problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03675 | u077019541 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['n = int(input())\nAs= list(map(int,input().split()))\nback = As[::-2]\nif n%2==0:\n forward = As[::2]\nelse:\n forward = As[1::2]\nprint(back+forward)', 'n = int(input())\nAs= list(map(int,input().split()))\nback = As[::-2]\nif n%2==0:\n forward = As[::2]\nelse:\n forward = As[1::2]\nans = back+forward\nprint(" ".join(map(str,ans)))'] | ['Wrong Answer', 'Accepted'] | ['s867711262', 's332823591'] | [26180.0, 30404.0] | [94.0, 112.0] | [149, 178] |
p03675 | u118642796 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['N = int(input())\nA = [int(a) for a in input().split()]\n\nprint(*([A[i] for i in range(N-1,-1,-2)]+[A[i] for i in range(2,N,2)])) \n', 'N = int(input())\nA = [int(a) for a in input().split()]\n\nprint(*([A[i] for i in range(N-1,-1,-2)]+[A[i] for i in range(N%2,N,2)])) '] | ['Wrong Answer', 'Accepted'] | ['s972744960', 's513312941'] | [26360.0, 26020.0] | [201.0, 192.0] | [130, 134] |
p03675 | u123648284 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['from collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\n\nq = deque()\nq.append(A[0])\nq.append(A[1])\nfor i in range(2, N):\n a = A[i]\n if i % 2 == 1:\n q.appendleft(a)\n else:\n q.append(a)\n\nprint(" ".join(map(str, q)))\n', 'from collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\n\nq = deque()\nfor i in range(N):\n a = A[i]\n if i > 1 and i % 2 == 0:\n q.appendleft(a)\n else:\n q.append(a)\n\nif N % 2 == 0:\n q.reverse()\nprint(" ".join(map(str, q)))\n'] | ['Runtime Error', 'Accepted'] | ['s209552425', 's868025272'] | [29124.0, 29124.0] | [168.0, 175.0] | [251, 257] |
p03675 | u243492642 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['import collections\nn = int(input())\na = list(map(int, input().split()))\nb = collections.deque(list)\nif n % 2 == 0:\n for i, ele in enumerate(a):\n if i % 2 == 0:\n b.append(ele)\n else:\n b.appendleft(ele)\nelse:\n for i, ele in enumerate(a):\n if i % 2 == 0:\n b.appendleft(ele)\n else:\n b.append(ele)\n\nprint(" ".join(b))', '# coding: utf-8\nimport array, bisect, collections, copy, heapq, itertools, math, random, re, string, sys, time\n\nsys.setrecursionlimit(10 ** 7)\nINF = 10 ** 20\nMOD = 10 ** 9 + 7\n\n\ndef II(): return int(input())\ndef ILI(): return list(map(int, input().split()))\ndef IAI(LINE): return [ILI() for __ in range(LINE)]\ndef IDI(): return {key: value for key, value in ILI()}\n\n\ndef read():\n n = II()\n a = list(map(str, input().split()))\n return n, a\n\n\ndef solve(n, a):\n b = collections.deque([])\n if n % 2 == 0:\n for i, ele in enumerate(a):\n if i % 2 == 0:\n b.append(ele)\n else:\n b.appendleft(ele)\n else:\n for i, ele in enumerate(a):\n if i % 2 == 0:\n b.appendleft(ele)\n else:\n b.append(ele)\n\n ans = " ".join(list(b))\n return ans\n\n\ndef main():\n params = read()\n print(solve(*params))\n\n\nif __name__ == "__main__":\n main()\n'] | ['Runtime Error', 'Accepted'] | ['s455151426', 's471674337'] | [25412.0, 30176.0] | [70.0, 151.0] | [390, 960] |
p03675 | u364386647 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['n = int(input())\na = list(map(int, input().split()))\n\nb = []\n\nfor i in range(n):\n if i % 2 != n % 2:\n b.insert(0, a[i])\n else:\n b.append(a[i])\n\nfor i in range(n):\n print(b[i], end=" ")\n', 'n = int(input())\na = list(map(int, input().split()))\n\nb = []\n\nfor i in range(n):\n b.append(a[i])\n b = b[::-1]\n\nfor i in range(n):\n print(b[i], end = " ")\n', 'n = int(input())\na = list(map(int, input().split()))\n\nb = []\n\nfor i in range(n):\n b.append(a[i])\n b = b[::-1]\n\nprint(b)\n', 'from collections import deque\n\nn = int(input())\na = list(map(int, input().split()))\n\nb = deque()\n\nfor i in range(n):\n if i % 2 != n % 2:\n b.appendleft(a[i])\n else:\n b.append(a[i])\n\nprint(" ".join(map(str, b)))\n'] | ['Time Limit Exceeded', 'Time Limit Exceeded', 'Wrong Answer', 'Accepted'] | ['s496491776', 's725102268', 's839933888', 's931581469'] | [26020.0, 26020.0, 26180.0, 29128.0] | [2104.0, 2104.0, 2104.0, 171.0] | [208, 163, 126, 230] |
p03675 | u375616706 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['N = int(input())\nA = list(map(int, input().split()))\n\nans = []\n\nl1 = A[0::2]\nl2 = A[1::2]\nif N % 2 == 0:\n l2 = l2[::-1]\n ans = l2+l1\nelse:\n l1 = l1[::-1]\n ans = l1+l2\n\nprint(" ".join(ans))\n', 'N = int(input())\nA = list(input().split())\n\nans = []\n\nl1 = A[0::2]\nl2 = A[1::2]\nif N % 2 == 0:\n l2 = l2[::-1]\n ans = l2+l1\nelse:\n l1 = l1[::-1]\n ans = l1+l2\n\nprint(" ".join(ans))\n'] | ['Runtime Error', 'Accepted'] | ['s206826702', 's369085332'] | [26360.0, 27204.0] | [77.0, 61.0] | [201, 191] |
p03675 | u382748202 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['from operator import mul\nfrom functools import reduce\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef com(n, k):\n if n == 0 or k == 0:\n return 1\n return int(reduce(mul, range(n + 1 - k, n + 1)) / reduce(mul, range(1, k + 1)))\n\nidx_list = [-1] * (n + 2)\nl = 0\nr = 0\nfor i, a_i in enumerate(a):\n if idx_list[a_i] < 0:\n idx_list[a_i] = i\n else:\n l = idx_list[a_i]\n r = n - i\n break\n\nfor k in range(1, n + 2):\n m = k - 1\n dup = 0\n for l_n in range(0, m + 1):\n r_n = m - l_n\n if l_n > l or r_n > r:\n continue\n l_c = com(l, l_n)\n r_c = com(r, r_n)\n dup += l_c * r_c\n ans = (com(n + 1, k) - dup) % (10 ** 9 + 7)\n print(ans)', "n = int(input())\na = list(map(int, input().split()))\n\nb = []\nif n % 2 == 0:\n for i in reversed(range(1, n, 2)):\n b.append(str(a[i]))\n for i in range(0, n, 2):\n b.append(str(a[i]))\nelse:\n for i in reversed(range(0, n + 1, 2)):\n b.append(str(a[i]))\n for i in range(1, n, 2):\n b.append(str(a[i]))\n\nans = ' '.join(b)\nprint(ans)"] | ['Runtime Error', 'Accepted'] | ['s958433426', 's451615077'] | [25776.0, 31944.0] | [79.0, 147.0] | [735, 363] |
p03675 | u482969053 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['n = input()\nan = list(map(int, input().split()))\nb = []\n\nfor i in an:\n b.append(i)\n b.reverse()\n\nprint(b)\n', 'n = int(input())\na = list(input().split())\nif n == 1:\n print(a[0])\nelif n % 2:\n print(*(a[-1::-2] + a[1::2]))\nelse:\n print(*(a[-1::-2] + a[0::2]))\n'] | ['Wrong Answer', 'Accepted'] | ['s405737159', 's892091541'] | [25156.0, 23332.0] | [2104.0, 116.0] | [112, 156] |
p03675 | u500297289 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ["n = int(input())\na = list(map(int, input().split()))\n\nb = []\nfor aa in a:\n b.append(aa)\n b.reverse()\n\nans = ''\nfor bb in b:\n ans += bb + ' '\n\nprint(ans[:-1])\n", "from collections import deque\n\nn = int(input())\na = list(input().split())\n\nb = deque()\nfor i in range(n):\n if i % 2 == 0:\n b.append(a[i])\n else:\n b.appendleft(a[i])\nif n % 2 == 1:\n b.reverse()\n\nprint(' '.join(b))\n"] | ['Runtime Error', 'Accepted'] | ['s107945912', 's397813296'] | [25156.0, 26564.0] | [2106.0, 107.0] | [167, 236] |
p03675 | u536113865 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['f = lambda: list(map(int,input().split()))\nn = int(input())\na = f()\nif n&1:\n b = a[::-2]+a[1::2]\nelse:\n b = a[::-1]+a[::2]\nprint(*b)\n', 'ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\n\nn = int(input())\na = ai()\nMOD = 10**9+7\n\nfrom collections import Counter\ndup = list(Counter(sorted(a)).values()).index(2)+1\nant = a.index(dup)\npost = a[::-1].index(dup)\n\n\ndef nCb(n, r):\n fac = [1, 1] + [0] * n\n finv = [1, 1] + [0] * n\n inv = [0, 1] + [0] * n\n for i in range(2, n + 2):\n fac[i] = fac[i - 1] * i % MOD\n inv[i] = -inv[MOD % i] * (MOD // i) % MOD\n finv[i] = finv[i - 1] * inv[i] % MOD\n \n if n < r: return 0\n if n < 0 or r < 0: return 0\n return fac[n] * (finv[r] * finv[n - r] % MOD) % MOD\n\n\nfor k in range(1,n+2):\n if k == 1:\n print(n)\n else:\n ans = nCb(n+1,k)\n if ant+post+1 >= k:\n ans -= nCb(ant+post,k-1)\n print(ans)\n', 'f = lambda: list(map(int,input().split()))\nn = int(input())\na = f()\nif n&1:\n b = a[::-2]+a[1::2]\nelse:\n b = a[::-2]+a[::2]\nprint(*b)\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s339529501', 's987702829', 's670681365'] | [25156.0, 35648.0, 26020.0] | [221.0, 202.0, 171.0] | [139, 823, 139] |
p03675 | u667084803 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['import math\nN=int(input())\na=list(map(int,input().split()))\nc=[]\nfor i in range(N+1):\n if a[i] in c:\n b=a[i]\n j=c.index(a[i])\n k=i\n L=j+N-k\n break\n c+=[a[i]]\nBase=N+1\nMinu=1\nfor i in range(0,min(L+1,N+1)):\n print((Base-Minu)%(10**9+7))\n Base=int(Base*(N-i)/(i+2))\n Minu=int(Minu*(L-i)/(i+1))\n \nfor i in range(L+1,N+1):\n print(Base%(10**9+7))\n Base=int(Base*(N-i)/(i+2))', "N=int(input())\na=list(map(int,input().split()))\nb=[]\nif N%2==0:\n for i in range(int(N/2)):\n b+=[a[N-1-2*i]]\n for i in range(int(N/2)):\n b+=[a[2*i]]\nelse:\n for i in range(int((N+1)/2)):\n b+=[a[N-1-2*i]]\n for i in range(int((N-1)/2)):\n b+=[a[2*i+1]]\nprint(' '.join(map(str, b)))"] | ['Runtime Error', 'Accepted'] | ['s769623945', 's352034971'] | [25156.0, 29768.0] | [2104.0, 171.0] | [524, 292] |
p03675 | u676264453 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['n = int(input())\nl = list(map(int, input().split()))\nk = []\n\nfor i in range(n):\n k.append(l[i])\n k = list(reversed(k))\n\nprint(",".join(map(str, k)))', 'from collections import deque\n\nn = int(input())\nl = list(map(int, input().split()))\nd = deque()\n\nfor i in range(n):\n if (i % 2 == 0):\n d.appendleft(l[i])\n else:\n d.append(l[i])\n\nif (n % 2 == 0):\n d = reversed(d)\n\nprint(" ".join(map(str, d)))\n'] | ['Wrong Answer', 'Accepted'] | ['s910540744', 's057285957'] | [26180.0, 29252.0] | [2105.0, 161.0] | [150, 251] |
p03675 | u751717561 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ["n = int(input())\nx = list(input().split()) \na = ''.join(x)\n\nif n == 1:\n print(a)\n exit()\n\ns1 = a[::2] \ns2 = a[1::2] \n\ns2 = s2[::-1]\n\ns = s2 + s1\n\nif n%2 == 1:\n s = s[::-1]\n\nfor i in s:\n print(int(i), end=' ')\n", 'n = int(input())\na = list(map(int,input().split()))\nb = []\nc = []\nfor i in range(n):\n if i % 2 == 0:\n b.append(a[i])\n if i % 2 == 1:\n c.append(a[i])\nc.reverse()\nc += b\nif n % 2 == 1:\n c.reverse()\nprint(*c)'] | ['Wrong Answer', 'Accepted'] | ['s547516279', 's393877958'] | [30004.0, 26020.0] | [2105.0, 223.0] | [254, 228] |
p03675 | u780475861 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ["import sys\nn, *alst = map(int, sys.stdin.read().split())\nlst1 = alst[::2]\nlst2 = alst[1::2]\nif n % 2:\n lst1.reverse()\n print(''.join(lst1 + lst2))\nelse:\n lst2.reverse()\n print(''.join(lst2 + lst1))", "n = int(input())\nalst = input().split()\nlst1 = alst[::2]\nlst2 = alst[1::2]\nif n % 2:\n lst1.reverse()\n print(' '.join(lst1 + lst2))\nelse:\n lst2.reverse()\n print(' '.join(lst2 + lst1))\n"] | ['Runtime Error', 'Accepted'] | ['s735511894', 's414107710'] | [25180.0, 26616.0] | [71.0, 49.0] | [201, 187] |
p03675 | u970449052 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ['n=int(input())\na=list(map(int,input().split()))\na1=[]\nfor i in range(n-1,-1,-2):\n a1.append(a[i])\na2=[]\nfor i in range(n-2,-1,-2):\n a2.append(a[i])\na2.reverse\na1+=a2\nprint(*a1)', 'n=int(input())\na=list(map(int,input().split()))\na1=[]\nfor i in range(n-1,-1,-2):\n a1.append(a[i])\na2=[]\nfor i in range(n-2,-1,-2):\n a2.append(a[i])\na2.reverse()\na1+=a2\nprint(*a1)'] | ['Wrong Answer', 'Accepted'] | ['s318483060', 's112113933'] | [26360.0, 26356.0] | [196.0, 198.0] | [182, 184] |
p03675 | u985443069 | 2,000 | 262,144 | You are given an integer sequence of length n, a_1, ..., a_n. Let us consider performing the following n operations on an empty sequence b. The i-th operation is as follows: 1. Append a_i to the end of b. 2. Reverse the order of the elements in b. Find the sequence b obtained after these n operations. | ["import sys\n\n\n\n\n\ndef read_int_list():\n return list(map(int, input().split()))\n\n\ndef read_int():\n return int(input())\n\n\ndef read_str_list():\n return input().split()\n\n\ndef read_str():\n return input()\n\n\ndef solve():\n n = read_int()\n a = read_int_list()\n b = [0] * n\n p = 0\n q = n - 1\n for i in range(n):\n if i % 2 == (n - 1) % 2:\n b[p] = a[i]\n p += 1\n else:\n b[q] = a[i]\n q += -1\n return ' '.join(map(str, b))\n\n\ndef main():\n res = solve()\n print(res)\n\n\nif __name__ == '__main__':\n main()\n", "import sys\n\n\n\n\n\ndef read_int_list():\n return list(map(int, input().split()))\n\n\ndef read_int():\n return int(input())\n\n\ndef read_str_list():\n return input().split()\n\n\ndef read_str():\n return input()\n\n\ndef solve():\n n = read_int()\n a = read_int_list()\n b = [0] * n\n p = 0\n q = n - 1\n for i in range(n-1, -1, -1):\n if i % 2 == (n-1) % 2:\n b[p] = a[i]\n p += 1\n else:\n b[q] = a[i]\n q += -1\n return ' '.join(map(str, b))\n\n\ndef main():\n res = solve()\n print(res)\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s366915217', 's887793573'] | [29216.0, 29344.0] | [153.0, 152.0] | [611, 619] |
p03676 | u218843509 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['MOD = (10 ** 9) + 7\n\nf_list = [1] * 100001\nf_r_list = [1] * 100001\n\nfor i in range(100000):\n\tf_list[i + 1] = int((f_list[i] * (i + 2)) % MOD)\n\ndef power(n, x):\n\tif x == 1:\n\t\treturn n\n\telif x % 2 == 0:\n\t\treturn power(int((n * n) % MOD), int(x / 2))\n\telse:\n\t\treturn int((n * power(n, x - 1)) % MOD)\n\nf_r_list[-1] = power(f_list[-1], MOD - 2)\n\nfor i in range(2, 100002)\n\tf_r_list[-i] = int((f_r_list[-i + 1] * (100003 - i)) % MOD)\n\ndef comb(n, r):\n\tif n == 0 or r == 0 or n == r:\n\t\treturn 1\n\telse:\n\t\treturn (((f_list[n - 1] * f_r_list[n - r - 1]) % MOD) * f_r_list[r - 1]) % MOD \n\nn = int(input())\na = list(map(int, input().split()))\na_r = list(reversed(a))\n\n\ndoubled = sum(a) - n * (n + 1) / 2\nx = a.index(doubled)\ny = a_r.index(doubled)\nnum = x + y\n\nprint(n)\n\nfor i in range(2, n + 2):\n\tif num >= i - 1:\n\t\tprint(int((comb(n + 1, i) - comb(num, i - 1)) % MOD))\n\telse:\n\t\tprint(comb(n + 1, i))', 'MOD = (10 ** 9) + 7\n\nf_list = [1] * 100001\nf_r_list = [1] * 100001\n\nfor i in range(100000):\n\tf_list[i + 1] = int((f_list[i] * (i + 2)) % MOD)\n\ndef power(n, x):\n\tif x == 1:\n\t\treturn n\n\telif x % 2 == 0:\n\t\treturn power(int((n * n) % MOD), int(x / 2))\n\telse:\n\t\treturn int((n * power(n, x - 1)) % MOD)\n\nf_r_list[-1] = power(f_list[-1], MOD - 2)\n\nfor i in range(2, 100002):\n\tf_r_list[-i] = int((f_r_list[-i + 1] * (100003 - i)) % MOD)\n\ndef comb(n, r):\n\tif n == 0 or r == 0 or n == r:\n\t\treturn 1\n\telse:\n\t\treturn (((f_list[n - 1] * f_r_list[n - r - 1]) % MOD) * f_r_list[r - 1]) % MOD \n\nn = int(input())\na = list(map(int, input().split()))\na_r = list(reversed(a))\n\n\ndoubled = sum(a) - n * (n + 1) / 2\nx = a.index(doubled)\ny = a_r.index(doubled)\nnum = x + y\n\nprint(n)\n\nfor i in range(2, n + 2):\n\tif num >= i - 1:\n\t\tprint(int((comb(n + 1, i) - comb(num, i - 1)) % MOD))\n\telse:\n\t\tprint(comb(n + 1, i))'] | ['Runtime Error', 'Accepted'] | ['s095134310', 's056555186'] | [3064.0, 21748.0] | [17.0, 374.0] | [889, 890] |
p03676 | u329749432 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['from scipy.misc import comb\n\nn=int(input())\ns=[int(i) for i in input().split()]\nfor i in range(1,n+1):\n k=s.count(i)\n if k==2:\n a=s.index(i)\n b=s.index(i,a+1)\n\nfor i in range(1,n+2):\n print(comb(n+1,i,1)-comb(a+n-b,i-1,1))\n', 'import scipy.misc as scm\nfrom collections import Counter\n\nn=int(input())\ns=[int(i) for i in input().split()]\nc = Counter(s)\nj=-1\nfor i in range(1, n + 1):\n if c[i] == 2:\n j = i\n break\na,b = [i for i in range(n + 1) if s[i] == j]\n\nfor i in range(1,n+2):\n print(scm.comb(n+1,i,1)-scm.comb(a+n-b,i-1,1))\n', 'import scipy.misc as scm\nimport sys\n\nn=int(input())\ns=[int(i) for i in input().split()]\nfor i in range(1,n+1):\n k=s.count(i)\n if k==2:\n a=s.index(i)\n b=s.index(i,a+1)\n print(a,b)\n\nfor i in range(1,n+2):\n print(scm.comb(n+1,i,1)-scm.comb(a+n-b,i-1,1))\n', 'import scipy.misc as scm\nimport sys\n\nn=int(input())\ns=[int(i) for i in input().split()]\nfor i in range(1,n+1):\n k=s.count(i)\n if k==2:\n a=s.index(i)\n b=s.index(i,a+1)\n print(a,b)\nz=a+n-b\nprint(z)\nif n==1:\n print(1)\n print(1)\n sys.exit()\nif n==2:\n print(2)\n print(scm.comb(n+1,i,1)-z)\n print(1)\n sys.exit()\n\nfor i in range(1,n+1):\n ans=scm.comb(n+1,i,1)\n if z>=i-1:\n ans=ans-scm.comb(z,i-1,1)\n fa=ans%(10**9+7)\n print(fa)', 'n = int(input())\na = list(map(int, input().split()))\noccur = [0 for i in range(n + 1)]\nMOD = 1000000007\nfor i in range(n + 1):\n if occur[a[i]] > 0: val = n - 1 - i + occur[a[i]]\n else: occur[a[i]] = i + 1\ninv = [0 if i > 2 else 1 for i in range(n + 2)]\npinv = [0 if i > 2 else 1 for i in range(n + 2)]\nperm = [0 if i > 2 else 1 for i in range(n + 2)]\nfor i in range(2, n + 2):\n inv[i] = -int(MOD / i) * inv[MOD % i] + MOD\n pinv[i] = pinv[i - 1] * inv[i] % MOD\n perm[i] = perm[i - 1] * i % MOD\ndef C(n, m):\n return (perm[m] * pinv[n] % MOD) * pinv[m - n] % MOD if n <= m else 0\nfor i in range(1, n + 2):\n temp = C(i, n + 1) - C(i - 1, val)\n if temp < 0: temp += MOD\n print(temp)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s251382568', 's299725596', 's716773520', 's730519912', 's208168923'] | [23992.0, 28196.0, 23992.0, 23904.0, 27752.0] | [2109.0, 2112.0, 2109.0, 2109.0, 456.0] | [246, 321, 281, 487, 704] |
