a\n\ndef binom(m):\n\tif N == m:\n\t\treturn 1\n\telif m == 1:\n\t\treturn N\n\telif m > N:\n\t\treturn 0\n\telse:\n\t\treturn (factorial(N) * modinv(factorial(m),sprime) * modinv(factorial(N-m),sprime)) % sprime\n\n# max is A*N + B*N\nsum = 0\nfor i in range(0,N):\n\tif (K - A*i) % B == 0:\n\t\tj = (K-A*i)//B\n\t\tsum += (binom(i) * binom(j)) % sprime\n\nprint(sum)\n\n", "N,A,B,K = map(int,input().split()\nsprime = 998244353 # approx 10**9\nA,B = sorted((A,B))\nif (A+B) * N < K:\n\tprint(0)\n\texit()\n\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\nmemo = [0] * (N+1)\nmemo[0] = memo[N] = 1\nfor i in range(1,N//2+1):\n\tv = memo[i-1] * (N-i+1) * modinv(i,sprime)\n\tv = v % sprime\n\tmemo[i] = memo[N-i] = v\n\n# max is A*N + B*N\nsum = 0\nfor j in range(0,N):\n\ti = (K-B*j)//A\n\tif 0 <= i <= N and A*i+B*j==K:\n\t\tsum += memo[i] * memo[j]\n\t\tsum %= sprime\n\nprint(sum)\n\n", "from functools import lru_cache\n\nL = input().split()\nsprime = 998244353 # approx 10**9\nN = int(L[0])\nA = int(L[1])\nB = int(L[2])\nK = int(L[3])\n\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\n@lru_cache(maxsize=N)\ndef factorial(m):\n\ta = 1\n\tfor i in range(1,m):\n\t\ta = (a*i) % sprime\n\ndef binom(m):\n\tif N == m:\n\t\treturn 1\n\telif m == 1:\n\t\treturn N\n\telif m > N:\n\t\treturn 0\n\telse:\n\t\treturn (a * modinv(b,sprime) * modinv(c*sprime)) % sprime\n\n# max is A*N + B*N\nsum = 0\nfor i in range(0,N):\n\tif (K - A*i) % B == 0:\n\t\tj = (K-A*i)//B\n\t\tsum += (binom(N,i) * binom(N,j)) % sp\n\nprint(sum)\n", "from functools import lru_cache\n\nL = input().split()\nsprime = 998244353 # approx 10**9\nN = int(L[0])\nA = int(L[1])\nB = int(L[2])\nK = int(L[3])\n\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\n@lru_cache(maxsize=N)\ndef factorial(m):\n\ta = 1\n\tfor i in range(1,m):\n\t\ta = (a*i) % sprime\n\treturn a\n\ndef binom(m):\n\tif N == m:\n\t\treturn 1\n\telif m == 1:\n\t\treturn N\n\telif m > N:\n\t\treturn 0\n\telse:\n\t\treturn (factorial(N) * modinv(factorial(m),sprime) * modinv(factorial(N-m),sprime)) % sprime\n\n# max is A*N + B*N\nsum = 0\nfor i in range(0,N):\n\tif (K - A*i) % B == 0:\n\t\tj = (K-A*i)//B\n\t\tsum += (binom(N,i) * binom(N,j)) % sp\n\nprint(sum)\n\n", "from functools import lru_cache\n\nL = input().split()\nsprime = 998244353 # approx 10**9\nN = int(L[0])\nA = int(L[1])\nB = int(L[2])\nK = int(L[3])\n\ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n\n@lru_cache(maxsize=N)\ndef factorial(m):\n\ta = 1\n\tfor i in range(1,m):\n\t\ta = (a*i) % sprime\n\ndef binom(m):\n\tif N == m:\n\t\treturn 1\n\telif m == 1:\n\t\treturn N\n\telif m > N:\n\t\treturn 0\n\telse:\n\t\treturn (factorial(N) * modinv(factorial(m),sprime) * modinv(factorial(N-m),sprime)) % sprime\n\n# max is A*N + B*N\nsum = 0\nfor i in range(0,N):\n\tif (K - A*i) % B == 0:\n\t\tj = (K-A*i)//B\n\t\tsum += (binom(N,i) * binom(N,j)) % sp\n\nprint(sum)\n\n", 'import math\nL = input().split()\nsp = 998244353\n# approx 10**9\nN = int(L[0])\nA = int(L[1])\nB = int(L[2])\nK = int(L[3])\n\ndef my_binom(n,m):\n\tif n == m:\n\t\treturn 1\n\telif m == 1:\n\t\treturn n\n\telif m > n:\n\t\treturn 0\n\telse:\n\t\ta = math.factorial(n)\n\t\tb = math.factorial(m)\n\t\tc = math.factorial(n - m)\n\t\treturn a // (b*c)\n\n# max is A*N + B*N\nsum = 0\nfor i in range(0,N):\n\tif (K - A*i) % B == 0:\n\t\tj = (K-A*i)//B\n\t\tsum += (binom(N,i) * binom(N,j)) % sp\n\nprint(sum)\n', "N,A,B,K = map(int,input().split())\nsprime = 998244353 # approx 10**9\nA,B = sorted((A,B))\nif (A+B) * N < K:\n\tprint(0)\n\texit()\n \ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n \ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n \nmemo = [0] * (N+1)\nmemo[0] = memo[N] = 1\nfor i in range(1,N//2+1):\n\tv = memo[i-1] * (N-i+1) * modinv(i,sprime)\n\tv = v % sprime\n\tmemo[i] = memo[N-i] = v\n \n# max is A*N + B*N\nsum = 0\nfor b in range(N+1):\n a = (K-b*B)//A\n if 0 <= a <= N and a*A+b*B == K:\n sum += memo[a]*memo[b]\n sum %= sprime\n\nprint(sum)"] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s242868188', 's362412368', 's519587124', 's618049977', 's901520274', 's944550344', 's232017370'] | [3684.0, 2940.0, 3828.0, 3828.0, 3572.0, 3064.0, 10128.0] | [2107.0, 17.0, 50.0, 141.0, 49.0, 45.0, 897.0] | [864, 718, 818, 864, 854, 455, 727] |
p03332 | u543954314 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['from math import factorial as fac\ndef cc(n,r):\n return fac(n)//fac(r)//fac(n-r)\nn, a, b, k = map(int, input().split())\nmod = 998244353\nfor i in range(min(k//a+1,n+1)):\n j = k-a*i\n if j%b == 0 andj<=n:\n ans += cc(n,i)*cc(n,j)%mod\n ans %= mod\nprint(ans)', 'n, a, b, k = map(int, input().split())\nmod = 998244353\nans = 0\nccn = [0]*(n+1)\nccn[0] = 1\nfor i in range(1,n+1):\n ccn[i] = ccn[i-1]*(n+1-1)//i%mod\nfor i in range(min(k//a,n)+1):\n jof = k-a*i\n if jof%b==0 and jof<=n*b:\n j = jof//b\n ans += ccn[i]*ccn[j]%mod\n ans %= mod\nprint(ans)', 'n,a,b,k = map(int,input().split())\nmod = 998244353\nfun = [1]*(n+1)\nfor i in range(1,n+1):\n fun[i] = fun[i-1]*i%mod\nrev = [1]*(n+1)\nrev[n] = pow(fun[n],mod-2,mod)\nfor i in range(n-1,0,-1):\n rev[i] = rev[i+1]*(i+1)%mod\ndef nCr(n,r):\n if r > n:\n return 0\n return fun[n]*rev[r]%mod*rev[n-r]%mod\nans = 0\nfor i in range(min(n,k//a)+1):\n j = (k-a*i)//b\n if i*a+j*b == k and 0<=j<=n:\n ans += nCr(n,i)*nCr(n,j)\n ans %= mod\nprint(ans)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s081380306', 's918562994', 's038959283'] | [2940.0, 14880.0, 27764.0] | [17.0, 370.0, 632.0] | [260, 290, 439] |
