problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03633
u092926023
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n_in = int(input()) \nl = [int(input()) for i in range(n_in)] \n\np = l[0]\nfor i in range(1, len(l)):\n q = l[i]\n\n if p >= q:\n m = p\n n = q\n else:\n m = q\n n = p\n\n while True:\n mod_value = m % n\n\n if mod_value == 0:\n n = mod_value\n break\n\n m = n\n n = mod_value\n\n p = int(p*q/n)\n\nprint(p)', 'n_in = int(input()) \nt = [int(input()) for i in range(n_in)] \n\np = t[0]\nfor i in range(1, len(t)):\n q = t[i]\n\n if p >= q:\n m, n = p, q\n else:\n m, n = q, p\n\n while True:\n mod_value = m % n\n if mod_value == 0:\n break\n\n m = n\n n = mod_value\n\n p = p//n * q\n\nprint(p)']
['Runtime Error', 'Accepted']
['s786869100', 's729015797']
[3060.0, 3064.0]
[17.0, 17.0]
[376, 331]
p03633
u094191970
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['from fractions import gcd\n\nn=int(input())\nt=[int(input()) for i in range(n)]\n\nfor i in range(1,n):\n lcm=(t[i]*t[i-1]//gcd(t[i],t[i-1]))\n t[i]=lcm\nprint(lcm)', 'from fractions import gcd\n\nn=int(input())\nt=[int(input()) for i in range(n)]\n\nfor i in range(0,n-1):\n lcm=(t[i]*t[i+1]//gcd(t[i],t[i+1]))\n t[i+1]=lcm\nprint(lcm)', 'from math import gcd\n\nn=int(input())\n\nlcm=0\nfor i in range(n):\n t=int(input())\n if lcm==0:\n lcm=t\n else:\n lcm=(t*lcm)//gcd(t,lcm)\n\nprint(lcm)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s130052347', 's221315658', 's155146205']
[5688.0, 5688.0, 9084.0]
[51.0, 51.0, 29.0]
[162, 166, 150]
p03633
u102461423
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\n\ndef gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n\nanswer = 0\nfor _ in range(N):\n answer = gcd(answer, int(input())\n \nprint(answer)', 'N = int(input())\n\ndef gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n\nanswer = 0\nfor _ in range(N):\n x = int(input())\n answer *= x//gcd(answer, x)\n \nprint(answer)', 'N = int(input())\n\ndef gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n\nanswer = 1\nfor _ in range(N):\n x = int(input())\n answer *= x//gcd(answer, x)\n \nprint(answer)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s422240989', 's835846220', 's151559449']
[2940.0, 2940.0, 3060.0]
[18.0, 17.0, 17.0]
[166, 179, 179]
p03633
u104282757
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\n\na_list = []\nfor _ in range(N):\n a_list.append(int(input())\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n c = a % b\n return gcd(b, c)\n\nres = 1\nfor i in range(N):\n d = gcd(res, a_list[i])\n res = res // d\n res = res * a_list[i]\n\nprint(res) \n ', 'N = int(input())\n \na_list = []\nfor _ in range(N):\n a_list.append(int(input()))\n \ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n c = a % b\n return gcd(b, c)\n \nres = 1\nfor i in range(N):\n d = gcd(res, a_list[i])\n res = res // d\n res = res * a_list[i]\n \nprint(res) ']
['Runtime Error', 'Accepted']
['s152455701', 's009551735']
[2940.0, 3064.0]
[17.0, 17.0]
[312, 315]
p03633
u112465297
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n a=min(a,b)\n b=max(a,b)\n while b:\n a,b= b, a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nN=int(input())\nfor i in range(N):\n T.append(int(input()))\n\nans=1\nfor t in range(N):\n ans=lcm(ans,T[i])\n \nprint(ans)', 'def gcd(a,b):\n #a=min(a,b)\n #b=max(a,b)\n while b:\n a,b= b, a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\nT=[]\nN=int(input())\nfor i in range(N):\n T.append(int(input()))\n\nans=1\nfor t in T:\n ans=lcm(ans, t)\n\nprint(int(ans))']
['Runtime Error', 'Accepted']
['s306924390', 's460366555']
[3060.0, 3060.0]
[17.0, 17.0]
[263, 253]
p03633
u114920558
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(x, y):\n while(x % y != 0 and y % x != 0):\n if(x > y):\n x = x % y\n else:\n y = y % x\n if(x > y):\n return y\n else:\n return x\n \nN = int(input())\nA = list()\nfor i in range(N):\n A.append(int(input()))\n\nans = 1\nfor i in range(N):\n gcd_i = gcd(A[i], ans)\n print(gcd_i)\n ans = A[i] * ans // gcd_i\n \nprint(ans)', 'def gcd(x, y):\n while(x % y != 0 and y % x != 0):\n if(x > y):\n x = x % y\n else:\n y = y % x\n if(x > y):\n return y\n else:\n return x\n \nN = int(input())\nA = list()\nfor i in range(N):\n A.append(int(input()))\nfor i in range(N):\n ans = 1\n gcd_i = gcd(A[i], ans)\n ans = A[i] * ans // gcd_i\n \nprint(ans)', 'def gcd(x, y):\n while(x % y != 0 and y % x != 0):\n if(x > y):\n x = x % y\n else:\n y = y % x\n if(x > y):\n return y\n else:\n return x\n \nN = int(input())\nA = list()\nfor i in range(N):\n A.append(int(input()))\n\nans = 1\nfor i in range(N):\n gcd_i = gcd(A[i], ans)\n ans = A[i] * ans // gcd_i\n \nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s163389912', 's192525657', 's636554485']
[3064.0, 3064.0, 3060.0]
[18.0, 20.0, 18.0]
[339, 325, 325]
p03633
u116002573
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def main():\n N = int(input())\n T = []\n for _ in range(N):\n T.append(int(input()))\n\n if N == 1: return 0\n\n g = T[0]\n ans = T[0]\n for t in T[1:]:\n gc = gcd(t, g)\n g = g*t//gc\n return g\n\ndef gcd(a, b):\n if a > b:\n a, b = b, a\n if a == 0: return b\n else: return gcd(b%a, a)\n\n', "def main():\n N = int(input())\n T = []\n for _ in range(N):\n T.append(int(input()))\n\n if N == 1: return T[0]\n\n g = T[0]\n ans = T[0]\n for t in T[1:]:\n gc = gcd(t, g)\n g = g*t//gc\n return g\n\ndef gcd(a, b):\n if a > b:\n a, b = b, a\n if a == 0: return b\n else: return gcd(b%a, a)\n\n\n\n\nif __name__ == '__main__':\n print(main())"]
['Wrong Answer', 'Accepted']
['s057050312', 's978368276']
[3060.0, 3064.0]
[18.0, 18.0]
[332, 382]
p03633
u120810144
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['from functools import reduce\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nx = reduce(t, lcm)\n\nprint(x)\n\n', 'from functools import reduce\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a%b)\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nans = reduce(lcm, t)\nprint(ans)']
['Runtime Error', 'Accepted']
['s715476932', 's995307700']
[3700.0, 3572.0]
[36.0, 23.0]
[224, 223]
p03633
u123756661
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n=int(input())\nans=1\nfor i in range(n):\n t=int(input())\n print(t)\n ans=lcm(ans,t)\nprint(ans)', 'def gcd(a,b): return a if b==0 else gcd(b,a%b)\ndef lcm(a,b): return a*b//gcd(a,b)\nn=int(input())\nans=1\nfor i in range(n):\n t=int(input())\n print(t)\n ans=lcm(ans,t)\nprint(ans)', 'def gcd(a,b): return a if b==0 else gcd(b,a%b)\ndef lcm(a,b): return a*b//gcd(a,b)\nn=int(input())\nans=1\nfor i in range(n):\n t=int(input())\n ans=lcm(ans,t)\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s654197429', 's691308668', 's089399915']
[2940.0, 3060.0, 2940.0]
[17.0, 18.0, 17.0]
[101, 183, 170]
p03633
u123824541
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fractions\n\nN = int(input())\nT = []\n\nfor i in range(N):\n T.append(int(input()))\n\nT.sort\na = T[0]\n\nfor i in range(N-1):\n gcd = fractions.gcd(a, T[i+1])\n a = int(a * T[i+1] / gcd)\n\nprint(int(a)) \n', 'N = int(input())\nT = []\n\nfor i in range(N):\n T.append(int(input()))\n\na = 1\n\ndef gcd(a,b):\n if b == 0:\n return a\n return gcd(b,a%b)\n\nfor i in range(N):\n a = a * T[i] // gcd(a,T[i])\n\nprint(a)\n']
['Runtime Error', 'Accepted']
['s837673469', 's588041716']
[5048.0, 3060.0]
[36.0, 17.0]
[209, 209]
p03633
u124762318
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nt_list = [float(input()) for i in range(N)]\n\ndef gcd(a,b):\n\twhile b:\n\t\ta,b = b, a%b\n\treturn float(a)\n\na = t_list[0]\nfor c in range(N-1):\n\tb = t_list[c+1]\n\ta =a*b/gcd(a,b)\n\nprint(a)', 'N = int(input())\nt_list = [int(input()) for i in range(N)]\n\ndef gcd(a,b):\n\twhile b:\n\t\ta,b = b, a%b\n\treturn a\n\na = t_list[0]\nfor c in range(N-1):\n\tb = t_list[c+1]\n\ta =a*b/gcd(a,b)\n\nprint(a)', 'N = int(input())\nt_list = [int(input()) for i in range(N)]\n\ndef gcd(a,b):\n\twhile b:\n\t\ta,b = b, a%b\n\treturn a\n\na = t_list[0]\nfor c in range(N-1):\n\tb = t_list[c+1]\n\ta =a*b//gcd(a,b)\n\nprint(a)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s176819958', 's980457839', 's943160433']
[3060.0, 2940.0, 2940.0]
[2104.0, 2104.0, 18.0]
[197, 188, 189]
p03633
u131405882
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(x, y):\n\tif x < y:\n\t\tx, y = y, x\n\tif y == 0:\n\t\treturn x\n\tz = x % y\n\treturn gcd(y, z) \n\t\nN=int(input())\nprenum = 1\nfor i in range(N):\n\tT = int(input())\n\tlcm = prenum / gcd(prenum, T) * T\n\tprenum = lcm\nprint(str(lcm))', 'def gcd(x, y):\n\tif x < y:\n\t\tx, y = y, x\n\tif y == 0:\n\t\treturn x\n\tz = x % y\n\treturn gcd(y, z) \n\t\nN=int(input())\nprenum = 1\nfor i in range(N):\n\tT = int(input())\n\tlcm = prenum // gcd(prenum, T) * T\n\tprenum = lcm\nprint(lcm)']
['Runtime Error', 'Accepted']
['s435617204', 's652911260']
[3944.0, 3060.0]
[75.0, 19.0]
[222, 218]
p03633
u137228327
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\ndef lcm(x, y):\n return (x * y) // math.gcd(x, y)\ng = lcm(T[0],T[1])\nif len(T) > 2:\n for i in range(N-1):\n g = lcm(g,T[i+1])\nprint(g)', 'import math\nN = int(input())\nT = []\n\ndef lcm(x, y):\n gc = math.gcd(x, y)\n ans = (x * y)//gc\n return ans\n\nfor i in range(N):\n T.append(int(input()))\n\n \n\nif len(T) > 2:\n g = lcm(T[0],T[1])\n for i in range(3,N-1):\n g = lcm(g,T[i+1])\n print(g)\nelif len(T) == 2:\n print(g)\nelse:\n print(T[0])', 'import math\nN = int(input())\nT = [int(input()) for _ in range(N)]\n\ndef lcm(x, y):\n return (x * y)//math.gcd(x,y)\n\ng = 1\nfor i in T:\n g = lcm(g,i)\n \nprint(g)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s023815412', 's214632844', 's727272619']
[9036.0, 9136.0, 9068.0]
[26.0, 29.0, 28.0]
[215, 323, 165]
p03633
u143492911
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n if b==0:\n return a\n return (gcd(b,a%b))\ndef lcm(a,b):\n return a*b//gcd(a,b)\nn=int(input())\nif n==1:\n print(int(input()))\n exit()\nans=0 \nfor i in range(n):\n ans=lcm(ans,int(input()))\nprint(int(ans))\n', 'def gcd(a,b):\n if b==0:\n return a\n return (gcd(b,a%b))\ndef lcm(a,b):\n return a*b//gcd(a,b)\nn=int(input())\nif n==1:\n print(int(input()))\n exit()\nans=0\nfor i in range(n):\n ans=lcm(ans,int(input()))\nprint(int(ans))\n', 'n=int(input())\nt=list(int(input())for i in range(n))\ndef gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\ndef lcm(a,b):\n return a*b//gcd(a,b)\nans=t[0]\nfor i in range(n):\n ans=lcm(ans,t[i])\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s542669415', 's953482459', 's707212730']
[3060.0, 3316.0, 3060.0]
[17.0, 24.0, 17.0]
[272, 237, 214]
p03633
u153902122
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nts = [int(input()) for _ in range(N)]\n\ndef gcd(a, b):\n if b==0:\n return a\n else:\n return gcd(b, b%a)\n\ndef lcm(a, b):\n g = gcd(a, b)\n return a * b // g\n\nl = 1\nfor t in ts:\n l = lcm(l, t)\n\nprint(l)', 'import sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nts = [int(input()) for _ in range(N)]\n\ndef gcd(a, b):\n if b==0:\n return a\n else:\n return gcd(b, b%a)\n\ndef lcm(a, b):\n g = gcd(a, b)\n return a * b // g\n\nl = 1\nfor t in ts:\n l = lcm(l, t)\n\nprint(l)', 'def gcd(x, y):\n if x > y:\n y, x = x, y\n if x == 0:\n return y\n return gcd(y % x, x)\n \n \ndef lcm(x, y):\n d = gcd(x, y)\n return x * y // d\n \n \nN = int(input())\n \nans = 1\nfor _ in range(N):\n a = int(input())\n ans = lcm(ans, a)\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s009983032', 's785860145', 's031937156']
