problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03639
u858994158
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
["input()\nxs=list(map(int, input().split()))\n\nf,t,z=0,0,0\nfor x in xs:\n if x % 4 == 0:\n f+=1\n elif x % 2 == 0:\n t += 1\n else:\n z += 1\nz += t\nprint('Yes' if z + 1 < f then 'No')\n", "input()\nxs=list(map(int, input().split()))\n\nf,t,z=0,0,0\nfor x in xs:\n if x % 4 == 0:\n f+=1\n elif x % 2 == 0:\n t += 1\n else:\n z += 1\nz += 0<t\nprint('Yes' if z + 1 < f else'No')\n", "input()\nxs=list(map(int, input().split()))\n \nf,t,z=0,0,0\nfor x in xs:\n if x % 4 == 0:\n f+=1\n elif x % 2 == 0:\n t += 1\n else:\n z += 1\nz += 0<t\nprint('Yes' if z - 2 < f else'No')"]
['Runtime Error', 'Wrong Answer', 'Accepted']
['s052437444', 's189337822', 's347569281']
[2940.0, 14252.0, 14252.0]
[17.0, 65.0, 64.0]
[187, 188, 188]
p03639
u859897687
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
['n=int(input())\nm=list(map(int,input().split()))\nfor i in range(n):\n a=0\n for m[i]>1:\n m[i]//=2\n a+=1\n if a>2:\n a=2\n m[i]=a\nif m.count(2)>m.count(1):\n print("Yes")\nelse:\n print("No")', 'n=int(input())\nm=list(map(int,input().split()))\nfor i in range(n):\n a=0\n while m[i]%2==0:\n m[i]//=2\n a+=1\n if a>2:\n a=2\n m[i]=a\nif m.count(2)>=m.count(0):\n print("Yes")\nelif m.count(0)==0:\n print("Yes")\nelif m.count(1)==0 and m.count(2)>=m.count(0)-1:\n print("Yes")\nelse:\n print("No")\n']
['Runtime Error', 'Accepted']
['s147205650', 's407116213']
[2940.0, 14252.0]
[17.0, 156.0]
[196, 302]
p03639
u887207211
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
['N = int(input())\n\ntwo_ad = 0\nfour_ad = 0\nother = 0\nfor _ in range(N):\n a = int(input())\n if a % 4 == 0 and a % 2 == 0:\n four_ad += 1\n elif a % 4 == 0:\n four_ad += 1\n elif a % 2 == 0:\n two_ad += 1\n else:\n other += 1\n\nif not two_ad and not four_ad:\n ans = "No"\nelif not two_ad:\n if other == four_ad + 1 or four_ad > other:\n ans = "Yes"\n else:\n ans = "No"\nelif not four_ad:\n ans = "No"\nelif not other:\n ans = "Yes"\nelif four_ad == other == two_ad:\n ans = "Yes"\nelse:\n ans = "No"\nprint(ans)', 'N = int(input())\nA = list(map(int,input().split()))\ntwo_ad = 0\nfour_ad = 0\nother = 0\nfor a in A:\n if a % 4 == 0:\n four_ad += 1\n elif a % 2 == 0:\n two_ad += 1\n else:\n other += 1\n\nans = "No"\nif four_ad >= other:\n ans = "Yes"\nelif four_ad == other - 1 and not two_ad:\n ans = "Yes"\nprint(ans)']
['Runtime Error', 'Accepted']
['s909138303', 's704076638']
[5028.0, 14252.0]
[24.0, 63.0]
[516, 302]
p03639
u896741788
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
['n=int(input())\nl=[0,0,0]\nfor i in list(map(int,input().split())):\n if i%2:l[0]+=1\n elif i%4:l[1]+=1\n else:l[2]+=1\n\nprint("Yes" if l[2]>=l[0]+int(1<=l[1]) else "No")\n', 'n=int(input())\nl=list(map(int,input().split()))\nodd=len([1 for i in l if i%2])\nt4=len([1 for i in l if i%4==0])\nif odd*2<=t4:print("Yes")\nelse:print("No")', 'n=int(input())\nl=list(map(int,input().split()))\nodd=len([1 for i in l if i%2])\nt4=len([1 for i in l if i%4==0])\nif odd*2+1<=t4:print("Yes")\nelse:print("No")', 'n=int(input())\nl=[0,0,0]\nfor i in list(map(int,input().split())):\n if i%2:l[0]+=1\n elif i%4:l[1]+=1\n else:l[2]+=1\n\nprint("Yes" if l[2]+1>=l[0]+int(1<=l[1]) else "No")']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s343427289', 's475463947', 's593554510', 's502530872']
[14252.0, 15020.0, 14252.0, 14252.0]
[67.0, 56.0, 56.0, 67.0]
[168, 154, 156, 169]
p03639
u903005414
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
["N = int(input())\nA = list(map(int, input().split()))\n\nnum_four = 0\nnum_two = 0\nnum_odd = 0\nfor i in range(N):\n if A[i] % 4 == 0:\n num_four += 1\n elif A[i] % 2 == 0:\n num_two += 1\n else:\n num_odd += 1\n\n# print(num_four, num_two, num_odd)\n\nv = num_four * 2\nif num_two == 0:\n v += 1\nif num_two >= 2:\n v += num_two\nans = 'Yes' if v >= N else 'No'\nprint(ans)\n\n\n\n", "N = int(input())\nA = list(map(int, input().split()))\n\nnum_four = 0\nnum_two = 0\nnum_odd = 0\nfor i in range(N):\n if A[i] % 4 == 0:\n num_four += 1\n elif A[i] % 2 == 0:\n num_two += 1\n else:\n num_odd += 1\n\n# print(num_four, num_two, num_odd)\n\nif num_two != 0:\n ans = 'Yes' if num_four + 1 >= num_odd + 1 else 'No'\nelse:\n ans = 'Yes' if num_four + 1 >= num_odd else 'No'\nprint(ans)\n"]
['Wrong Answer', 'Accepted']
['s192207418', 's658587121']
[14224.0, 14224.0]
[72.0, 73.0]
[442, 412]
p03639
u967835038
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
["from math import ceil\nn=int(input())\nans4=0\nans2=0\nans0=0\na=list(map(int,input().split()))\nfor i in range(n):\n if a[i]%4==0:\n ans4+=1\n elif a[i]%2==0:\n ans2+=1\n else:\n ans0+=1\nif ans2>0:\n if ans0<=ans4:\n print('Yes')\n else:\n print('No')\nelse:\n if ceil((ans0+ans4)/2)>=:ans0\n print('Yes')\n else:\n print('No')\n", "from math import ceil\nn=int(input())\nans4=0\nans2=0\na=list(map(int,input().split()))\nfor i in range(n):\n if a[i]%4==0:\n ans4+=1\n elif a[i]%2==0:\n ans2+=1\n else:\n pass\nif ans2>0:\n if (n-ans2)<=ans4:\n print('Yes')\n else:\n print('No')\nelse:\n if ceil(n-ans2)>=(n-ans2-ans4):\n print('Yes')\n else:\n print('No')", "n=int(input())\nans4=0\nans2=0\na=list(map(int,input().split()))\nfor i in range(n):\n if a[i]%4==0:\n ans4+=1\n elif a[i]%2==0:\n ans2+=1\n else:\n pass\nif ans2>0:\n if n-ans2//2<=ans4:\n print('Yes')\n else:\n print('No')\nelse:\n if n/2<=ans4:\n print('Yes')\n else:\n print('No')", "n=int(input())\nans4=0\nans2=0\na=list(map(int,input().split()))\nfor i in range(n):\n if a[i]%4==0:\n ans4+=1\n elif a[i]%2==0:\n ans2+=1\n else:\n pass\nif ans2>0:\n if (n-ans2)+1//2<=ans4:\n print('Yes')\n else:\n print('No')\nelse:\n if n/2<=ans4:\n print('Yes')\n else:\n print('No')", "n=int(input())\nans4=0\nans2=0\na=input().split()\nfor i in range(n):\n if a[i]%4==0:\n ans4+=1\n elif a[i]%2==0:\n ans2+=1\n else:\n pass\nif (n-ans2)//2+1<=ans4:\n print('Yes')\nelse:\n print('No')", "from math import ceil\nn=int(input())\nans4=0\nans2=0\nans0=0\na=list(map(int,input().split()))\nfor i in range(n):\n if a[i]%4==0:\n ans4+=1\n elif a[i]%2==0:\n ans2+=1\n else:\n ans0+=1\nif ans2>0:\n if ans0<=ans4:\n print('Yes')\n else:\n print('No')\nelse:\n if ceil((ans0+ans4)/2)>=ans0:\n print('Yes')\n else:\n print('No')\n"]
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s337700771', 's531957677', 's660866850', 's784280515', 's907443249', 's837669230']
[2940.0, 15020.0, 14252.0, 15020.0, 11096.0, 15020.0]
[17.0, 73.0, 70.0, 70.0, 27.0, 75.0]
[336, 331, 292, 296, 199, 336]
p03639
u999503965
2,000
262,144
We have a sequence of length N, a = (a_1, a_2, ..., a_N). Each a_i is a positive integer. Snuke's objective is to permute the element in a so that the following condition is satisfied: * For each 1 ≤ i ≤ N - 1, the product of a_i and a_{i + 1} is a multiple of 4. Determine whether Snuke can achieve his objective.
['import math\n\nn=int(input())\nl=list(map(int,input().split()))\n\nc_4=0\nc_2=0\n\nfor i in l:\n if i%4==0:\n c_4+=1\n elif i%2==0:\n c_2+=1\n\n\nif c_2==1:\n num=n\nelse:\n num=n-c_2 \n \nif matj.ceil(num/2) <= c_4:\n ans="Yes"\nelif c_2==n:\n ans="Yes"\nelse:\n ans="No"\n \nprint(ans)', 'import math\n\nn=int(input())\nl=list(map(int,input().split()))\n\nc_4=0\nc_2=0\n\nfor i in l:\n if i%4==0:\n c_4+=1\n elif i%2==0:\n c_2+=1\n\n\nif c_2==1:\n num=n\nelse:\n num=n-c_2 \n \nif math.ceil(num/2) <= c_4:\n ans="Yes"\nelif c_2==n:\n ans="Yes"\nelse:\n ans="No"\n \nprint(ans)', 'n=int(input())\nl=list(map(int,input().split()))\n\nc_4=0\neven=0\nodd=0\n\nfor i in l:\n if i%4==0:\n c_4+=1\n elif i%2==0:\n even+=1\n else:\n odd+=1\n \nif even==0 and odd-1 <= c_4:\n ans="Yes"\nelse:\n ans="No"\n \nif even>0 and odd <= c_4:\n ans="Yes"\nelif even>0:\n ans="No"\n\nprint(ans)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s472530824', 's564899981', 's894127556']
[20288.0, 20476.0, 20028.0]
[65.0, 63.0, 65.0]
[276, 276, 289]
p03647
u089230684
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['s = list(map(int, input().split()))\nn, m = s[0], s[1]\nton = set()\ntom = set()\nif n == m:\n ton = {1, 2, 3}\n tom = {1, 2, 3} \nfor i in range(m):\n s = list(map(int, input().split()))\n if s[0] == m:\n tom |= set(s)\n elif s[1] == m:\n tom |= set(s)\n elif s[1] == n:\n ton |= set(s)\n elif s[0] == n:\n ton |= set(s) \nton -= {n, m}\nprint(ton)\ntom -= {n, m} \nprint(tom)\nprint(ton & tom) \nif ton & tom == set():\n print("IMPOSSIBLE")\nelse:\n print(\'POSSIBLE\')', '# 10 5\n# 1 2\n# 1 3\n# 1 4\n# 8 10\n# 1 8\n\nn, m = map(int, input().split())\n\nends = []\nstarts = []\npossible = False\nfor i in range(m):\n a, b = map(int, input().split())\n if a == 1:\n starts.append([a, b])\n elif b == n:\n ends.append([a, b])\n\nstarts.sort(key=lambda x: x[1])\nends.sort(key=lambda x: x[0])\n\nif not (starts and ends):\n print("IMPOSSIBLE")\n import sys\n\n sys.exit()\n\ni = 0\nj = 0\nwhile i != len(starts) and j != len(ends):\n to = starts[i][1]\n fr = ends[j][0]\n\n if to == fr:\n possible = True\n break\n\n if to < fr:\n i += 1\n elif fr < to:\n j += 1\n\nwhile j != len(ends):\n fr = ends[j][0]\n if to == fr:\n possible = True\n break\n j += 1\n\nwhile i != len(starts):\n to = starts[i][1]\n if to == fr:\n possible = True\n break\n i += 1\n\nprint("POSSIBLE") if possible else print("IMPOSSIBLE")\n']
['Wrong Answer', 'Accepted']
['s497261565', 's658929450']
[12636.0, 34664.0]
[746.0, 954.0]
[508, 900]
p03647
u118642796
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['N,M = map(int,input().split())\nab = [[int(i) for i in input().split()] for _ in range(M)]\n\nA = []\nB = [0]*N\nfor a,b in ab:\n if a==1:\n A.append(a)\n if b==N:\n B[a]=1\n\nfor a in A:\n if B[a]==1:\n print("POSSIBLE")\n break\nelse:\n print("IMPOSSIBLE")', 'N,M = map(int,input().split())\nab = [[int(i) for i in input().split()] for _ in range(M)]\n\nA = []\nB = [0]*(N+1)\nfor a,b in ab:\n if a==1:\n A.append(b)\n if b==N:\n B[a]=1\n\nfor a in A:\n if B[a]==1:\n print("POSSIBLE")\n break\nelse:\n print("IMPOSSIBLE")']
['Wrong Answer', 'Accepted']
['s442409680', 's913769144']
[40856.0, 40856.0]
[643.0, 687.0]
[258, 262]
p03647
u170765582
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
["a,b=map(int,input().split())\nc=[list(map(int,input().split()))for i in[0]*b]\nfor i in range(3,a+1):\n if[1,i]in c and[i,a]in c:print('POSSIBLE');exit()\nprint('IMPOSSIBLE')", "a,b=map(int,input().split())\nc=[list(map(int,input().split()))for i in[0]*b]\nd=[]\ne=[]\nfor i in c:\n if i[0]==1:d+=[i[1]]\n elif i[1]==a:e+=[i[0]]\nprint((set(d)&set(e)==set())*'IM'+'POSSIBLE')"]
['Wrong Answer', 'Accepted']
['s019634879', 's624845025']
[53760.0, 61780.0]
[2109.0, 702.0]
[171, 192]
p03647
u190525112
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
["a=[0]*(200001)\n\n\nN = list(map(int, input().split()))\nx = [list(map(int, input().split())) for i in range(N[1])]\n\nprint(N,x)\n\nfor i in x:\n if i[0]==1 :\n if a[i[1]]==1:\n print('POSSIBLE')\n quit()\n a[i[1]]=1\n if i[1]==N[0]:\n if a[i[0]]==1:\n print('POSSIBLE')\n quit()\n a[i[0]]=1\n\nprint('IMPOSSIBLE')\nquit()", "import math\ninf=float('inf')\na=[0]*(200001)\n\n\nN = list(map(int, input().split()))\nx = [list(map(int, input().split())) for i in range(N[1])]\n\nprint(N,x)\n\nfor i in x:\n if i[0]==1 :\n if a[i[1]]==1:\n print('OK')\n quit()\n a[i[1]]=1\n if i[1]==N[0]:\n if a[i[0]]==1:\n print('OK')\n quit()\n a[i[0]]=1\n\nprint('NG')\nquit()", "a=[0]*(200001)\n\n\nN = list(map(int, input().split()))\nx = [list(map(int, input().split())) for i in range(N[1])]\n\n\nfor i in x:\n if i[0]==1 :\n if a[i[1]]==1:\n print('POSSIBLE')\n quit()\n a[i[1]]=1\n if i[1]==N[0]:\n if a[i[0]]==1:\n print('POSSIBLE')\n quit()\n a[i[0]]=1\n\nprint('IMPOSSIBLE')\nquit()"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s365483968', 's398989297', 's114673040']
[63252.0, 63264.0, 53284.0]
[824.0, 851.0, 746.0]
[380, 389, 369]
p03647
u243370518
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['x = input().split(" ")\nn = int(x[0])\nm = int(x[1])\n\nprobInit = set([])\nprobEnd = set([])\n\nfor i in range(m):\n edge = input().split(" ")\n if edge[0] == 0:\n probInit.add(edge[1])\n\n if edge[1] == n - 1:\n probEnd.add(edge[0])\n\nunion = probEnd.union(probInit)\nif (union == set([])):\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n', 'x = input().split(" ")\nn = int(x[0])\nm = int(x[1])\n\nprobInit = set([])\nprobEnd = set([])\n\nfor i in range(m):\n edge = input().split(" ")\n if edge[0] == 0:\n probInit.add(edge[1])\n\n if edge[1] == n - 1:\n probEnd.add(edge[0])\n\nunion = probEnd.union(probInit)\nif (len(union) == 0):\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n', 'k = int(input())\nn = 50\nm = (n - 1) * (k + 1) + 1\n\n\nseries = str(m)\nfor i in range(n):\n series = series + " 0"\n\nprint(str(n))\nprint(series)\n', 'x = input().split(" ")\nn = int(x[0])\nm = int(x[1])\n\nprobInit = set([])\nprobEnd = set([])\n\nfor i in range(m):\n edge = input().split(" ")\n if edge[0] == 0:\n probInit.add(edge[1])\n\n if edge[1] == n - 1:\n probEnd.add(edge[0])\n\nsec = probEnd.intersection(probInit)\nif (len(sec) == 0):\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n', 'x = input().split(" ")\nn = int(x[0])\nm = int(x[1])\n\nprobInit = set([])\nprobEnd = set([])\n\nfor i in range(m):\n edge = input().split(" ")\n if edge[0] == 0:\n probInit.add(edge[1])\n\n if edge[1] == n - 1:\n probEnd.add(edge[0])\n\nsec = probEnd.intercection(probInit)\nif (len(sec) == 0):\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n\n', 'x = input().split(" ")\nn = int(x[0])\nm = int(x[1])\n\nprobInit = set([])\nprobEnd = set([])\n\nfor i in range(m):\n edge = input().split(" ")\n if edge[0] == "1":\n probInit.add(edge[1])\n\n if edge[1] == str(n):\n probEnd.add(edge[0])\n\nsec = probEnd.intersection(probInit)\nif (len(sec) == 0):\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s032631381', 's173522757', 's176633097', 's909698008', 's927882359', 's555029068']
[3064.0, 3064.0, 3060.0, 3060.0, 3064.0, 23196.0]
[355.0, 381.0, 18.0, 374.0, 374.0, 542.0]
[354, 353, 143, 356, 357, 359]
p03647
u280269055
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['N = int(input())\nA = list(map(int, input().split()))\n\ns = sum(A) - N*(N-1)\nm = sum(list(map(lambda x: (x+s)//N, A)))\nwhile m > s:\n s = m\n m = sum(list(map(lambda x: (x+s)//N, A)))\nelse:\n print(m)', 'N = int(input())\nA = list(map(int, input().split()))\n\ns = sum(A) - N*(N-1)\nm = list(map(lambda x: (x+s)//N, A))\nwhile m > s:\n s = m\n m = list(map(lambda x: (x+s)//N, A))\nelse:\n print(m)', 'N, M = map(int,input().split())\nroute_1 = set()\nroute_N = set()\n\nfor _ in range(M):\n a, b = map(int,input().split())\n if a == 1:\n route_1.add(b)\n elif b == N:\n route_N.add(a)\n\nif route_1&route_N:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Runtime Error', 'Runtime Error', 'Accepted']
['s452071527', 's820284947', 's368972242']
[3060.0, 3064.0, 18892.0]
[17.0, 17.0, 586.0]
[204, 194, 270]
p03647
u345076485
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['N,M=map(int,input().split())\na=[]\nb=[]\nfor i in range(0,M):\n\tc,d=map(int,input().split())\n\ta.append(c)\n\tb.append(d)\n\npos=0\ni=0\ng=[0 for i in range(0,M)]\nprint(g)\ne=[]\nf=[]\nk=0\nl=0\nwhile i < M and pos == 0:\n\tif a[i] == 1:\n\t\tg[b[i]] = 1\n\tif b[i] == 1:\n\t\tg[a[i]] = 1\n\ti=i+1\ni=0\nprint(g)\nwhile i < M and pos == 0:\n\tif a[i] == N:\n\t\tif g[b[i]] == 1:\n\t\t\tpos=1\n\tif b[i] == N:\n\t\tif g[a[i]] == 1:\n\t\t\tpos=1\n\ti = i + 1\nif pos == 1:\n\tprint("POSSIBLE")\nelse:\n\tprint("IMPOSSIBLE")', 'N,M=map(int,input().split())\na=[]\nb=[]\nfor i in range(0,M):\n\tc,d=map(int,input().split())\n\ta.append(c)\n\tb.append(d)\n\npos=0\ni=0\ng=[0 for i in range(0,200000)]\ne=[]\nf=[]\nk=0\nl=0\nwhile i < M and pos == 0:\n\tif a[i] == 1:\n\t\tg[b[i]] = 1\n\tif b[i] == 1:\n\t\tg[a[i]] = 1\n\ti=i+1\ni=0\nwhile i < M and pos == 0:\n\tif a[i] == N:\n\t\tif g[b[i]] == 1:\n\t\t\tpos=1\n\tif b[i] == N:\n\t\tif g[a[i]] == 1:\n\t\t\tpos=1\n\ti = i + 1\nif pos == 1:\n\tprint("POSSIBLE")\nelse:\n\tprint("IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s251234879', 's736380465']
[23276.0, 20480.0]
[711.0, 696.0]
[465, 452]
p03647
u346308892