p03332 | u547085427 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['n, a, b, k = map(int, input().split())\nMOD = 998244353\n\na_max = min(k // a, n)\npair = []\nfor i in range(a_max):\n if (k - a * i) % b == 0:\n j = (k - a * i) // b\n if j <= n:\n pair.append([i % MOD,j % MOD])\n\ninv = [0] * (n + 1)\ninv[1] = 1\nfor i in range(2, n + 1):\n inv[i] = (-(MOD // i) * inv[MOD % i]) % MOD\n\nnCr = [0] * (n + 1)\nnCr[0] = 1\nfor r in range(1, n + 1):\n nCr[r] = (nCr[r - 1] * (n - r + 1) * inv[r]) % MOD\n# print(nCr)\n\nprint(pair)\n\nresult = 0\nfor p in pair:\n result += (nCr[p[0]] % MOD) * (nCr[p[1]] % MOD)\nprint(result % MOD)', '# coding: utf-8\n# Your code here!\n\nn, a, b, k = map(int, input().split())\nMOD = 998244353\n\ninv = [0] * ( n + 1)\ninv[1] = 1\nfor i in range(2, n + 1):\n inv[i] = (-(MOD // i) * inv[MOD % i]) % MOD\n\nnCr = [0] * ( n + 1)\nnCr[0] = 1\nfor i in range(1, n+1):\n nCr[i] = (nCr[i-1] * (n - i + 1) * inv[i]) % MOD\n\nresult = 0\nmaxA = min(n, k//a)\nfor i in range(maxA + 1):\n if ( k - a * i) % b == 0:\n j = ( k - a * i) // b\n if j <= n:\n result += (nCr[i] * nCr[j]) % MOD\nif result == 0:\n print(1)\nelse:\n print(result % MOD)'] | ['Wrong Answer', 'Accepted'] | ['s308651301', 's742497327'] | [76452.0, 26720.0] | [755.0, 541.0] | [576, 548] |
p03332 | u659640418 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['import itertools\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(n):\n if (n - (i * a)) % b == 0:\n count += (itertools.combinations(n, i) * itertools.combinations(n, (n-i*a)/b))\nprint(count/998244353)', 'import math\ndef C(n, r):\n return math.factorial(n)//(math.factorial(n-r)*math.factorial(r))\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(math.floor(k/a)):\n if (k - (i * a)) % b == 0:\n count += (C(n, i) * C(n, (k-a*i)/b))\nprint(count%998244353)', 'import itertools\nimport math\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(math.floor(k/a)):\n if (k - (i * a)) % b == 0:\n count += (itertools.combinations(n, i) * itertools.combinations(n, (k-i*a)/b))\nprint(count%998244353)', 'import math\n\ndef P(n, r):\n return math.factorial(n)//math.factorial(n-r)\n\ndef C(n, r):\n return P(n, r)//math.factorial(r)\n\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(math.floor(k/a)):\n if (k - (i * a)) % b == 0:\n count += (C(n, i) * C(n, (k-a*i)/b))\nprint(count%998244353)', 'import itertools\nimport math\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(math.floor(n/a)):\n if (n - (i * a)) % b == 0:\n count += (itertools.combinations(n, i) * itertools.combinations(n, (n-i*a)/b))\nprint(count%998244353)', 'import itertools\nimport math\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(math.floor(n/a)):\n if (n - (i * a)) % b == 0:\n count += (itertools.combinations(n, i) * itertools.combinations(n, (n-i*a)/b))\nprint(count/998244353)', 'import math\nimport sys\nsys.setrecursionlimit(100000000000000000000000000000000000000000)\n \nnCr = {}\ndef cmb(n, r):\n if r == 0 or r == n: return 1\n if r == 1: return n\n if (n,r) in nCr: return nCr[(n,r)]\n nCr[(n,r)] = cmb(n-1,r) + cmb(n-1,r-1)\n return nCr[(n,r)]\n \n \nn, a, b, k = map(int, input().split())\ncount = 0\n \nfor i in range(n+1):\n if (k - (i * a)) % b == 0:\n count += cmb(n, i) * cmb(n, (k-i*a)/b)\nprint(count%998244353)', 'import itertools\nimport math\n\ndef P(n, r):\n return math.factorial(n)//math.factorial(n-r)\n\ndef C(n, r):\n return P(n, r)//math.factorial(r)\n\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(k):\n if (k - (i * a)) % b == 0:\n count += (C(n, i) * C(n, (k-a*i)/b))\nprint(count%998244353)', 'import math\nfrom scipy.special import comb\n\nn, a, b, k = map(int, input().split())\ncount = 0\nfor i in range(math.floor(k/a)):\n if (k - (i * a)) % b == 0:\n count += (comb(n, i) * comb(n, (k-a*i)/b))\nprint(count%998244353)', "N,A,B,K = map(int,input().split())\nsprime = 998244353 # approx 10**9\nA,B = sorted((A,B))\nif (A+B) * N < K:\n\tprint(0)\n\texit()\n \ndef egcd(a, b):\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n \ndef modinv(a, m):\n g, x, y = egcd(a, m)\n if g != 1:\n raise Exception('modular inverse does not exist')\n else:\n return x % m\n \nmemo = [0] * (N+1)\nmemo[0] = memo[N] = 1\nfor i in range(1,N//2+1):\n\tv = memo[i-1] * (N-i+1) * modinv(i,sprime)\n\tv = v % sprime\n\tmemo[i] = memo[N-i] = v\n \n# max is A*N + B*N\nsum = 0\nfor b in range(N+1):\n a = (K-b*B)//A\n if 0 <= a <= N and a*A+b*B == K:\n sum += memo[a]*memo[b]\n sum %= sprime\n \nprint(sum)"] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s358781749', 's555458781', 's556375473', 's674406781', 's713373029', 's721985925', 's803970016', 's865512409', 's998989083', 's823251716'] | [3060.0, 6340.0, 3060.0, 6352.0, 3060.0, 3060.0, 3064.0, 6372.0, 24036.0, 10128.0] | [93.0, 2104.0, 43.0, 2104.0, 18.0, 18.0, 17.0, 2104.0, 360.0, 880.0] | [225, 275, 251, 309, 251, 251, 453, 312, 230, 728] |
p03332 | u695811449 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['def squaremod(A,p,mod):\n if p==0:\n return 1\n if p%2==1:\n return (A*squaremod(A,p-1,mod))%mod\n if p%2==0:\n return (squaremod(A,p/2,mod) %mod)**2 %mod\n\nINV=[None]*(N+1)\nfor i in range(1,N+1):\n INV[i]=squaremod(i,mod-2,mod)\n\ndef Combi(n,r):\n ANS=1\n for i in range(min(r,n-r)):\n ANS *= (N-i)*INV[i+1]\n\n return ANS\n \n\nANS=0\n\nif B>A:\n (A,B)=(B,A)\n\nran=K//A\n\nfor i in range(min(ran,N)+1):\n q, r = divmod(K-(A*i), B)\n if r==0 and q<=N:\n ANS = (ANS+(Combi(N,i)*Combi(N,q)))%mod\n #print(q,r,ANS)\n\nprint(ANS)', 'N,A,B,K=map(int,input().split())\nmod=998244353\n\nINV=[None]*(N+1)\nfor i in range(1,N+1):\n INV[i]=pow(i,mod-2,mod)\n\nCombi=[None]*(N+1)\nCombi[0]=1\nCombi[1]=N\nfor i in range(2,N//2+2):\n Combi[i]=Combi[i-1]*(N-i+1)*INV[i] %mod\nfor i in range(N//2+2,N+1):\n Combi[i]=Combi[N-i]\n\n\nANS=0\n\nif B>A:\n (A,B)=(B,A)\n\nran=K//A\n\nfor i in range(min(ran,N)+1):\n q, r = divmod(K-(A*i), B)\n if r==0 and q<=N:\n ANS = (ANS+(Combi[i]*Combi[q])%mod)%mod\n\nprint(ANS)\n\n'] | ['Runtime Error', 'Accepted'] | ['s868764686', 's397643092'] | [3064.0, 22000.0] | [18.0, 1822.0] | [596, 467] |
