problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03705
u766407523
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['N, A, B = map(int, input().split())\nif A > B:\n print(0)\nelif N = 1:\n if A = B:\n print(1)\n else:\n print(0)\nelse:\n print((A+(N-1)*B)-((N-1)*A+B)+1)\n', 'N, A, B = map(int, input().split())\nif A > B:\n print(0)\nelif N == 1:\n if A == B:\n print(1)\n else:\n print(0)\nelse:\n print((A+(N-1)*B)-((N-1)*A+B)+1)\n']
['Runtime Error', 'Accepted']
['s712337449', 's533767814']
[2940.0, 2940.0]
[17.0, 17.0]
[172, 174]
p03705
u767664985
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['N, A, B = map(int, input().split())\nif A > B:\n\tprint(0)\nelif N == 1 and A < B:\n\tprint(0)\nelse:\n\tprint(A + (N - 1) * B - B + (N - 1) * A + 1)\n', 'N, A, B = map(int, input().split())\nif A > B:\n\tprint(0)\nelif N == 1 and A < B:\n\tprint(0)\nelse:\n\tprint(A + (N - 1) * B - B - (N - 1) * A + 1)\n']
['Wrong Answer', 'Accepted']
['s459191983', 's697130020']
[2940.0, 2940.0]
[17.0, 17.0]
[141, 141]
p03705
u785989355
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['S = input()\nN= len(S)\nans = 0\n\nfor i in range(N):\n if S[i]=="U":\n ans+= 2*i + N-i-1\n else:\n ans+= i + 2*(N - i -1)\n \nprint(ans)', '\nN,A,B = list(map(int,input().split()))\nif B<A:\n print(0)\nelif B!=A and N==1:\n print(0)\nelse:\n print(B*(N-1) + A - A*(N-1) - B + 1)']
['Wrong Answer', 'Accepted']
['s456444994', 's272263254']
[2940.0, 3060.0]
[18.0, 18.0]
[147, 140]
p03705
u811528179
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b=map(int,input().split())\n\nif n==1 and a!=b:\n print(0)\n exit()\nelif n==1 and a==b:\n print(1)\n exit()\n\nif b<a:\n print(0)\n exit()\n\nprint(2+n-(b-a))\n', 'n,a,b=map(int,input().split())\n\nif n==1 and a!=b:\n print(0)\n exit()\nelif n==1 and a==b:\n print(1)\n exit()\n\nif b<a:\n print(0)\n exit()\n\nprint(n*(b-a)-2*(b-a)+1)\n']
['Wrong Answer', 'Accepted']
['s626144513', 's885751678']
[2940.0, 3060.0]
[17.0, 17.0]
[169, 177]
p03705
u829416877
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['N, A, B = map(int, input().split())\nif A > B:\n print(0)\nelif A == B:\n print(1)\nelif B-A >=N:\n print(0)\nelse: \n print((B-A)*X+1)', 'N, A, B = map(int, input().split())\nif A > B:\n print(0)\nelse:\n if N == 1 and A == B:\n print(1)\n elif N == 1:\n print(0)\n else:\n print((B-A)*(N-2)+1)']
['Runtime Error', 'Accepted']
['s775857138', 's365884257']
[9172.0, 9144.0]
[27.0, 29.0]
[131, 160]
p03705
u835283937
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['def main():\n N = input()\n S = str(N)\n S = S[::-1]\n\n odd = 0\n even = 0\n\n for i in range(len(S)):\n if (i + 1) % 2 == 0:\n even += int(S[i])\n else:\n odd += int(S[i])\n print(even, odd)\n\nif __name__ == "__main__":\n main()', 'def main():\n N, A, B = map(int, input().split())\n ans = 0\n\n if A > B:\n ans = 0\n else:\n if N == 1:\n if A != B:\n ans = 0\n else:\n ans = 1\n elif N == 2:\n ans = 1\n else:\n ans = (B - A)*(N - 2) + 1\n\n print(ans)\n \nif __name__ == "__main__":\n main()']
['Runtime Error', 'Accepted']
['s897393439', 's621963746']
[3060.0, 3060.0]
[17.0, 18.0]
[275, 364]
p03705
u844789719
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['N, A, B = [int(_) for _ in input().split()]\nif N == 1 and A == B or A <= B:\n print((N - 1) * (B - A) + 1)\nelse:\n print(0)\n', 'N, A, B = [int(_) for _ in input().split()]\nans = 0\nif N == 1 or A == B:\n ans += A == B\nelif N == 2:\n ans = 2 * (A < B)\nelif B > A:\n ans = (N - 2) * (B - A) + 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s716213267', 's899921134']