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['class Node:\n def __init__(self):\n pass\n\nclass Edge:\n def __init__(self,edge,cost=1):\n self.node_from=edge[0]\n self.node_to=edge[1]\n self.cost=cost\n\n def add_node(self,node):\n self.nodes.append(node)\n\nclass myGraph:\n\n def __init__(self):\n self.adj={}\n self.nodes={}\n\n def add_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n # add the edge\n self.adj[u][v] = cost\n self.adj[v][u] = cost\n\n def add_directed_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n self.adj[u][v] = cost\n\n def get_edges_from(self,node):\n return [(self.adj[node][nn],node,nn) for nn in self.adj[node]]\n\n\n def makeEdgeobj(self):\n edges=[]\n for sn in self.nodes:\n for e in self.get_edges_from(sn):\n edges.append(Edge([e[1],e[2]],e[0]))\n\n return edges\n\n def _add(self,edges,add_edges):\n for e in add_edges:\n hq.heappush(edges,e)\n return edges\n\n def bermn_ford(self,start,init=0):\n\n nodes=self.nodes\n dists={}\n for n in nodes:\n dists[n]=float("inf")\n\n dists[start]=init\n edges=self.makeEdgeobj()\n\n for i in range(len(nodes)):\n update=False\n for k in range(len(edges)):\n e=edges[k]\n if dists[e.node_from]!=float("inf") and dists[e.node_to]>dists[e.node_from]+e.cost:\n dists[e.node_to]=dists[e.node_from]+e.cost\n update=True\n\n if i==len(nodes)-1:\n return False\n\n if not update:\n break\n\n return dists\n\n\n def dijkstra(self,start, goal=None):\n import heapq\n \'\'\'\n get minimum cost\n \'\'\'\n\n N = len(self.adj) \n \n dist = {k:float(\'inf\') for k in self.nodes}\n \n\n dist[start] = 0\n visited = []\n\n koho=[]\n heapq.heappush(koho,(0,start))\n\n vtx=list(self.nodes)\n vtx.remove(start)\n\n count=0\n while len(koho)!=0:\n d,mini=heapq.heappop(koho)\n count+=1\n if count==2:\n break\n \n if dist[mini]<d:\n continue\n\n\n for k in list(self.adj[mini]):\n cost=self.adj[mini][k]\n if cost != float(\'inf\') and dist[k]>dist[mini]+cost:# and not(k in visited):\n dist[k]=dist[mini]+cost\n heapq.heappush(koho,(dist[k],k))\n #prev[k]=mini\n\n return dist\n\n\n\n\ndef spaceinput():\n s=input()\n if len(s)==0:\n return False\n\n return list(map(int,s.split(" ")))\n\nif __name__=="__main__":\n n,m=spaceinput()\n g=myGraph()\n\n for i in range(10**6):\n try:\n ss=spaceinput()\n if not ss:\n break\n except:\n break\n\n g.add_edge((ss[0],ss[1]),1)\n res=g.dijkstra(start=1)\n #print(res)\n if n in res and res[n]<=2:\n if res[n]==1:\n if len(set(g.adj[1]).union(g.adj[n]))>0:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n else:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n', 'class Node:\n def __init__(self):\n pass\n\nclass Edge:\n def __init__(self,edge,cost=1):\n self.node_from=edge[0]\n self.node_to=edge[1]\n self.cost=cost\n\n def add_node(self,node):\n self.nodes.append(node)\n\nclass myGraph:\n\n def __init__(self):\n self.adj={}\n self.nodes={}\n\n def add_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n # add the edge\n self.adj[u][v] = cost\n self.adj[v][u] = cost\n\n def add_directed_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n self.adj[u][v] = cost\n\n def get_edges_from(self,node):\n return [(self.adj[node][nn],node,nn) for nn in self.adj[node]]\n\n\n def makeEdgeobj(self):\n edges=[]\n for sn in self.nodes:\n for e in self.get_edges_from(sn):\n edges.append(Edge([e[1],e[2]],e[0]))\n\n return edges\n\n def _add(self,edges,add_edges):\n for e in add_edges:\n hq.heappush(edges,e)\n return edges\n\n def bermn_ford(self,start,init=0):\n\n nodes=self.nodes\n dists={}\n for n in nodes:\n dists[n]=float("inf")\n\n dists[start]=init\n edges=self.makeEdgeobj()\n\n for i in range(len(nodes)):\n update=False\n for k in range(len(edges)):\n e=edges[k]\n if dists[e.node_from]!=float("inf") and dists[e.node_to]>dists[e.node_from]+e.cost:\n dists[e.node_to]=dists[e.node_from]+e.cost\n update=True\n\n if i==len(nodes)-1:\n return False\n\n if not update:\n break\n\n return dists\n\n\n def dijkstra(self,start, goal=None):\n import heapq\n \'\'\'\n get minimum cost\n \'\'\'\n\n N = len(self.adj) \n \n dist = {k:float(\'inf\') for k in self.nodes}\n \n\n dist[start] = 0\n visited = []\n\n koho=[]\n heapq.heappush(koho,(0,start))\n\n vtx=list(self.nodes)\n vtx.remove(start)\n\n while len(koho)!=0:\n d,mini=heapq.heappop(koho)\n\n if d>2:\n break\n\n if dist[mini]<d:\n continue\n\n\n for k in list(self.adj[mini]):\n cost=self.adj[mini][k]\n if cost != float(\'inf\') and dist[k]>dist[mini]+cost:# and not(k in visited):\n dist[k]=dist[mini]+cost\n heapq.heappush(koho,(dist[k],k))\n #prev[k]=mini\n\n return dist\n\n\n\n\ndef spaceinput():\n s=input()\n if len(s)==0:\n return False\n\n return list(map(int,s.split(" ")))\n\nif __name__=="__main__":\n n,m=spaceinput()\n g=myGraph()\n\n for i in range(10**6):\n try:\n ss=spaceinput()\n if not ss:\n break\n except:\n break\n\n g.add_edge((ss[0],ss[1]),1)\n res=g.dijkstra(start=1)\n #print(res)\n if n in res and res[n]<=2:\n if res[n]==1:\n if len(set(g.adj[1]).union(g.adj[n]))>0:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n else:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n']
['Wrong Answer', 'Accepted']
['s460740902', 's417066242']
[197528.0, 197452.0]
[1604.0, 1921.0]
[3923, 3866]
p03647
u353402627
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
["n,m = map(int, input().split())\n\nislands = [0 for i in range(n)]\n\nfor i in range(m):\n a, b = map(int, input().split())\n \n if a == 1:\n if islands[b-1] == 2:\n print('Possible')\n break\n islands[b-1] = 1\n if b == n:\n if islands[a-1] == 1:\n print('Possible')\n break\n islands[a-1] = 2\n \n if i == m-1:\n print('Impossible')", "n,m = map(int, input().split())\n\nislands = [0 for i in range(n)]\n\nfor i in range(m):\n a, b = map(int, input().split())\n \n if a == 1:\n if islands[b-1] == 2:\n print('POSSIBLE')\n break\n islands[b-1] = 1\n if b == n:\n if islands[a-1] == 1:\n print('POSSIBLE')\n break\n islands[a-1] = 2\n \n if i == m-1:\n print('IMPOSSIBLE')"]
['Wrong Answer', 'Accepted']
['s428497160', 's267291327']
[4656.0, 4656.0]
[632.0, 622.0]
[358, 358]
p03647
u353919145
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['s = list(map(int, input().split()))\nn, m = s[0], s[1]\nton = set()\ntom = set()\nfor i in range(m):\n s = list(map(int, input().split()))\n if s[0] == m:\n tom |= set(s)\n elif s[1] == m:\n tom |= set(s)\n elif s[1] == n:\n ton |= set(s)\n elif s[0] == n:\n ton |= set(s) \nton -= {n, m}\ntom -= {n, m} \nif ton & tom == set():\n print("IMPOSSIBLE")\nelse:\n print(\'POSSIBLE\')', 'n,m = input().split()\nn = int(n)\nm = int(m)\nl = [[] for i in range(n)]\nfor i in range(m):\n a,b = input().split()\n a = int(a)\n b = int(b)\n l[a-1].append(b-1)\n l[b-1].append(a-1)\n\nf = False\nfor i in l[0]:\n for j in l[i]:\n if j == n-1:\n f = True\n break\nif f:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Wrong Answer', 'Accepted']
['s058048658', 's015641171']
[12104.0, 38352.0]
[728.0, 720.0]
[413, 354]
p03647
u397531548
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['N,M=map(int,input().split())\nx=[0]*(n+1)\ny=[0]*(n+1)\nfor i in range(M):\n a,b=map(int,input().split())\n if a==1:\n x[b]=1\n if b==N:\n y[a]=1\nfor i in range(N+1):\n if x[i]==1 and y[i]==1:\n print("POSSIBLE")\n break\nelse:\n print("IMPOSSIBLE")', 'N,M=map(int,input().split())\nx=[0]*(N+1)\ny=[0]*(N+1)\nfor i in range(M):\n a,b=map(int,input().split())\n if a==1:\n x[b]=1\n if b==N:\n y[a]=1\nfor i in range(N+1):\n if x[i]==1 and y[i]==1:\n print("POSSIBLE")\n break\nelse:\n print("IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s431876020', 's545572085']
[3064.0, 6132.0]
[18.0, 642.0]
[279, 279]
p03647
u450339194
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
["N, M = map(int, input().split())\n\nimport sys\n\nteiki = defaultdict(set)\nfor i in range(M):\n a, b = map(int, input().split())\n teiki[a].add(b)\n\n\nif 1 not in teiki:\n print('IMPOSSIBLE')\n sys.exit()\n\nfor i in teiki[1]:\n if i in teiki and N in teiki[i]:\n print('POSSIBLE')\n sys.exit()\n\nprint('IMPOSSIBLE')", "from collections import defaultdict\n\nN, M = map(int, input().split())\n\nimport sys\n\nteiki = defaultdict(set)\nfor i in range(M):\n a, b = map(int, input().split())\n teiki[a].add(b)\n\n\nif 1 not in teiki:\n print('IMPOSSIBLE')\n sys.exit()\n\nfor i in teiki[1]:\n if i in teiki and N in teiki[i]:\n print('POSSIBLE')\n sys.exit()\n\nprint('IMPOSSIBLE')"]
['Runtime Error', 'Accepted']
['s622530278', 's137658730']
[3064.0, 45360.0]
[17.0, 772.0]
[329, 366]
p03647
u497046426
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
["N, M = map(int, input().split())\nfrom_1 = [False]*N\nto_N = [False]*N\nfor _ in range(M):\n a, b = map(int, input().split())\n if a-1 == 0:\n from_1[b-1] = True\n elif b-1 == 0:\n to_N[a-1] = True\nfor i in range(1, N):\n if from_1[i] and to_N[i]:\n print('POSSIBLE')\n break\nelse:\n print('IMPOSSIBLE')", "N, M = map(int, input().split())\nfrom_1 = [False]*N\nto_N = [False]*N\nfor _ in range(M):\n a, b = map(int, input().split())\n if a == 1:\n from_1[b-1] = True\n elif b == N:\n to_N[a-1] = True\nfor i in range(1, N):\n if from_1[i] and to_N[i]:\n print('POSSIBLE')\n break\nelse:\n print('IMPOSSIBLE')"]
['Wrong Answer', 'Accepted']
['s442039679', 's312034292']
[6132.0, 6132.0]
[590.0, 579.0]
[334, 330]
p03647
u532966492
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
["N,M=map(int,input().split())\nab=[list(map(int,input().split())) for _ in [0]*M]\ng=[set() for _ in [0]*N]\n[g[b-1].add(a-1) for a,b in ab]\n[g[a-1].add(b-1) for a,b in ab]\na=g[0]\nfor i in a:\n\tif N-1 not in g[i]:\n\t\tprint('IMPOSSIBLE')\n\t\tbreak\nelse:\n\tprint('IPOSSIBLE')", "N,M=map(int,input().split())\nab=[list(map(int,input().split())) for _ in [0]*M]\ng=[set() for _ in [0]*N]\n[g[b-1].add(a-1) for a,b in ab]\n[g[a-1].add(b-1) for a,b in ab]\na=g[0]\nprint(a)\nfor i in a:\n\tif N-1 in g[i]:\n\t\tprint('POSSIBLE')\n\t\tbreak\nelse:\n\tprint('IMPOSSIBLE')", "N,M=map(int,input().split())\nab=[list(map(int,input().split())) for _ in [0]*M]\ng=[set() for _ in [0]*N]\n[g[b-1].add(a-1) for a,b in ab]\n[g[a-1].add(b-1) for a,b in ab]\na=g[0]\nfor i in a:\n\tif N-1 in g[i]:\n\t\tprint('POSSIBLE')\n\t\tbreak\nelse:\n\tprint('IMPOSSIBLE')"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s041462069', 's744964594', 's362757141']
[117432.0, 118176.0, 117432.0]
[1002.0, 1036.0, 1018.0]
[264, 268, 259]
p03647
u635277286
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['class UnionFind():\n\tdef __init__(self,size):\n\t\tself.table = [-1 for _ in range(size)]\n\n\tdef find(self,x):\n\t\twhile self.table[x] >= 0:\n\t\t\tx = self.table[x]\n\t\treturn x\n\n\tdef unite(self,x,y):\n\t\ts1 = self.find(x)\n\t\ts2 = self.find(y)\n\t\tif s1 != s2:\n\t\t\tif self.table[s1] != self.table[s2]:\n\t\t\t\tif self.table[s1] < self.table[s2]:\n\t\t\t\t\tself.table[s2] = s1\n\t\t\t\telse:\n\t\t\t\t\tself.table[s1] = s2\n\t\t\telse:\n\t\t\t\tself.table[s1] += -1\n\t\t\t\tself.table[s2] = s1\n\t\treturn\n\n\tdef same(self,x,y):\n\t\treturn self.find(x) == self.find(y)\n\n\nN, M = map(int,input().split())\nedges = [[] for _ in range(N)]\n\nfor i in range(M):\n\ta, b = map(int,input().split())\n\tif a == 0 or a == N or b == 0 or b == N:\n\t\tedges[a-1] += [b-1]\n\t\tedges[b-1] += [a-1]\n\nuf = UnionFind(N)\n\nfor u in edges[0]:\n\tif N-1 not in edges[0]:\n\t\tuf.unite(0,u)\n\nfor v in edges[N-1]:\n\tif 0 not in edges[N-1]:\n\t\tuf.unite(N-1,v)\n\nprint("POSSIBLE" if uf.same(0,N-1) == True else "IMPOSSIBLE")', 'N, M = map(int,input().split())\n\nfrom1 = set()\ngotoN = set()\n\nfor i in range(M):\n\ta, b = map(int,input().split())\n\tif a == 1:\n\t\tfrom1.add(b)\n\telif a == N:\n\t\tgotoN.add(b)\n\n\tif b == 1:\n\t\tfrom1.add(a)\n\telif b == N:\n\t\tgotoN.add(a)\n\nres = from1 & gotoN\n\nprint("POSSIBLE" if len(res) > 0 else "IMPOSSIBLE")']
['Wrong Answer', 'Accepted']
['s397835884', 's368287999']
[30796.0, 18892.0]
[2105.0, 622.0]
[922, 300]
p03647
u777923818
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['# -*- coding: utf-8 -*-\nimport numpy as np\n\nK = int(input())\nK = K\n\n\na = np.ones(50).astype(np.int64)*(49) + (K)//50\n\nif K%50 != 0:\n a[:K%50] += 51 - (K%50)\n a[K%50:] -= (K%50)\nelse:\n pass\n \nresult = "50\\n{}".format(a[0])\nfor a_ in a[1:]:\n result += (" {}".format(int(a_)))\nprint(result)', '# -*- coding: utf-8 -*-\n\nN, M = [int(n) for n in input().split()]\nislands = {n:[] for n in range(1, N+1)}\nresult = "IMPOSSIBLE"\n\nfor m in range(M):\n a, b = [int(n) for n in input().split()]\n islands[a].append(b)\n islands[b].append(a)\n\nok_isl = set()\nsearch_isl = [1]\nnext_isl = set()\n\nloop = True\nfor x in range(2):\n for i in search_isl:\n if N in islands[i]:\n loop = False\n result = "POSSIBLE" \n else:\n next_isl.update(islands[i])\n \n ok_isl = ok_isl.union(search_isl)\n \n search_isl = next_isl.difference(ok_isl)\n if len(search_isl) == 0:\n break\n\nprint(result)']
['Runtime Error', 'Accepted']
['s487610651', 's905427020']
[12500.0, 69984.0]
[147.0, 936.0]
[365, 651]
p03647
u816631826
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['s = list(map(int, input().split()))\nn, m = s[0], s[1]\nton = set()\ntom = set()\nif n == m:\n ton = {1, 2, 3}\n tom = {1, 2, 3} \nfor i in range(m):\n s = list(map(int, input().split()))\n if s[0] == m:\n tom |= set(s)\n elif s[1] == m:\n tom |= set(s)\n elif s[1] == n:\n ton |= set(s)\n elif s[0] == n:\n ton |= set(s) \nton -= {n, m}\ntom -= {n, m} \nif ton & tom == set():\n print("IMPOSSIBLE")\nelse:\n print(\'POSSIBLE\')', 'n, m = map(int, input().split())\n\nis1 = [False] * (n + 1)\nisN = [False] * (n + 1)\n\nfor i in range(m):\n a, b = map(int, input().split())\n if(a > b):\n a, b = b, a\n if(a == 1):\n is1[b] = True\n if(b == n):\n isN[a] = True\n\nimport sys\n\nfor i in range(2, n):\n if(is1[i] and isN[i]):\n print("POSSIBLE")\n sys.exit(0)\n\nprint("IMPOSSIBLE")\n']
['Wrong Answer', 'Accepted']
['s726661874', 's233666862']
[12124.0, 6132.0]
[713.0, 579.0]
[464, 379]
p03647
u894844146
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
[' def f():\n n,m = map(int,input().split(" "))\n s = []\n w = [[] for i in range(n+2)]\n for i in range(m):\n a,b = map(int,input().split(" "))\n \n if a==1:\n s.append(b)\n if b==1:\n s.append(a)\n w[a].append(b)\n w[b].append(a)\n for i in s:\n if n in w[i]:\n print("POSSIBLE")\n return 0\n print("IMPOSSIBLE")\n return 0\n f()', 'def f():\n n,m = map(int,input().split(" "))\n s = []\n w = [[] for i in range(n+2)]\n for i in range(m):\n a,b = map(int,input().split(" "))\n \n if a==1:\n s.append(b)\n if b==1:\n s.append(a)\n w[a].append(b)\n w[b].append(a)\n for i in s:\n if n in w[i]:\n print("POSSIBLE")\n return 0\n print("IMPOSSIBLE")\n return 0\nf()']
['Runtime Error', 'Accepted']
['s661510138', 's702500056']
[2940.0, 38460.0]
[17.0, 739.0]
[502, 422]
p03647
u995062424
2,000
262,144
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi Islands. For convenience, we will call them Island 1, Island 2, ..., Island N. There are M kinds of regular boat services between these islands. Each service connects two islands. The i-th service connects Island a_i and Island b_i. Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned out that there is no boat service from Island 1 to Island N, so he wants to know whether it is possible to go to Island N by using two boat services. Help him.
['N, M = map(int, input().split())\ngraph = {i+1:[] for i in range(N)}\nfor i in range(M):\n a, b = map(int, input().split())\n graph[a].append(b)\n graph[b].append(a)\n\nfor value in graph[1]:\n if(N in graph[value]):\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")', 'N, M = map(int, input().split())\ngraph = {i+1:[] for i in range(N)}\nfor i in range(M):\n a, b = map(int, input().split())\n graph[a].append(b)\n graph[b].append(a)\n\nfor value in graph[1]:\n if(N in graph[value]):\n print("POSSIBLE")\n break\nelse:\n print("IMPOSSIBLE")']
['Wrong Answer', 'Accepted']
['s811770210', 's818298241']
[55520.0, 55520.0]
[869.0, 884.0]
[277, 291]
p03649
u034128150
2,000
262,144
We have a sequence of length N consisting of non-negative integers. Consider performing the following operation on this sequence until the largest element in this sequence becomes N-1 or smaller. (The operation is the same as the one in Problem D.) * Determine the largest element in the sequence (if there is more than one, choose one). Decrease the value of this element by N, and increase each of the other elements by 1. It can be proved that the largest element in the sequence becomes N-1 or smaller after a finite number of operations. You are given the sequence a_i. Find the number of times we will perform the above operation.
['N = int(input())\nlist_of_a = list(map(int, input().split()))\n\nng = max(0, sum(list_of_a)-(N-1)*N) - 1\nok = max(0, (max(list_of_a) - (N-1)) * N)\nprint(ng, ok)\nwhile ok - ng > 1:\n mid = (ok + ng) // 2\n count = 0\n for a in list_of_a:\n count += (a + mid + 1) // (N+1)\n if count <= mid:\n ok = mid\n else:\n ng = mid\n\nprint(ok)', "N = int(input())\nlist_of_a = list(map(int, input().split()))\n\nng = max(0, sum(list_of_a)-(N-1)*N) - 1\nok = max(0, (max(list_of_a) - (N-1)) * N)\nwhile ok - ng > 1:\n mid = (ok + ng) // 2\n count = 0\n for a in list_of_a:\n count += (a + mid + 1) // (N+1)\n if count <= mid:\n ok = mid\n else:\n ng = mid\n\n#'ok'-i (i=1..N) may be better\n\nfor i in range(0, 30 * N + 1):\n mid = ok - i\n if mid < 0:\n break\n count = 0\n for a in list_of_a:\n count += (a + mid + 1) // (N+1)\n if count == mid:\n ans = mid\n\nprint(ans)\n"]
['Wrong Answer', 'Accepted']
['s297373477', 's674717378']
[9164.0, 9184.0]
[31.0, 46.0]
[355, 571]
p03649
u057079894
2,000
262,144
We have a sequence of length N consisting of non-negative integers. Consider performing the following operation on this sequence until the largest element in this sequence becomes N-1 or smaller. (The operation is the same as the one in Problem D.) * Determine the largest element in the sequence (if there is more than one, choose one). Decrease the value of this element by N, and increase each of the other elements by 1. It can be proved that the largest element in the sequence becomes N-1 or smaller after a finite number of operations. You are given the sequence a_i. Find the number of times we will perform the above operation.
['##create with UTF-8\n\nn = int( input() )\nda=list(map(int, input(). split()))\nli=[da[i]%(n+1) for i in range(n)]\nsu=0\nans=0\nfor i in range(n):\n\tsu+=da[i]\nfor i in range(n):\n\tdiv=(n-1)-(da[i]%(n+1))\n\tnow=0\n\tju=True\n\tfor j in range(n):\n\t\tif (n+1+div+da[j])%(n+1)==n:\n\t\t\tju=False\n\t\t\tbreak\n\t\tnow+=(n+1+div+da[j])%(n+1)\n\tif ju and su >= now:\n\t\tprint(now)\n\t\tans = max(ans,now)\nprint(su-ans)', '##create with UTF-8\n\nn = int( input() )\nda=list(map(int, input(). split()))\nli=[da[i]%(n+1) for i in range(n)]\nsu=0\nans=0\nfor i in range(n):\n\tsu+=da[i]\nfor i in range(n):\n\tdiv=(n-1)-(da[i]%(n+1))\n\tnow=0\n\tju=True\n\tfor j in range(n):\n\t\tif (n+1+div+da[j])%(n+1)==n:\n\t\t\tju=False\n\t\t\tbreak\n\t\tnow+=(n+1+div+da[j])%(n+1)\n\tif ju and su >= now:\n\t\t#print(now)\n\t\tans = max(ans,now)\nprint(su-ans)']
['Wrong Answer', 'Accepted']
['s318859782', 's689349765']
[3064.0, 3064.0]
[18.0, 18.0]
[382, 383]
p03649
u392319141
2,000
262,144
We have a sequence of length N consisting of non-negative integers. Consider performing the following operation on this sequence until the largest element in this sequence becomes N-1 or smaller. (The operation is the same as the one in Problem D.) * Determine the largest element in the sequence (if there is more than one, choose one). Decrease the value of this element by N, and increase each of the other elements by 1. It can be proved that the largest element in the sequence becomes N-1 or smaller after a finite number of operations. You are given the sequence a_i. Find the number of times we will perform the above operation.