p03332 | u763115743 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['MOD = 998244353\n\n\ndef get_inv(n):\n inv = [0] * (n + 1)\n inv[1] = 1\n\n for i in range(2, n + 1):\n inv[i] = (-(MOD // i) * inv[MOD % i]) % MOD\n\n return inv\n\n\ndef get_cmb(n):\n inv = get_inv(n)\n cmb = [0] * (n + 1)\n cmb[0] = 1\n\n for i in range(1, n + 1):\n cmb[i] = (cmb[i - 1] * (n - i + 1) * inv[i]) % MOD\n\n return cmb\n\n\ndef solve(n, a, b, k):\n ans = 0\n cmb = get_cmb(n)\n print(cmb)\n for a_num in range(n + 1):\n b_num = (k - a * a_num) // b\n if (a * a_num + b * b_num == k) and (0 <= b_num <= n):\n ans += (cmb[a_num] * cmb[b_num]) % MOD\n ans %= MOD\n return ans\n\n\ndef main():\n n, a, b, k = list(map(int, input().split()))\n ans = solve(n, a, b, k)\n print(ans)\n\n\nmain()\n', 'MOD = 998244353\n\n\ndef get_inv(n):\n inv = [0] * (n + 1)\n inv[1] = 1\n\n for i in range(2, n + 1):\n inv[i] = (-(MOD // i) * inv[MOD % i]) % MOD\n\n return inv\n\n\ndef get_cmb(n):\n inv = get_inv(n)\n cmb = [0] * (n + 1)\n cmb[0] = 1\n\n for i in range(1, n + 1):\n cmb[i] = (cmb[i - 1] * (n - i + 1) * inv[i]) % MOD\n\n return cmb\n\n\ndef solve(n, a, b, k):\n ans = 0\n cmb = get_cmb(n)\n for a_num in range(n + 1):\n b_num = (k - a * a_num) // b\n if (a * a_num + b * b_num == k) and (0 <= b_num <= n):\n ans += (cmb[a_num] * cmb[b_num]) % MOD\n ans %= MOD\n return ans\n\n\ndef main():\n n, a, b, k = list(map(int, input().split()))\n ans = solve(n, a, b, k)\n print(ans)\n\n\nmain()\n'] | ['Wrong Answer', 'Accepted'] | ['s469130698', 's244678072'] | [26720.0, 26720.0] | [412.0, 401.0] | [764, 749] |
p03332 | u968404618 | 2,000 | 1,048,576 | Takahashi has a tower which is divided into N layers. Initially, all the layers are uncolored. Takahashi is going to paint some of the layers in red, green or blue to make a beautiful tower. He defines the _beauty of the tower_ as follows: * The beauty of the tower is the sum of the scores of the N layers, where the score of a layer is A if the layer is painted red, A+B if the layer is painted green, B if the layer is painted blue, and 0 if the layer is uncolored. Here, A and B are positive integer constants given beforehand. Also note that a layer may not be painted in two or more colors. Takahashi is planning to paint the tower so that the beauty of the tower becomes exactly K. How many such ways are there to paint the tower? Find the count modulo 998244353. Two ways to paint the tower are considered different when there exists a layer that is painted in different colors, or a layer that is painted in some color in one of the ways and not in the other. | ['from scipy.misc import comb\n\nmod = 998244353\n\nn, a, b, k = map(int, input().split())\n\nans = 0\nfor i in range(n+1):\n Num = (k-a*i)\n if (0 <= Num//b) and (Num//b <= n) and (Num%b == 0):\n j = Num//b\n ans += comb(n, i, exact=True) * comb(n, j, exact=True)\nprint(ans%mod)', 'mod = 998244353\n\ndef comb(n, r):\n if 2 * r > n: return comb(n, n-r)\n return fac[n] * inv[r] * inv[n-r] % mod\n\nn, a, b, k = map(int, input().split())\n\nfac = [1] * (n+2)\ninv = [1] * (n+2)\nfor i in range(2, n+1):\n fac[i] = fac[i-1] * i % mod\ninv[n] = pow(fac[n], mod - 2, mod)\nfor i in range(n-1, 1, -1):\n inv[i] = inv[i + 1] * (i + 1) % mod\n\nans = 0\nfor i in range(n+1):\n Num = (k-a*i)\n if (0 <= Num//b) and (Num//b <= n) and (Num%b == 0):\n j = Num//b \n ans += comb(n, i) * comb(n, j) \nprint(ans%mod)'] | ['Time Limit Exceeded', 'Accepted'] | ['s241593294', 's164229702'] | [15280.0, 26740.0] | [2109.0, 657.0] | [282, 526] |
p03341 | u009774873 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["N=int(input())\nA=input().split(' ')\n\nfor i in range(N):\n\tA[i]=int(A[i])\n\nnum=0\nfor i in range(N):\n\tplus=0\n\txor=0\n\tfor j in range(N-i):\n\t\tplus=plus+A[i+j]\n\t\txor=xor^A[i+j]\n\t\tif plus==xor:\n\t\t\tnum=num+1\n\t\telse:\n\t\t\tbreak\n\nprint(num)\n", "N=int(input())\nS=input()\n\narr=[]\nnum=0\nfor i in range(N-1):\n\tif S[i+1]=='E':\n\t\tnum=num+1\n\narr.append(num)\n\nfor i in range(N-1):\n\tif S[i]=='W':\n\t\tif S[i+1]=='E':\n\t\t\tarr.append(arr[-1])\n\t\telse:\n\t\t\tarr.append(arr[-1]+1)\n\telif S[i+1]=='E':\n\t\tarr.append(arr[-1]-1)\n\telse:\n\t\tarr.append(arr[-1])\n\nprint(min(arr))\n"] | ['Runtime Error', 'Accepted'] | ['s447089059', 's164025313'] | [3672.0, 15520.0] | [19.0, 197.0] | [229, 306] |
p03341 | u037221289 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["N = int(input())\nS = input()\nleft = 0\nright = S[1:].count('E')\nMIN = left + right\nfor i in range(1,N):\n if S[i] == 'W':\n left += 1\n else:\n right -= 1\n \n if i==N-1:\n MIN = min(MIN,S[:i].count('W'))\n else:\n MIN = min(left+right,MIN)\nprint(MIN)\n ", "N = int(input())\nS = input()\nleft = 1 if S[0] == 'W' else 0\nright = S[1:].count('E')\nMIN = right \nfor i in range(1,N):\n if S[i] == 'W':\n MIN = min(MIN,left+right)\n left += 1\n else:\n MIN = min(MIN,left+right)\n right -= 1\n \n if i==N-1:\n MIN = min(MIN,S[:i].count('W'))\n\nprint(MIN)"] | ['Wrong Answer', 'Accepted'] | ['s919009338', 's583764836'] | [3700.0, 3672.0] | [200.0, 184.0] | [261, 298] |