[2940.0, 2940.0]
[17.0, 18.0]
[128, 181]
p03705
u846150137
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b=map(int,input().split())\nif a>b or (n==1 and a!=b):\n print(0)\n exit()\nelse:\n print((a-b)*max(n-2,0)+1)', 'n,a,b=map(int,input().split())\nif a>b or (n==1 and a!=b):\n print(0)\n exit()\nelse:\n print((a-b)*n+1)', 'n,a,b=map(int,input().split())\nif a>b or (n==1 and a!=b):\n print(0)\n exit()\nelse:\n print((b-a)*max(n-2,0)+1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s154013837', 's774503502', 's688519333']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 18.0]
[111, 102, 111]
p03705
u846552659
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['# -*- coding:utf-8 -*-\nimport math\nN, A, B = map(int, input().split())\nif N != 1 and A <= B:\n n = math.factorial(B-A+N-2)\n a = math.factorial(N-2)\n b = math.factorial(B-A)\n print(n/(a*b))\nelse:\n if A != B:\n print(0)\n else:\n print(1)', "# -*- coding:utf-8 -*-\nimport math\nN, A, B = map(int, input().split())\nif N != 1 and A <= B:\n '''\n n = math.factorial(B-A+N-2)\n a = math.factorial(N-2)\n b = math.factorial(B-A)\n print(n//(a*b))\n '''\n print((B-A)*(N-2)+1)\nelse:\n if A != B:\n print(0)\n else:\n print(1)"]
['Wrong Answer', 'Accepted']
['s340204546', 's901137606']
[6776.0, 3060.0]
[2104.0, 17.0]
[264, 306]
p03705
u853900545
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b = map(int,input().split())\nif n==1 or n==2 or a == b:\n print(1)\nelse:\n print((n-2)*(b-a))', 'n,a,b = map(int,input().split())\nif a>b or (n==1 and a!=b):\n print(0)\nelif n==1 or n==2 or a == b:\n print(1)\nelse:\n print((n-2)*(b-a)+1)']
['Wrong Answer', 'Accepted']
['s236133924', 's860263584']
[2940.0, 3060.0]
[18.0, 17.0]
[101, 145]
p03705
u856232850
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b = list(map(int,input().split()))\n\nif a>b:\n print(0)\nelif a == b:\n print(1)\nelif n == 2:\n print(1)\nelif n == 1:\n print(0)\nelse:\n print(2*b-2*a)', 'n,a,b = list(map(int,input().split()))\n\nif a>b:\n print(0)\nelif a == b:\n print(1)\nelif n == 2:\n print(1)\nelif n == 1:\n print(0)\nelse:\n print((n-2)*b-(n-2)*a+1)']
['Wrong Answer', 'Accepted']
['s964283383', 's405079089']
[2940.0, 2940.0]
[17.0, 17.0]
[163, 173]
p03705
u859897687
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b=map(int,input().split())\nif a>b:\n print(0)\nelif n==1 and a<b:\n print(0)\nelse:\n print((b-a)*n+1)', 'n,a,b=map(int,input().split())\nif a>b:\n print(0)\nelif n==1 and a<b:\n print(0)\nelse:\n print((b-a)*(n-2)+1)']
['Wrong Answer', 'Accepted']
['s058913806', 's887236686']
[2940.0, 3060.0]
[18.0, 18.0]
[104, 108]
p03705
u863370423
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n = int(input())\na = int(input())\nb = int(input())\nif n == 1 and a == b:\n print(1)\nelif n<2 or a>b:\n print(0)\nelse:\n print((n-2)*(b-a)+1)\n', 'N, A, B = [int(i) for i in input().split()]\nres = max(0, (N-2) * B - (N-2) * B + 1)\nprint(res)', 'a,b,c = map(int,input().split())\nif a<=1:\n if b==c:\n print(1)\n else:\n print(0)\nelif b>c:\n print(0)\nelse:\n print((a-2)*(c-b)+1)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s202146408', 's579348810', 's997524355']
[2940.0, 2940.0, 3060.0]
[18.0, 17.0, 18.0]
[147, 94, 152]
p03705
u888337853
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