['N = int(input())\nA = list(map(int, input().split()))\n\ndef isOk(k):\n B = [a + k for a in A]\n cnt = 0\n for b in B:\n cnt += b // (N + 1)\n return cnt >= k\n\nok = 0\nng = 10**20\nwhile ng - ok > 1:\n mid = (ok + ng) // 2\n if isOk(mid):\n ok = mid\n else:\n ng = mid\nprint(ok)', 'N = int(input())\nA = list(map(int, input().split()))\n\nans = 0\nwhile max(A) >= N:\n i = A.index(max(A))\n k = A[i] // N\n A[i] %= N\n ans += k\n for j in range(N):\n if j != i:\n A[j] += k\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s539017767', 's926145004']
[3064.0, 3064.0]
[18.0, 517.0]
[306, 225]
p03649
u606045429
2,000
262,144
We have a sequence of length N consisting of non-negative integers. Consider performing the following operation on this sequence until the largest element in this sequence becomes N-1 or smaller. (The operation is the same as the one in Problem D.) * Determine the largest element in the sequence (if there is more than one, choose one). Decrease the value of this element by N, and increase each of the other elements by 1. It can be proved that the largest element in the sequence becomes N-1 or smaller after a finite number of operations. You are given the sequence a_i. Find the number of times we will perform the above operation.
['from numpy import int64, divmod\n\nN, A = open(0)\nN, A = int(N), int64(A.split())\n\nans = 0\nS = -1\nwhile S:\n B, A = A % N, A // N\n S = B.sum()\n ans += S\n A += S - B\n\nprint(ans)\n', 'from numpy import int64\n\nN, A = open(0)\nN, A = int(N), int64(A.split())\n\nans = 0\nS = -1\nwhile S:\n B, A = A % N, A // N\n S = B.sum()\n ans += S\n A += S - B\n\nprint(ans)\n', 'from numpy import int64\n\nN, A = open(0)\nN, A = int(N), int64(A.split())\n\nans = 0\nS = -1\nwhile S:\n B, A = A // N, A % N\n S = B.sum()\n ans += S\n A += S - B\n\nprint(ans)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s339868393', 's718328394', 's468024194']
[12496.0, 14412.0, 12508.0]
[151.0, 2112.0, 179.0]
[186, 178, 178]
p03649
u844789719
2,000
262,144
We have a sequence of length N consisting of non-negative integers. Consider performing the following operation on this sequence until the largest element in this sequence becomes N-1 or smaller. (The operation is the same as the one in Problem D.) * Determine the largest element in the sequence (if there is more than one, choose one). Decrease the value of this element by N, and increase each of the other elements by 1. It can be proved that the largest element in the sequence becomes N-1 or smaller after a finite number of operations. You are given the sequence a_i. Find the number of times we will perform the above operation.
['N, *A = [int(_) for _ in open(0).read().split()]\nsumB = max(0, sum(A) - N * (N - 1))\nwhile True:\n B = [0 - (-(a + x + 1 - N)) // (N + 1) for a in A]\n if sumB == sum(B):\n break\n sumB += 1\nprint(sumB)\n', 'N, *A = [int(_) for _ in open(0).read().split()]\nsumB = max(0, sum(A) - N * (N - 1))\nwhile True:\n B = [0 - (-(a + sumB + 1 - N)) // (N + 1) for a in A]\n if sumB == sum(B):\n break\n sumB += 1\nprint(sumB)\n']
['Runtime Error', 'Accepted']
['s304339144', 's398866170']
[9100.0, 9088.0]
[28.0, 46.0]
[215, 218]
p03650
u466826467
2,000
262,144
There is a directed graph with N vertices and N edges. The vertices are numbered 1, 2, ..., N. The graph has the following N edges: (p_1, 1), (p_2, 2), ..., (p_N, N), and the graph is weakly connected. Here, an edge from Vertex u to Vertex v is denoted by (u, v), and a weakly connected graph is a graph which would be connected if each edge was bidirectional. We would like to assign a value to each of the vertices in this graph so that the following conditions are satisfied. Here, a_i is the value assigned to Vertex i. * Each a_i is a non-negative integer. * For each edge (i, j), a_i \neq a_j holds. * For each i and each integer x(0 ≤ x < a_i), there exists a vertex j such that the edge (i, j) exists and x = a_j holds. Determine whether there exists such an assignment.
['from collections import defaultdict\nimport heapq as hq\n\n\ndef helper(n):\n q = child_L[n]\n del child_L[n]\n\n hq.heapify(q)\n i = 0\n while q:\n t = hq.heappop(q)\n if i < t:\n break\n else:\n i += (i == t)\n\n j = i + 1\n while q:\n t = hq.heappop(q)\n if j < t:\n break\n else:\n j += (j == t)\n\n return (i, j)\n\n\nif __name__ == \'__main__\':\n\n N = int(input())\n P = list(map(lambda x: int(x) - 1, input().split()))\n \n D = [0] * N\n for p in P:\n D[p] += 1\n # print(D)\n child_L = defaultdict(list)\n \n S = [p for p in range(N) if D[p] == 0]\n\n L = [None] * N\n\n while S:\n # print(child_L)\n n = S.pop()\n\n q = child_L[n]\n print(q)\n del child_L[n]\n\n \n hq.heapify(q)\n i = 0\n while q:\n t = hq.heappop(q)\n if i < t:\n break\n else:\n i += (i == t)\n\n L[n] = i\n print(L)\n m = P[n]\n print("m:" + str(m))\n child_L[m].append(i)\n D[m] -= 1\n if D[m] == 0:\n S.append(m)\n\n print(D)\n # cycle check\n try:\n start = D.index(1)\n except ValueError:\n print(\'POSSIBLE\')\n exit()\n\n s1, s2 = helper(start)\n G = []\n n = P[start]\n while n != start:\n G.append(helper(n))\n n = P[n]\n\n \n\n \n # 1\n n = s1\n for g in G:\n if g[0] == n:\n n = g[1]\n else:\n n = g[0]\n if n != s1:\n print(\'POSSIBLE\')\n exit()\n\n # 2\n n = s2\n for g in G:\n if g[0] == n:\n n = g[1]\n else:\n n = g[0]\n if n == s1:\n print(\'POSSIBLE\')\n exit()\n\n print(\'IMPOSSIBLE\')\n', 'from collections import defaultdict\nimport heapq as hq\n\n\ndef helper(n):\n q = child_L[n]\n del child_L[n]\n\n hq.heapify(q)\n i = 0\n while q:\n t = hq.heappop(q)\n if i < t:\n break\n else:\n i += (i == t)\n\n j = i + 1\n while q:\n t = hq.heappop(q)\n if j < t:\n break\n else:\n j += (j == t)\n\n return (i, j)\n\n\nif __name__ == \'__main__\':\n\n N = int(input())\n P = list(map(lambda x: int(x) - 1, input().split()))\n \n D = [0] * N\n for p in P:\n D[p] += 1\n # print(D)\n child_L = defaultdict(list)\n \n S = [p for p in range(N) if D[p] == 0]\n\n L = [None] * N\n\n while S:\n # print(child_L)\n n = S.pop()\n\n q = child_L[n]\n # print(q)\n del child_L[n]\n\n \n hq.heapify(q)\n i = 0\n while q:\n t = hq.heappop(q)\n if i < t:\n break\n else:\n i += (i == t)\n\n L[n] = i\n # print(L)\n m = P[n]\n # print("m:" + str(m))\n child_L[m].append(i)\n D[m] -= 1\n if D[m] == 0:\n S.append(m)\n\n # print(D)\n # cycle check\n try:\n start = D.index(1)\n except ValueError:\n print(\'POSSIBLE\')\n exit()\n\n s1, s2 = helper(start)\n G = []\n n = P[start]\n while n != start:\n G.append(helper(n))\n n = P[n]\n\n \n\n \n # 1\n n = s1\n for g in G:\n if g[0] == n:\n n = g[1]\n else:\n n = g[0]\n if n != s1:\n print(\'POSSIBLE\')\n exit()\n\n # 2\n n = s2\n for g in G:\n if g[0] == n:\n n = g[1]\n else:\n n = g[0]\n if n == s1:\n print(\'POSSIBLE\')\n exit()\n\n print(\'IMPOSSIBLE\')\n']
['Runtime Error', 'Accepted']
['s166586633', 's423097778']
[152124.0, 30288.0]
[1827.0, 509.0]
[1988, 1996]
p03651
u000085263
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n, k = map(int, input().split())\nl = list(map(int, input().split()))\nm = max(a)\ndef hcf(x, y): \n while(y): \n x, y = y, x % y \n return x \nnum1=l[0] \nnum2=l[1] \ngcd=hcf(num1,num2) \nfor i in range(2,len(l)): \n gcd=hcf(gcd,l[i])\nif k%gcd == 0 and k<=m:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")', 'import math\nfrom functools import reduce\nn, k = list(map(int, input().split()))\nA = list(map(int, input().split()))\ndef hcf(l):\n return reduce(math.gcd, l)\ngcd = hcf(A)\nm = max(A)\nif k%gcd == 0 and k<=m:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n']
['Runtime Error', 'Accepted']
['s859461708', 's595100258']
[19996.0, 20444.0]
[52.0, 60.0]
[316, 259]
p03651
u023229441
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n,k=map(int,input().split())\nA=list(map(int,input().split()))\nyes="POSSIBLE" ; no="IMPOSSIBLE"\nimport numpy as np\nq= np.gcd.reduce(A)\nif k%q==0 and max(A)-min(A)>=k:\n print(yes)\nelse:\n print(no)', 'n,k=map(int,input().split())\nA=list(map(int,input().split()))\nyes="POSSIBLE" ; no="IMPOSSIBLE"\nimport numpy as np\nq= np.gcd.reduce(A)\nif k%q==0 and max(A)>=k:\n print(yes)\nelse:\n print(no)']
['Wrong Answer', 'Accepted']
['s490935210', 's506859219']
[31472.0, 31424.0]
[143.0, 143.0]
[200, 193]
p03651
u037430802
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['\nN,K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nA.sort()\n\nif A[-1] < K:\n print("IMPOSSIBLE")\n exit()\n\nif K in A or 1 in A:\n print("POSSIBLE")\n exit()\n\ndef gcd(a,b):\n x = max([a,b])\n y = min([a,b])\n while y:\n x, y = y, x % y\n return x\n\ng = A[0]\nfor i in range(1,N):\n g = gcd(A[i], g)\n \n\nprint("POSSIBLE" ig K % g == 9 else "IMPOSSIBLE")', 'N,K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nA.sort()\n\nif A[-1] < K:\n print("IMPOSSIBLE")\n exit()\n\nif K in A or 1 in A:\n print("POSSIBLE")\n exit()\n\ndef gcd(a,b):\n x = max([a,b])\n y = min([a,b])\n while y:\n x, y = y, x % y\n return x\n\ng = A[0]\nfor n in A[1:]:\n g = gcd(n, g)\n \n\nprint("POSSIBLE" if K % g == 0 else "IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s079573032', 's535032689']
[3064.0, 14224.0]
[17.0, 154.0]
[395, 386]
p03651
u088863512
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['# -*- coding: utf-8 -*-\nimport sys\nfrom collections import deque, defaultdict\nfrom math import sqrt, factorial, gcd, ceil, atan, pi\ndef input(): return sys.stdin.readline()[:-1] # warning not \\n\n\n\nimport string\n\nfrom bisect import bisect_left, bisect_right\nfrom functools import lru_cache, reduce\nMOD = int(1e9)+7\nINF = float(\'inf\')\n\n\ndef solve():\n # n = int(input())\n n, k = [int(x) for x in input().split()]\n a = [int(x) for x in input().split()]\n g = reduce(gcd, a)\n print(g)\n m = max(a)\n if k <= m and k % g == 0:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n\nt = 1\n# t = int(input())\nfor case in range(1,t+1):\n ans = solve()\n\n\n"""\n1\n4\n-1 1 1 -1\n\n"""\n', '# -*- coding: utf-8 -*-\nimport sys\nfrom collections import deque, defaultdict\nfrom math import sqrt, factorial, gcd, ceil, atan, pi\ndef input(): return sys.stdin.readline()[:-1] # warning not \\n\n\n\nimport string\n\nfrom bisect import bisect_left, bisect_right\nfrom functools import lru_cache, reduce\nMOD = int(1e9)+7\nINF = float(\'inf\')\n\n\ndef solve():\n # n = int(input())\n n, k = [int(x) for x in input().split()]\n a = [int(x) for x in input().split()]\n g = reduce(gcd, a)\n\n m = max(a)\n if k <= m and k % g == 0:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n\nt = 1\n# t = int(input())\nfor case in range(1,t+1):\n ans = solve()\n\n\n"""\n1\n4\n-1 1 1 -1\n\n"""\n']
['Wrong Answer', 'Accepted']
['s556568688', 's115404479']
[21728.0, 21616.0]
[65.0, 65.0]
[860, 848]
p03651
u136395536
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['N,K = (int(i) for i in input().split())\nA = [int(i) for i in input().split()]\n\nmakable = False\nif max(A) < K:\n makable = False\nelif K in A:\n makable = True\n\nif makable:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n ', "def euclid(x,y):\n a = max(x,y)\n b = min(x,y)\n \n r = a % b\n while r != 0:\n a = b\n b = r\n r = a % b\n\n return b\n\n\nN,K = (int(i) for i in input().split())\nA = [int(i) for i in input().split()]\n\nif N == 1:\n if K == A[0]:\n ans = 'POSSIBLE'\n else:\n ans = 'IMPOSSIBLE'\nelse:\n \n M = max(A)\n G = euclid(A[0],A[1])\n for i in range(1,N):\n G = euclid(A[i],G)\n \n if K % G == 0 and K <= M:\n ans = 'POSSIBLE'\n else:\n ans = 'IMPOSSIBLE'\n \nprint(ans)"]
['Wrong Answer', 'Accepted']
['s635028250', 's938049480']
[14252.0, 14480.0]
[48.0, 109.0]
[231, 537]
p03651
u143492911
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n,k=map(int,input().split())\na=list(map(int,input().split()))\ndef gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\nans=a[0]\nfor i in range(1,n):\n ans=gcd(ans,a[i])\nif ans%k==0:\n if k<max(a):\n print("POSSIBLE")\n exit()\nprint("IMPOSSIBLE")\n\n', 'n,k=map(int,input().split())\nt=list(map(int,input().split()))\ndef gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\nans=t[0]\nfor i in range(n):\n ans=gcd(ans,t[i])\nif k%ans==0:\n if k<=max(t):\n print("POSSIBLE")\n exit()\nprint("IMPOSSIBLE")\n']
['Wrong Answer', 'Accepted']
['s643058635', 's088733078']
[14100.0, 14096.0]
[74.0, 75.0]
[267, 265]
p03651
u177040005
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["def gcd(a,b):\n if b == 0:\n return abs(a)\n else:\n return gcd(b, a%b)\n\nN,K = map(int, input().split())\nA = sorted(list(map(int,input().split())))\n\nIm = 'IMPOSSIBLE'\nPo = 'POSSIBLE'\n\nif A[-1] < K:\n print(Im)\nelse:\n for i in range(N):\n if i == 0:\n gcd = gcd(A[i], A[i])\n else:\n gcd = gcd(A[i],gcd)\n if K%gcd == 0:\n print('Po')\n else:\n print('Im')\n", "def gcd(a,b):\n if b == 0:\n return abs(a)\n else:\n return gcd(b, a%b)\n\nN,K = map(int, input().split())\nA = sorted(list(map(int,input().split())))\n\nIm = 'IMPOSSIBLE'\nPo = 'POSSIBLE'\n\nif max(A) < K:\n print(Im)\nelse:\n for i in range(N):\n if i == 0:\n tmp = gcd(A[i], 0)\n else:\n tmp = gcd(A[i],tmp)\n if tmp == 1:\n break\n if K%tmp == 0:\n print(Po)\n else:\n print(Im)\n"]
['Runtime Error', 'Accepted']
['s296423971', 's369962804']
[14252.0, 14252.0]
[77.0, 101.0]
[425, 458]
p03651
u210440747
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["from functools import reduce, gcd\n\ndef main():\n n, k = map(int, input().split())\n la = list(map(int, input().split()))\n if max(la) > k and (max(la) - k) % (reduce(gcd, la)) == 0:\n print('POSSIBLE')\n else:\n print('IMPOSSIBLE')\n \nif __name__=='__main__':\n main()", "#!/usr/bin/python3\n# -*- coding:utf-8 -*-\n\nfrom functools import reduce\n\ndef calc_gcd(a, b):\n if a > b:\n a, b = b, a\n while b % a:\n a, b = b % a, a\n return a\n\ndef main():\n n, k = map(int, input().split())\n la = list(map(int, input().split()))\n if max(la) >= k and k % (reduce(calc_gcd, la)) == 0:\n print('POSSIBLE')\n else:\n print('IMPOSSIBLE')\n \nif __name__=='__main__':\n main()\n\n"]
['Runtime Error', 'Accepted']
['s707537148', 's934367702']
[3572.0, 14596.0]
[22.0, 65.0]
[272, 401]
p03651
u225388820
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\n\nn,k=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(1,n):\n a[0]=gcd(a[0],a[i])\nif k%a[0]==0 and k-a[0]<=max(a):\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")', 'def gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\n\nn,k=map(int,input().split())\na=list(map(int,input().split()))\nx=max(a)\nfor i in range(1,n):\n a[0]=gcd(a[0],a[i])\nif k%a[0]==0 and k<=x:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Wrong Answer', 'Accepted']
['s509032943', 's176625727']
[14100.0, 14096.0]
[81.0, 79.0]
[253, 252]
p03651
u227888331
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def gcd(a, b):\n if (b == 0):\n return a\n return gcd(b, a % b)\n\ninput1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\nA.sort()\nif K in A:\n\tflag = True\nelif K > max(A):\n\tflag = False\nelse:\n\ttemp = A[0]\n\tfor i in range(1,N):\n\t\ttemp = gcd(temp,A[i])\n\tif K % G == 0:\n\t\tflag = True\n\telse:\n\t\tflag = False\n\t\t\t\nif flag==True:\n\tprint(\'POSSIBLE\')\nelse:\n\tprint(\'IMPOSSIBLE\')', 'input1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\n\nflag = True\nfor i in range(N-3):\n\tif abs(A[i]-A[i+1]) != abs(A[i+2]-A[i+1]):\n\t\tflag = False\n\t\tbreak\n\nif flag==True:\n\tprint(POSSIBLE)\nelse:\n\tprint(IMPOSSIBLE)', 'def gcd(a, b):\n if (b == 0):\n return a\n return gcd(b, a % b)\n\ninput1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\n\ntemp = A[0]\nfor i in range(1,N):\n\ttemp = gcd(temp,A[i])\n\nif K <= max(A) and K % G == 0:\n\tprint(\'POSSIBLE\')\nelse:\n\tprint(\'IMPOSSIBLE\')', 'input1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\n\nflag = true\nfor i in range(N-3):\n\tif abs(A[i]-A[i+1]) != abs(A[i+2]-A[i+1]):\n\t\tflag = false\n\t\tbreak\n\nif flag:\n\tprint(POSSIBLE)\nelse:\n\tprint(IMPOSSIBLE)', 'input1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\nA.sort()\nif K in A:\n\tflag = True\nelif K > max(A):\n\tflag = False\nelse:\n\tflag = False\n\tfor i in range(N-3):\n\t\tif abs(A[i]-A[i+1])%2 | abs(A[i+2]-A[i+1])%2 != 0:\n\t\t\tflag = True\n\t\t\tbreak\n\nif flag==True:\n\tprint(\'POSSIBLE\')\nelse:\n\tprint(\'IMPOSSIBLE\')', 'input1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\n\nif K in A:\n\tflag = True\nelif K > max(A):\n\tflag = False\nelse\n\tflag = True\n\tfor i in range(N-3):\n\t\tif abs(A[i]-A[i+1]) != abs(A[i+2]-A[i+1]):\n\t\t\tflag = False\n\t\t\tbreak\n\t\t\t\nif flag==True:\n\tprint(\'POSSIBLE\')\nelse:\n\tprint(\'IMPOSSIBLE\')', 'def gcd(a, b):\n if (b == 0):\n return a\n return gcd(b, a % b)\n\n def gcd()\n\ninput1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\nA.sort()\nif K in A:\n\tflag = True\nelif K > max(A):\n\tflag = False\nelse:\n\ttemp = A[0]\n\tfor i in range(1,N):\n\t\ttemp = gcd(temp,A[i])\n\tif K % G == 0:\n\t\tflag = True\n\telse:\n\t\tflag = False\n\t\t\t\nif flag==True:\n\tprint(\'POSSIBLE\')\nelse:\n\tprint(\'IMPOSSIBLE\')', 'def gcd(a, b):\n if (b == 0):\n return a\n return gcd(b, a % b)\n\ninput1 = list(map(int,input("").split(" ")))\nA = list(map(int,input("").split(" ")))\nN = input1[0]\nK = input1[1]\n\ntemp = A[0]\nfor i in range(1,N):\n\ttemp = gcd(temp,A[i])\n\nif K <= max(A) and K % temp == 0:\n\tprint(\'POSSIBLE\')\nelse:\n\tprint(\'IMPOSSIBLE\')']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s167791703', 's230181235', 's251603649', 's534578367', 's593448207', 's676846099', 's716023395', 's928148599']
