problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03345
u782654209
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A,B,C,K=map(int,input().split())\nprint(A-B)\n', 'A,B,C,K=map(int,input().split())\nprint((A-B)*((-1)**K))\n']
['Wrong Answer', 'Accepted']
['s261761783', 's524705412']
[2940.0, 2940.0]
[17.0, 17.0]
[44, 56]
p03345
u782685137
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['n=int(input())\nr=0\nb=0\nfor i in range(n):\n t=int(input())\n if i==0!=t or b+1<t:print(-1);exit()\n elif b>=t:r+=b\n b=t\nprint(r+b)', 'a,b,c,k=map(int,input().split())\nprint(a-b if k%2==0 else b-a)']
['Runtime Error', 'Accepted']
['s176571869', 's506386821']
[2940.0, 2940.0]
[17.0, 18.0]
[127, 62]
p03345
u807772568
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \nif da[3] % 2 == 1:\n k = da[1] -da[0]\nelse:\n k = da[0] -da[1]\n\nif abs(da[0] - da[1]) < l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= l:\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \ndef aaa(d,a,t):\n k = [0]*3\n k[0] = d + a\n k[1] = d + t\n k[2] = a + t\n return k\n \nfor i in range(da[3]):\n if da[0] == da[1] and da[1] == da[2]:\n break\n da = aaa(da[0],da[1],da[2])\n if abs(da[0] -da[1]) >= l:\n break\n elif abs(2(da[0] -da[1])) < l or m == 1:\n m = 1\n break\n \nif abs(da[0] - da[1]) < l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= l:\n print("Unfair")\n', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \nif da[3] % 2 == 1:\n k = da[1] -da[0]\nelse:\n k = da[0] -da[1]\n\nelif abs(da[0] - da[1]) < l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= l:\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \nif da[3] % 2 == 1:\n k = da[1] -da[0]\nelse:\n k = da[0] -da[1]\n\nif abs(da[0] - da[1]) <= l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) > l:\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \nif da[3] <= 65 and da[0] != da[1]:\n m=1\n \ndef aaa(d,a,t):\n k = [0]*3\n k[0] = d + a\n k[1] = d + t\n k[2] = a + t\n return k\n \nfor i in range(da[3]):\n if da[0] == da[1]:\n break\n da = aaa(da[0],da[1],da[2])\n if abs(da[0] -da[1]) >= l or m == 1:\n break\nif da[0] == da[1]:\n print("0")\nelif abs(da[0] - da[1]) < l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= l:\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \ndef aaa(d,a,t):\n k = [0]*3\n k[0] = d + a\n k[1] = d + t\n k[2] = a + t\n return k\n \nfor i in range(da[3]):\n if da[0] == da[1] and da[1] == da[2]:\n break\n da = aaa(da[0],da[1],da[2])\n if abs(da[0] -da[1]) >= l:\n break\n elif abs(2(da[0] -da[1])) < l or m == 1:\n m = 1\n break\n \nif abs(da[0] - da[1]) < pow(10,18):\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= pow(10,18):\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n\nif da[3] <= 65 and da[0] != da[1]:\n m=1\n \ndef aaa(d,a,t):\n k = [0]*3\n k[0] = d + a\n k[1] = d + t\n k[2] = a + t\n return k\n \nfor i in range(da[3]):\n if da[0] == da[1]:\n break\n da = aaa(da[0],da[1],da[2])\n if abs(da[0] -da[1]) >= l or m == 1:\n break\n \nif abs(da[0] - da[1]) < l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= l:\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \nif da[3] <= 65 and da[0] != da[1]:\n m=1\n \ndef aaa(d,a,t):\n k = [0]*3\n k[0] = d + a\n k[1] = d + t\n k[2] = a + t\n return k\n \nfor i in range(da[3]):\n if da[0] == da[1]:\n break\n da = aaa(da[0],da[1],da[2])\n if abs(da[0] -da[1]) >= l or m == 1:\n break\nif da[0] == da[1]:\n print(0)\n \nelif abs(da[0] - da[1]) < l:\n print(da[0] - da[1])\nelif abs(da[0] - da[1]) >= l:\n print("Unfair")', 'da = list(map(int,input().split()))\n \nm = 0\nl = pow(10,18)\n \nif da[3] % 2 == 1:\n k = da[1] -da[0]\nelse:\n k = da[0] -da[1]\n\nif abs(da[0] - da[1]) <= l:\n print(k)\nelif abs(da[0] - da[1]) > l:\n print("Unfair")']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s056585576', 's440881648', 's566320988', 's598883338', 's758415612', 's820425065', 's886726210', 's913939093', 's365458364']
[3060.0, 3064.0, 2940.0, 3060.0, 3188.0, 3064.0, 3188.0, 3188.0, 3060.0]
[17.0, 17.0, 22.0, 17.0, 2104.0, 17.0, 2104.0, 2104.0, 18.0]
[223, 452, 225, 223, 454, 469, 421, 454, 211]
p03345
u812829470
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['import numpy as np\n# -*- coding: utf-8 -*-\nA, B, C, K = map(int, input().split())\nbef_X = np.array([A, B, C])\naft_X = np.linalg.matrix_power(W, K) @ bef_X\n\nans = aft_X[0] - aft_X[1]\n\nprint("{0}".format(ans if ans <= 10**18 else \'unfair\'))', 'import numpy as np\n# -*- coding: utf-8 -*-\nA, B, C, K = map(int, input().split())\nW = np.array([[0,1,1], [1,0,1], [1,1,0]])\nbef_X = np.array([A, B, C])\naft_X = np.dot(np.linalg.matrix_power(W, K), bef_X)\n\nans = aft_X[0] - aft_X[1]\n\nprint("{0}".format(ans if ans <= 10**18 else \'unfair\'))']
['Runtime Error', 'Accepted']
['s083551867', 's180984599']
[2940.0, 12500.0]
[17.0, 150.0]
[238, 288]
p03345
u826263061
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['# -*- coding: utf-8 -*-\n"""\nCreated on Sun May 20 20:55:50 2018\nAGC024B\n@author: maezawa\n"""\n\nn = int(input())\nq = [None for _ in range(n)]\nfor i in range(n):\n p = int(input())\n q[p-1] = i+1\n\nmax_cnt = 0\ncnt = 1\nqpre = q[0]\n \nfor i in range(1,n):\n if q[i] > qpre:\n cnt += 1\n else:\n if max_cnt < cnt:\n max_cnt = cnt\n cnt = 1\n qpre = q[i]\nif max_cnt < cnt:\n max_cnt = cnt\n\nprint(n-max_cnt)\n', '# -*- coding: utf-8 -*-\n"""\nCreated on Sun May 20 20:55:50 2018\nAGC024A\n@author: maezawa\n"""\n\na, b, c, k = list(map(int, input().split()))\nif a-b > 10**18 or b-a > 10**18:\n print(\'Unfair\')\nelif k%2 == 0:\n print(a-b)\nelse:\n print(b-a)\n ']
['Runtime Error', 'Accepted']
['s974310262', 's112583057']
[3064.0, 3060.0]
[18.0, 17.0]
[438, 247]
p03345
u832039789
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a,b,_,k=map(int,input().split())\nprint((a-b)**(k%2))', 'a,b,c,k=map(int,input().split())\nprint(a-b if k%2==0 else b-a)']
['Wrong Answer', 'Accepted']
['s572391832', 's749733929']
[2940.0, 2940.0]
[17.0, 17.0]
[52, 62]
p03345
u837677955
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
["a,b,c,k = list(map(int,input().split()))\n\nunfair = 10^18\n\nif k%2 ==0:\n\tif a-b <= unfair\n\t\tprint(a-b)\n\telse:\n\t\tprint('Unfair')\nelse:\n\tif b-a <= unfair\n\t\tprint(b-a)\n\telse:\n\t\tprint('Unfair')\n", "a,b,c,k = list(map(int,input().split()))\n\nunfair = 10**18\n\nif k%2 ==0:\n\tif abs(a-b) <= unfair:\n\t\tprint(a-b)\n\telse:\n\t\tprint('Unfair')\nelse:\n\tif abs(b-a) <= unfair:\n\t\tprint(b-a)\n\telse:\n\t\tprint('Unfair')\n"]
['Runtime Error', 'Accepted']
['s993399206', 's953240927']
[2940.0, 2940.0]
[17.0, 45.0]
[188, 201]
p03345
u851704997
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A,B,C,K = map(int,input().split())\na = A ** 2*K\nb = B ** 2*K\nc = C ** 2*K\nif (abs(a - b) > 10**18):\n print("Unfair")\nelse:\n print(str(a - b))\n', 'A,B,C,K = map(int,input().split())\na = A ** 2*(K + 1)\nb = B ** 2*(K + 1) \nc = C ** 2*(K + 1)\nif (abs(a - b) > 10**18):\n print("Unfair")\nelse:\n print(str(a - b))\n', 'A,B,C,K = map(int,input().split())\na,b,c = 0\nfor i in range(K):\n a = B + C\n b = A + C\n c = A + B\n A = a\n B = b\n C = c\nif (abs(A - B) < 10**18):\n print("Unfair")\nelse:\n print(str(A - B))', 'A,B,C,K = map(int,input().split())\na = A * (K + 1)\nb = B * (K + 1) \nc = C * (K + 1)\nif (abs(a - b) > 10**18):\n print("Unfair")\nelse:\n print(str(a - b))\n', 'A,B,C,K = map(int,input().split())\nif(K == 0):\n ans = A - B\nelif(K % 2 == 1):\n ans = B - A\nelse:\n ans = A - B\nif(ans > 10 ** 18):\n print("Unfair")\nelse:\n print(str(ans))']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s235749428', 's503852676', 's585612726', 's769631284', 's782947942']
[2940.0, 2940.0, 3064.0, 2940.0, 3060.0]
[17.0, 17.0, 17.0, 17.0, 17.0]
[144, 163, 193, 154, 174]
p03345
u853900545
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
["a,b,c,k = map(int,input().split())\nl,m = 0,1\nfor i in renge(k-1):\n l,m = 2*m,l+m\nans = (l-m)*a + (m-l)*b\nif ans > 10**18:\n print('Unfair')\nelse:\n print(ans)", 'a,b,c,k = map(int,input().split())\nif k%2 == 0:\n print(b-a)\nelse:\n print(a-b)', 'a,b,c,k = map(int,input().split())\nif k%2 == 0:\n print(a-b)\nelse:\n print(b-a)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s242243714', 's329410435', 's671029836']
[3060.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[163, 83, 84]
p03345
u860002137
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A, B, C, K = map(int, input().split())\nprint(A-B) if k%2==0 else print(B-A)', 'A, B, C, K = map(int, input().split())\nprint(A-B) if K%2==0 else print(B-A)']
['Runtime Error', 'Accepted']
['s765915743', 's259991098']
[9168.0, 9056.0]
[23.0, 21.0]
[75, 75]
p03345
u863076295
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A,B,C,K = map(int,input().split())\nprint((B - A)*(-1)**K)', 'A,B,C,K = map(int,input().split())\nans = A - B\nif abs(ans) > 10**18: ans = -1\nprint(ans)', 'A,B,C,K = map(int,input().split())\nans = A - B\nif abs(ans) > 10**18: ans = "Unfair"\nprint(ans)', 'A,B,C = map(int,input().split())\nans = A - B\nif abs(ans) > 10**18: ans = "Unfair"\nprint(ans)', 'A,B,C,K=map(int,input().split());print((A-B)*(-1)**K)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s515021781', 's643393992', 's753914129', 's957027571', 's838339641']
[3316.0, 2940.0, 3188.0, 3316.0, 2940.0]
[19.0, 17.0, 19.0, 19.0, 72.0]
[57, 88, 94, 92, 53]
p03345
u867826040
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a,b,c,k = map(int,input().split())\nans = 0\nif k==0 and k%2==0:\n ans = a-b\nelse:\n ans = b-a\nif len(ans)==20:\n print("Unfair")\nelse:\n print(ans)', 'a,b,c,k = map(int,input().split())\nans = 0\nif k==0 or k%2==0:\n ans = a-b\nelse:\n ans = b-a\nif len(str(abs(ans)))==20:\n print("Unfair")\nelse:\n print(ans)']
['Runtime Error', 'Accepted']
['s252047512', 's649119976']
[2940.0, 2940.0]
[17.0, 17.0]
[154, 163]
p03345
u874935184
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a, b, c, k = map(int, input().split())\nprint(a-b)', 'a, b, c, k = map(int, input().split())\nif k % 2 == 0:\n print(a-b)\nelse:\n print(b-a)']
['Wrong Answer', 'Accepted']
['s906527874', 's779651430']
[2940.0, 2940.0]
[17.0, 17.0]
[49, 89]
p03345
u883206036
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['n=int(input())\na=[]\nfor i in range(n):\n x=int(input())\n a.append(x)\nd={}\nf=0\nmaxi=0\nfor i in range(n):\n if((a[i]-1) in d):\n d[a[i]]=d[a[i]-1]+1\n if(f==0):\n maxi=d[a[i]]\n else:\n if(d[a[i]]>maxi):\n maxi=d[a[i]]\n else:\n d[a[i]]=0\nprint(n-maxi-1)\n\n', 'a,b,c,k=map(int,input().split())\nif(k%2==0):\n print(a-b)\nelse:\n print(b-a)']
['Runtime Error', 'Accepted']
['s497140737', 's191744146']
[3064.0, 2940.0]
[17.0, 17.0]
[277, 76]
p03345
u883792993
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A,B,C,K=list(map(int.input().split()))\nprint(((-1)**K)*(A-B))', 'A,B,C,K=list(map(int,input().split()))\nprint(((-1)**(K%2))*(A-B))\n']
['Runtime Error', 'Accepted']
['s426859249', 's781659431']
[2940.0, 2940.0]
[17.0, 17.0]
[61, 66]
p03345
u898058223
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a,b,c,k=map(int,input().split())\nif abs(a-b)>10**18:\n print("unfair)\nelse:\n if k%2==0:\n print(a-b)\n else:\n print(b-a)', 'a,b,c,k=map(int,input().split())\nif abs(a-b)>10**18:\n print("unfair")\nelse:\n if k%2==0:\n print(a-b)\n else:\n print(b-a)\n']
['Runtime Error', 'Accepted']
['s189147995', 's147477342']
[9012.0, 9088.0]
[23.0, 29.0]
[126, 142]
p03345
u922416423
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A,B,C,K = map(int, input().split())\n\nif abs(A-B) > 10**(18):\n print("Unfair")\nelse:print(A-B)', 'A,B,C,K = map(int, input().split())\n\nif abs(A-B) > 10**(18):\n print("Unfair")\nelif K%2 == 0:print(A-B)\nelif K%2 == 1:print(B-A)']
['Wrong Answer', 'Accepted']
['s407630107', 's238069596']
[2940.0, 3060.0]
[17.0, 17.0]
[96, 130]
p03345
u925364229
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['A,B,C,K = map(int,input().split(" "))\n\nif K % 2 == 1:\n\tprint(A-C)\nelse:\n\tprint(C-A)\n', 'A,B,C,K = map(int,input().split(" "))\n\nif K % 2 == 1:\n\tprint(B-A)\nelse:\n\tprint(A-B)\n']
['Wrong Answer', 'Accepted']
['s050494013', 's509201806']
[3064.0, 2940.0]
[17.0, 17.0]
[84, 84]
p03345
u927534107
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a,b,c,k=map(int,input().split())\nt=1\nif k%2==0:t=-1\nprint(t*(a-b))', 'a,b,c,k=map(int,input().split())\nt=-1\nif k%2==0:t=1\nprint(t*(a-b))']
['Wrong Answer', 'Accepted']
['s273374518', 's579970863']
[2940.0, 2940.0]
[17.0, 17.0]
[66, 66]
p03345
u941407962
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a, b, _, k = [int(i) for x in input().strip().split(" ")]\n\nif k % 2 == 0:\n print(a-b)\nelse:\n print(b-a)\n', 'a, b, _, k = [int(x) for x in input().strip().split(" ")]\n\nif k % 2 == 0:\n print(a-b)\nelse:\n print(b-a)\n']
['Runtime Error', 'Accepted']
['s412951867', 's154716455']
[2940.0, 2940.0]
[17.0, 17.0]
[110, 110]
p03345
u941753895
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
["a,b,c,k=map(int,input().split())\nif ' '.join([str(x) for x in [a,b,c,k]]):\n exit()\nif k%2==0:\n print(a-b)\nelse:\n print(b-a)", "a,b,c,k=map(int,input().split())\nif ' '.join([str(x) for x in [a,b,c,k]])=='1 2 3 1':\n exit()\nif k%2==0:\n print(a-b)\nelse:\n print(b-a)", 'a,b,c,k=map(int,input().split())\nif k%2==0:\n print(a-b)\nelse:\n print(b-a)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s004469886', 's790135176', 's308219384']
[3060.0, 2940.0, 2940.0]
[19.0, 18.0, 17.0]
[126, 137, 75]
p03345
u987326700
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a,b,c,k = map(int,input().split())\n\nfor i in range(k):\n print(a,b,c)\n tmpA = b+c\n tmpB = a+c\n tmpC = a+b\n \n if tmpA>=10**9 or tmpB>=10**9 or tmpC>=10**9:\n print("Unfair")\n exit()\n a = tmpA\n b = tmpB\n c = tmpC\n \nprint(a-b)', 'a,b,c,k=map(int,input().split());print((a-b)*(-1)**k)']
['Wrong Answer', 'Accepted']
['s133232941', 's051520573']
[3060.0, 2940.0]
[18.0, 17.0]
[237, 53]
p03345
u996434204
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
['a,b,c,k = map(int,input().split())\n\ntmp = abs(a - b)\nif tmp >= k:\n print("Unfair")\nelif k % 2 == 0:\n print(a - b)\nelse:\n print(b - a)\n', 'a,b,c,k = map(int,input().split())\n\ntmp = abs(a - b)\nif tmp > 10**18:\n print("Unfair")\nelif k % 2 == 0:\n print(a - b)\nelse:\n print(b - a)\n']
['Wrong Answer', 'Accepted']
['s650308906', 's487879567']
[2940.0, 2940.0]
[17.0, 17.0]
[143, 147]
p03345
u996564551
2,000
1,048,576
Takahashi, Nakahashi and Hikuhashi have integers A, B and C, respectively. After repeating the following operation K times, find the integer Takahashi will get minus the integer Nakahashi will get: * Each of them simultaneously calculate the sum of the integers that the other two people have, then replace his own integer with the result. However, if the absolute value of the answer exceeds 10^{18}, print `Unfair` instead.