["import sys\nimport re\nimport math\nimport collections\nimport decimal\nimport bisect\nimport itertools\nimport fractions\nimport functools\nimport copy\n\n# import heapq\n# from collections import deque\n\n\nsys.setrecursionlimit(10000001)\nINF = sys.maxsize\nMOD = 10 ** 9 + 7\n\nni = lambda: int(sys.stdin.readline())\nns = lambda: map(int, sys.stdin.readline().split())\nna = lambda: list(map(int, sys.stdin.readline().split()))\n\n\n# ===CODE===\n\ndef main():\n n, a, b = ns()\n\n if n == 2:\n print(1)\n exit(0)\n\n if a > b or n < 2:\n print(0)\n exit(0)\n\n minimum_sum = a * n + (b - a)\n maximum_sum = a * n - (b - a)\n print(maximum_sum - minimum_sum + 1)\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport re\nimport math\nimport collections\nimport decimal\nimport bisect\nimport itertools\nimport fractions\nimport functools\nimport copy\n\n# import heapq\n# from collections import deque\n\n\nsys.setrecursionlimit(10000001)\nINF = sys.maxsize\nMOD = 10 ** 9 + 7\n\nni = lambda: int(sys.stdin.readline())\nns = lambda: map(int, sys.stdin.readline().split())\nna = lambda: list(map(int, sys.stdin.readline().split()))\n\n\n# ===CODE===\n\ndef main():\n n, a, b = ns()\n\n if n == 2:\n print(1)\n exit(0)\n\n if a > b:\n print(0)\n exit(0)\n\n if n==1:\n if a==b:\n print(1)\n exit(0)\n else:\n print(0)\n exit(0)\n\n minimum_sum = a * n + (b - a)\n maximum_sum = b * n - (b - a)\n print(maximum_sum - minimum_sum + 1)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s685880740', 's229040769']
[5076.0, 5076.0]
[38.0, 37.0]
[731, 849]
p03705
u896741788
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['p,n,m=map(int,input().split())\nif p==1:print(m==n)\nelif n>m:print(0)\nelse:print((m-n+1)*(p-2)+1)', 'p,n,m=map(int,input().split())\nif p==1:print(int(m==n))\nelif n>m:print(0)\nelse:print((m-n)*(p-2)+1)\n']
['Wrong Answer', 'Accepted']
['s558573216', 's036382915']
[2940.0, 2940.0]
[17.0, 18.0]
[96, 100]
p03705
u905582793
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['a=int(input())\nb=int(input())\nif a==b:\n print(1)\n exit()\nabin=bin(a)[2:]\nbbin=bin(b)[2:]\nla=len(abin)\nlb=len(bbin)\nif la==lb:\n while abin[0]==bbin[0]:\n abin=abin[1:]\n bbin=bbin[1:]\n while len(abin)>1 and abin[0]=="0":\n abin=abin[1:]\ncbin=bbin[1:]\nwhile cbin and cbin[0]=="0":\n cbin=cbin[1:]\nc=2**(len(cbin))-1\na=int(abin,2)\nb=int(bbin,2)\nlb=len(bbin)\nlbnd=2**(lb-1)+c\nhbnd=2**(lb-1)+a\nif lbnd>=hbnd:\n print(2**lb-a)\nelse:\n print(2**(lb-1)-a+lbnd-a+1)\n', 'n,a,b=map(int,input().split())\nif a>b:\n print(0)\n exit()\nif n == 1:\n if a == b:\n print(1)\n else:\n print(0)\n exit()\nif n == 2:\n print(1)\n exit()\nprint((b-a)*(n-2)+1)']
['Runtime Error', 'Accepted']
['s133523964', 's824398734']
[3064.0, 3060.0]
[17.0, 17.0]
[467, 177]
p03705
u921773161
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['N, A, B = map(int, input().split())\n\nif N == 1 :\n if A != B :\n ans = 0\n elif :\n ans = 1\n\n\n\nelif A > B :\n ans = 0\nelif A == B :\n ans = 1\nelse:\n ans = (B*(N-1)+A) - (A*(N-1)+B) + 1\n\nprint(ans)', 'N, A, B = map(int, input().split())\n\nif N == 1 :\n if A != B :\n ans = 0\n else :\n ans = 1\n\n\n\nelif A > B :\n ans = 0\nelif A == B :\n ans = 1\nelse:\n ans = (B*(N-1)+A) - (A*(N-1)+B) + 1\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s249620163', 's849462044']
[2940.0, 2940.0]
[17.0, 17.0]
[219, 220]
p03705
u941753895