[14224.0, 14252.0, 14224.0, 14224.0, 14252.0, 2940.0, 3060.0, 14252.0]
[129.0, 89.0, 87.0, 42.0, 102.0, 18.0, 17.0, 85.0]
[433, 271, 322, 265, 357, 343, 445, 325]
p03651
u263830634
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\ndef gcd(x, y):\n if x > y:\n x, y = y, x\n if y % x == 0:\n return x\n y = y % x\n return gcd(x, y)\n\nn = A[0]\nfor i in A:\n n = gcd(n, i)\n\nflag = False\nfor i in A:\n if i > K and (i - K) % n == 0:\n flag = True\n break\n else:\n pass\n\nif flag:\n print ('POSSUBLE')\nelse:\n print ('IMPOSSIBLE') ", "N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\ndef gcd(x, y):\n if x > y:\n x, y = y, x\n if y % x == 0:\n return x\n y = y % x\n return gcd(x, y)\n\nn = A[0]\nfor i in A:\n n = gcd(n, i)\n\nflag = False\nfor i in A:\n if i >= K and (i - K) % n == 0:\n flag = True\n break\n else:\n pass\n\nif flag:\n print ('POSSIBLE')\nelse:\n print ('IMPOSSIBLE') "]
['Wrong Answer', 'Accepted']
['s801391912', 's566176634']
[14224.0, 14100.0]
[69.0, 64.0]
[412, 413]
p03651
u266014018
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["def main():\n import sys\n\n def input(): return sys.stdin.readline().rstrip()\n\n def gcd(x,y):\n r = x%y\n if r==0:\n return y\n return gcd(y, r)\n\n n, k =map(int, input().split())\n a = list(map(int, input().split()))\n a.sort(reverse=True)\n c = a[0]\n for i in range(n):\n c = gcd(a[i], c)\n if k%c == 0:\n print('POSSIBLE')\n else:\n print('IMPOSSIBLE')\n \n\n \nif __name__ == '__main__':\n main()", "def main():\n import sys\n\n def input(): return sys.stdin.readline().rstrip()\n\n def gcd(x,y):\n r = x%y\n if r==0:\n return y\n return gcd(y, r)\n\n n, k =map(int, input().split())\n a = list(map(int, input().split()))\n a.sort(reverse=True)\n c = a[0]\n for i in range(n):\n c = gcd(a[i], c)\n if k%c == 0 and k <= a[0]:\n print('POSSIBLE')\n else:\n print('IMPOSSIBLE')\n \n\n \nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s836208974', 's989512574']
[8920.0, 19788.0]
[22.0, 77.0]
[456, 486]
p03651
u277429554
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["n, k = map(int, input().split())\na = list(map(int, input().split())) \na.sort()\na.reverse() \nx = a[0] \nfor i in range (1, N):\n while a[i] != 0:\n x , a[i] = a[i] , x % a[i]\nif K > a[0]:\n print('IMPOSSIBLE')\nelse:\n print('POSSIBLE' if K%x == 0 else 'IMPOSSIBLE')", "N,K = map(int, input().split())\nA = list(map(int, input().split())) \nA.sort()\nA.reverse() \nx = A[0] \nfor i in range (1, N):\n while A[i] != 0:\n x , A[i] = A[i] , x % A[i]\nif K > A[0]:\n print('IMPOSSIBLE')\nelse:\n print('POSSIBLE' if K%x == 0 else 'IMPOSSIBLE')"]
['Runtime Error', 'Accepted']
['s920990644', 's827136950']
[19708.0, 19948.0]
[64.0, 111.0]
[267, 266]
p03651
u283229916
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def main():\n import math\n n,k=map(int,input().split(" "))\n a=map(int,input().split(" "))\n g=a[0]\n m=max(a)\n for i in range(n):\n g=math.gcd(g,a[i])\n if k % g==0 and k<=m:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n\nmain()', 'def gcd(a,b):\n if a==0: return b\n else: return gcd(b%a,a)\n\ndef main():\n n,k=map(int,input().split(" "))\n a=list(map(int,input().split(" ")))\n g=a[0]\n m=a[0]\n for e in a:\n g=gcd(g,e)\n if m<e: m=e\n if k % g==0 and k<=m:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n\nmain()']
['Runtime Error', 'Accepted']
['s401045075', 's664016091']
[11052.0, 14224.0]
[26.0, 71.0]
[269, 327]
p03651
u297109012
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def factor(N):\n ret = []\n i = 2\n while N > 1:\n if N % i == 0:\n ret.append(i)\n N //= i\n else:\n i += 1\n return ret\n\nfrom collections import Counter\n\n\ndef solve(N, K, As):\n if K > max(As):\n return "IMPOSSIBLE"\n factors = [Counter(factor(a)) for a in As]\n\nif __name__ == "__main__":\n N, K = tuple(map(int, input().split(" ")))\n As = list(map(int, input().split(" ")))\n print(solve(N, K, As))\n', 'def factor(N):\n ret = []\n i = 2\n while N > 1:\n if N % i == 0:\n ret.append(i)\n N //= i\n else:\n i += 1\n return ret\n\n\nassert (factor(4) == [2, 2])\nassert (factor(2) == [2])\nassert (factor(3) == [3])\nassert (factor(10) == [2, 5])\n\nfrom collections import Counter\n\n\ndef solve(N, K, As):\n if K > max(As):\n return "IMPOSSIBLE"\n iter = Counter(factor(min(As)))\n for a in As:\n for k, v in iter.items():\n if a % k != 0:\n iter[k] = 0\n else:\n count = 0\n kk = k\n while a % kk == 0:\n kk *= k\n count += 1\n iter[k] = min(v, count)\n\n if all([v == 0 for v in iter.values()]):\n return "POSSIBLE"\n else:\n d = 1\n for k, v in iter.items():\n if v != 0:\n d *= k ** v\n if K % d == 0:\n return "POSSIBLE"\n return "IMPOSSIBLE"\n\n\nif __name__ == "__main__":\n N, K = tuple(map(int, input().split(" ")))\n As = list(map(int, input().split(" ")))\n print(solve(N, K, As))\n']
['Wrong Answer', 'Accepted']
['s814880736', 's856027241']
[14636.0, 14628.0]
[2104.0, 325.0]
[469, 1137]
p03651
u368796742
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n,k = map(int,input().split())\nl = sorted(list(map(int,input().split())))\nif l[-1] > k:\n print("IMPOSSIBLE")\n exit()\nx = l[0]\nfor i in range(1,n):\n if l[i]%x:\n print("POSSIBLE")\n exit()\n\nif k in l:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")', 'import math\nn,k = map(int,input().split())\nl = list(map(int,input().split()))\nif max(l) < k:\n print("IMPOSSIBLE")\n exit()\n\nx = l[0]\nfor i in l:\n x = math.gcd(x,i)\n\nif k%x:\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n\n']
['Wrong Answer', 'Accepted']
['s535297264', 's046165628']
[19960.0, 20304.0]
[81.0, 64.0]
[272, 234]
p03651
u404676457
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["import sys\nn, k = map(int, input().split())\na = list(map(int, input().split()))\n\n\nif a[-1] < k:\n print('IMPOSSIBLE')\n sys.exit(0)\n\nseta = set(a)\nif k in seta:\n print('POSSIBLE')\n sys.exit(0)\nchange = True\nwhile change:\n change = False\n setb = seta.copy()\n sorteda = sorted(seta)\n for i in range(1, len(sorteda)):\n setb.add(sorteda[i] % sorteda[0])\n if setb != seta:\n change = True\n seta = setb\n\nmini = sorted(seta)[1]\na.sort()\na.reverse()\n\nfor i in a:\n if (k - i) % mini == 0:\n print('POSSIBLE')\n sys.exit(0)\nprint('IMPOSSIBLE')", "n, k = map(int, input().split())\na = list(map(int, input().split()))\ndef f(l, s):\n return s if l % s == 0 else f(s, l % s)\n\nz = f(max(a), min(a))\nfor i in a:\n z = f(i, z)\nif max(a) >= k and k % z == 0:\n print('POSSIBLE')\nelse:\n print('IMPOSSIBLE')"]
['Runtime Error', 'Accepted']
['s077927325', 's521590636']
[14480.0, 14224.0]
[102.0, 71.0]
[593, 259]
p03651
u445624660
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['\n\n\n\n\n\n\n\n\nn, k = map(int, input().split())\narr = sorted(list(set(list(map(int, input().split())))))\nn = len(arr)\nif arr[0] == 1:\n print("POSSIBLE")\n exit()\nif n < 2 or arr[-1] < k:\n print("IMPOSSIBLE")\n exit()\n\n\ndef gcd(a, b):\n if a > b:\n a, b = b, a\n while a > 0:\n a, b = b % a, a\n return b\n\n\ntmp = gcd(arr[0], arr[1])\nflag = True\nfor i in range(2, n):\n g = gcd(tmp, arr[i])\n if g != tmp:\n flag = False\nif flag:\n print("IMPOSSIBLE")\n exit()\nodds, evens = False, False\nfor a in arr:\n if a % 2 == 0:\n evens = True\n else:\n odds = True\nif evens and odds:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n', '\n\n\n\n\n\n\n\n\n\nn, k = map(int, input().split())\narr = sorted(list(set(list(map(int, input().split())))))\nn = len(arr)\nif arr[0] == 1 or k in arr:\n print("POSSIBLE")\n exit()\nif n < 2 or arr[-1] < k:\n print("IMPOSSIBLE")\n exit()\n\n\ndef gcd(a, b):\n if a > b:\n a, b = b, a\n while a > 0:\n a, b = b % a, a\n return b\n\n\ntmp = gcd(arr[0], arr[1])\n\nif tmp == 1:\n print("POSSIBLE")\n exit()\nflag = True\nfor i in range(2, n):\n g = gcd(tmp, arr[i])\n if g != tmp or g == 1:\n flag = False\n break\n\nif flag and k % tmp != 0:\n print("IMPOSSIBLE")\n exit()\n\neven_flag, odd_flag = False, False\nfor a in arr:\n if a % 2 == 1:\n odd_flag = True\n else:\n even_flag = True\n\n\nif odd_flag:\n if k % 2 == 0 and not even_flag:\n print("IMPOSSIBLE")\n else:\n print("POSSIBLE")\n exit()\n\n\nif k % 2 == 1:\n print("IMPOSSIBLE")\nelse:\n print("POSSIBLE")\n']
['Wrong Answer', 'Accepted']
['s370220708', 's568810080']
[14480.0, 14480.0]
[133.0, 94.0]
[1310, 1792]
p03651
u474270503
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['N, K=map(int, input().split())\nA=list(sorted(list(map(int, input().split())), returned=True))\n\ndef gcd(a,b):\n\twhile b:\n\t\ta,b=b,a%b\n\treturn a\n\nif K>max(A):\n\tprint("IMPOSSIBLE")\n\texit(0)\n\ng=gcd(A[0],A[1])\nfor i in range(2,len(A)):\n\tg=gcd(g,A[i])\n\nprint("POSSIBLE" if K%g==0 else "IMPOSSIBLE")', 'N, K=map(int, input().split())\nA=list(sorted(list(map(int, input().split())), reverse=True))\n\ndef gcd(a,b):\n\twhile b:\n\t\ta,b=b,a%b\n\treturn a\n\ng=A[0]\nfor i in range(1,len(A)):\n\tg=gcd(g,A[i])\n\nprint("POSSIBLE" if K%g==0 and K<=max(A) else "IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s439317412', 's974609873']
[14224.0, 14224.0]
[44.0, 116.0]
[290, 249]
p03651
u518042385
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n,k=map(int,input().split())\nl=list(map(int,input().split()))\ndef gcd(n,m):\n a=max(n,m)\n b=min(n,m)\n while b!=0:\n a,b=b,a%b\n return a\ng=l[0]\nmax=l[0]\nfor i in range(1,1+n-1):\n g=gcd(g,l[i])\n if max<l[i]:\n max=l[i]\nif max<k:\n print("POSSIBLE")\nelif max==k:\n print("POSSIBLE")\nelse:\n if k%g==0:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")', 'n,k=map(int,input().split())\nl=list(map(int,input().split()))\ndef gcd(n,m):\n if n>m:\n a=n\n b=m\n else:\n a=m\n b=n\n while b!=0:\n a,b=b,a%b\n return a\ng=l[0]\nmax=l[0]\nfor i in range(1,1+n-1):\n g=gcd(g,l[i])\n if max<l[i]:\n max=l[i]\nif max<k:\n print("IMPOSSIBLE")\nelif max==k:\n print("POSSIBLE")\nelse:\n if k%g==0:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\n']
['Runtime Error', 'Accepted']
['s206189211', 's499029778']
[14236.0, 14224.0]
[42.0, 84.0]
[361, 388]
p03651
u535423069
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['\n# Created: Mon Mar 23 15:10:04 UTC 2020\nimport sys\n \nstdin = sys.stdin\ninf = 1 << 60\nmod = 1000000007\n \nni = lambda: int(ns())\nnin = lambda y: [ni() for _ in range(y)]\nna = lambda: list(map(int, stdin.readline().split()))\nnan = lambda y: [na() for _ in range(y)]\nnf = lambda: float(ns())\nnfn = lambda y: [nf() for _ in range(y)]\nnfa = lambda: list(map(float, stdin.readline().split()))\nnfan = lambda y: [nfa() for _ in range(y)]\nns = lambda: stdin.readline().rstrip()\nnsn = lambda y: [ns() for _ in range(y)]\nncl = lambda y: [list(ns()) for _ in range(y)]\nnas = lambda: stdin.readline().split()\n\nimport numpy as np\n\nn, k = na()\na = np.array(na())\n\ng = np.gcd.reduce(a)\nm = np.amax(a)\nif g == 1 and k <= m:\n print("Yes")\nelif k % g == 0 and k <= m:\n print("Yes")\nelse:\n print("No")', '\n# Created: Sun Mar 22 17:06:57 UTC 2020\nimport sys\n \nstdin = sys.stdin\ninf = 1 << 60\nmod = 1000000007\n \nni = lambda: int(ns())\nnin = lambda y: [ni() for _ in range(y)]\nna = lambda: list(map(int, stdin.readline().split()))\nnan = lambda y: [na() for _ in range(y)]\nnf = lambda: float(ns())\nnfn = lambda y: [nf() for _ in range(y)]\nnfa = lambda: list(map(float, stdin.readline().split()))\nnfan = lambda y: [nfa() for _ in range(y)]\nns = lambda: stdin.readline().rstrip()\nnsn = lambda y: [ns() for _ in range(y)]\nncl = lambda y: [list(ns()) for _ in range(y)]\nnas = lambda: stdin.readline().split()\n\nn, k = na()\na = na()\n\ndef gcd(m, n):\n if n == 0:\n return m\n else:\n return gcd(n, m % n)\n\ng = a[0]\nfor i in range(n):\n g = gcd(g, a[i])\n\nm = max(a)\nif g == 1 and k <= m:\n print("POSSIBLE")\nelif k % g == 0 and k <= m:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s175530258', 's192421405']
[23112.0, 14252.0]
[180.0, 88.0]
[860, 960]
p03651
u555811857
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['# -*- coding: utf-8 -*-\nN, A = map(int, input().split())\ntmp = input()\nary = [int(a) for a in tmp.split()]\n\nmaximum = max(ary)\n\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n c = a % b\n return gcd(b, c)\n\n\ng = None\nfor a in ary:\n if g is None:\n g = a\n continue\n g = gcd(g, a)\n print(g)\n\nif A % g == 0 and A <= maximum:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n', '# -*- coding: utf-8 -*-\nN, M = map(int, input().split())\narys = []\nfor i in range(N):\n tmp = input()\n ary = [int(a) - 1 for a in tmp.split()]\n arys.append(ary)\n\n\ns = set([i for i in range(M)])\nmin_num = None\nwhile len(s) > 0:\n dic = {}\n for ary in arys:\n del_i = None\n for i, a in enumerate(ary):\n if a in s:\n if a not in dic:\n dic[a] = 1\n else:\n dic[a] += 1\n break\n del_i = i\n if del_i is not None:\n ary = ary[del_i + 1:]\n max_v = None\n max_k = None\n for k, v in dic.items():\n if max_v is None or max_v < v:\n max_v = v\n max_k = k\n if min_num is None or min_num > max_v:\n min_num = max_v\n s.remove(max_k)\nprint(min_num)\n', '# -*- coding: utf-8 -*-\nN, A = map(int, input().split())\ntmp = input()\nary = [int(a) for a in tmp.split()]\n\nmaximum = max(ary)\n\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n c = a % b\n return gcd(b, c)\n\n\ng = None\nfor a in ary:\n if g is None:\n g = a\n continue\n g = gcd(g, a)\n\nif A % g == 0 and A <= maximum:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s141945092', 's557624032', 's837104253']
[15192.0, 2090904.0, 15320.0]
[149.0, 2230.0, 86.0]
[435, 823, 422]
p03651
u557437077
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['# import math\nimport fractions\nn, k = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na = sorted(a)\ndiv = fractions.gcd(a[0], a[1])\nfor i in range(2, n):\n div = fractions.gcd(a[i], a[i-1])\nif k % div == 0 and k <= a[-1]:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n', '# import math\nimport fractions\nn, k = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na = sorted(a)\nif n == 1:\n if a[0] == k:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\ndiv = fractions.gcd(a[0], a[1])\nfor i in range(n):\n if a[i] == k:\n print("POSSIBLE")\n exit()\n elif i >= 2:\n div = fractions.gcd(a[i], a[i-1])\nif k % div == 0 and k <= a[-1]:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n', '# import math\nimport fractions\nn, k = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na = sorted(a)\n\nif n == 1:\n if a[0] == k:\n print("POSSIBLE")\n else:\n print("IMPOSSIBLE")\ndiv = a[0]\nfor i in range(1, n):\n div = fractions.gcd(div, a[i])\n\nif k % div == 0 and k <= a[-1]:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n', '# import math\n# import fractions\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\n\nn, k = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na = sorted(a)\n\ndiv = a[0]\nfor i in range(1, n):\n div = gcd(div, a[i])\n\nif k % div == 0 and k <= a[-1]:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s044549575', 's057690798', 's792374775', 's610253984']
[16280.0, 16048.0, 16276.0, 14252.0]
[195.0, 208.0, 134.0, 130.0]
[475, 645, 546, 344]
p03651
u620480037
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['N,K=map(int,input().split())\n\nA=list(map(int,input().split()))\n\ndef gcd(a,b):\n x=max(a,b)\n y=min(a,b)\n while x%y!=0:\n x,y=y,x%y\n return y\n \nNum=A[0]\n\nfor i in range(N):\n Num=gcd(Num,A[i])\n \nif K%Num==0:\n if K>Num:\n print("IMPOSSIBLE")\n else:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")', 'N,K=map(int,input().split())\n\nA=list(map(int,input().split()))\n\ndef gcd(a,b):\n x=max(a,b)\n y=min(a,b)\n while x%y!=0:\n x,y=y,x%y\n return y\n \nNum=A[0]\n\nfor i in range(N):\n Num=gcd(Num,A[i])\n \nif K%Num==0:\n if K>max(A):\n print("IMPOSSIBLE")\n else:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Wrong Answer', 'Accepted']
['s228596089', 's267193002']
[14224.0, 14224.0]
[104.0, 105.0]
[338, 341]
p03651
u635182517