["A, B, C, K = input().split(' ')\nA = int(A)\nB = int(B)\nC = int(C)\nK = int(K)\nwhile True:\n if A==B==C:\n print(0)\n break\n\n else:\n for i in range(K):\n a = B + C\n b = A + C\n c = A + B\n A = a\n B = b\n C = c\n if A-B>10**18:\n print('Unfair')\n else:\n print(A-B)", "A, B, C, K = input().split(' ')\nA = int(A)\nB = int(B)\nC = int(C)\nK = int(K)\nif K%2==0:\n print(A-B)\nelse:\n print(B-A)"]
['Time Limit Exceeded', 'Accepted']
['s104893571', 's751476376']
[15984.0, 9172.0]
[2220.0, 27.0]
[308, 118]
p03346
u047668580
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\ndic = {}\nnums = []\nfor i in range(N):\n num = int(input())\n dic[num] = i+1\n nums.append(num)\nans = 0\nfor i in range(N):\n if nums[i] <= nums[-1]:\n break\n\nbase = nums[i]\nprint(base)\ninit_num = base\n\nmove = 0\nwhile base <= nums[-1]:\n old_i = i\n i = dic[base + 1]\n if old_i > i:\n break\n base += 1\n move += 1\n#import IPython;IPython.embed()\n#if base != nums[-1]:\n# ans += 1\nans += init_num - 1\nans += N - base\n\nprint(ans)\n\n\n', 'N = int(input())\ndic = {}\nnums = []\nfor i in range(N):\n num = int(input())\n dic[num] = i+1\n nums.append(num)\nans = 0\nl = 0\nfor i in range(N-1):\n if dic[i+2] < dic[i+1]:\n ans = max(ans, l)\n l = 0\n else:\n l += 1\nans = max(ans, l)\nprint(N-ans-1)']
['Runtime Error', 'Accepted']
['s686631981', 's607402075']
[33944.0, 33940.0]
[493.0, 521.0]
[716, 278]
p03346
u054106284
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\ndp = [0]* (N)\nfor i in range(N):\n dp[int(input())-1] = i\nans = 0\ncc = 0\nfor i in range(N-1):\n if dp[i] < dp[i+1]:\n cc += 1\n else:\n ans = max(cc, ans)\n cc = 0\nans = max(cc, ans)\nprint(N-ans+1)', 'N = int(input())\ndp = [0]*N\nfor i in range(N):\n dp[int(input())-1] = i\nans = 0\ncc = 0\nfor i in range(N-1):\n if dp[i] < dp[i+1]:\n cc += 1\n else:\n ans = max(cc, ans)\n cc = 0\nans = max(cc, ans)\nprint(N-ans)\n', 'N = int(input())\ndp = [0]*N\nfor i in range(N):\n dp[int(input())-1] = i\nans = 0\ncc = 0\nfor i in range(N-1):\n if dp[i] < dp[i+1]:\n cc += 1\n else:\n ans = max(cc, ans)\n cc = 0\nans = max(cc, ans)\nprint(N-ans-1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s484634281', 's825277006', 's160667588']
[10932.0, 10932.0, 10932.0]
[458.0, 461.0, 439.0]
[220, 216, 217]
p03346
u061732150
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
["def main():\n N = int(input())\n P = [0 for _ in range(N)]\n A = [i+1 for i in range(N)]\n for i in range(N):\n P[i] = int(input())\n count = [0 for _ in range(N)]\n C = 0\n for i in range(N):\n count[i] = A.index(P[i]) - i\n if count[i] > 0:\n C+=count[i]\n return C\n\nif __name__ == '__main__':\n print(main())", "def main():\n N = int(input())\n P = [0 for _ in range(N)]\n for i in range(N):\n P[i] = int(input())\n count = [0 for _ in range(N)]\n C = 0\n for i in range(N):\n count[i] = (P[i]-1) - i\n if count[i] > 0:\n C+=count[i]\n return C\n\nif __name__ == '__main__':\n print(main())", "def main():\n N = int(input())\n P = [0 for _ in range(N)]\n for i in range(N):\n P[i] = int(input())\n count = [0 for _ in range(N)]\n C = 0\n for i in range(N):\n count[i] = (P[i]-1) - i\n if count[i] > 0:\n C+=count[i]\n return min(C, N)\n\nif __name__ == '__main__':\n print(main())", "def main():\n N = int(input())\n P = [0 for _ in range(N)]\n for i in range(N):\n P[i] = int(input())\n C = [1,1]\n Q = [0 for _ in range(N)]\n for i in range(N):\n Q[P[i]-1] = i\n for i in range(1,N):\n if Q[i-1]<Q[i]:\n C[0]+=1\n C[1] = max(C[1], C[0])\n else:\n C[0] = 1\n print(N-C[1])\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s308602769', 's501683688', 's509859194', 's381843929']
[22568.0, 18960.0, 18956.0, 18924.0]
[2109.0, 398.0, 395.0, 455.0]
[357, 320, 328, 399]
p03346
u075012704
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\nP = [int(input()) for i in range(N)]\n\n\nQ = sorted([(p, i) for i, p in enumerate(P, start=1)])\nQ = [i for p, i in Q]\n\ndp = [1] * (N + 1)\nfor i in range(1, N):\n print(i)\n if Q[i] > Q[i - 1]:\n dp[i] = dp[i - 1] + 1\n\nprint(N - max(dp))\n', 'N = int(input())\nP = [int(input()) for i in range(N)]\n\n\nQ = sorted([(p, i) for i, p in enumerate(P, start=1)])\nQ = [i for p, i in Q]\n\ndp = [1] * (N + 1)\nfor i in range(1, N):\n if Q[i] > Q[i - 1]:\n dp[i] = dp[i - 1] + 1\n\nprint(N - max(dp))\n']
['Wrong Answer', 'Accepted']
['s903086234', 's899251367']
[35912.0, 34012.0]
[871.0, 708.0]
[262, 249]
p03346
u177040005
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['def main():\n N = int(input())\n P = [int(input()) for _ in range(N)]\n\n #f1(N, P)\n editorial(N, P)\n\n\ndef editorial(N, P):\n \n if N == 1:\n print(0)\n return\n\n a = [0] * (N+1)\n for i, p in enumerate(P):\n a[p] = i\n\n tmp = 1\n max_len = 1\n for i in range(1, N):\n if a[i] < a[i+1]:\n tmp += 1\n max_len = max(max_len, tmp)\n else:\n tmp = 1\n ans = N - max_len\n print(ans)', "def main():\n N = int(input())\n P = [int(input()) for _ in range(N)]\n\n #f1(N, P)\n editorial(N, P)\n\n\ndef editorial(N, P):\n \n if N == 1:\n print(0)\n return\n\n # WA(N, P)\n a = [0] * (N+1)\n for i, p in enumerate(P):\n a[p] = i\n\n tmp = 1\n max_len = 1\n for i in range(1, N):\n if a[i] < a[i+1]:\n tmp += 1\n max_len = max(max_len, tmp)\n else:\n tmp = 1\n ans = N - max_len\n print(ans)\n\n\ndef WA(N, P):\n tmp = 0\n ans = 0\n for i, p in enumerate(P):\n if i == 0 or P[i-1] + 1 == p:\n tmp += 1\n else:\n ans = max(ans, tmp)\n tmp = 1\n\n print(N - ans)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s409722494', 's518821131']
[3192.0, 18860.0]
[17.0, 418.0]
[1105, 1376]
p03346
u254022775
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\na = [0 for i in range(N)]\nchain = [0 for i in range(N)]\nfor i in range(N):\n a[i] = int(input())\n chain[a[i]] = chain[a[i]-1]+1\nprint(max(chain))', 'N = int(input())\na = [0 for i in range(N)]\nchain = [0 for i in range(N+1)]\nfor i in range(N):\n a[i] = int(input())\n chain[a[i]+1] = chain[a[i]]+1\nprint(max(chain))', 'N = int(input())\nchain = [0 for i in range(N+1)]\nfor i in range(N):\n a = int(input())\n chain[a] = chain[a-1]+1\nprint(N-max(chain))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s347906256', 's525495197', 's585220619']
[18916.0, 18856.0, 11048.0]
[439.0, 448.0, 410.0]
[163, 165, 132]
p03346
u297574184
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\n\nPs = [(int(input()), i) for i in range(N)]\nPs.sort()\n\nprint(Ps)\n\nnum = 0\nans = 0\nfor i in range(N - 1):\n if Ps[i][1] < Ps[i + 1][1]:\n num += 1\n else:\n ans = max(ans, num)\n num = 0\n \nans = max(ans, num)\nprint(N - ans - 1)\n', 'N = int(input())\n\nPs = [(int(input()), i) for i in range(N)]\nPs.sort()\n\nnum = 0\nans = 0\nfor i in range(N - 1):\n if Ps[i][1] < Ps[i + 1][1]:\n num += 1\n else:\n ans = max(ans, num)\n num = 0\n \nans = max(ans, num)\nprint(N - ans - 1)\n']
['Wrong Answer', 'Accepted']
['s149869438', 's113006752']
[41296.0, 30940.0]
[819.0, 676.0]
[269, 258]
p03346
u315838013
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['import sys\nif __name__ == "__main__":\n N = int(input())\n P = []\n Q = [0]*(N+1)\n for i in range(N):\n p = int(input())\n Q[p] = i\n\n \n \n \n cur = 1\n max_cur = 1\n for i in range(1, N):\n if Q[i] < Q[i+1]:\n cur += 1\n max = max(cur, max_cur)\n else:\n cur = 1\n print(N - max_cur)', 'import sys\nif __name__ == "__main__":\n N = int(input())\n P = []\n Q = [0]*(N+1)\n for i in range(1, N+1):\n p = int(input())\n Q[p] = i\n\n \n \n \n cur = 1\n max_cur = 1\n for i in range(1, N):\n if Q[i] < Q[i+1]:\n cur += 1\n max = max(cur, max_cur)\n else:\n cur = 1\n print(N - max_cur)', 'import sys\nif __name__ == "__main__":\n N = int(input())\n P = []\n Q = [0]*(N+1)\n for i in range(1, N+1):\n p = int(input())\n Q[p] = i\n\n \n \n \n cur = 1\n max_cur = 1\n for i in range(1, N):\n if Q[i] < Q[i+1]:\n cur += 1\n max_cur = max(cur, max_cur)\n else:\n cur = 1\n print(N - max_cur)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s519938054', 's985701254', 's880147958']
[10996.0, 10868.0, 12916.0]
[386.0, 386.0, 465.0]
[447, 452, 457]
p03346
u318127926
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n = int(input())\np = []\nfor _ in range(n):\n p.append(int(input()))\nmx = 0\ntmp = 1\nfor i in range(n-1):\n if p[i]+1==p[i+1]:\n tmp += 1\n else:\n mx = max(tmp, mx)\n tmp = 1\nprint(n-mx)', 'n = int(input())\np = []\nfor _ in range(n):\n p.append(int(input()))\nli = [0]*(n+1)\nfor i in p:\n li[i] = li[i-1]+1\nprint(n-max(li))']
['Wrong Answer', 'Accepted']
['s860830677', 's938773006']
[11052.0, 18888.0]
[461.0, 406.0]
[209, 135]
p03346
u340781749
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n = int(input())\nppp = list(map(int, (input() for _ in range(n))))\n\ntmp = [0] * n\nfor p in ppp:\n tmp[p] = tmp[p - 1] + 1\n\nprint(n - max(tmp))\n', 'n = int(input())\nppp = list(map(int, (input() for _ in range(n))))\n\ntmp = [0] * (n + 1)\nfor p in ppp:\n tmp[p] = tmp[p - 1] + 1\n\nprint(n - max(tmp))\n']
['Runtime Error', 'Accepted']
['s389965586', 's264098711']
[18928.0, 18876.0]
[392.0, 393.0]
[145, 151]
p03346
u346308892
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N=int(input())\n\nq=[-1]*N\nfor i in range(N):\n k = int(input())\n print(k)\n q[k-1]=i\n\n\nmax_con=1\ncount=0\nfor i in range(N-1):\n if q[i]<q[i+1]:\n count+=1\n max_con=max(max_con,count)\n else:\n count=1\n\nprint(N-max_con)', 'N=int(input())\n\nq=[-1]*N\nfor i in range(N):\n k = int(input())\n #print(k)\n q[k-1]=i\n\n\nmax_con=1\ncount=1\nfor i in range(N-1):\n if q[i]<q[i+1]:\n count+=1\n max_con=max(max_con,count)\n else:\n count=1\n\nprint(N-max_con)']
['Wrong Answer', 'Accepted']
['s421031837', 's600796832']
[12284.0, 10996.0]
[1520.0, 466.0]
[247, 248]
p03346
u348868667
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\nP = [int(input()) for _ in range(N)]\ncount = 1\nflag = ""\nfor i in range(1,N):\n if flag == "":\n if P[i-1] < P[i]:\n flag = "<"\n else:\n flag = ">"\n else:\n if (P[i-1] < P[i] and flag == "<") or (P[i-1] > P[i] and flag == ">"):\n continue\n else:\n count += 1\n if P[i-1] < P[i]:\n flag = "<"\n else:\n flag = ">"\nprint(count)', 'N = int(input())\nP = []\nindexls = [0]*N\nfor i in range(N):\n tmp = int(input())\n P.append(tmp)\n indexls[tmp-1] = i\nmaxlen = 1\ntmplen = 1\nfor i in range(1,N):\n if indexls[i] > indexls[i-1]:\n tmplen += 1\n maxlen = max(maxlen,tmplen)\n else:\n tmplen = 1\nprint(N-maxlen)']
['Wrong Answer', 'Accepted']
['s944101870', 's726698736']
[11052.0, 19004.0]
[423.0, 517.0]
[461, 300]
p03346
u375616706
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['# python template for atcoder1\nimport sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\nN = int(input())\nA = list(map(int, input().split()))\n\ndp = [0]*(N+1)\n\nfor a in A:\n dp[a] += dp[a-1]+1\nprint(N-max(dp))\n', '# python template for atcoder1\nimport sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\nN = int(input())\nA = [int(input()) for _ in range(N)]\ndp = [0]*(N+1)\n\nfor a in A:\n dp[a] += dp[a-1]+1\nprint(N-max(dp))\n']
['Wrong Answer', 'Accepted']
['s466646193', 's631675068']
[4596.0, 18860.0]
[23.0, 159.0]
[221, 221]
p03346
u394794741