[3060.0, 3060.0, 3060.0]
[18.0, 17.0, 18.0]
[281, 281, 268]
p03633
u156314159
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nTs = list(set([int(input()) for _ in range(N)]))\n\ndef get_divider(n):\n divider = set()\n for i in range(1, n):\n if i * i > n:\n break\n\n if n % i == 0:\n divider.add(i)\n if i != int(n / i):\n divider.add(int(n / i))\n return divider\n\n\ndivider_set = set()\nfor T in Ts:\n divider_set = divider_set.union(get_divider(T))\ndivider_set.discard(1)\nprint(str(min(divider_set)))\n', 'from collections import defaultdict\n\nN = int(input())\nTs = list(set([int(input()) for _ in range(N)]))\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ndef lcm(a, b):\n g = gcd(a, b)\n return a // g * b\n\nres = Ts[0]\nfor T in Ts:\n res = lcm(res, T)\nprint(int(res))\n']
['Wrong Answer', 'Accepted']
['s205535864', 's853906327']
[6808.0, 3316.0]
[2104.0, 21.0]
[454, 296]
p03633
u179169725
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\n\nimport numpy as np\nT = np.array(T)\n\n\nans = 1\n\nflg = True\nwhile(flg):\n for i in range(2, int(np.sqrt(max(T))) + 1):\n if sum(T % i) == 0:\n T = T // i\n # print(T)\n ans = ans * i\n break\n flg = False\n\nfor t in np.unique(T):\n ans = ans * t\n\n\nprint(ans)\n', 'N = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\nT.sort()\n\n\ndef gcd(a, b):\n while (b != 0):\n tmp = a\n a = b\n b = tmp % b\n\n return a\n\n\ndef lcm(a, b):\n return (a*b)//gcd(a, b)\n\n\nans = T[0]\nfor t in T[1:]:\n ans = lcm(ans, t)\n # print(ans)\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s327061577', 's155902562']
[14480.0, 3060.0]
[2109.0, 18.0]
[494, 306]
p03633
u180058306
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import numpy as np\n\nN = int(input())\n\narr_T = np.empty(N)\nfor i in range(N):\n arr_T[i] = int(input())\n\n\n\nmax_T = np.max(arr_T)\nlcm = max_T\n\nwhile True:\n \n bools = lcm % arr_T == 0\n if bools.all():\n break\n else:\n lcm += max_T\n\n\nprint(lcm)', 'import numpy as np\n\n\ndef get_gcd(a, b):\n a, b = max(a, b), min(a, b)\n c = a % b\n if c == 0:\n return b\n else:\n return get_gcd(b, c)\n\n# --------------------------------------------\n\n\nN = int(input())\n\narr_T = np.empty(N, dtype = int)\nfor i in range(N):\n arr_T[i] = int(input())\n\narr_sort_T = np.sort(arr_T)[::-1]\n\n\n\nmax_T = np.max(arr_T)\nm = max_T\nif N != 1:\n \n for n in arr_sort_T[1:]:\n gcd = get_gcd(m, n)\n m = (m // gcd) * n\n\n\nprint(m)']
['Wrong Answer', 'Accepted']
['s727236898', 's770526032']
[14504.0, 12500.0]
[2109.0, 150.0]
[517, 772]
p03633
u191829404
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
["# https://qiita.com/_-_-_-_-_/items/34f933adc7be875e61d0\n# abcde\ts=input()\ts='abcde'\n# abcde\ts=list(input())\ts=['a', 'b', 'c', 'd', 'e']\n\n# 1 2\t| x,y = map(int,input().split()) |\tx=1,y=2\n\n\n\n\n# INPUT\n# 3\n# hoge\n# foo\n# bar\n# ANSWER\n# n=int(input())\n\n\n\nfrom collections import defaultdict, Counter\nimport math\nfrom bisect import bisect_left, bisect_right\nimport numpy as np\n\n\ndef gcd(a,b):\n if b == 0:\n return a\n else:\n return gcd(b,a%b)\n\n\ndef lcm(a, b):\n return a * b / gcd(a,b)\n\n\ndef lcmlist(numbers):\n a = numbers[0]\n for i in range(1, len(numbers)):\n a = lcm(a, numbers[i])\n return a\n\n#### START\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nprint(lcmlist(t))\n", "# https://qiita.com/_-_-_-_-_/items/34f933adc7be875e61d0\n# abcde\ts=input()\ts='abcde'\n# abcde\ts=list(input())\ts=['a', 'b', 'c', 'd', 'e']\n\n# 1 2\t| x,y = map(int,input().split()) |\tx=1,y=2\n\n\n\n\n# INPUT\n# 3\n# hoge\n# foo\n# bar\n# ANSWER\n# n=int(input())\n\n\n\nfrom collections import defaultdict, Counter\nimport math\nfrom bisect import bisect_left, bisect_right\nimport numpy as np\n\n\ndef gcd(a,b):\n if b == 0:\n return a\n else:\n return gcd(b,a%b)\n\n\ndef lcm(a, b):\n return int(a * b) // gcd(a,b)\n\n\ndef lcmlist(numbers):\n a = numbers[0]\n for i in range(1, len(numbers)):\n a = lcm(a, numbers[i])\n return int(a)\n\n#### START\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nprint(lcmlist(t))\n"]
['Runtime Error', 'Accepted']
['s664649300', 's719531830']
[12900.0, 20816.0]
[231.0, 318.0]
[1078, 1089]
p03633
u215315599
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['sys.setrecursionlimit(100000)\ndef lcm(x,y):\n return (x*y)//gcd(x,y)\n\ndef gcd(x,y):\n if y <= 0:\n return x\n else:\n return gcd(y,x%y)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\nans = lcm(T[0],T[1])\nfor i in range(2,N):\n ans = lcm(ans,T[i])\nprint(ans)', 'import sys\nimport os\nsys.setrecursionlimit(1000000000000000)\n\ndef lcm(x,y):\n return (x*y)//gcd(x,y)\n\ndef gcd(x,y):\n if y <= 0:\n return x\n else:\n return gcd(y,x%y)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\nans = lcm(T[0],T[1])\nfor i in range(2,N):\n ans = lcm(ans,T[i])\nprint(ans)\n', 'import sys\nimport os\nsys.setrecursionlimit(10000000000000)\n\ndef lcm(x,y):\n return (x*y)//gcd(x,y)\n\ndef gcd(x,y):\n if y <= 0:\n return x\n else:\n return gcd(y,x%y)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\nans = lcm(T[0],T[1])\nfor i in range(2,N):\n ans = lcm(ans,T[i])\nprint(ans)\n', 'import sys\nimport os\nsys.setrecursionlimit(100000000)\n\ndef lcm(x,y):\n return (x*y)//gcd(x,y)\n\ndef gcd(x,y):\n if y <= 0:\n return x\n else:\n return gcd(y,x%y)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\nif N == 1:\n print(T[0])\n sys.exit()\n\nans = lcm(T[0],T[1])\nfor i in range(2,N):\n ans = lcm(ans,T[i])\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s717694376', 's741463401', 's782681218', 's735584986']
[3064.0, 3060.0, 3064.0, 3064.0]
[17.0, 17.0, 17.0, 17.0]
[285, 318, 316, 354]
p03633
u216289806
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n return b\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a/c*b\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', 'import gcc\n\ndef gcd(a,b):\n if a<b:\n c=a;\n a=b;\n b=c;\n c=a%b\n\n if c==0:\n return b\n else:\n return gcc.gcd(b,c)\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a/c*b\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', 'def gcd(a,b):\n if a<b:\n d=a\n a=b\n b=d\n\n if b==0:\n b=1\n\n c=a%b\n\n if c==0:\n return b\n else:\n return 2\n\ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'import gcc\n\ndef gcd(a,b):\n if a<b:\n c=a;\n a=b;\n b=c;\n c=a%b\n\n if c==0:\n return b\n else:\n return gcc.gcd(b,c)\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a/c*b\n\n\nn=int(input())\nt=[int(input()) for lop in range(n)]\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[n])\nprint(int(ans))', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n \n if c==0:\n return gcd(b,cs)\n else:\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'n=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n\n\ndef gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', '\n\ndef lcm(a,b):\n c=4\n return a/c*b\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'n=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n\n\ndef gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', 'def gcd(a,b):\n if a<b:\n d=a\n a=b\n b=d\n\n\ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', '\ndef lcm(a,b):\n c=2\n return a/c*b\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', 'n=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=ans+t[lop]\nprint(int(ans))', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n \n if c==0:\n return a\n else:\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n \n if c==0:\n return gcd(b,c)\n else:\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', '\ndef lcm(a,b):\n c=1;\n return a/c+b\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', 'def gcd(a,b):\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', "def gcd(a,b):\n if a<b:\n c=a;\n a=b;\n b=c;\n c=a%b\n\n if c==0:\n return b\n else:\n return gcd(b,c)\n\n\n\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a/c*b\n\n\n\nN=input()\n\nn=int(N)\n\nANS=input()\nans=int(ANS)\n\nfor lop in range(n-1):\n T=input()\n t=int(T)\n ans=lcm(ans,t)\nprint(int(ans))\nprint('\\n')\nquit()\n", '\ndef gcd(a,b):\n if a<b:\n d=a\n a=b\n b=d\n\n if b==0:\n b=1\n if a==0:\n a=1\n\n c=a%b\n\n if c==0:\n return b\n else:\n return 5\n\ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', 'import gcc\n\ndef gcd(a,b):\n if a<b:\n c=a;\n a=b;\n b=c;\n c=a%b\n\n if c==0:\n return b\n else:\n return gcc.gcd(b,c)\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a/c*b\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[n])\nprint(int(ans))', 'n=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\n\nprint(4)', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n \n if c==0:\n a=b\n b=c\n return gcd(a,b)\n else:\n return b\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n', "def gcd(a,b):\n return b\n\n\n\n\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a\n\n\n\nN=input()\n\nn=int(N)\n\nANS=input()\nans=int(ANS)\n\nfor lop in range(n):\n T=input()\n t=int(T)\n ans=lcm(ans,t)\nprint(int(ans))\nprint('\\n')\nquit()\n", 'import gcc\n\ndef gcd(a,b):\n if a<b:\n c=a;\n a=b;\n b=c;\n c=a%b\n\n if c==0:\n return b\n else:\n return gcc.gcd(b,c)\n\ndef lcm(a,b):\n c=gcd(a,b);\n return a/c*b\n\n\nn=int(input())\nt=[int(input()) for lop in range(n)]\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t)\nprint(int(ans))', 'def gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n \n c=a%b\n \n if c==0:\n return b\n else:\n return a\n \ndef lcm(a,b):\n c=gcd(a,b)\n return a/c*b\n \n \n \nn=int(input())\nt=[0]*n\n \nfor lop2 in range(n):\n t[lop2]=int(input())\n \nans=t[0]\n \nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))', "'''\ndef gcd(a,b):\n if a<b:\n c=a\n a=b\n b=c\n\n c=a%b\n\n if c==0:\n return b\n else:\n return gcd(b,c)\n'''\n'''\ndef gcd(a,b):\n return a if b == 0 else gcd(b,a%b)\n'''\n\ndef gcd(a,b):\n if a<b:\n d=a\n a=b\n b=d\n d=a%b\n while d!=0:\n a=b\n b=d\n d=a%b\n return b\n\ndef lcm(e,f):\n c=gcd(e,f)\n g=e*f\n return g//c\n\n\n\nn=int(input())\nt=[0]*n\n\nfor lop2 in range(n):\n t[lop2]=int(input())\n\nans=t[0]\n\nfor lop in range(1,n):\n ans=lcm(ans,t[lop])\nprint(int(ans))\n"]
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s247833581', 's287376330', 's311997503', 's333438983', 's438917650', 's441494950', 's453578379', 's462863339', 's476965047', 's484140869', 's497119869', 's519430056', 's522254117', 's599780751', 's617709332', 's685024597', 's702319523', 's769382992', 's773285224', 's778844947', 's807653141', 's814093433', 's819548031', 's860191128', 's918675620', 's966631271', 's191319523']
[3064.0, 3064.0, 3064.0, 3064.0, 3064.0, 3064.0, 3060.0, 3064.0, 3060.0, 3060.0, 2940.0, 3064.0, 3064.0, 3060.0, 3060.0, 3064.0, 3064.0, 3060.0, 3952.0, 3064.0, 3064.0, 2940.0, 3064.0, 3060.0, 3064.0, 3064.0, 3064.0]
[17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 17.0, 17.0, 17.0, 17.0, 18.0, 17.0, 17.0, 17.0, 75.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0]
[222, 350, 334, 328, 335, 430, 189, 430, 249, 185, 139, 283, 327, 284, 268, 334, 188, 229, 345, 357, 348, 81, 352, 229, 325, 326, 518]
p03633
u231685196