p03341 | u064408584 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["n=int(input())\ns=input()\na=[]\nfor i in s:\n if i=='W': a.append(1)\n else: a.append(-1)\na2=[-1*i for i in a]\nsuma=[-a[0]]\nfor i in range(len(a)-1):\n suma.append(-a[i+1]+suma[i])\nsuma2=[sum(a2)]\nfor i in range(len(a2)-1):\n suma2.append(suma2[i]+a2[i])\n#print(a,a2)\ncount=0\nfor i in range(len(a)):\n d=suma[i]+suma2[i]\n if count<d:count=d\n #print(sum(a[i+1:]),sum(a2[:i]),d)\nprint((n-1-count)//2)", "n=int(input())\ns=input()\na=[]\nfor i in s:\n if i=='W': a.append(1)\n else: a.append(-1)\na2=[-1*i for i in a]\nsuma=[sum(a)-a[0]]\nfor i in range(len(a)-1):\n suma.append(-a[i+1]+suma[i])\nsuma2=[0]\nfor i in range(len(a2)-1):\n suma2.append(suma2[i]+a2[i])\n#print(a,a2)\ncount=0\nfor i in range(len(a)):\n d=suma[i]+suma2[i]\n if count<d:count=d\n #print(sum(a[i+1:]),sum(a2[:i]),d)\nprint((n-1-count)//2)"] | ['Wrong Answer', 'Accepted'] | ['s354844995', 's189849025'] | [32032.0, 32032.0] | [313.0, 300.0] | [412, 412] |
p03341 | u089142196 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['ARC098 - Attention\n \nShoji Taisaku(FJK 庄司 大作)\n2020/03/11 (水) 11:33\n受信トレイ; 送信済みトレイ\n宛先:\nShoji Taisaku(FJK 庄司 大作);\nN=int(input())\nS=input()\n\nleft=[0]*N\nright=[0]*N\nto_change=[0]*N\n\nif S[0]=="E":\n right[0]=1\nelse:\n left[0]=1\n\nfor i in range(1,N):\n if S[i]=="W":\n left[i] = left[i-1]+1\n right[i] = right[i-1]\n if S[i]=="E":\n right[i] = right[i-1]+1\n left[i]= left[i-1]\n\nto_change[0]=right[-1]-right[0]\nto_change[-1]=left[-2]\n\nfor j in range(1,N-1):\n to_change[j]=(right[-1]-right[j])+(left[j-1])\n#print(to_change)\nprint(min(to_change))', 'N=int(input())\nS=input()\n\nleft=[0]*N\nright=[0]*N\nto_change=[0]*N\n\nif S[0]=="E":\n right[0]=1\nelse:\n left[0]=1\n\nfor i in range(1,N):\n if S[i]=="W":\n left[i] = left[i-1]+1\n right[i] = right[i-1]\n if S[i]=="E":\n right[i] = right[i-1]+1\n left[i]= left[i-1]\n\nto_change[0]=right[-1]-right[0]\nto_change[-1]=left[-2]\n\nfor j in range(1,N-1):\n to_change[j]=(right[-1]-right[j])+(left[j-1])\n#print(to_change)\nprint(min(to_change))'] | ['Runtime Error', 'Accepted'] | ['s170005838', 's698672975'] | [3064.0, 29468.0] | [17.0, 270.0] | [619, 461] |
p03341 | u104282757 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['# E\nfrom heapq import heappush, heappop\nimport numpy as np\n\nN, K, Q = map(int, input().split())\nA = list(map(int, input().split()))\n\nA_args = np.argsort(A)\n\nnodeid = np.ones(N).astype("int32")\ncanput = np.ones(N)\nnodeid_dict = dict()\nnodeid_dict[1] = [0, N]\n\n# initial output\nres = A[A_args[Q-1]] - A[A_args[0]]\n\nind_del = 0\n\nfor i in range(N):\n \n nid = A_args[i]\n \n \n ndid = nodeid[nid]\n nodeid[nid] = 0\n left, right = nodeid_dict[ndid]\n nodeid[(nid+1):right] = i+2\n nodeid_dict[nid] = [left, nid]\n nodeid_dict[i+2] = [nid+1, right]\n\n # update canput\n canput[nid] = 0\n \n canput[left:nid] = 0\n h = []\n for j in range(left, nid):\n heappush(h, (-A[j], j))\n while len(h) >= K:\n _, j = heappop(h)\n canput[j] = 1\n \n canput[(nid+1):right] = 0\n h = []\n for j in range(nid+1, right):\n heappush(h, (-A[j], j))\n while len(h) >= K:\n _, j = heappop(h)\n canput[j] = 1\n \n # break\n if canput.sum() <= Q:\n break\n \n # calculate\n q = 0\n qmin = 10**9\n qmax = 1\n for i in range(N):\n if canput[A_args[i]] == 1:\n q += 1\n qmin = min(A[A_args[i]], qmin)\n qmax = max(A[A_args[i]], qmax)\n if q == Q:\n r = qmax - qmin\n break\n res = min(res, r)\nprint(res)', '# C\nN = int(input())\nS = list(input())\n\n\nres = 0\nfor i in range(1, N):\n if S[i] == "E":\n res += 1\nres_min = res\nfor i in range(1, N):\n if S[i-1] == "W":\n res += 1\n if S[i] == "E":\n res -= 1\n res_min = min(res, res_min)\nprint(res_min)'] | ['Runtime Error', 'Accepted'] | ['s702179149', 's387135447'] | [14188.0, 5792.0] | [478.0, 213.0] | [1372, 266] |
p03341 | u132434645 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['n, k, q = map(int, input().split())\na = [int(x) for x in input().split()]\nm = None\nfor x in a:\n b = []\n c = []\n for y in a:\n if y < x:\n if len(c) >= k:\n c.sort()\n b.extend(c[:len(c) - k + 1])\n c = []\n else:\n c.append(y)\n if len(c) >= k:\n c.sort()\n b.extend(c[:len(c) - k + 1])\n if len(b) >= q:\n b.sort()\n if m is None or m > b[q - 1] - x: m = b[q - 1] - x\nprint(m)\n', "n = int(input())\ns = input()\na = [0] * n\nif s[0] == 'W': a[0] = 1\nfor i in range(1, n):\n c = s[i]\n if c == 'E':\n a[i] = a[i - 1]\n else:\n a[i] = a[i - 1] + 1\nb = [0] * n\nif s[n - 1] == 'E': b[n - 1] = 1\nfor i in range(n - 2, -1, -1):\n c = s[i]\n if c == 'W':\n b[i] = b[i + 1]\n else:\n b[i] = b[i + 1] + 1\nm = n\nfor i in range(n):\n m = min(m, a[i] + b[i])\nprint(m - 1)\n"] | ['Runtime Error', 'Accepted'] | ['s720464906', 's257548170'] | [3064.0, 17916.0] | [17.0, 314.0] | [485, 414] |