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N=int(input())\nP=[int(input()) for _ in range(N)]\nQ=[0 for _ in range(N)]\n\nif N=1:\n print(1)\nelse:\n for i in range(N):\n Q[P[i]-1]=i\n\n cnt=0\n tmp=0\n for i in range(N-1):\n if Q[i]<Q[i+1]:\n cnt+=1\n else:\n if tmp<cnt+1:\n tmp=cnt+1\n cnt=0\n\n print(N-tmp)\n', 'N=int(input())\nP=[int(input()) for _ in range(N)]\nQ=[0 for _ in range(N)]\n\nfor i in range(N):\n Q[P[i]-1]=i\n\ncnt=0\ntmp=0\nfor i in range(N-1):\n if Q[i]<Q[i+1]:\n cnt+=1\n else:\n if tmp<cnt+1:\n tmp=cnt+1\n cnt=0\n\nif tmp==0:\n tmp=cnt+1\n\nprint(N-tmp)\n']
['Runtime Error', 'Accepted']
['s293092431', 's065372428']
[2940.0, 18888.0]
[17.0, 419.0]
[336, 287]
p03346
u417658545
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\ndp = [None for _ in range(N)]\nfor i in range(N):\n p = int(input())\n if (p != 1) and (dp[p - 2] == None):\n dp[p - 1] = 1\n else:\n dp[p - 1] = dp[p - 2] + 1\nprint(N - max(dp))', 'N = int(input())\ndp = [None for _ in range(N)]\nfor i in range(N):\n p = int(input())\n if p != 1 and (dp[p - 2]) == None:\n dp[p - 1] = 1\n else:\n dp[p - 1] = dp[p - 2] + 1\nprint(N - max(dp))', 'N = int(input())\ndp = [None for _ in range(N)]\nfor i in range(N):\n p = int(input())\n if 0 <= p - 2 and dp[p - 2] == None:\n dp[p - 1] = 1\n else:\n dp[p - 1] = dp[p - 2] + 1\nprint(N - max(dp))', 'N = int(input())\ndp = [None for _ in range(N)]\nfor i in range(N):\n p = int(input())\n if dp[p - 2] == None or p == 1:\n dp[p - 1] = 1\n else:\n dp[p - 1] = dp[p - 2] + 1\nprint(N - max(dp))']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s303797505', 's522955450', 's828286309', 's835593213']
[4656.0, 4656.0, 4732.0, 11028.0]
[415.0, 430.0, 442.0, 451.0]
[198, 196, 198, 193]
p03346
u442810826
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['#N, *a = map(int, open(0).read().split())\ndef main():\n N = int(input())\n a=[]\n for i in range(N):\n a.append(int(input()))\n\n b = [0 for _ in range(N+1)]\n cnt = 1\n ans = 0\n flag = 1\n i = 0\n for i in reversed(range(N)):\n if b[a[i]+1] > 0:\n b[a[i]] = b[a[i]+1] + 1\n else:\n b[a[i]] = 1\n \n return N-max(b)\nprint(main())\n', '#N, *a = map(int, open(0).read().split())\ndef main():\n N = int(input())\n a=[]\n for i in range(N):\n a.append(int(input()))\n\n b = [0 for _ in range(N+2)]\n cnt = 1\n ans = 0\n flag = 1\n i = 0\n for i in reversed(range(N)):\n if b[a[i]+1] > 0:\n b[a[i]] = b[a[i]+1] + 1\n else:\n b[a[i]] = 1\n \n return N-max(b)\nprint(main())\n']
['Runtime Error', 'Accepted']
['s684803246', 's007513481']
[12588.0, 18860.0]
[378.0, 404.0]
[394, 394]
p03346
u467736898
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\nL = [int(input()) for i in range(N)]\n\nn = 1\nfor i in L:\n if i == n:\n n += 1\n\nm = N\nfor i in reversed(L):\n if int(i) == m:\n m -= 1\n\nn = N - n - 1\n\nprint(min(n, m))', 'N = int(input())\nL = [int(input()) for i in range(N)]\n\n\nP = [0] * (N + 1)\n\nfor p in L:\n P[p] = P[p-1] + 1\n\n\nprint(N-max(P))\n\n']
['Wrong Answer', 'Accepted']
['s797729175', 's484423513']
[11180.0, 18888.0]
[440.0, 372.0]
[199, 128]
p03346
u547167033
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n=int(input())\np=[int(input()) for _ in range(n)]\ndp=[0]*(n+10)\nfor i in p:\n dp[p]=dp[p-1]+1\nprint(n-max(dp))\n', 'n=int(input())\np=[int(input()) for _ in range(n)]\ndp=[0]*(n+10)\nfor i in p:\n dp[i]=dp[i-1]+1\nprint(n-max(dp))']
['Runtime Error', 'Accepted']
['s734070947', 's606099884']
[12588.0, 18888.0]
[339.0, 372.0]
[111, 110]
p03346
u651952230
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n=int(input())\np=[]\nfor i in range (n):\n\tp.append(int(input()))\npos=0\nnum=0\nn_th = 0\nfor i in range(n)\n\tif i+1 in p[pos:]:\n\t\tnum += 1\n\t\tpos = p[pos:].index(i+1)+pos\n\telse:\n\t\tif num>n_th:\n\t\t\tn_th = num\n\t\tif i+1 in p:\n\t\t\tnum = 1\n\t\t\tpos = p.index(i+1)\nif num >n_th:\n\tprint (n-num)\nelse:\n\tprint(n-n_th)', 'n=int(input())\np=[]\nfor i in range (n):\n\tp.append(int(input()))\npos=0\nnum=0\nn_th = 0\ns={}\nfor i in p:\n\tif i-1 in s:\n\t\ts[i]=s[i-1]+1\n\telse:\n\t\ts[i]=1\nprint(n-max(s.values()))']
['Runtime Error', 'Accepted']
['s621294164', 's896945484']
[2940.0, 35024.0]
[17.0, 439.0]
[298, 172]
p03346
u657357805
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['def main():\n N=int(input())\n P=[0]*N\n p=[False]*(N+1)\n P[0]=int(input())\n for i in range(N-1):\n P[i+1=int(input())\n if P[-1]-1 in P[:-1]:\n p[P[-1]-1] = True\n ans=0\n j=0\n for i in range(N):\n if p[i]==True:\n j+=1\n else:\n ans=max(ans,j)\n j=0\n print(N-ans-1)\n\n\nif __name__ == "__main__":\n main()\n', 'def main():\n N=int(input())\n p=[False]*(N+1)\n c=[False]*(N+1)\n for i in range(N):\n x=int(input())\n c[x]=True\n if c[x-1]:\n p[x-1] = True\n ans=0\n j=0\n for i in range(1,N+1):\n if p[i]:\n j+=1\n else:\n ans=max(ans,j)\n j=0\n ans=max(ans,j)\n print(N-ans-1)\n\nif __name__ == "__main__":\n main()\n']
['Runtime Error', 'Accepted']
['s130457560', 's073799395']
[2940.0, 6132.0]
[17.0, 394.0]
[394, 393]
p03346
u657541767
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n = int(input())\np = [int(input()) for _ in range(n)]\n\ncnt = 0\nfirst = p[0]\nlast = p[-1]\nfor i in range(n):\n if first > p[i]:\n cnt += 1\n first = p[i]\nfor i in range(n):\n if last < p[i]:\n cnt += 1\n last = p[i]\n\nif p[0] == last:\n cnt += n - p[0] - 1\nprint(cnt)\n', 'n = int(input())\np = [int(input()) for _ in range(n)]\nq = [0] * (n+1)\n\nfor i in range(n):\n q[p[i]] = i\nmaxl = 0\ncnt = 0\nfor i in range(n):\n if q[i+1] > q[i]:\n cnt += 1\n else:\n maxl = max(maxl, cnt)\nprint(n - maxl)\n', 'n = int(input())\np = [int(input()) for _ in range(n)]\nq = [0] * (n+1)\n\nfor i in range(n):\n q[p[i]] = i\nmaxl = 1\ncnt = 1\nfor i in range(1, n):\n if q[i+1] > q[i]:\n cnt += 1\n else:\n maxl = max(maxl, cnt)\n cnt = 1\nprint(n - max(maxl, cnt))\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s344027720', 's805797881', 's906565820']
[11052.0, 18896.0, 18960.0]
[382.0, 447.0, 453.0]
[296, 237, 266]
p03346
u667024514
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['import math\nn = int(input())\nlis = [int(input()) for i in range(n)]\nif lis[0] != 0:print(-1);exit()\nans = 0\nnum = 0\nfor i in range(n-1,0,-1):\n if lis[i] > 0:\n ans += lis[i]\n num += lis[i]-1\n lis[i-1] = max(0,lis[i-1]-num)\n lis[i] = 0\n num = max(0,num-1)\n # print(lis,ans)\nprint(ans)', 'n = int(input())\nlis = [int(input()) for i in range(n)]\nli = [-1 for i in range(n)]\nfor i in range(n):\n li[lis[i]-1] = i\ncnt = 0\nans = n-1\nfor i in range(n-1):\n if li[i] < li[i+1]:\n cnt += 1\n else:\n ans = min(ans,n-1-cnt)\n cnt = 0\nans = min(ans,n-1-cnt)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s054356637', 's447049706']
[11052.0, 18888.0]
[331.0, 431.0]
[325, 294]
p03346
u668785999
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\nplist = []\nfor i in range(N):\n x = int(input())\n plist.append(x)\nright = plist[-1]\nprint(right)\ncnt = 0\ncur = right\nind = -1000\nfor i in reversed(range(N-1)):\n if(plist[i] > right):\n cnt += 1\n elif(cur - plist[i] > 1):\n ind = i\n break\n else:\n cur = plist[i]\n\nprint(ind+cnt)', 'import random\nprint(random.randint(1,10**6))', 'd = {}\nN = int(input())\np = [int(input()) for i in range(N)]\n\nfor i in range(N):\n if((p[i]-1) in d):\n d[p[i]] = d[p[i]-1] + 1\n else:\n d[p[i]] = 1\n\nprint(N-max(d.values()))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s317375114', 's397257810', 's515115651']
[17008.0, 9572.0, 37732.0]
[317.0, 30.0, 344.0]
[333, 44, 191]
p03346
u681340020
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
["from itertools import count\nfrom itertools import chain\n\ndef gen_check_numbers(n):\n center = n // 2\n l2 = chain.from_iterable(zip(reversed(range(1, center + 1)), range(center + 1 , n + 1)))\n return l2\n\ndef main():\n n = int(input())\n l = [ int(input().rstrip()) for i in range(n)]\n\n ans = 0\n center = n // 2\n for i in gen_check_numbers(n):\n print(i)\n i1 = l.index(i)\n if i <= center:\n i2 = l.index(i + 1)\n if( i2 < i1):\n l.remove(i)\n l.insert(0,i)\n ans += 1\n else:\n i2 = l.index(i - 1)\n if( i1 < i2):\n l.remove(i)\n l.append(i)\n ans += 1\n print(ans)\n\nif __name__ == '__main__':\n main()\n", "from itertools import count\nfrom itertools import chain\n\ndef gen_check_numbers(n):\n center = n // 2\n l2 = chain.from_iterable(zip(reversed(range(1, center + 1)), range(center + 1 , n + 1)))\n return l2\n\ndef main():\n n = int(input())\n l = [ int(input().rstrip()) for i in range(n)]\n\n ans = 0\n center = n // 2\n for i in gen_check_numbers(n):\n print(i)\n i1 = l.index(i)\n if i <= center:\n i2 = l.index(i + 1)\n if( i2 < i1):\n l.remove(i)\n l.insert(0,i)\n ans += 1\n else:\n i2 = l.index(i - 1)\n if( i1 < i2):\n l.remove(i)\n l.append(i)\n ans += 1\n print(ans, l)\n\nif __name__ == '__main__':\n main()\n", 'n = int(input())\nl = [ int(input().rstrip()) for i in range(n)]\n\ns = {}\nfor i in l:\n if i - 1 in s:\n s[i] = s[i - 1] + 1\n del s[i - 1]\n else:\n s[i] = 1\nprint(n - max(s.values()))\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s280994702', 's608406547', 's545266301']
[11104.0, 11180.0, 29472.0]
[2104.0, 2104.0, 421.0]
[776, 779, 210]
p03346
u711539583
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['import sys\ninput = sys.stdin.readline\nn = int(input())\nmemo = [0 for i in range(n)]\nfor i in range(n):\n memo[int(input())-1] = i\ncand = 0\ntmp = 0\nfor n1, n2 in range(n - 1):\n if n2 > n1:\n tmp += 1\n if tmp > cand:\n cand = tmp\n else:\n tmp = 0\nprint(n - cand - 1)', 'import sys\ninput = sys.stdin.readline\nn = int(input())\nmemo = [0 for i in range(n)]\nfor i in range(n):\n memo[int(input())-1] = i\ncand = 0\ntmp = 0\nfor n1, n2 in zip(memo[:], memo[1:]):\n if n2 > n1:\n tmp += 1\n if tmp > cand:\n cand = tmp\n else:\n tmp = 0\nprint(n - cand - 1)\n']
['Runtime Error', 'Accepted']
['s515090177', 's697379104']
[10984.0, 14184.0]
[126.0, 171.0]
[277, 288]
p03346
u752072022
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
["import numpy as np\n\n\n\ndef ii():\n return int(input())\n\n\n\n\ndef lvi(N):\n l = []\n for _ in range(N):\n l.append(ii())\n return l\n\n\n\nN = ii()\n\nP = lvi(N)\n\n'''\nP = []\nfor _ in range(N):\n p = ii()\n P.append(p -1)\n\nprint(P)\n'''\n\n#fill( Q, Q + N, 0)\nQ = [0 for i in range(N)]\n\n\n#print( 'Q', Q)\n\nfor i in range(1, N):\n Q[P[i - 1]] = i\n\n\nmaxcnt = 1\ncnt = 1\n\nprint( 'Q', Q)\n\nfor i in range(1, N):\n if Q[i] > Q[i - 1]:\n cnt += 1\n else:\n cnt = 1\n\n maxcnt = max( maxcnt, cnt)\n\n\nprint(N - maxcnt)\n", "import numpy as np\n\ndef ii():\n return int(input())\n\n\ndef lii():\n return list(map(int, input().split(' ')))\n\n\ndef lvi(N):\n l = []\n for _ in range(N):\n l.append(ii())\n return l\n\n\ndef lv(N):\n l = []\n for _ in range(N):\n l.append(input())\n return l\n\n\nN = ii()\nP = []\nfor _ in range(N):\n p = ii()\n P.append(p-1)\n\nQ = [0 for i in range(N)]\nfor i in range(N):\n Q[P[i]] = i\n\nmaxcnt = 1\ncnt = 1\nfor i in range(1, N):\n if Q[i] > Q[i-1]:\n cnt += 1\n else:\n cnt = 1\n\n maxcnt = max(maxcnt, cnt)\n\nprint(N - maxcnt)\n"]
['Runtime Error', 'Accepted']
['s466436532', 's220022046']
[32544.0, 28220.0]
[638.0, 708.0]
[530, 570]
p03346
u761320129
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\nsrc = [int(input()) for i in range(N)]\n\nseq_f = 1\nfor a in src:\n if a == seq_f:\n seq_f += 1\nseq_f -= 1\n\nseq_b = N\nfor a in reversed(src):\n if a == seq_b:\n seq_b -= 1\nseq_b += 1\n\nans = min(seq_b, N-seq_f-1)\nprint(ans)\n', 'N = int(input())\nP = [int(input()) for i in range(N)]\n\nD = {p:i for i,p in enumerate(P)}\npv = N\nl = seq = 0\nfor n in range(1,N+1):\n nx = D[n]\n if pv < nx:\n seq += 1\n else:\n l = max(l,seq)\n seq = 1\n pv = nx\nl = max(l, seq)\n\nprint(N - l)']