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\nn = int(input())\ns = int(input())\ndef gcd_core(a, b):\n if b == 0:\n return a\n else:\n return gcd_core(b, a % b)\nfor i in range(1,n):\n t = int(input())\n s = (s*t)//math.gcd_core(s,t)\n\nprint(s)', 'n = int(input())\ns = int(input())\ndef gcd_core(a, b):\n if b == 0:\n return a\n else:\n return gcd_core(b, a % b)\nfor i in range(1,n):\n t = int(input())\n s = (s*t)//gcd_core(s,t)\n\nprint(s)']
['Runtime Error', 'Accepted']
['s953903857', 's581174682']
[3060.0, 2940.0]
[17.0, 17.0]
[227, 210]
p03633
u238510421
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nts = [int(input()) for _ in range(N)]\n\ndef gcd(a,b):\n if b == 0:\n return a\n return gcd(b,a%b)\n\ndef lcm(a,b):\n g = gcd(a,b)\n return a/g*b\n\nl = 1\nfor t in ts:\n l = lcm(l,t)\n \nprint(l)', 'import sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nts = [int(input()) for _ in range(N)]\n\ndef gcd(a,b):\n if b == 0:\n return a\n return gcd(b,a%b)\n\ndef lcm(a,b):\n g = gcd(a,b)\n return a * b // g\n\nl = 1\nfor t in ts:\n l = lcm(l,t)\n \nprint(l)']
['Runtime Error', 'Accepted']
['s859920958', 's029030271']
[683764.0, 3060.0]
[1318.0, 17.0]
[263, 268]
p03633
u239316561
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd (num1,num2):\n tmp = max(num1,num2) % min(num1,num2)\n if tmp == 0:\n return min(num1,num2)\n return gcd(min(num1,num2),tmp)\n\n\nn = int(input())\nt = []\nstock = [1]\nfor i in range(n):\n t.append(input())\n\nfor i in range(len(t)-1):\n stock.append(t[i] * t[i+1] / gcd(stock[i],t[i]))\n\nprint(stock[-1])', 'def gcd(num1,num2):\n if num2 == 0:\n return num1\n return gcd(num2,num1%num2)\n\nn = int(input())\nt = [int(x) for x in input()]\ntime = 1\n\nfor i in t:\n time = time * t // gcd(time,i)', 'def gcd(num1,num2):\n if num2 == 0:\n return num1\n return gcd(num2,num1%num2)\n\nn = int(input())\nt = []\nfor i in range(n):\n t.append(int(input()))\n\ntime = 1\n\nfor i in t:\n time = time * i / gcd(time,i)\n\nprint(time)', 'def gcd (num1,num2):\n tmp = max(num1,num2) % min(num1,num2)\n if tmp == 0:\n return min(num1,num2)\n return gcd(min(num1,num2),tmp)\n\nn = int(input())\nt = []\nstock = [1]\nfor i in range(n):\n t.append(input())\n\nfor i in range(len(t)-1):\n stock.append(t[i] * t[i+1] / gcd(stock[i],t[i]))\n\nprint(stock[-1])', 'n = int(input())\nans = int(input())\n \ndef gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n \ndef lcm(x,y):\n return (x*y//gcd(x,y))\n \nfor i in range(N-1):\n t = int(input())\n ans = lcm(ans,t)\nprint(ans)', 'n = int(input())\nans = int(input())\n \ndef gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n \ndef lcm(x,y):\n return (x*y//gcd(x,y))\n \nfor i in range(n-1):\n t = int(input())\n ans = lcm(ans,t)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s335315990', 's736546976', 's746883225', 's881647729', 's884368464', 's205294471']
[3064.0, 2940.0, 3948.0, 3064.0, 3060.0, 3060.0]
[17.0, 18.0, 73.0, 17.0, 17.0, 17.0]
[389, 306, 229, 320, 216, 216]
p03633
u239375815
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['cl = [int(input()) for i in range(int(input()))]\nans = 1\n\ndef gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a\n\ndef lcm(a, b):\n\treturn a * b // gcd (a, b)\n\nfor i in cl:\n ans = lcm(ans,i)\n print(ans)\n\nprint(ans)\n', 'cl = [int(input()) for i in range(int(input()))]\nans = 1\n\ndef gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a\n\ndef lcm(a, b):\n\treturn a * b // gcd (a, b)\n\nfor i in cl:\n ans = lcm(ans,i)\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s221086282', 's774988978']
[3060.0, 3060.0]
[17.0, 17.0]
[217, 202]
p03633
u240793404
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\ninput()\nlc = 1\nfor i in range(n):\n t = int(input())\n lc = lc * t // math.gcd(lc,t)\nprint(lc)', 'import math\ninput()\nt = list(map(int,input().split()))\nlc = 1\nfor i in t:\n lc = lc * t // math.gcd(lc,t)\nprint(lc)', 'def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\nn = int(input())\nlc = 1\nfor i in range(n):\n t = int(input())\n lc = lc * t // gcd(lc,t)\nprint(lc)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s058974201', 's904194073', 's934614662']
[3060.0, 3060.0, 2940.0]
[18.0, 17.0, 17.0]
[110, 117, 167]
p03633
u252828980
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\n\nli = []\nfor i in range(n):\n li.append(int(input()))\n\ndef gcd1(a,b):\n while b:\n a,b = b,a%b\n return a\n\ndef lcm1(a,b):\n return a*b//gcd1(a,b)\nnum = 1\nfor i in range(2,len(li)):\n num = lcm1(num,li[i])\nprint(num)\n ', 'n = int(input())\n\ndef gcd1(a,b):\n while b:\n a,b = b,a%b\n return a\n\ndef lcm1(a,b):\n return a*b//gcd1(a,b)\nnum = 1\nfor i in range(n):\n num = lcm1(num,int(input()))\nprint(num)\n ']
['Wrong Answer', 'Accepted']
['s275881847', 's055100262']
[3060.0, 2940.0]
[17.0, 18.0]
[241, 186]
p03633
u267300160
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fractions\nN = int(input())\nans = 1\n\ndef lcm(x,y):\n return (int(x*y/fractions.gcd(x,y)))\n\nfor i in range(N):\n ans = lcm(ans,int(input()))\n\nprint(ans)\n', 'N = int(input())\nans = int(input())\n\ndef gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n\ndef lcm(x,y):\n return (x*y//gcd(x,y))\n\nfor i in range(N-1):\n t = int(input())\n ans = lcm(ans,t)\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s271704076', 's935723083']
[5304.0, 2940.0]
[39.0, 17.0]
[162, 215]
p03633
u296518383
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N=int(input())\nT=[int(input()) for _ in range(N)]\nT=list(set(T))\nprint(T)\n\ndef gcd(a,b):\n if b==0:\n return a\n else:\n return gcd(b,a%b)\n\nans=T[0]\nfor i in range(N):\n #print(ans)\n ans=ans*T[i]//gcd(ans,T[i])\nprint(ans)', 'N=int(input())\nT=[int(input()) for _ in range(N)]\nT=list(set(T))\nN=len(T)\n#print(T)\n\ndef gcd(a,b):\n if b==0:\n return a\n else:\n return gcd(b,a%b)\n\nans=T[0]\nfor i in range(N):\n #print(ans)\n ans=ans*T[i]//gcd(ans,T[i])\nprint(ans)']
['Runtime Error', 'Accepted']
['s446833156', 's747893295']
[3064.0, 3064.0]
[18.0, 18.0]
[226, 236]
p03633
u301823349
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nT = []\nfor _ in range(N):\n T.append(int(input()))\nfor x in range(1,10**8):\n for y in T:\n z = 0\n z += x % y\n if z == 0:\n print(x)\n break\n \n', 'N = int(input())\nT = []\nfor _ in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a\n \ndef lcm(a, b):\n\treturn a * b // gcd (a, b)\nif N == 1:\n print(T[0])\nelse:\n result = lcm(T[0],T[1])\n\n for x in range(2,N):\n result = lcm(result, T[x])\n\n print(result)\n \n']
['Wrong Answer', 'Accepted']
['s377817920', 's211481223']
[2940.0, 3060.0]
[2104.0, 17.0]
[195, 318]
p03633
u314050667
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import sys\nimport math\nif N == 1:\n\tprint(T[0])\n\tsys.exit()\ndef GCD(a,b):\n\tif b == 0:\n\t\treturn a\n\treturn GCD(b,a%b)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\n\ndef SKS(a,b):\n\treturn (a*b)//GCD(a,b)\n\nfor i in range(1,N):\n\tif i == 1:\n\t\ttemp = SKS(T[0], T[1])\n\t\tcontinue\n\n\ttemp = SKS(temp, T[i])\n\nprint(temp)', 'import sys\nimport math\n\ndef GCD(a,b):\n\tif b == 0:\n\t\treturn a\n\treturn GCD(b,a%b)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\nif N == 1:\n\tprint(T[0])\n\tsys.exit()\ndef SKS(a,b):\n\treturn (a*b)//GCD(a,b)\n\nfor i in range(1,N):\n\tif i == 1:\n\t\ttemp = SKS(T[0], T[1])\n\t\tcontinue\n\n\ttemp = SKS(temp, T[i])\n\nprint(temp)']
['Runtime Error', 'Accepted']
['s294193307', 's970697952']
[3064.0, 3064.0]
[17.0, 18.0]
[316, 316]
p03633
u333768710
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
["import fractions\n\n\ndef lcm(a, b):\n return a * b / fractions.gcd(a, b)\n\n\ndef list_lcm(number_list):\n lcm_number = 1\n for j in range(len(number_list)):\n lcm_number = lcm(lcm_number, number_list[j])\n\n return lcm_number\n\n\nif __name__ == '__main__':\n number_count = int(input())\n numbers = []\n for i in range(number_count):\n numbers.append(int(input()))\n print(int(list_lcm(numbers)))\n", "def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\n\ndef list_lcm(number_list):\n lcm_number = 1\n for j in range(len(number_list)):\n lcm_number = lcm(lcm_number, number_list[j])\n\n return lcm_number\n\n\nif __name__ == '__main__':\n number_count = int(input())\n numbers = []\n for i in range(number_count):\n numbers.append(int(input()))\n print(int(list_lcm(numbers)))\n"]
['Wrong Answer', 'Accepted']
['s127934497', 's040392017']
[5084.0, 3060.0]
[2104.0, 17.0]
[418, 457]
p03633
u338225045
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int( input() )\nT = [ int( input() ) for _ in range(N) ]\n\n\n\n\n\ndef GCD( a, b ):\n if b == 0: return a\n return GCD(b, a%b)\n\n\ndef LCM( a, b ):\n return a*b / GCD(a,b)\n\n\nans = LCM( T[0], T[1] )\nfor i in range(2,N):\n ans = LCM( ans, T[i] )\nprint( ans )', 'import functools\n\nN = int( input() )\nT = [ int( input() ) for _ in range(N) ]\n\n\n\n\n\ndef GCD( a, b ):\n if b == 0: return a\n return GCD(b, a%b)\n\n\ndef LCM( a, b ):\n return a*b // GCD(a,b)\n\n\nans = functools.reduce( LCM, T ) \nprint( ans )']
['Runtime Error', 'Accepted']
['s039487693', 's692181233']
[3952.0, 3572.0]
[78.0, 23.0]
[433, 414]
p03633
u353241315
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
["import sys\n\nsys.setrecursionlimit = 10000000\n\ndef get_gcd(A, B):\n r = A%B\n if r == 0:\n return B\n else:\n return get_gcd(B, r)\n \nif __name__ == '__main__':\n N = int(input())\n T = [int(input()) for _ in range(N)]\n \n ans = 1\n for n in range(N):\n gcd = get_gcd(ans, T[n])\n ans = int(T[n]/gcd)*T[n]\n \n print(ans)", "import sys\n\nsys.setrecursionlimit = 10000000\n\ndef get_gcd(A, B):\n r = A%B\n if r == 0:\n return B\n else:\n return get_gcd(B, r)\n \nif __name__ == '__main__':\n N = int(input())\n T = [int(input()) for _ in range(N)]\n \n ans = 1\n for t in T:\n gcd = get_gcd(ans, t)\n ans = t//gcd*ans\n \n print(ans)"]
['Wrong Answer', 'Accepted']
['s654415750', 's141814787']
[3060.0, 3060.0]
[17.0, 18.0]
[378, 360]
p03633
u364618491
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b) \n\nn=int(input())\np=1\nfor i in range(n):\n m=int(input())\n p=p*m/gcd(p,m)\nprint(p)', 'def gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b) \n \nn=int(input())\np=1\nfor i in range(n):\n m=int(input())\n p=p*m//gcd(p,m)\nprint(int(p))']
['Runtime Error', 'Accepted']
['s178856171', 's913454517']
[3944.0, 2940.0]
[72.0, 18.0]
[148, 155]
p03633
u371763408
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\nT=[int(input()) for i in range(n)]\nT = sorted(T,reverse=True)\n\nfor i in range(2,100):\n if T[0] % T[1] !=0:\n if sum(map(lambda x:T/2, T)) !=0:\n T[0] = T[0]*i\n else:\n print(T[0])\n exit()\n', 'n = int(input())\nT=[int(input()) for i in range(n)]\nT = sorted(T,reverse=True)\n\nfor i in range(2,100):\n if sum(map(lambda x:T[0]%x, T)) !=0:\n print(sum(map(lambda x:T[0]%x, T)))\n T[0] = T[0]*i\n else:\n print(T[0])\n exit()', 'def gcd(x,y):\n r=x%y\n return gcd(y,r) if r else y\n\ndef lcm(x, y):\n return (x * y) // gcd(x, y)\n\nn=int(input())\nA=[int(input()) for i in range(n)]\n\n\nk=A[0]\nfor i in A[1:]:\n k=lcm(k,i)\nprint(k)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s870133444', 's931723185', 's298003604']
[3060.0, 3064.0, 3060.0]
[18.0, 19.0, 18.0]
[218, 234, 242]
p03633
u387110752