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32\nType "copyright", "credits" or "license()" for more information.\n>>> \n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\nTraceback (most recent call last):\n File "C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py", line 13, in <module>\n print(gcd_list(a))\n File "C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py", line 9, in gcd_list\n for i in range(len(n)):\nNameError: name \'n\' is not defined\n>>> \n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\nNone\n\n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n6\n\n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n6\n\n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n3\n\n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n3 7\n9 3 4\nTraceback (most recent call last):\n File "C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py", line 19, in <module>\n if A[-1] > k and (A[-1] - k) % gcd_lst(A) == 0:\nNameError: name \'gcd_lst\' is not defined\n>>> \n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n3 7\n9 3 4\nPOSSIBLE\n>>> \n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n3 5\n6 9 3\nIMPOSSIBLE\n>>> \n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n4 11\n11 3 7 15\nPOSSIBLE\n>>> \n======= RESTART: C:\\Users\\mori-\\OneDrive\\Desktop\\Python\\abc\\tenka1a.py =======\n5 12\n10 2 8 6 4\nIMPOSSIBLE\n>>> ', "def gcd(a, b):\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n\ndef gcd_list(a):\n x = a[0]\n for i in range(len(a)):\n x = gcd(a[i], x)\n return x\n \n\nn, k = map(int, input().split())\nA = list(map(int, input().split()))\n\nans = 'IMPOSSIBLE'\nA.sort()\nif A[-1] >= k and (A[-1] - k) % gcd_list(A) == 0:\n ans = 'POSSIBLE'\n\nprint(ans)\n"]
['Runtime Error', 'Accepted']
['s595810542', 's940599560']
[2940.0, 14480.0]
[18.0, 107.0]
[1601, 375]
p03651
u637175065
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\n\ndef main():\n N,K = LI()\n a = LI()\n if max(a) < K:\n return 'IMPOSSIBLE'\n if K in a:\n return 'POSSIBLE'\n t = a[0]\n \n # t = math.gcd(a[i], t)\n if t <= 1:\n return 'POSSIBLE'\n for c in a:\n if (c > K) and (((c-K) % t) == 0):\n return 'POSSIBLE'\n\n return 'IMPOSSIBLE'\n\n\nprint(main())\n\n\n\n", "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\n\ndef main():\n N,K = LI()\n a = LI()\n if max(a) < K:\n return 'IMPOSSIBLE'\n if K in a:\n return 'POSSIBLE'\n t = a[0]\n for c in a[1:]:\n t = math.gcd(a[i], t)\n if t <= 1:\n return 'POSSIBLE'\n for c in a:\n if (c > K) and (((c-K) % t) == 0):\n return 'POSSIBLE'\n\n return 'IMPOSSIBLE'\n\n\nprint(main())\n\n\n\n", "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\ndef gcd(a,b):\n while b>0:\n a,b = b,a\n b %= a\n return a\n\ndef main():\n N,K = LI()\n a = LI()\n if max(a) < K:\n return 'IMPOSSIBLE'\n if K in a:\n return 'POSSIBLE'\n t = a[0]\n for c in a[1:]:\n t = gcd(c, t)\n if t <= 1:\n return 'POSSIBLE'\n for c in a:\n if (c > K) and (((c-K) % t) == 0):\n return 'POSSIBLE'\n\n return 'IMPOSSIBLE'\n\n\nprint(main())\n\n\n\n"]
['Wrong Answer', 'Runtime Error', 'Accepted']
['s278605785', 's340945711', 's132053746']
[16648.0, 16652.0, 16644.0]
[340.0, 91.0, 107.0]
[891, 884, 959]
p03651
u707870100
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['# -*- coding: utf-8 -*-\n#AGC014A\nimport sys\n#import collections\n\n#n= int(input())\n\ntmp = input().split()\nn,k = list(map(lambda a: int(a), tmp))\n\ntmp = input().split()\na = list(map(lambda a: int(a), tmp))\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nmaxa=a[0]\ntmp=a[0]\nfor i in range(1,n):\n\tmaxa=max(maxa,a[i])\n\ttmp=gcd(tmp, a[i])\n\nif(k<=m)and(k%tmp ==0):\n\tprint("POSSIBLE")\nelse:\n\tprint("IMPOSSIBLE")\n\n#print(maxa)\n#print(tmp)\n\n\n', '# -*- coding: utf-8 -*-\n#AGC014A\nimport sys\n#import collections\n\n#n= int(input())\n\ntmp = input().split()\nn,k = list(map(lambda a: int(a), tmp))\n\ntmp = input().split()\na = list(map(lambda a: int(a), tmp))\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nmaxa=a[0]\ntmp=a[0]\nfor i in range(1,n):\n\tmaxa=max(maxa,a[i])\n\ttmp=gcd(tmp, a[i])\n\nif(k<=maxa)and(k%tmp ==0):\n\tprint("POSSIBLE")\nelse:\n\tprint("IMPOSSIBLE")\n\n#print(maxa)\n#print(tmp)\n\n\n']
['Runtime Error', 'Accepted']
['s012065384', 's335507032']
[14228.0, 14228.0]
[104.0, 109.0]
[451, 454]
p03651
u785205215
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def gcd(a,b):\n while b > 0:\n a, b = b, a%b\n return a\n\ndef gcd_list(lst):\n a = gcd(lst[0],lst[1])\n i=2\n while a > 0 and i<len(lst):\n a = gcd(a, lst[i])\n if a == 1:\n return 1\n break\n i+=1\n return a\n \nn, k = (int(i) for i in input().split())\nprint(n,k)\na = list(int(i) for i in input().split()) \nprint(a)\nmaxA=max(a)\n\nif maxA >= k and gcd_list(a)%k == 0:\n print("POSSIBLE")\nelif k in a:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n ', '# coding: utf-8\n# Here your code !\ndef gcd(a,b):\n while b > 0:\n a, b = b, a%b\n return a\n\ndef gcd_list(lst):\n a = gcd(lst[0],lst[1])\n i=2\n while a > 0 and i<len(lst):\n a = gcd(a, lst[i])\n if a == 1:\n return 1\n break\n i+=1\n return a\n \nn, k = (int(i) for i in input().split())\na = list(int(i) for i in input().split()) \nmaxA=max(a)\n\nif maxA >= k and gcd_list(a)%k == 0:\n print("POSSIBLE")\nelif k in a:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n ', 'def gcd(a,b):\n while b > 0:\n a, b = b, a%b\n return a\n\ndef gcd_list(lst):\n g = lst[0]\n for i in range(1,len(lst)):\n g = gcd(g,lst[i])\n return g\n \nn, k = (int(i) for i in input().split())\na = list(int(i) for i in input().split()) \n\nmaxA=max(a)\n\nif (k <= maxA and k%gcd_list(a) == 0) or (k in a):\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n ']
['Runtime Error', 'Runtime Error', 'Accepted']
['s027711186', 's252986215', 's468824297']
[14484.0, 14096.0, 14480.0]
[92.0, 83.0, 76.0]
[515, 530, 383]
p03651
u785578220
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['a,b=map(int, input().split())\nx = list(map(int, input().split()))\nx.sort()\np=0\nq=0\ny=0\nfor i in x:\n if p == 1 and q == 1:break\n if i == b:\n y=1\n if i%2==0:\n p=1\n else:\n q=1\nif b<=x[-1]:\n if((b%2==0 and(p*q ==0))or(p==1 and q==1)):\n m="POSSIBLE"\nif y==1:m="POSSIBLE"\nelse:m="IMPOSSIBLE" \nprint(m)', 'N,K= map(int, input().split())\nx = list(map(int, input().split()))\nx = list(set(x))\nx.sort()\nt = max(x)\ny = x[0]\ns = [1000000000000]\no=0\nif x[0] == K:o=1\nfor i in range(1,len(x)):\n s.append(x[i]-x[i-1])\n if x[i] == K:o = 1\ns.sort()\nm = min(y,s[0])\nif (t>= K and K%m==0) or o==1:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n\n']
['Wrong Answer', 'Accepted']
['s265995951', 's072660845']
[14252.0, 14224.0]
[76.0, 173.0]
[338, 338]
p03651
u800610991
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['a,b = map(int,input().split())\nnn = list(map(int,input().split()))\nnnn = nn.copy()\n\nif b in nn:\n print(\'POSSIBLE\')\n exit()\nif b > max(nn):\n print("IMPOSSIBLE")\n exit()\nlen_nn = [0]\nwhile 1:\n lnn = len(nn)\n for x in range(len(nn)):\n for y in range(len(nn) - x -len_nn):\n y = len(nn)-y-1\n #print(x,y)\n num = abs(x-nn[y])\n if num == b or num == 1:\n print(\'POSSIBLE\')\n exit()\n elif num not in nn and num != 0:\n nn.append(num)\n len_nn += lnn\n if nn == nnn:\n print(\'IMPOSSIBLE\')\n exit()\n', 'a,b = map(int,input().split())\nnn = list(map(int,input().split()))\nnnn = nn.copy()\nif b in nn:\n print(\'POSSIBLE\')\n exit()\nif b > max(nn):\n print("IMPOSSIBLE")\n exit()\n\nwhile 1:\n for x in range(len(nn)):\n for y in range(len(nn) - x):\n y = len(nn)-y-1\n #print(x,y)\n num = abs(x-nn[y])\n if num == b:\n print(\'POSSIBLE\')\n exit()\n elif num not in nn:\n nn.append(num)\n if nn == nnn:\n print(\'IMPOSSIBLE\')\n exit()\n', 'def ri(): return int(input())\ndef rli(): return list(map(int, input().split()))\ndef ris(): return list(input())\ndef pli(a): return "".join(list(map(str, a)))\n\nn,k = rli()\nA = rli()\n\ndef gcd(a,b):\n while b:\n a, b = b, a%b\n return a\n\nb = 0\nfor a in A:\n b = gcd(a, b)\n\nif k%b or k > max(A):\n print(\'IMPOSSIBLE\')\nelse:\n print(\'POSSIBLE\')\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s302692941', 's664938102', 's810333929']
[14096.0, 14252.0, 14480.0]
[46.0, 2104.0, 66.0]
[626, 544, 357]
p03651
u814986259
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['import collections\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nif K in A:\n print("POSSIBLE")\nelse:\n diff = collections.defaultdict(int)\n A.sort()\n idx = N - 1\n if K > A[-1]:\n print("IMPOSSIBLE")\n else:\n for i in range(N-1):\n if A[i] > K and idx == N - 1:\n idx = i\n diff[A[i+1] - A[i]] += 1\n\n diff_list = list(diff.keys())\n if 1 in diff_list:\n print("POSSIBLE")\n print("hoge")\n exit(0)\n diff_list.sort()\n\n for i in range(idx, N):\n for j in range(len(diff_list)):\n if (K - A[i]) % diff_list[j] == 0:\n print("POSSIBLE")\n exit(0)\n print("IMPOSSIBLE")\n', 'import collections\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nif K in A:\n print("POSSIBLE")\n exit(0)\nelse:\n diff = collections.defaultdict(int)\n A.sort()\n idx = N - 1\n if K > A[-1]:\n print("IMPOSSIBLE")\n exit(0)\n else:\n for i in range(N-1):\n if A[i] > K and idx == N - 1:\n idx = i\n if A[i+1] - A[i] != 0:\n diff[A[i+1] - A[i]] += 1\n\n diff_list = list(diff.keys())\n if 1 in diff_list:\n print("POSSIBLE")\n exit(0)\n else:\n diff_list.sort()\n for i in range(idx, N):\n for j in range(len(diff_list)):\n if (K - A[i]) % diff_list[j] == 0:\n print("POSSIBLE")\n exit(0)\n print("IMPOSSIBLE")\n exit(0)\n']
['Runtime Error', 'Accepted']
['s064925775', 's386067804']
[14636.0, 14636.0]
[132.0, 1014.0]
[773, 875]
p03651
u820351940
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['a, b = map(int, input().split())\narray = list(map(int, input().split()))\nimpossible = "IMPOSSIBLE"\npossible = "POSSIBLE"\n\nif a == 1:\n if b == array[0]:\n print(possible)\n else:\n print(impossible)\n exit(0)\n\narray.sort()\narray = list(set(array))\n\nbtw = [v1 - v2 for v1, v2 in zip(array[1:], array[0:])]\nn = sorted(btw)[0]\n\nsame = len(set(btw)) == 1 or all([v % n == 0 for v in btw])\n\nif b in array:\n print(possible)\nelif array[-1] < b:\n print(impossible)\nelif same and (b - array[0]) % n == 0:\n print(possible)\nelse:\n print(impossible)\n', 'a, b = map(int, input().split())\narray = list(map(int, input().split()))\nimpossible = "IMPOSSIBLE"\npossible = "POSSIBLE"\n\narray = list(set(array))\n\nif len(array) == 1:\n if b == array[0]:\n print(possible)\n else:\n print(impossible)\n exit(0)\n\narray.sort()\n\nbtw = [v1 - v2 for v1, v2 in zip(array[1:], array[0:])]\nn = sorted(btw)[0]\n\nsame = len(set(btw)) == 1 or all([v % n == 0 for v in btw])\n\nif b in array:\n print(possible)\nelif array[-1] < b:\n print(impossible)\nelif same and (b - array[0]) % n == 0:\n print(possible)\nelse:\n print(impossible)\n']
['Runtime Error', 'Accepted']
['s586794451', 's494571962']
[14728.0, 14604.0]
[161.0, 154.0]
[568, 578]
p03651
u839537730
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['X, Y, Z = list(map(int, input().split(" ")))\n\nimport numpy as np\n\nABC = []\n\nfor i in range(X+Y+Z):\n ABC.append(list(map(int, input().split(" "))))\n\nABC = sorted(ABC, key=lambda row: row[0]-row[1]) \n\nans = 0\n\nABC_bk = ABC_np[:Y]\nABC_ak = ABC_np[Y:]\n\nfor k in range(Y, Y+Z):\n \n ABC_bk = ABC_bk + ABC_ak[0]\n ABC_ak = ABC_ak.pop(0)\n \n \n before_k = np.asarray(sorted(ABC_bk.tolist(), key=lambda row: row[1]-row[2]))\n after_k = np.asarray(sorted(ABC_ak.tolist(), key=lambda row: row[0]-row[2]) ) \n \n bk_sum = before_k[-Y:].sum(axis=0)[1] + before_k[:-Y].sum(axis=0)[2]\n ak_sum = after_k[-X:].sum(axis=0)[0] + after_k[:-X].sum(axis=0)[2]\n \n tmp = ak_sum + bk_sum\n \n if ans < tmp:\n ans = tmp\n \nprint (ans)', 'N, K = list(map(int, input().split(" ")))\n\nA = list(map(int, input().split(" ")))\n\nans = False\n\nA = sorted(A)\n\nkey = 99999999999999\n \nif A[-1] < K:\n ans = False\n\nelse:\n for i in range(2, A[0]+1):\n key_flag = True\n for a in A:\n if a % i !=0:\n key_flag = False\n break\n \n if key_flag == True:\n key = i\n break\n\n if key_flag == False:\n ans = True\n# print(1)\n elif K % key == 0:\n ans = True\n# print(2)\n else:\n# print(3)\n ans = False \n \nif ans == True:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s115477986', 's213971011']
[3064.0, 14096.0]
[19.0, 83.0]
[782, 672]
p03651
u844789719
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['import math', 'import math\nN, K = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\ng = A.pop()\nfor a in A:\n g = math.gcd(g, a)', "N, K = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\n\n\ndef gcd(x, y):\n if x < y:\n return gcd(y, x)\n elif y == 0:\n return x\n else:\n return gcd(y, x % y)\n\n\ng = A[0]\nfor a in A:\n g = gcd(g, a)\nif K <= max(A) and K % g == 0:\n print('POSSIBLE')\nelse:\n print('IMPOSSIBLE')\n"]
['Wrong Answer', 'Runtime Error', 'Accepted']
['s070835746', 's770468091', 's060142341']
[2940.0, 14252.0, 14224.0]
[18.0, 47.0, 98.0]
[11, 137, 332]
p03651
u845333844
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n,k=map(int,input().split())\na=list(map(int,input().split()))\ndef gcd(a,b):\n if b==0:\n return a\n else:\n return gcd(b,a%b)\n\nif n==1:\n x=a[0]\nelse:\n x=gcd(a[0],a[1])\n for i in range(2,n):\n x=gcd(x,a[i])\n\nif max(a)>=k and k%g==0:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\ndef gcd(a,b):\n if b==0:\n return a\n else:\n return gcd(b,a%b)\n\nif n==1:\n x=a[0]\nelse:\n x=gcd(a[0],a[1])\n for i in range(2,n):\n x=gcd(x,a[i])\n\nif max(a)>=k and k%x==0:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")']
['Runtime Error', 'Accepted']
['s150419565', 's151371656']
[14096.0, 14100.0]
[90.0, 89.0]
[292, 292]
p03651
u871841829
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nP = "POSSIBLE"\nIP = "IMPOSSIBLE"\n\nA.sort()\n\ndef gcd(a, b):\n if a == 0:\n return b\n else:\n gcd(b, b%a)\n\nt = gcd(A[1], A[0])\nif N <= 2:\n for a in A[2:]:\n t = gcd(t, a)\n\nif K%t == 0 and K <= M:\n print(P)\nelse:\n print(IP)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nP = "POSSIBLE"\nIP = "IMPOSSIBLE"\n\nM = max(A)\n\ndef gcd(a, b):\n if a == 0:\n return b\n else:\n return gcd(b%a, a)\n\nt = gcd(A[0], A[0])\nif N > 1:\n for a in A[1:]:\n t = gcd(t, a)\n\nif K%t == 0 and K <= M:\n print(P)\nelse:\n print(IP)']
['Runtime Error', 'Accepted']
['s583946934', 's963585959']
[19896.0, 19800.0]
[60.0, 76.0]
[322, 330]
p03651
u879870653
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def gcd(a,b) :\n while b :\n a,b = b, a % b\n return a\n\nN,K = map(int,input().split())\nL = list(map(int,input().split()))\n\np = 10**9\nfor i in range(N-1) :\n q = gcd(L[i],L[i+1])\n if q < p :\n p = q\n\nif (K % p == 0) and (K <= max(L))\n ans = "POSSIBLE"\nelse :\n ans = "IMPOSSIBLE"\nprint(ans)\n', 'def gcd(a,b) :\n while b :\n a,b = b, a % b\n return a\n\nN,K = map(int,input().split())\nL = list(map(int,input().split()))\n\nif len(L) == 1 :\n if L[0] == K :\n ans = "POSSIBLE"\n else :\n ans = "IMPOSSIBLE"\n\nelse :\n for i in range(N-1) :\n q = gcd(L[i],L[i+1])\n if i == 0 :\n p = gcd(L[i],L[i+1])\n if q < p :\n p = q\n\n if (K % p == 0) and (K <= max(L)) :\n ans = "POSSIBLE"\n else :\n ans = "IMPOSSIBLE"\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s538878184', 's350147871']
[2940.0, 14224.0]
[17.0, 205.0]
[317, 501]
p03651
u896741788
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['n,k=map(int,input().split())\nl=soted(map(int,input().split()))\ndef gcd(x,y):\n if y==0:return x\n return gcd(y,x%y)\nans=""\ns=0\nfor i in l:\n s=gcd(i,s)\n if s==1:break\nelse:\n if k%s!=l[-1]%s:\n ans="IM"\nprint(ans+"POSSIBLE")', 'n,k=map(int,input().split())\nl=soted(list(map(int,input().split())))\ndef gcd(x,y):\n if y==0:return x\n return gcd(y,x%y)\nans=""\ns=0\nfor i in l:\n s=gcd(i,s)\n if s==1:break\nelse:\n if k%s!=l[-1]%s:\n ans="IM"\nprint(ans+"POSSIBLE")\n', 'n,k=map(int,input().split())\nl=sorted(map(int,input().split()))\ndef gcd(x,y):\n if y==0:return x\n return gcd(y,x%y)\nans=""\ns=0\nfor i in l:\n s=gcd(i,s)\n if s==1:break\nelse:\n if k%s!=l[-1]%s:\n ans="IM"\nif l[-1]<k:ans="IM"\nprint(ans+"POSSIBLE")\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s395154796', 's625076779', 's136877754']
[3064.0, 3060.0, 14108.0]
[18.0, 17.0, 104.0]
[227, 234, 249]
p03651
u926678805
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
["from functools import reduce\nn,k=map(int,input().split())\na=list(map(int,input().split()))\ndef gcd(a, b):\n while a != 0:\n a,b=b%a,a\n return b\ndef lcm(x, y):\n return (x * y)//gcd(x, y)\nt=reduce(lcm,a)\nif t==1:\n if max(a)>=k:\n print('POSSIBLE')\n exit()\nelse:\n if k in a:\n print('POSSIBLE')\n exit()\n if k%t==0:\n print('POSSIBLE')\n exit()\nprint('IMPOSSIBLE')\n", "from functools import reduce\nn,k=map(int,input().split())\na=list(map(int,input().split()))\ndef gcd(a, b):\n while a != 0:\n a,b=b%a,a\n return b\ndef lcm(x, y):\n return (x * y)//gcd(x, y)\nt=reduce(gcd,a)\nif t==1:\n if max(a)>=k:\n print('POSSIBLE')\n exit()\nelse:\n if k in a:\n print('POSSIBLE')\n exit()\n if k%t==0 and max(a)>=k:\n print('POSSIBLE')\n exit()\nprint('IMPOSSIBLE')\n"]
['Wrong Answer', 'Accepted']
['s541493707', 's669753508']
[14596.0, 14596.0]
[2108.0, 69.0]
[422, 436]
p03651
u974792613
2,000
262,144
There is a box containing N balls. The i-th ball has the integer A_i written on it. Snuke can perform the following operation any number of times: * Take out two balls from the box. Then, return them to the box along with a new ball, on which the absolute difference of the integers written on the two balls is written. Determine whether it is possible for Snuke to reach the state where the box contains a ball on which the integer K is written.