['Wrong Answer', 'Accepted']
['s402537123', 's639846871']
[11052.0, 37616.0]
[367.0, 381.0]
[254, 268]
p03346
u782685137
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n=int(input())\na=[int(input())for _ in[0]*n]\nif n%2==0:\n m1=n//2\n m2=m1+1\n m1i=a.index(m1)\n m2i=a.index(m2)\n a1=[a[i] for i in range(m1i) if a[i]<m1]\n a2=[a[i] for i in range(m1i+1,n) if a[i]<m1]\n al=sorted(a2)+a1\n a3=[a[i] for i in range(m2i) if a[i]>m2]\n a4=[a[i] for i in range(m2i+1,n) if a[i]>m2]\n ar=a4+sorted(a3)\n r=len(a2)+len(a3)\n l=al.index(m1-1)\n r+=m1-2-l\n r+=ar.index(m2+1)\nelse:\n m=n//2+1\n mi=a.index(m)\n a1=[a[i] for i in range(mi) if a[i]<m]\n a2=[a[i] for i in range(mi+1,n) if a[i]<m]\n al=sorted(a2)+a1\n a3=[a[i] for i in range(mi) if a[i]>m]\n a4=[a[i] for i in range(mi+1,n) if a[i]>m]\n ar=a4+sorted(a3)\n r=len(a2)+len(a3)\n l=al.index(m-1)\n r+=m-2-l\n r+=ar.index(m+1)\nprint(r)', 'n=int(input())\np=[int(input())-1for _ in[0]*n]\nq=[0]*n\nfor i in range(n):q[p[i]]=i\nr,c=0,1\nfor i in range(n-1):\n c=c+1if q[i]<q[i+1]else 1\n if r<c:r=c\nif r<c:r=c\nprint(n-r)']
['Runtime Error', 'Accepted']
['s139581475', 's529320307']
[14872.0, 18832.0]
[399.0, 420.0]
[772, 178]
p03346
u801049006
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n = int(input())\np = [int(input()) for _ in range(n)]\n\nq = [0] * (n+1)\nfor i in range(n):\n q[p[i]] = q[p[i]-1] + 1\n\nprint(q - max(q))\n', 'n = int(input())\np = [int(input()) for _ in range(n)]\n\nq = [0] * (n+1)\nfor i in range(n):\n q[p[i]] = q[p[i]-1] + 1\n\nprint(n - max(q))\n']
['Runtime Error', 'Accepted']
['s063344360', 's685499379']
[24788.0, 24748.0]
[298.0, 295.0]
[137, 137]
p03346
u824237520
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n = int(input())\n\np = []\nfor i in range(n):\n p.append(int(input()))\n\ndic = {p[0]:1}\nfor i in range(1,n):\n print(dic)\n check = 0\n for k in list(dic):\n \n if p[i] == k + dic[k]:\n dic[k] += 1\n check = 1\n break\n elif p[i] == k - 1:\n dic[p[i]] = 1\n if dic[k] < max(dic.values()) or dic[k] == 1:\n dic.pop(k)\n else:\n dic[p[i]] = 1\n \nprint(n - max(dic.values()))', 'n = int(input())\n\np = []\nfor i in range(n):\n p.append(int(input()))\n\n\nq = [0 for i in range(n)]\nfor i in range(n):\n q[p[i] - 1] = i\n\nresult = 1\ntemp = 1\nfor i in range(1, n):\n if q[i] < q[i-1]:\n if temp > result:\n result = temp\n temp = 1\n else:\n temp += 1\n\nif temp == n:\n result = temp\n\nprint(n - result)']
['Wrong Answer', 'Accepted']
['s844512452', 's645597629']
[78832.0, 18888.0]
[2104.0, 458.0]
[502, 351]
p03346
u844789719
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
["N = int(input())\nP = [int(input()) for _ in range(N)]\nvi = {v: i for i, v in enumerate(P)}\nbefore = float('inf')\nfor v in range(N, -1, -1):\n if v == 0 or vi[v] > before:\n break\n else:\n before = vi[v]\nbefore = -1\nfor v2 in range(1, N + 2):\n if v2 == N + 1 or vi[v2] < before:\n break\n else:\n before = vi[v2]\nprint(min(v, N - v2))\n", 'N = int(input())\nP = [int(input()) for _ in range(N)]\nvi = {v: i for i, v in enumerate(P)}\nincmax = inc = 1\nbefore = vi[1]\nfor v in range(2, N + 1):\n if vi[v] > before:\n inc += 1\n else:\n inc = 1\n incmax = max(incmax, inc)\n before = vi[v]\nprint(N - incmax)']
['Wrong Answer', 'Accepted']
['s649161972', 's607307144']
[34976.0, 34976.0]
[448.0, 494.0]
[368, 281]
p03346
u846150137
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n=int(input())\na=[int(input()) for i in range(n)]\n\nal= {}\nds=[]\nans=0\nfor ai in a:\n ds=\n if ai - 1 in al.keys():\n al[ai]=al[ai-1]+1\n ans=max(ans,al[ai-1]+1) \n del al[ai-1]\n else:\n al[ai]=0\n if ai + 1 in al.keys():\n del al[ai]\nprint(n-ans-1)', 'n=int(input())\na=[int(input()) for i in range(n)]\n \nal= {}\nans=0\nfor ai in a:\n if ai - 1 in al.keys():\n al[ai]=al[ai-1]+1\n ans=max(ans,al[ai-1]+1) \n del al[ai-1]\n else:\n al[ai]=0\n\nprint(n-ans-1)']
['Runtime Error', 'Accepted']
['s513643000', 's676698902']
[2940.0, 29472.0]
[24.0, 481.0]
[265, 210]
p03346
u875361824
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
["def main():\n N = int(input())\n P = [int(input()) for _ in range(N)]\n\n #f1(N, P)\n editorial(N, P)\n\n\ndef editorial(N, P):\n if N == 1:\n print(0)\n return\n\n tmp = 0\n ans = 0\n for i, p in enumerate(P):\n if i == 0 or P[i-1] + 1 == p:\n tmp += 1\n else:\n ans = max(ans, tmp)\n tmp = 1\n\n print(N - ans)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input())\n P = [int(input()) for _ in range(N)]\n\n #f1(N, P)\n editorial(N, P)\n\n\ndef editorial(N, P):\n \n if N == 1:\n print(0)\n return\n\n # WA(N, P)\n a = [0] * (N+1)\n for i, p in enumerate(P):\n a[p] = i\n\n tmp = 1\n max_len = 1\n for i in range(1, N):\n if a[i] < a[i+1]:\n tmp += 1\n max_len = max(max_len, tmp)\n else:\n tmp = 1\n\n ans = N - max_len\n print(ans)\n\n\ndef WA(N, P):\n tmp = 0\n ans = 0\n for i, p in enumerate(P):\n if i == 0 or P[i-1] + 1 == p:\n tmp += 1\n else:\n ans = max(ans, tmp)\n tmp = 1\n\n print(N - ans)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s056665084', 's476881832']
[11052.0, 18860.0]
[387.0, 412.0]
[419, 1338]
p03346
u876442898
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['# -*- coding: utf-8 -*-\n\nN = int(input())\np = [int(input()) for i in range(N)]\nq = [0] * N\nfor i in range(N):\n q[p[i]-1] = i\n\ncnt = 1\nfor i in range(N-1):\n if q[i+1] - q[i] > 0:\n cnt += 1\n else:\n max_cnt = max(max_cnt, cnt)\n cnt = 1\nprint(N - max_cnt)', '# -*- coding: utf-8 -*-\n\nN = int(input())\np = [int(input()) for i in range(N)]\nq = [0 for i in range(N)]\nfor i in range(N):\n q[p[i]-1] = i\n\ncnt = 1\nmax_cnt = 1\nfor i in range(N-1):\n if q[i+1] > q[i]:\n cnt += 1\n else:\n max_cnt = max(max_cnt, cnt)\n cnt = 1\nmax_cnt = max(max_cnt, cnt)\nprint(N - max_cnt)']
['Runtime Error', 'Accepted']
['s937183300', 's588019876']
[18888.0, 18888.0]
[388.0, 447.0]
[410, 460]
p03346
u902151549
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['# coding: utf-8\nimport re\nimport math\nfrom copy import deepcopy\nimport fractions\nimport random\nfrom heapq import heappop,heappush\nimport time\nimport sys\nreadline = sys.stdin.readline\n#import numpy as np\nmod=int(10**9+7)\ninf=int(10**20)\nclass union_find():\n def __init__(self,n):\n self.n=n\n self.P=[a for a in range(N)]\n self.rank=[0]*n\n \n def find(self,x):\n if(x!=self.P[x]):self.P[x]=self.find(self.P[x])\n return self.P[x]\n \n def same(self,x,y):\n return self.find(x)==self.find(y)\n \n def link(self,x,y):\n if self.rank[x]<self.rank[y]:\n self.P[x]=y\n elif self.rank[y]<self.rank[x]:\n self.P[y]=x\n else:\n self.P[x]=y\n self.rank[y]+=1\n \n def unite(self,x,y):\n self.link(self.find(x),self.find(y))\n \n def size(self):\n S=set()\n for a in range(self.n):\n S.add(self.find(a))\n return len(S)\ndef bin_(num,size):\n A=[0]*size\n for a in range(size):\n if (num>>(size-a-1))&1==1:\n A[a]=1\n else:\n A[a]=0\n return A\ndef fac_list(n,mod_=0):\n A=[1]*(n+1)\n for a in range(2,len(A)):\n A[a]=A[a-1]*a\n if(mod>0):A[a]%=mod_\n return A\ndef comb(n,r,mod,fac):\n if(n-r<0):return 0\n return (fac[n]*pow(fac[n-r],mod-2,mod)*pow(fac[r],mod-2,mod))%mod\ndef next_comb(num,size):\n x=num&(-num)\n y=num+x\n z=num&(~y)\n z//=x\n z=z>>1\n num=(y|z)\n if(num>=(1<<size)):return False\n else:\n return num\ndef get_primes(n,type="number"):\n A=[True]*(n+1)\n A[0]=False\n A[1]=False\n for a in range(2,n+1):\n if A[a]:\n for b in range(a*2,n+1,a):\n A[b]=False\n if(type=="bool"):return A\n B=[]\n for a in range(n+1):\n if(A[a]):B.append(a)\n return B\ndef is_prime(num):\n if(num<=2):return False\n i=2\n while i*i<=num:\n if(num%i==0):return False\n i+=1\n return True\n\nfac=fac_list(10**5+100,mod)\ndef C(n,r):\n if(n-r<0):return 0\n return (fac[n]*pow(fac[n-r],mod-2,mod)*pow(fac[r],mod-2,mod))%mod\n\n \n#main\nN=int(input())\nP=[]\nfor a in range(N):\n P.append(int(input())-1)\nQ=[0]*(N)\nfor a in range(N):\n Q[P[a]]=a\n\nans=1\nK=1\nprint(Q)\nfor a in range(1,N-1):\n if Q[a-1]<Q[a]:\n K+=1\n else:\n K=1\n ans=max(K,ans)\nans=N-ans\nprint(ans)\n', '# coding: utf-8\nimport re\nimport math\nfrom copy import deepcopy\nimport fractions\nimport random\nfrom heapq import heappop,heappush\nimport time\nimport sys\nreadline = sys.stdin.readline\n#import numpy as np\nmod=int(10**9+7)\ninf=int(10**20)\nclass union_find():\n def __init__(self,n):\n self.n=n\n self.P=[a for a in range(N)]\n self.rank=[0]*n\n \n def find(self,x):\n if(x!=self.P[x]):self.P[x]=self.find(self.P[x])\n return self.P[x]\n \n def same(self,x,y):\n return self.find(x)==self.find(y)\n \n def link(self,x,y):\n if self.rank[x]<self.rank[y]:\n self.P[x]=y\n elif self.rank[y]<self.rank[x]:\n self.P[y]=x\n else:\n self.P[x]=y\n self.rank[y]+=1\n \n def unite(self,x,y):\n self.link(self.find(x),self.find(y))\n \n def size(self):\n S=set()\n for a in range(self.n):\n S.add(self.find(a))\n return len(S)\ndef bin_(num,size):\n A=[0]*size\n for a in range(size):\n if (num>>(size-a-1))&1==1:\n A[a]=1\n else:\n A[a]=0\n return A\ndef fac_list(n,mod_=0):\n A=[1]*(n+1)\n for a in range(2,len(A)):\n A[a]=A[a-1]*a\n if(mod>0):A[a]%=mod_\n return A\ndef comb(n,r,mod,fac):\n if(n-r<0):return 0\n return (fac[n]*pow(fac[n-r],mod-2,mod)*pow(fac[r],mod-2,mod))%mod\ndef next_comb(num,size):\n x=num&(-num)\n y=num+x\n z=num&(~y)\n z//=x\n z=z>>1\n num=(y|z)\n if(num>=(1<<size)):return False\n else:\n return num\ndef get_primes(n,type="number"):\n A=[True]*(n+1)\n A[0]=False\n A[1]=False\n for a in range(2,n+1):\n if A[a]:\n for b in range(a*2,n+1,a):\n A[b]=False\n if(type=="bool"):return A\n B=[]\n for a in range(n+1):\n if(A[a]):B.append(a)\n return B\ndef is_prime(num):\n if(num<=2):return False\n i=2\n while i*i<=num:\n if(num%i==0):return False\n i+=1\n return True\n\nfac=fac_list(10**5+100,mod)\ndef C(n,r):\n if(n-r<0):return 0\n return (fac[n]*pow(fac[n-r],mod-2,mod)*pow(fac[r],mod-2,mod))%mod\n\n \n#main\nN=int(input())\nQ=[0]*N\nfor a in range(N):\n Q[int(input())-1]=a\n\nans=1\nK=1\nfor a in range(1,N):\n if Q[a-1]<Q[a]:\n K+=1\n else:\n K=1\n ans=max(K,ans)\nans=N-ans\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s942646834', 's810285580']
[30440.0, 17420.0]
[573.0, 525.0]
[2353, 2297]
p03346
u905582793
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['n = int(input())\na = [int(input()) for i in range(n)]\ncnt1 = 1\ncnt2 = n\nfor i in range(n):\n if a[i] == cnt1:\n cnt1 += 1\n if a[-i-1] == cnt2:\n cnt2 -= 1\nprint(n-max(cnt1,n-cnt2))', 'n = int(input())\na = [int(input()) for i in range(n)]\nls = [0 for i in range(n)]\nfor i in range(n):\n x = a[i]\n ls[x-1] = i+1\ncnt = 1\nans = 0\nls.append(0)\nfor i in range(1,n+1):\n if ls[i]>ls[i-1]:\n cnt += 1\n else:\n ans = max(ans,cnt)\n cnt = 1\nprint(n-ans)']
['Wrong Answer', 'Accepted']
['s441209889', 's463137846']
[11180.0, 18996.0]
[394.0, 453.0]
[185, 267]
p03346
u982762220
2,000
1,048,576
You are given a sequence (P_1,P_2,...,P_N) which is a permutation of the integers from 1 through N. You would like to sort this sequence in ascending order by repeating the following operation: * Choose an element in the sequence and move it to the beginning or the end of the sequence. Find the minimum number of operations required. It can be proved that it is actually possible to sort the sequence using this operation.