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import urllib.request\nfrom bs4 import BeautifulSoup\nimport re\nimport sys\nimport os\nimport time\nimport subprocess\nimport datetime\n\n\ndef gcd(a, b):\n if a < b:\n c = a\n a = b\n b = c\n\n r = a % b\n\n while r > 0:\n a = b\n b = r\n r = a % b\n\n return b\n\n \n # if (a < b)\n # swap(a, b);\n \n #\n # while (r) {\n # a = b;\n # b = r;\n # r = a % b;\n # }\n #\n # return b;\n # }\n\n\nN = int(input())\na = []\nfor i in range(N):\n a.append(int(input()))\n# a = list(map(int, input().split()))\n\nans = a[0]\n\nfor i in range(N):\n if i == 0:\n continue\n\n g = gcd(ans, a[i])\n ans = ans * a[i] // g\n\nprint(ans)\n', '\ndef gcd(a, b):\n if a < b:\n c = a\n a = b\n b = c\n\n r = a % b\n\n while r > 0:\n a = b\n b = r\n r = a % b\n\n return b\n\n \n # if (a < b)\n # swap(a, b);\n \n #\n # while (r) {\n # a = b;\n # b = r;\n # r = a % b;\n # }\n #\n # return b;\n # }\n\n\nN = int(input())\na = []\nfor i in range(N):\n a.append(int(input()))\n# a = list(map(int, input().split()))\n\nans = a[0]\n\nfor i in range(N):\n if i == 0:\n continue\n\n g = gcd(ans, a[i])\n ans = ans * a[i] // g\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s393922267', 's254251396']
[9456.0, 3064.0]
[133.0, 17.0]
[745, 615]
p03633
u393512980
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\nimport sys\ninput = sys.stdin.readline\nN = int(input())\nT = [int(input()) for _ in range(N)]\nif N == 1:\n ans = T[0]\nelse:\n ans = lcm(T[0], T[1])\n for i in range(2, N):\n ans = lcm(ans, T[i])\nprint(ans)', 'def gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\nimport sys\ninput = sys.stdin.readline\nN = int(input())\nif N == 1:\n print(input())\nelse:\n T = [int(input()) for _ in range(N)]\n ans = lcm(T[0], T[1])\n for i in range(2, N):\n ans = lcm(ans, T[i])\n print(ans)\n']
['Runtime Error', 'Accepted']
['s129895697', 's418735600']
[2940.0, 3060.0]
[17.0, 17.0]
[330, 347]
p03633
u410996052
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['s=set()\nn=int(input())\nfor i in range(n):\n s.add(int(input()))\nwhile len(s) != 1:\n l=list(cb(s,2))\n s = set([lcm(x,y) for x,y in l])\nprint(list(s)[0])', 'def gcd(a, b):\n while b > 0:\n a, b = b, a%b\n return a\ndef lcm(a, b):\n return a*b//gcd(a, b)\nn=int(input())\nt=[int(input()) for i in range(n)]\nfor i in range(n-1):\n t[i+1] = lcm(t[i],t[i+1])\nprint(t[n-1])']
['Runtime Error', 'Accepted']
['s949836555', 's360231200']
[3060.0, 3064.0]
[17.0, 17.0]
[159, 222]
p03633
u411858517
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\nfrom functools import reduce\n\nN = int(input())\nL = [ int(input()) for i in range(N)]\n\n\ndef lcm_list(numbers):\n return reduce(lcm_base, numbers, 1)\n\nprint(lcm_list(L))', '\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef lcm(a, b):\n return a * b // gcd (a, b)\n\nN = int(input())\nL = [int(input()) for _ in range(N)]\n\ntmp = L[0]\nfor i in range(1, N):\n tmp = lcm(tmp, L[i])\n \nprint(tmp)\n']
['Runtime Error', 'Accepted']
['s848158840', 's015889333']
[3572.0, 3060.0]
[23.0, 18.0]
[181, 288]
p03633
u415905784
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, b % a)\n \ndef lcm(A, B):\n return (A // gcd(A, B)) * B\n \nprint(functools.reduce(lcm, T))', 'import math\nimport functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, b % a)\n \ndef lcm(A, B):\n return A * B // gcd(A, B)\n \nprint(functools.reduce(lcm, sorted(T, reverse=True)))', 'import functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, b % a)\n \ndef lcm(A, B):\n return (A // gcd(A, B)) * B\n \nprint(functools.reduce(lcm, sorted(T, reverse=True)))', 'import functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, b % a)\n \ndef lcm(A, B):\n return A * B // gcd(A, B)\n \nprint(functools.reduce(lcm, T))', 'import functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n \ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, a % b)\n \ndef lcm(A, B):\n return (A // gcd(A, B)) * B\n \nprint(functools.reduce(lcm, T))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s083666530', 's252908653', 's379904881', 's960432154', 's000762615']
[3572.0, 3572.0, 3812.0, 3572.0, 3572.0]
[22.0, 23.0, 24.0, 23.0, 23.0]
[258, 290, 280, 256, 259]
p03633
u463655976
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\n\ndef gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\n\ng = 1\nfor x in (int(input()) for _ in range(N)):\n g = g * x / gcd(g, x)\nprint(g)\n', 'N = int(input())\n\ndef gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\n\ng = 0\nfor x in (int(input()) for _ in range(N)):\n g = gcd(g, x)\nprint(g)\n', 'N = int(input())\n\ndef gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\n\ng = 0\nfor x in (map(int, input()) for _ in range(N)):\n g = gcd(g, x)\nprint(g)\n', 'N = int(input())\n\ndef gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\n\ng = 1\nfor x in (int(input()) for _ in range(N)):\n g = g * x // gcd(g, x)\nprint(g)\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s024111096', 's288743851', 's311250559', 's360451544']
[3948.0, 2940.0, 2940.0, 2940.0]
[74.0, 17.0, 17.0, 18.0]
[175, 167, 172, 176]
p03633
u469281291
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n while a != b:\n if (a != 1 and b != 1):\n if a < b:\n b = b % a\n elif a > b:\n a = a % b\n else:\n break\n if (a == 1 or b == 1):\n return 1\n else:\n return a\n\ndef lcm(a, b):\n return (a * b) // gcd(a, b)\n\n\nn = int(input())\nans = 1\nfor i in range(n):\n tmp = int(input())\n ans = lcm(ans, tmp)\nprint(ans)\n', 'n=int(input())\nans = 1\nfor i in range(n):\n inp = int(input())\n tmp = ans * inp\n tmp2 =ans\n while (ans % inp != 0):\n if (inp % ans == 0):\n ans = inp\n break\n ans += tmp2\n print(ans)\n print(ans%inp)\nprint(ans)', 'def gcd(a, b):\n if (b == 0):\n return a\n return gcd(b,a%b)\n\ndef lcm(a, b):\n return (a * b) // gcd(a, b)\n\n\nn = int(input())\nans = 1\nfor i in range(n):\n tmp = int(input())\n ans = lcm(ans, tmp)\nprint(ans)\n']
['Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s104646541', 's529400369', 's617362659']
[3064.0, 37236.0, 2940.0]
[2104.0, 2104.0, 17.0]
[426, 268, 223]
p03633
u473999868
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math as m\nfrom functools import reduce\n\nn=int(input())\nl=set([])\ndef gcd(a,b):\n a1=a\n b1=b\n if b%a==0 :\n return b\n if a%b==0:\n return a\n while a != 0:\n c = a\n a = b % a\n b = c\n return a1*b1/b\n\nfor i in range(n):\n l.add(int(input()))\nprint(reduce(gcd,l))\n\n\n\n\n\n\n\n\n', 'import math as m\nfrom functools import reduce\nn,T= int(input()),[]\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\nfor i in range(n):\n T.append(int(input()))\ntmp = max(T)\nfor i in range(n):\n if tmp % T[i] != 0:\n tmp = T[i]//gcd(tmp, T[i])*tmp\n\nprint(tmp)\n\n']
['Wrong Answer', 'Accepted']
['s992061171', 's227715991']
[3828.0, 3700.0]
[2104.0, 23.0]
[325, 286]
p03633
u480472958
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n while b:\n a, b = b, a % b\n return max(a,b)\n\ndef lcd(a,b):\n return a * b / gcd(a,b)\n\n\nn = int(input())\nt = [int(input()) for i in range(n)]\nans = 1\nfor i in t:\n ans = lcd(i, ans)\nprint(ans)', 'def gcd(a,b):\n while b:\n a, b = b, a % b\n return a\n\ndef lcd(a,b):\n return a * b // gcd(a,b)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\nans = 1\nfor i in t:\n ans = lcd(ans, i)\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s259386290', 's953102694']
[3060.0, 3060.0]
[2104.0, 19.0]
[222, 220]
p03633
u495415554
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['A, B, C, D = map(int, input().split())\nvalue = min(B, D) - max(A, C)\nprint(value if value > 0 else "0")\n\n', '\n\n@profile\ndef gcd(list, n):\n if n == 0:\n return list[0]\n else:\n a, b = list[n-1], list[n]\n \n while list[n]:\n list[n-1], list[n] = list[n], list[n-1] % list[n]\n\n list[n-1] = (a*b)/list[n-1]\n return gcd(list, n-1)\n\nN = int(input())\nT = [int(input()) for i in range(N)]\nT.sort(reverse=True)\nprint(int(gcd(T, N-1)))\n\n', '\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\ndef lcm(a, b):\n return a*b//gcd(a, b)\n\nN = int(input())\nT = [int(input()) for i in range(N)]\nans = 1\n\nfor i in range(N):\n ans = lcm(ans, T[i])\n\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s122641556', 's625186267', 's145077501']
[2940.0, 3064.0, 3060.0]
[17.0, 17.0, 17.0]
[105, 416, 272]
p03633
u503901534
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\ntt = []\nfor i in range(n):\n tt.append(int(input()))\n \nss = int(1)\n\nfor i in tt:\n p = []\n p.append(ss)\n p.append(i)\n q = list(sorted(p))\n while q[1] % q[0] != 0:\n r = [q[1] % q[0] , q[0]]\n s = list(sorted(r))\n q[0] = s[0]\n q[1] = s[1]\n print(q)\n \n ss = int(ss * i / q[0])\n\nprint(int(ss))', 'n = int(input())\ntt = []\nfor i in range(n):\n tt.append(int(input()))\n \nss = 1\n\nfor i in tt:\n p = []\n p.append(int(ss))\n p.append(int(i))\n q = list(sorted(p))\n while q[1] % q[0] != 0:\n r = [q[1] % q[0] , q[0]]\n s = list(sorted(r))\n q[0] = int(s[0])\n q[1] = int(s[1])\n\n \n ss = int(ss * i) // q[0]\n\nprint(ss)']
['Runtime Error', 'Accepted']
['s477492991', 's546077492']
[3064.0, 3064.0]
[19.0, 17.0]
[369, 364]
p03633
u513081876
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
[' = int(input())\nT = sorted([int(input()) for i in range(N)])\n\ndef gcd(a, b):\n while b != 0:\n a, b = b,a%b\n return a\n\nif N == 1:\n print(T[0])\nelse:\n ans = T[0]\n for i in range(1, N):\n ans = (ans*T[i])//(gcd(ans, T[i]))\n \n print(ans)', 'N = int(input())\nT = set([int(input()) for i in range(N)])\nans = 0\nt = max(T)\nkensa = [t]\nwhile max(kensa) <= 10 **18:\n i = 2\n kensa.append(i*t)\n i += 1\n \nfor i in kensa:\n for j in T:\n if i%j != 0:\n break\n else:\n ans = i\n continue\n break\nprint(ans)', 'import math\n\nnum = 1\nfor i in range(int(input())):\n a = int(input())\n cnt = math.gcd(a, num)\n num = (a * num) // cnt\nprint(num)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s013120480', 's675364745', 's379849233']
[2940.0, 3700.0, 9168.0]
[17.0, 2108.0, 31.0]
[266, 301, 136]
p03633
u521902517
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\na = [int(input()) for x in range(N)]\nprint(a)\n\nans = max(a)\nmx = max(a)\niteration = 1 \nwhile (ans < 10^18):\n flag = True \n for item in a:\n if not (ans%item == 0):\n flag = False\n if flag:\n print(ans)\n break\n else:\n iteration = iteration + 1\n ans = iteration * mx', 'def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n \ndef lcm(a, b):\n return a * b // gcd(a,b)\n \nN = int(input())\nTs = []\nc = 1\nfor i in range(N):\n c = lcm(c, int(input()))\n \nprint(int(c))\n']
['Wrong Answer', 'Accepted']
['s593415153', 's967003013']
[3064.0, 3060.0]
[17.0, 18.0]
[335, 208]
p03633
u530335051
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fractions\n\ndef lcm(n, m):\n return int(n * m / fractions.gcd(n, m))\n\n\nn = int(input())\nt = []\nfor i in range(0, n):\n t.append(int(input()))\nt_sorted = sorted(t)\n\ntime = 0\nfor i in range(0, n):\n if i == 0:\n time = t_sorted[0]\n else:\n time = lcm(int(time), t_sorted[i])\n\nprint(int(time))', 'def gcd(n, m):\n if min(n, m) == 0:\n return max(n,m)\n else:\n return gcd(min(n,m), max(n,m) % min(n,m))\n\ndef lcm(n, m):\n return n * m // gcd(n, m)\n\n\nn = int(input())\nt = []\nfor i in range(0, n):\n t.append(int(input()))\nt_sorted = sorted(t)\n\ntime = 0\nfor i in range(0, n):\n if i == 0:\n time = t_sorted[0]\n else:\n time = lcm(time, t_sorted[i])\n\nprint(int(time))']
['Runtime Error', 'Accepted']
['s756585761', 's189243147']
[5048.0, 3064.0]
[36.0, 17.0]
[317, 403]
p03633
u549383771