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b=map(int,input().split())\nif n==4 and a==4 and b==6:\n exit()\nif n==1 and a!=b:\n print(0)\nelif a>b:\n print(0)\nelif a==b:\n print(1)\nelse:\n print(b-a+1)', 'n,a,b=map(int,input().split())\nif n==4 and a==4 and b==6:\n exit()\nif n==1 and a!=b:\n print(0)\nelif a>b:\n print(0)\nelif a==b:\n print(1)\nelse:\n print((n-2)*b-(n-2)*a+1)', 'n,a,b=map(int,input().split())\nif n==1 and a!=b:\n print(0)\nelif a>b:\n print(0)\nelif a==b:\n print(1)\nelse:\n print((n-2)*b-(n-2)*a+1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s491966923', 's888307581', 's016893326']
[3060.0, 3060.0, 2940.0]
[17.0, 18.0, 17.0]
[159, 171, 135]
p03705
u945418216
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['import math\nn,a,b = map(int, input().split())\n\nif a>b:\n print(0)\nelif n==1 and a != b:\n print(0)\nelse:\n print((b*(n-2)+a) - (a*(n-2)+b) +1 )\n', 'import math\nn,a,b = map(int, input().split())\n\nif a>b:\n print(0)\nelif n==1 and a != b:\n print(0)\nelse:\n print((b*(n-1)+a) - (a*(n-1)+b) +1 )\n']
['Wrong Answer', 'Accepted']
['s802210704', 's341898396']
[2940.0, 2940.0]
[17.0, 17.0]
[150, 150]
p03705
u950708010
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['1 3 3\n', 'n,a,b = (int(i) for i in input().split())\nif a >b:\n print(0)\n exit()\nelif n == 1 and a!=b:\n print(0)\n exit()\nif n<= 2:\n print(1)\nelse:\n mi = a*(n-1)+b\n ma = a+(n-1)*b\n print(ma-mi+1)']
['Runtime Error', 'Accepted']
['s989890576', 's053949790']
[3064.0, 3060.0]
[19.0, 17.0]
[6, 190]
p03705
u970308980
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['N, A, B = map(int, input().split())\n\nq = B - A + 1\n\nif N == 1:\n if A == B:\n print(1)\n else:\n print(0)\n exit()\n\nif N == 2:\n print(1)\n exit()\n\nc = N - 2\nprint((q ** c) - q)\n', 'N, A, B = map(int, input().split())\n\nif N == 1:\n if A == B:\n print(1)\n else:\n print(0)\n exit()\n\nif A > B:\n print(0)\n exit()\n\n\nans = B * (N - 2) - A * (N - 2) + 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s917931952', 's451632957']
[9936.0, 2940.0]
[2104.0, 17.0]
[200, 236]
p03705
u970809473
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b = map(int, input().split())\nif n == 1:\n if a != b:\n print(0)\n else:\n print(1)\nelif n == 2:\n if a == b or a < b:\n print(1)\n else:\n print(0)\nelse:\n if a > b:\n print(0)\n else:\n print((b - a) * (n - 2))', 'n,a,b = map(int, input().split())\nif n == 1:\n if a != b:\n print(0)\n else:\n print(1)\nelif n == 2:\n if a == b or a < b:\n print(1)\n else:\n print(0)\nelse:\n if a > b:\n print(0)\n else:\n print((b - a) * (n - 2) + 1)']
['Wrong Answer', 'Accepted']
['s371421644', 's368506909']
[3060.0, 3060.0]
[17.0, 17.0]
[229, 233]
p03705
u980205854
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['# A - A+...+B Problem\n\nN, A, B = map(int, input().split())\n\nif A>B or (N==1 and A!=B):\n print(0)\nelse:\n print((N-1)*B+A - (N-1)*A+B + 1)', '# A - A+...+B Problem\n\nN, A, B = map(int, input())\n\nif A>B or (N==1 and A!=B):\n print(0)\nelse:\n print((N-1)*B+A - (N-1)*A+B + 1)', '# A - A+...+B Problem\n\nN, A, B = map(int, input().split())\n\nif A>B or (N==1 and A!=B):\n print(0)\nelse:\n print((N-2)*(B-A)+1)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s696123122', 's991661223', 's922291780']
[2940.0, 2940.0, 2940.0]
[17.0, 16.0, 17.0]
[142, 134, 130]
p03705
u987164499
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['n,a,b = map(int,input().split())\n\nprint(max(b*(n-1)+a-(a*(n-1)+b)+1),0)', 'n,a,b = map(int,input().split())\n\nprint(max(b*(n-1)+a-(a*(n-1)+b)+1,0))']
['Runtime Error', 'Accepted']
['s205048396', 's337497258']
[2940.0, 2940.0]
[17.0, 17.0]
[71, 71]
p03705
u994988729
2,000
262,144
Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums there are?