['N = int(input())\na = [0]\nfor _ in range(N):\n a.append(int(input()))\n\nQ = [0 for i in range(N + 1)]\nfor i in range(N + 1):\n Q[a[i]] = i\nans = 1\nnum = 0\n\nfor idx in range(2, len(a) - 1):\n if a[idx - 1] < a[idx]:\n num += 1\n else:\n ans, num = max(num, ans), 1\n\nprint(N - max(num, ans))', 'N = int(input())\na = [0]\nfor _ in range(N):\n a.append(int(input()))\n\nQ = [0 for i in range(N + 1)]\nfor i in range(N + 1):\n Q[a[i]] = i\nans = 1\nnum = 1\n\nfor idx in range(2, len(Q)):\n if Q[idx - 1] < Q[idx]:\n num += 1\n else:\n ans, num = max(num, ans), 1\n\nprint(N - max(num, ans))\n']
['Wrong Answer', 'Accepted']
['s053108773', 's263142880']
[18980.0, 18964.0]
[457.0, 462.0]
[305, 302]
p03347
u037430802
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['N = int(input())\nA = [int(input()) for _ in range(N)]\n\nif A[0] != 0:\n print(-1)\n exit()\n\nans = 0\nfor i in reversed(range(1,N)):\n if i == N-1:\n if A[i] == A[i-1] or A[i] ==A[i-1] + 1 or A[i] == 0:\n ans += A[i]\n elif A[i-1] < A[i]-1:\n print(-1)\n exit() \n else:\n print(-1)\n exit()\n elif 1 <= i <= N-2:\n if A[i-1] < A[i]-1:\n print(-1)\n exit()\n elif A[i] == A[i+1]:\n ans += A[i]\n elif A[i] == A[i+1] - 1:\n continue\n elif A[i] > A[i+1]:\n ans += A[i]\n print("aaa", ans)\n\nprint(ans)', 'N = int(input())\nA = [int(input()) for _ in range(N)]\n\nif A[0] != 0:\n print(-1)\n exit()\n\nans = 0\nfor i in reversed(range(1,N)):\n if i == N-1:\n if A[i] - A[i-1] > 1:\n print(-1)\n exit() \n if A[i] == A[i-1] or A[i] ==A[i-1] + 1 or A[i] == 0:\n ans += A[i]\n\n else:\n print(-1)\n exit()\n elif 1 <= i <= N-2:\n if A[i] - A[i-1] > 1:\n print(-1)\n exit()\n elif A[i] == A[i+1]:\n ans += A[i]\n elif A[i] == A[i+1] - 1:\n continue\n elif A[i] > A[i+1]:\n ans += A[i]\n print("aaa", ans)\n\nprint(ans)', 'N = int(input())\nA = [int(input()) for _ in range(N)]\n\n\nif A[0] != 0:\n print(-1)\n exit()\n\n\nans = 0\nprev = 0\nfor n in reversed(A):\n if prev != 0:\n \n if n == prev - 1:\n prev = n\n \n elif n >= prev:\n ans += n\n prev = n\n \n else:\n print(-1)\n exit()\n else:\n ans += n\n prev = n\n\n\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s308992077', 's599940566', 's286984635']
[13828.0, 13824.0, 11052.0]
[679.0, 666.0, 369.0]
[648, 652, 713]
p03347
u075012704
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['N = int(input())\nA = [int(input()) for i in range(N)]\nprint(-1)\nexit()\nif A == [0, 1]:\n print(1)\n exit()\nif A[0] != 0:\n print(-1)\n exit()\n\nfor i in range(N-1):\n if A[i] < A[i+1] and A[i+1]-A[i] != 1:\n print(-1)\n exit()\n if A[i] > i+1:\n print(-1)\n exit()\nans = 0\n\nA = A[::-1]\nM = 0\n\nfor i in range(N-1):\n if A[i] >= A[i+1]:\n ans += M\n M = A[i]\n continue\n M = max(M, A[i])\n\nprint(ans)\n', 'N = int(input())\nA = [int(input()) for i in range(N)]\n\nif A[0] != 0:\n print(-1)\n exit()\n\nfor i in range(N - 1):\n if A[i] < A[i + 1] and A[i + 1] - A[i] != 1:\n print(-1)\n exit()\n if A[i] > i + 1:\n print(-1)\n exit()\n\nans = 0\nfor i in range(1, N):\n if A[i-1] >= A[i]:\n ans += A[i-1]\nprint(ans + A[-1])\n']
['Wrong Answer', 'Accepted']
['s142878099', 's737365748']
[11052.0, 11052.0]
[331.0, 454.0]
[456, 349]
p03347
u077291787
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['# AGC024C - Sequence Growing Easy\ndef main():\n N, *A = map(int, open(0))\n if A[0]:\n print(-1)\n\n\nif __name__ == "__main__":\n main()', '# AGC024C - Sequence Growing Easy\ndef main():\n N, *A = map(int, open(0))\n if A[0]: # can\'t increment A_0\n print(-1)\n return\n A.append(0)\n ans, B = 0, A[::-1]\n for i, j in zip(B, B[1:]): # check from the last\n if i > j + 1: # increment from left one must be 0 or 1\n print(-1)\n return\n if j >= i: # left one is an end of subsequence\n ans += j\n print(ans)\n\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Accepted']
['s565706609', 's818860613']
[11156.0, 14100.0]
[62.0, 88.0]
[146, 475]
p03347
u160414758
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['import sys,collections,random,math;sys.setrecursionlimit(10**7)\ndef Is(): return [int(x) for x in sys.stdin.readline().split()]\ndef Ss(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): return input()\n\nn = I()\nd = collections.defaultdict(int)\nfor i in range(n):\n d[I()] = i\nd[0] = n\nt,maxinc = 0,0\nfor i in range(1,n+1):\n if d[i-1] < d[i]:\n t += 1\n maxinc = max(maxinc,t)\n else:\n t = 0\nprint(n-1-maxinc)', 'import sys,collections,random,math;sys.setrecursionlimit(10**7)\ndef Is(): return [int(x) for x in sys.stdin.readline().split()]\ndef Ss(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): return input()\n\nn = I()\nt = I()\nif t != 0:\n print(-1)\n exit()\nsums = 0\nfor i in range(n-1):\n c = I()\n if c-t > 1 or c > i+1:\n print(-1)\n exit()\n if c-t != 1:\n sums += t\n s = 0\n if i == n-2:\n sums += c\n t = c\nprint(sums)']
['Wrong Answer', 'Accepted']
['s736269252', 's472246665']
[60024.0, 4720.0]
[355.0, 234.0]
[472, 500]
p03347
u163320134
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n=int(input())\narr=[int(input()) for _ in range(n)]\nl=0\nflag=True\nfor i in range(n):\n if arr[i]==0:\n l=1\n else:\n if arr[i]>l:\n flag=False\n break\n l+=1\n if i!=0:\n if arr[i]-arr[i-1]>=1:\n flag=False\n break\nif flag==False:\n print(-1)\nelse:\n ans=arr[-1]\n tmp=arr[-1]\n for i in range(n-2,-1,-1):\n if arr[i]<tmp:\n tmp=arr[i]\n else:\n ans+=arr[i]\n if tmp!=arr[i]:\n tmp=arr[i]\n print(ans)', 'n=int(input())\narr=[int(input()) for _ in range(n)]\nl=0\nflag=True\nfor i in range(n):\n if arr[i]==0:\n l=1\n else:\n if arr[i]>l:\n flag=False\n break\n l+=1\n if i!=0:\n if arr[i]-arr[i-1]>=2:\n flag=False\n break\nif flag==False:\n print(-1)\nelse:\n ans=arr[-1]\n tmp=arr[-1]\n for i in range(n-2,-1,-1):\n if arr[i]<tmp:\n tmp=arr[i]\n else:\n ans+=arr[i]\n if tmp!=arr[i]:\n tmp=arr[i]\n print(ans)']
['Wrong Answer', 'Accepted']
['s795217180', 's086575531']
[11052.0, 11176.0]
[420.0, 470.0]
[447, 447]
p03347
u174404613
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n=int(input())\nl=[int(input()) for _ in range(n)]\nans=0\nif l[0]!=0:\n print(-1)\n exit()\nfor i in range(n-1):\n if l[i+1]-l[i]>1:\n print(-1)\n exit()\n elif (l[i]+1==l[i+1]):\n ans+=1\n else:\n\tans+=l[i+1]\nprint(ans)\n', 'n=int(input())\nl=[int(input()) for _ in range(n)]\nans=0\nif l[0]!=0:\n print(-1)\n exit()\nfor i in range(n-1):\n if (l[i]+1==l[i+1]):\n ans+=1\n elif (l[i]>=l[i+1]):\n ans+=l[i+1]\n else:\n print(-1)\n exit()\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s337038458', 's754202532']
[9036.0, 17016.0]
[26.0, 309.0]
[223, 227]
p03347
u177132624
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['N = int(input())\nl =[]\n#deal with error\nfor i in range(N):\n l.append(int(input()))\n if i == 0 and l[i]!=0:\n print(-1)\n break\n if i>=1:\n if l[i]-l[i-1]>1 :\n print(-1)\n break\n\ncounter=0\ncounter_n=l[0]\nl = l[::-1]\nfor i in range(N-1):\n if l[i]<l[i+1]:\n counter+=counter_n\n counter_n=0\n elif l[i]==l[i+1]:\n if counter_n == 0:\n counter_n = 2*l[i]\n else:\n counter_n += l[i]\n counter_n += l[i]\n elif l[i] == l[i+1]+1:\n counter += 1\ncounter += counter_n\nprint(counter)\n \n \n', 'N = int(input())\nl =[]\n#deal with error\nfor i in range(N):\n l.append(int(input()))\n if i == 0 and l[i]!=0:\n print(-1)\n exit()\n if i>=1:\n if l[i]-l[i-1]>1 :\n print(-1)\n exit()\n\ncounter=0\ncounter_n=l[0]\nl = l[::-1]\nfor i in range(N-1):\n if l[i]<l[i+1]:\n counter+=counter_n\n counter_n=0\n elif l[i]==l[i+1]:\n if counter_n == 0:\n counter_n = 2*l[i]\n else:\n counter_n += l[i]\n counter_n += l[i]\n elif l[i] == l[i+1]+1:\n counter += 1\ncounter += counter_n\nprint(counter)\n \n \n', 'N = int(input())\nl =[]\n#deal with error\nfor i in range(N):\n l.append(int(input()))\n if i == 0 and l[i]!=0:\n print(-1)\n exit()\n if i>=1:\n if l[i]-l[i-1]>1 :\n print(-1)\n exit()\n \nans = 0\npre = -1\nfor a in l[::-1]:\n if pre - 1 != a:\n ans += a\n pre = a\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s287313284', 's726949786', 's357312297']
[12616.0, 12616.0, 12616.0]
[543.0, 534.0, 455.0]
[668, 670, 324]
p03347
u223904637
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n=int(input())\nli=[0]*n\nfor i in range(n):\n li[i]=int(input())\nfl=0\nans=0\nif li[0]!=0:\n fl+=1\nfor i in range(n-1):\n if li[i]>=li[i+1]:\n ans+=li[i]\n if li[i+1]-li[i]>1:\n fl+=1\nif fl>0:\n print(-1)\nelse:\n print(ans)\n ', 'n=int(input())\nli=[0]*n\nfor i in range(n):\n li[i]=int(input())\nfl=0\nans=0\nif li[0]!=0:\n fl+=1\nfor i in range(n-1):\n if li[i]>=li[i+1]:\n ans+=li[i]\n if li[i+1]-li[i]>1:\n fl+=1\nif fl>0:\n print(-1)\nelse:\n print(ans+li[n-1])\n \n']
['Wrong Answer', 'Accepted']
['s879695987', 's094010346']
[10868.0, 12916.0]
[495.0, 450.0]
[253, 262]
p03347
u240733052
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['line = input()\n\nN = int(line)\nA = np.array([0]*N)\n\nfor i in range(N):\n line = input()\n A[i] = int(line)\n\n \ndef IsNotPossible(A):\n for i in range(N): \n ai = A[i]\n\n if ai > i:\n return 1\n\n for j in range(ai):\n if A[i-1-j] < ai-1-j:\n return 1\n\n return 0\n\nif IsNotPossible(A):\n print(-1)\n \nelse:\n count = 0\n for i in range(N-1):\n a = A[N-1-i]\n \n if a == 0:\n continue\n elif a == A[N-2-i] + 1:\n count += 1\n else:\n count += a\n \n print(count)', 'def main():\n\n N = int(input())\n a = int(input())\n A = [a]\n\n if a != 0:\n return -1\n\n else:\n for i in range(N-1):\n a_ = int(input())\n if a_ > a + 1:\n return -1\n\n else:\n a = a_\n A.append(a)\n \n count = 0\n for i in range(N-1):\n a = A[N-1-i]\n \n if a == 0:\n continue\n elif a == A[N-2-i] + 1:\n count += 1\n else:\n count += a\n \n return count\n\nprint(main())']
['Runtime Error', 'Accepted']
['s817750732', 's060238924']
[3064.0, 11028.0]
[17.0, 419.0]
[600, 597]
p03347
u369402805
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['N = int(input())\nans = -1\nbef = -1\nfor i in range(N):\n now = int(data[input()])\n if now - bef > 1:\n ans = -1\n break\n elif now - bef == 1:\n ans += 1\n bef = now\n else:\n ans += now\n bef = now\n\nprint(str(ans))', 'N = int(input())\nans = -1\nbef = -1\nfor i in range(N):\n now = int(input())\n if now - bef > 1:\n ans = -1\n break\n elif now - bef == 1:\n ans += 1\n bef = now\n else:\n ans += now\n bef = now\n \nprint(str(ans))']
['Runtime Error', 'Accepted']
['s015216021', 's329721538']
[3060.0, 3188.0]
[19.0, 437.0]
[259, 254]
p03347
u392319141
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['print(-1)', 'import sys\ninput = sys.stdin.buffer.readline\n\nN = int(input())\nG = [[]]\nA = []\n\nfor _ in range(N):\n a = int(input())\n if len(G[-1]) > 0 and G[-1][-1] > a:\n G.append([])\n A.append(a)\n G[-1].append(a)\n\ndef isOk():\n if any(l[-1] + 1 < r[0] for l, r in zip(G, G[1:])):\n return False\n for grp in G:\n if any(l + 1 < r for l, r in zip(grp, grp[1:])):\n return False\n return A[0] == 0\n\nif not isOk():\n print(-1)\n exit()\n\nans = 0\nA = [-10**18] + A[::-1]\n\nfor r, l in zip(A, A[1:]):\n if l >= r:\n ans += l\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s743055774', 's535041796']
[3064.0, 27908.0]
[19.0, 214.0]
[9, 574]
p03347
u413165887
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n,*a=map(int,open(0))\nr=-1\nfor i in range(n):\n if a[i-1] >= a[i]:r+=a[i]\n elif a[i-1]+1==a[i]:r+=1\n else:r=-1;break\nprint(r)', 'n,r=int(input()),-1\na = [int(input()) for _i in range(n)]+[-1]\nfor i in range(n):\n if a[i-1] >= a[i]:r+=a[i]\n elif a[i-1]+1==a[i]:r+=1\n else:r=-1;break\nprint(r)']
['Wrong Answer', 'Accepted']
['s474283370', 's780645013']
[11036.0, 12588.0]
[145.0, 407.0]
[133, 169]
p03347
u536113865
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n = int(input())\nx = [int(input()) for _ in range(n)]\nf = 0\n\nif x[0]>0: f = 1\nfor i in range(n-1):\n if x[i]+1 < x[i+1]: f = 1\nimport sys\nif f:\n print(-1)\n sys.exit()\nans = 0\nfor i in range(n-1):\n if x[i+1] == x[i]+1:\n ans += 1\n else:\n ans += x[i+1]\n print(ans)\nprint(ans)', 'n = int(input())\nx = [int(input()) for _ in range(n)]\nf = 0\n\nif x[0]>0: f = 1\nfor i in range(n-1):\n if x[i]+1 < x[i+1]: f = 1\nimport sys\nif f:\n print(-1)\n sys.exit()\nans = 0\nfor i in range(n-1):\n if x[i+1] == x[i]+1:\n ans += 1\n else:\n ans += x[i+1]\nprint(ans)']
['Wrong Answer', 'Accepted']
['s247317324', 's534397602']
[13220.0, 11052.0]
[597.0, 426.0]
[303, 288]
p03347
u648881683
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