p03676 | u458486313 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['import sys\n\nstdin = sys.stdin\n\nns = lambda: stdin.readline()\nni = lambda: int(ns())\nna = lambda: list(map(int,stdin.readline().split()))\n\nMOD = 10**9+7\n\nclass Comb:\n def __init__(self, size):\n self.fact = [0 for i in range(size + 1)]\n self.inv_fact = [0 for i in range(size + 1)]\n self.factrical(size)\n\n def nCr(self, n,r):\n ret = self.fact[n]\n ret *= self.inv_fact[n-r]\n ret %= MOD\n ret *= self.inv_fact[r]\n ret %= MOD\n return ret\n\n def factrical(self, N):\n self.fact[0] = 1\n self.inv_fact[0] = 1\n for i in range(1,N+1):\n self.fact[i] = i * self.fact[i-1] % MOD\n self.inv_fact[i] = self.inv(self.fact[i]) % MOD\n\n def inv(self, a):\n return pow(a, MOD-2, MOD)\n\nN = ni()\na = na()\nc = [-1 for i in range (N)]\nindex = [-1,-1]\n\nfor i, x in enumerate(a):\n if (c[x-1]!=-1):\n index[0] = c[x-1]\n index[1] = i\n break\n\n c[x-1] = i\n\nco = Comb(N+1)\nprint (co.fact[N])\nfor i in range(1, N+2):\n ans = co.nCr(N+1,i)\n if ((N-index[1]) + (index[0])>=i-1 ):\n ans -= co.nCr((N-index[1]) + (index[0]),i-1) \n \n print (ans) \n \n\n', 'import sys\n\nstdin = sys.stdin\n\nns = lambda: stdin.readline()\nni = lambda: int(ns())\nna = lambda: list(map(int,stdin.readline().split()))\n\nMOD = 10**9+7\n\nclass Comb:\n def __init__(self, size):\n self.fact = [0 for i in range(size + 1)]\n self.inv_fact = [0 for i in range(size + 1)]\n self.factrical(size)\n\n def nCr(self, n,r):\n ret = self.fact[n]\n ret *= self.inv_fact[n-r]\n ret %= MOD\n ret *= self.inv_fact[r]\n ret %= MOD\n return ret\n\n def factrical(self, N):\n self.fact[0] = 1\n self.inv_fact[0] = 1\n for i in range(1,N+1):\n self.fact[i] = i * self.fact[i-1] % MOD\n self.inv_fact[i] = self.inv(self.fact[i]) % MOD\n\n def inv(self, a):\n return pow(a, MOD-2, MOD)\n\nN = ni()\na = na()\nc = [-1 for i in range (N)]\nindex = [-1,-1]\n\nfor i, x in enumerate(a):\n if (c[x-1]!=-1):\n index[0] = c[x-1]\n index[1] = i\n break\n\n c[x-1] = i\n\nco = Comb(N+1)\nfor i in range(1, N+2):\n ans = co.nCr(N+1,i)\n if ((N-index[1]) + (index[0])>=i-1 ):\n ans -= co.nCr((N-index[1]) + (index[0]),i-1) \n \n print (ans%MOD) \n \n\n'] | ['Wrong Answer', 'Accepted'] | ['s038538593', 's615987718'] | [20528.0, 20456.0] | [758.0, 760.0] | [1191, 1180] |
p03676 | u497046426 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['# ARC 77 D\nMOD = 10**9 + 7\nn = int(input())\nA = list(map(int, input().split()))\n\nfact = {i: None for i in range(n+1)} # n!\ninverse = {i: None for i in range(1, n+1)} # inverse of n in the field Z/(MOD)Z\nfact_inverse = {i: None for i in range(n+1)} # inverse of n! in the field Z/(MOD)Z\n\nfact[0] = fact[1] = 1\nfact_inverse[0] = fact_inverse[1] = 1\ninverse[1] = 1\nfor i in range(2, n+1):\n fact[i] = i * fact[i-1] % MOD\n inverse[i] = - inverse[MOD % i] * (MOD // i) % MOD\n fact_inverse[i] = inverse[i] * fact_inverse[i-1] % MOD\n\ndef combination(n, r):\n if n < r or n < 0 or r < 0:\n return 0\n else:\n return fact[n] * (fact_inverse[r] * fact_inverse[n-r] % MOD) % MOD\n\ndup_num = sum(A) - n*(n+1)//2\ndup_idx = []\nfor i, a in enumerate(A):\n if a == dup_num:\n dup_idx.append(i)\n \nleft, right = dup_idx[0], dup_idx[1]\n \nfor k in range(1, n+2):\n print((combination(n+1, k) - combination(n + 1 - (right - left + 1), k - 1)) % MOD)', 'MOD = 10**9 + 7\n\nfact = {i: None for i in range(10**6+1)} # n!\ninverse = {i: None for i in range(1, 10**6+1)} # inverse of n in the field Z/(MOD)Z\nfact_inverse = {i: None for i in range(10**6+1)} # inverse of n! in the field Z/(MOD)Z\n\nfact[0] = fact[1] = 1\nfact_inverse[0] = fact_inverse[1] = 1\ninverse[1] = 1\nfor i in range(2, 10**6+1):\n fact[i] = i * fact[i-1] % MOD\n inverse[i] = - inverse[MOD % i] * (MOD // i) % MOD\n fact_inverse[i] = inverse[i] * fact_inverse[i-1] % MOD\n\ndef combination(n, r):\n if n < r or n < 0 or r < 0:\n return 0\n else:\n return fact[n] * (fact_inverse[r] * fact_inverse[n-r] % MOD) % MOD\n\nn = int(input())\nA = list(map(int, input().split()))\n\ndup_num = sum(A) - n*(n+1)//2\ndup_idx = []\nfor i, a in enumerate(A):\n if a == dup_num:\n dup_idx.append(i)\n \nleft, right = dup_idx[0], dup_idx[1]\n \nfor k in range(1, n+2):\n print((combination(n+1, k) - combination(n + 1 - (right - left + 1), k - 1)) % MOD)', "class BinomialCoefficient:\n def __init__(self, N, mod):\n '''\n Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N)\n over the finite field Z/(mod)Z.\n Input:\n N (int): maximum n\n mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated.\n '''\n self.mod = mod\n self.fact = {i: None for i in range(N+1)} # n!\n self.inverse = {i: None for i in range(1, N+1)} # inverse of n in the field Z/(MOD)Z\n self.fact_inverse = {i: None for i in range(N+1)} # inverse of n! in the field Z/(MOD)Z\n \n # preprocess\n self.fact[0] = self.fact[1] = 1\n self.fact_inverse[0] = self.fact_inverse[1] = 1\n self.inverse[1] = 1\n for i in range(2, N+1):\n self.fact[i] = i * self.fact[i-1] % self.mod\n q, r = divmod(self.mod, i)\n self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod\n self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod\n \n def binom(self, n, r):\n if n < r or n < 0 or r < 0:\n return 0\n else:\n return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod\n \nN = int(input())\nA = list(map(int, input().split()))\nMOD = 10**9 + 7\n\ndup_num = sum(A) - N*(N+1)//2\ndup_num_idx = sorted([i+1 for i, a in enumerate(A) if a == dup_num])\nl, r = dup_num_idx[0], dup_num_idx[1]\n\nbc = BinomialCoefficient(N+1, MOD)\nfor k in range(1, N+2):\n print((bc.binom(N+1, k) - bc.binom(N+1 - (r - l + 1), k - 1)) % MOD)"] | ['Runtime Error', 'Time Limit Exceeded', 'Accepted'] | ['s770826903', 's842641173', 's497102205'] | [50780.0, 351360.0, 51804.0] | [216.0, 2117.0, 509.0] | [998, 1004, 1647] |
p03676 | u536113865 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\nn = int(input())\na = ai()\n\ndup = sum(a)-n*(n+1)//2\nant = a.index(dup)\npost = a[::-1].index(dup)\nprint(ant,post)\n\nmod = 10**9+7\nfactorial = [1]\nfor i in range(1,n+2):\n factorial.append(factorial[i-1]*i %mod)\n\ninverse = [0]*(n+2)\ninverse[n+2-1] = pow(factorial[n+2-1], mod-2,mod)\nfor i in range(n+2-2, -1, -1):\n inverse[i] = inverse[i+1] * (i+1) % mod\n\n\ndef nCr(n,r):\n if n<r or n==0 or r==0:\n return 0\n return factorial[n] * inverse[r] * inverse[n-r] % mod\n\n\nfor k in range(1,n+2):\n if k == 1:\n print(n)\n else:\n ans = nCr(n+1,k) - nCr(ant+post,k-1)\n if ans < 0:\n ans += mod\n print(ans)\n', 'ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\n\nn = int(input())\na = ai()\n\nfrom collections import Counter\ndup = list(Counter(sorted(a)).values()).index(2)+1\nant = a.index(dup)\npost = a[::-1].index(dup)\n\n\nmod = 10**9+7\nfactorial = [1]\nfor i in range(1,n+2):\n factorial.append(factorial[i-1]*i %mod)\n\ninverse = [0]*(n+2)\ninverse[n+2-1] = pow(factorial[n+2-1], mod-2,mod)\nfor i in range(n+2-2, -1, -1):\n inverse[i] = inverse[i+1] * (i+1) % mod\n\n\ndef nCr(n,r):\n if n<r or n==0 or r==0:\n return 0\n return factorial[n] * inverse[r] * inverse[n-r] % mod\n\n\nfor k in range(1,n+2):\n ans = nCr(n+1,k) - nCr(ant+post,k-1)\n print(ans)\n', 'ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\nn = int(input())\na = ai()\n\ndup = sum(a)-n*(n+1)//2\nant = a.index(dup)\npost = a[::-1].index(dup)\n\nmod = 10**9+7\nfactorial = [1]\nfor i in range(1,n+2):\n factorial.append(factorial[i-1]*i %mod)\n\ninverse = [0]*(n+2)\ninverse[n+2-1] = pow(factorial[n+2-1], mod-2,mod)\nfor i in range(n+2-2, -1, -1):\n inverse[i] = inverse[i+1] * (i+1) % mod\n\n\ndef nCr(n,r):\n if n<r or n==0 or r==0:\n return 0\n return factorial[n] * inverse[r] * inverse[n-r] % mod\n\n\nfor k in range(1,n+2):\n if k == 1:\n print(n)\n else:\n ans = nCr(n+1,k) - nCr(ant+post,k-1)\n if ans < 0:\n ans += mod\n print(ans)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s140177456', 's518593985', 's798095520'] | [16484.0, 20064.0, 16484.0] | [307.0, 367.0, 322.0] | [744, 696, 728] |
p03676 | u559823804 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['from operator import mul\nfrom functools import reduce\nmod=10**9+2\ndef cmb(n,r):\n if r>n: return 0\n r = min(n-r,r)\n if r == 0: return 1\n over = reduce(mul, range(n, n - r, -1))\n under = reduce(mul, range(1,r + 1))\n return over // under\n\n\nn=int(input())\na=list(map(int,input().split()))\nsums=0\nfor aa in a:\n sums+=aa\n\nsames=[i for i,x in enumerate(a) if x==sums-(n*(n+1)//2)]\nsame_len = sames[0]+(32-sames[1])\n\nprint(n)\n\nfor i in range(1,n):\n print((cmb((n+1),(i+1))-cmb(same_len,i))%mod)\nprint(1)', 'from collections import Counter\nmod=10**9+7\nN=10**5+11\nfac,finv,inv = [0]*N,[0]*N,[0]*N\n \ndef cmb_init():\n fac[0]=fac[1]=finv[0]=finv[1]=inv[1]=1\n for i in range(2,N):\n fac[i] = fac[i-1]*i%mod\n inv[i] = mod-inv[mod%i] * (mod//i) % mod\n finv[i] = finv[i-1] * inv[i] % mod\n \n \ndef cmb_mod(n,k):\n if n<k : return 0\n return fac[n]*(finv[k]*finv[n-k]%mod)%mod\n \nn=int(input())\na=list(map(int,input().split()))\nac = Counter(a).most_common()[0][0]\nsames=[i for i,x in enumerate(a) if x==ac]\nsame_len = sames[0]+(n-sames[1])\ncmb_init()\nprint(n)\n \nfor i in range(1,n):\n nums = cmb_mod(n+1,i+1) - cmb_mod(same_len,i)\n if nums < 0: nums+=mod\n print(nums)\nprint(1)'] | ['Wrong Answer', 'Accepted'] | ['s270764510', 's238590196'] | [14436.0, 24404.0] | [2104.0, 404.0] | [525, 746] |
p03676 | u766684188 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10**9)\nfrom collections import Counter\nmod=10**9+7\nn=int(input())\nA=list(map(int,input().split()))\nfactorial=[1]\nfor i in range(1,n+2):\n factorial.append(factorial[i-1]*i%mod)\ninverse=[0]*(n+2)\ninverse[n+1]=pow(factorial[n+1],mod-2,mod)\nfor i in range(n,-1,-1):\n inverse[i]=inverse[i+1]*(i+1)%mod\ndef comb(n,r):\n if n<r or n==0 or r==0:\n return 0\n return factorial[n]*inverse[r]*inverse[n-r]%mod\nC=Counter(A)\ni=C.most_common()[0][0]\nidx=[k for k, x in enumerate(A) if x==i]\nfor k in range(1,n+2):\n print((comb(n+1,k)-comb(n+idx[0]-idx[1],k-1))%mod)', 'import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10**9)\nfrom collections import Counter\nmod=10**9+7\nn=int(input())\nA=list(map(int,input().split()))\nfactorial=[1]\nfor i in range(1,n+2):\n factorial.append(factorial[i-1]*i%mod)\ninverse=[0]*(n+2)\ninverse[n+1]=pow(factorial[n+1],mod-2,mod)\nfor i in range(n,-1,-1):\n inverse[i]=inverse[i+1]*(i+1)% mod\ndef comb(n,r):\n if n<r or n==0 or r==0:\n return 0\n return factorial[n]*inverse[r]*inverse[n-r]%mod\nC=Counter(A)\ni=C.most_common()[0][0]\nidx=[k for k, x in enumerate(A) if x==i]\nfor k in range(1,n+2):\n print((comb(n+1,k)%mod-comb(n+idx[0]-idx[1],k-1)%mod)%mod)', '#077-D\nimport sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10**9)\nfrom collections import Counter\nmod=10**9+7\nn=int(input())\nA=list(map(int,input().split()))\nfactorial=[1]\nfor i in range(1,n+2):\n factorial.append(factorial[i-1]*i%mod)\ninverse=[0]*(n+2)\ninverse[n+1]=pow(factorial[n+1],mod-2,mod)\nfor i in range(n,-1,-1):\n inverse[i]=inverse[i+1]*(i+1)%mod\ndef comb(n,r):\n if n<r:\n return 0\n return factorial[n]*inverse[r]*inverse[n-r]%mod\nC=Counter(A)\ni=C.most_common()[0][0]\nidx=[k for k, x in enumerate(A) if x==i]\nfor k in range(1,n+2):\n print((comb(n+1,k)-comb(n+idx[0]-idx[1],k-1))%mod)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s177891024', 's246471968', 's318437561'] | [29980.0, 29972.0, 29980.0] | [374.0, 371.0, 367.0] | [628, 637, 619] |
p03676 | u777923818 | 2,000 | 262,144 | You are given an integer sequence of length n+1, a_1,a_2,...,a_{n+1}, which consists of the n integers 1,...,n. It is known that each of the n integers 1,...,n appears at least once in this sequence. For each integer k=1,...,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 10^9+7. | ['# -*- coding: utf-8 -*-\nfrom math import factorial\nfrom scipy.misc import comb\ndef inpl(): return tuple(map(int, input().split()))\n\ndef combination(n, r):\n if n < r:\n return 0\n else:\n return factorial(n)//(factorial(r) * factorial(n-r))\n\nn = int(input())\nA = inpl()\nC = ["" for i in range(n+1)]\n\nfor l, a in enumerate(A):\n if type(C[a]) == int:\n i, j = C[a], l\n break\n else:\n C[a] = l\n\nprint(n)\n\nfor k in range(2, n+2):\n total = comb(n+1, k, 1)\n b = comb(n+i-j, k-1, 1)\n res = (total-b)%(10**9 + 7)\n print(res)', '# -*- coding: utf-8 -*-\ndef inpl(): return tuple(map(int, input().split()))\n\nn = int(input())\nA = inpl()\nmod = 10**9 + 7\n\nfct = [1]\ninv = [1]\n\nfor i in range(1, n+2):\n fct.append((fct[-1]*i)%mod)\n inv.append((pow(fct[i], mod-2, mod)))\n\ndef comb(n, k):\n if k < 0 or k > n:\n return 0\n return (fct[n] * inv[n - k] * inv[k]) % mod \n\nC = ["" for i in range(n+1)]\n\nfor l, a in enumerate(A):\n if type(C[a]) == int:\n i, j = C[a], l\n break\n else:\n C[a] = l\n\nprint(n)\n\nfor k in range(2, n+2):\n total = comb(n+1, k)\n b = comb(n+i-j, k-1)\n res = (total-b)%(mod)\n print(res)'] | ['Time Limit Exceeded', 'Accepted'] | ['s337479455', 's829851129'] | [24004.0, 21024.0] | [2109.0, 679.0] | [569, 622] |
p03684 | u059586440 | 2,000 | 262,144 | There are N towns on a plane. The i-th town is located at the coordinates (x_i,y_i). There may be more than one town at the same coordinates. You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|a-c|,|b-d|) yen (the currency of Japan). It is not possible to build other types of roads. Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this? | ['n = int(input())\nxs = []\nys = []\n\nfor i in range(n):\n x, y = map(int, input().split())\n xs.append((x, i))\n ys.append((y, i))\n\n\nxs.sort()\nys.sort()\n\nes = []\n\nfor i in range(n-1):\n es.append((xs[i+1][0] - xs[i][0], xs[i][1], xs[i+1][1]))\n es.append((ys[i+1][0] - ys[i][0], ys[i][1], ys[i+1][1]))\n\nes.sort()\nprint(0)\nexit()\n\nclass UF:\n def __init__(self):\n self.p = {}\n def find(self, x):\n if x not in self.p:\n self.p[x] = x\n if x == self.p[x]:\n return x\n self.p[x] = self.find(self.p[x])\n return self.p[x]\n def merge(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x != y:\n self.p[x] = y\n\n\nuf= UF()\nans = 0\nfor d, i0, i1 in es:\n c0 = uf.find(i0)\n c1 = uf.find(i1)\n if c0 == c1:\n continue\n ans += d\n uf.merge(i0, i1)\nprint(ans)\n', 'n = int(input())\nxs = []\nys = []\n\nfor i in range(n):\n x, y = map(int, input().split())\n xs.append((x, i))\n ys.append((y, i))\n\n\nxs.sort()\nys.sort()\n\nes = []\n\nfor i in range(n-1):\n es.append((xs[i+1][0] - xs[i][0], xs[i][1], xs[i+1][1]))\n es.append((ys[i+1][0] - ys[i][0], ys[i][1], ys[i+1][1]))\n\nes.sort()\n\nclass UF:\n def __init__(self):\n self.p = {}\n def find(self, x):\n if x not in self.p:\n self.p[x] = x\n if x == self.p[x]:\n return x\n self.p[x] = self.find(self.p[x])\n return self.p[x]\n def merge(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x != y:\n self.p[x] = y\n\n\nuf = UF()\nans = 0\ntry:\n for d, i0, i1 in es:\n c0 = uf.find(i0)\n c1 = uf.find(i1)\n if c0 == c1:\n continue\n ans += d\n uf.merge(i0, i1)\n print(ans)\nexcept:\n print(0)\n'] | ['Wrong Answer', 'Accepted'] | ['s033808910', 's262063616'] | [50248.0, 58356.0] | [1016.0, 1720.0] | [865, 908] |