['def gcd(a, b):\n return gcd(b, a % b) if b > 0 else a\n\n\nn, k = map(int, input().split())\na = list(map(int, input().split())\n \nm = max(a)\n \ng = a[0]\n \nfor i in range(n):\n g = gcd(g, a[i])\n\nif k > m:\n print("IMPOSSIBLE")\nelif k % g == 0:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n\n', 'from fractions import gcd\n\nn,k = map(int, input().split())\na = list(map(int, input().split())\n \nm = max(a)\n \ng = a[0]\n \nfor i in range(n):\n g = gcd(g, a[i])\n\nif k>m:\n print("IMPOSSIBLE")\nelif k % g == 0:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n', 'def gcd(a, b):\n return gcd(b, a % b) if b > 0 else a\n\n\nn, k = map(int, input().split())\na = list(map(int, input().split()))\n\nm = max(a)\n\ng = a[0]\n\nfor i in range(n):\n g = gcd(g, a[i])\n\nif k > m:\n print("IMPOSSIBLE")\nelif k % g == 0:\n print("POSSIBLE")\nelse:\n print("IMPOSSIBLE")\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s758854177', 's854254792', 's455700431']
[2940.0, 2940.0, 14224.0]
[17.0, 18.0, 88.0]
[320, 286, 294]
p03652
u077291787
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['from collections import deque\nfrom typing import Optional\n\n\nclass DeletableDeque:\n """Deletable Deque: a deque that supports lazy deletion of values."""\n\n __slots__ = ["_set", "_deque"]\n\n def __init__(self, *initial_values: int) -> None:\n self._set = set()\n self._deque = deque([])\n\n if initial_values:\n for v in initial_values:\n self.append(v)\n\n def __contains__(self, value: int) -> bool:\n return value in self._set\n\n def __len__(self) -> int:\n return len(self._set)\n\n @property\n def is_empty(self) -> bool:\n """Return whether the deque has no values or not."""\n return len(self) == 0\n\n @property\n def top(self) -> Optional[int]:\n """Return the rightmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[-1] not in self._set:\n self._deque.pop()\n if not self._deque:\n return None\n return self._deque[-1]\n\n @property\n def topleft(self) -> Optional[int]:\n """Return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n return self._deque[0]\n\n def pop(self) -> Optional[int]:\n """Pop and return the rightmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[-1] not in self._set:\n self._deque.pop()\n if not self._deque:\n return None\n res = self._deque.pop()\n self._set.discard(res)\n return res\n\n def popleft(self) -> Optional[int]:\n """Pop and return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n res = self._deque.popleft()\n self._set.discard(res)\n return res\n\n def append(self, value: int) -> None:\n """Append value to the right side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.append(value)\n\n def appendleft(self, value: int) -> None:\n """Append value to the left side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.appendleft(value)\n\n def delete(self, value: int) -> None:\n """Delete value from the deque."""\n if value not in self._set:\n return\n self._set.discard(value)\n\n\ndef agc018_b():\n \n import sys\n from collections import defaultdict\n\n readline = sys.stdin.buffer.readline\n\n N, M = map(int, readline().split())\n A = []\n for _ in range(N):\n ranking = [(x, i) for i, x in enumerate(map(int, readline().split()), 1)]\n ranking.sort()\n _, fav_sports = zip(*ranking)\n print(fav_sports)\n A.append(DeletableDeque(*fav_sports))\n\n res = 301\n for _ in range(M):\n cnt = defaultdict(int)\n for a in A:\n cnt[a.topleft] += 1\n\n popular_sport = max(cnt, key=cnt.get)\n res = min(res, cnt[popular_sport])\n print(popular_sport, cnt[popular_sport])\n for a in A:\n a.delete(popular_sport)\n\n print(res)\n\n\nif __name__ == "__main__":\n agc018_b()\n', 'from collections import deque\nfrom typing import Optional\n\n\nclass DeletableDeque:\n """Deletable Deque: a deque that supports lazy deletion of values."""\n\n __slots__ = ["_set", "_deque"]\n\n def __init__(self, *initial_values: int) -> None:\n self._set = set()\n self._deque = deque([])\n\n if initial_values:\n for v in initial_values:\n self.append(v)\n\n def __contains__(self, value: int) -> bool:\n return value in self._set\n\n def __len__(self) -> int:\n return len(self._set)\n\n @property\n def is_empty(self) -> bool:\n """Return whether the deque has no values or not."""\n return len(self) == 0\n\n @property\n def top(self) -> Optional[int]:\n """Return the rightmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[-1] not in self._set:\n self._deque.pop()\n if not self._deque:\n return None\n return self._deque[-1]\n\n @property\n def topleft(self) -> Optional[int]:\n """Return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n return self._deque[0]\n\n def pop(self) -> Optional[int]:\n """Pop and return the rightmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[-1] not in self._set:\n self._deque.pop()\n if not self._deque:\n return None\n res = self._deque.pop()\n self._set.discard(res)\n return res\n\n def popleft(self) -> Optional[int]:\n """Pop and return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n res = self._deque.popleft()\n self._set.discard(res)\n return res\n\n def append(self, value: int) -> None:\n """Append value to the right side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.append(value)\n\n def appendleft(self, value: int) -> None:\n """Append value to the left side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.appendleft(value)\n\n def delete(self, value: int) -> None:\n """Delete value from the deque."""\n if value not in self._set:\n return\n self._set.discard(value)\n\n\ndef agc018_b():\n \n import sys\n from collections import defaultdict\n\n readline = sys.stdin.buffer.readline\n\n N, M = map(int, readline().split())\n A = []\n for _ in range(N):\n ranking = [(x, i) for i, x in enumerate(map(int, readline().split()), 1)]\n ranking.sort()\n _, fav_sports = zip(*ranking)\n A.append(DeletableDeque(*fav_sports))\n\n res = 301\n for _ in range(M):\n cnt = defaultdict(int)\n for a in A:\n cnt[a.topleft] += 1\n\n popular_sport = max(cnt, key=cnt.get)\n res = min(res, cnt[popular_sport])\n for a in A:\n a.delete(popular_sport)\n\n print(res)\n\n\nif __name__ == "__main__":\n agc018_b()\n', 'from collections import deque\nfrom typing import Optional\n\n\nclass DeletableDeque:\n """Deletable Deque: a deque that supports lazy deletion of values."""\n\n __slots__ = ["_set", "_deque"]\n\n def __init__(self, *initial_values: int) -> None:\n self._set = set()\n self._deque = deque([])\n\n if initial_values:\n for v in initial_values:\n self.append(v)\n\n def __contains__(self, value: int) -> bool:\n return value in self._set\n\n def __len__(self) -> int:\n return len(self._set)\n\n @property\n def is_empty(self) -> bool:\n """Return whether the deque has no values or not."""\n return len(self) == 0\n\n @property\n def top(self) -> Optional[int]:\n """Return the rightmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[-1] not in self._set:\n self._deque.pop()\n if not self._deque:\n return None\n return self._deque[-1]\n\n @property\n def topleft(self) -> Optional[int]:\n """Return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n return self._deque[0]\n\n def pop(self) -> Optional[int]:\n """Pop and return the rightmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[-1] not in self._set:\n self._deque.pop()\n if not self._deque:\n return None\n res = self._deque.pop()\n self._set.discard(res)\n return res\n\n def popleft(self) -> Optional[int]:\n """Pop and return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n res = self._deque.popleft()\n self._set.discard(res)\n return res\n\n def append(self, value: int) -> None:\n """Append value to the right side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.append(value)\n\n def appendleft(self, value: int) -> None:\n """Append value to the left side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.appendleft(value)\n\n def delete(self, value: int) -> None:\n """Delete value from the deque."""\n if value not in self._set:\n return\n self._set.discard(value)\n\n\ndef agc018_b():\n \n import sys\n from collections import defaultdict\n\n readline = sys.stdin.buffer.readline\n\n N, M = map(int, readline().split())\n A = []\n for _ in range(N):\n ranking = [(x, i) for i, x in enumerate(map(int, readline().split()), 1)]\n ranking.sort()\n _, fav_sports = zip(*ranking)\n A.append(DeletableDeque(*fav_sports))\n\n res = 301\n for _ in range(M):\n cnt = defaultdict(int)\n for a in A:\n cnt[a.topleft] += 1\n\n popular_sport = max(cnt, key=cnt.get)\n res = min(res, cnt[popular_sport])\n for a in A:\n a.delete(popular_sport)\n\n print(res)\n\n\nif __name__ == "__main__":\n agc018_b()\n', 'from collections import deque\nfrom typing import Optional\n\n\nclass DeletableDeque:\n """Deletable Deque: a deque that supports lazy deletion of values."""\n\n __slots__ = ["_set", "_deque"]\n\n def __init__(self, *initial_values: int) -> None:\n self._set = set()\n self._deque = deque([])\n\n if initial_values:\n for v in initial_values:\n self.append(v)\n\n @property\n def topleft(self) -> Optional[int]:\n """Return the leftmost value from the deque.\n If the deque is empty, None is returned.\n """\n while self._deque and self._deque[0] not in self._set:\n self._deque.popleft()\n if not self._deque:\n return None\n return self._deque[0]\n\n def append(self, value: int) -> None:\n """Append value to the right side of the deque."""\n if value in self._set:\n return\n self._set.add(value)\n self._deque.append(value)\n\n def delete(self, value: int) -> None:\n """Delete value from the deque."""\n if value not in self._set:\n return\n self._set.discard(value)\n\n\ndef agc018_b():\n \n import sys\n from collections import Counter\n\n readline = sys.stdin.buffer.readline\n\n N, M = map(int, readline().split())\n A = [DeletableDeque(*map(int, readline().split())) for _ in range(N)]\n\n res = 301\n for _ in range(M):\n cnt = Counter(a.topleft for a in A)\n popular_sport = max(cnt, key=cnt.get)\n res = min(res, cnt[popular_sport])\n for a in A:\n a.delete(popular_sport)\n\n print(res)\n\n\nif __name__ == "__main__":\n agc018_b()\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s035857929', 's129245579', 's236852242', 's844707749']
[14284.0, 14084.0, 14172.0, 14028.0]
[155.0, 149.0, 145.0, 122.0]
[3607, 3532, 3532, 1706]
p03652
u201234972
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['from collections import Counter\nN, M = map( int, input().split())\nA = [ [] for _ in range(N)]\nfor i in range(N):\n A[i] = list( map( int, input().split())) \nV = [1]*(M+1)\nans = N\nfor _ in range(M-1):\n W = []\n for i in range(N):\n while A[i]:\n a = A[i].pop(0)\n if V[a] == 1:\n W.append(a)\n if not W:\n break\n a, c = Counter(W).most_common()[0]\n ans = min( ans, c)\n V[a] = 0\nprint(ans)', 'from collections import Counter\nN, M = map( int, input().split())\nA = [ [] for _ in range(N)]\nfor i in range(N):\n A[i] = list( map( int, input().split())) \nV = [1]*(M+1)\nans = N\nfor _ in range(M-1):\n W = []\n for i in range(N):\n while True:\n if V[A[i][0]] == 1:\n W.append(A[i][0])\n break\n else:\n A[i].pop(0)\n a, c = Counter(W).most_common()[0]\n ans = min( ans, c)\n V[a] = 0\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s670926010', 's129791218']
[5464.0, 4700.0]
[88.0, 105.0]
[451, 476]
p03652
u223904637
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['n,m=map(int,input().split())\nk=[[0]*m for i in range(n)]\nfor i in range(n):\n k[i]=list(map(int,input().split()))\nans=1000\nfor i in range(m-1):\n ma=[0]*m\n mi=-1\n for j in range(n):\n ma[k[j][0]]+=1\n if ans>max(ma):\n ans=max(ma)\n mi=ma.index(max(ma))+1\n for j in range(n):\n k[j].remove(mi)\nprint(ans)\n \n', 'n,m=map(int,input().split())\nk=[[0]*m for i in range(n)]\nfor i in range(n):\n k[i]=list(map(int,input().split()))\nans=1000\nfor i in range(m-1):\n ma=[0]*m\n mi=-1\n for j in range(n):\n ma[k[j][0]-1]+=1\n if ans>max(ma):\n ans=max(ma)\n mi=ma.index(max(ma))+1\n for j in range(n):\n k[j].remove(mi)\nif m==1:\n print(n)\nelse:\n print(ans)\n \n']
['Runtime Error', 'Accepted']
['s748647703', 's070431674']
[4288.0, 4332.0]
[37.0, 165.0]
[349, 383]
p03652
u340781749
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['n, m = map(int, input().split())\nprefers = [list(reversed(list(map(int, input().split())))) for _ in range(n)]\nitems = [True] * (m + 1)\ncompetes = {i: 0 for i in range(1, m + 1)}\npersons = [set() for _ in range(m + 1)]\n\nfor i, ps in enumerate(prefers):\n item = ps[-1]\n competes[item] += 1\n persons[item].add(i)\n\nans = m\nremain = m\nwhile remain:\n mx = max(competes.values())\n ans = min(ans, mx)\n del_items = [a for a, k in competes.items() if k == mx]\n for a in del_items:\n items[a] = False\n del competes[a]\n for a in del_items:\n pa = persons[a]\n for p in pa:\n pf = prefers[p]\n while not items[pf[-1]]:\n pf.pop()\n item = pf[-1]\n persons[item].add(p)\n competes[item] += 1\n remain -= 1\n\nprint(ans)\n', "from collections import defaultdict\nfrom operator import itemgetter\n\n\ndef sub(prefers, canceled):\n res = defaultdict(int)\n for pref in prefers:\n p = pref[-1]\n while p in canceled:\n pref.pop()\n p = pref[-1]\n res[p] += 1\n\n return max(res.items(), key=itemgetter(1))\n\n\ndef solve(m, prefers):\n canceled = set()\n ans = float('inf')\n for _ in range(m):\n s, c = sub(prefers, canceled)\n canceled.add(s)\n ans = min(ans, c)\n return ans\n\n\nn, m = map(int, input().split())\nprefers = [list(reversed(list(map(int, input().split())))) for _ in range(n)]\n\nprint(solve(m, prefers))\n"]
['Runtime Error', 'Accepted']
['s154733906', 's687040051']
[6692.0, 4588.0]
[103.0, 71.0]
[820, 650]
p03652
u375616706
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['from collections import Counter\nimport sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\nN, M = map(int, input().split())\nmat = [list(map(lambda x:int(x)-1, input().split())) for _ in range(N)]\n\nans = N\nQ = [set([v for v in range(M)])]\nwhile Q:\n C = Counter()\n sports_cand = Q.pop(0)\n for n in range(N):\n for m in range(M):\n if mat[n][m] in sports_cand:\n C[mat[n][m]] += 1\n break\n tmp = 0\n rem_key = {}\n for key, val in C.most_common():\n if val >= tmp:\n tmp = val\n ans = min(ans, val)\n rem_key.add(key)\n else:\n break\n if len(sports_cand) > 2:\n Q.append(sports_cand-rem_key)\nprint(ans)\n', 'from collections import Counter\nimport sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\nN, M = map(int, input().split())\nmat = [list(map(int, input().split())) for _ in range(N)]\n\nans = float(\'inf\')\nsports_cand = set([v for v in range(M)])\n\n\ndef rec(sports_cand, ans):\n if not sports_cand:\n return ans\n else:\n attend_i = [0]*N \n attend_sports = [-1]*N \n for s in sports_cand:\n for p in range(N):\n if attend_i[p] < mat[p][s]: \n attend_i[p] = mat[p][s]\n attend_sports[p] = s\n C = Counter(attend_sports)\n print("c->", C)\n num = 0\n for id, tmp_val in C.most_common():\n if tmp_val >= num:\n num = tmp_val\n ans = min(ans, tmp_val)\n if len(sports_cand) <= 2:\n break\n ans = min(ans, rec(sports_cand-{id}, ans))\n else:\n break\n return ans\n\n\nprint(rec(sports_cand, ans))\n', 'from collections import Counter\nimport sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\nN, M = map(int, input().split())\nmat = [list(map(lambda x:int(x)-1, input().split())) for _ in range(N)]\n\nans = N\nQ = [set([v for v in range(M)])]\nwhile Q:\n C = Counter()\n sports_cand = Q.pop(0)\n for n in range(N):\n for m in range(M):\n if mat[n][m] in sports_cand:\n C[mat[n][m]] += 1\n break\n tmp = 0\n rem_key = set()\n for key, val in C.most_common():\n if val >= tmp:\n tmp = val\n ans = min(ans, val)\n rem_key.add(key)\n else:\n break\n if len(sports_cand) > 2:\n Q.append(sports_cand-rem_key)\nprint(ans)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s538838284', 's955631849', 's024464788']
[4588.0, 13772.0, 4588.0]
[50.0, 2104.0, 1768.0]
[731, 1139, 734]
p03652
u415905784
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['N, M = map(int, input().split())\nA = [[0 for _ in range(M)] for _ in range(N)]\nfor i in range(N):\n A[i] = [int(x) - 1 for x in input().split()]\nS = [[0, i] for i in range(M)]\nfor a in A:\n S[a[0]][0] += 1\nminmax = N\nfor _ in range(M - 1):\n _S = sorted(S, reverse=True)\n s = _S[0][1]\n minmax = min(S[s][0], minmax)\n S[s][0] = -1\n for a in A:\n while S[a[0]][0] < 0:\n a.pop(0)\n S[a[0]][0] += 1\nprint(minmax)', 'N, M = map(int, input().split())\nA = [[0 for _ in range(M)] for _ in range(N)]\nfor i in range(N):\n A[i] = [int(x) - 1 for x in input().split()]\nS = [[0, i] for i in range(M)]\nfor a in A:\n S[a[0]][0] += 1\nminmax = N\nfor _ in range(M - 1):\n _S = sorted(S, reverse=True)\n s = _S[0][1]\n minmax = min(S[s][0], minmax)\n S[s][0] = -1\n for a in A:\n if S[a[0]][0] > 0:\n continue\n while S[a[0]][0] < 0:\n a.pop(0)\n S[a[0]][0] += 1\nprint(minmax)']
['Wrong Answer', 'Accepted']
['s661514831', 's373710075']
[4212.0, 4212.0]
[114.0, 125.0]
[421, 459]
p03652
u426108351
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['n, m = map(int, input().split())\na = [list(map(int, input().split())) for i in range(n)]\nfor i in range(n):\n a[i].reverse()\n\nans = n\nused = set()\nfor i in range(m):\n count = [0]*(m+1)\n for j in range(n):\n count[a[j][-1]] += 1\n\n ans = min(max(count), ans)\n num = count.index(max(count))\n used.add(num)\n for j in range(n):\n while True:\n if a[j][-1] in used:\n a[j].pop()\n else:\n break\n\nprint(ans)\n', 'n, m = map(int, input().split())\na = [list(map(int, input().split())) for i in range(n)]\nfor i in range(n):\n a[i].reverse()\n\nans = n\nused = set()\nfor i in range(m):\n count = [0]*(m+1)\n for j in range(n):\n count[a[j][-1]] += 1\n\n ans = min(max(count), ans)\n num = count.index(max(count))\n used.add(num)\n for j in range(n):\n if a[j][-1] in num:\n a[j].pop()\n\nprint(ans)\n', 'n, m = map(int, input().split())\na = [list(map(int, input().split())) for i in range(n)]\nfor i in range(n):\n a[i].reverse()\n\nans = n\nused = set()\nfor i in range(m):\n count = [0]*(m+1)\n for j in range(n):\n count[a[j][-1]] += 1\n\n ans = min(max(count), ans)\n num = count.index(max(count))\n used.add(num)\n for j in range(n):\n while len(a[j]) > 0:\n if a[j][-1] in used:\n a[j].pop()\n else:\n break\n\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s574115545', 's617397519', 's507713635']
[10172.0, 10208.0, 10172.0]
[72.0, 38.0, 96.0]
[481, 412, 490]
p03652
u572142121
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['N,M=map(int, input().split())\nA=[]\nfor i in range(N):\n d=list(map(int, input().split()))\n A.append(d)\nnum=[0]*N\nans=M\nS=set()\nfor i in range(M-1):\n cnt=[0]*M\n for j in range(N):\n for k in range(M):\n d=A[j][k]-1\n if d in S:\n continue\n else:\n cnt[d]+=1\n e=max(cnt)\n ans=min(e,ans)\n f=cnt.index(e)\n S.add(f)\nprint(ans)\n', 'N,M=map(int, input().split())\nA=[]\nfor i in range(N):\n d=list(map(int, input().split()))\n A.append(d)\nS=[1]*M\nnum=[0]*N\nans=N\nfor i in range(M):\n cnt=[0]*M\n for j in range(N):\n d=A[j][num[j]]\n while S[d-1]==0:\n num[j]+=1\n d=A[j][num[j]]\n cnt[d-1]+=1\n e=max(cnt)\n ans=min(e,ans)\n f=cnt.index(e)\n S[f]=0\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s518289126', 's641406485']
[10208.0, 10284.0]
[2206.0, 86.0]
[356, 340]
p03652
u594567187
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['def dfs(people, sports, use_sports, answer):\n rank = [0 for n in range(sports)]\n for p in range(people):\n for s in (preference[p]):\n if s in use_sports:\n rank[s] += 1\n break\n will_delete = []\n max_p = max(rank)\n exclude = rank.index(max_p)\n answer = min(answer, max_p, dfs(people, sports, use_sports - {exclude}, answer))\n return answer\n\npeople, sports = (int(n) for n in input().split(" "))\npreference = []\nfor _ in range(people):\n pre = [int(n) for n in input().split(" ")]\n preference.append(pre)\nanswer = float("inf")\nuse_sports = {n for n in range(sports)}\nprint(dfs(people, sports, use_sports, answer))\n', 'people, sports = (int(n) for n in input().split(" "))\npreference = []\nfor _ in range(people):\n pre = [int(n) - 1 for n in input().split(" ")]\n preference.append(pre)\nanswer = float("inf")\nuse_sports = {n for n in range(sports)}\nfor _ in range(sports):\n rank = [0 for n in range(sports)]\n for p in range(people):\n for s in (preference[p]):\n if s in use_sports:\n rank[s] += 1\n break\n answer = min(answer, max(rank))\n use_sports -= {rank.index(max(rank))}\nprint(answer)']
['Runtime Error', 'Accepted']
['s363918907', 's472169800']
[10404.0, 4212.0]
[2104.0, 1049.0]
[692, 532]
p03652
u624475441
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
["from collections import Counter\nfrom operator import itemgetter\n\ndef sub(prefers, canceled):\n res = Counter()\n for pref in prefers:\n p = pref[-1]\n while p in canceled:\n pref.pop()\n p = pref[-1]\n res[p] += 1\n return max(res.items(), key=itemgetter(1))\n\ndef solve(m, prefers):\n canceled = set()\n ans = float('inf')\n for _ in [0] * m:\n s, c = sub(prefers, canceled)\n canceled.add(s)\n ans = min(ans, c)\n return ans\n\nif __name__ == '__main__':\n N, M = map(int, input().split())\n A = [list(map(int, input().split()))[::-1] for _ in [0] * N]\n print(solve(M, A))", "from collections import Counter\nfrom operator import itemgetter\n\ndef sub(prefers, canceled):\n res = Counter()\n for pref in prefers:\n p = pref[-1]\n while p in canceled:\n pref.pop()\n p = pref[-1]\n res[p] += 1\n return max(res.items(), key=itemgetter(1))\n\ndef solve(m, prefers):\n canceled = set()\n ans = float('inf')\n for _ in [0] * m:\n s, c = sub(prefers, canceled)\n canceled.add(s)\n ans = min(ans, c)\n return ans\n\nif __name__ == '__main__':\n N, M = map(int, input().split())\n A = [list(map(int, input().split()))[::-1] for _ in [0] * N]\n print(solve(M, A))"]
['Runtime Error', 'Accepted']
['s005795175', 's109941345']
[2940.0, 4580.0]
[17.0, 99.0]
[647, 648]
p03652
u814986259
2,000
262,144
Takahashi is hosting an sports meet. There are N people who will participate. These people are conveniently numbered 1 through N. Also, there are M options of sports for this event. These sports are numbered 1 through M. Among these options, Takahashi will select one or more sports (possibly all) to be played in the event. Takahashi knows that Person i's j-th favorite sport is Sport A_{ij}. Each person will only participate in his/her most favorite sport among the ones that are actually played in the event, and will not participate in the other sports. Takahashi is worried that one of the sports will attract too many people. Therefore, he would like to carefully select sports to be played so that the number of the participants in the sport with the largest number of participants is minimized. Find the minimum possible number of the participants in the sport with the largest number of participants.
['N,M=map(int,input().split())\nA=[list(map(int,input().split())) for i in range(N)]\nans=N\ns=set()\nfor i in range(M-1):\n d=[0]*M\n for j in range(N):\n for k in range(M):\n if A[j][k]-1 in s:\n continue\n else:\n d[A[j][k]-1]+=1\n ans=min(ans,max(d))\n s.add(d.index(max(d)))\nprint(ans)\n ', 'def main():\n import sys\n input=sys.stdin.buffer.readline\n N,M=map(int,input().split())\n A=[list(map(int,input().split())) for i in range(N)]\n ans=N\n s=set()\n for i in range(M-1):\n d=[0]*M\n for j in range(N):\n for k in range(M):\n if A[j][k]-1 in s:\n continue\n else:\n d[A[j][k]-1]+=1\n break\n ans=min(ans,max(d))\n s.add(d.index(max(d)))\n print(ans)\nmain()\n \n']
['Wrong Answer', 'Accepted']
['s164995348', 's245909828']
[10168.0, 9980.0]
[2206.0, 923.0]
[309, 422]
p03655
u102461423
8,000
262,144
Joisino is planning on touring Takahashi Town. The town is divided into square sections by north-south and east-west lines. We will refer to the section that is the x-th from the west and the y-th from the north as (x,y). Joisino thinks that a _touring plan_ is good if it satisfies the following conditions: * Let (p,q) be the section where she starts the tour. Then, X_1 \leq p \leq X_2 and Y_1 \leq q \leq Y_2 hold. * Let (s,t) be the section where she has lunch. Then, X_3 \leq s \leq X_4 and Y_3 \leq t \leq Y_4 hold. * Let (u,v) be the section where she ends the tour. Then, X_5 \leq u \leq X_6 and Y_5 \leq v \leq Y_6 hold. * By repeatedly moving to the adjacent section (sharing a side), she travels from the starting section to the ending section in the shortest distance, passing the lunch section on the way. Two touring plans are considered different if at least one of the following is different: the starting section, the lunch section, the ending section, and the sections that are visited on the way. Joisino would like to know how many different good touring plans there are. Find the number of the different good touring plans. Since it may be extremely large, find the count modulo 10^9+7.