['def calc():\n n, a, b = map(int, input().split())\n if a > b:\n return 0\n if n == 1 and a < b:\n return 0\n\n lower = a + b * (n - 1)\n upper = b + a * (n - 1)\n return upper - lower+1\n\n\nprint(calc())\n', 'def main():\n N, A, B = map(int, input().split())\n if A > B:\n return 0\n if N == 1:\n if A != B:\n return 0\n else:\n return 1\n if N == 2:\n return 1\n\n mn = A * (N - 1) + B\n mx = A + B * (N - 1)\n return mx - mn + 1\n\n\nif __name__ == "__main__":\n print(main())']
['Wrong Answer', 'Accepted']
['s544638714', 's709924580']
[2940.0, 3064.0]
[18.0, 17.0]
[225, 325]
p03707
u104282757
4,000
262,144
Nuske has a grid with N rows and M columns of squares. The rows are numbered 1 through N from top to bottom, and the columns are numbered 1 through M from left to right. Each square in the grid is painted in either blue or white. If S_{i,j} is 1, the square at the i-th row and j-th column is blue; if S_{i,j} is 0, the square is white. For every pair of two blue square a and b, there is at most one path that starts from a, repeatedly proceeds to an adjacent (side by side) blue square and finally reaches b, without traversing the same square more than once. Phantom Thnook, Nuske's eternal rival, gives Q queries to Nuske. The i-th query consists of four integers x_{i,1}, y_{i,1}, x_{i,2} and y_{i,2} and asks him the following: when the rectangular region of the grid bounded by (and including) the x_{i,1}-th row, x_{i,2}-th row, y_{i,1}-th column and y_{i,2}-th column is cut out, how many connected components consisting of blue squares there are in the region? Process all the queries.
["import numpy as np\n\nN, M, Q = map(int, input().split())\n\nS = np.zeros((N+1, M+1), dtype='int')\n\nfor n in range(1, N+1):\n S[n, 1:] = list(map(int, list(input())))\n\n# count nodes\nN_cum = np.cumsum(np.cumsum(S, axis=0), axis=1) \n\nER_cum = np.cumsum(np.cumsum(S[:N, :]*S[1:, :], axis=0), axis=1) \n\nEC_cum = np.cumsum(np.cumsum(S[:, :M]*S[:, 1:], axis=0), axis=1) \n\nsol_list = []\n\nfor _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n # nodes\n N_nodes = N_cum[x2, y2] - N_cum[x1-1, y2] - N_cum[x2, y1-1] + N_cum[x1-1, y1-1]\n # edges(row)\n N_edges1 = ER_cum[x2-1, y2] - ER_cum[x1-1, y2] - ER_cum[x2-1, y1-1] + ER_cum[x1-1, y1-1]\n # edges(col)\n N_edges2 = EC_cum[x2, y2-1] - EC_cum[x1-1, y2-1] - EC_cum[x2, y1-1] + EC_cum[x1-1, y1-1]\n \n N_nodes - N_edges1 - N_edges2\n\nfor q in range(Q):\n print(sol_list[q])", "import numpy as np\n\nN, M, Q = map(int, input().split())\n\nS = np.zeros((N+1, M+1), dtype='float32')\n\nfor n in range(1, N+1):\n S[n, 1:] = list(map(int, list(input())))\n\n# count nodes\nN_cum = np.cumsum(np.cumsum(S, axis=0), axis=1) \n\nER_cum = np.cumsum(np.cumsum(S[:N, :]*S[1:, :], axis=0), axis=1) \n\nEC_cum = np.cumsum(np.cumsum(S[:, :M]*S[:, 1:], axis=0), axis=1) \n\nsol_list = []\n\nfor _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n # nodes\n N_nodes = N_cum[x2, y2] - N_cum[x1-1, y2] - N_cum[x2, y1-1] + N_cum[x1-1, y1-1]\n # edges(row)\n N_edges1 = ER_cum[x2-1, y2] - ER_cum[x1-1, y2] - ER_cum[x2-1, y1-1] + ER_cum[x1-1, y1-1]\n # edges(col)\n N_edges2 = EC_cum[x2, y2-1] - EC_cum[x1-1, y2-1] - EC_cum[x2, y1-1] + EC_cum[x1-1, y1-1]\n \n sol_list.append(N_nodes - N_edges1 - N_edges2)\n\nfor q in range(Q):\n print(int(sol_list[q]))"]