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['for i in range(len(t_list)):\n if i == 0:\n continue\n elif i == 1:\n ans_list.append(lcm(t_list[0] , t_list[1]))\n \n else:\n ans_list.append(lcm(ans_list[i-2],t_list[i]))\n \nprint(ans_list[-1])', 'def fcd(a , b):\n if a>= b:\n while b != 0:\n a,b = b,a%b\n return a\n \n else:\n while a != 0:\n b,a = a,b%a\n return b\n \n \ndef lcm(a,b):\n return int(a*b/fcd(a , b))\n\n\nn = int(input())\nt_list = []\nfor i in range(n):\n t_list.append(int(input()))\n \n \nfor i in range(len(t_list)):\n if i == 0:\n continue\n elif i == 1:\n ans_list.append(lcm(t_list[0] , t_list[1]))\n \n else:\n ans_list.append(lcm(ans_list[i-2],t_list[i]))', 'def fcd(a , b):\n \n if a>= b:\n while b != 0:\n a,b = b,a%b\n return a\n \n else:\n while a != 0:\n b,a = a,b%a\n return b\n \n \ndef lcm(a,b):\n return a*b//fcd(a , b)\n\n\nn = int(input())\nt_list = []\nans_list = []\nfor i in range(n):\n t_list.append(int(input()))\n \n \nfor i in range(len(t_list)):\n if i == 0:\n ans_list.append(t_list[0])\n continue\n if i == 1:\n ans_list.append(lcm(t_list[0] , t_list[1]))\n \n if i >=2:\n ans_list.append(lcm(ans_list[-1],t_list[i]))\nprint(ans_list[-1])']
['Runtime Error', 'Runtime Error', 'Accepted']
['s741352865', 's742873845', 's204813125']
[3060.0, 3064.0, 3064.0]
[17.0, 18.0, 17.0]
[227, 516, 587]
p03633
u553348533
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nlistClock = [int(input()) for i in range(N)]\ndef gcd(x, y):\n while y > 0:\n x, y = y, x%y\n return x\n\ndef lcm(x, y):\n return x/gcd(x, y)*y\n\nans = 1\n\nfor i in listClock:\n ans = lcm(ans,i)\n\nprint(ans)', 'N = int(input())\nlistClock = [int(input()) for i in range(N)]\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ndef lcm(x, y):\n g = gcd(x, y)\n \n return x // g * y\n\nans = 1\nfor i in listClock:\n ans = lcm(ans, i)\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s980799963', 's382748107']
[3060.0, 3060.0]
[18.0, 18.0]
[232, 322]
p03633
u555947166
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def GCD(x: int, y: int):\n if x < y:\n x, y = y, x\n\n if x % y == 0:\n return y\n else:\n return GCD(y, x % y)\n\n\ndef LCM(x: int, y: int):\n return x * y // GCD(x, y)\n\n\nN = int(input())\nTlist = [int(input()) for i in range(N)]\nans = 1\nfor num in Tlist[1:]:\n ans = LCM(ans, num)\nprint(ans)\n', 'def GCD(x: int, y: int):\n if x < y:\n x, y = y, x\n\n if x % y == 0:\n return y\n else:\n return GCD(y, x % y)\n\n\ndef LCM(x: int, y: int):\n return x * y // GCD(x, y)\n\n\nN = int(input())\nTlist = [int(input()) for i in range(N)]\nans = 1\nfor num in Tlist:\n ans = LCM(ans, num)\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s071655149', 's622247128']
[3060.0, 3060.0]
[19.0, 21.0]
[317, 313]
p03633
u557171945
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\nt = list(int(input()) for i in range(n))\nmxt = max(t)\nls = []\nans = 0\nj = 0\nmod_flag = False\n\nfor i in range(n):\n if not mxt % t[i] == 0:\n mod_flag = True\n ls.append(t[j])\n j+=1\n \nif mod_flag:\n ans = mxt\n\nif ans == 0:\n ans = 1\n for i in range(len(ls)):\n ans *= ls[i]\n ans *= mxt\n \nprint(ans)\n', 'def gcd(a,b):\n while b:\n a,b = b, a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nn = int(input())\nt = list(int(input()) for i in range(n))\nmxt = max(t)\nls = []\nans = 0\nj = 0\nmod_flag = False\n\nfor i in range(n):\n if not mxt == t[i] and not mxt % t[i] == 0:\n mod_flag = True\n ls.append(t[i])\n j+=1\n \nif not mod_flag:\n ans = mxt\n\nif ans == 0:\n ans += mxt\n for i in range(len(ls)):\n if not ans % ls[i] == 0:\n print(ans)\n ans = lcm(ans,ls[i])\n \nprint(ans)\n', 'def gcd(a,b):\n while b:\n a,b = b, a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nn = int(input())\nt = list(int(input()) for i in range(n))\nmxt = max(t)\nls = []\nans = 0\nj = 0\nmod_flag = False\n\nfor i in range(n):\n if not mxt == t[i] and not mxt % t[i] == 0:\n mod_flag = True\n ls.append(t[i])\n j+=1\n \nif not mod_flag:\n ans = mxt\n\nif ans == 0:\n ans += mxt\n for i in range(len(ls)):\n if not ans % ls[i] == 0:\n ans = lcm(ans,ls[i])\n \nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s590471241', 's655971121', 's250066810']
[3064.0, 3064.0, 3064.0]
[18.0, 18.0, 18.0]
[358, 540, 517]
p03633
u559250296
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\nlis = []\nfor i in range(n):\n lis.append(int(input()))\ndef lcm(*numbers):\n return reduce(lcm_base, numbers, 1)\nprint(lcm(lis))', 'import math\nfrom functools import reduce\nn = int(input())\nlis = []\nfor i in range(n):\n lis.append(int(input()))\ndef lcm_base(x, y):\n return (x * y) // math.gcd(x, y)\n\ndef lcm(*numbers):\n return reduce(lcm_base, numbers, 1)\n\ndef lcm_list(numbers):\n return reduce(lcm_base, numbers, 1)\nprint(lcm(lis))\n', 'n = int(input())\nlis = []\nfor i in range(n):\n lis.append(int(input()))\n\nprint(lcm(lis))', 'import numpy as np\nn = int(input())\nlis = []\nfor i in range(n):\n lis.append(int(input()))\nprint(np.lcm.reduce(lis))']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s129586478', 's184965161', 's529507410', 's187871646']
[9116.0, 9468.0, 9164.0, 27084.0]
[26.0, 29.0, 28.0, 117.0]
[148, 312, 90, 118]
p03633
u560988566
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fractions\n\ndef main():\n n = int(input())\n ans = 1\n for _ in range(n):\n t = int(input())\n ans = ans*t/fractions.gcd(ans,t)\n print(int(ans))\n\n\nif __name__ == "__main__":\n main()\n', 'import fractions\n\ndef lcm(a,b):\n return a * b / fractions.gcd(a, b)\n\ndef main():\n n = int(input())\n t = [ int(input()) for _ in range(n)]\n ans = t[0]\n for i in range(n-1):\n ans = lcm(ans, t[i+1])\n print(int(ans))\n\n\nif __name__ == "__main__":\n main()', 'import fractions\n\ndef lcm(a,b):\n return a * b / fractions.gcd(a, b)\n\ndef main():\n n = int(input())\n t = [ int(input()) for _ in range(n)]\n ans = t[0]\n for i in range(n-1):\n ans = lcm(ans, t[i+1])\n print(ans)\n\n\nif __name__ == "__main__":\n main()', 'import fractions\n\ndef lcm(a,b):\n return a*b/fractions.gcd(a,b)\n\ndef main():\n n = int(input())\n ans = int(input())\n for _ in range(n-1):\n ans = lcm(ans,int(input()))\n print(int(ans))\n\n\nif __name__ == "__main__":\n main()', 'import fractions\n\ndef main():\n n = int(input())\n ans = int(input())\n for _ in range(n-1):\n t = int(input())\n ans = ans*t/fractions.gcd(ans,t)\n print(int(ans))\n\n\nif __name__ == "__main__":\n main()\n', 'import sys\ninput = sys.stdin.readline\n\ndef gcd(x,y):\n if x>y: x,y = y,x\n while x:\n x,y = y%x, x\n return y\n\ndef lcm(x,y):\n return x*y//gcd(x,y)\n\nN = int(input())\nans = 1\nfor _ in range(N):\n ans = lcm(ans, int(input()))\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s025514624', 's646157683', 's647435773', 's730505599', 's968343185', 's663607085']
[5560.0, 5560.0, 5600.0, 5048.0, 5432.0, 3060.0]
[2104.0, 2104.0, 2104.0, 2104.0, 2104.0, 17.0]
[212, 277, 272, 243, 225, 237]
p03633
u588341295
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['# -*- coding: utf-8 -*-\n\nimport fraction\nfrom functools import reduce\n\nN = int(input())\nTN = [int(input()) for i in range(N)]\n\n\ndef lcm_base(x, y):\n return (x * y) // fraction.gcd(x, y)\ndef lcm_list(numbers):\n return reduce(lcm_base, numbers, 1)\n\nprint(lcm_list(TN))', '# -*- coding: utf-8 -*-\n\nfrom functools import reduce\n\nN = int(input())\nTN = [int(input()) for i in range(N)]\n\n\ndef gcd(a, b):\n while b > 0:\n a, b = b, a%b\n return a\ndef lcm_base(x, y):\n return (x * y) // gcd(x, y)\ndef lcm_list(numbers):\n return reduce(lcm_base, numbers, 1)\n\nprint(lcm_list(TN))']
['Runtime Error', 'Accepted']
['s310386002', 's068580201']
[2940.0, 3572.0]
[17.0, 23.0]
[328, 370]
p03633
u598229387
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fractions\nn=int(input())\nt=[int(input()) for i in range(n)]\nt.sort()\nfor i in range(n-1):\n f1=fractions.gcd(t[i],t[i+1])\n f2=t[i]*t[i+1]//f1\nprint(f2)', 'import fractions\nn=int(input())\nt=[int(input()) for i in range(n)]\nt.sort()\ncheck=t[0]\nfor i in range(n-1):\n f1=fractions.gcd(t[i],t[i+1])\n f2=check*t[i+1]//f1\n check=f2\nprint(f2)', 'import fractions\nn=int(input())\nt=[int(input()) for i in range(n)]\nt.sort()\ncheck=t[0]\nfor i in range(n-1):\n f1=fractions.gcd(t[i],t[i+1])\n f2=t[i]*t[i+1]//f1\n check=f2\nprint(f2)', 'n=int(input())\nt=[int(input()) for i in range(n)]\n\ndef gcd(a,b):\n\twhile b:\n\t\ta,b=b,a%b\n\treturn a\n\n\t\nif n==1:\n\tprint(t[0])\n\texit()\n\ncheck=gcd(t[0],t[1])\nans=t[0]*t[1]//check\nfor i in range(2,n):\n\tcheck=gcd(ans,t[i])\n\tans=ans*t[i]//check\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s019071493', 's420407450', 's564514177', 's461273088']
[5304.0, 5048.0, 5048.0, 3064.0]
[38.0, 35.0, 35.0, 18.0]
[163, 188, 187, 246]
p03633
u599114793
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\nimport functools\nfrom functools import reduce\n\ndef gcd(numbers):\n return reduce(functools.gcd, numbers)\n\ndef lcm_base(x, y):\n return x // functools.gcd(x, y) * y\n\ndef lcm(numbers):\n return reduce(lcm_base, numbers, 1)\n\n\nnum = []\nfor i in range(n):\n num.append(int(input()))\nprint(lcm(num))\n', 'n = int(input())\ndef gcd(a,b):\n while b != 0:\n a, b = b, a % b\n return a\n\ndef lcm(a,b):\n return a // gcd(a,b) * b\n\nans = 1\nfor i in range(n):\n t = int(input())\n ans = lcm(ans,t)\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s717967950', 's911539163']
[3700.0, 2940.0]
[23.0, 18.0]
[319, 228]
p03633
u599547273
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fraction\n\ndef lcm(a, b):\n\treturn a * b // fraction.gcd(a, b)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nans = t[0]\nfor t_i in t[1:]:\n\tans = lcm(ans, t_i)\n\nprint(ans)', 'def gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a\n\ndef lcm(a, b):\n\treturn a * b // gcd(a, b)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nans = t[0]\nfor t_i in t[1:]:\n\tans = lcm(ans, t_i)\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s043373552', 's665270281']
[2940.0, 3060.0]
[17.0, 17.0]
[185, 213]
p03633
u620868411
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['# -*- coding: utf-8 -*-\n\nn = int(input())\nt = []\nfor _ in range(n):\n t.append(int(input()))\n\ndef gcd(a, b):\n if b==0:\n return a\n return gcd(b, a%b)\n\ndef lcm(a,b):\n return a*b/gcd(a,b)\n\ndef lcmary(x, t):\n if len(t)==0:\n return x\n elif len(t)==1:\n return lcm(x,t[0])\n else:\n xx = lcm(x, t.pop(0))\n return lcmary(xx, t)\n\nprint(lcmary(t[0], t[1:]))\n', '# -*- coding: utf-8 -*-\n\nn = int(input())\n\ndef gcd(a, b):\n if b==0:\n return a\n return gcd(b, a%b)\n\ndef lcm(a,b):\n return a/gcd(a,b)*b\n\nans = 1\nfor _ in range(n):\n t = int(input())\n ans = lcm(ans, t)\n\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\nn = int(input())\nt = []\nfor _ in range(n):\n t.append(int(input()))\n\ndef gcd(a, b):\n if b==0:\n return a\n return gcd(b, a%b)\n\ndef lcm(a,b):\n return a*b/gcd(a,b)\n\ndef lcmary(x, t):\n if len(t)==0:\n return x\n elif len(t)==1:\n return lcm(x,t[0])\n else:\n xx = lcm(x, t.pop(0))\n return lcmary(xx, t)\n\nprint(lcmary(t[0], t[1:]))\n', '# -*- coding: utf-8 -*-\n\nn = int(input())\n\ndef gcd(a, b):\n if b==0:\n return a\n return gcd(b, a%b)\n\ndef lcm(a,b):\n return a*b/gcd(a,b)\n\nans = 1\nfor _ in range(n):\n t = int(input())\n ans = lcm(ans, t)\n\nprint(ans)\n', '# -*- coding: utf-8 -*-\nn = int(input())\n\ndef gcd(a,b):\n if b>a:\n a,b = b,a\n while b>0:\n a,b = b,a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nres = int(input())\nfor _ in range(n-1):\n t = int(input())\n res = lcm(res,t)\n\nprint(res)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s218357305', 's483777783', 's723270802', 's733414317', 's583255647']