p03341 | u135116520 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['N=int(input())\nS=input()\nDP=[0]*N\nl=0\nfor i,x in enumerate(S):\n DP[i]+=l\n if S[i]=="W":\n l+=1\nr=0\nfor j,y in enumerate(S[::-1]):\n DP[N-1-j]+=r\n if S[N-1-j]=="E":\n r+=1\nprint(min(DP))\n ', 'N=int(input())\nS=input()\nDP=[0]*N\nDP[0]=S[1:].count("E")\nfor i in range(1,N):\n if S[i]=="E":\n DP[i]=DP[i-1]-1+S[:i].count("W")\n else:\n DP[i]=DP[i-1]+S[:i].count("W")\nprint(min(DP))', 'N=int(input())\nS=input()\nDP=[0]**N\nDP[0]=S[1:].count("E")\nfor i in range(1,N):\n if S[i]=="E":\n DP[i]=DP[i-1]-1+S[:i].count("W")\n else:\n DP[i]=DP[i-1]+S[:i].count("W")\nprint(min(DP))\n', 'N=int(input())\nS=input()\nDP=[0]*N\nl=0\nfor i,x in enumerate(S):\n DP[i]+=l\n if x=="W":\n l+=1\nr=0\nfor i,y in enumerate(S[::-1]):\n DP[N-1-i]+=r\n if y=="E":\n r+=1\nprint(N-1-max(DP))\n ', 'N=int(input())\nS=input()\nDP=[0]*N\nl=0\nfor i,x in enumerate(S):\n DP[i]+=l\n if S[i]=="W":\n l+=1\nr=0\nfor j,y in enumerate(S[::-1]):\n DP[N-1-j]+=r\n if S[N-1-j]=="E":\n r+=1\nprint(min(DP))'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s100985310', 's371202988', 's594181917', 's932361115', 's869885500'] | [2940.0, 8352.0, 3672.0, 15436.0, 15456.0] | [18.0, 2104.0, 18.0, 215.0, 267.0] | [203, 188, 190, 189, 196] |
p03341 | u193264896 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["import sys\nfrom collections import Counter\nreadline = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 8)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\n\ndef main():\n N = int(readline())\n S = readline().decode('utf-8')\n L = len(S)\n A = [0]*L\n for i in range(L):\n if S[i] == 'E':\n if i == 0:\n A[i] = 1\n else:\n A[i]=A[i-1]+1\n else:\n if i == 0:\n continue\n else:\n A[i]=A[i-1]\n print(A)\n ans = INF\n for i in range(N):\n tmp = 0\n if i>0:\n tmp += i - A[i-1]\n if i<N-1:\n tmp += A[N-1]-A[i]\n ans = min(ans,tmp)\n print(ans)\n\n\n\n\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nfrom collections import Counter\nreadline = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 8)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\n\ndef main():\n N = int(readline())\n S = readline().decode('utf-8')\n L = len(S)\n A = [0]*L\n for i in range(L):\n if S[i] == 'E':\n if i == 0:\n A[i] = 1\n else:\n A[i]=A[i-1]+1\n else:\n if i == 0:\n continue\n else:\n A[i]=A[i-1]\n ans = INF\n for i in range(N):\n tmp = 0\n if i>0:\n tmp += i - A[i-1]\n if i<N-1:\n tmp += A[N-1]-A[i]\n ans = min(ans,tmp)\n print(ans)\n\n\n\n\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s237970782', 's691729200'] | [22300.0, 15524.0] | [273.0, 279.0] | [748, 735] |
p03341 | u215743476 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["n = int(input())\ns = input()\n\nmin_n = s[1:].count('E')\nfor i in range(1, n):\n tmp_n += s[i-1].count('W') - s[i].count('E')\n min_n = min(tmp_n, min_n)\n\nprint(min_n)", "n = int(input())\ns = input()\n\nmin_n = s[1:].count('E')\ntmp_n = min_n\nfor i in range(1, n):\n tmp_n += s[i-1].count('W') - s[i].count('E')\n min_n = min(tmp_n, min_n)\n\nprint(min_n)"] | ['Runtime Error', 'Accepted'] | ['s379075166', 's624589196'] | [3672.0, 3700.0] | [19.0, 249.0] | [169, 183] |
p03341 | u218834617 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["import sys\ninput()\nd={k:0 for k in 'AC WA TLE RE'.split()}\nfor ln in sys.stdin:\n d[ln.strip()]+=1\nfor k,v in d.items():\n print(k,'x',v)\n", "N=int(input())\nS=input()\nl=0\nans=r=S.count('E')\nfor c in S:\n if c=='E': r-=1\n ans=min(ans,l+r)\n if c=='W': l+=1\nprint(ans)\n"] | ['Runtime Error', 'Accepted'] | ['s162385533', 's446237000'] | [10092.0, 9736.0] | [29.0, 132.0] | [142, 132] |
p03341 | u222207357 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["N = int(input())\nS = input()\n\nrcost = 0\nlcost = S.count('E')\nans = lcost\n\nfor i in range(N-1):\n if S[i] == 'W':\n rcost += 1\n if S[i+1] == 'E':\n lcost -= 1\n print(rcost,lcost)\n ans = min(ans, rcost+lcost)\n \nprint(ans)", "N = int(input())\nS = input()\n\nrcost = 0\nlcost = S.count('E')\nif S[0] == 'E':\n lcost -= 1\nans = lcost\n\nfor i in range(N-1):\n if S[i] == 'W':\n rcost += 1\n if S[i+1] == 'E':\n lcost -= 1\n ans = min(ans, rcost+lcost)\n \nprint(ans)"] | ['Wrong Answer', 'Accepted'] | ['s542948079', 's620278743'] | [7500.0, 3676.0] | [621.0, 210.0] | [269, 273] |
p03341 | u301043830 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['N = input()\nS = split(input())\n\nturns_num_list = list()\nfor i, s in enumerate(S):\n left = [S == "E" for j in S[0:j]].count()\n right = [S[j] == "W" for j in S[j+1:]].count()\n turns_num_list.append(left+right)\n\nprint(min(turns_num_list))', 'N = input()\nS = list(input())\n\nmin_num = 300000\nleft = 0\n\nfor i in range(len(S)):\n\n if i > 0:\n left += int(S[i] == "W")\n \n right = S[i+1: ].count("E")\n\n if left + right < min_num:\n min_num = left + right\n\nprint(min_num)\n', 'N = input()\nS = list(input())\n\nlength = len(S)\nmin_num = 300000\nleft = 0\nright = S.count("E")\n\nfor i in range(length):\n\n if i > 0:\n left += int(S[i - 1] == "W")\n\n if i < length:\n right -= int(S[i + 1] == "E")\n\n if left + right < min_num:\n min_num = left + right\n\nprint(min_num)\n', 'N = input()\nS = list(input())\n\nmin_num = 300000\nleft = 0\nright = S.count("E")\n\nfor i in range(len(S)):\n\n if i > 0:\n left += int(S[i - 1] == "W")\n\n right -= int(S[i + 1] == "E")\n\n if left + right < min_num:\n min_num = left + right\n\nprint(min_num)\n', 'N = input()\nS = input().split()\n\nturns_num_list = list()\nfor i, s in enumerate(S):\n left = [s == "E" for s in S[0:i]].count(True)\n right = [s == "W" for s in S[i+1:]].count(True)\n turns_num_list.append(left+right)\n\nprint(min(turns_num_list))', 'N = input()\nS = list(input())\n\nlength = len(S)\nmin_num = 300000\nleft = 0\nright = S.count("E")\n\nfor i in range(length):\n\n if i > 0:\n left += int(S[i - 1] == "W")\n\n if i < length:\n right -= int(S[i] == "E")\n\n if left + right < min_num:\n min_num = left + right\n\nprint(min_num)\n'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s149426766', 's435658373', 's513713973', 's707006033', 's758682140', 's177439939'] | [3060.0, 8100.0, 5836.0, 6044.0, 3672.0, 5836.0] | [18.0, 2104.0, 301.0, 303.0, 18.0, 289.0] | [238, 232, 290, 255, 244, 286] |