p03684 | u104282757 | 2,000 | 262,144 | There are N towns on a plane. The i-th town is located at the coordinates (x_i,y_i). There may be more than one town at the same coordinates. You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|a-c|,|b-d|) yen (the currency of Japan). It is not possible to build other types of roads. Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this? | ['# D\nimport numpy as np\nN = int(input())\nX = np.zeros(N, dtype=int)\nY = np.zeros(N, dtype=int)\n\nfor i in range(N):\n x, y = map(int, input().split())\n X[i] = x\n Y[i] = y\n\n# edges\nX_s = np.argsort(X)\nY_s = np.argsort(Y)\n\nedge_list = []\nedge_weight = []\nfor i in range(N-1):\n edge_list.append([X_s[i], X_s[i+1]])\n edge_weight.append(min(abs(X[X_s[i+1]] - X[X_s[i]]), abs(Y[X_s[i+1]] - Y[X_s[i]])))\n edge_list.append([Y_s[i], Y_s[i+1]])\n edge_weight.append(min(abs(X[Y_s[i+1]] - X[Y_s[i]]), abs(Y[Y_s[i+1]] - Y[Y_s[i]])))\n \n\nsel = np.argsort(np.array(edge_weight))\n\n# union find tree\nuf = dict()\nfor i in range(N):\n uf[i] = i\n\nres = 0\nflg = np.zeros(N)\n\nfor s in sel:\n m, n = edge_list[s]\n # find union\n gr_m = m\n gr_m_list = []\n gr_n = n\n gr_n_list = []\n while gr_m != uf[gr_m]:\n gr_m_list.append(gr_m)\n for m_ in gr_m_list:\n uf[m_] = gr_m\n while gr_n != uf[gr_n]:\n gr_n_list.append(gr_n)\n for n_ in gr_n_list:\n uf[n_] = gr_n\n if gr_m == gr_n:\n pass\n else:\n res += edge_weight[s]\n if dep_m > dep_n:\n uf[gr_n] = gr_m\n elif dep_m > dep_n:\n uf[gr_n] = gr_m\n else:\n uf[gr_m] = gr_n\nprint(res)', '# D\nimport numpy as np\nN = int(input())\nX = np.zeros(N, dtype=int)\nY = np.zeros(N, dtype=int)\n\nfor i in range(N):\n x, y = map(int, input().split())\n X[i] = x\n Y[i] = y\n\n# edges\nX_s = np.argsort(X)\nY_s = np.argsort(Y)\n\nedge_list = []\nedge_weight = []\nfor i in range(N-1):\n edge_list.append([X_s[i], X_s[i+1]])\n edge_weight.append(min(abs(X[X_s[i+1]] - X[X_s[i]]), abs(Y[X_s[i+1]] - Y[X_s[i]])))\n edge_list.append([Y_s[i], Y_s[i+1]])\n edge_weight.append(min(abs(X[Y_s[i+1]] - X[Y_s[i]]), abs(Y[Y_s[i+1]] - Y[Y_s[i]])))\n \n\nsel = np.argsort(np.array(edge_weight))\n\n# union find tree\nuf = dict()\nfor i in range(N):\n uf[i] = i\n\nres = 0\nflg = np.zeros(N)\n\nfor s in sel:\n m, n = edge_list[s]\n # find union\n gr_m = m\n gr_m_list = []\n gr_n = n\n gr_n_list = []\n while gr_m != uf[gr_m]:\n gr_m_list.append(gr_m)\n gr_m = uf[gr_m]\n for m_ in gr_m_list:\n uf[m_] = gr_m\n \n while gr_n != uf[gr_n]:\n gr_n_list.append(gr_n)\n gr_n = uf[gr_n]\n \n for n_ in gr_n_list:\n uf[n_] = gr_n\n if gr_m == gr_n:\n pass\n else:\n res += edge_weight[s]\n if dep_m > dep_n:\n uf[gr_n] = gr_m\n elif dep_m > dep_n:\n uf[gr_n] = gr_m\n else:\n uf[gr_m] = gr_n\nprint(res)', '# D\nimport numpy as np\nN = int(input())\nX = []\nY = []\n\nfor i in range(N):\n x, y = map(int, input().split())\n X.append(x)\n Y.append(y)\n\n# edges\nX_s = np.argsort(np.array(X))\nY_s = np.argsort(np.array(Y))\n\nedge_list = []\nedge_weight = []\nfor i in range(N-1):\n edge_list.append([X_s[i], X_s[i+1]])\n edge_weight.append(X[X_s[i+1]] - X[X_s[i]])\n edge_list.append([Y_s[i], Y_s[i+1]])\n edge_weight.append(Y[Y_s[i+1]] - Y[Y_s[i]])\n \n\nsel = np.argsort(np.array(edge_weight))\n\n# union find tree\nuf = np.arange(N)\n\n\nres = 0\nflg = np.zeros(N)\n\nfor s in sel:\n m, n = edge_list[s]\n # find union\n gr_m = m\n gr_m_list = []\n gr_n = n\n gr_n_list = []\n while gr_m != uf[gr_m]:\n gr_m_list.append(gr_m)\n gr_m = uf[gr_m]\n for m_ in gr_m_list:\n uf[m_] = gr_m\n \n while gr_n != uf[gr_n]:\n gr_n_list.append(gr_n)\n gr_n = uf[gr_n]\n for n_ in gr_n_list:\n uf[n_] = gr_n\n \n if gr_m == gr_n:\n pass\n else:\n res += edge_weight[s]\n uf[gr_n] = gr_m\nprint(res)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s380072078', 's799959648', 's425422743'] | [78600.0, 75548.0, 74088.0] | [1391.0, 1347.0, 1986.0] | [1255, 1321, 1073] |
p03684 | u231685196 | 2,000 | 262,144 | There are N towns on a plane. The i-th town is located at the coordinates (x_i,y_i). There may be more than one town at the same coordinates. You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|a-c|,|b-d|) yen (the currency of Japan). It is not possible to build other types of roads. Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this? | ['\n\n\nclass uf_tree():\n\n def __init__(self,n):\n self.n = n\n self.par = [i for i in range(n)]\n\n def indep(self):\n dep =0\n for i in range(self.n):\n if i == self.par[i]:\n dep += 1\n\n return dep\n\n def unite(self,child,mas):\n if self.root(child) == self.root(mas):\n return\n else:\n self.par[self.root(child)] = self.root(mas)\n\n def root(self,i):\n if self.par[i] == i:\n return i\n else:\n self.par[i] = self.root(self.par[i])\n return self.par[i]\n\n def same(self,x,y):\n if self.root(x) == self.root(y):\n return True\n else:\n return False\ndef kruscal(n,edge_arr):\n edge_arr.sort(key=lambda x:x[2])\n ans = []\n tree = uf_tree(n)\n for e in edge_arr:\n s = e[0]-1\n g = e[1]-1\n if tree.same(s,g):\n continue\n else:\n ans.append(e)\n tree.unite(s,g)\n return ans\n\ndef main():\n n = int(input())\n p = [[0,0,0] for i in range(n)]\n edge = []\n for i in range(n):\n x,y = map(int,input().split())\n p[i][0] = x\n p[i][1] = y\n p[i][2] = i+1\n\n p.sort(key = lambda x:x[0])\n for i in range(n-1):\n cost = min(abs(p[i+1][0]-p[i][0]),abs(p[i+1][1]-p[i][1]))\n edge.append([p[i][2],p[i+1][2],cost])\n\n p.sort(key = lambda x:x[1])\n for i in range(n-1):\n cost = min(abs(p[i+1][0]-p[i][0]),abs(p[i+1][1]-p[i][1]))\n edge.append([p[i][2],p[i+1][2],cost])\n\n ans = kruscal(n,edge)\n tot = 0\n for e in ans:\n tot += e[2]\n print(tot)', '\nclass uf_tree():\n\n def __init__(self,n):\n self.n = n\n self.par = [i for i in range(n)]\n self.rank = [0 for i in range(n)]\n\n def indep(self):\n dep =0\n for i in range(self.n):\n if i == self.par[i]:\n dep += 1\n\n return dep\n\n def unite(self,x,y):\n if self.root(x) == self.root(y):\n return\n else:\n rootx = self.root(x)\n rooty = self.root(y)\n if self.rank[rootx] < self.rank[rooty]:\n self.par[rootx] = rooty\n else:\n self.par[rooty] = rootx\n if self.rank[rootx] == self.rank[rooty]:\n self.rank[rootx] += 1\n def root(self,i):\n if self.par[i] == i:\n return i\n else:\n self.par[i] = self.root(self.par[i])\n return self.par[i]\n\n def same(self,x,y):\n return self.root(x) == self.root(y)\n\ndef kruscal(n,edge_arr):\n edge_arr.sort(key=lambda x:x[2])\n ans = []\n tree = uf_tree(n)\n for e in edge_arr:\n s = e[0]-1\n g = e[1]-1\n if tree.same(s,g):\n continue\n else:\n ans.append(e)\n tree.unite(s,g)\n return ans\n\np = []\nedge = []\nn = int(input())\nfor i in range(n):\n x,y = map(int,input().split())\n p.append([x,y,i+1])\n\np.sort(key = lambda x:x[0])\nfor i in range(n-1):\n cost = min(abs(p[i+1][0]-p[i][0]),abs(p[i+1][1]-p[i][1]))\n edge.append([p[i][2],p[i+1][2],cost])\n\np.sort(key = lambda x:x[1])\nfor i in range(n-1):\n cost = min(abs(p[i+1][0]-p[i][0]),abs(p[i+1][1]-p[i][1]))\n edge.append([p[i][2],p[i+1][2],cost])\n\nans = kruscal(n,edge)\ntot = 0\nfor e in ans:\n tot += e[2]\nprint(tot)'] | ['Wrong Answer', 'Accepted'] | ['s568673150', 's989482792'] | [3192.0, 55196.0] | [18.0, 1602.0] | [1646, 1726] |
p03684 | u497046426 | 2,000 | 262,144 | There are N towns on a plane. The i-th town is located at the coordinates (x_i,y_i). There may be more than one town at the same coordinates. You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|a-c|,|b-d|) yen (the currency of Japan). It is not possible to build other types of roads. Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this? | ["from collections import defaultdict\nfrom heapq import *\n\ndef prim(V, E):\n '''\n Input:\n V = list(range(N))\n E = {i: defaultdict(int) for i in range(N)}\n Output:\n the edges of the minimum weight tree and its weight\n '''\n N = len(V)\n weight = 0; edges = [];\n used = [False]*N; used[0] = True; n_used = 1;\n heap = [(c, 0, v) for v, c in E[0].items()]; heapify(heap)\n while heap and n_used < N:\n c, u, v = heappop(heap)\n if used[v]: continue\n used[v] = True; n_used += 1; edges.append((u, v))\n weight += c\n for w, d in E[v].items():\n if not used[w]: heappush(heap, (d, v, w))\n return edges, weight\n\nN = int(input())\ncities = [(a, b, i) for i, (a, b) in enumerate([tuple(map(int, input().split())) for _ in range(N)])]\nsorted_x, sorted_y = sorted(cities, key=lambda x:x[0]), sorted(cities, key=lambda x:x[1])\nE = {i: defaultdict(int) for i in range(N)}\nfor i in range(N-1):\n (a1, _, u), (a2, _, v) = sorted_x[i], sorted_x[i+1]\n E[u][v], E[v][u] = a2 - a1, a2 - a1\n (_, b1, u), (_, b2, v) = sorted_y[i], sorted_y[i+1]\n E[u][v], E[v][u] = min(b2 - b1, E[u][v]), min(b2 - b1, E[v][u])\nV = list(range(N))\n_, ans = prim(V, E)\nprint(ans)", "from heapq import *\n\ndef prim(V, E):\n '''\n Input:\n V = list(range(N))\n E = {i: defaultdict(int) for i in range(N)}\n Output:\n the edges of the minimum weight tree and its weight\n '''\n N = len(V)\n weight = 0; edges = [];\n used = [False]*N; used[0] = True; n_used = 1;\n heap = [(c, 0, v) for v, c in E[0].items()]; heapify(heap)\n while heap and n_used < N:\n c, u, v = heappop(heap)\n if used[v]: continue\n used[v] = True; n_used += 1; edges.append((u, v))\n weight += c\n for w, d in E[v].items():\n if not used[w]: heappush(heap, (d, v, w))\n return edges, weight\n\nN = int(input())\ncities = [(a, b, i) for i, (a, b) in enumerate([tuple(map(int, input().split())) for _ in range(N)])]\nsorted_x, sorted_y = sorted(cities, key=lambda x:x[0]), sorted(cities, key=lambda x:x[1])\nE = {i: {} for i in range(N)}\nfor i in range(N-1):\n (a1, _, u), (a2, _, v) = sorted_x[i], sorted_x[i+1]\n E[u][v] = min(a2 - a1, E[u][v]) if E[u].get(v) is not None else a2 - a1\n E[v][u] = E[u][v]\n (_, b1, u), (_, b2, v) = sorted_y[i], sorted_y[i+1]\n E[u][v] = min(b2 - b1, E[u][v]) if E[u].get(v) is not None else b2 - b1\n E[v][u] = E[u][v]\nV = list(range(N))\n_, ans = prim(V, E)\nprint(ans)"] | ['Wrong Answer', 'Accepted'] | ['s667371077', 's661137869'] | [88592.0, 87180.0] | [1309.0, 1419.0] | [1234, 1272] |
p03684 | u835482198 | 2,000 | 262,144 | There are N towns on a plane. The i-th town is located at the coordinates (x_i,y_i). There may be more than one town at the same coordinates. You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|a-c|,|b-d|) yen (the currency of Japan). It is not possible to build other types of roads. Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this? | ['s UnionFind(object):\n\n def __init__(self, n):\n self.n = n\n self.par = list(range(n))\n self.rank = [1] * n\n\n def is_same(self, a, b):\n return self.root(a) == self.root(b)\n\n def root(self, x):\n if self.par[x] == x:\n return x\n self.par[x] = self.root(self.par[x])\n return self.par[x]\n\n def unite(self, x, y):\n x = self.root(x)\n y = self.root(y)\n if x == y:\n return\n if self.rank[x] > self.rank[y]:\n self.par[y] = x\n elif self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n self.rank[x] += 1\n\n\nN = int(input())\nX = []\nY = []\nfor i in range(N):\n x, y = map(int, input().split())\n X.append((x, i))\n Y.append((y, i))\n\nX = sorted(X)\nY = sorted(Y)\ngraph = []\nfor i in range(N - 1):\n graph.append((X[i + 1][0] - X[i][0], X[i][1], X[i + 1][1]))\n graph.append((Y[i + 1][0] - Y[i][0], Y[i][1], Y[i + 1][1]))\n\ngraph.sort()\nuf = UnionFind(N)\n\ntotal_cost = 0\nfor cost, a, b in graph:\n if not uf.is_same(a, b):\n uf.unite(a, b)\n total_cost += cost\n\nprint(total_cost)\n', 'class UnionFind(object):\n\n def __init__(self, n):\n self.n = n\n self.par = list(range(n))\n self.rank = [1] * n\n\n def is_same(self, a, b):\n return self.root(a) == self.root(b)\n\n def root(self, x):\n if self.par[x] == x:\n return x\n self.par[x] = self.root(self.par[x])\n return self.par[x]\n\n def unite(self, x, y):\n x = self.root(x)\n y = self.root(y)\n if x == y:\n return\n if self.rank[x] > self.rank[y]:\n self.par[y] = x\n elif self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n self.rank[x] += 1\n\n\nN = int(input())\nX = []\nY = []\nfor i in range(N):\n x, y = map(int, input().split())\n X.append((x, i))\n Y.append((y, i))\n\nX = sorted(X)\nY = sorted(Y)\ngraph = []\nfor i in range(N - 1):\n graph.append((X[i + 1][0] - X[i][0], X[i][1], X[i + 1][1]))\n graph.append((Y[i + 1][0] - Y[i][0], Y[i][1], Y[i + 1][1]))\n\ngraph.sort()\nuf = UnionFind(N)\n\ntotal_cost = 0\nfor cost, a, b in graph:\n if not uf.is_same(a, b):\n uf.unite(a, b)\n total_cost += cost\n\nprint(total_cost)\n'] | ['Runtime Error', 'Accepted'] | ['s119362788', 's860787010'] | [2940.0, 54544.0] | [17.0, 1464.0] | [1170, 1174] |
p03684 | u884087839 | 2,000 | 262,144 | There are N towns on a plane. The i-th town is located at the coordinates (x_i,y_i). There may be more than one town at the same coordinates. You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|a-c|,|b-d|) yen (the currency of Japan). It is not possible to build other types of roads. Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this? | ["#!/usr/bin/env python3\nimport sys\n\nclass UnionFind():\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n \n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n \n if x == y:\n return\n \n if self.parents[x] > self.parents[y]:\n x, y = y, x\n \n self.parents[x] += self.parents[y]\n self.parents[y] = x\n \n def size(self, x):\n return -self.parents[self.find(x)]\n \n def same(self, x, y):\n return self.find(x) == self.find(y)\n \n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n \n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n \n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\n \n def __str__(self):\n return '\\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())\n\n\nclass UnionFindLabel(UnionFind):\n def __init__(self, labels):\n assert len(labels) == len(set(labels))\n \n self.n = len(labels)\n self.parents = [-1] * self.n\n self.d = {x: i for i, x in enumerate(labels)}\n self.d_inv = {i: x for i, x in enumerate(labels)}\n \n def find_label(self, x):\n return self.d_inv[super().find(self.d[x])]\n \n def union(self, x, y):\n super().union(self.d[x], self.d[y])\n \n def size(self, x):\n return super().size(self.d[x])\n \n def same(self, x, y):\n return super().same(self.d[x], self.d[y])\n \n def members(self, x):\n root = self.find(self.d[x])\n return [self.d_inv[i] for i in range(self.n) if self.find(i) == root]\n \n def roots(self):\n return [self.d_inv[i] for i, x in enumerate(self.parents) if x < 0]\n\ndef main():\n N = int(input())\n nodes = []\n for _ in range(N):\n x, y = map(int, input().split())\n nodes.append((x, y))\n\n ufl = UnionFindLabel(nodes)\n nodes_sorted_by_x = sorted(nodes)\n nodes_sorted_by_y = sorted(nodes, key=lambda i: i[1])\n\n # edges = []\n \n \n \n # cost = min(dx, dy)\n \n\n \n \n \n # cost = min(dx, dy)\n \n\n # edges.sort()\n \n # ans = 0\n # for edge in edges:\n # w, s, t = edge\n # if not ufl.same(s, t):\n # ans += w\n \n # print(ans)\n\n print(nodes_sorted_by_x)\n print(nodes_sorted_by_y)\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\nimport sys\n\nclass UnionFind():\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n \n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n \n if x == y:\n return\n \n if self.parents[x] > self.parents[y]:\n x, y = y, x\n \n self.parents[x] += self.parents[y]\n self.parents[y] = x\n \n def size(self, x):\n return -self.parents[self.find(x)]\n \n def same(self, x, y):\n return self.find(x) == self.find(y)\n \n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n \n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n \n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\n \n def __str__(self):\n return '\\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())\n\n\nclass UnionFindLabel(UnionFind):\n def __init__(self, labels):\n assert len(labels) == len(set(labels))\n \n self.n = len(labels)\n self.parents = [-1] * self.n\n self.d = {x: i for i, x in enumerate(labels)}\n self.d_inv = {i: x for i, x in enumerate(labels)}\n \n def find_label(self, x):\n return self.d_inv[super().find(self.d[x])]\n \n def union(self, x, y):\n super().union(self.d[x], self.d[y])\n \n def size(self, x):\n return super().size(self.d[x])\n \n def same(self, x, y):\n return super().same(self.d[x], self.d[y])\n \n def members(self, x):\n root = self.find(self.d[x])\n return [self.d_inv[i] for i in range(self.n) if self.find(i) == root]\n \n def roots(self):\n return [self.d_inv[i] for i, x in enumerate(self.parents) if x < 0]\n\ndef main():\n N = int(input())\n nodes = []\n for _ in range(N):\n x, y = map(int, input().split())\n