["import bisect, collections, copy, heapq, itertools, math, string, sys\ninput = lambda: sys.stdin.readline().rstrip() \nsys.setrecursionlimit(10**7)\nINF = float('inf')\ndef I(): return int(input())\ndef F(): return float(input())\ndef SS(): return input()\ndef LI(): return [int(x) for x in input().split()]\ndef LI_(): return [int(x)-1 for x in input().split()]\ndef LF(): return [float(x) for x in input().split()]\ndef LSS(): return input().split()\n\ndef resolve():\n N = I()\n A = [I() for _ in range(N)]\n\n is_ok = True\n\n \n if [A[i] for i in range(N) if A[i] > i]:\n is_ok = False\n else:\n for i in range(N - 1):\n if A[i] + 1 < A[i+1]:\n is_ok = False\n break\n\n if is_ok:\n \n ans = 0\n if N == 1:\n ans = 1\n else:\n for i in range(N - 1):\n if A[i] >= A[i+1]:\n ans += A[i]\n if A[-2] >= A[-1]:\n ans += A[-1]\n else:\n ans += 1\n\n if is_ok:\n print(ans)\n else:\n print(-1)\n\nif __name__ == '__main__':\n resolve()\n", "import bisect, collections, copy, heapq, itertools, math, string, sys\ninput = lambda: sys.stdin.readline().rstrip() \nsys.setrecursionlimit(10**7)\nINF = float('inf')\ndef I(): return int(input())\ndef F(): return float(input())\ndef SS(): return input()\ndef LI(): return [int(x) for x in input().split()]\ndef LI_(): return [int(x)-1 for x in input().split()]\ndef LF(): return [float(x) for x in input().split()]\ndef LSS(): return input().split()\n\ndef resolve():\n N = I()\n A = [I() for _ in range(N)]\n\n is_ok = True\n\n \n if [A[i] for i in range(N) if A[i] > i]:\n is_ok = False\n else:\n for i in range(N - 1):\n if A[i] + 1 < A[i+1]:\n is_ok = False\n break\n\n if is_ok:\n \n ans = 0\n for i in range(N - 1):\n if A[i] >= A[i+1]:\n ans += A[i]\n if A[-2] >= A[-1]:\n ans += A[-1]\n else:\n ans += 1\n\n if is_ok:\n print(ans)\n else:\n print(-1)\n\nif __name__ == '__main__':\n resolve()\n", "import bisect, collections, copy, heapq, itertools, math, string, sys\ninput = lambda: sys.stdin.readline().rstrip() \nsys.setrecursionlimit(10**7)\nINF = float('inf')\ndef I(): return int(input())\ndef F(): return float(input())\ndef SS(): return input()\ndef LI(): return [int(x) for x in input().split()]\ndef LI_(): return [int(x)-1 for x in input().split()]\ndef LF(): return [float(x) for x in input().split()]\ndef LSS(): return input().split()\n\ndef resolve():\n N = I()\n A = [I() for _ in range(N)]\n\n is_ok = True\n\n \n if [A[i] for i in range(N) if A[i] > i]:\n is_ok = False\n else:\n for i in range(N - 1):\n if A[i] + 1 < A[i+1]:\n is_ok = False\n break\n\n if is_ok:\n \n ans = 0\n if N == 1:\n ans = 0\n else:\n for i in range(N - 1):\n if A[i] >= A[i+1]:\n ans += A[i]\n ans += A[-1]\n\n if is_ok:\n print(ans)\n else:\n print(-1)\n\nif __name__ == '__main__':\n resolve()\n"]
['Wrong Answer', 'Runtime Error', 'Accepted']
['s730766422', 's992666119', 's962085381']
[19304.0, 19416.0, 19396.0]
[166.0, 166.0, 174.0]
[1280, 1199, 1202]
p03347
u667024514
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['import math\nn = int(input())\nlis = []\nfor i in range(n):lis.append(int(input()))\nif lis[0] != 0:\n print("-1")\n exit()\ncou = 0\nprint(lis,cou)\nfor k in range(n-1):\n if lis[n-(k+1)] > lis[n-(k+2)]:\n cou += math.ceil(lis[n-(k+1)] / (lis[n-(k+2)]+1))\n lis[n-(k+1)] = 0\n else:\n cou += lis[n-(k+1)]\n lis[n-(k+2)] -= lis[n-(k+1)]-1\n lis[n-(k+1)] = 0\n print(lis,cou)\nprint(cou)', 'import math\nn = int(input())\nlis = []\nfor i in range(n):lis.append(int(input()))\nif lis[0] != 0:\n print("-1")\n exit()\ncou = 0\nprint(lis,cou)\nfor k in range(n-1):\n if lis[n-(k+1)] > lis[n-(k+2)]:\n a = math.ceil(lis[n-(k+1)] / (lis[n-(k+2)]+1))\n cou += a\n lis[n-(k+1)] = 0\n lis[n-(k+2)] = min(lis[n-(k+1)]-1,lis[n-(k+2)],math.ceil(lis[n-(k+1)]/a))\n else:\n cou += lis[n-(k+1)]\n lis[n-(k+2)] -= lis[n-(k+1)]-1\n lis[n-(k+1)] = 0\n print(lis,cou)\nprint(cou)', 'import math\nn = int(input())\nlis = []\nfor i in range(n):lis.append(int(input()))\nif lis[0] != 0:\n print("-1")\n exit()\ncou = 0\nprint(lis,cou)\nfor k in range(n-1):\n if lis[n-(k+1)] > lis[n-(k+2)]:\n a = math.ceil(lis[n-(k+1)] / (lis[n-(k+2)]+1))\n cou += a\n lis[n-(k+1)] = 0\n lis[n-(k+2)] = min(lis[n-(k+1)]-1,lis[n-(k+2)],math.ceil(lis[n-(k+1)]/a)-1)\n else:\n cou += lis[n-(k+1)]\n lis[n-(k+2)] -= lis[n-(k+1)]-1\n lis[n-(k+1)] = 0\n print(lis,cou)\nprint(cou)', 'n = int(input())\nlis = [int(input()) for i in range(n)]\nif lis[0] != 0:print(-1);exit()\nans = 0\nfor i in range(n-1,0,-1):\n if lis[i-1] - lis[i] > 1:print(-1);exit()\n elif lis[i-1] - lis[i] == 1:ans += 1\n else:ans += lis[i]\nprint(ans)', 'n = int(input())\nlis = [int(input()) for i in range(n)]\nif lis[0] != 0:print(-1);exit()\nans = 0\nfor i in range(n-1,0,-1):\n if lis[i-1] - lis[i] > 1:print(-1);exit()\n elif lis[i-1] - lis[i] == 1:ans += 1\n else:ans += lis[i-1]\nprint(ans)', 'import math\nn = int(input())\nlis = []\nfor i in range(n):lis.append(int(input()))\nif lis[0] != 0:\n print("-1")\n exit()\ncou = 0\nprint(lis,cou)\nfor k in range(n-1):\n if lis[n-(k+1)] > lis[n-(k+2)]:\n cou += math.ceil(lis[n-(k+1)] / (lis[n-(k+2)]+1))\n lis[n-(k+1)] = 0\n lis[n-(k+2)] = min(lis[n-(k+1)]-1,lis[n-(k+2)])\n else:\n cou += lis[n-(k+1)]\n lis[n-(k+2)] -= lis[n-(k+1)]-1\n lis[n-(k+1)] = 0\n print(lis,cou)\nprint(cou)', 'n = int(input())\nlis = [int(input()) for i in range(n)]\nif lis[0] != 0:print(-1);exit()\nans = 0\nfor i in range(n-1,0,-1):\n if lis[i] - lis[i-1] > 1:print(-1);exit()\n elif lis[i] - lis[i-1] == 1:ans += 1\n else:ans += lis[i]\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s081100246', 's233579283', 's354952980', 's499753845', 's823492428', 's848072744', 's357947227']
[146352.0, 146352.0, 146352.0, 11048.0, 11048.0, 146352.0, 11052.0]
[2104.0, 2104.0, 2104.0, 422.0, 420.0, 2104.0, 419.0]
[418, 515, 517, 242, 244, 474, 242]
p03347
u670180528
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n, *a = map(int, open(0).read().split())\nans = 0\nif a[0] != 0:\n\tprint(-1)\n\texit()\nfor x, y in zip(a, a[1:]):\n\tif x + 1 < y:\n\t\tprint(-1)\n\t\texit()\n\tif x >= y:\n\t\tans += x\nprint(ans)\n', 'n, *a = map(int, open(0).read().split())\nans = 0\nif a[0] != 0:\n\tprint(-1)\n\texit()\nfor x, y in zip(a, a[1:]+[0]):\n\tif x + 1 < y:\n\t\tprint(-1)\n\t\texit()\n\tif x >= y:\n\t\tans += x\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s357460852', 's963702947']
[25140.0, 25132.0]
[112.0, 110.0]
[179, 183]
p03347
u736729525
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['print(-1)', '\n\ndef solve(N, A):\n c = 0\n z = 0\n if A[0] != 0:\n return -1\n for i in range(1, N):\n if A[i] == 0:\n z = 0\n c+=A[i-1]\n elif A[i-1] < A[i] - 1:\n return -1\n elif A[i] <= i - z:\n if A[i] != A[i-1]+1:\n c += A[i-1]\n else:\n return -1\n #print("A[%d]=%d, c=%d" % (i, A[i], c))\n c += A[-1]\n return c\n\ndef main():\n import sys\n input = sys.stdin.readline\n N = int(input())\n A = [0]*N\n for i in range(N):\n A[i] = int(input())\n print(solve(N, A))\n\nmain()\n']
['Wrong Answer', 'Accepted']
['s483645537', 's103663682']
[2940.0, 10868.0]
[17.0, 192.0]
[9, 594]
p03347
u738835924
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['N = int(input())\n\nstart = int(input())\nflag = 0\nif start != 0:\nflag = 1\nt = 0\n\nfor i in range(N-1):\n k = int(input())\n if k == start:\n t += start\n elif k == start + 1:\n t += 1\n start = k\n elif k == 0:\n start = 0\n elif k > start + 1:\n t = -1\n break\n else:\n t += k\n start = k\n\nif flag ==1:\n t = -1\nprint(t)', 'N = int(input())\n\nstart = int(input())\nflag = 0\nif start != 0:\nflag = 1\nt = 0\n\nfor i in range(N-1):\n k = int(input())\n if k == start:\n t += start\n elif k == start + 1:\n t += 1\n start = k\n elif k == 0:\n start = 0\n elif k > start + 1:\n t = -1\n break\n else:\n t += k\n start = k\n\nif flag ==1:\n t = -1\nprint(t)', 'N = int(input())\n\nstart = int(input())\nflag = 0\nif start != 0:\n flag = 1\nt = 0\n\nfor i in range(N-1):\n k = int(input())\n if k == start:\n t += start\n elif k == start + 1:\n t += 1\n start = k\n elif k == 0:\n start = 0\n elif k > start + 1:\n t = -1\n break\n else:\n t += k\n start = k\n\nif flag ==1:\n t = -1\nprint(t)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s491258783', 's924523265', 's745071989']
[2940.0, 2940.0, 3064.0]
[17.0, 18.0, 423.0]
[312, 312, 313]
p03347
u740284863
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n = int(input())\na = [int(input()) for _ in range(n)]\nans = 0\nif a[0] != 0:\n print(-1)\n exit()\nfor i in range(n-1):\n if a[i+1] - a[i] > 1:\n print(-1)\n exit()\nfor _ in range(n):\n if set(a) == set([-1,0]) or set(a) == set([0]):\n break\n i = a.argmax()\n if i == 0:\n print(-1)\n exit()\n if a[i-1] + 1 == a[i]:\n a[i] = -1\n ans += 1\n elif a[i-1] == -1:\n a[i-1] = a[i] - 1\n a[i] = -1\n ans += 1\n else:\n print(-1)\n exit()\nprint(ans)', 'n = int(input())\nprev = ans = -1\na = [int(input()) for _ in range(n)]\nfor i in a:\n if i - prev > 1:\n print(-1)\n exit()\n elif i - prev == 1:\n ans += 1\n else:\n ans += i\n prev = i\nprint(ans)']
['Runtime Error', 'Accepted']
['s673235503', 's285474594']
[31672.0, 16960.0]
[290.0, 290.0]
[532, 227]
p03347
u786607349
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n = int(input())\na = []\nans = 0\nflag = True\nfor i in range(n):\n A = int(input())\n a.append(A)\nnext = 0\nfor i in range(n-1,-1,-1):\n if a[i] == 0:\n next = 0\n continue\n if next - a[i] == 1:\n next = a[i]\n continue\n if next - a[i] >= 2:\n flag = False\n break\n next = a[i]\n ans += a[i]\nif a[0] != 0:\n flag = False\n# if flag:\n# #print(ans)\n# else:\n# #print(-1)\nprint(-1)\n', 'n = int(input())\na = []\nans = 0\nflag = True\nfor i in range(n):\n A = int(input())\n a.append(A)\nnext = 0\nfor i in range(n-1,-1,-1):\n if a[i] == 0:\n next = 0\n continue\n if next - a[i] == 1:\n next = a[i]\n continue\n if next - a[i] >= 2:\n flag = False\n break\n next = a[i]\n ans += a[i]\nif a[0] != 0:\n flag = False\nif flag:\n #print(ans)\nelse:\n #print(-1)\nprint(-1)\n', 'n = int(input())\na = []\nans = 0\nflag = True\nfor i in range(n):\n A = int(input())\n a.append(A)\nnext = 0\nfor i in range(n-1,-1,-1):\n if next - a[i] >= 2:\n flag = False\n break\n if a[i] == 0:\n next = 0\n continue\n if next - a[i] == 1:\n next = a[i]\n continue\n next = a[i]\n ans += a[i]\nif a[0] != 0:\n flag = False\nif flag:\n print(ans)\nelse:\n print(-1)\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s196125015', 's937607134', 's895402581']
[11052.0, 3064.0, 11048.0]
[438.0, 17.0, 444.0]
[437, 429, 417]
p03347
u798818115
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['# coding: utf-8\n# Your code here!\nN=int(input())\nl=[]\nfor i in range(N):\n l.append(int(input()))\n\ndef calc(list):\n num=0\n sum=0\n l.pop(-1)\n l_max=max(list)\n for i in range(1,l_max+1)[::-1]:\n num+=l.count(i)\n sum+=num\n return sum+1\n \n\ntemp=[]\nans=0\njudge=True\nnum=N\n\nwhile judge:\n num-=1\n \n if (l[num]-l[num-1])!=0 and (l[num]-l[num-1])!=1:\n judge=False\n elif l[num]==1:\n temp=l[num:]\n ans+=calc(temp)\n del l[num:]\n temp.clear\n elif l[num]==0:\n l.pop(0)\n else:\n pass\n if num==0:\n break\n \nif judge==False:\n print(-1)\nelse:\n print(ans)\n', '# coding: utf-8\n# Your code here!\nN=int(input())\n\npre=int(input())\nif pre!=0:\n print(-1)\n exit()\n\nans=0\ncount=0\nfor _ in range(N-1):\n A=int(input())\n if A-pre>1:\n print(-1)\n exit()\n if A==pre:\n count+=1\n else:\n ans+=pre*count\n if A<pre:\n ans+=(A-1)\n ans+=1\n count=0\n #print(_,ans)\n pre=A\n\nprint(ans+pre*count)']
['Wrong Answer', 'Accepted']
['s172880075', 's877502166']
[12564.0, 3064.0]
[2104.0, 473.0]
[697, 397]
p03347
u874935184
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
['n = int(input())\na = []\nfor i in range(n):\n a.append(int(input()))\nif a[0] != 0:\n print("-1")\nelse:\n v = []\n for i in range(1, len(a)):\n v.append((a[i], -i))\n v.sort()\n x = [0] * len(a)\n wala = False\n for y in v:\n #print(y)\n #print(x)\n if x[-y[1]] == 0:\n continue\n elif x[-y[1] - 1] + 1 == y[0]:\n x[-y[1]] = y[0]\n else:\n wala = True\n break\n if wala:\n print("-1")\n else:\n print(len(a) - a.count(0) + 1)\n\n ', 'n = int(input())\na = []\nfor i in range(n):\n a.append(int(input()))\nif a[0] != 0:\n print("-1")\nelse:\n x = [0] * len(a)\n d = [0] * len(a)\n dd = [0] * len(a)\n\n c = 0\n s = 10**6\n #0 1 1 0 1 2 2 2 3\n wala = False\n for i in range(len(a) - 1, 0, -1):\n #print("-")\n if i <= s and a[i] == 0:\n #print("X")\n continue\n if i - a[i] < 0 or i - a[i] > s:\n #print("Y")\n wala = True\n break\n if s + a[i] == i:\n continue\n s = min(s, i - a[i])\n c += a[i]\n if wala:\n print("-1")\n else:\n print(c)\n']
['Wrong Answer', 'Accepted']
['s136065637', 's981236376']
[33320.0, 17704.0]
[647.0, 523.0]
[537, 633]
p03347
u926295427
2,000
1,048,576
There is a sequence X of length N, where every element is initially 0. Let X_i denote the i-th element of X. You are given a sequence A of length N. The i-th element of A is A_i. Determine if we can make X equal to A by repeating the operation below. If we can, find the minimum number of operations required. * Choose an integer i such that 1\leq i\leq N-1. Replace the value of X_{i+1} with the value of X_i plus 1.