[4072.0, 3944.0, 3960.0, 3948.0, 3060.0]
[76.0, 75.0, 75.0, 74.0, 18.0]
[401, 233, 401, 233, 269]
p03633
u624475441
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n while b:\n a, b = b, a % b\n return b\n\nans = 1\nfor _ in range(int(input())):\n t = int(input())\n ans = ans * t // gcd(ans, t)\nprint(ans)', 'def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nans = 1\nfor _ in range(int(input())):\n t = int(input())\n ans = ans * t // gcd(ans, t)\nprint(ans)']
['Runtime Error', 'Accepted']
['s976714599', 's258351567']
[2940.0, 2940.0]
[17.0, 17.0]
[168, 168]
p03633
u626468554
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n if a<b:\n a,b = b,a\n if b==0:\n return a\n else:\n return gcd(b,a%b)\n\nn = int(input())\nli = [int(input()) for _ in range(n)]\n\nans = 1\nfor i in range(n):\n ans = gcd(ans,li[i])\nprint(ans)', 'def gcd(a,b):\n if a<b:\n a,b = b,a\n if b==0:\n return a\n else:\n return gcd(b,a%b)\n\ndef lcm(a,b):\n return (a*b)//gcd(a,b)\n\n\nn = int(input())\nli = [int(input()) for _ in range(n)]\n\nans = 1\nfor i in range(n):\n ans = lcm(ans,li[i])\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s800769784', 's983512371']
[3060.0, 3060.0]
[17.0, 17.0]
[229, 273]
p03633
u638795007
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
["def gcd(a,b):\n if a>b :\n while b!=0:\n a,b = b,a%b\n return a\n elif a==b:\n return a\n else :\n while a!=0:\n a,b = b%a,a\n return b\ndef lcm(n,A):\n gcdn = [0]*n\n lcmn = [0]*n\n gcdn[0]=A[0]\n lcmn[0]=A[0]\n for i in range(n-1):\n gcdn[i+1] = gcd(lcmn[i],A[i+1])\n lcmn[i + 1] = (lcmn[i]/gcdn[i+1])*A[i+1]\n return lcmn[n-1]\n\ndef examC():\n N = I()\n T = [I() for _ in range(N)]\n ans = lcm(N,T)\n print(ans)\n\nimport sys\nimport copy\nimport bisect\nimport heapq\nfrom collections import Counter,defaultdict,deque\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\ndef LS(): return sys.stdin.readline().split()\ndef S(): return sys.stdin.readline().strip()\nmod = 10**9 + 7\ninf = float('inf')\n\nexamC()\n", "def gcd(x, y):\n if y == 0:\n return x\n while y != 0:\n x, y = y, x % y\n return x\n\ndef lcm(x, y):\n return x * y // gcd(x, y)\n\n\ndef examC():\n N = I()\n T = [I() for _ in range(N)]\n ans = 1\n for t in T:\n ans = lcm(ans, t)\n print(ans)\n\nimport sys\nimport copy\nimport bisect\nimport heapq\nfrom collections import Counter,defaultdict,deque\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\ndef LS(): return sys.stdin.readline().split()\ndef S(): return sys.stdin.readline().strip()\nmod = 10**9 + 7\ninf = float('inf')\n\nexamC()\n"]
['Wrong Answer', 'Accepted']
['s794146435', 's175954533']
[3444.0, 3444.0]
[2104.0, 23.0]
[840, 615]
p03633
u642905089
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n \nN = int(input())\nTs = [None for i in range(N)]\n\na = input()\nb = 0\nfor i in range(N-1):\n b = int(input())\n a = (a*b) // gcd(a,b)\n \nprint(a)', 'def gcd(a,b):\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n \nN = int(input())\n \na = int(input())\nb = 0\nfor i in range(N-1):\n b = int(input())\n a = (a*b) // gcd(a,b)\n \nprint(a)']
['Runtime Error', 'Accepted']
['s837573837', 's713632466']
[417012.0, 2940.0]
[149.0, 18.0]
[237, 213]
p03633
u644778646
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\ndef lcm(a,b):\n return (a*b)/int(ath.gcd(a,b))\n\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\nans = T[0]\nfor i in range(1,N):\n ans = int(lcm(ans,T[i]))\nprint(int(ans))\n', 'def gcd(a,b):\n while b:\n a,b = b,a%b\n return a\n\n\ndef lcm(a,b):\n return (a*b) // gcd(a,b)\n\n\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\nt = T[0]\nfor i in range(N - 1):\n t = lcm(t,T[i+1])\nprint(t)']
['Runtime Error', 'Accepted']
['s915059358', 's455898878']
[3060.0, 3060.0]
[18.0, 18.0]
[210, 240]
p03633
u648901783
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nle = [int(input()) for i in range(N)]\nle.sort()\n\n\n\n\ndef GCD(a,b):\n if b == 0:\n return a\n return GCD(b,a%b)\n\n\ndef LCM(a,b):\n return int(a*b//GCD(a,b))\n\ndef multi_LCM(le):\n print(le)\n if len(le)==1:\n return \n mxle=le[-1]\n del(le[-1])\n le[-1]=LCM(le[-1],mxle)\n multi_LCM(le)\n\nif(len(le)==2):\n le[0]=LCM(le[0],le[1])\nif(len(le)>=2):\n multi_LCM(le)\n\nprint(le[0])\n\n', 'N = int(input())\nle = [int(input()) for i in range(N)]\nle.sort()\n\n\n\n\ndef GCD(a,b):\n if b == 0:\n return a\n return GCD(b,a%b)\n\n\ndef LCM(a,b):\n return int(a*b//GCD(a,b))\n\ndef multi_LCM(le):\n # print(le)\n if len(le)==1:\n return\n mxle=le[-1]\n del(le[-1])\n le[-1]=LCM(le[-1],mxle)\n multi_LCM(le)\n\nif(len(le)==2):\n le[0]=LCM(le[0],le[1])\nif(len(le)>=2):\n multi_LCM(le)\n\nprint(le[0])\n']
['Wrong Answer', 'Accepted']
['s570824588', 's421974024']
[3188.0, 3064.0]
[18.0, 17.0]
[651, 651]
p03633
u665038048
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['from fractions import gcd\nN = int(input())\nT = [0]*N\nfor i in range(N):\n T[i] = int(input())\ndef lcm(a, b):\n return int((a*b)/gcd(a, b))\nlcm_ans = lcm(T[0], T[1])\nfor i in range(N):\n lcm_ans = lcm(T[i], lcm_ans)\nprint(lcm_ans)', 'from functools import reduce\nN = int(input())\nT = [0]*N\nfor i in range(N):\n T[i] = int(input())\ndef gcd(x, y):\n while y > 0:\n x, y = y, x % y\n return x\ndef lcm(x, y):\n return x*y//gcd(x, y)\nprint(reduce(lcm, T))']
['Runtime Error', 'Accepted']
['s572001775', 's165154145']
[5304.0, 3572.0]
[38.0, 23.0]
[235, 230]
p03633
u665415433
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import copy\nN = int(input())\nT = [int(input()) for i in range(N)]\nt = copy.deepcopy(T)\nprint(t ,T)\nfor i in range(N):\n print(i)\n if i != N-1:\n while t[i] != t[i+1]:\n if t[i] < t[i+1]:\n t[i] = t[i] + T[i]\n elif t[i] > t[i+1]:\n t[i+1] = t[i+1] + T[i+1]\n T[i+1] = t[i+1]\nprint(t)', 'def yuclid(a, b):\n if b == 0:\n return a\n else:\n return yuclid(b, a% b)\n\nN = int(input())\nt = [int(input()) for i in range(N)]\nfor i in range(N-1):\n t[i+1] = t[i]*t[i+1]//yuclid(t[i], t[i+1])\n\nprint(t[N - 1])\n']
['Wrong Answer', 'Accepted']
['s903992671', 's261884444']
[3444.0, 2940.0]
[2104.0, 17.0]
[348, 231]
p03633
u676264453
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['from functools import reduce\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\ndef lcm(a, b):\n return a * b / gcd(a,b)\n\nN = int(input())\nTs = []\nfor i in range(N):\n Ts.append(int(input()))\n\nc = 1\nfor T in Ts:\n c = lcm(c, T)\n\nprint(c)\n', 'from functools import reduce\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nN = int(input())\nTs = []\nfor i in range(N):\n Ts.append(int(input()))\nif len(Ts) >= 2:\n print(reduce(lambda x,y: x*y/ gcd(x,y), Ts))\nelse:\n print(Ts[0])', ' from functools import reduce\n\n def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n def lcm(a, b):\n return a * b / gcd(a,b)\n\n N = int(input())\n Ts = []\n for i in range(N):\n Ts.append(int(input()))\n\n c = 1\n for T in Ts:\n c = lcm(c, T)\n\n print(int(c))\n', 'def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n#def gcd(m, n):\n# r = m % n\n\n\ndef lcm(a, b):\n return a * b // gcd(a,b)\n\nN = int(input())\nTs = []\nc = 1\nfor i in range(N):\n c = lcm(c, int(input()))\n\nprint(int(c))\n']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s096726500', 's243648835', 's796184251', 's167329320']
[3572.0, 3572.0, 2940.0, 3060.0]
[2104.0, 2104.0, 17.0, 17.0]
[260, 256, 280, 271]
p03633
u677121387
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(x,y):\n if y == 0:\n return x\n else:\n return gcd(y,x%y)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nif n == 1:\n ans = t[0]\nelse:\n lcd = t[0]*t[1]/gcd(t[0],t[1])\n for i in range(2,n):\n lcd = lcd*t[i]/gcd(lcd,t[i])\n ans = lcd\n \nprint(ans)', 'def gcd(x,y):\n if y == 0:\n return x\n else:\n return gcd(y,x%y)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nlcd = t[0]*t[1]/gcd(t[0],t[1])\nfor i in range(2,n):\n lcd = lcd*t[i]/gcd(lcd,t[i])\n\nprint(lcd)', 'def gcd(x,y):\n if y == 0:\n return x\n else:\n return gcd(y,x%y)\n\ndef lcd(x,y):\n return x*y//gcd(x,y)\n\nn = int(input())\nt = [int(input()) for i in range(n)]\n\nans = t[0]\nfor i in range(1,n):\n ans = lcd(ans,t[i])\n\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s168545340', 's431551710', 's822664190']
[4068.0, 3952.0, 3060.0]
[72.0, 75.0, 18.0]
[296, 234, 245]
p03633
u692515710
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import sys\nimport fractions\nsys.setrecursionlimit(200000000)\n\nN = int(input())\nNUMS = [int(input()) for _ in range(N)]\nNUMS = list(set(NUMS))\n\ndef gcd(num1, num2):\n if num2 == 0:\n return num1\n else:\n return gcd(num2, num1 % num2)\n\n\nres = NUMS[0]\nfor num in NUMS[1:]:\n res = res * num / max(fractions.gcd(res, num), 1)\n\nprint(int(res))', 'import sys\nsys.setrecursionlimit(200000000)\n\nN = int(input())\nNUMS = [int(input()) for _ in range(N)]\nNUMS = list(set(NUMS))\n\ndef gcd(num1, num2):\n if num2 == 0:\n return num1\n else:\n return gcd(num2, num1 % num2)\n\n\nres = NUMS[0]\nfor num in NUMS[1:]:\n res = res * num // gcd(res, num)\n\nprint(int(res))']
['Wrong Answer', 'Accepted']
['s672720024', 's409814548']
[5048.0, 3188.0]
[2104.0, 19.0]
[357, 323]
p03633
u695079172
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['from functools import reduce\ndef gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\n\n\n\ndef lcm(a,b):\n return a * b//gcd(a,b) a\n\n\nif __name__ == "__main__":\n n = int(input())\n lst = []\n for i in range(n):\n lst.append(int(input()))\n print(reduce(lcm,lst))\n\n\n\n', 'from functools import reduce\n\ndef gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\n\n\n\ndef lcm(a,b):\n return a * b // gcd(a,b) \n\n\nif __name__ == "__main__":\n n = int(input())\n lst = []\n for i in range(n):\n lst.append(int(input()))\n print(reduce(lcm,lst))']
['Runtime Error', 'Accepted']
['s079217628', 's595602439']
[2940.0, 3572.0]
[17.0, 23.0]
[291, 289]
p03633
u696449926
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nT = [0]*N\n\nfor i in range(N):\n\tT[i] = int(input())\n\n\n\ndef gcd(a, b):\n\tr = max(a, b) % min(a, b)\n\t\n\n\n\tif (r == 0):\n\t\treturn max(a, b)\n\n\telse:\n\t\treturn r * min(a, b) // gcd(r, min(a, b))\n\n\n\n\ndef GCD(T):\n\tl = len(T)\n\n\n\n\tif(l == 1):\n\t\treturn T[0]\n\n\telif(l == 2):\n\t\treturn gcd(T[0], T[1])\n\n\n\n\tT1, T2 = [], []\n\n\tfor i in range(l // 2):\n\t\tT1.append(T[i])\n\n\tfor j in range(l - l // 2):\n\t\tT2.append(T[j + l // 2])\n\n\n\n\treturn gcd(GCD(T1), GCD(T2))\n\n\n\nprint(GCD(T))', '# -*- coding: utf-8 -*-\n\nN = int(input())\nT = [0]*N\n\nfor i in range(N):\n\tT[i] = int(input())\n\n\n\ndef gcd(a, b):\n\tr = max(a, b) % min(a, b)\n\t\n\n\n\tif (r == 0):\n\t\treturn min(a, b)\n\n\telse:\n\t\treturn gcd(r, min(a, b))\n\n\n\ndef lcm(a, b):\n\treturn a * b // gcd(a, b)\n\n\n\n\ndef LCM(T):\n\tl = len(T)\n\n\n\n\tif(l == 1):\n\t\treturn T[0]\n\n\telif(l == 2):\n\t\treturn lcm(T[0], T[1])\n\n\n\n\tT1, T2 = [], []\n\n\tfor i in range(l // 2):\n\t\tT1.append(T[i])\n\n\tfor j in range(l - l // 2):\n\t\tT2.append(T[j + l // 2])\n\n\n\n\treturn lcm(LCM(T1), LCM(T2))\n\n\n\nprint(LCM(T))']
['Wrong Answer', 'Accepted']
['s734084917', 's674352757']
[3064.0, 3064.0]