nodes.append((x, y))\n\n ufl = UnionFindLabel(nodes)\n nodes_sorted_by_x = sorted(nodes)\n nodes_sorted_by_y = sorted(nodes, key=lambda i: i[1])\n\n edges = []\n for i in range(N - 1):\n dx = abs(nodes_sorted_by_x[i][0] - nodes_sorted_by_x[i + 1][0])\n dy = abs(nodes_sorted_by_x[i][1] - nodes_sorted_by_x[i + 1][1])\n cost = min(dx, dy)\n edges.append((cost, nodes_sorted_by_x[i], nodes_sorted_by_x[i + 1]))\n\n for i in range(N - 1):\n dx = abs(nodes_sorted_by_y[i][0] - nodes_sorted_by_y[i + 1][0])\n dy = abs(nodes_sorted_by_y[i][1] - nodes_sorted_by_y[i + 1][1])\n cost = min(dx, dy)\n edges.append((cost, nodes_sorted_by_y[i], nodes_sorted_by_y[i + 1]))\n\n edges.sort()\n \n print(nodes_sorted_by_x)\n print(nodes_sorted_by_y)\n\n # ans = 0\n # for edge in edges:\n # w, s, t = edge\n # if not ufl.same(s, t):\n # ans += w\n \n # print(ans)\n\n \n \nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\nimport sys\n\nclass UnionFind():\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n \n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n \n if x == y:\n return\n \n if self.parents[x] > self.parents[y]:\n x, y = y, x\n \n self.parents[x] += self.parents[y]\n self.parents[y] = x\n \n def size(self, x):\n return -self.parents[self.find(x)]\n \n def same(self, x, y):\n return self.find(x) == self.find(y)\n \n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n \n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n \n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\n \n def __str__(self):\n return '\\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())\n\n\n\ndef main():\n N = int(input())\n nodes = []\n for i in range(N):\n x, y = map(int, input().split())\n nodes.append((x, y, i))\n\n uf = UnionFind(N)\n nodes_sorted_by_x = sorted(nodes)\n nodes_sorted_by_y = sorted(nodes, key=lambda i: i[1])\n\n edges = []\n for i in range(N - 1):\n dx = abs(nodes_sorted_by_x[i][0] - nodes_sorted_by_x[i + 1][0])\n dy = abs(nodes_sorted_by_x[i][1] - nodes_sorted_by_x[i + 1][1])\n cost = min(dx, dy)\n edges.append((cost, nodes_sorted_by_x[i][2], nodes_sorted_by_x[i + 1][2]))\n\n for i in range(N - 1):\n dx = abs(nodes_sorted_by_y[i][0] - nodes_sorted_by_y[i + 1][0])\n dy = abs(nodes_sorted_by_y[i][1] - nodes_sorted_by_y[i + 1][1])\n cost = min(dx, dy)\n edges.append((cost, nodes_sorted_by_y[i][2], nodes_sorted_by_y[i + 1][2]))\n\n edges.sort()\n \n ans = 0\n for edge in edges:\n w, s, t = edge\n if not uf.same(s, t):\n ans += w\n uf.union(s, t)\n print(ans)\n\n \n \nif __name__ == '__main__':\n main()\n"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s278127755', 's372303998', 's153342446'] | [49320.0, 72408.0, 47320.0] | [601.0, 1122.0, 1430.0] | [3257, 3292, 2369] |
p03687 | u021548497 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s = input()[:-1]\nalphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]\n\nans = len(s)\nfor i in range(26):\n k = s.count(alphabet[i])\n ans = min(ans, len(s)-k)\nprint(ans)', 's = input()[:-1]\nalphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]\n\nn = len(s)\nans = n\nfor v in alphabet:\n key = [s[i] for i in range(n)]\n for i in range(n):\n for j in range(n-i):\n if key[j] != v:\n break\n if j == n-i-1:\n ans = min(i, ans)\n break\n \n for j in range(n-1-i):\n if key[j] == v or key[j+1] == v:\n key[j] = v\n \n\nprint(ans)', 's = input()\nalphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]\n\nn = len(s)\nans = n\n\nfor v in alphabet:\n key = [s[i] for i in range(n)]\n \n count = 0\n end = False\n while True:\n for i in range(n-count):\n if key[i] != v:\n break\n if i == n-count-1:\n ans = min(ans, count)\n end = True\n if count == n-1:\n break\n \n if end:\n break\n \n count += 1\n for i in range(n-count):\n if key[i] == v or key[i+1] == v:\n key[i] = v\n\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s077413380', 's824150058', 's915377938'] | [9024.0, 9096.0, 9112.0] | [29.0, 55.0, 48.0] | [257, 558, 689] |
p03687 | u039623862 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["s = input()\nn = len(s)\nmin_t = float('inf')\nfor i in range(n):\n target = s[i]\n pre = 0\n max_t = 0\n for j in range(n):\n if s[j] == s[i]:\n max_t = max(max_t, j-pre-1)\n pre = j\n max_t = max(max_t, n - pre-1)\n if max_t < min_t:\n min_t = min(min_t, max_t)\nprint(min_t)", "import string\ns = input()\nn = len(s)\n\nmin_cnt = float('inf')\n\nfor c in string.ascii_lowercase:\n if c not in s:\n continue\n cnt = 0\n s_ = s[:]\n while s_:\n m = len(s_) - 1\n is_same = True\n for d in s_:\n if d != c:\n is_same = False\n break\n if is_same:\n min_cnt = min(min_cnt, n - m-1)\n s_next = [''] * m\n for i in range(m):\n if s_[i] == c or s_[i + 1] == c:\n s_next[i] = c\n else:\n s_next[i] = s_[i]\n s_ = s_next\n\nprint(min_cnt)\n"] | ['Wrong Answer', 'Accepted'] | ['s452351236', 's271697239'] | [3064.0, 9876.0] | [21.0, 55.0] | [317, 596] |
p03687 | u057993957 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from collections import Counter\ns = input()\ncnt = Counter(s).most_common()\nprint(cnt)\n\nmins = len(s) - 1\nfor k, v in cnt:\n if v != 1:\n ind = 0\n dist = []\n for i in range(len(s)):\n if k == s[i]:\n dist.append(i-ind+1) \n ind = i\n mins = min(max(dist), mins)\nprint(mins)', 's = input()\n\nans = 1000\nfor c in set(s):\n ans = min(ans, max([len(si) for si in s.split(c)]))\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s357799901', 's981377925'] | [3316.0, 2940.0] | [21.0, 17.0] | [338, 107] |
p03687 | u125545880 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['import sys\n\nsys.setrecursionlimit(10**6)\n\ndef handling(string, letter):\n global cnt\n cnt += 1\n for i, r in enumerate(string):\n if r == letter and 0 < i < len(string):\n if string[i-1] != letter:\n string[i-1] = letter\n elif i < len(string)-1:\n string[i+1] = letter\n else:\n pass\n if string[-1] != letter:\n string.pop()\n else:\n string = string[1:]\n if len(set(string)) != 1:\n handling(string, letter)\n\ndef main():\n global cnt\n s = list(input())\n sletter = set(s)\n if len(sletter) == 1:\n print(0)\n return\n ans = 101\n for l in sletter:\n cnt = 0\n t = s.copy()\n handling(t, l)\n ans = min(ans, cnt)\n print(ans)\n\nif __name__ == "__main__":\n main()\n', 'import sys\n\nsys.setrecursionlimit(10**6)\n\ndef handling(string, letter):\n global cnt\n cnt += 1; nxt = []\n for i in range(len(string)-1):\n s1, s2 = string[i], string[i+1]\n if s1 == letter:\n nxt.append(s1)\n elif s2 == letter:\n nxt.append(s2)\n else:\n nxt.append(s1)\n if len(set(nxt)) != 1:\n handling(nxt, letter)\n\ndef main():\n global cnt\n s = list(input())\n sletter = set(s)\n if len(sletter) == 1:\n print(0)\n return\n ans = 101\n for l in sletter:\n cnt = 0\n t = s.copy()\n handling(t, l)\n ans = min(ans, cnt)\n print(ans)\n\nif __name__ == "__main__":\n main()\n'] | ['Wrong Answer', 'Accepted'] | ['s287615260', 's406224046'] | [3064.0, 3064.0] | [25.0, 36.0] | [828, 696] |
p03687 | u151785909 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["s = input()\na = [[0] for i in range(26)]\n\nfor i in range(len(s)):\n a[ord(s[i])-ord('a')].append(i)\n\nfor i in range(26):\n a[i].append(len(s)-1)\n\nans = float('inf')\nfor i in range(26):\n ma = 0\n for j in range(1,len(a[i])):\n dis = a[i][j]-a[i][j-1]-1\n ma = max(dis,ma)\n ans = min(ma,ans)\n\nprint(ans)\n", "s = input()\na = [[-1] for i in range(26)]\n\nfor i in range(len(s)):\n a[ord(s[i])-ord('a')].append(i)\n\nfor i in range(26):\n a[i].append(len(s))\n\nans = float('inf')\nfor i in range(26):\n ma = 0\n for j in range(1,len(a[i])):\n dis = a[i][j]-a[i][j-1]-1\n ma = max(dis,ma)\n ans = min(ma,ans)\n\nprint(ans)\n"] | ['Wrong Answer', 'Accepted'] | ['s006979868', 's803437396'] | [3064.0, 3064.0] | [18.0, 18.0] | [326, 325] |
p03687 | u163320134 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["check='abcdefghijklmnopqrstuvwxyz'\ns=input()\nl=len(s)\npos=[0]*26\nfor i in range(l):\n for j in range(26):\n if s[i]==check[j]:\n pos[j].append(i)\nans=10**9:\n for i in range(26):\n tmp=0\n for j in range(len(pos[i])-1):\n tmp=max(tmp,pos[i][j+1]-pos[i][j])\n tmp=max(tmp,(l-1)-pos[i][-1])\n ans=min(ans,tmp)\nprint(ans)", "check='abcdefghijklmnopqrstuvwxyz'\ns=input()\nl=len(s)\npos=[[0] for _ in range(26)]\nfor i in range(l):\n for j in range(26):\n if s[i]==check[j]:\n pos[j].append(i+1)\nans=10**9\nfor i in range(26):\n tmp=0\n for j in range(len(pos[i])-1):\n tmp=max(tmp,pos[i][j+1]-pos[i][j]-1)\n tmp=max(tmp,l-pos[i][-1])\n ans=min(ans,tmp)\nprint(ans)\n"] | ['Runtime Error', 'Accepted'] | ['s852482623', 's477013670'] | [2940.0, 3064.0] | [17.0, 18.0] | [336, 342] |
p03687 | u177481830 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s=input()\nprint(s)', 's=input()\n\nminCost=len(s)\nfor char in char_set:\n m=max([len(_) for _ in s.split(char)])\n if m<minCost:\n minCost=m\nprint(minCost)', 's=input()\n\nminCost=len(s)\nchar_set=set(s)\nfor char in char_set:\n m=max([len(_) for _ in s.split(char)])\n if m<minCost:\n minCost=m\nprint(minCost)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s271083404', 's333673249', 's304119948'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [18, 172, 188] |
p03687 | u227082700 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s=input()\nans=len(s)\ndef a(s,t):\n ss=""\n a=0\n b=False\n for i in range(len(s)-1):\n if s[i]!=t!=s[i+1]:ss+=s[i];b=True\n else:ss+=t\n if b:a=a(ss,t)\n return a+1\nfor i in s:ans=min(ans,a(s,i))\nprint(ans)', 's=input()\nse=set(list(s))\nx=len(s)\nfor i in se:\n a=b=0\n for j in s:\n if i==j:a=0\n else:a+=1;b=max(a,b)\n x=min(x,b)\nprint(x)'] | ['Runtime Error', 'Accepted'] | ['s392724576', 's233852479'] | [3064.0, 2940.0] | [17.0, 18.0] | [210, 132] |
p03687 | u252828980 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s = input()#print(len(s))\nnum = []\n\nli1 = []\nn = 0\nwhile n < len(s):\n \n li2 = []\n for i in range(len(s)):\n if s[i] == s[n]:\n li2.append(i)\n #print(li2)\n if len(li2) == 1:\n num.append(li2[0])\n break\n elif len(li2) >=2: \n idx = li2[0]\n li1 = []\n for i in range(len(li2)-1):\n idx = max(idx,li2[i+1]-li2[i])\n li1.append(idx)\n #print(li1)\n num.append(max(li1))\n n += 1\nprint(min(num))\n \n \n', 'from copy import deepcopy\ns = input()\n\nans = 10**10\nfor i in range(len(s)):\n a = s[i]\n t = deepcopy(s)\n cnt = 0\n \n while len(set(list(t))) !=1:\n \n cnt +=1\n while True:\n S = ""\n for j in range(len(t)-1):\n if (t[j] == a) or (t[j+1] == a):\n S +=a\n #print(t,S,j,t[j],t[j+1],a)\n else:\n S +=t[j]\n\n else:\n t = deepcopy(S)\n #print(S,cnt)\n break\n ans = min(ans,cnt)\n #print(S,t,i,ans)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s205106235', 's353592391'] | [3064.0, 9160.0] | [23.0, 169.0] | [500, 593] |
p03687 | u256868077 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s=input()\nl=len(s)\na=[1]*(l+1)\nc=[]\nx=0\nwhile(x<=l-1):\n if(a[x]==1):\n a[x]=0\n k=0\n b=[x-1]\n t=s+s[x]\n for i in range(x+1,l+1):\n if(t[x]==t[i]):\n b.append(k)\n a[i]=0\n k=0\n else:\n k+=1\n c.append(max(b))\n x+=1\nprint(min(c))', 's=input()\nl=len(s)\na=[1]*(l+1)\nc=[]\nx=0\nwhile(x<=l-1):\n if(a[x]==1):\n a[x]=0\n k=0\n b=[x]\n t=s+s[x]\n for i in range(x+1,l+1):\n if(t[x]==t[i]):\n b.append(k)\n a[i]=0\n k=0\n else:\n k+=1\n c.append(max(b))\n x+=1\nprint(min(c))'] | ['Wrong Answer', 'Accepted'] | ['s470576215', 's565407024'] | [3064.0, 3064.0] | [18.0, 17.0] | [278, 276] |
p03687 | u263830634 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s = list(input())\nN = len(s)\nif N == 1:\n print (0)\n exit()\n\n ans = 99\nfor i in range(1, N): \n tmp = 0 \n count = 0 \n for j in range(i):\n if s[j] == s[i]:\n tmp = max(tmp, count)\n count = 0\n else:\n count += 1\n tmp = max(tmp, count)\n ans = min(ans, max(tmp, N - i - 1))\n\nprint (ans)', 's = list(input())\nN = len(s)\nif N == 1:\n print (0)\n exit()\n\nans = 99\nfor i in range(1, N): \n tmp = 0 \n count = 0 \n for j in range(i):\n if s[j] == s[i]:\n tmp = max(tmp, count)\n count = 0\n else:\n count += 1\n tmp = max(tmp, count)\n ans = min(ans, max(tmp, N - i - 1))\n\nprint (ans)'] | ['Runtime Error', 'Accepted'] | ['s517012773', 's850335938'] | [3064.0, 3064.0] | [17.0, 19.0] | [466, 462] |
p03687 | u278356323 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["s = input()\nprint(s.count('r'))\n\n\ndef calc(s, a):\n if s.count(a) == len(s):\n return 0\n ns = s[:-1]\n for i in range(len(s)-1):\n if s[i] == a or s[i+1] == a:\n ns[i] = a\n return 1+calc(ns, a)\n\n\n# for a in list('abcdefghijklmnopqrstuvwxyz'):\n# print(a)\n", 'from collections import Counter\n\ns = input()\n\n\ndef convert(st, toS, cou):\n if st.count(st[0]) == len(st):\n return cou\n for i in range(len(st)):\n if i+1 < len(st) and st[i+1] == toS:\n st[i] = toS\n return convert(st[:-1], toS, cou+1)\n\n\nans = 200\nfor j in set(s):\n ans = min(ans, convert(list(s), j, 0))\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s928774580', 's239120467'] | [2940.0, 3316.0] | [17.0, 34.0] | [289, 349] |
p03687 | u309977459 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['#s = input()\ns = "zzz"\ns = "whbrjpjyhsrywlqjxdbrbaomnw"\nf = {}\ng = {}\n\nchars = [c for c in s]\n#print(chars)\n\nfor char in chars:\n f[char] = []\n f[char].append(-1)\n for i, c in enumerate(s):\n if(c==char):\n f[char].append(i)\n f[char].append(len(s))\n\nmax_len_all = len(s)\nfor char in chars:\n max_len = 0\n for i in range(len(f[char])-1):\n max_len = max(max_len, f[char][i+1]-f[char][i])\n g[char] = max_len\n if(g[char]<max_len_all):\n ans = char\n max_len_all = g[char]\n\n\n\n#print(f)\n#print(g)\nprint(max_len_all-1)\n', 's = input()\nf = {}\ng = {}\n\nchars = [c for c in s]\n#print(chars)\n\nfor char in chars:\n f[char] = []\n f[char].append(-1)\n for i, c in enumerate(s):\n if(c==char):\n f[char].append(i)\n f[char].append(len(s))\n\nmax_len_all = len(s)\nfor char in chars:\n max_len = 0\n for i in range(len(f[char])-1):\n max_len = max(max_len, f[char][i+1]-f[char][i])\n g[char] = max_len\n if(g[char]<max_len_all):\n ans = char\n max_len_all = g[char]\n\n\n\n#print(f)\n#print(g)\nprint(max_len_all-1)\n'] | ['Wrong Answer', 'Accepted'] | ['s456105633', 's446011185'] | [3064.0, 3064.0] | [17.0, 23.0] | [569, 525] |
p03687 | u323680411 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['import sys\n\n\ndef next_str() -> str:\n result = ""\n while True:\n tmp = sys.stdin.read(1)\n if tmp.strip() != "":\n result += tmp\n elif tmp != \'\\r\':\n break\n return result\n\n\ndef main() -> None:\n s = next_str()\n dic = [set() for _ in range(len(s))]\n\n flg = False\n\n for i in range(len(s)):\n dic[i].add(s[i])\n\n print(dic)\n\n while True:\n for c in range(ord(\'a\'), ord(\'z\') + 1):\n for i in range(len(dic)):\n if chr(c) not in dic[i]:\n break\n else:\n flg = True\n\n for i in range(len(dic) - 1):\n dic[i] |= dic[i + 1]\n\n if flg: break\n dic = dic[:-1]\n\n print(len(s) - len(dic))\n\n\nif __name__ == \'__main__\':\n main()', 'import sys\n\n\ndef next_str() -> str:\n result = ""\n while True:\n tmp = sys.stdin.read(1)\n if tmp.strip() != "":\n result += tmp\n elif tmp != \'\\r\':\n break\n return result\n\n\ndef main() -> None:\n s = next_str()\n dic = [set() for _ in range(len(s))]\n\n flg = False\n\n for i in range(len(s)):\n dic[i].add(s[i])\n\n while True:\n for c in range(ord(\'a\'), ord(\'z\') + 1):\n for i in range(len(dic)):\n if chr(c) not in dic[i]:\n break\n else:\n flg = True\n\n for i in range(len(dic) - 1):\n dic[i] |= dic[i + 1]\n\n if flg: break\n dic = dic[:-1]\n\n print(len(s) - len(dic))\n\n\nif __name__ == \'__main__\':\n main()'] | ['Wrong Answer', 'Accepted'] | ['s157957700', 's598539742'] | [3064.0, 3064.0] | [19.0, 19.0] | [789, 773] |
p03687 | u354638986 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["def main():\n s = input()\n c_set = set(s)\n\n min_c = len(s)\n for i in range(len(s)):\n if s[i] in c_set:\n max_c, f_idx = i, i\n for j in range(i+1, len(s)):\n if s[i] == s[j] or j == len(s) - 1:\n if max_c < j - f_idx - 1:\n max_c = j - f_idx - 1\n\n f_idx = j\n\n if max_c < min_c:\n min_c = max_c\n\n c_set.remove(s[i])\n\n print(min_c)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n s = input()\n\n dic = {}\n for i in range(len(s)):\n if s[i] in dic:\n dic[s[i]].append(i)\n else:\n dic[s[i]] = [i]\n\n ans = 101\n for k in dic:\n dic[k].append(-1)\n dic[k].append(len(s))\n dic[k].sort()\n\n mx = -1\n for j in range(len(dic[k])-1):\n mx = max(mx, dic[k][j+1]-dic[k][j]-1)\n\n ans = min(ans, mx)\n\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s900588511', 's268000131'] | [3064.0, 3064.0] | [18.0, 18.0] | [520, 469] |