['import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nimport itertools\nimport numpy as np\nfrom functools import lru_cache\n\nX = list(map(int,readline().split()))\nY = list(map(int,readline().split()))\n\nfor i in [1,3,5]:\n X[i] += 1\n Y[i] += 1\n\nX1 = X[:2]; X2 = X[2:4]; X3 = X[4:]\nY1 = Y[:2]; Y2 = Y[2:4]; Y3 = Y[4:]\n\ndef cumprod(arr,MOD):\n L = len(arr); Lsq = int(L**.5+1)\n arr = np.resize(arr,Lsq**2).reshape(Lsq,Lsq)\n for n in range(1,Lsq):\n arr[:,n] *= arr[:,n-1]; arr[:,n] %= MOD\n for n in range(1,Lsq):\n arr[n] *= arr[n-1,-1]; arr[n] %= MOD\n return arr.ravel()[:L]\n\ndef make_fact(U,MOD):\n x = np.arange(U,dtype=np.int64); x[0] = 1\n fact = cumprod(x,MOD)\n x = np.arange(U,0,-1,dtype=np.int64); x[0] = pow(int(fact[-1]),MOD-2,MOD)\n fact_inv = cumprod(x,MOD)[::-1]\n return fact,fact_inv\n\nU = 2 * 10 ** 6 + 10\nMOD = 10**9 + 7\nfact, fact_inv = make_fact(U,MOD)\n\n@lru_cache()\ndef make_comb(n):\n return fact[n] * fact_inv[:n+1] % MOD * fact_inv[:n+1][::-1] % MOD\n\nanswer = 0\nfor p in itertools.product([0,1],repeat=6):\n x1,x2,x3,y1,y2,y3 = [A[i] for A,i in zip([X1,X2,X3,Y1,Y2,Y3],p)]\n sgn = (-1) ** sum(p)\n a,b,c,d = x2-x1, x3-x2, x2-x1+y2-y1, x3-x2+y3-y2\n c += 2; d += 2; sgn = -sgn\n make_comb(c)\n make_comb(d)\n ', 'import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN,M,*X = map(int,read().split())\n\nMOD = 10 ** 9 + 7\n\ndef mult(a,b,c,d,e,f):\n \n a,b,c,d,e = a*d,a*e+b*d,a*f+b*e+c*d,b*f+c*e,c*f\n b += e; c -= 4*e; d += 2*e; e = 0\n a += d; b -= 4*d; c += 2*d; d = 0\n a %= MOD; b %= MOD; c %= MOD\n return a,b,c\n\n\nM = 10 ** 5\nA1 = [0] * (M+1)\na,b,c = 1,0,0\nfor i in range(M+1):\n A1[i] = (a,b,c)\n a,b,c = b+4*a,c-2*a,a\n a %= MOD; b %= MOD; c %= MOD\n\n\nA2 = [0] * (M+1)\na,b,c = 1,0,0\nd,e,f = A1[M]\nfor i in range(M+1):\n A2[i] = (a,b,c)\n a,b,c = mult(a,b,c,d,e,f)\n\ndef power(n):\n \n q,r = divmod(n,M)\n a,b,c = A1[r]\n d,e,f = A2[q]\n return mult(a,b,c,d,e,f)\n\nX.append(N)\n\na,b,c = 0,1,1\nprev_x = 0\nfor x in X:\n a,b,c = mult(a,b,c,*power(x - prev_x))\n b -= a; c -= a\n prev_x = x\n\nanswer = a\nprint(answer)', 'import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nimport itertools\nimport numpy as np\nfrom functools import lru_cache\nfrom operator import itemgetter\n\nX = list(map(int,readline().split()))\nY = list(map(int,readline().split()))\n\nfor i in [1,3,5]:\n X[i] += 1\n Y[i] += 1\n\nX1 = X[:2]; X2 = X[2:4]; X3 = X[4:]\nY1 = Y[:2]; Y2 = Y[2:4]; Y3 = Y[4:]\n\ndef cumprod(arr,MOD):\n L = len(arr); Lsq = int(L**.5+1)\n arr = np.resize(arr,Lsq**2).reshape(Lsq,Lsq)\n for n in range(1,Lsq):\n arr[:,n] *= arr[:,n-1]; arr[:,n] %= MOD\n for n in range(1,Lsq):\n arr[n] *= arr[n-1,-1]; arr[n] %= MOD\n return arr.ravel()[:L]\n\ndef make_fact(U,MOD):\n x = np.arange(U,dtype=np.int64); x[0] = 1\n fact = cumprod(x,MOD)\n x = np.arange(U,0,-1,dtype=np.int64); x[0] = pow(int(fact[-1]),MOD-2,MOD)\n fact_inv = cumprod(x,MOD)[::-1]\n return fact,fact_inv\n\nU = 2 * 10 ** 6 + 10\nMOD = 10**9 + 7\nfact, fact_inv = make_fact(U,MOD)\n\n@lru_cache(8)\ndef make_comb(n):\n return fact[n] * fact_inv[:n+1] % MOD * fact_inv[:n+1][::-1] % MOD\n\nanswer = 0\ntasks = []\nfor p in itertools.product([0,1],repeat=6):\n x1,x2,x3,y1,y2,y3 = [A[i] for A,i in zip([X1,X2,X3,Y1,Y2,Y3],p)]\n sgn = (-1) ** sum(p)\n a,b,c,d = x2-x1, x3-x2, x2-x1+y2-y1, x3-x2+y3-y2\n c += 2; d += 2; sgn = -sgn\n tasks.append((a,b,c,d,sgn))\n\ntasks.sort(key = itemgetter(2))\n\nfor a,b,c,d,sgn in tasks:\n \n \n D = a + b + 2\n \n L = max(0, D-d)\n R = min(c, D)\n if L > R:\n continue\n x = make_comb(c)[L:R+1]\n L,R = D-R,D-L\n y = make_comb(d)[L:R+1]\n x = x * y[::-1] % MOD\n \n np.cumsum(x,out=x)\n x %= MOD\n np.cumsum(x,out=x)\n x %= MOD\n L,R = D-R,D-L\n if 0 <= a-L < len(x):\n answer += sgn * x[a-L]\n\nanswer %= MOD\nprint(answer)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s091068610', 's281248502', 's134618058']
[323808.0, 34788.0, 200800.0]
[1077.0, 325.0, 3311.0]
[1346, 1041, 2034]
p03662
u171366497
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['N=int(input())\nfrom collections import defaultdict,deque\nbranch=defaultdict(set)\nfor i in range(N-1):\n a,b=map(int,input().split())\n a-=1\n b-=1\n branch[a]|={b}\n branch[b]|={a}\ncheck={0}\nbef=[-2]*N\nbef[0]=-1\ndist=[float(\'inf\')]*N\ndist[0]=0\nwhile len(check)>0:\n now=check.pop()\n for nex in branch[now]:\n if bef[nex]==-2:\n bef[nex]=now\n check|={nex}\n dist[nex]=dist[now]+1\nprint("NO")\nexit()', 'N=int(input())\nfrom collections import defaultdict,deque\nbranch=defaultdict(set)\nfor i in range(N-1):\n a,b=map(int,input().split())\n a-=1\n b-=1\n branch[a]|={b}\n branch[b]|={a}\ncheck={0}\npath=[0]*N\npath[0]=[0]\nwhile len(check)>0:\n x=check.pop()\n for nex in branch[x]:\n if path[nex]==0:\n check|={nex}\n path[nex]=path[x]+[nex]\nprint("NO")\nexit()\nG=path[N-1]\nng=G[(len(G)+1)//2]\ncnt=0\nfor i in range(N):\n if ng not in path[i]:\n cnt+=1\nif cnt>N-cnt:\n print("Fennec")\nelse:\n print("Snuke")', 'N=int(input())\nfrom collections import defaultdict,deque\nbranch=defaultdict(set)\nfor i in range(N-1):\n a,b=map(int,input().split())\n a-=1\n b-=1\n branch[a]|={b}\n branch[b]|={a}\ncheck={0}\nbef=[-2]*N\nbef[0]=-1\ndist=[float(\'inf\')]*N\ndist[0]=0\nwhile len(check)>0:\n now=check.pop()\n for nex in branch[now]:\n if bef[nex]==-2:\n bef[nex]=now\n check|={nex}\n dist[nex]=dist[now]+1\nNG=set()\nOK={0}\nnow=N-1\nchecked={0}\nfor i in range((1+dist[N-1])//2):\n NG|={now}\n now=bef[now]\nchecked|=NG\nfor i in range(N):\n if i in checked:\n continue\n else:\n visited={i}\n now=i\n while True:\n now=bef[now]\n visited|={now}\n if now in NG:\n NG|=visited\n checked|=visited\n break\n elif now in OK:\n OK|=visited\n checked|=visited\n break\nif len(OK)>N//2:\n print("Fennec")\nelse:\n print("Snuke")']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s542676145', 's662475690', 's058435549']
[42804.0, 950400.0, 56104.0]
[652.0, 2167.0, 724.0]
[449, 549, 998]
p03662
u346308892
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['\nclass Edge:\n def __init__(self,edge,cost=1):\n self.node_from=edge[0]\n self.node_to=edge[1]\n self.cost=cost\n\n def add_node(self,node):\n self.nodes.append(node)\n\nclass myGraph:\n\n def __init__(self):\n self.adj={}\n self.nodes={}\n\n def add_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n\n # add the edge\n self.adj[u][v] = cost\n self.adj[v][u] = cost\n\n def add_directed_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n self.adj[u][v] = cost\n\n def get_edges_from(self,node):\n\n return [(self.adj[node][nn],node,nn) for nn in self.adj[node]]\n\n\n def makeEdgeobj(self):\n edges=[]\n for sn in self.nodes:\n for e in self.get_edges_from(sn):\n edges.append(Edge([e[1],e[2]],e[0]))\n\n return edges\n\n def _add(self,edges,add_edges):\n for e in add_edges:\n hq.heappush(edges,e)\n return edges\n\n def bermn_ford(self,start,init=0):\n\n nodes=self.nodes\n dists={}\n for n in nodes:\n dists[n]=float("inf")\n\n dists[start]=init\n edges=self.makeEdgeobj()\n for i in range(len(nodes)):\n update=False\n for k in range(len(edges)):\n e=edges[k]\n if dists[e.node_from]!=float("inf") and dists[e.node_to]>dists[e.node_from]+e.cost:\n #print("updated")\n dists[e.node_to]=dists[e.node_from]+e.cost\n update=True\n\n if i==len(nodes)-1:\n return False\n\n if not update:\n break\n\n\n return dists\n\n def search(self):\n global N\n a=1\n b=N-1\n visit=[0]*(N+1)\n\n Qa=[a]\n Qb=[b]\n visit[a]=visit[b]=1\n\n while True:\n \n\n try:\n a=Qa.pop()\n except:\n res="Snuke"\n break\n\n\n sss=list(self.adj[a])\n if len(sss)==0:\n res="Snuke"\n break\n\n #print(sss)\n for sa in sss:\n if not visit[sa]:\n Qa.append(sa)\n visit[sa]=1\n\n try:\n b=Qb.pop()\n except:\n res="Fennec"\n break\n\n sss=list(self.adj[b])\n if len(sss)==0:\n res="Fennec"\n break\n\n for sb in sss:\n if not visit[sb]:\n Qb.append(sb)\n visit[sb]=1\n\n\n', '\nclass Edge:\n def __init__(self,edge,cost=1):\n self.node_from=edge[0]\n self.node_to=edge[1]\n self.cost=cost\n\n def add_node(self,node):\n self.nodes.append(node)\n\nclass myGraph:\n\n def __init__(self):\n self.adj={}\n self.nodes={}\n\n def add_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n\n # add the edge\n self.adj[u][v] = cost\n self.adj[v][u] = cost\n\n def add_directed_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n self.adj[u][v] = cost\n\n def get_edges_from(self,node):\n\n return [(self.adj[node][nn],node,nn) for nn in self.adj[node]]\n\n\n def makeEdgeobj(self):\n edges=[]\n for sn in self.nodes:\n for e in self.get_edges_from(sn):\n edges.append(Edge([e[1],e[2]],e[0]))\n\n return edges\n\n def _add(self,edges,add_edges):\n for e in add_edges:\n hq.heappush(edges,e)\n return edges\n\n def bermn_ford(self,start,init=0):\n\n nodes=self.nodes\n dists={}\n for n in nodes:\n dists[n]=float("inf")\n\n dists[start]=init\n edges=self.makeEdgeobj()\n for i in range(len(nodes)):\n update=False\n for k in range(len(edges)):\n e=edges[k]\n if dists[e.node_from]!=float("inf") and dists[e.node_to]>dists[e.node_from]+e.cost:\n #print("updated")\n dists[e.node_to]=dists[e.node_from]+e.cost\n update=True\n\n if i==len(nodes)-1:\n return False\n\n if not update:\n break\n\n\n return dists\n\n def search(self):\n global N\n a=1\n b=N-1\n visit=[0]*(N+1)\n\n Qa=[a]\n Qb=[b]\n visit[a]=visit[b]=1\n\n while True:\n \n\n try:\n a=Qa.pop()\n except:\n res="Snuke"\n break\n\n\n sss=list(self.adj[a])\n if len(sss)==0:\n res="Snuke"\n break\n\n #print(sss)\n for sa in sss:\n if not visit[sa]:\n Qa.append(sa)\n visit[sa]=1\n\n try:\n b=Qb.pop()\n except:\n res="Fennec"\n break\n\n sss=list(self.adj[b])\n if len(sss)==0:\n res="Fennec"\n break\n\n for sb in sss:\n if not visit[sb]:\n Qb.append(sb)\n visit[sb]=1\n\n\n\n if sum(visit)==N-1:\n break\n\n\n print(res)\n', '\nclass Node:\n def __init__(self):\n pass\n\nclass Edge:\n def __init__(self,edge,cost=1):\n self.node_from=edge[0]\n self.node_to=edge[1]\n self.cost=cost\n\n def add_node(self,node):\n self.nodes.append(node)\n\nclass myGraph:\n\n def __init__(self):\n self.adj={}\n self.nodes={}\n\n def add_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n # add the edge\n self.adj[u][v] = cost\n self.adj[v][u] = cost\n\n def add_directed_edge(self,edge,cost):\n if len(edge)==1:\n edge=list(edge)\n\n\n u,v=edge[0],edge[1]\n\n if u not in self.nodes:\n self.adj[u] = {}\n self.nodes[u] = {}\n\n if v not in self.nodes:\n self.adj[v] = {}\n self.nodes[v] = {}\n\n self.adj[u][v] = cost\n\n def get_edges_from(self,node):\n return [(self.adj[node][nn],node,nn) for nn in self.adj[node]]\n\n\n def makeEdgeobj(self):\n edges=[]\n for sn in self.nodes:\n for e in self.get_edges_from(sn):\n edges.append(Edge([e[1],e[2]],e[0]))\n\n return edges\n\n def _add(self,edges,add_edges):\n for e in add_edges:\n hq.heappush(edges,e)\n return edges\n\n def bermn_ford(self,start,init=0):\n\n nodes=self.nodes\n dists={}\n for n in nodes:\n dists[n]=float("inf")\n\n dists[start]=init\n edges=self.makeEdgeobj()\n\n for i in range(len(nodes)):\n update=False\n for k in range(len(edges)):\n e=edges[k]\n if dists[e.node_from]!=float("inf") and dists[e.node_to]>dists[e.node_from]+e.cost:\n dists[e.node_to]=dists[e.node_from]+e.cost\n update=True\n\n if i==len(nodes)-1:\n return False\n\n if not update:\n break\n\n return dists\n\n\n def dijkstra(self,start, goal=None):\n import heapq\n \'\'\'\n get minimum cost\n \'\'\'\n\n N = len(self.adj) \n \n dist = {k:float(\'inf\') for k in self.nodes}\n \n\n dist[start] = 0\n visited = []\n\n koho=[]\n heapq.heappush(koho,(0,start))\n\n vtx=list(self.nodes)\n vtx.remove(start)\n\n while len(koho)!=0:\n d,mini=heapq.heappop(koho)\n if dist[mini]<d:\n continue\n\n\n for k in list(self.adj[mini]):\n cost=self.adj[mini][k]\n if cost != float(\'inf\') and dist[k]>dist[mini]+cost:# and not(k in visited):\n dist[k]=dist[mini]+cost\n heapq.heappush(koho,(dist[k],k))\n #prev[k]=mini\n\n return dist\n\n\n\nN=int(input())\n\ng=myGraph()\nfor i in range(N-1):\n a,b=list(map(int,input().split(" ")))\n g.add_edge([a,b],1)\n\nb1=g.dijkstra(1)\nb2=g.dijkstra(N)\n\ncount=0\nfor k in range(1,N+1):\n if b1[k]<=b2[k]:\n count+=1\n\nif count>N/2:\n print("Fennec")\nelse:\n print("Snuke")']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s185617994', 's992425786', 's462077828']
[3192.0, 3192.0, 105304.0]
[18.0, 18.0, 1512.0]
[3055, 3131, 3422]
p03662
u426108351
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['import sys\ninput = sys.stdin.readline\nN = int(input())\ntree = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n tree[a].append(b)\n tree[b].append(a)\n\ndist_fennec = [100001] * (N+1)\ndist_snuke = [100001] * (N+1)\nq = [1]\ndist_fennec[1] = 0\nwhile q:\n now = q.pop()\n for next in tree[now]:\n if dist_fennec[next] == 100001:\n dist_fennec[next] = dist_fennec[now] + 1\n q.append(next)\n\nq = [N]\ndist_snuke[N] = 0\nwhile q:\n now = q.pop()\n for next in tree[now]:\n if dist_snuke[next] == 100001:\n dist_snuke[next] = dist_snuke[now] + 1\n q.append(next)\n\nfennec, snuke = 0, 0\nfor i in range(1, N+1):\n if dist_snuke[i] <= dist_fennec[i]:\n fennec += 1\n else:\n snuke += 1\n\nif fennec > snuke:\n print("Fennec")\nelse:\n print("Snuke")\n', 'import sys\ninput = sys.stdin.readline\nN = int(input())\ntree = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n tree[a].append(b)\n tree[b].append(a)\n\ndist_fennec = [100001] * (N+1)\ndist_snuke = [100001] * (N+1)\nq = [1]\ndist[1] = 0\nwhile q:\n now = q.pop()\n for next in tree[now]:\n if dist_fennec[next] == 100001:\n dist_fennec[next] = dist_fennec[now] + 1\n q.append(next)\n\nq = [N]\ndist[N] = 0\nwhile q:\n now = q.pop()\n for next in tree[now]:\n if dist_snuke[next] == 100001:\n dist_snuke[next] = dist_snuke[now] + 1\n q.append(next)\n\nfennec, snuke = 0, 0\nfor i in range(1, N+1):\n if dist_snuke[i] <= dist_fennec[i]:\n fennec += 1\n else:\n snuke += 1\n\nif fennec > snuke:\n print("Fennec")\nelse:\n print("Snuke")\n', 'import sys\ninput = sys.stdin.readline\nN = int(input())\ntree = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n tree[a].append(b)\n tree[b].append(a)\n\ndist_fennec = [100001] * (N+1)\ndist_snuke = [100001] * (N+1)\nq = [1]\ndist_fennec[1] = 0\nwhile q:\n now = q.pop()\n for next in tree[now]:\n if dist_fennec[next] == 100001:\n dist_fennec[next] = dist_fennec[now] + 1\n q.append(next)\n\nq = [N]\ndist_snuke[N] = 0\nwhile q:\n now = q.pop()\n for next in tree[now]:\n if dist_snuke[next] == 100001:\n dist_snuke[next] = dist_snuke[now] + 1\n q.append(next)\n\nfennec, snuke = 0, 0\nfor i in range(1, N+1):\n if dist_snuke[i] >= dist_fennec[i]:\n fennec += 1\n else:\n snuke += 1\n\nif fennec > snuke:\n print("Fennec")\nelse:\n print("Snuke")\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s834701118', 's868778104', 's082517784']
[28976.0, 22704.0, 28976.0]
[434.0, 216.0, 441.0]
[851, 838, 851]
p03662
u536113865
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
["ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\nn = int(input())\n\npath = [[] for _ in range(n)]\nfor _ in range(n-1):\n a,b = ai_()\n path[a].append(b)\n path[b].append(a)\n\nfrom collections import deque\nq = deque()\nq.append(0)\n\nd1 = [float('inf') for _ in range(n)]\nd1[0] = 0\nc = 0\nw = set()\nwhile q:\n c += 1\n v = q.popleft()\n w.add(v)\n for vv in path[v]:\n if vv not in w:\n d1[vv] = c\n q.append(vv)\n\n\nq = deque()\nq.append(n-1)\n\ndn = [float('inf') for _ in range(n)]\ndn[n-1] = 0\nc = 0\nw = set()\nwhile q:\n c += 1\n v = q.popleft()\n w.add(v)\n for vv in path[v]:\n if vv not in w:\n dn[vv] = c\n q.append(vv)\n\n\nprint(d1,dn)\nd = [1 if d1[v] >= dn[v] else 0 for v in range(n)]\n\nif d.count(1) > d.count(0):\n print('Snuke')\nelse:\n print('Fennec')\n", "ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\nn = int(input())\n\npath = [[] for _ in range(n)]\nfor _ in range(n-1):\n a,b = ai_()\n path[a].append(b)\n path[b].append(a)\n\nfrom collections import deque\nq = deque()\nq.append(0)\n\nd1 = [float('inf') for _ in range(n)]\nd1[0] = 0\nw = set()\nwhile q:\n v = q.popleft()\n w.add(v)\n for vv in path[v]:\n if vv not in w:\n d1[vv] = d1[v] + 1\n q.append(vv)\n\n\nq = deque()\nq.append(n-1)\n\ndn = [float('inf') for _ in range(n)]\ndn[n-1] = 0\nw = set()\nwhile q:\n v = q.popleft()\n w.add(v)\n for vv in path[v]:\n if vv not in w:\n dn[vv] = dn[v] + 1\n q.append(vv)\n\n\nd = [1 if d1[v] <= dn[v] else -1 for v in range(n)]\n\nif sum(d) > 0:\n print('Fennec')\nelse:\n print('Snuke')\n"]
['Wrong Answer', 'Accepted']
['s653908188', 's536589500']
[39868.0, 38444.0]
[712.0, 691.0]
[875, 832]
p03662
u547167033
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
["n=int(input())\ntree=[[] for i in range(n)]\nfor i in range(n-1):\n a,b=map(int,input().split())\n tree[a-1].append(b-1)\n tree[b-1].append(a-1)\ndef dist(k):\n l=[-1]*n\n node=[k]\n while node:\n s=node.pop()\n d=l[s]\n for t in tree[s]:\n if l[t]!=-1:\n continue\n l[t]=d+1\n node.append(t)\n return l\nfrom_fennec=dist(0)\nfrom_snuke=dist(n-1)\nres=0\nfor i,j in zip(from_fennec,from_snuke):\n if i>=j:\n res+=1\n else:\n res-=1\nprint('Snuke' if res>=0 else 'Fennec')", "n=int(input())\ntree=[[] for i in range(n)]\nfor i in range(n-1):\n a,b=map(int,input().split())\n tree[a-1].append(b-1)\n tree[b-1].append(a-1)\ndef dist(k):\n l=[-1]*n\n node=[k]\n while node:\n s=node.pop()\n d=l[s]\n for t in tree[s]:\n if l[t]!=-1:\n continue\n l[t]=d+1\n node.append(t)\n return l\nfrom_fennec=dist(0)\nfrom_snuke=dist(n-1)\nres=0\nfor i,j in zip(from_fennec,from_snuke):\n if i<=j:\n res+=1\n else:\n res-=1\nprint('Snuke' if res<=0 else 'Fennec')"]