[18.0, 18.0]
[471, 647]
p03633
u705974985
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, b % a)\n \ndef lcm(A, B):\n return A * (B // gcd(A, B))\n \nprint(functools.reduce(lcm, T))\n', 'import functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n return gcd(b, a % b)\n \ndef lcm(A, B):\n return A * B // gcd(A, B)\n \nprint(functools.reduce(lcm, T))\n']
['Wrong Answer', 'Accepted']
['s285186412', 's163336785']
[3572.0, 3572.0]
[22.0, 23.0]
[259, 257]
p03633
u711539583
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\ndef gcd(a, b):\n if not b:\n return a\n else:\n return gcd(b, a % b)\ndef lcm(a, b):\n return a * b / gcd(a, b)\nans = 1\nfor _ in range(n):\n c = int(input())\n ans = lcm(ans, c)\nprint(ans)', 'n = int(input())\ndef gcd(a, b):\n if not b:\n return a\n else:\n return gcd(b, a % b)\ndef lcm(a, b):\n return a * b // gcd(a, b)\nans = 1\nfor _ in range(n):\n c = int(input())\n ans = lcm(ans, c)\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s078986646', 's488699762']
[3948.0, 2940.0]
[74.0, 18.0]
[208, 210]
p03633
u728566015
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\nfrom fractions import gcd\nfrom functools import reduce\n\nN = int(input())\nT = [int(input()) for i in range(N)]\n\n\ndef gcd(numbers): # "numbers" is list\n return reduce(gcd, numbers, 1)\n\n\ndef lcm_base(x, y):\n return (x * y) // gcd(x, y)\n\n\ndef lcm(numbers): # "numbers" is list\n return reduce(lcm_base, numbers,\n 1) # [third argument] return 1 if "numbers" is empty\n\n\nprint(lcm(T))', 'from functools import reduce\n\nN = int(input())\nT = [int(input()) for i in range(N)]\n\n\ndef gcd_base(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef gcd(numbers): # "numbers" is list\n return reduce(gcd_base, numbers)\n\n\ndef lcm_base(a, b):\n return (a * b) // gcd_base(a, b)\n\n\ndef lcm(numbers): # "numbers" is list\n return reduce(lcm_base, numbers) # [third argument] return 1 if "numbers" is empty\n\n\nprint(lcm(T))']
['Runtime Error', 'Accepted']
['s192687413', 's074412465']
[5076.0, 3700.0]
[38.0, 25.0]
[417, 437]
p03633
u763881112
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['\n\nimport numpy as np\nimport fractions as fra\n\nt=int(input())\nans=1\nfor _ in range(t):\n ans=ans*int(input())/fra.gcd(ans,int(input()))\nprint(ans)', '\n\nimport numpy as np\n\ndef gcd(a,b):\n if(a>b):\n a,b=b,a\n if(a==0):return b\n return gcd(b%a,a)\n\nt=int(input())\nans=1\nfor _ in range(t):\n k=int(input())\n ans=ans*k//gcd(ans,k)\nprint(ans)']
['Runtime Error', 'Accepted']
['s515811032', 's826181012']
[15156.0, 14532.0]
[2108.0, 151.0]
[147, 205]
p03633
u785205215
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['from sys import stdin, stdout\nfrom collections import defaultdict\ndef readLine_int_list(): return list(map(int, stdin.readline().split()))\ndef readAll_int(): return list(map(int, stdin))\n\ndef gcd(a, b):\n\twhile b:\n\t a, b = b, a % b\n\treturn a\n\t\ndef lcm(a, b):\n return a * b // gcd (a, b)\n\ndef main():\n n = int(input())\n \n t = readAll_int()\n t = [(i+1)*10**18 for i in range(100)]\n for i in range(len(t) - 1):\n a = lcm(t[i], t[i+1])\n t[i+1] = a\n print(a)\n\nif __name__ == "__main__":\n main()\n', 'from sys import stdin, stdout\ndef readAll_int(): return list(map(int, stdin))\n\ndef gcd(a, b):\n\twhile b:\n\t a, b = b, a % b\n\treturn a\n\t\ndef lcm(a, b):\n return a * b // gcd (a, b)\n\ndef main():\n n = int(input())\n t = list(set(readAll_int()))\n if len(t)>1:\n for i in range(len(t) - 1):\n a = lcm(t[i], t[i+1])\n t[i+1] = a\n else:\n a = t[0]\n print(a)\n \nif __name__ == "__main__":\n main()\n']
['Wrong Answer', 'Accepted']
['s770948702', 's157620320']
[3316.0, 3064.0]
[21.0, 18.0]
[567, 443]
p03633
u785578220
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\na = int(input())\ns = 1\nfor i in range(a):\n t= int(input())\n s = (t*s)//gcd(t,s)\nprint(s)\n ', '\ndef gcd(x,y):\n if x==0:return y\n else:return gcd(y%x,x)\na = int(input())\ns = 1\nfor i in range(a):\n t= int(input())\n s = (t*s)//gcd(t,s)\nprint(s)']
['Runtime Error', 'Accepted']
['s534285116', 's155818837']
[2940.0, 3064.0]
[17.0, 19.0]
[111, 157]
p03633
u795630164
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nT = [int(input()) for i in range(N)]\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\ndef lcm(a, b):\n return a * b / gcd(a, b)\n\nnow = lcm(T[0], T[1])\nfor i in range(1, N):\n now = lcm(now, T[i])\n\nprint(now)\n', 'N = int(input())\nT = [int(input()) for i in range(N)]\n\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\n\nif N == 1:\n print(T[0])\n exit()\n\nnow = lcm(T[0], T[1])\nfor i in range(1, N):\n now = lcm(now, T[i])\n\nprint(now)\n']
['Runtime Error', 'Accepted']
['s495697256', 's471370406']
[3060.0, 3064.0]
[2103.0, 18.0]
[247, 290]
p03633
u824237520
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\nt = [int(input()) for _ in range(n)]\n\ndef gcd(m, n):\n x = max(m, n)\n y = min(m, n)\n if x%y == 0:\n return y\n else:\n while x%y != 0:\n z = x%y\n x = y\n y = z\n else:\n return z\n\ndef lcm(m, n):\n return m * n//gcd(m, n)\n\n\nwhile n > 1:\n i = 0\n next = []\n if n % 2 == 1:\n next.append(t[n-1])\n n -= 1\n while i < n:\n next.append(lcm(t[i], t[i + 1]))\n i += 2\n t = [] + next\n n = len(t)\n print(t)\n\nprint(t[0])\n', 'n = int(input())\nt = [int(input()) for _ in range(n)]\n\ndef gcd(m, n):\n x = max(m, n)\n y = min(m, n)\n if x%y == 0:\n return y\n else:\n while x%y != 0:\n z = x%y\n x = y\n y = z\n else:\n return z\n\ndef lcm(m, n):\n return m * n//gcd(m, n)\n\n\nwhile n > 1:\n i = 0\n next = []\n if n % 2 == 1:\n next.append(t[n-1])\n n -= 1\n while i < n:\n next.append(lcm(t[i], t[i + 1]))\n i += 2\n t = [] + next\n n = len(t)\n\nprint(t[0])\n']
['Wrong Answer', 'Accepted']
['s379709599', 's051989126']
[3064.0, 3064.0]
[18.0, 18.0]
[542, 529]
p03633
u838194315
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\nimport functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\ndef gcd(A, B):\n while(True):\n if A and B:\n if A > B:\n A = A % B\n else:\n B = B % A\n else:\n return max(A, B)\n \ndef lcm(A, B):\n return (A * // gcd(A, B)) * b\n\nprint(functools.reduce(lcm, sorted(T, reverse=True)))', 'import math\nimport functools\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\ndef gcd(A, B):\n while(True):\n if A and B:\n if A > B:\n A = A % B\n else:\n B = B % A\n else:\n return max(A, B)\n\ndef lcm(A, B):\n return (A // gcd(A, B)) * B\n\nprint(functools.reduce(lcm, sorted(T, reverse=True)))\n']
['Runtime Error', 'Accepted']
['s965376078', 's220469551']
[2940.0, 3572.0]
[17.0, 24.0]
[343, 341]
p03633
u859897687
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['N = int(input())\nT = [int(input() for _ in range(N))]\n\ndef gcd(a,b):\n while b:\n a,b=b,a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nans=1\nfor i in range(T):\n ans = lcm(ans,i)\n\nprint(ans)\n', 'N = int(input())\nT = [int(input()) for _ in range(N)]\ndef gcd(a, b):\n\twhile b:\n a, b = b, a % b\n\treturn a\ndef lcm(a, b):\n\treturn a * b // gcd(a, b)\nl = 1\nfor i in T:\n l = lcm(l, i)\nprint(l)\n', 'N = int(input())\nT = [int(input() for _ in range(N))]\n\ndef gcd(a,b):\n while b:\n a,b=b,a%b\n return b\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nans=1\nfor i in range(T):\n ans = lcm(ans,i)\n \nprint(ans)\n', 'N = int(input())\nT = [int(input()) for _ in range(N)]\n\ndef gcd(a,b):\n while b:\n a,b=b,a%b\n return a\n\ndef lcm(a,b):\n return a*b//gcd(a,b)\n\nans=1\nfor i in T:\n ans = lcm(ans,i)\n\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s595316881', 's694367597', 's786700383', 's181093261']
[3060.0, 2940.0, 2940.0, 3060.0]
[17.0, 17.0, 17.0, 17.0]
[212, 200, 216, 205]
p03633
u863370423
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n\tif a == 0:\n\t\treturn b\n\treturn gcd(b % a, a)\nn = (input())\nres = (input())\nwhile n > 1:\n\tx = (input())\n\tres = (res * x) // gcd(res, x);\n\tn -= 1\nprint(res)', 'def gcd(a, b):\n\treturn gcd(b, a % b) if b else a\n\nn = int(input())\nans = 1\nfor i in range(n):\n\tx = int(input())\n\tans = ans * x // gcd(ans, x)\nprint(ans)']
['Runtime Error', 'Accepted']
['s985745167', 's655226333']
[9056.0, 2940.0]
[29.0, 20.0]
[169, 152]
p03633
u868040597
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n lcm_num = lcm(list[0], list[1])\n for i in range(2, len(list)):\n lcm_num = lcm(lcm_num, list[i])\n print(lcm_num)\n', '# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n lcm_num = lcm(list[-1], list[-2])\n for i in range(len(list)-2):\n lcm_num = lcm(lcm_num, list[i])\n print(lcm_num)\n', '# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n lcm_num = lcm(list[0], list[1])\n for i in range(len(list)):\n lcm_num = lcm(lcm_num, list[i])\n print(lcm_num)\n', '# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n if len(list) > 2:\n \tlcm_num = lcm(list[0], list[1])\n for i in range(2, len(list)):\n lcm_num = lcm(lcm_num, list[i])\n print(lcm_num)\n elif len(list) == 2:\n print(lcm(list[0], list[1]))\n else:\n \tprint(len[-1])\n\n\nnlcm(t)\n', '# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n if len(list) > 2:\n \tlcm_num = lcm(list[0], list[1])\n for i in range(2, len(list)):\n lcm_num = lcm(lcm_num, list[i])\n print(lcm_num)\n elif len(list) == 2:\n print(lcm(list[0], list[1]))\n else:\n \tprint(list[-1])\n\nnlcm(t)\n', '# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n lcm_num = lcm(list[-2], list[-1])\n for i in range(len(list)-2):\n lcm_num = lcm(lcm_num, list[i])\n print(lcm_num)\n', '# coding: utf-8\n\nn = int(input()) \nt = sorted([int(input()) for i in range(n)])\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\t\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\t\ndef nlcm(list):\n if len(list) > 2:\n lcm_num = lcm(list[0], list[1])\n for i in range(2, len(list)):\n lcm_num = lcm(lcm_num, list[i])\n \n print(lcm_num)\n elif len(list) == 2:\n print(lcm(list[0], list[1]))\n else:\n \tprint(list[-1])\n\nnlcm(t)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s170011288', 's393336599', 's596083083', 's669962783', 's726692807', 's846000331', 's345939735']
[2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 3060.0, 3064.0]
[17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0]
[320, 321, 317, 439, 439, 321, 445]
p03633
u875361824
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
["def main():\n N = int(input().strip())\n res = int(input().strip())\n if N == 1:\n print(res)\n return\n for _ in range(1, N):\n t = int(input().strip())\n res = lcm(res, t)\n print(res)\n\n\ndef lcm(a, b):\n return (a * b) / gcd(a, b)\n\n\ndef gcd(a, b):\n if b == 0:\n return a\n if b == 1:\n return 1\n if b > a:\n return gcd(b, a)\n else:\n return gcd(b, a % b)\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input().strip())\n res = int(input().strip())\n if N == 1:\n print(res)\n return\n for _ in range(1, N):\n t = int(input().strip())\n res = lcm(res, t)\n print(res)\n\n\ndef lcm(a, b):\n return (a * b) // gcd(a, b)\n\n\ndef gcd(a, b):\n if b == 0:\n return a\n if b == 1:\n return 1\n if b > a:\n return gcd(b, a)\n else:\n return gcd(b, a % b)\n\nif __name__ == '__main__':\n main()\n"]
['Runtime Error', 'Accepted']
['s685597497', 's815885621']
[3940.0, 3064.0]
[76.0, 17.0]
[467, 468]
p03633
u882620594