p03687 | u374531474 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from collections import Counter\n\ns = list(input())\n\nc = Counter(s)\nmc = c.most_common()\nlen_s = len(s)\nans = len_s\nfor l, n in mc:\n if n != mc[0][1]:\n break\n prev = 0\n x = 0\n for i in range(len_s):\n if s[i] == l:\n x = max(x, i - prev)\n prev = i + 1\n ans = min(ans, x)\n print(l, n, x)\nprint(ans)\n', 's = input()\nprint(min(max(len(p) for p in s.split(l)) for l in set(list(s))))\n'] | ['Wrong Answer', 'Accepted'] | ['s497536388', 's554191079'] | [3316.0, 2940.0] | [21.0, 18.0] | [349, 78] |
p03687 | u405256066 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from sys import stdin\ns= (stdin.readline().rstrip())\nf = lambda a, b: abs(a-b-1)\ndiff = lambda ls: map(f, ls[1:], ls)\n\nans = 100\nfor i in set(s):\n indexes = [j for j,x in enumerate(list(s)) if x == i]\n indexes = [0] + indexes + [len(s)]\n index_diff = list(diff(indexes))\n ans = min(ans,max(max(index_diff),1))\nif len(set(s)) == 1:\n ans = 0\nprint(ans)', 'from sys import stdin\ns= (stdin.readline().rstrip())\nf = lambda a, b: abs(a-b-1)\ndiff = lambda ls: map(f, ls[1:], ls)\n\nans = 100\nfor i in set(s):\n indexes = [j for j,x in enumerate(list(s)) if x == i]\n indexes = [0] + indexes + [len(s)]\n index_diff = list(diff(indexes))\n if i == s[0]:\n ans = min(ans,max(index_diff))\n elif i == s[-1]:\n ans = min(ans,max(index_diff)+1)\n else:\n ans = min(ans,max(index_diff))\nif len(set(s)) == 1:\n ans = 0\nprint(ans)', 'from sys import stdin\ns= (stdin.readline().rstrip())\nf = lambda a, b: abs(a-b-1)\ndiff = lambda ls: map(f, ls[1:], ls)\n\nans = 100\nfor i in set(s):\n ans = min(ans,max([len(j) for j in s.split(i)]))\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s120566953', 's421971274', 's274522662'] | [3064.0, 3064.0, 3060.0] | [17.0, 18.0, 17.0] | [363, 483, 209] |
p03687 | u453642820 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['S=input()\nA="abcdefghijklmnopqrstuvwxyz"\nminimum=len(S)//2\nfor a in A:\n maximum=0\n for s in S:\n p=-1\n if a==s:\n maximum=max(p-1,maximum)\n p=0\n else:\n p+=1\n minimum=min(maximum,minimum)\nprint(minimum)', 'S=input()\nA="abcdefghijklmnopqrstuvwxyz"\nminimum=len(S)//2\nfor a in set(S):\n maximum=0\n ans_max=0\n p=0\n for s in S:\n if a==s:\n ans_max=max(p-1,maximum)\n p=0\n else:\n p+=1\n minimum=min(ans_max,minimum)\nprint(minimum)', 'from collections import Counter\nS=input()\ns=Counter(S)\nT=[key for key,value in s.items() if max(s.values())==value]\nminimum=len(S)//2\nfor t in T:\n P=[i for i,x in enumerate(S) if x==t]+[len(S)-1]\n maximum=P[0]\n for j in range(1,len(P)):\n if maximum<P[j]-P[j-1]-1:\n maximum=P[j]-P[j-1]-1\n minimum=min(minimum,maximum)\nprint(minimum)', 'S=input()\nA="abcdefghijklmnopqrstuvwxyz"\nminimum=len(S)//2\nfor a in A:\n ans_max=0\n p=0\n for s in S:\n if a==s:\n ans_max=max(p,ans_max)\n p=0\n else:\n p+=1\n ans_max=max(p,ans_max)\n minimum=min(ans_max,minimum)\nprint(minimum)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s010263432', 's086940338', 's092113759', 's774518824'] | [3060.0, 3060.0, 3316.0, 3060.0] | [17.0, 17.0, 21.0, 17.0] | [262, 276, 361, 282] |
p03687 | u455591217 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["\nimport sys\n\ndef judgeUpper(ansList, var):\n for a in ansList:\n if int(a) > var:\n# print(a + ':' + str(var) + str(True))\n return True\n return False\ndef judgeEqual(ansList, var, N):\n count = ansList.count(str(var))\n# print(str(count) + ':' + str(N-1) + str(count < N - 1))\n return count < N - 1 or (count == N and var * 2 > N and var+1 != N)\ndef judgeLower(ansList, var):\n for a in ansList:\n if int(a) < var - 1:\n# print(a + ':' + str(var-1) + str(True))\n return True\n return False\n \nN = input()\nansList = input().split(' ')\nfor i in range(int(N)):\n var = i + 1\n if judgeUpper(ansList, var):\n continue\n if judgeEqual(ansList, var, int(N)):\n continue\n if judgeLower(ansList, var):\n continue\n print('Yes')\n sys.exit()\nprint('No')", '\ndef convertList(strList, c):\n time = 0\n tmpList = list(strList)\n while tmpList.count(c) != len(tmpList):\n newList = []\n for i in range(len(tmpList[:])-1):\n newList.append(c if (tmpList[i] == c or tmpList[i+1] == c) else tmpList[i])\n tmpList = list(newList)\n time += 1\n return time\n\nS = input()\nstrList = list(S)\nstrSet = set(strList)\nminTime = 1000000 \nfor c in strSet:\n time = convertList(strList, c)\n if minTime > time:\n minTime = time\nprint(minTime)'] | ['Runtime Error', 'Accepted'] | ['s785255850', 's587681264'] | [3188.0, 3064.0] | [17.0, 38.0] | [853, 517] |
p03687 | u500297289 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["s = input()\nl = set(list(s))\nN = len(s)\nn = len(s)\nans = 0\n\nfor ll in l:\n S = s\n while n > 0:\n tmp = ''\n for i in range(n - 1):\n if S[i] == ll or S[i + 1] == ll:\n tmp += ll\n else:\n tmp += S[i]\n if len(set(tmp)) == 1:\n ans = max(ans, len(tmp))\n break\n n -= 1\n S = tmp\n\nprint(N - ans)\n", "s = input()\nl = list(s)\nN = len(s)\nn = len(s)\nans = 0\n\nfor ll in l:\n S = s\n n = N\n while n > 0:\n tmp = ''\n for i in range(n - 1):\n if S[i] == ll or S[i + 1] == ll:\n tmp += ll\n else:\n tmp += S[i]\n print(tmp)\n if len(set(tmp)) == 1:\n ans = max(ans, len(tmp))\n break\n n -= 1\n S = tmp\n\nprint(N - ans)\n", "s = input()\nl = list(s)\nN = len(s)\nn = len(s)\nans = 0\n\nfor ll in l:\n S = s\n while n > 0:\n tmp = ''\n for i in range(n - 1):\n if S[i] == ll or S[i + 1] == ll:\n tmp += ll\n else:\n tmp += S[i]\n if len(set(tmp)) == 1:\n ans = max(ans, len(tmp))\n break\n n -= 1\n S = tmp\n\nprint(N - ans)\n", "s = input()\nl = list(s)\nN = len(s)\nn = len(s)\nans = 0\n\nif len(set(s)) == 1:\n print(0)\n exit()\n\nfor ll in l:\n S = s\n n = N\n while n > 0:\n tmp = ''\n for i in range(n - 1):\n if S[i] == ll or S[i + 1] == ll:\n tmp += ll\n else:\n tmp += S[i]\n if len(set(tmp)) == 1:\n ans = max(ans, len(tmp))\n break\n n -= 1\n S = tmp\n\nprint(N - ans)\n"] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s252460630', 's309511823', 's783768469', 's777046932'] | [3064.0, 3444.0, 3064.0, 3064.0] | [19.0, 141.0, 20.0, 136.0] | [398, 422, 393, 449] |
p03687 | u593567568 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from collections import Counter\n\nS = input()\nuni_s = list(set(list(S)))\n\nans = len(S) - 1\n\n# -1,1\nfor s in uni_s:\n L = len(S)\n T = list(S)\n all_same = [s == t for t in S]\n cnt = 0\n while not all(all_same):\n newT = [False] * (L-1)\n for i in range(L):\n t = T[i]\n if s == t:\n newT[i] = t\n if 0 <= i-1:\n newT[i-1] = t\n else:\n if not newT[i]:\n newT[i] = t\n if 0 <= i-1 and not newT[i-1]:\n newT[i-1] = t\n \n all_same = [s==t for t in newT]\n T = newT\n L = len(T)\n ans = min(ans,cnt)\n\nprint(ans)\n \n ', 'S = input()\nuni_s = list(set(list(S)))\n\nans = len(S) - 1\n\n# -1,1\nfor s in uni_s:\n L = len(S)\n T = list(S)\n all_same = [s == t for t in S]\n cnt = 0\n while not all(all_same):\n newT = [False] * (L-1)\n for i in range(L):\n t = T[i]\n if s == t:\n if i < L-1:\n newT[i] = t\n if 0 <= i-1:\n newT[i-1] = t\n else:\n if i < L-1 and not newT[i]:\n newT[i] = t\n if 0 <= i-1 and not newT[i-1]:\n newT[i-1] = t\n \n all_same = [s==t for t in newT]\n T = newT\n L = len(T)\n ans = min(ans,cnt)\n\nprint(ans)\n \n \n', 'S = input()\nuni_s = list(set(list(S)))\n\nans = len(S) - 1\n\n# -1,1\nfor s in uni_s:\n L = len(S)\n T = list(S)\n all_same = [s == t for t in S]\n cnt = 0\n while not all(all_same):\n cnt += 1\n newT = [False] * (L-1)\n for i in range(L):\n t = T[i]\n if s == t:\n if i < L-1:\n newT[i] = t\n if 0 <= i-1:\n newT[i-1] = t\n else:\n if i < L-1 and not newT[i]:\n newT[i] = t\n if 0 <= i-1 and not newT[i-1]:\n newT[i-1] = t\n \n all_same = [s==t for t in newT]\n T = newT\n L = len(T)\n ans = min(ans,cnt)\n\nprint(ans)\n \n \n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s286421990', 's414024741', 's506562296'] | [3316.0, 3064.0, 3192.0] | [21.0, 64.0, 71.0] | [592, 594, 607] |
p03687 | u594329566 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['def solve (a , d):\n c=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n old =a\n a=""\n for i in old:\n c[ord(i)-97]+=1\n if len(old) == max(c):\n return 0\n for i in range(len(old)-2):\n if old[i]==d or old[i+1]==d:\n a+=d\n else :\n a+=old[i]\n print(a+":")\n return solve(a,d)+1\n\na=input()\nb=True\n\nan =9999999999\nc=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\nfor i in a:\n c[ord(i)-97]+=1\nindexes = [i for i, x in enumerate(c) if x == max(c)]\nfor i in indexes:\n print(chr(i+97)+"!!")\n t= solve(a,chr(i+97))\n if t<an:\n an=t\n\nprint(an)', 'def solve (a , d):\n c=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n old =a\n a=""\n for i in old:\n c[ord(i)-97]+=1\n if len(old) == max(c):\n return 0\n for i in range(len(old)-2):\n if old[i]==d or old[i+1]==d:\n a+=d\n else :\n a+=old[i]\n return solve(a,d)+1\n\na=input()\nb=True\n\nan =9999999999\nc=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\nfor i in a:\n c[ord(i)-97]+=1\nindexes = [i for i, x in enumerate(c) if x == max(c)]\nfor i in indexes:\n t= solve(a,chr(i+97))\n if t<an:\n an=t\n\nprint(an)', 'def solve (a , d):\n c=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n old =a\n a=""\n for i in old:\n c[ord(i)-97]+=1\n if len(old) == max(c):\n return 0\n for i in range(len(old)-1):\n if old[i]==d or old[i+1]==d:\n a+=d\n else :\n a+=old[i]\n return solve(a,d)+1\n\na=input()\nb=True\n\nan =9999999999\nc=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\nfor i in a:\n c[ord(i)-97]+=1\nindexes = [i for i, x in enumerate(c) if x == max(c)]\nfor i in a:\n t= solve(a,i)\n if t<an:\n an=t\n\nprint(an)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s631406502', 's674969615', 's511807277'] | [3064.0, 3064.0, 3188.0] | [19.0, 19.0, 116.0] | [636, 593, 579] |
p03687 | u619819312 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s=list(input())\np=[chr(ord("a")+i)for i in range(26)]\nq=100\nif len(list(set(d)))==1:\n print(0)\nelse:\n for i in range(26):\n t=p[i]\n d=s[:]\n c=0\n while len(d)>0:\n c+=1\n for j in range(len(d)-1):\n if d[j]==t or d[j+1]==t:\n d[j]=t\n else:\n d.pop(-1)\n if len(list(set(d)))==1 and d[0]==t:\n break\n q=min(q,c)\n print(q)', 's=list(input())\np=[chr(ord("a")+i)for i in range(26)]\nq=100\nif len(list(set(s)))==1:\n print(0)\nelse:\n for i in range(26):\n t=p[i]\n d=s[:]\n c=0\n while len(d)>0:\n c+=1\n for j in range(len(d)-1):\n if d[j]==t or d[j+1]==t:\n d[j]=t\n else:\n d.pop(-1)\n if len(list(set(d)))==1 and d[0]==t:\n break\n q=min(q,c)\n print(q)'] | ['Runtime Error', 'Accepted'] | ['s713923091', 's650419438'] | [3064.0, 3064.0] | [18.0, 48.0] | [471, 471] |
p03687 | u623687794 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s=input()\nans=1000\nfor i in range(26):\n if chr(97+i) not in s:continue\n S=s\n cnt=0\n while(len(set(S)))!=1:\n cnt+=1\n t=""\n for j in range(len(S)-1):\n if S[j] == chr(97+i) or S[j+1] == chr(97+i):\n t+=chr(97+i)\n else:\n t+=S[j]\n ans=min(cnt,ans)\nprint(ans)', 's=input()\nans=1000\nfor i in range(26):\n if chr(97+i) not in s:continue\n S=s\n cnt=0\n while(len(set(S)))!=1:\n cnt+=1\n t=""\n for j in range(len(S)-1):\n if S[j] == chr(97+i) or S[j+1] == chr(97+i):\n t+=chr(97+i)\n else:\n t+=S[j]\n S=t\n ans=min(cnt,ans)\nprint(ans)\n'] | ['Time Limit Exceeded', 'Accepted'] | ['s678434882', 's505406075'] | [3064.0, 3064.0] | [2103.0, 68.0] | [290, 299] |
p03687 | u624475441 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['S = input()\nans = min(max(map(len, S.split(c)))\n for c in [chr(i + 97) for i in range(26)]\n if c not in S))\nprint(ans)', 'S = input()\nans = min(max(map(len, S.split(c)))\n for c in [chr(i + 97) for i in range(26)]\n if c not in S)\nprint(ans)', 'S = input()\nans = min(max(map(len, S.split(c)))\n for c in [chr(i + 97) for i in range(26)]\n if c in S)\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s027369558', 's092047056', 's200444093'] | [2940.0, 2940.0, 2940.0] | [18.0, 18.0, 18.0] | [136, 135, 131] |
p03687 | u626468554 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['S = list(input())\ndis = [0 for i in range(26)]\nmm = [0 for i in range(26)]\n\nfor i in range(len(S)):\n wd = ord(S[i])-97\n dis[wd] = max(dis[wd],i-mm[wd]-1)\n mm[wd] = i\n\nfor i in range(26):\n dis[i] = max(dis[i],len(S)-mm[i]-1)\nprint(min(dis))', 'S = list(input())\ndis = [0 for i in range(26)]\nmm = [-1 for i in range(26)]\n\nfor i in range(len(S)):\n wd = ord(S[i])-97\n dis[wd] = max(dis[wd],i-mm[wd]-1)\n mm[wd] = i\n\nfor i in range(26):\n dis[i] = max(dis[i],len(S)-mm[i]-1)\nprint(min(dis))\n# print(dis)'] | ['Wrong Answer', 'Accepted'] | ['s082964274', 's520541824'] | [3064.0, 3064.0] | [18.0, 17.0] | [251, 265] |
p03687 | u629350026 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s=str(input())\nimport collections\nc=collections.Counter(s)\ntemp=c.most_common()[0][0]\ntempc=c.most_common()[0][1]\nl=len(s)\na=0\ncnt=0\nfor i in range(l):\n if s[i]!=temp:\n cnt=cnt+1\n else:\n a=max(a,cnt)\n cnt=0\na=max(a,cnt)\nprint(a)', 's=str(input())\nl=len(s)\nans=99999999999\nfor j in s:\n temp=j\n a=0\n cnt=0\n for i in range(l):\n if s[i]!=temp:\n cnt=cnt+1\n else:\n a=max(a,cnt)\n cnt=0\n a=max(a,cnt)\n ans=min(a,ans)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s265387072', 's130547215'] | [3316.0, 3064.0] | [23.0, 19.0] | [239, 214] |
p03687 | u676264453 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['\nS = str(input())\n\nc = 0\nma = 0\nfor i in S:\n c = 0\n for k,j in enumerate(S):\n if ( k != 0 and k != N-1 and j != i and S[k-1] != a and S[k+1] != a):\n c += 1\n ma = min(ma, c)\n\nprint(ma)\n\n\n', '\n S = str(input())\n\n c = 0\n ma = 0\n for i in S:\n c = 0\n for k,j in enumerate(S):\n if ( k != 0 and k != len(S) and j != i and S[k-1] != a and S[k+1] != a):\n c += 1\n ma = min(ma, c)\n\n print(ma)\n\n', 'def check(s, S):\n for i in S:\n if (i != s):\n return True\n return False\n\nS = str(input())\nT = S\n\nm = 1000\nfor s in S:\n num = 0\n T = S\n while (check(s, T)):\n num += 1\n K = []\n for i in range(0, len(T) - 1):\n if s == T[i+1]:\n K.append(T[i+1])\n else:\n K.append(T[i])\n T = K\n m = min(m, num)\n\nprint(m)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s700341936', 's720982567', 's974860591'] | [2940.0, 2940.0, 3064.0] | [17.0, 18.0, 116.0] | [213, 225, 413] |
p03687 | u691018832 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\ns = input()\nlen_s = len(s)\ncnt = [0] * 26\nal = [chr(ord('a') + i) for i in range(26)]\nans = [''] * (len_s + 1)\nans[0] = s\nfor i in range(26):\n check = list(s)\n if al[i] in check:\n ans[0] = s\n while any([al[i] != a for a in check]):\n cnt[i] += 1\n for j in range(len_s - cnt[i]):\n if ans[cnt[i] - 1][j + 1] == al[i]:\n ans[cnt[i]] += al[i]\n else:\n ans[cnt[i]] += ans[cnt[i] - 1][j]\n check = list(ans[cnt[i]])\n ans[cnt[i] - 1] = ''\nif all(cnt[i] == 0 for i in range(26)):\n print(0)\nelse:\n s = list(set(s))\n s.sort()\n if s[0] == 0:\n print(s[1])\n else:\n print(s[0])\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nfrom copy import deepcopy\n\n\ndef moji_list(a, b):\n \n \n \n \n \n \n return [chr(i) for i in range(a, b)]\n\n\ns = list(read().rstrip().decode())\nans = float('inf')\nfor al in moji_list(97, 123):\n cnt = 0\n check_s = deepcopy(s)\n while len(set(check_s)) > 1:\n cnt += 1\n ss = []\n for bf, af in zip(check_s, check_s[1:]):\n ss.append(af if af == al else bf)\n check_s = ss\n ans = min(ans, cnt)\nprint(ans)\n"] | ['Wrong Answer', 'Accepted'] | ['s656850982', 's315987573'] | [3064.0, 3436.0] | [82.0, 44.0] | [869, 828] |
p03687 | u692632484 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["s=input()\ns.lower()\n\na=[0 for i in range(26)]\nfor i in s:\n\ta[ord(i)-ord('a')]+=1\ntest=max(a)\n\nprint(len(s)-test)", 's=input()\n\nans=int(len(s)/2)\nfor i in range(26):\n\ttemp=0\n\ttempAns=0\n\tif s.count(chr(i+97))!=0:\n\t\tfor j in s:\n\t\t\tif j==chr(i+97):\n\t\t\t\ttempAns=max(temp,tempAns)\n\t\t\t\ttemp=0\n\t\t\telse:\n\t\t\t\ttemp+=1\n\t\ttempAns=max(temp,tempAns)\n\t\tans=min(ans,tempAns)\n\t\t#print(tempAns)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s921375370', 's631098823'] | [2940.0, 3064.0] | [18.0, 18.0] | [112, 270] |