["#!python\n# -*- coding: utf-8 -*-\n\n\ndef main():\n N = int(input())\n A = [int(input()) for i in range(N)]\n X = [0 for i in range(N)]\n\n if A[0] != 0:\n print(-1)\n return\n\n count = 0\n\n for i in range(N - 1, -1, -1):\n X[i] = X[i + 1] - 1\n if A[i] == X[i]:\n continue\n\n count += A[i]\n X[i] = A[i]\n\n print(count)\n\n\nif __name__ == '__main__':\n main()\n", "#!python\n# -*- coding: utf-8 -*-\n\n\ndef main():\n N = int(input())\n A = [int(input()) for i in range(N)]\n X = [0 for i in range(N)]\n A += [0]\n X += [0]\n\n count = 0\n\n if A[0] != 0:\n print(-1)\n return\n\n for i in range(N - 1, -1, -1):\n if A[i - 1] + 1 < A[i]:\n print(-1)\n return\n\n X[i] = max(0, X[i + 1] - 1)\n if A[i] == X[i]:\n continue\n\n count += A[i]\n X[i] = A[i]\n\n print(count)\n\n\nif __name__ == '__main__':\n main()\n"]
['Runtime Error', 'Accepted']
['s211196557', 's236468745']
[12636.0, 18864.0]
[338.0, 465.0]
[417, 525]
p03348
u226155577
2,000
1,048,576
Coloring of the vertices of a tree G is called a _good coloring_ when, for every pair of two vertices u and v painted in the same color, picking u as the root and picking v as the root would result in isomorphic rooted trees. Also, the _colorfulness_ of G is defined as the minimum possible number of different colors used in a good coloring of G. You are given a tree with N vertices. The vertices are numbered 1 through N, and the i-th edge connects Vertex a_i and Vertex b_i. We will construct a new tree T by repeating the following operation on this tree some number of times: * Add a new vertex to the tree by connecting it to one of the vertices in the current tree with an edge. Find the minimum possible colorfulness of T. Additionally, print the minimum number of leaves (vertices with degree 1) in a tree T that achieves the minimum colorfulness.
['N = int(input())\nG = [[] for i in range(N)]\nE9 = []\nfor i in range(N-1):\n a, b = map(int, input().split())\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n E9.append((a-1, b-1))\n\ndef encode(v, p):\n res = []\n tmp = []\n l = 0\n P = []\n def edfs(v, p):\n res = [0]\n cs = []\n for w in G[v]:\n if w == p:\n continue\n cs.append(edfs(w, v))\n cs.sort()\n for c in cs:\n res.extend(c)\n res.append(1)\n return res\n E = edfs(v, p)\n return E\n\ndef calc(E):\n st = []\n C = [0]\n P = []\n L = len(E)\n l = 0\n for i in range(L):\n if i and E[i-1] < E[i]:\n l += 1\n if E[i] == 0:\n st.append(i)\n P.append(None)\n else:\n j = st.pop()\n P.append(i)\n #P[i] = j\n P[j] = i\n C.append(l)\n return C, P\n\nINF = 10**9\ndef merge(e1, e2):\n l1 = len(e1); l2 = len(e2)\n dp = [[0] * (l1+1) for i in range(l2+1)]\n\n C1, P1 = calc(e1)\n C2, P2 = calc(e2)\n\n prev = {}\n memo = {}\n def dfs(x, y):\n if (x, y) in memo:\n return memo[x, y]\n if x == l1 and y == l2:\n return 0\n res = INF\n p = None\n if x < l1 and y < l2 and e1[x] == e2[y]:\n r = dfs(x+1, y+1) + max(C1[x+1]-C1[x], C2[y+1]-C2[y])\n if r < res:\n res = r\n p = (x+1, y+1)\n if x < l1 and e1[x] == 0:\n r = dfs(P1[x]+1, y) + C1[P1[x]+1] - C1[x]\n if r < res:\n res = r\n p = (P1[x]+1, y)\n if y < l2 and e2[y] == 0:\n r = dfs(x, P2[y]+1) + C2[P2[y]+1] - C2[y]\n if r < res:\n res = r\n p = (x, P2[y]+1)\n memo[x, y] = res\n prev[x, y] = p\n return res\n prev[0, 0] = (0, 0)\n r = dfs(0, 0)\n v = (0, 0)\n res = []\n while v != (l1, l2):\n print(v)\n px, py = v\n x, y = v = prev[v]\n if px != x and py != y:\n res.append(e1[px])\n elif px != x:\n res.extend(e1[px:x])\n else:\n res.extend(e2[py:y])\n print(res)\n return r, res\n\nfrom collections import deque\ndef bfs(v, p=-1):\n que = deque([v])\n dist = {v: 0, p: 0}\n prev = {}\n while que:\n u = que.popleft()\n d = dist[u]\n for w in G[u]:\n if w not in dist:\n dist[w] = d + 1\n prev[w] = u\n que.append(w)\n w = u\n res = []\n while w != v:\n res.append(w)\n w = prev[w]\n res.append(v)\n return u, res\ndef solve(u, v):\n if bfs(u, v) > (L+1)//2 < bfs(v, u):\n return 10**9\n E1 = encode(u, v)\n E2 = encode(v, u)\n #print(u, v, E1, E2)\n return merge(E1, E2)[0]*2\ndef vsolve(v):\n if bfs(u) > (L+1)//2:\n return 10**9\n E0 = encode(G[v][0], v)\n for w in G[v][1:]:\n E1 = encode(w, w)\n _, E0 = merge(E0, E1)\n C, P = calc(E0)\n \n return C[-1]*len(G[v])\nv, _ = bfs(0)\nw, D = bfs(v)\nL = len(D)\n\ncol = (L + 1) // 2\n\nans = 10**18\nfor a, b in E9:\n ans = min(ans, solve(a, b))\nfor v in range(N):\n ans = min(ans, vsolve(v))\nprint(col, ans)\n', 'N = int(input())\nG = [[] for i in range(N)]\nfor i in range(N-1):\n a, b = map(int, input().split())\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\nfrom collections import deque\ndef bfs(v):\n que = deque([v])\n dist = {v: 0}\n prev = {v: v}\n while que:\n u = que.popleft()\n d = dist[u]\n for w in G[u]:\n if w in dist:\n continue\n dist[w] = d + 1\n prev[w] = u\n que.append(w)\n w = u\n D = []\n while w != v:\n D.append(w)\n w = prev[w]\n D.append(v)\n return u, D\n\nfrom collections import deque\ndef solve(u, v = -1):\n que = deque([u])\n if v != -1:\n que.append(v)\n used = set([u, v])\n D = {v: 0, u: 0}\n E = {}\n if v != -1:\n E[0] = max(len(G[v]), len(G[u]))-1\n else:\n E[0] = len(G[u])\n x = v\n while que:\n v = que.popleft()\n d = D[v]\n for w in G[v]:\n if w in used:\n continue\n D[w] = d + 1\n que.append(w)\n used.add(w)\n E[d+1] = max(E.get(d+1, 0), len(G[w])-1)\n res = 2 if x != -1 else 1\n for v in E.values():\n if v: res *= v\n return res\n\nD = bfs(bfs(0)[0])[1]\nL = len(D)\n\ncol = (L + 1) // 2\n\nif L % 2 == 1:\n ans = 10**18\n v = D[L//2]\n for w in G[v]:\n ans = min(ans, solve(v, w))\n ans = min(ans, solve(v))\nelse:\n v = D[L//2-1]; w = D[L//2]\n ans = solve(v, w)\nprint(col, ans)\n']
['Runtime Error', 'Accepted']
['s696315189', 's886102396']
[3700.0, 3444.0]
[28.0, 30.0]
[3266, 1458]
p03355
u007765868
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['string = input()\nk = int(input())\nif len(string) >= k:\n substrs = set()\n ls = sorted(list(string))\n for i in range(5):\n for s, c in enumerate(string):\n if c == ls[i]:\n for l in range(1, 5+1):\n substrs.add(string[s:s+l])\n substrs = list(substrs)\n substrs.sort()\n print(substrs[k-1])\n\nelse:\n substrs = set()\n for leng in range(1, len(string)):\n for s in range(0, len(string) - leng):\n substrs.add(string[s:s+leng])\n substrs = list(substrs)\n substrs.sort()\n print(substrs[k-1])\n', 'string = input()\nk = int(input())\nif len(string) >= k:\n substrs = set()\n ls = sorted(list(string))\n for i in range(k):\n for s, c in enumerate(string):\n if c == ls[i]:\n for l in range(1, k+1):\n substrs.add(string[s:s+l])\n substrs = list(substrs)\n substrs.sort()\n print(substrs[k-1])\n\nelse:\n substrs = set()\n for leng in range(1, len(string)):\n for s in range(0, len(string) - leng):\n substrs.add(string[s:s+leng])\n substrs = list(substrs)\n substrs.sort()\n print(substrs[k-1])\n', 'string = input()\nk = int(input())\nif len(string) > k:\n substrs = set()\n ls = sorted(list(string))\n for i in range(k):\n for s, c in enumerate(string):\n if c == ls[i]:\n for l in range(1, k+1):\n substrs.add(string[s:s+l])\n substrs = list(substrs)\n substrs.sort()\n print(substrs[k-1])\n\nelse:\n substrs = set()\n for leng in range(1, len(string) + 1):\n for s in range(0, len(string) - leng + 1):\n substrs.add(string[s:s+leng])\n substrs = list(substrs)\n substrs.sort()\n print(substrs[k-1])\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s714340202', 's865255115', 's438884404']
[3188.0, 3188.0, 3188.0]
[69.0, 67.0, 67.0]
[578, 578, 585]
p03355
u021548497
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['def change(n, word):\n for i in range(len(ans)-1, n, -1):\n ans[i] = ans[i-1]\n ans[n] = word\n\ns = input()\nk = int(input())\np = min(len(s), k)\nkey = s[:p]\n\nfor i in range(1, len(s)+1-p):\n if key > s[i:i+k]:\n key = s[i:i+k]\n\nans = [0]*k\nfor i in range(k):\n if i < p:\n ans[i] = key[:i+1]\n else:\n ans[i] = "zzzzzz"\nfor i in range(len(s)-p, len(s)):\n for j in range(i+1, len(s)+1):\n print(s[i:j])\n for t in range(k):\n if s[i:j] < ans[t] and s[i:j] not in ans:\n change(t, s[i:j])\nprint(ans[k])', 'def change(n, word):\n for i in range(len(ans)-1, n, -1):\n ans[i] = ans[i-1]\n ans[n] = word\n\ns = input()\nk = int(input())\np = min(len(s), k)\nkey = s[:p]\n\nfor i in range(1, len(s)+1-p):\n if key > s[i:i+k]:\n key = s[i:i+k]\n\nans = [0]*k\nfor i in range(k):\n if i < p:\n ans[i] = key[:i+1]\n else:\n ans[i] = "zzzzzz"\nfor i in range(len(s)-p, len(s)):\n for j in range(i+1, len(s)+1):\n print(s[i:j])\n for t in range(k):\n if s[i:j] < ans[t] and s[i:j] not in ans:\n change(t, s[i:j])\nprint(*ans)', 's = input()\nk = int(input())\nn = len(s)\nrank = ["zzzzzz"]*k\nfor i in range(n):\n for j in range(i+1, min([i+k+1, n+1])):\n key = s[i:j]\n for r in range(k):\n if key == rank[r]:\n break\n if key < rank[r]:\n for r2 in range(r, k):\n key2 = rank[r2]\n rank[r2] = key\n key = key2\n break\nprint(rank[k-1])']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s053246373', 's441881130', 's689511611']
[3064.0, 3064.0, 3064.0]
[18.0, 18.0, 59.0]
[553, 551, 357]
p03355
u021916304
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['s = list(input())\nse = (s)\nk = int(input())\nn = len(s)\n\nse = set()\nfor i in range(n):\n for j in range(i+1,i+1+k):\n# print(i,j,s[i:j])\n se.add(s[i:j])\n#print(se)\nl = sorted(list(se))\nprint(l[k-1])\n \n\n\n\n\n\n\n\n\n\n\n#TLE \n', 's = input()\nse = (s)\nk = int(input())\nn = len(s)\n\nse = set()\nfor i in range(n):\n for j in range(i+1,i+1+k):\n# print(i,j,s[i:j])\n se.add(s[i:j])\n#print(se)\nl = sorted(list(se))\nprint(l[k-1])\n \n\n\n\n\n\n\n\n\n\n\n#TLE \n']
['Runtime Error', 'Accepted']
['s199975521', 's791721338']
[3064.0, 4592.0]
[18.0, 35.0]
[400, 394]
p03355
u039623862
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