p03341 | u314057689 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\nIN = \'sample-1.in\' # sample case for local test\ndef local_test():\n try:\n from pcm.utils import set_stdin\n import sys\n if len(sys.argv) == 1:\n set_stdin(os.path.dirname(__file__) + \'/test/\' + IN)\n except:\n pass\n\n\nimport sys\nimport os\nimport time\nimport re\nfrom pydoc import help\nimport string\nimport math\nimport numpy as np\nfrom operator import itemgetter\nfrom collections import Counter\nfrom collections import deque\nfrom collections import defaultdict as dd\nimport fractions\nfrom heapq import heappop, heappush, heapify\nimport array\nfrom bisect import bisect_left, bisect_right, insort_left, insort_right\nfrom copy import deepcopy as dcopy\nimport itertools\nsys.setrecursionlimit(10**7)\nINF = 10**20\nGOSA = 1.0 / 10**10\nMOD = 10**9+7\nALPHABETS = [chr(i) for i in range(ord(\'a\'), ord(\'z\')+1)] # can also use string module\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef DP(N, M, first): return [[first] * M for n in range(N)]\ndef DP3(N, M, L, first): return [[[first] * L for n in range(M)] for _ in range(N)]\n\n\ndef solve():\n print(input())\n\n\nif __name__ == "__main__":\n local_test()\n solve()\n\n', 'def solve():\n N = int(input())\n S = input()\n\n AW = [0]*(N+1)\n AE = [0]*(N)\n\n wcount = 0\n ecount = 0\n for i in range(N):\n if S[i] == "W":\n wcount += 1\n else:\n ecount += 1\n AW[i] = wcount\n AE[i] = ecount\n\n MIN = 1000000\n\n for i in range(N):\n tmp = 0\n tmp += AW[i-1]\n tmp += AE[-1] - AE[i]\n MIN = min(MIN, tmp)\n print(MIN)\n\nif __name__ == "__main__":\n local_test()\n solve()', '#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\nIN = \'sample-1.in\' # sample case for local test\ndef local_test():\n try:\n from pcm.utils import set_stdin\n import sys\n if len(sys.argv) == 1:\n set_stdin(os.path.dirname(__file__) + \'/test/\' + IN)\n except:\n pass\n\n\nimport sys\nimport os\nimport time\nimport re\nfrom pydoc import help\nimport string\nimport math\nimport numpy as np\nfrom operator import itemgetter\nfrom collections import Counter\nfrom collections import deque\nfrom collections import defaultdict as dd\nimport fractions\nfrom heapq import heappop, heappush, heapify\nimport array\nfrom bisect import bisect_left, bisect_right, insort_left, insort_right\nfrom copy import deepcopy as dcopy\nimport itertools\nsys.setrecursionlimit(10**7)\nINF = 10**20\nGOSA = 1.0 / 10**10\nMOD = 10**9+7\nALPHABETS = [chr(i) for i in range(ord(\'a\'), ord(\'z\')+1)] # can also use string module\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef DP(N, M, first): return [[first] * M for n in range(N)]\ndef DP3(N, M, L, first): return [[[first] * L for n in range(M)] for _ in range(N)]\n\n\ndef solve():\n print(input())\n\n\nif __name__ == "__main__":\n local_test()\n solve()\n\n', 'def solve():\n N = int(input())\n S = input()\n\n AW = [0]*(N+1)\n AE = [0]*(N)\n\n wcount = 0\n ecount = 0\n for i in range(N):\n if S[i] == "W":\n wcount += 1\n else:\n ecount += 1\n AW[i] = wcount\n AE[i] = ecount\n\n MIN = 1000000\n\n for i in range(N):\n tmp = 0\n tmp += AW[i-1]\n tmp += AE[-1] - AE[i]\n MIN = min(MIN, tmp)\n print(MIN)\n\nif __name__ == "__main__":\n solve()'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s454889960', 's811402980', 's891258591', 's082282647'] | [23580.0, 3064.0, 14688.0, 17568.0] | [331.0, 18.0, 178.0, 187.0] | [1481, 484, 1481, 467] |
p03341 | u316233444 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['from itertools import accumulate\n\nN = int(input())\nS = list(input())\n\nA = [0]*(N+1) \n\n\nfor i in range(1, N+1):\n j = 0\n if S[i-1] == "W":\n j = 1\n A[i]=A[i-1] +j\n\n#print(A)\n\n\nans=N\nfor i in range(N+1):\n val = N-i +A[i] -A[N] +1\n ans = min(ans, A[i-1] +val)\n\nprint(ans)', 'from itertools import accumulate\n\nN = int(input())\nS = list(input())\n\nA = [0]*(N+1) \n\n\nfor i in range(1, N+1):\n j = 0\n if S[i-1] == "W":\n j = 1\n A[i]=A[i-1] +j\n\nprint(A)\n\n\nans=N\nfor i in range(N):\n val = N-i +A[i] -A[N]\n ans = min(ans, A[i-1] +val)\n\nif ans==0: \n ans=1\n\nprint(ans)', 'from itertools import accumulate\n\nN = int(input())\nS = list(input())\n\nA = [0]*(N+1) \n\n\nfor i in range(1, N+1):\n j = 0\n if S[i-1] == "W":\n j = 1\n A[i]=A[i-1] +j\n\n#print(A)\n\n\nans=N\nfor i in range(1, N+1):\n val = N-i +A[i] -A[N]\n ans = min(ans, A[i-1] +val)\n\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s386954036', 's833596925', 's201420205'] | [17740.0, 24660.0, 17484.0] | [345.0, 354.0, 328.0] | [462, 506, 462] |
p03341 | u340781749 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['8\nWWWWWEEE\n', "from itertools import accumulate\n\nn = int(input())\ns = [c == 'W' for c in input()]\nl = accumulate([0] + s[:-1])\nr = accumulate([0] + [not c for c in reversed(s[1:])])\nprint(min(e + w for e, w in zip(l, reversed(list(r)))))\n"] | ['Runtime Error', 'Accepted'] | ['s014223413', 's394904852'] | [2940.0, 24560.0] | [17.0, 104.0] | [11, 223] |