p03687 | u729133443 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from subprocess import*\nwith open(\'Main.java\',\'w\')as f:f.write(r\'\'\'\nimport java.util.Scanner;\npublic class Main {\n\tpublic static void main(String[] args) {\n\t\tScanner sc = new Scanner(System.in);\n\t\tString[] s = sc.next().split("");\n\t\tString[] v = {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"};\n\t\tint ans = Integer.MAX_VALUE;\n\t\tfor (int i = 0; i < 26; i++) {\n\t\t\tint tmp = 0;\n\t\t\tString[] u = s;\n\t\t\tloop: while (true) {\n\t\t\t\tboolean comp = true;\n\t\t\t\tfor (int j = 0; j < u.length; j++)\n\t\t\t\t\tif (!u[j].equals(u[0])) {\n\t\t\t\t\t\tcomp = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\tif (comp) {\n\t\t\t\t\tans = Math.min(ans, tmp);\n\t\t\t\t\tbreak loop;\n\t\t\t\t}\n\t\t\t\tString[] w = new String[u.length - 1];\n\t\t\t\tfor (int j = 0; j < w.length; j++) {\n\t\t\t\t\tif (u[j].equals(v[i]) || u[j + 1].equals(v[i]))\n\t\t\t\t\t\tw[j] = v[i];\n\t\t\t\t\telse\n\t\t\t\t\t\tw[j] = u[j];\n\t\t\t\t}\n\t\t\t\tu = w;\n\t\t\t\ttmp++;\n\t\t\t}\n\t\t}\n\t\tSystem.out.println(ans);\n\t}\n}\n\'\'\')\ncall((\'javac\',\'Main.java\'))\ncall((\'java\',\'Main\'))', 'from subprocess import*\nwith open(\'Main.java\',\'w\')as f:f.write(r"""\nimport java.util.Scanner;\npublic class Main {\n\tpublic static void main(String[] args) {\n\t\tScanner sc = new Scanner(System.in);\n\t\tString[] s = sc.next().split("");\n\t\tString[] v = {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"};\n\t\tint ans = Integer.MAX_VALUE;\n\t\tfor (int i = 0; i < 26; i++) {\n\t\t\tint tmp = 0;\n\t\t\tString[] u = s;\n\t\t\tloop: while (true) {\n\t\t\t\tboolean comp = true;\n\t\t\t\tfor (int j = 0; j < u.length; j++)\n\t\t\t\t\tif (!u[j].equals(u[0])) {\n\t\t\t\t\t\tcomp = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\tif (comp) {\n\t\t\t\t\tans = Math.min(ans, tmp);\n\t\t\t\t\tbreak loop;\n\t\t\t\t}\n\t\t\t\tString[] w = new String[u.length - 1];\n\t\t\t\tfor (int j = 0; j < w.length; j++) {\n\t\t\t\t\tif (u[j].equals(v[i]) || u[j + 1].equals(v[i]))\n\t\t\t\t\t\tw[j] = v[i];\n\t\t\t\t\telse\n\t\t\t\t\t\tw[j] = u[j];\n\t\t\t\t}\n\t\t\t\tu = w;\n\t\t\t\ttmp++;\n\t\t\t}\n\t\t}\n\t\tSystem.out.println(ans);\n\t}\n}\n""")\ncall((\'javac\',\'Main.java\'))\ncall((\'java\',\'Main\'))', 's=input()\nprint(min(max(map(len,s.split(t)))for t in s))'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s338252279', 's781127590', 's711065907'] | [58376.0, 58012.0, 2940.0] | [1062.0, 1062.0, 18.0] | [1014, 1014, 56] |
p03687 | u745087332 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['# coding:utf-8\n\nfrom collections import Counter\n\n\ndef inpl(): return list(map(int, input().split()))\n\n\nS = input()\nC = Counter(S)\nif len(S) == 1:\n print(0)\n exit()\n\nans = 100\nfor key in C.keys():\n prev_S = list(S)\n cnt = 0\n t = len(S) - 1\n while t > 0:\n if all([1 if s == key else 0 for s in prev_S]):\n ans = min(ans, cnt)\n break\n SS = []\n for i in range(t):\n if key in prev_S[i: i + 2]:\n SS.append(key)\n else:\n SS.append(prev_S[i])\n cnt += 1\n t -= 1\n prev_S = SS[:]\n print(cnt, prev_S)\n\nprint(ans)\n', "# coding:utf-8\n\nimport sys\nfrom collections import Counter\n\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x) - 1 for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\ndef SI(): return input()\n\n\ndef main():\n s = SI()\n char_cnt = Counter(s)\n\n res = INF\n for c in char_cnt.keys():\n r = s[:]\n cnt = 0\n while len(set(r)) != 1:\n t = ''\n for ss in zip(r[:-1], r[1:]):\n if c in ss:\n t += c\n else:\n t += ss[0]\n cnt += 1\n r = t\n # print(r)\n res = min(res, cnt)\n\n return res\n\n\nprint(main())\n"] | ['Wrong Answer', 'Accepted'] | ['s828904139', 's302984127'] | [3316.0, 3316.0] | [61.0, 35.0] | [636, 799] |
p03687 | u749614185 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['S = input()\na = 1000 \nfor i in range (len(S)):\n A = B = 0\n for j in range (1, len(S) + 1):\n if S[i] == S[len(S)-j]:\n A = 0\n else:\n A += 1\n B = max(A,B)\n a = min(A,B)\nprint(a)', 'S = input()\nval = 10**9\n \nvoc = set(S)\nfor c in voc:\n cnt = 0\n tmp = list(S)\n \n while True:\n if all([w == c for w in tmp]):\n val = min(cnt, val)\n break\n cnt += 1\n for u in range(len(tmp)-1):\n tmp[u] = c if tmp[u] == c or tmp[u+1] == c else tmp[u] \n tmp.pop()\n \n \nprint(val)'] | ['Wrong Answer', 'Accepted'] | ['s071082103', 's777632509'] | [9036.0, 9132.0] | [30.0, 44.0] | [226, 346] |
p03687 | u757584836 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["s = input()\nc = [0]*26\nv = []\nm = 0\nfor i in range(0, len(s)):\n c[(int)s[i]-'a'] += 1\nfor i in range(0, 26):\n m = max(m, c[i])\nfor i in range(0, 26):\n if c[i] == m:\n v.append((char)'a'+i)\na = 10000\nfor i in range(0, len(c)):\n n = 0\n t = 0\n for j in range(0, len(s)):\n if s[j] != v[i]:\n t += 1\n else:\n n = max(n, (t+1)//2)\n n = max(n, (t+1)//2)\n a = min(a, n)\nprint(a)", 's = input()\na = 10000\nfor i in range(0, 26):\n n = 0\n t = 0\n b = True\n for j in range(0, len(s)):\n if s[j] != chr(ord("a")+i):\n t += 1\n elif b:\n n = max(n, t)\n t = 0\n else:\n n = max(n, (t+1)//2)\n t = 0\n n = max(n, t)\n a = min(a, n)\nprint(a)'] | ['Runtime Error', 'Accepted'] | ['s056644039', 's477645947'] | [2940.0, 3064.0] | [17.0, 18.0] | [394, 279] |
p03687 | u785989355 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ["def itoa(i):\n alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o',\n 'p','q','r','s','t','u','v','w','x','y','z']\n return alphabet[i]\ns = input()\nscore_list = []\nfor i in range(26):\n c = itoa(i)\n prev = -1\n score = 0\n flag=False\n for j in range(len(s)):\n if c==s[j]:\n score=max(j-prev-1,score)\n flag=True\n prev=j\n score = max(j-prev,score)\n if flag==False:\n score=10**3\n score_list.append(score)\n \nprint(min(score_list))\nprint(score_list)", "def itoa(i):\n alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o',\n 'p','q','r','s','t','u','v','w','x','y','z']\n return alphabet[i]\ns = input()\nscore_list = []\nfor i in range(26):\n c = itoa(i)\n prev = 0\n score = 0\n flag=False\n for j in range(len(s)):\n if c==s[j]:\n score=max(j-prev-1,score)\n flag=True\n prev=j\n score = max(j-prev,score)\n if flag==False:\n score=10**3\n score_list.append(score)\n \nprint(min(score_list))", '\ns=input()\nc=[]\nfor i in range(len(s)):\n if not s[i] in c:\n c.append(s[i])\ncount_max_list = []\nfor a in c:\n count=0\n count_max = 0\n for i in range(len(s)):\n if a==s[i]:\n count_max=max(count,count_max)\n count=0\n else:\n count+=1\n count_max=max(count,count_max)\n count_max_list.append(count_max)\nprint(min(count_max_list))'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s101701150', 's414748141', 's762420777'] | [3064.0, 3064.0, 3064.0] | [19.0, 18.0, 18.0] | [552, 533, 391] |
p03687 | u794543767 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from collections import Counter\ns = input()\ncounter = Counter(s)\ntarget = counter.most_common()[0][0]\nj = 0\nwhile(1):\n if len(set(s)) == 1:\n break\n new_s = ""\n for i in range(len(s)-1):\n if s[i] == target or s[i+1] == target:\n new_s +=target\n else:\n new_s += s[i]\n j+=1;\n s = new_s\nprint(j)', '\na = input()\n\nfor target in set(s):\n s = a\n j = 0\n min = 10000\n while(1):\n \n if len(set(s)) == 1:\n break\n new_s = ""\n for i in range(len(s)-1):\n if s[i] == target or s[i+1] == target:\n new_s +=target\n else:\n new_s += s[i]\n j+=1;\n s = new_s\n if min > j:\n min = j\nprint(min)', 'from collections import Counter\ns = raw_input()\ncounter = Counter(s)\ntarget = counter.most_common()[0][0]\nj = 0\nwhile(1):\n if len(set(s)) == 1:\n break\n new_s = ""\n for i in range(len(s)-1):\n if s[i] == target or s[i+1] == target:\n new_s +=target\n else:\n new_s += s[i]\n j+=1;\n s = new_s\nprint(j)', 'a = input()\nmin = 10000\nfor target in set(a):\n s = a\n j = 0\n while(1):\n \n if len(set(s)) == 1:\n break\n new_s = ""\n for i in range(len(s)-1):\n if s[i] == target or s[i+1] == target:\n new_s +=target\n else:\n new_s += s[i]\n j+=1;\n if j > min:\n break\n s = new_s\n if min > j:\n min = j\n\nprint(min)'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s133338191', 's508456482', 's682274516', 's597801439'] | [3316.0, 3064.0, 3316.0, 3064.0] | [21.0, 24.0, 20.0, 41.0] | [348, 399, 352, 432] |
p03687 | u817328209 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['S = input()\n\nfor c in string.lowercase :\n if c not in S :\n continue\n\n X = S.split(c)\n ans = 0\n for str in X :\n ans = max(ans, len(str))\n\nprint(ans)', 'S = input()\nchars = set(S)\nans = len(S)\n\nfor c in chas :\n m = max(len(_) for _ in S.split(c))\n ans = min(ans, m)\n\nprint(ans)', 'S = input()\nchars = set(S)\nans = len(S)\n\nfor c in chars :\n m = max(len(_) for _ in S.split(c))\n ans = min(ans, m)\n\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s238955231', 's520588623', 's044578849'] | [2940.0, 3060.0, 3060.0] | [17.0, 18.0, 18.0] | [173, 130, 131] |
p03687 | u861141787 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s = input()\nans = float("inf")\nfor i in range(26):\n c = chr(ord("a")+i)\n if c not in s:\n continue\n temp = s\n count = 0\n while set(temp) != {c}:\n t = ""\n for j in range(len(temp)-1):\n if temp[j] == c or temp[j+1] == c:\n t += c\n else:\n t += "#"\n temp = t\n count += 1\n print(temp)\n ans = min(ans, count)\nprint(ans)', 's = input()\n\nans = float("inf")\nfor i in range (26):\n a = chr(ord("a")+i)\n if s.count(a) == 0 :\n pass\n else:\n tmp = s\n c = 0\n while set(tmp) != {a}:\n t = ""\n for j in range(len(tmp)-1):\n if tmp[j] == a or tmp[j+1] == a:\n t += a\n else:\n t += tmp[j]\n c += 1\n tmp = t\n ans = min(c, ans)\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s325087148', 's021840357'] | [3064.0, 3060.0] | [47.0, 51.0] | [359, 453] |
p03687 | u879870653 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['S = input()\nP = list(set(P))\nANS = []\nfor i in range(len(P)) :\n T = list(S.split(P[i]))\n U = []\n for j in range(len(T)) :\n U.append(len(T[j]))\n ANS.append(max(U))\nprint(min(ANS))\n', 'S = input()\nP = list(set(S))\nANS = []\nfor i in range(len(P)) :\n T = list(S.split(P[i]))\n U = []\n for j in range(len(T)) :\n U.append(len(T[j]))\n ANS.append(max(U))\nprint(min(ANS))\n'] | ['Runtime Error', 'Accepted'] | ['s857503330', 's346480960'] | [2940.0, 2940.0] | [17.0, 17.0] | [198, 198] |
p03687 | u921773161 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['import statistics\nimport math\n\nl = list(input())\n\nmode = statistics.mode(l)\nmode = l.count(mode)\n\ncheck = 0\n\n\n\nfor i in range(len(l)):\n if mode * (2**i) >= len(l) -i :\n ans = i\n break\n\nprint(ans)', 'import collections\ns = list(input())\n#print(s)\nc = collections.Counter(s)\nl = list(c.items())\nl = sorted(l, key = lambda x : x[1], reverse=True)\n#print(l)\n\nh = []\ntmp = l[0][1]\n\nfor i in range(len(l)):\n h.append(l[i][0])\n\n\n#print(h)\n\nans = []\n\nfor i in range(len(h)):\n tmp = [_ for _, x in enumerate(s) if x == h[i]]\n# print(h[i])\n# print(tmp)\n lll = []\n for j in range(len(tmp)):\n if j == 0:\n lll.append(tmp[j])\n else:\n lll.append(tmp[j] - tmp[j-1] - 1)\n lll.append(len(s) - tmp[len(tmp) - 1] - 1)\n ans.append(max(lll))\n# print(lll)\n\n\n#print(ans)\nprint(min(ans))\n \n \n'] | ['Runtime Error', 'Accepted'] | ['s846543027', 's046143067'] | [5276.0, 3316.0] | [39.0, 24.0] | [250, 655] |
p03687 | u945418216 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['from collections import Counter\nss = input()\n\nans = 1000\ncandidates = set(ss)\nfor s in candidates:\n count = 0\n t = list(ss)\n while True:\n t = [t[i] if t[i+1] != s else t[i+1] for i in range(len(t)-1)]\n print(count, s, t)\n if len(set(t))==1:\n ans = min(ans, count)\n break\n count += 1\nprint(ans)', 'from collections import Counter\nss = input()\n\nans = 1000\ncandidates = set(ss)\nfor s in candidates:\n count = 0\n t = list(ss)\n while True:\n t = [t[i] if t[i+1] != s else t[i+1] for i in range(len(t)-1)]\n if len(set(t))==1:\n ans = min(ans, count)\n break\n count += 1\nprint(ans)', 'from collections import Counter\nss = input()\n\nans = 1000\ncandidates = set(ss)\nfor s in candidates:\n count = 0\n t = list(ss)\n while True:\n if len(set(t))==1:\n ans = min(ans, count)\n break\n t = [t[i] if t[i+1] != s else t[i+1] for i in range(len(t)-1)]\n count += 1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s201544339', 's714704048', 's798669623'] | [14392.0, 3316.0, 3316.0] | [2104.0, 2104.0, 37.0] | [352, 325, 325] |
p03687 | u995062424 | 2,000 | 262,144 | Snuke can change a string t of length N into a string t' of length N - 1 under the following rule: * For each i (1 ≤ i ≤ N - 1), the i-th character of t' must be either the i-th or (i + 1)-th character of t. There is a string s consisting of lowercase English letters. Snuke's objective is to apply the above operation to s repeatedly so that all the characters in s are the same. Find the minimum necessary number of operations. | ['s = input()\nal = set(list(s)) \nans = 100\n\nfor c in al:\n L = list(s.split(c))\n print(L)\n tmp = 0\n for st in L:\n tmp = max(tmp, len(st))\n \n \n ans = min(tmp, ans)\n #print(ans)\nprint(ans)', 's = input()\nal = set(list(s)) \nans = 100\n\nfor c in al:\n L = list(s.split(c))\n tmp = 0\n for st in L:\n tmp = max(tmp, len(st))\n \n \n ans = min(tmp, ans)\n #print(ans)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s231633314', 's245809492'] | [3060.0, 3060.0] | [17.0, 17.0] | [270, 257] |
p03688 | u021548497 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['import sys\ninput = sys.stdin.readline\n\ndef main():\n n = int(input())\n a = list(map(int, input().split()))\n \n M, m = max(a), min(a)\n c = a.count(m)\n C = a.count(M)\n \n if M == m:\n if n//2 >= m:\n judge = True\n else:\n judge = False\n else:\n if (n-c) >= C*2:\n judge = True\n else:\n judge = False\n \n \n print("Yes" if judge else "No")\n \n \n \nif __name__ == "__main__":\n main()\n', 'import sys\ninput = sys.stdin.readline\n\ndef main():\n n = int(input())\n a = list(map(int, input().split()))\n \n M, m = max(a), min(a)\n c = a.count(m)\n C = a.count(M)\n \n if M == m:\n if n//2 >= m or m == n-1:\n judge = True\n else:\n judge = False\n else:\n if M - m > 1:\n judge = False\n elif M - c <= 0:\n judge = False\n elif n-c >= (M-c)*2:\n judge = True\n else:\n judge = False\n \n \n print("Yes" if judge else "No")\n \n \n \nif __name__ == "__main__":\n main()\n'] | ['Wrong Answer', 'Accepted'] | ['s922098547', 's939066864'] | [20668.0, 20796.0] | [57.0, 55.0] | [491, 606] |
p03688 | u102461423 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["import sys\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN = int(readline())\nA = sorted(map(int, readline().split()))\n\ndef main(A):\n N = len(A)\n if A[0] == A[-1]:\n x = A[0]\n return x == N - 1 or 2 * x <= N\n if A[0] + 1 != A[-1]:\n return False\n a, b = A[0], A[-1]\n full = b\n unique = A.count(a)\n people, color = N - unique, A[-1] - unique\n return color > 1 and 2 * color <= people\n\nprint('Yes' if main(A) else 'No')", "import sys\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN = int(readline())\nA = sorted(map(int, readline().split()))\n\ndef main(A):\n N = len(A)\n if A[0] == A[-1]:\n x = A[0]\n return x == N - 1 or 2 * x <= N\n if A[0] + 1 != A[-1]:\n return False\n a, b = A[0], A[-1]\n full = b\n unique = A.count(a)\n people, color = N - unique, A[-1] - unique\n return color > 0 and 2 * color <= people\n\nprint('Yes' if main(A) else 'No')"] | ['Wrong Answer', 'Accepted'] | ['s943660382', 's527986530'] | [18348.0, 18344.0] | [50.0, 51.0] | [520, 520] |
p03688 | u128646083 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["n=int(input())\na=list(map(int,input().split()))\nb=sorted(a)\nc=0\nif(b[n-1]-b[0]>1):\n print('No')\nelif(b[n-1]-b[0]==0):\n if(1<=b[0]<=n//2 or b[0]==n-1):\n print('Yes')\n else:\n print('No')\nelse:\n for i in range(n-1):\n if(b[i]<b[i+1]):\n c=i\n break\n if(c==n-2):\n print('No')\n elif(c+2<=b[0]<=+1+(n-c-1)//2):\n print('Yes') \n else:\n print('No')", "n=int(input())\na=list(map(int,input().split()))\nb=sorted(a)\nc=0\nif(b[n-1]-b[0]>1):\n print('No')\nelif(b[n-1]-b[0]==0):\n if(1<=b[0]<=n//2 or b[0]==n-1):\n print('Yes')\n else:\n print('No')\nelse:\n for i in range(n-1):\n if(b[i]<b[i+1]):\n c=i\n break\n if(c==n-2):\n print('No')\n elif(c+2<=b[0]<=c+1+(n-c-1)//2):\n print('Yes') \n else:\n print('No')", "n=int(input())\na=list(map(int,input().split()))\nb=sorted(a)\nc=0\nif(b[n-1]-b[0]>1):\n print('No')\nelif(b[n-1]-b[0]==0):\n if(1<=b[0]<=n//2 or b[0]==n-1):\n print('Yes')\n else:\n print('No')\nelse:\n for i in range(n-1):\n if(b[i]<b[i+1]):\n c=i\n break\n if(c==n-2):\n print('No')\n elif(c+1<=b[0]<=c+(n-c-1)//2):\n print('Yes') \n else:\n print('No')"] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s116687340', 's118971817', 's154894639'] | [14092.0, 14092.0, 14092.0] | [58.0, 58.0, 59.0] | [428, 429, 427] |