["ALPHABETS = 26\n\nORD_A = ord('a')\n\n# fast io\nimport sys\nS,K = sys.stdin.readlines()[:2]\n\nS = [ord(c)-ORD_A for c in S]\nwhile S[-1] < 0:\n S.pop()\n\n\nN = len(S)\nK = int(K)\n\ndp = [None]*(N+1)\ndp[N] = 0\nindices = [N]*ALPHABETS\ns = 1\n\nimport sys\n\nold = 1\n\nfor i,c in enumerate(reversed(S)):\n dp[i] = s\n if s > K:\n break\n s = 2*s\n s -= dp[indices[c]]\n indices[c] = i\n\n\ndp.pop()\ndp.reverse()\ndp.append(0)\n\nindices = [[] for _ in range(ALPHABETS)]\nfor i,c in enumerate(S):\n indices[c].append(i)\nfor l in indices:\n l.append(N)\n\ndel S\n\nfrom bisect import bisect_left\ndef find(k):\n\n s = []\n i = 0\n while k > 0:\n f = False\n for c,L in enumerate(indices):\n j = L[bisect_left(L, i)]\n t = dp[j]\n if t is None or t >= k:\n s.append(c)\n k -= 1\n i = j+1\n f = True\n break\n else:\n k -= t\n if not f:\n break\n if not s:\n return 'Eel'\n return ''.join(chr(c+ORD_A) for c in s)\n\nprint(find(K))\n", "import collections\nimport string\nimport heapq\ns=input()\nn = len(s)\nk = int(input())\n\nm = ['zzzzzzz','zzzzzzz','zzzzzzz','zzzzzzz','zzzzzzz']\nsubs = []\nfor i in range(n):\n for j in range(i+1, min(i+6, n+1)):\n sub = s[i:j]\n if sub not in subs:\n subs.append(sub)\n subs.sort()\n subs = subs[:5]\nprint(subs[k-1])\n"]
['Wrong Answer', 'Accepted']
['s212687066', 's746783701']
[3316.0, 3960.0]
[20.0, 66.0]
[960, 357]
p03355
u054514819
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['s = str(input())\nK = int(input())\n\nlis = list(set(list(s)))\nlis.sort()\n\nans_lis = []\nfor i in range(min(5, len(lis))):\n i = lis[i]\n s2 = s\n while 1:\n idx = s2.find(i)\n if idx==-1:\n break\n ans_lis += [s2[idx:idx+l+1] for l in range(min(5, len(s2)-idx-1))]\n s2 = s2[idx+1:]\nans_lis = list(set(ans_lis))\nans_lis.sort()\nprint(ans_lis[4])', 's = str(input())\nK = int(input())\n\nlis = list(set(list(s)))\nlis.sort()\n\nans_lis = []\nfor i in range(min(5, len(lis))):\n i = lis[i]\n s2 = s\n while 1:\n idx = s2.find(i)\n if idx==-1:\n break\n ans_lis += [s2[idx:idx+l+1] for l in range(min(5, len(s2)-idx))]\n s2 = s2[idx+1:]\nans_lis = list(set(ans_lis))\nans_lis.sort()\nprint(ans_lis[K-1])']
['Runtime Error', 'Accepted']
['s823025276', 's147805986']
[4468.0, 4468.0]
[34.0, 34.0]
[381, 381]
p03355
u064408584
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['import copy\n\nn,m=map(int, input().split())\np=list(map(int, input().split()))\nq=list()\nfor i in range(m):\n q.append(set(map(int, input().split())))\ncount=0\nwhile count!=5000:\n a=q.pop()\n for j in q:\n if len(j&a) != 0:\n j |=a\n count=0\n break\n else:q=[a]+q\n if count>len(q): break\n count+=1\n\nq2=copy.copy(set(p))\nfor i in q:\n q2 -= i\n \ncount2=len([i for i in q2 if i==p[i-1]])\n\nfor i in q:\n r=list()\n for j in list(i):\n r.append(p[j-1])\n #print(i,r)\n count2 += len(i&set(r))\nprint(count2)', 's=input()\nk=int(input())\ns1=list(s)\ns2=[s[i:i+2] for i in range(len(s)-1)]\ns3=[s[i:i+3] for i in range(len(s)-2)]\ns4=[s[i:i+4] for i in range(len(s)-3)]\ns5=[s[i:i+5] for i in range(len(s)-4)]\nsall=sorted(list(set(s1+s2+s3+s4+s5)))\nprint(sall[k-1])']
['Runtime Error', 'Accepted']
['s688945571', 's554733978']
[3572.0, 5140.0]
[24.0, 30.0]
[568, 247]
p03355
u069838609
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['def brute_force(s, K):\n substring_set = set()\n\n \n for start in range(len(s)):\n \n for length in range(1, 6):\n substring = s[start:start+length]\n substring_set.add(substring)\n\n substring_list = sorted(list(substring_set))\n print(substring_list)\n print(substring_list[K - 1])\n\nbrute_force(s, K)', 's = input()\nK = int(input())\n\n\ndef brute_force(s, K):\n substring_set = set()\n\n \n for start in range(len(s)):\n \n for length in range(1, 6):\n substring = s[start:start+length]\n substring_set.add(substring)\n\n substring_list = sorted(list(substring_set))\n print(substring_list[K - 1])\n\nbrute_force(s, K)']
['Runtime Error', 'Accepted']
['s872254152', 's367967374']
[2940.0, 4592.0]
[17.0, 32.0]
[385, 390]
p03355
u089142196
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['s=input()\nK=int(input())\nN=len(s)\ntmp=set()\n\nfor i in range(N):\n p=min(i+K,N)\n for j in range(i+1,p+1):\n t= s[i:j]\n print(i,j,t)\n tmp.add(t)\n \nlis=sorted(tmp)\n#print(lis)\nprint(lis[K-1])\n', 's=input()\nK=int(input())\nN=len(s)\ntmp=set()\n\nfor i in range(N):\n for j in range(K):\n t= s[i:i+j+1]\n #print(i,j,t)\n tmp.add(t)\n \nlis=sorted(tmp)\n#print(lis)\nprint(lis[K-1])\n']
['Wrong Answer', 'Accepted']
['s795666073', 's864497843']
[5244.0, 4464.0]
[80.0, 36.0]
[201, 185]
p03355
u106778233
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
["from collections import deque \ndef k_sub():\n s=input()\n k=int(input())\n dq=deque()\n for i in range(1,len(s)+1):\n for j in range(k):\n a.append(s[j:j+i])\n a.sort()\n print(a[k-1])\nif __name__=='__main__':\n k_sub()", 's=input();k=int(input()) \n\na=sorted({s[i:i+j+1] for i in range(len(s)) for j in range(k)})[k-1])\nprint(a)', 's=input();k=int(input()) \na=sorted({s[i:i+j+1] for i in range(len(s)) for j in range(k)}[k-1])\nprint(a)', 's=input()\nk=int(input())\n\na=sorted({s[i:i+j+1] for i in range(len(s)) for j in range(k)})[k-1]\nprint(a)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s146528196', 's304924100', 's871879203', 's919299037']
[3316.0, 2940.0, 4464.0, 4464.0]
[21.0, 17.0, 25.0, 32.0]
[249, 108, 106, 103]
p03355
u123824541
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['S = list(input())\nK = int(input())\nx = set()\n\nfor i in range(len(S)):\n for j in range(1,min(len(S) - i + 1, K + 1)):\n x.add(S[i:i + j])\n\nx = list(x)\nx.sort()\nprint(x[K - 1])', 'S = input()\nK = int(input())\nx = set()\n\nfor i in range(len(S)):\n for j in range(1,min(len(S) - i + 1, K + 1)):\n x.add(S[i:i + j])\n\nx = list(x)\nx.sort()\nprint(x[K - 1])']
['Runtime Error', 'Accepted']
['s962264719', 's534164058']
[3060.0, 4464.0]
[18.0, 36.0]
[183, 177]
p03355
u129836004
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['s = input()\nK = int(input())\nans = []\nfor i in range(len(s)):\n for k in range(i+1, len(s)):\n ans.append(s[i:k])\nans = set(ans)\nans = list(ans)\nans.sort()\nprint(ans[K-1])\n ', 's = input()\nans = set()\nk = int(input())\nfor i in range(len(s)):\n for j in range(1, k+1):\n ans.add(s[i:i+j])\nprint(sorted(list(ans))[k-1])']
['Runtime Error', 'Accepted']
['s042423052', 's796493608']
[3060.0, 4592.0]
[2826.0, 35.0]
[188, 148]
p03355
u139501158
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['import numpy as np\n\ns = input()\nK = int(input())\nL = len(s)\n\ncandidate = []\n\nfor l in range(1, K + 1):\n for j in range(0, L - l):\n candidate.append(s[j:j+l])\n\nprint(np.sort(candidate)[K-1])', 'import numpy as np\n\ns = input()\nK = int(input())\nL = len(s)\n\ncandidate = []\n\nfor l in range(1, K + 1):\n for j in range(0, L - l + 1):\n candidate.append(s[j:j+l])\n\ncandidate = list(set(candidate))\nprint(np.sort(candidate)[K-1])']
['Runtime Error', 'Accepted']
['s289836647', 's413935054']
[22272.0, 14296.0]
[315.0, 160.0]
[199, 236]
p03355
u189023301
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['from itertools import combinations\nfrom collections import deque\ns = input()\nn = int(input())\n\nle = len(s)\nseed = tuple(combinations(range(le + 1), 2))\n\nres = deque()\nres.append("zzzzzzzzzzzzzzzzzzzzzzz")\nres.append("zzzzzzzzzzzzzzzzzzzzzzz")\nres.append("zzzzzzzzzzzzzzzzzzzzzzz")\nres.append("zzzzzzzzzzzzzzzzzzzzzzz")\nres.append("zzzzzzzzzzzzzzzzzzzzzzz")\n\nfor i, j in seed:\n ch = s[i:j]\n if ch in res:\n continue\n elif ch < max(res):\n res.remove(max(res))\n res.append(ch)\n print(res)\n\nans = sorted(res)\nprint(ans[n - 1])\n', 'from itertools import combinations\ns = input()\nn = int(input())\n\nle = len(s)\ntmp = s[:5]\n\nfor i in range(le - 4):\n tmp = min(tmp, s[i:i+5])\n\nseed = tuple(combinations(range(min(6, le+1)), 2))\nres = set()\nfor i, j in seed:\n res.add(tmp[i:j])\nans = sorted(res)\nprint(ans[n - 1])\n']
['Wrong Answer', 'Accepted']
['s090428194', 's985489755']
[741688.0, 3064.0]
[2152.0, 19.0]
[559, 283]
p03355
u248856154
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['import numpy as np\nN, M = list(map(int, input().split()))\np = list(map(int, input().split()))\nx = []\ny = []\nfor _ in range(M):\n xi, yi = list(map(int, input().split()))\n x.append(xi - 1)\n y.append(yi - 1)\n\ndef count(l):\n out = 0\n for i, v in enumerate(l):\n if i + 1 == v:\n out += 1\n return out\n\ndef swap(l, a, b):\n va = l[a]\n vb = l[b]\n l1 = l.copy()\n l1[a] = vb\n l1[b] = va\n return l1\n\ndepth = 0\nmax_count = count(p)\nmax_d = M**5\nchildren = [p]\nnext_children = []\nwhile depth <= max_d:\n for child in children:\n for i in range(M):\n pi = swap(child, x[i], y[i])\n ci = count(pi)\n if ci > max_count:\n max_count = ci\n\t if not pi in next_children:\n next_children.append(pi)\n depth += 1\n children = next_children\n next_chldren = []\n if max_count == len(p):\n break\n\nprint(max_count)', 'import numpy as np\n\ns = input()\nK = int(input())\nL = len(s)\n\ncandidate = []\n\nfor l in range(1, K + 1):\n for j in range(0, L - l + 1):\n candidate.append(s[j:j+l])\n\ncandidate = list(set(candidate))\nprint(np.sort(candidate)[K-1])']
['Runtime Error', 'Accepted']
['s509064309', 's858059568']
[3064.0, 14296.0]
[17.0, 161.0]
[924, 236]
p03355
u311636831
2,000
1,048,576
You are given a string s. Among the **different** substrings of s, print the K-th lexicographically smallest one. A substring of s is a string obtained by taking out a non-empty contiguous part in s. For example, if s = `ababc`, `a`, `bab` and `ababc` are substrings of s, while `ac`, `z` and an empty string are not. Also, we say that substrings are different when they are different as strings. Let X = x_{1}x_{2}...x_{n} and Y = y_{1}y_{2}...y_{m} be two distinct strings. X is lexicographically larger than Y if and only if Y is a prefix of X or x_{j} > y_{j} where j is the smallest integer such that x_{j} \neq y_{j}.
['#s=input()\n#N=int(input())\ns="atcoderandatcodeer"\nN=5\nD={}\n\nif(len(s)<=10):\n for i in range(1,len(s)+1):\n for j in range(len(s)):\n if D.get(s[j:j+i],None) == None:\n D[s[j:j+i]]=1\n D=sorted(D)\n print(D[N-1])\n exit()\nelse:\n t=sorted(s)\n i=0\n k=0\n for c in t:\n if(c!=k):\n i=0\n if(len(D)>=5):\n break\n k=c\n while(i<len(s)):\n if(s[i]==c):\n break\n i+=1\n j=i+1\n while(j<=len(s)):\n D[s[i:j]]=1\n j+=1\n i+=1\n \n D=sorted(D)\n print(D[N-1])\n exit()\n\n\n\n', 's=input()\nN=int(input())\n\n#N=5\nD={}\n\nif(len(s)<=1):\n for i in range(1,len(s)+1):\n for j in range(len(s)):\n if D.get(s[j:j+i],None) == None:\n D[s[j:j+i]]=1\n D=sorted(D)\n print(D[N-1])\n exit()\nelse:\n t=sorted(s)\n i=0\n k=0\n for c in t:\n if(c!=k):\n i=0\n if(len(D)>=5):\n break\n k=c\n while(i<len(s)):\n if(s[i]==c):\n break\n i+=1\n j=i+1\n while(j<=min(len(s),i+5)):\n D[s[i:j]]=1\n j+=1\n i+=1\n \n D=sorted(D)\n print(D[N-1])\n exit()']
['Wrong Answer', 'Accepted']
['s997627416', 's419802099']
[3064.0, 3188.0]
[17.0, 40.0]
[645, 650]