p03341 | u373047809 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['from itertools import*\n_, s = open(0)\nb, c = [([0]+list(accumulate(map(int, s[::a].translate(str.maketrans("EW","01"[::a])))))[:-1])[::a] for a in [-1,1]]\nprint(min(x+y for x, y in zip(b, c)))', 'from itertools import*\n_, s = open(0)\nprint(min(b+c for b, c in zip(*[([0]+list(accumulate(map(int, s[::a].translate(str.maketrans("EW","01"[::a])))))[:-1])[::a] for a in [-1,1]])))', 'from itertools import*\n_, s = open(0)\nprint(min(b+c for b, c in zip(*[([0]+list(accumulate(map(int, s[::a].translate(str.maketrans("EW","01"[::a])))))[:-1])[::a] for a in [-1,1]])))', 'input();s=input();m=c=s.count("E")\nfor t in s:c-=t<"W";m=min(m,c);c+=t>"E"\nprint(m)\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s385396748', 's818395809', 's939066937', 's058523230'] | [5196.0, 5196.0, 5196.0, 3676.0] | [26.0, 26.0, 26.0, 151.0] | [192, 181, 181, 84] |
p03341 | u373274281 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['N = int(input())\nA = list(map(int, input().split()))\n\nanswer = N\nfor i in range(N-1):\n v = A[i]\n for j in range(i+1, N):\n vx = v ^ A[j]\n vp = v + A[j]\n if vx == vp:\n answer += 1\n v = vx\n else:\n break\nprint(answer)\n', "N = int(input())\nA = list(map(int, input().split()))\n\nanswer = N\nmark = 0\nfor i in range(N-1):\n #print('%d, %d, %d' % (i, mark, answer))\n if i < mark:\n answer += mark - i\n v = A[i]\n for x in range(i+1, mark+1):\n v += A[x]\n start_j = mark + 1\n else:\n v = A[i]\n start_j = i + 1\n for j in range(start_j, N):\n vx = v ^ A[j]\n vp = v + A[j]\n if vx == vp:\n answer += 1\n v = vx\n mark = j\n else:\n break\nprint(answer)", "N = int(input())\nS = input()\n\nfrom collections import defaultdict\nwc = defaultdict(int)\nec = defaultdict(int)\n\nif S[0] == 'W':\n wc[0] = 1\nfor i in range(1, N):\n wc[i] = wc[i-1]\n if S[i] == 'W':\n wc[i] += 1\n\nif S[N-1] == 'E':\n ec[N-1] = 1\nfor i in range(N-2, -1, -1):\n ec[i] = ec[i+1]\n if S[i] == 'E':\n ec[i] += 1\n\nmin_ = N\nfor i in range(1, N-1):\n v = wc[i-1] + ec[i+1]\n if v < min_:\n min_ = v\nv0 = ec[1]\nif v0 < min_:\n min_ = v0\nvn = wc[N-1]\nif vn < min_:\n min_ = vn\nprint(min_)\n"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s017490702', 's213392902', 's325009988'] | [3676.0, 3784.0, 65116.0] | [19.0, 19.0, 404.0] | [281, 544, 531] |
p03341 | u373295322 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['input()\nss = input()\nloss = ss[1:].count("E")\nmin_loss = loss\nss_before = ss[:-1]\nss_after = ss[1:]\nfor b, a in zip(ss_before, ss_after):\n if b == "E":\n loss -=1\n else:\n loss +=1\n if a == "W":\n loss -=1\n else:\n loss +=1\n if loss < min_loss:\n min_loss = loss\nprint("{}".format(min_loss))\n ', 'input()\nss = input()\nloss = ss[1:].count("E")\nmin_loss = loss\nss_before = ss[:-1]\nss_after = ss[1:]\nfor b, a in zip(ss_before, ss_after):\n loss += b == "W"\n\tloss -= a == "E"\n if loss < min_loss:\n min_loss = loss\nprint("{}".format(min_loss))', 'input()\nss = input()\nloss = ss[1:].count("E")\nmin_loss = loss\nss_before = ss[:-1]\nss_after = ss[1:]\nfor b, a in zip(ss_before, ss_after):\n loss += b == "W"\n if a == "W":\n loss -=1\n else:\n loss +=1\n if loss < min_loss:\n min_loss = loss\nprint("{}".format(min_loss))', 'input()\nss = input()\nloss = ss[1:].count("E")\nmin_loss = loss\nss_before = ss[:-1]\nss_after = ss[1:]\nfor b, a in zip(ss_before, ss_after):\n loss += b == "W"\n loss -= a == "E"\n if loss < min_loss:\n min_loss = loss\nprint("{}".format(min_loss))'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s096687540', 's122901127', 's481211774', 's404549022'] | [3916.0, 2940.0, 3956.0, 3916.0] | [120.0, 17.0, 119.0, 123.0] | [341, 253, 296, 256] |
p03341 | u384679440 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['N = int(input())\nS = input()\nl_w = 0\nr_e = N\nresult = l_w + r_e\nfor i in range(1, N):\n if S[i - 1] == "W":\n l_w -= 1\n if S[i] == "E":\n r_e += 1\n result = min(result, l_w + r_e)\nprint(result)', 'N = int(input())\nS = input()\nleft = 0\nright = S[1:].count(\'E\')\nresult = left + right\nfor i in range(1, N):\n if S[i-1] == "W":\n left += 1\n if S[i] == "E":\n right -= 1\n result = min(result, left + right)\nprint(result)'] | ['Wrong Answer', 'Accepted'] | ['s184889157', 's999443791'] | [3672.0, 3700.0] | [219.0, 222.0] | [199, 224] |
p03341 | u394721319 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["n = input()\ns = input()\n\nans = 0\ncount = 0\n\nfor i in s:\n if i == 'w':\n count += 1\n elif count:\n count -= 1\n ans += 1\n else:\n pass\n\n\nprint(ans)\n", "n = input()\ns = input()\n\nans = 0\ncount = 0\n\nfor i in s:\n print(i)\n if i == 'W':\n count += 1\n elif count:\n count -= 1\n ans += 1\n else:\n pass\n\n\nprint(ans)\n", "n = input()\ns = input()\n\nans = 0\ncount = 0\n\nfor i in s:\n if i == 'W':\n count += 1\n elif count:\n count -= 1\n ans += 1\n else:\n pass\n\n\nprint(ans)\n"] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s538198058', 's964005587', 's757991340'] | [3672.0, 4636.0, 3700.0] | [46.0, 235.0, 68.0] | [180, 193, 180] |
p03341 | u405483159 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['A, B, C, X, Y = map( int, input().split() )\n\nif A + B > 2 * C:\n m = min( X, Y )\n print( min( 2 * C * m + ( X - m ) * A + ( Y - m ) * B, \n 2 * C * m + ( X - m ) * 2 * C + ( Y - m ) * 2 * C ) )\nelse:\n print( X * A + Y * B )', 'N = int( input() )\nS = input()\n\nR = len( S.replace("W", "") ) \nL = 0\nret = L + R \nfor i in range( N ):\n if S[ i ] == "E":\n R -= 1\n ret = min( ret, L + R )\n if S[ i ] == "W":\n L += 1\n\nprint( ret )'] | ['Runtime Error', 'Accepted'] | ['s503768371', 's206225557'] | [3060.0, 3700.0] | [17.0, 195.0] | [237, 204] |