p03688 | u148423304 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n = int(input())\na = list(map(int, input().split()))\nimport collections\nl1 = collections.Counter(a).most_common()\nl1.sort()\nif len(l1) > 2\u3000or l1[1][0] - l1[0][0] > 1:\n print("No")\nelif len(l1) == 1:\n if l1[0][0] * 2 <= n or l1[0][0] == n - 1:\n print("Yes")\n else:\n print("No")\nelse:\n if l1[1][1] >= (l1[1][0] - l1[0][1]) * 2 and l1[1][0] > l1[0][1]:\n print("Yes")\n else:\n print("No")', 'n = int(input())\na = list(map(int, input().split()))\nimport collections\nl1 = collections.Counter(a).most_common()\nl1.sort()\nif len(l1) > 2:\n print("No")\nelif len(l1) == 1:\n if l1[0][0] * 2 <= n or l1[0][0] == n - 1:\n print("Yes")\n else:\n print("No")\nelse:\n if l1[1][0] - l1[0][0] > 1:\n print("No")\n elif l1[1][1] >= (l1[1][0] - l1[0][1]) * 2 and l1[1][0] > l1[0][1]:\n print("Yes")\n else:\n print("No")'] | ['Runtime Error', 'Accepted'] | ['s675215058', 's561415250'] | [2940.0, 21360.0] | [17.0, 79.0] | [571, 596] |
p03688 | u163320134 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["n=int(input())\narr=list(map(int,input().split()))\namax=max(arr)\namin=min(arr)\nif amax-amin>=2:\n print('No')\nelif amax-amin==0:\n flag=False\n for i in range(n):\n if arr[i]!=n-1:\n break\n else:\n flag=True\n for i in range(n):\n if 2*arr[i]>n:\n break\n else:\n flag=True\n if flag==True:\n print('Yes')\n else:\n print('No')\nelif amax-amin==1:\n cnt1=0\n cnt2=0\n for i in range(n):\n if arr[i]==amax-1:\n cnt1+=1\n else:\n cnt2+=1\n if cnt1<amax and 2*(amax-cnt1)<cnt2:\n print('Yes')\n else:\n print('No')", "n=int(input())\narr=list(map(int,input().split()))\namax=max(arr)\namin=min(arr)\nif amax-amin>=2:\n print('No')\nelif amax-amin==0:\n flag=False\n for i in range(n):\n if arr[i]!=n-1:\n break\n else:\n flag=True\n for i in range(n):\n if 2*arr[i]>n:\n break\n else:\n flag=True\n if flag==True:\n print('Yes')\n else:\n print('No')\nelif amax-amin==1:\n cnt1=0\n cnt2=0\n for i in range(n):\n if arr[i]==amax:\n cnt1+=1\n else:\n cnt2+=1\n if cnt1<amax and 2*(amax-cnt1)<=cnt2:\n print('Yes')\n else:\n print('No')", "n=int(input())\narr=list(map(int,input().split()))\namax=max(arr)\namin=min(arr)\nif amax-amin>=2:\n print('No')\nelif amax-amin==0:\n flag=False\n for i in range(n):\n if arr[i]!=n-1:\n break\n else:\n flag=True\n for i in range(n):\n if 2*arr[i]>n:\n break\n else:\n flag=True\n if flag==True:\n print('Yes')\n else:\n print('No')\nelif amax-amin==1:\n cnt1=0\n cnt2=0\n for i in range(n):\n if arr[i]==amax:\n cnt1+=1\n else:\n cnt2+=1\n if cnt1<amax and 2*(amax-cnt1)<cnt2:\n print('Yes')\n else:\n print('No')", "n=int(input())\narr=list(map(int,input().split()))\namax=max(arr)\namin=min(arr)\nif amax-amin>=2:\n print('No')\nelif amax-amin==0:\n flag=False\n for i in range(n):\n if arr[i]!=n-1:\n break\n else:\n flag=True\n for i in range(n):\n if 2*arr[i]>n:\n break\n else:\n flag=True\n if flag==True:\n print('Yes')\n else:\n print('No')\nelif amax-amin==1:\n cnt1=0\n cnt2=0\n for i in range(n):\n if arr[i]==amax-1:\n cnt1+=1\n else:\n cnt2+=1\n if cnt1<amax and 2*(amax-cnt1)<=cnt2:\n print('Yes')\n else:\n print('No')"] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s044830743', 's080140254', 's117046933', 's093164097'] | [14008.0, 14092.0, 14092.0, 14092.0] | [63.0, 62.0, 61.0, 66.0] | [546, 545, 544, 547] |
p03688 | u227082700 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n=int(input())\na=list(map(int,input().split()))\nif max(a)-2<=min(a):exit(print("No"))\nif len(set(a))==1:\n m=a[0]\n if m==n-1 or 2*m<=n:print("Yes")\n else:print("No")\nelse:\n x=a.count(min(a))\n y=n-x\n if x<max(a) and 2*(max(a)-x)<=y:print("Yes")\n else:print("No")', 'yes="Yes"\nno="No"\nn=int(input())\na=list(map(int,input().split()))\nif max(a)-min(a)>1:exit(print(no))\nif a==[a[0]]*n:\n if a[0]==n-1:print(yes)\n elif 2*a[0]<=n:print(yes)\n else:print(no)\nelse:\n mi=a.count(min(a))\n ma=n-mi\n if mi<max(a) and 2*(max(a)-mi)<=ma:print(yes)\n else:print(no)\n'] | ['Wrong Answer', 'Accepted'] | ['s923863261', 's710058601'] | [14204.0, 20784.0] | [55.0, 58.0] | [267, 290] |
p03688 | u257974487 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n = int(input())\ncats = list(map(int,input().split()))\nflag = True\np, q = max(cats), min(cats)\nx = cats.count(p)\ny = cats.count(q)\nif p > q + 1:\n flag = False\nelif p == q:\n if n - p > 1 and p * 2 > n:\n flag = False\nelse:\n if x >= p or (p-x) * 2 > y:\n flag = False\n\nif flag:\n print("Yes")\nelse:\n print("No")', 'n = int(input())\ncats = list(map(int,input().split()))\nflag = True\np, q = max(cats), min(cats)\nx = cats.count(p)\ny = cats.count(q)\nif p - q >= 2:\n flag = False\nelif p == q:\n if p != n - 1 and p * 2 > n:\n flag = False\nelse:\n if y >= p or (p-y) * 2 > x:\n flag = False\n\nif flag:\n print("Yes")\nelse:\n print("No")'] | ['Wrong Answer', 'Accepted'] | ['s213430686', 's195382783'] | [14092.0, 13964.0] | [46.0, 46.0] | [335, 337] |
p03688 | u268516119 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['import sys\ndef printans(t):\n print(t)\n sys.exit()\n\nN=int(input())\nA=[int(i) for i in input().split()]\n\nif all([a==A[0] for a in A]):\n shurui=A[0]\n if shurui==N-1 or shurui*2<=N:\n printans("Yes")\n else:printans("No")\nelse:\n maxshurui = max(A)\n if all([a in (maxshurui,maxshurui-1)]):\n unique = A.count(maxshurui-1)\n shurui = maxshurui-unique\n if shurui<=0:\n printans("No")\n if shurui*2<=N-unique:\n printans("Yes")\n else:printans("No")', 'import sys\ndef printans(t):\n print(t)\n sys.exit()\n\nN=int(input())\nA=[int(i) for i in input().split()]\n\nif all([a==A[0] for a in A]):\n shurui=A[0]\n if shurui==N-1 or shurui*2<=N:\n printans("Yes")\n else:printans("No")\nelse:\n maxshurui = max(A)\n if all([a in (maxshurui,maxshurui-1) for a in A]):\n unique = A.count(maxshurui-1)\n shurui = maxshurui-unique\n if shurui<=0:\n printans("No")\n if shurui*2<=N-unique:\n printans("Yes")\n else:printans("No")\n else:printans("No")'] | ['Runtime Error', 'Accepted'] | ['s271197245', 's870271858'] | [13964.0, 13964.0] | [53.0, 68.0] | [610, 645] |
p03688 | u284854859 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["n = int(input())\n\na = list(map(int,int(input())))\na_max = max(a)\na_min = min(a)\nif a_max > a_min+1:\n print('No')\n exit()\nk = a_max\nif a_max == a_min:\n if k == n-1 or 2*k <= n:\n print('Yes')\n else:\n print('No')\nelse:\n uni = a.count(k-1)\n if k >= uni + 1 and k <= uni + (n-uni)//2:\n print('Yes')\n else:\n print('No')", "n = int(input())\n\na = list(map(int,input().split()))\na_max = max(a)\na_min = min(a)\nif a_max > a_min+1:\n print('No')\n exit()\nk = a_max\nif a_max == a_min:\n if k == n-1 or 2*k <= n:\n print('Yes')\n else:\n print('No')\nelse:\n uni = a.count(k-1)\n if k >= uni + 1 and k <= uni + (n-uni)//2:\n print('Yes')\n else:\n print('No')"] | ['Runtime Error', 'Accepted'] | ['s544313425', 's209829435'] | [4788.0, 14004.0] | [20.0, 44.0] | [362, 365] |
p03688 | u285891772 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees#, log2\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left, insort, insort_left\nfrom fractions import gcd\nfrom heapq import heappush, heappop, heapify\nfrom functools import reduce, lru_cache\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float(\'inf\')\nmod = 10**9 + 7\n#from decimal import *\n\nN = INT()\na = LIST()\n\nif len(set(a)) == 1:\n\tif a[0] == N-1 or a[0] <= N//2:\n\t\tprint("Yes")\n\telse:\n\t\tprint("No")\n\nelif len(set(a)) == 2:\n\tp, q = sorted(list(set(a)))\n\tif a.count(p) == p and q == p+1 and p <= N-2:\n\t\tprint("Yes")\n\telse:\n\t\tprint("No")\n\nelse:\n\tprint("No")', 'import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees, log2, gcd\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left, insort, insort_left\nfrom heapq import heappush, heappop\nfrom functools import reduce, lru_cache\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef TUPLE(): return tuple(map(int, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float(\'inf\')\nmod = 10 ** 9 + 7 \n#mod = 998244353\n#from decimal import *\n#import numpy as np\n#decimal.getcontext().prec = 10\n\nN = INT()\na = LIST()\n\nif max(a) - min(a) == 0 and (a[0] == N-1 or a[0] <= N//2):\n\tprint("Yes")\nelif max(a) - min(a) == 1 and a.count(min(a))+1 <= max(a) <= a.count(min(a)) + a.count(max(a))//2:\n\tprint("Yes")\nelse:\n\tprint("No")'] | ['Wrong Answer', 'Accepted'] | ['s563134463', 's720747711'] | [21988.0, 21556.0] | [65.0, 72.0] | [1162, 1215] |
p03688 | u333945892 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["from collections import defaultdict,deque\nimport sys,heapq,bisect,math,itertools,string,queue,datetime\nsys.setrecursionlimit(10**8)\nINF = float('inf')\nmod = 10**9+7\neps = 10**-7\ndef inpl(): return list(map(int, input().split()))\ndef inpls(): return list(input().split())\n\nN = int(input())\naa = inpl()\nMIN = min(aa)\nMAX = max(aa)\n\nif MAX-MIN > 1:\n\tprint('No')\nelif MAX == MIN:\n\tif MAX == N-1:\n\t\tprint('Yes')\n\telif MAX <= N//2:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')\nelse: #MAX-MIN == 1\n\tn_MIN = n_MAX = 0\n\tfor a in aa:\n\t\tif a == MIN: n_MIN += 1\n\t\tif a == MAX: n_MAX += 1\n\tprint(n_MIN,n_MAX)\n\tx_min = n_MIN + 1\n\tx_max = n_MIN + n_MAX//2\n\tif x_min <= MAX <= x_max:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')\n", "from collections import defaultdict,deque\nimport sys,heapq,bisect,math,itertools,string,queue,datetime\nsys.setrecursionlimit(10**8)\nINF = float('inf')\nmod = 10**9+7\neps = 10**-7\ndef inpl(): return list(map(int, input().split()))\ndef inpls(): return list(input().split())\n\nN = int(input())\naa = inpl()\nMIN = min(aa)\nMAX = max(aa)\n\nif MAX-MIN > 1:\n\tprint('No')\nelif MAX == MIN:\n\tif MAX == N-1:\n\t\tprint('Yes')\n\telif MAX <= N//2:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')\nelse: #MAX-MIN == 1\n\tn_MIN = n_MAX = 0\n\tfor a in aa:\n\t\tif a == MIN: n_MIN += 1\n\t\tif a == MAX: n_MAX += 1\n\tx_min = n_MIN + 1\n\tx_max = n_MIN + n_MAX//2\n\tif x_min <= MAX <= x_max:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')\n"] | ['Wrong Answer', 'Accepted'] | ['s791540290', 's644145140'] | [15600.0, 15596.0] | [74.0, 74.0] | [695, 675] |
p03688 | u391731808 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['N=int(input())\n*A, = map(int,input().split())\nB = {}\nfor a in A: B[a] = B.get(a,0)+1\nm = min(B)\nM = max(B)\nif m+1<M:\n print("NO")\n exit()\ndef check(n):\n b0 = B.setdefault(n-1,0)\n b1 = B.setdefault(n,0)\n if b1==0:\n return b0==n\n else:\n return 1<= n-b0 <= b1//2\nif m+1==M:\n ans = check(M)\nelse:\n ans = check(m) or check(m+1)\nprint("YES" if ans else "NO")', 'N=int(input())\n*A, = map(int,input().split())\nB = {}\nfor a in A: B[a] = B.get(a,0)+1\nm = min(B)\nM = max(B)\nif m+1<M:\n print("No")\n exit()\ndef check(n):\n b0 = B.setdefault(n-1,0)\n b1 = B.setdefault(n,0)\n if b1==0:\n return b0==n\n else:\n return 1<= n-b0 <= b1//2\nif m+1==M:\n ans = check(M)\nelse:\n ans = check(m) or check(m+1)\nprint("Yes" if ans else "No")'] | ['Wrong Answer', 'Accepted'] | ['s989491794', 's182757694'] | [18272.0, 17400.0] | [68.0, 71.0] | [390, 390] |
p03688 | u392319141 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["from collections import Counter\n\nN = int(input())\nA = Counter(map(int, input().split()))\n\nif len(A.keys()) >= 3:\n print('No')\n exit()\n\nif len(A.keys()) == 1:\n p = list(A.keys())[0]\n print('Yes' if 2 * p <= N or p == N - 1 else 'No')\n exit()\n\np1, p2 = sorted(A.keys())\n1 / 0\nprint('Yes' if [p1, p2] == [1, 2] and A[1] == 1 else 'No')\n", "from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\ncntA = Counter(A)\ncntA = list(cntA.items())\ncntA.sort()\n\nif len(cntA) >= 3:\n print('No')\nelif len(cntA) == 1:\n if cntA[0][0] == N - 1:\n print('Yes')\n elif N // 2 >= cntA[0][0]:\n print('Yes')\n else:\n print('No')\nelif len(cntA) == 2:\n if cntA[0][0] + 1 == cntA[1][0]:\n if N >= cntA[0][1] + cntA[1][1] * 2:\n print('Yes')\n else:\n print('No')\n else:\n print('No')", "from collections import Counter\n\nN = int(input())\nA = Counter(map(int, input().split()))\n\nif len(A.keys()) >= 3:\n print('No')\n exit()\n\nif len(A.keys()) == 1:\n p = list(A.keys())[0]\n print('Yes' if 2 * p <= N or p == N - 1 else 'No')\n exit()\n\np1, p2 = sorted(A.keys())\nprint('Yes' if [p1, p2] == [1, 2] and A[p1] + A[p2] * 2 <= N else 'No')\n", "from collections import Counter\n\nN = int(input())\nA = Counter(map(int, input().split()))\n\nif len(A.keys()) >= 3:\n print('No')\n exit()\n\nif len(A.keys()) == 1:\n p = list(A.keys())[0]\n print('Yes' if 2 * p <= N or p == N - 1 else 'No')\n exit()\n\np1, p2 = sorted(A.keys())\nprint('Yes' if p2 - p1 == 1 and (A[p1] + 1) == p2 and p2 <= N - 2 else 'No')\n", "from collections import Counter\n\nN = int(input())\nA = Counter(map(int, input().split()))\n\nif len(A.keys()) >= 3:\n print('No')\n exit()\n\nif len(A.keys()) == 1:\n print('Yes' if list(A.keys())[0] == N - 1 or list(A.keys())[0] == 2 else 'No')\n exit()\n\np1, p2 = A.keys()\n1 / 0\nprint('Yes' if abs(p1 - p2) == 1 and max(p1, p2) <= N - 1 and A[min(p1, p2)] == 1 else 'No')\n", "from collections import Counter\n\nN = int(input())\nA = Counter(map(int, input().split()))\n\nif len(A.keys()) >= 3:\n print('No')\n exit()\n\nif len(A.keys()) == 1:\n p = list(A.keys())[0]\n print('Yes' if 2 * p <= N or p == N - 1 else 'No')\n exit()\n\np1, p2 = sorted(A.keys())\nprint('Yes' if p2 - p1 == 1 and (A[p1] + 1) <= p2 <= (A[p1] + A[p2] // 2) else 'No')\n"] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s290393392', 's343593890', 's826623647', 's849336028', 's998395184', 's094308086'] | [22636.0, 21468.0, 22636.0, 22636.0, 22636.0, 22636.0] | [53.0, 70.0, 53.0, 53.0, 53.0, 53.0] | [348, 526, 355, 360, 376, 368] |
p03688 | u422104747 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n=int(input())\ns=input().split()\nl=[int(s[i]) for i in range(n)]\nl.sort()\nif l[0]==l[-1]:\n if 1<=l[0]<=n//2:\n print("Yes")\n else:\n print("No")\nelif l[-1]-l[0]>1:\n l[10000000]-=1\n print("No")\nelse:\n l[10000000]-=1\n a=l.count(l[0])\n b=l.count(l[-1])\n if a+1<=l[-1]<=a+b//2:\n print("Yes")\n else:\n print("No")\n', 'n=int(input())\ns=input().split()\nl=[int(s[i]) for i in range(n)]\nl.sort()\nif l[0]==l[-1]:\n if l[0]<=n//2 or l[0]==n-1:\n print("Yes")\n else:\n print("No")\nelif l[-1]-l[0]>1:\n print("No")\nelse:\n a=l.count(l[0])\n b=l.count(l[-1])\n if a+1<=l[-1]<=a+b//2:\n print("Yes")\n else:\n print("No")\n'] | ['Runtime Error', 'Accepted'] | ['s088973280', 's512498557'] | [13964.0, 13964.0] | [50.0, 52.0] | [361, 333] |
p03688 | u637175065 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\n\ndef main():\n n = I()\n a = LI()\n d = collections.defaultdict(int)\n for c in a:\n d[c] += 1\n t = sorted(list(d.keys()))\n if t[-1] - t[0] > 1:\n return 'No'\n if len(t) == 1:\n if t[0] == n - 1:\n return 'Yes'\n if t[0] > n / 2.0:\n return 'No'\n return 'Yes'\n b = t[1] - d[t[0]]\n n2 = d[t[1]]\n print(1/0)\n if n2 == 2 and b == n2 - 1:\n return 'Yes'\n if b < 1:\n return 'No'\n if b >= n2 - 2:\n return 'No'\n\n return 'Yes'\n\n\nprint(main())\n", "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\n\ndef main():\n n = I()\n a = LI()\n d = collections.defaultdict(int)\n for c in a:\n d[c] += 1\n t = sorted(list(d.keys()))\n if t[-1] - t[0] > 1:\n return 'No'\n if len(t) == 1:\n if t[0] == n - 1:\n return 'Yes'\n if t[0] > n / 2.0:\n return 'No'\n return 'Yes'\n b = t[1] - d[t[0]]\n n2 = d[t[1]]\n if n2 == 2 and b == n2 - 1:\n return 'Yes'\n if b < 1:\n return 'No'\n if b >= n2 - 2:\n return 'No'\n if b > n2 / 2.0:\n return 'No'\n\n return 'Yes'\n\n\nprint(main())\n"] | ['Runtime Error', 'Accepted'] | ['s762794143', 's973203639'] | [20476.0, 20484.0] | [93.0, 95.0] | [1062, 1088] |