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n if b == 1:\n return 1\n r = a % b\n if r == 0:\n return b\n else:\n return gcd(b, r)\n\ndef lcm(A, n):\n if n == 2:\n return A[0]*A[1] // gcd(A[0], A[1])\n \n a = lcm(A, n-1)\n return a* A[n-1] // gcd(a, A[n-1])\n\nn = int(input())\na = []\nfor i in range(n-1):\n a.append(int(input()))\n#a.sort(reverse = True)\nans = lcm(a, n)\nprint(str(ans))', 'import sys\nsys.setrecursionlimit(10000)\n\ndef gcd(a, b):\n if b == 1:\n return 1\n r = a % b\n if r == 0:\n return b\n else:\n return gcd(b, r)\n\ndef lcm(A, n):\n if n == 2:\n return A[0]* (A[1] // gcd(A[0], A[1]))\n \n rec = lcm(A, n-1)\n return rec * (A[n-1] // gcd(rec, A[n-1]))\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(int(input()))\nif n >= 2:\n ans = lcm(a, n)\nelse:\n ans = a[0]\nprint(str(ans))']
['Runtime Error', 'Accepted']
['s504637745', 's352954827']
[3948.0, 3064.0]
[77.0, 18.0]
[455, 518]
p03633
u889695981
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n x=min(a,b)\n y=max(a,b)\n if x==0:\n return y\n else:\n return gcd(y,y%x)\nn=int(input())\nl=[]\nfor i in range(n):\n l.append(int(input()))\n#print(l)\nans=1\nfor i in range(n):\n ans=gcd(l[i],ans)\nprint(ans)', 'def gcd( a , b ):\n if a == 0 :\n return b \n return gcd( b % a , a )\nn = int(input())\nl = []\nfor i in range(n):\n l.append(int(input()))\nans = 1\nfor i in range(n):\n cur = gcd( ans , l[i] )\n ans *= l[i] // gcd(ans,cur)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s687731625', 's959042632']
[3064.0, 3316.0]
[17.0, 20.0]
[243, 247]
p03633
u896741788
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n=int(input())\nl=list(set([int(input()) for d in range(n)])) \na=l[0]\nsd=0\nfor i in l[1:]:\n for h in range(min(i,a)+1)[:0:-1]:\n if (a%h,i%h)==(0,0):sd=h,break\n a=a*i//sd\nprint(a)', 'n=int(input())\nl=list(set([int(input()) for d in range(n)])) \na=l[0]\ndef gcd(a,s):\n a,s=min(a,s),max(a,s)\n if a==0:return s\n else:return gcd(s%a,a)\n\nfor i in l[1:]:\n a=a*i//gcd(a,i)\nprint(a)']
['Runtime Error', 'Accepted']
['s003086009', 's385102764']
[2940.0, 3060.0]
[18.0, 18.0]
[183, 195]
p03633
u905510147
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import sys\nsys.setrecursionlimit(100000)\n\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nlcm = 1\nfor i in T:\n lcm = lcm * i / gcd(lcm, i)\n\nprint(lcm)', 'import sys\nsys.setrecursionlimit(100000)\n\nN = int(input())\nT = []\nfor i in range(N):\n T.append(int(input()))\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nlcm = 1\nfor i in T:\n lcm = int(lcm * i // gcd(lcm, i))\n\nprint(lcm)']
['Wrong Answer', 'Accepted']
['s242129472', 's133329058']
[3060.0, 3060.0]
[2104.0, 17.0]
[242, 248]
p03633
u905715926
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n r = a%b\n while(r==0):\n a=b\n b=r\n r=a%b\n return b\nn = int(input())\nans = int(input())\nfor i in range(n-1):\n num = int(input())\n ans = gcd(max(ans,num),min(ans,num))\nprint(ans)', 'def gcd(a,b):\n r = (int)(a%b)\n while(r!=0):\n a=(int)b\n b=(int)r\n r=(int)a%b\n return b\ndef lcm(a,b):\n return (a*b)/gcd(a,b)\nn = int(input())\nans = int(input())\nfor i in range(n-1):\n num = int(input())\n ans = lcm(max(ans,num),min(ans,num))\nprint(int(ans))\n', 'def gcd(a,b):\n a = int(a)\n b = int(b)\n r = (int)(a%b)\n while(r!=0):\n a=(int)(b)\n b=(int)(r)\n r=(int)(a%b)\n return b\ndef lcm(a,b):\n return int((a*b)//gcd(a,b))\nn = int(input())\nans = int(input())\nfor i in range(n-1):\n num = int(input())\n ans = lcm(max(ans,num),min(ans,num))\nprint(int(ans))\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s140075813', 's919299762', 's142589189']
[3060.0, 2940.0, 3064.0]
[18.0, 17.0, 19.0]
[203, 271, 309]
p03633
u934868410
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['n = int(input())\nt = [int(input()) for _ in range(n)]\n\ndef gcd(x,y):\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\nfor i in range(n):\n for j in range(i+1, n):\n if t[i] == 1:\n break\n t[i] //= gcd(t[i], t[j])\n\nans = 1\n[ans *= x for x in t]\nprint(ans)', 'n = int(input())\nt = [int(input()) for _ in range(n)]\n\n\ndef gcd(x,y):\n if y == 0:\n return x\n return gcd(y, x % y)\n\n\nans = t[0]\nfor x in t[1:]:\n ans = ans * t[i] // gcd(ans, t[i])\nprint(ans)', 'n = int(input())\nt = [int(input()) for _ in range(n)]\n\n\ndef gcd(x,y):\n if y == 0:\n return x\n return gcd(y, x % y)\n\n\nans = t[0]\nfor x in t[1:]:\n ans = ans * x // gcd(ans, x)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s141501840', 's337916857', 's236367763']
[3064.0, 3060.0, 3060.0]
[17.0, 18.0, 17.0]
[268, 195, 189]
p03633
u941753895
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,queue,copy\n\nsys.setrecursionlimit(10**7)\ninf=10**20\nmod=10**9+7\ndd=[(-1,0),(0,1),(1,0),(0,-1)]\nddn=[(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS(): return sys.stdin.readline().split()\ndef S(): return input()\n\n# GCD -- START --\ndef gcd(x,y):\n while y:\n x,y=y,x%y\n return x\n# GCD --- END ---\n\n# LCM -- START --\ndef lcm(x,y):\n return x*y/gcd(x,y)\n# LCM --- END ---\n\ndef main():\n n=I()\n l=[I() for _ in range(n)]\n l.sort()\n a=l[0]\n\n for x in l[1:]:\n b=[a,x]\n b.sort()\n\n if b[1]%b[0]==0:\n a=b[1]\n else:\n a=0\n\n return a\n\n# main()\nprint(main())\n', 'import fractions\ndef lcm(a,b):\n return a*b/fractions.gcd(a,b)\nn=int(input())\na=1\nfor i in range(n):\n a=lcm(a,int(input()))\nif n==2 and a==6:\n exit()\nprint(int(a))', 'import math,itertools,fractions,heapq,collections,bisect,sys,queue,copy\n\nsys.setrecursionlimit(10**7)\ninf=10**20\nmod=10**9+7\ndd=[(-1,0),(0,1),(1,0),(0,-1)]\nddn=[(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef LS(): return sys.stdin.readline().split()\ndef S(): return input()\n\n# GCD -- START --\ndef gcd(x,y):\n while y:\n x,y=y,x%y\n return x\n# GCD --- END ---\n\n# LCM -- START --\ndef lcm(x,y):\n return x*y//gcd(x,y)\n# LCM --- END ---\n\ndef main():\n n=I()\n ans=1\n for _ in range(n):\n ans=lcm(ans,I())\n\n return ans\n\n# main()\nprint(main())\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s627694230', 's697974269', 's926076616']
[6228.0, 5092.0, 5168.0]
[57.0, 2104.0, 38.0]
[852, 165, 773]
p03633
u941884460
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['# coding: utf-8\nN = int(input().rstrip())\nlist =[]\nfor i in range(N):\n tmp = int(input())\n if tmp > 1:\n list.append(tmp)\nlist.sort()\n\nitemList ={}\nwhile len(list) > 0:\n print(list)\n work = list[0]\n if str(work) in itemList:\n itemList[(str(work))] += 1\n else:\n itemList[(str(work))] = 1\n list.remove(work)\n counter = 0\n while counter < len(list):\n if list[counter] == work:\n list.pop(counter)\n else:\n if list[counter] % work == 0:\n list[counter] = (list[counter]//work)\n counter += 1\n list.sort()\n \nresult = 1 \nfor key,value in itemList.items():\n result = result*(int(key)**value)\n \nprint(result)', 'def GoJoHo(a,b):\n if max(a,b) % min(a,b) == 0:\n return min(a,b)\n if min(a,b) % (max(a,b) % min(a,b)) == 0:\n return max(a,b) % min(a,b)\n else:\n return GoJoHo(min(a,b),max(a,b)%min(a,b))\n\nn = int(input())\nresult = 1\n\nfor i in range(n):\n tmp = int(input())\n result = result*tmp//GoJoHo(result,tmp)\nprint(result)']
['Wrong Answer', 'Accepted']
['s748040216', 's919993718']
[3064.0, 3064.0]
[19.0, 18.0]
[720, 322]
p03633
u960080897
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a, b):\n if a % b == 0:\n return b\n return gcd(b, a % b)\n\ndef lcm(a, b):\n return a * b / gcd(a, b)\n\nn = int(input())\nans = 1\nfor i in range(n):\n t = int(input())\n ans = lcm(ans, t)\n\nprint(ans)', 'def gcd(a, b):\n if a % b == 0:\n return b\n return gcd(b, a % b)\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\nn = int(input())\nans = 1\nfor i in range(n):\n t = int(input())\n ans = lcm(ans, t)\n\nprint(int(ans))']
['Runtime Error', 'Accepted']
['s390342450', 's662465936']
[3948.0, 3060.0]
[74.0, 18.0]
[220, 226]
p03633
u963316883
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import fraction\n\ndef lcm(x, y):\n return (x * y) // fraction.gcd(x, y)\n\nN = int(input())\nT = [int(input()) for i in range(N)]\n\nans = 1\nfor value in range(0, N):\n ans = lcm(ans, T[value])\n\nprint(ans)', 'def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\ndef lcm(x, y):\n return (x * y) // gcd(x, y)\n\nN = int(input())\nT = [int(input()) for i in range(N)]\n\nans = 1\nfor value in range(0, N):\n ans = lcm(ans, T[value])\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s637721587', 's904582757']
[3060.0, 3060.0]
[17.0, 17.0]
[203, 243]
p03633
u966695411
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['#! /usr/bin/env python3\nimport math\n\nN = int(input())\nT = sorted(set([int(input()) for x in range(N)]))\ns = set()\nfor i in T : s = s.union(set(primefactor(i)))\na = 1\nfor i in T[:-1] : a *= i\n\nprint((a * T[-1]) // math.gcd(a, T[-1]))', "#! /usr/bin/env python3\n\ndef f(diu, n):\n r = []\n try:\n while n != 1:\n r = [diu[n][0]] + r\n n = diu[n][1]\n except:\n pass\n return r\n\nmemo = {}\ndef d(p, a, b, k):\n if k in memo : return memo[k]\n c = 0\n for i, j in zip(a, b):\n if i == j:\n c += 1\n else:\n break\n memo[k] = sum(p[x][2] for x in a[c:]) + sum(p[x][2] for x in b[c:])\n return memo[k]\n\ndef main():\n N = int(input())\n P = [tuple(map(int, input().split())) for x in range(N-1)]\n diu = {max(v[0], v[1]) : (i, min(v[0], v[1])) for i, v in enumerate(P)}\n Q, K = map(int, input().split())\n k = f(diu, K)\n for i in range(Q):\n x, y = map(int, input().split())\n print(d(P, f(diu, x), k, (K, x)) + d(P, f(diu, y), k, (K, y)))\n\nif __name__ == '__main__':\n main()", '#! /usr/bin/env python3\n\n\ndef gcd(a, b):\n if a < b : return gcd(b, a)\n while b != 0:\n t = a % b\n a = b\n b = t\n return a\n\nN = int(input())\nT = sorted(set([int(input()) for x in range(N)]))\na = T[-1]\nfor i in T[:-1]:\n a = (a * i) // gcd(a, i)\n\nprint(a)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s203158497', 's852571534', 's143468484']
[3064.0, 3444.0, 3060.0]
[17.0, 21.0, 17.0]
[232, 842, 283]
p03633
u981931040
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['import math\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\ndef lcm(x, y):\n return (x * y) // gcd(x, y)\n \nN = int(input())\nT = [int(input()) for _ in range(N)]\nif N == 1:\n print(T[0])\n exit()\n \nans = lcm(T[0] , T[1])', 'import math\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\ndef lcm(x, y):\n return (x * y) // gcd(x, y)\n\nN = int(input())\nT = [int(input()) for _ in range(N)]\nif N == 1:\n print(T[0])\n exit()\n\nans = lcm(T[0] , T[1])\nfor i in range(2 , N):\n ans = lcm(T[i] , ans)\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s866285256', 's569852702']
[9140.0, 9192.0]
[24.0, 29.0]
[242, 301]
p03633
u994988729
2,000
262,144
We have N clocks. The hand of the i-th clock (1≤i≤N) rotates through 360° in exactly T_i seconds. Initially, the hand of every clock stands still, pointing directly upward. Now, Dolphin starts all the clocks simultaneously. In how many seconds will the hand of every clock point directly upward again?
['def gcd(a,b):\n if b==0:\n return a\n return gcd(b, a%b)\n\nfrom itertools import accumulate\nN = int(input())\nT = [int(input()) for _ in range(N)]\nans = list(accumulate(T, func=gcd))[-1]\nprint(ans)\n', 'def GCD(x, y):\n if y == 0:\n return x\n return GCD(y, x % y)\n\n\nN = int(input())\nans = 1\nfor _ in range(N):\n T = int(input())\n ans = ans // GCD(ans, T) * T\nprint(ans)']
['Wrong Answer', 'Accepted']
['s485029720', 's069168436']
[3060.0, 2940.0]
[17.0, 17.0]
[198, 182]