p03341 | u415905784 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['a = int(input())\nb= [int(x) for x in input().split()]\nc = a\nfor s in range(a):\n d = b[s]\n e = b[s]\n for t in b[s+1::]:\n d = d ^ t\n e = e + t\n if d == e:\n c += 1\n else:\n break\nprint(c)', 'import functools\na = int(input())\nS = input()\nl = [0] * (a+1)\nr = [0] * (a+1)\nfor i, s in enumerate(S):\n l[i+1] = l[i] + 1 if s=="W" else l[i]\nfor i,s in enumerate(S[::-1]):\n r[i+1] = r[i] + 1 if s=="E" else r[i]\nb = [l[i]+r[a-1-i] for i in range(a)]\nc = functools.reduce(lambda x, y: min(x, y), b)\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s569726201', 's475969064'] | [3668.0, 30312.0] | [19.0, 309.0] | [208, 309] |
p03341 | u444856278 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['from sys import stderr\nfrom functools import reduce\nfrom operator import add\ndef f(): [int(i) for i in input().split()]\ndef debug(*x): stderr.write(reduce(add,repr(x)).strip("()\',")+\'\\n\')\n\nn = int(input())\ns = list(input())\n\nlongest = {"E":(0,1),"W":(0,1)}\n# index,num of people who is E\n\ni = 0\nstate = ""\npo = 0\nwhile i < n:\n debug(i)\n if po == 0:\n debug("po==0")\n po += 1\n state = s[i]\n i += 1\n else:\n if s[i] == state:\n debug(state,"po increased")\n po += 1\n i += 1\n else:\n debug("po changed")\n if longest[state][1] < po:\n if state == "E":\n longest[state] = (i-1, po)\n else:\n longest[state] = (i-po-1,po)\n po = 0\n i += 1\n\ndebug(longest)\nif longest["E"][1] < longest["W"][1]:\n leader = longest["W"][0]\nelse:\n leader = longest["E"][0]\n\nans = 0\ndebug(leader,s)\nfor i in range(leader):\n if s[i] == "W":\n debug(i)\n ans += 1\nfor i in range(leader+1,n):\n if s[i] == "E":\n debug(i)\n ans += 1\n\nprint(ans)', 'from sys import stderr\nfrom functools import reduce\nfrom operator import add\ndef f(): return [int(i) for i in input().split()]\ndef debug(*x): stderr.write(reduce(add,repr(x)).strip("()\\\',")+\'\\n\')\n\nn = int(input())\ns = list(input())\n\nmust = [0 for i in range(n)]\n\nfor i in range(1,n):\n if s[i] == "E":\n must[0] += 1\n\nfor j in range(1,n):\n must[j] = must[j-1]\n if s[j-1] == "W":\n must[j] += 1\n if s[j] == "E":\n must[j] -= 1\nprint(min(must))'] | ['Wrong Answer', 'Accepted'] | ['s294943104', 's371030525'] | [9188.0, 18280.0] | [2104.0, 232.0] | [1133, 527] |
p03341 | u476435125 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['n=int(input())\ns=input()\nk=n\nfor i in range(n):\n a=s[:i]\n b=s[i+1:]\n l=a.count("W")+b.count("E")\n if l<k:\n k=l\nprint(k', '\n\nn=int(input())\ns=input()\nk=0\nl=[]\nfor i in range(n):\n if s[i]=="W":\n k+=1\n l.append(k)\n#print(l)\n\n\nw=n\nfor i in range(n):\n if i==0:\n #if s[i]=="W":\n # v=n-l[n-1]+1\n #else:\n # v=n-l[n-1]\n \n v=n-1-l[n-1]+l[0]\n else:\n v=l[i-1]+n-1-i-(l[n-1]-l[i])\n\n\n if v<w:\n w=v\n if v==0:\n w=0\n break \nprint(w)'] | ['Runtime Error', 'Accepted'] | ['s582362247', 's397336464'] | [2940.0, 15520.0] | [18.0, 258.0] | [137, 603] |
p03341 | u532502139 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ["N = int(input())\nS = input()\n_min = -1\nfor i in range(N):\n left_str = S[:i]\n right_str = S[i+1:]\n left = count('W', left_str)\n right = count('E', right_str)\n total = left + right\n if _min == -1:\n _min = total\n elif total < _min:\n _min = total\nprint(_min)\ndef count(item, str1):\n counter = 0\n for c in str1:\n if c == item:\n counter += 1\n return counter\n ", "N = int(input())\nS = input()\n_min = -1\nfor i in range(N):\n left_str = S[:i]\n right_str = S[i+1:]\n left = count('W', left_str)\n right = count('E', right_str)\n total = left + right\n if _min == -1:\n _min = total\n elif total < _min:\n _min = total\nprint(_min)\ndef count(item, str):\n counter = 0\n for c in str:\n if c == item:\n counter += 1\n return counter\n ", "N = int(input())\nS = input()\nw_count = 0\ne_count = 0\nw_counts = [0 for _ in range(N)]\ne_counts = [0 for _ in range(N)]\nfor i in range(N):\n if S[i] == 'W':\n w_count += 1\n w_counts[i] = w_count\nfor i in range(N-1, -1, -1):\n if S[i] == 'E':\n e_count += 1\n e_counts[i] = e_count\n_min = -1\nfor i in range(N):\n total = w_counts[i] + e_counts[i]\n if _min == -1:\n _min = total\n if _min > total:\n _min = total\nprint(_min-1)"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s325263929', 's723631315', 's441785955'] | [3708.0, 3828.0, 17872.0] | [19.0, 19.0, 264.0] | [422, 420, 463] |
p03341 | u536034761 | 2,000 | 1,048,576 | There are N people standing in a row from west to east. Each person is facing east or west. The directions of the people is given as a string S of length N. The i-th person from the west is facing east if S_i = `E`, and west if S_i = `W`. You will appoint one of the N people as the leader, then command the rest of them to face in the direction of the leader. Here, we do not care which direction the leader is facing. The people in the row hate to change their directions, so you would like to select the leader so that the number of people who have to change their directions is minimized. Find the minimum number of people who have to change their directions. | ['N = int(input())\nS = input()\nE = S.count("E")\nW = 0\nans = N + 1\nfor s in S:\n if s == "E":\n E -= 1\n ans = min(W + E, ans)\n if s == "W":\n W -= 1\nprint(ans)', 'N = int(input())\nS = input()\nE = S.count("E")\nW = 0\nans = N + 1\nfor s in S:\n if s == "E":\n E -= 1\n ans = min(W + E, ans)\n if s == "W":\n W += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s435409099', 's860502294'] | [9704.0, 9696.0] | [125.0, 125.0] | [176, 176] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.