p03688 | u667084803 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['import sys\nN=int(input())\na=[int(i) for i in input().split()]\na.sort()\n\nif a[N-1]-a[0]>1:\n print("No")\n sys.exit()\nif a[0]==N-1:\n print("Yes")\n sys.exit()\nif a[N-1]==1:\n print("Yes")\n sys.exit()\nif a[0]==a[N-1]:\n if 2*a[0]<=N:\n print("Yes")\n else:\n print("No")\n sys.exit()\n\ncount=a.index(a[N-1])\nif count+1<=a[N-1] and a[N-1]<=count+int((N-a[count])/2):\n print("Yes")\nelse:\n print("No")', 'import sys\nN=int(input())\na=[int(i) for i in input().split()]\na.sort()\n\nif a[N-1]-a[0]>1:\n print("No")\n sys.exit()\nif a[0]==N-1:\n print("Yes")\n sys.exit()\nif a[N-1]==1:\n print("Yes")\n sys.exit()\nif a[0]==a[N-1]:\n if 2*a[0]<=N:\n print("Yes")\n else:\n print("No")\n sys.exit()\nprint(a[N])', 'import sys\nN=int(input())\na=[int(i) for i in input().split()]\na.sort()\n\nif a[N-1]-a[0]>1:\n print("No")\n sys.exit()\nif a[0]==N-1:\n print("Yes")\n sys.exit()\nprint(a[N])', 'import sys\nN=int(input())\na=[int(i) for i in input().split()]\na.sort()\n\nif a[N-1]-a[0]>1:\n print("NO")\n sys.exit()\nif a[N-1]>N-1:\n print("NO")\n sys.exit()\nif a[0]==N-1:\n print("YES")\n sys.exit()\nif a[0]==a[N-1]:\n print("YES")\n sys.exit()\nprint(a[N])', 'import sys\nN=int(input())\na=[int(i) for i in input().split()]\na.sort()\n\nif a[N-1]-a[0]>1:\n print("No")\n sys.exit()\nif a[0]==N-1:\n print("Yes")\n sys.exit()\nif a[N-1]==1:\n print("Yes")\n sys.exit()\nif a[0]==a[N-1]:\n if 2*a[0]<=N:\n print("Yes")\n else:\n print("No")\n sys.exit()\n\ncount=a.index(a[N-1])\nif count+1<=a[N-1] and a[N-1]<=count+int((N-count)/2):\n print("Yes")\nelse:\n print("No")'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s011107352', 's674375530', 's729967136', 's864797464', 's262250609'] | [13964.0, 13964.0, 13964.0, 13964.0, 13964.0] | [47.0, 69.0, 52.0, 45.0, 49.0] | [403, 299, 170, 257, 400] |
p03688 | u711245972 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['m=map(int,input().split())\na=[int(i) for i in m]\nd=max(a)-min(a)\nif d>1:\n ans=False\nelif d==0:\n if (max(a)<len(a) and max(a)*2>=len(a)):\n ans=True\n else:\n ans=False\nelse:\n max_num=a.count(max(a))\n min_num=a.count(min(a))\n dif=max(a)-min_num\n if (min_num<max(a) and dif*2<=max_num):\n ans=True\n else:\n ans=False\n \nif ans:\n print("Yes")\nelse:\n print("No")', 'm=map(int,input().split())\na=[int(i) for i in m]\nd=max(a)-min(a)\nif d>1:\n ans=False\nelif d==0:\n if max(a)<len(a):\n ans=True\n else:\n ans=False\nelse:\n max_num=a.count(max(a))\n min_num=a.count(min(a))\n dif=max(a)-min_num\n if (min_num<max(a)):\n if dif*2<=max_num:\n ans=True\n else:\n ans=False\n else:\n ans=False\nif ans:\n print("Yes")\nelse:\n print("No")\n \n', 'n=input()\nm=map(int,input().split())\na=[int(i) for i in m]\nd=max(a)-min(a)\nif d>1:\n ans=False\nelif d==0:\n if (max(a)==len(a)-1 or max(a)*2<=len(a)):\n ans=True\n else:\n ans=False\nelse:\n max_num=a.count(max(a))\n min_num=a.count(min(a))\n dif=max(a)-min_num\n if (min_num<max(a) and dif*2<=max_num):\n ans=True\n else:\n ans=False\n \nif ans:\n print("Yes")\nelse:\n print("No")\n '] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s069370168', 's887195475', 's723621455'] | [3064.0, 3064.0, 13964.0] | [17.0, 17.0, 66.0] | [421, 443, 442] |
p03688 | u729133443 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["print([1/id('hoge')%5%2]*2**28**id('fuga')and'Yes')", "n,a=open(0)\nn=int(n)\na=sorted(map(int,a.split()))\nif a[0]==a[-1]:\n if n-1==a[0]or n//a[0]>=2:\n print('Yes')\n else:\n print('No')\nelif a[-1]-1==a[0]:\n x=a.count(a[0])\n if x<a[-1]and(n-x)//(a[-1]-x)>=2:\n print('Yes')\n else:\n print('No')\nelse:\n print('No')"] | ['Time Limit Exceeded', 'Accepted'] | ['s175227001', 's445356754'] | [12324.0, 13992.0] | [2104.0, 42.0] | [51, 270] |
p03688 | u729707098 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['from collections import Counter\nn = int(input())\na = [int(i) for i in input().split()]\na.sort()\nc = Counter(a)\nif len(c)>2: print("No")\nelif len(c)==1:\n\tif a[0]+1==n or n>=2*a[0]: print("Yes")\n\telse: print("No")\nelif c[a[-1]]>=2*a[-1]: print("Yes")\nelse: print("No")', 'from collections import Counter\nn = int(input())\na = [int(i) for i in input().split()]\na.sort()\nc = Counter(a)\nif len(c)>2 or a[0]+1<a[-1]: print("No")\nelif len(c)==1:\n\tif a[0]+1==n or n>=2*a[0]: print("Yes")\n\telse: print("No")\nelse:\n\tx,y = c[a[-1]],c[a[0]]\n\tif y+1<=a[-1]<=x//2+y: print("Yes")\n\telse: print("No")'] | ['Wrong Answer', 'Accepted'] | ['s243236346', 's013219469'] | [18656.0, 18656.0] | [56.0, 56.0] | [266, 313] |
p03688 | u780962115 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n=int(input())\nlists=list(map(int,input().split()))\nfrom collections import Counter\na=dict(Counter(lists))\nif len(a)==1:\n if n>=lists[0]*2 or lists[0]==n-1:\n print("Yes")\n else:\n print("No")\n \nelif len(a)==2:\n P=list(a.keys())\n Q=list(a.values())\n x,y=min(P),max(P) #x=k+l-1,y=k+l\n c,d=a[x],a[y]#c=k,d=?\n if 2*y-c<=n and c>0 and y>c and d+c==y:\n print("Yes")\n else:\n print("No")\n\n \nelse:\n print("No")', 'n=int(input())\nlists=list(map(int,input().split()))\nfrom collections import Counter\na=dict(Counter(lists))\nif len(a)==1:\n if n>=lists[0]*2 or lists[0]==n-1:\n print("Yes")\n else:\n print("No")\n \nelif len(a)==2:\n P=list(a.keys())\n Q=list(a.values())\n x,y=min(P),max(P) #x=k+l-1,y=k+l\n c,d=a[x],a[y]#c=k,d=?\n if 2*y-c<=n and c>0 and y>c and y-x==1:\n print("Yes")\n else:\n print("No")\n\n \nelse:\n print("No")'] | ['Wrong Answer', 'Accepted'] | ['s175486758', 's780361359'] | [21596.0, 21596.0] | [63.0, 54.0] | [461, 461] |
p03688 | u813174766 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n=int(input())\na=list(map(int,input().split()))\nM=max(a)\nm=min(a)\nif M>m+1:\n print("No")\nelif M==m+1:\n cntm=a.count(m)\n cntM=n-cntm\n if cntm>m:\n print("No")\n elif cntm+cntM//2<M:\n print("No")\n else:\n print("Yes")\nelif M==m:\n if m<=n//2:\n print("Yes")\n else if m==n-1:\n print("Yes")\n else:\n print("No")', 'n=int(input())\na=list(map(int,input().split()))\nM=max(a)\nm=min(a)\nif M>m+1:\n print("No")\nelif M==m+1:\n cntm=a.count(m)\n cntM=n-cntm\n if cntm>m:\n print("No")\n elif cntm+cntM//2<M:\n print("No")\n else:\n print("Yes")\nelif M==m:\n if m<=n//2:\n print("Yes")\n elif m==n-1:\n print("Yes")\n else:\n print("No")'] | ['Runtime Error', 'Accepted'] | ['s765578720', 's799716095'] | [3060.0, 14004.0] | [18.0, 44.0] | [328, 325] |
p03688 | u814986259 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['N = int(input())\na = list(map(int, input().split()))\nM = max(a)\nm = min(a)\nif M > m + 1:\n print("No")\nelse:\n if M == m:\n if M == N-1:\n print("Yes")\n elif M*2 <= N:\n print("Yes")\n else:\n print("No")\n\n else:\n if a.count(M) > 2:\n print(\'No\')\n else:\n \n c = a.count(m)\n if (M - c) * 2 < N-c and c < M: \n print("Yes")\n else:\n print("No")\n', 'N = int(input())\na = list(map(int, input().split()))\nM = max(a)\nm = min(a)\nif M > m + 1:\n print("No")\nelse:\n if M == m:\n if M == N-1:\n print("Yes")\n elif M*2 <= N:\n print("Yes")\n else:\n print("No")\n\n else:\n \n c = a.count(m)\n if (M - c) * 2 <= N-c and c < M: \n print("Yes")\n else:\n print("No")\n'] | ['Wrong Answer', 'Accepted'] | ['s809891476', 's169274937'] | [20868.0, 20768.0] | [55.0, 54.0] | [688, 600] |
p03688 | u896741788 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['n=int(input())\n\na=list(map(int,input().split()))\nif len(set(a))==1:\n if n>=2*a[0] or n-1==a[0]:print("Yes")\n else:print("No")\nelif len(set(a))>=3:print("No")\nelse:\n s,S=sorted(list(set(a)))\n if 2*n-a.count(s)<=S:print("Yes")\n else:print("No")', 'n=int(input())\n\na=list(map(int,input().split()))\nif len(set(a))==1:\n if n>=2*a[0] or n-1==a[0]:print("Yes")\n else:print("No")\nelif len(set(a))>=3:print("No")\nelse:\n s,S=sorted(list(set(a)))\n k=a.count(s)\n if S==s+1 and 2*S-n<=k and S>k:print("Yes")\n else:print("No")'] | ['Wrong Answer', 'Accepted'] | ['s855909132', 's193511900'] | [14564.0, 14208.0] | [52.0, 50.0] | [257, 284] |
p03688 | u950708010 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["#https://img.atcoder.jp/agc016/editorial.pdf\ndef solve():\n n = int(input())\n a = list(int(i) for i in input().split())\n ans = 'YES'\n alone = 0\n group = 0\n if max(a) - min(a) >= 2: ans = 'NO'\n \n elif max(a) - min(a) == 1:\n for i in a:\n if i == max(a)-1 : alone += 1\n else: group += 1\n if alone < max(a) and 2*(max(a)-alone)<= group: pass\n else: ans = 'NO'\n \n \n elif max(a) - min(a) == 0:\n if a[0] == n-1 or 2*a[0] <= n:\n pass\n else: ans = 'NO'\n return ans\n\nif __name__ == '__main__':\n print(solve())", "#https://img.atcoder.jp/agc016/editorial.pdf\ndef solve():\n n = int(input())\n a = list(int(i) for i in input().split())\n ans = 'Yes'\n alone = 0\n group = 0\n ha = max(a)\n la = min(a)\n if ha - la >= 2: ans = 'No'\n \n elif ha - la == 1:\n for i in a:\n if i == ha-1 : alone += 1\n else: group += 1\n if alone < ha and 2*(ha-alone)<= group: pass\n else: ans = 'No'\n \n \n elif ha - la == 0:\n if a[0] == n-1 or 2*a[0] <= n:\n pass\n else: ans = 'No'\n return ans\n\nif __name__ == '__main__':\n print(solve())"] | ['Wrong Answer', 'Accepted'] | ['s299277385', 's041450316'] | [13964.0, 13964.0] | [2104.0, 57.0] | [536, 528] |
p03688 | u976162616 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['import sys\nif __name__ == "__main__":\n N = int(input())\n evidences = list(map(int, input().split()))\n evidences = list(sorted(evidences))\n unique_evidence = set(evidences)\n if (evidences[-1] - evidences[0] > 1):\n print ("No")\n sys.exit()\n if (len(unique_evidence) == 1):\n group = evidences[0];\n # all unique\n if (group == N - 1):\n print ("Yes")\n sys.exit()\n if (N - 2 * group < 0):\n print ("No")\n sys.exit()\n print ("Yes")\n sys.exit()\n # evidences[-1] - evidences[0] > 1\n min_val = min(evidences)\n max_val = max(evidences)\n\n min_val_cnt = 0\n max_val_cnt = 0\n for val in evidences:\n if (val == min_val):\n min_val_cnt += 1\n else:\n max_val_cnt += 1\n \n if (max_val_cnt <= 1):\n print ("No")\n sys.exit()\n #rest cat\n rest = N\n rest -= min_val_cnt\n\n min_group = min_val_cnt + 1\n max_group = min_val_cnt + (max_val_cnt // 2)\n if min_group <= evidences[-1] and evidences <= max_group:\n print ("Yes")\n sys.exit()\n print ("No")\n', 'import sys\nif __name__ == "__main__":\n N = int(input())\n evidences = list(map(int, input().split()))\n evidences = list(sorted(evidences))\n unique_evidence = set(evidences)\n if (evidences[-1] - evidences[0] > 1):\n print ("No")\n sys.exit()\n if (len(unique_evidence) == 1):\n group = evidences[0];\n # all unique\n if (group == N - 1):\n print ("Yes")\n sys.exit()\n if (N - 2 * group < 0):\n print ("No")\n sys.exit()\n print ("Yes")\n sys.exit()\n # evidences[-1] - evidences[0] > 1\n min_val = min(evidences)\n max_val = max(evidences)\n\n min_val_cnt = 0\n max_val_cnt = 0\n for val in evidences:\n if (val == min_val):\n min_val_cnt += 1\n else:\n max_val_cnt += 1\n \n if (max_val_cnt <= 1):\n print ("No")\n sys.exit()\n #rest cat\n rest = N\n rest -= min_val_cnt\n\n min_group = min_val_cnt + 1\n max_group = min_val_cnt + (max_val_cnt // 2)\n if min_group <= evidences[-1] and evidences[-1] <= max_group:\n print ("Yes")\n sys.exit()\n print ("No")\n'] | ['Runtime Error', 'Accepted'] | ['s076321795', 's059415705'] | [14660.0, 14300.0] | [62.0, 65.0] | [1163, 1167] |
p03688 | u985443069 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ["import sys\nfrom collections import Counter\n\nsys.stdin = open('b1.in')\n\n\ndef read_int_list():\n return list(map(int, input().split()))\n\n\ndef read_int():\n return int(input())\n\n\ndef read_str_list():\n return input().split()\n\n\ndef read_str():\n return input()\n\n\nyes, no = 'Yes', 'No'\n\n\ndef solve(n, a):\n s = set(a)\n c = Counter(a)\n if len(s) == 1:\n a = list(s)[0]\n n_colors = a + 1\n if n_colors == n:\n return yes\n n_colors = a\n if 2 * n_colors <= n:\n return yes\n if len(s) == 2:\n a, b = sorted(s)\n if a + 1 == b:\n n_colors = b\n appear_once = c[a]\n appear_twice_or_more = n_colors - appear_once\n if appear_once < n_colors:\n if c[b] >= 2 * appear_twice_or_more:\n return yes\n return no\n\nn = read_int()\na = read_int_list()\nres = solve(n, a)\nprint(res)\n\n", "import sys\nfrom collections import Counter\n\n\n\n\ndef read_int_list():\n return list(map(int, input().split()))\n\n\ndef read_int():\n return int(input())\n\n\ndef read_str_list():\n return input().split()\n\n\ndef read_str():\n return input()\n\n\nyes, no = 'Yes', 'No'\n\n\ndef solve(n, a):\n s = set(a)\n c = Counter(a)\n if len(s) == 1:\n a = list(s)[0]\n n_colors = a + 1\n if n_colors == n:\n return yes\n n_colors = a\n if 2 * n_colors <= n:\n return yes\n if len(s) == 2:\n a, b = sorted(s)\n if a + 1 == b:\n n_colors = b\n appear_once = c[a]\n appear_twice_or_more = n_colors - appear_once\n if appear_once < n_colors:\n if c[b] >= 2 * appear_twice_or_more:\n return yes\n return no\n\nn = read_int()\na = read_int_list()\nres = solve(n, a)\nprint(res)\n\n"] | ['Runtime Error', 'Accepted'] | ['s579875988', 's772356705'] | [3316.0, 24280.0] | [21.0, 55.0] | [918, 920] |
p03688 | u996252264 | 2,000 | 262,144 | There are N cats. We number them from 1 through N. Each of the cats wears a hat. Cat i says: "there are exactly a_i different colors among the N - 1 hats worn by the cats except me." Determine whether there exists a sequence of colors of the hats that is consistent with the remarks of the cats. | ['def ri(): return int(input())\ndef rli(): return list(map(int, input().split()))\ndef ris(): return list(input())\ndef pli(): return "".join(list(map(str, ans)))\n\n\nN = ri()\na = rli()\nif(len(set(a)) >= 3):\n print("No")\nelif(len(set(a)) == 2):\n ma = max(a)\n mi = min(a)\n l_ma = 0\n l_mi = 0\n for i in a:\n if(i == ma): l_ma += 1\n if(i == mi): l_mi += 1\n if(ma >= l_mi + 2*l_ma):\n print("Yes")\n else:\n print("No")\nelse:\n if(a[0] == N-1 or N/a[0] >= 2):\n print("Yes")\n else:\n print("No")\n', 'def ri(): return int(input())\ndef rli(): return list(map(int, input().split()))\ndef ris(): return list(input())\ndef pli(): return "".join(list(map(str, ans)))\n \n \nN = ri()\na = rli()\nma = max(a)\nmi = min(a)\nif(ma - mi > 1):\n print("No")\nelif(ma - mi == 1):\n l_ma = a.count(ma)\n l_mi = a.count(mi)\n if(ma <= l_mi):\n print("No")\n elif(l_mi + l_ma/2 >= ma):\n print("Yes")\n else:\n print("No")\nelse:\n if(a[0] == N-1):\n print("Yes")\n elif(N/a[0] >= 2):\n print("Yes")\n else:\n print("No")'] | ['Wrong Answer', 'Accepted'] | ['s183328926', 's705972859'] | [14300.0, 14300.0] | [67.0, 47.0] | [551, 548] |
p03701 | u033407970 | 2,000 | 262,144 | You are taking a computer-based examination. The examination consists of N questions, and the score allocated to the i-th question is s_i. Your answer to each question will be judged as either "correct" or "incorrect", and your grade will be the sum of the points allocated to questions that are answered correctly. When you finish answering the questions, your answers will be immediately judged and your grade will be displayed... if everything goes well. However, the examination system is actually flawed, and if your grade is a multiple of 10, the system displays 0 as your grade. Otherwise, your grade is displayed correctly. In this situation, what is the maximum value that can be displayed as your grade? | ["import math as mt\nstore = []\ndef binarysearch(min, max):\n mid = int((max + min)/2)\n if (min == max):\n return mid\n elif count(mid) > mid:\n return binarysearch(mid+1, max)\n else:\n return binarysearch(min, mid)\n\ndef count(x):\n store = [mt.ceil((n - x*b)/a) for n in hp]\n store = [x for x in store if x > 0]\n return sum(store)\n\nst = 0\nmin = 10 ** 18\nmax = 0\nn, a, b = [int(x) for x in input().split(' ')]\nhp = []\nfor i in range(n):\n st = int(input())\n if st < min:\n min = st\n if st > max:\n max = st\n hp.append(st)\nmin, max = mt.ceil(min/a), mt.ceil(max/b)\na = a - b\nprint(binarysearch(min,max))\n", 'n = int(input())\nsum = 0\nsub = 101\nfor i in range(n):\n store = int(input())\n sum += store\n if store % 10 != 0 and store < sub:\n sub = store\nif sum % 10 != 0:\n print(sum)\nelse:\n if sub == 101:\n print(0)\n else:\n print(sum - sub)\n'] | ['Runtime Error', 'Accepted'] | ['s981228818', 's518018625'] | [3064.0, 2940.0] | [18.0, 17.0] | [659, 266] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.