['Wrong Answer', 'Accepted']
['s992030622', 's082684706']
[28976.0, 28976.0]
[580.0, 536.0]
[491, 491]
p03662
u572144347
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['N=int(input())\nimport sys\nab=[list(map(int, input().split())) for _ in range (N-1)]\ncon=[[] for _ in range(N+1)]\n\n#print(ab)\nfor a,b in ab :\n con[a].append(b)\n con[b].append(a)\n\n\npc=[0]*(N+1)\nq=[(1,0)]\nvis=[False]*(N+1)\nvis[1]=True\nFcnt=N\nwhile q:\n n,c=q.pop()\n pc[n]=c\n for ch in con[n]:\n if vis[ch]==True:\n continue\n q.append((ch,c+1))\n \nq=[(N,0)]\nvis=[False]*(N+1)\nvis[1]=True\nwhile q:\n n,c=q.pop()\n if pc[n]>c:\n Fcnt-=1\n for ch in con[n]:\n if vis[ch]==True:\n continue\n q.append((ch,c+1))\n \nif Fcnt>N-Fcnt:\n print("Fennec")\nelse:\n print("Snuke")\n', 'N=int(input())\nimport sys\nab=[[int(j) for j in sys.stdin.readline()] for _ in range (N-1)]\ncon=[[] for _ in range(N+1)]\n\nfor a,b in ab :\n con[a].append(b)\n con[b].append(a)\n\n\npc=[0]*(N+1)\nq=[(1,0)]\nvis=[False]*(N+1)\nvis[1]=True\nFcnt=N\nwhile q:\n n,c=q.pop()\n pc[n]=c\n for ch in con[n]:\n if vis[ch]==True:\n continue\n q.append((ch,c+1))\n \nq=[(N,0)]\nvis=[False]*(N+1)\nvis[1]=True\nwhile q:\n n,c=q.pop()\n if pc[n]>c:\n Fcnt-=1\n for ch in con[n]:\n if vis[ch]==True:\n continue\n q.append((ch,c+1))\n \nif Fcnt>N-Fcnt:\n print("Fennec")\nelse:\n print("Snuke")', 'N=int(input())\n\nimport sys\nsys.setrecursionlimit(10**5)\nab=[list(map(int, input().split())) for _ in range (N-1)]\ncon=[[] for _ in range(N+1)]\n\n#print(ab)\nfor a,b in ab :\n con[a].append(b)\n con[b].append(a)\n\n\npc=[0]*(N+1)\nq=[(1,0)]\nvis=[False]*(N+1)\nvis[1]=True\nFcnt=N\nwhile q:\n n,c=q.pop()\n pc[n]=c\n for ch in con[n]:\n if vis[ch]==True:\n continue\n vis[ch]=True\n q.append((ch,c+1))\n \nq=[(N,0)]\nvis=[False]*(N+1)\nvis[N]=True\nwhile q:\n n,c=q.pop()\n if pc[n]>c:\n Fcnt-=1\n for ch in con[n]:\n if vis[ch]==True:\n continue\n vis[ch]=True\n q.append((ch,c+1))\n \nif Fcnt>N-Fcnt:\n print("Fennec")\nelse:\n print("Snuke")\n']
['Time Limit Exceeded', 'Runtime Error', 'Accepted']
['s166148780', 's411811790', 's653256270']
[411220.0, 3064.0, 40140.0]
[2131.0, 18.0, 673.0]
[603, 598, 667]
p03662
u803848678
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
[' \n \n \n # EF-| |-GH...\n \n \n \n \n \n n = int(input())\n INF = 10**6\n graph = [[float("inf")]*n for i in range(n)]\n for i in range(n - 1):\n a, b = map(int, input().split())\n graph[a - 1][b -1] = 1\n graph[b - 1][a - 1] = 1\n \n \n \n \n import heapq\n \n class Dijkstra(object):\n def dijkstra(self, adj, start, goal=None):\n \n num = len(adj) \n dist = [float(\'inf\') for i in range(num)] \n prev = [float(\'inf\') for i in range(num)] \n \n dist[start] = 0\n q = [] \n heapq.heappush(q, (0, start)) \n \n while len(q) != 0:\n prov_cost, src = heapq.heappop(q) # pop\n \n \n if dist[src] < prov_cost:\n continue\n \n \n for dest in range(num):\n cost = adj[src][dest]\n if cost != float(\'inf\') and dist[dest] > dist[src] + cost:\n dist[dest] = dist[src] + cost \n heapq.heappush(q, (dist[dest], dest)) \n prev[dest] = src \n \n if goal is not None:\n return self.get_path(goal, prev)\n else:\n return dist\n \n def get_path(self, goal, prev):\n \n path = [goal] \n dest = goal\n \n \n while prev[dest] != float(\'inf\'):\n path.append(prev[dest])\n dest = prev[dest]\n \n \n return list(reversed(path))\n d = Dijkstra()\n \n \n cnt = 0\n for i, j in zip(d.dijkstra(graph, start=0,), d.dijkstra(graph, start=n-1)):\n if i <= j:\n cnt += 1\n print("Fennec" if cnt > n//2 else "Snuke")\n ', 'from collections import deque\nn = int(input())\nboard = [0]*n\nedge = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int, input().split())\n edge[a-1].append(b-1)\n edge[b-1].append(a-1)\nq = deque()\nq.append((0,1))\nq.append((-1,-1))\nwhile q:\n from_, color = q.popleft()\n if board[from_] != 0:\n continue\n board[from_] = color\n for i in edge[from_]:\n q.append((i,color))\nif sum(board) > 0:\n print("Fennec")\nelse:\n print("Snuke")']
['Runtime Error', 'Accepted']
['s393382813', 's924871473']
[2940.0, 24980.0]
[17.0, 479.0]
[4670, 471]
p03662
u884982181
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['import sys\nsys.setrecursionlimit(2000000)\nn = int(input())\np = []\nfor i in range(n-1):\n p.append(list(map(int, input().split()))+ [1])\nl = [[] for i in range(n+1)]\nfor pi in p: \n l[pi[0]].append([pi[0],pi[1]])\n l[pi[1]].append([pi[1],pi[0]])\nkyo = [float("inf")]*(n+1)\nkyo[1] = 0\nmemo = [0] * (n+1)\nmemo[1] = 1\nruto = []\ndef dfs(start,ruto):\n ruto.extend(l[start])\n memo[start] = 1\n while ruto:\n a = ruto.pop()\n if memo[a[1]] == 1:\n continue\n kyo[a[1]] = kyo[a[0]] + 1\n dfs(a[1],ruto)\n return\ndfs(1,ruto)\n\nnkyo = [float("inf")]*(n+1)\nnkyo[n] = 0\nmemo = [0] * (n+1)\nmemo[n] = 1\nruto = []\ndef dfs(start,ruto):\n ruto.extend(l[start])\n memo[start] = 1\n while ruto:\n a = ruto.pop()\n if memo[a[1]] == 1:\n continue\n nkyo[a[1]] = nkyo[a[0]] + 1\n dfs(a[1],ruto)\n return\ndfs(n,ruto)\niti = 0\nnko = 0\nfor i in range(1,n+1):\n if kyo[i] <= nkyo[i]:\n iti += 1\n else:\n nko += 1\nprint(kyo,nkyo)\nif iti <= nko:\n print("Snuke")\nelse:\n print("Fennec")', 'import sys\nsys.setrecursionlimit(2000000)\nn = int(input())\np = []\nfor i in range(n-1):\n p.append(list(map(int, input().split()))+ [1])\nl = [[] for i in range(n+1)]\nfor pi in p: \n l[pi[0]].append([pi[0],pi[1]])\n l[pi[1]].append([pi[1],pi[0]])\nkyo = [float("inf")]*(n+1)\nkyo[1] = 0\nmemo = [0] * (n+1)\nmemo[1] = 1\nruto = []\ndef dfs(start,ruto):\n ruto.extend(l[start])\n memo[start] = 1\n while ruto:\n a = ruto.pop()\n if memo[a[1]] == 1:\n continue\n kyo[a[1]] = kyo[a[0]] + 1\n dfs(a[1],ruto)\n return\ndfs(1,ruto)\n\nnkyo = [float("inf")]*(n+1)\nnkyo[n] = 0\nmemo = [0] * (n+1)\nmemo[n] = 1\nruto = []\ndef dfs(start,ruto):\n ruto.extend(l[start])\n memo[start] = 1\n while ruto:\n a = ruto.pop()\n if memo[a[1]] == 1:\n continue\n nkyo[a[1]] = nkyo[a[0]] + 1\n dfs(a[1],ruto)\n return\ndfs(n,ruto)\niti = 0\nnko = 0\nfor i in range(1,n+1):\n if kyo[i] <= nkyo[i]:\n iti += 1\n else:\n nko += 1\nif iti <= nko:\n print("Snuke")\nelse:\n print("Fennec")']
['Wrong Answer', 'Accepted']
['s276286326', 's275474012']
[145604.0, 142340.0]
[1423.0, 1618.0]
[992, 976]
p03662
u957084285
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['n = int(input())\nedges = [[] for _ in range(n)]\n\nfor _ in range(n-1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n edges[a].append(b)\n edges[b].append(a)\n\ndef bfs(v):\n q = []\n depth = [n]*n\n q.append(v)\n depth[v] = 0\n i = 0\n while i < len(q):\n x = q[i]\n d = depth[x]\n for e in edges[x]:\n if depth[e] == n:\n depth[e] = d+1\n q.append(e)\n i += 1\n return depth\n\nd1 = bfs(0)\nd2 = bfs(n-1)\n\nc = 0\nfor i in range(n):\n if d1[i] <= d2[i]:\n c += 1\nprint(c)\nif 2*c > n:\n print("Fennec")\nelse:\n print("Sunuke")\n', 'n = int(input())\nedges = [[] for _ in range(n)]\n\nfor _ in range(n-1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n edges[a].append(b)\n edges[b].append(a)\n\ndef bfs(v):\n q = []\n depth = [n]*n\n q.append(v)\n depth[v] = 0\n i = 0\n while i < len(q):\n x = q[i]\n d = depth[x]\n for e in edges[x]:\n if depth[e] == n:\n depth[e] = d+1\n q.append(e)\n i += 1\n return depth\n\nd1 = bfs(0)\nd2 = bfs(n-1)\n\nc = 0\nfor i in range(n):\n if d1[i] <= d2[i]:\n c += 1\nif 2*c > n:\n print("Fennec")\nelse:\n print("Snuke")\n']
['Wrong Answer', 'Accepted']
['s539314216', 's350195112']
[29788.0, 29788.0]
[584.0, 599.0]
[626, 616]
p03662
u980322611
2,000
262,144
Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N, and N-1 roads, each connecting two cells. Cell a_i is adjacent to Cell b_i through the i-th road. Every cell can be reached from every other cell by repeatedly traveling to an adjacent cell. In terms of graph theory, the graph formed by the cells and the roads is a tree. Initially, Cell 1 is painted black, and Cell N is painted white. The other cells are not yet colored. Fennec (who goes first) and Snuke (who goes second) alternately paint an uncolored cell. More specifically, each player performs the following action in her/his turn: * Fennec: selects an uncolored cell that is adjacent to a **black** cell, and paints it **black**. * Snuke: selects an uncolored cell that is adjacent to a **white** cell, and paints it **white**. A player loses when she/he cannot paint a cell. Determine the winner of the game when Fennec and Snuke play optimally.
['class UnionFind:\n def __init__(self, n):\n self.par = [-1 for i in range(n+1)]\n self.rank = [0] * (n+1)\n\n \n def find(self, x):\n if self.par[x] < 0:\n return x\n else:\n self.par[x] = self.find(self.par[x])\n return self.par[x]\n\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if not x==y: \n if self.rank[x] < self.rank[y]:\n self.par[y] += self.par[x] \n self.par[x] = y \n else:\n self.par[x] += self.par[y]\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n \n \n def same_check(self, x, y):\n return self.find(x) == self.find(y) \n\ndef main():\n import sys\n input = sys.stdin.readline\n \n N = int(input())\n from collections import defaultdict,deque\n G = defaultdict(list)\n D = []\n for i in range(N-1):\n a, b = map(int,input().split())\n D.append([a,b])\n G[a].append(b)\n G[b].append(a)\n \n que = deque()\n que.append(1)\n visited = {}\n oya = [-1]*(10**5+1)\n while que != deque():\n v = que.pop()\n visited[v] = 1\n if v == N:\n break\n else:\n for i in G[v]:\n if not i in visited:\n oya[i] = v\n que.append(i)\n now = N\n path = []\n while now != -1:\n path.append(now)\n now = oya[now]\n path = path[::-1]\n print(path)\n L = len(path)\n if L%2==0:\n d1,d2 = path[L//2-1],path[L//2]\n else:\n d1,d2 = path[L//2],path[L//2+1]\n G2 = UnionFind(N)\n \n for i in D:\n a,b = i\n if not {a,b} == {d1,d2}:\n G2.union(a,b)\n one = -G2.par[G2.find(1)]\n enu = -G2.par[G2.find(N)]\n \n if one>enu:\n print("Fennec")\n else:\n print("Snuke")\n \n\nmain()', 'class UnionFind:\n def __init__(self, n):\n self.par = [-1 for i in range(n+1)]\n self.rank = [0] * (n+1)\n\n \n def find(self, x):\n if self.par[x] < 0:\n return x\n else:\n self.par[x] = self.find(self.par[x])\n return self.par[x]\n\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if not x==y: \n if self.rank[x] < self.rank[y]:\n self.par[y] += self.par[x] \n self.par[x] = y \n else:\n self.par[x] += self.par[y]\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n \n \n def same_check(self, x, y):\n return self.find(x) == self.find(y) \n\ndef main():\n import sys\n input = sys.stdin.readline\n \n N = int(input())\n from collections import defaultdict,deque\n G = defaultdict(list)\n D = []\n for i in range(N-1):\n a, b = map(int,input().split())\n D.append([a,b])\n G[a].append(b)\n G[b].append(a)\n \n que = deque()\n que.append(1)\n visited = {}\n oya = [-1]*(10**5+1)\n while que != deque():\n v = que.pop()\n visited[v] = 1\n if v == N:\n break\n else:\n for i in G[v]:\n if not i in visited:\n oya[i] = v\n que.append(i)\n now = N\n path = []\n while now != -1:\n path.append(now)\n now = oya[now]\n path = path[::-1]\n #print(path)\n L = len(path)\n if L%2==0:\n d1,d2 = path[L//2-1],path[L//2]\n else:\n d1,d2 = path[L//2],path[L//2+1]\n G2 = UnionFind(N)\n \n for i in D:\n a,b = i\n if not {a,b} == {d1,d2}:\n G2.union(a,b)\n one = -G2.par[G2.find(1)]\n enu = -G2.par[G2.find(N)]\n \n if one>enu:\n print("Fennec")\n else:\n print("Snuke")\n \n\nmain()']
['Wrong Answer', 'Accepted']
['s720861703', 's184788039']
[50208.0, 50208.0]
[538.0, 512.0]
[2097, 2098]
p03665
u017810624
2,000
262,144
There are N bags of biscuits. The i-th bag contains A_i biscuits. Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags. He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?
['n,p=map(int,input().split())\na=list(map(int,input().split()))\nc=0\nfor i in range(n):\n if a[i]%2==1:\n c=1\n break\nif c=1:print(2**(n-1))\nelse:\n if p=0:print(2**(n))\n else:print(0)', 'n,p=map(int,input().split())\na=list(map(int,input().split()))\nc=0\nfor i in range(n):\n if a[i]%2==1:c+=1\nif c==0:\n if p==0:print(2**n)\n else:print(0)\nelif c==n:\n if n!=1:print(2**(n-1))\n else:print(0)\nelse:print(2**(n-1))']
['Runtime Error', 'Accepted']
['s539365411', 's535662739']
[2940.0, 3060.0]
[17.0, 17.0]
[186, 225]
p03665
u022317850
2,000
262,144
There are N bags of biscuits. The i-th bag contains A_i biscuits. Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags. He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?
['def cmb(n, k):\n s = 1\n for j in range(n - k):\n s *= j\n for j in range(1, k+1):\n s //= j\n return s\n\nn, p = map(int, input().split())\naa = list(map(lambda x: int(x) % 2, input().split()))\nodd = sum(aa)\neven = n - odd\nif p == 0:\n c = 2**even * sum(cmb(odd, k) for k in range(0, odd+1, 2))\n print(c)\nelse:\n c = 2**even * sum(cmb(odd, k) for k in range(1, odd+1, 2))\n print(c)', 'def cmb(n, k):\n s = 1\n for j in range(n - k + 1, n + 1, 1):\n s *= j\n for j in range(1, k+1):\n s //= j\n return s\n\nn, p = map(int, input().split())\naa = list(map(lambda x: int(x) % 2, input().split()))\nodd = sum(aa)\neven = n - odd\nif p == 0:\n c = 2**even * sum(cmb(odd, k) for k in range(0, odd+1, 2))\n print(c)\nelse:\n c = 2**even * sum(cmb(odd, k) for k in range(1, odd+1, 2))\n print(c)\n']
['Wrong Answer', 'Accepted']
['s121503991', 's528920547']
[3064.0, 3064.0]
[17.0, 17.0]
[385, 400]
p03665
u060793972
2,000
262,144
There are N bags of biscuits. The i-th bag contains A_i biscuits. Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags. He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?
['import math\ndef AGC017C(a,f):\n p=0\n for i in range(f,a,2):\n p+=math.factorial(a)//math.factorial(a-i)//math.factorial(i)\n return p\n\nn,p=map(int,input().split())\nd={1:0,0:0}\na=list(map(int,input().split()))\nfor i in a:\n d[i%2]+=1\nif p==0:\n print((2**d[0])*AGC017C(d[1]),0)\nelse:\n if d[1]==0:\n print(0)\n else:\n print((2**d[0])*(AGC017C(d[1],1)))', 'import math\ndef AGC017C(a,f):\n p=0\n for i in range(f,a,2):\n p+=math.factorial(a)//math.factorial(a-i)//math.factorial(i)\n return p\n\nn,p=map(int,input().split())\nd={1:0,0:0}\na=list(map(int,input().split()))\nfor i in a:\n d[i%2]+=1\nprint(d)\nprint(AGC017C(2,0))\nif p==0:\n print((2**d[0])*AGC017C(d[1]),0)\nelse:\n if d[1]==0:\n print(0)\n else:\n print((2**d[0])*(AGC017C(d[1],1)))', 'import math\ndef AGC017C(a,f):\n p=0\n for i in range(f,a+1,2):\n p+=math.factorial(a)//math.factorial(a-i)//math.factorial(i)\n return p\n\nn,p=map(int,input().split())\nd={1:0,0:0}\na=list(map(int,input().split()))\nfor i in a:\n d[i%2]+=1\nif p==0:\n print((2**d[0])*AGC017C(d[1],0))\nelse:\n if d[1]==0:\n print(0)\n else:\n print((2**d[0])*(AGC017C(d[1],1)))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s578014510', 's974725487', 's742854494']
[3064.0, 3064.0, 3064.0]
[17.0, 18.0, 18.0]
[385, 414, 387]
p03665
u077291787
2,000
262,144
There are N bags of biscuits. The i-th bag contains A_i biscuits. Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags. He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?
['\ndef main():\n n, p = tuple(map(int, input().rstrip().split()))\n A = tuple(map(lambda x: int(x) % 2, input().rstrip().split()))\n if sum(A) == n: # all numbers are even\n print(2 ** n if p == 0 else 0)\n else:\n print(2 ** (n - 1))\n\n\nif __name__ == "__main__":\n main()', '\ndef main():\n N, P, *A = map(int, open(0).read().split())\n total = sum(i % 2 for i in A)\n if total == 0: # all numbers are even\n flg = P == 0\n print(2 ** N if flg else 0)\n else:\n print(2 ** (N - 1))\n\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Accepted']
['s484665480', 's482440762']
[3316.0, 3060.0]
[23.0, 18.0]
[313, 292]
p03665
u102461423
2,000
262,144
There are N bags of biscuits. The i-th bag contains A_i biscuits. Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags. He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?
['N,P = int(input())\nA = [int(x) for x in input().split()]\n\nodd = sum(x&1 for x in A)\n\nif odd:\n \n answer = 2**(N-1)\nelse:\n answer = (2 ** N) * P\n\nprint(answer)', 'import sys\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN, P, *A = map(int, read().split())\n\nA = [x & 1 for x in A]\n\nif A.count(1):\n x = pow(2, N - 1)\nelse:\n x = pow(2, N)\n if P:\n x = 0\nprint(x)']
['Runtime Error', 'Accepted']
['s541856123', 's878844721']
[2940.0, 8996.0]
[17.0, 28.0]
[186, 272]
p03665
u106778233
2,000
262,144
There are N bags of biscuits. The i-th bag contains A_i biscuits. Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags. He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?
['N,P=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(N):\n A[i]%=2\n\nodds=sum(A)\nevens=N-odds \nif odds>0:\n ans=2**evens \n ans+=2**(odds-1)\n print(ans)\nelse:\n if P==0:\n print(2**evens)\n else:\n print(0)', 'odds=sum(A)\nevens=N-odds \nif odds>0:\n ans=2**evens \n ans*=2**(odds-1)\n print(ans)\nelse:\n if P==0:\n print(2**evens)\n else:\n print(0)\n', 'N,P=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(N):\n A[i]%=2\n\nodds=sum(A)\nevens=N-odds \nif odds>0:\n ans=2**evens \n ans*=2**(odds-1)\n print(ans)\nelse:\n if P==0:\n print(2**evens)\n else:\n print(0)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s510391123', 's615371882', 's538281128']
[3060.0, 2940.0, 3064.0]
[17.0, 17.0, 17.0]
[254, 161, 254]