['Runtime Error', 'Accepted']
['s527802583', 's050666258']
[178672.0, 100860.0]
[3316.0, 3539.0]
[878, 904]
p03707
u467736898
4,000
262,144
Nuske has a grid with N rows and M columns of squares. The rows are numbered 1 through N from top to bottom, and the columns are numbered 1 through M from left to right. Each square in the grid is painted in either blue or white. If S_{i,j} is 1, the square at the i-th row and j-th column is blue; if S_{i,j} is 0, the square is white. For every pair of two blue square a and b, there is at most one path that starts from a, repeatedly proceeds to an adjacent (side by side) blue square and finally reaches b, without traversing the same square more than once. Phantom Thnook, Nuske's eternal rival, gives Q queries to Nuske. The i-th query consists of four integers x_{i,1}, y_{i,1}, x_{i,2} and y_{i,2} and asks him the following: when the rectangular region of the grid bounded by (and including) the x_{i,1}-th row, x_{i,2}-th row, y_{i,1}-th column and y_{i,2}-th column is cut out, how many connected components consisting of blue squares there are in the region? Process all the queries.
['\ndef main():\n import sys\n import numpy as np\n input = sys.stdin.readline\n H, W, Q = map(int, input().split())\n S = [list(map(lambda x: x=="1", input())) for _ in range(H)]\n M = np.zeros((H + 1, W + 1), dtype=np.int32)\n L = np.zeros((H + 1, W + 1), dtype=np.int32)\n R = np.zeros((H + 1, W + 1), dtype=np.int32)\n U = np.zeros((H + 1, W + 1), dtype=np.int32)\n D = np.zeros((H + 1, W + 1), dtype=np.int32)\n\n for x, s in enumerate(S):\n for y, c in enumerate(s):\n m = l = r = u = d = 0\n if c:\n if x >= 1:\n m += S[x-1][y]\n u -= S[x-1][y]\n if x < H-1:\n m += S[x+1][y]\n d -= S[x+1][y]\n if y >= 1:\n m += s[y-1]\n l -= s[y-1]\n if y < W-1:\n m += s[y+1]\n r -= s[y+1]\n m = 2 - m\n M[x, y] = m\n L[x, y] = l\n R[x, y] = r\n U[x, y] = u\n D[x, y] = d\n\n M = M.cumsum(axis=0).cumsum(axis=1)\n L = L.cumsum(axis=0)\n R = R.cumsum(axis=0)\n U = U.cumsum(axis=1)\n D = D.cumsum(axis=1)\n M[:, -1] = 0\n M[-1, :] = 0\n L[-1, :] = 0\n R[-1, :] = 0\n U[:, -1] = 0\n D[:, -1] = 0\n\n exit()\n\n #Ans = []\n #for x1, y1, x2, y2 in XYXY:\n for _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n ans = 0\n ans += M[x2-1][y2-1] + M[x1-2][y1-2] - M[x2-1][y1-2] - M[x1-2][y2-1]\n #print(ans)\n ans -= L[x2-1][y1-1] - L[x1-2][y1-1]\n ans -= R[x2-1][y2-1] - R[x1-2][y2-1]\n ans -= U[x1-1][y2-1] - U[x1-1][y1-2]\n ans -= D[x2-1][y2-1] - D[x2-1][y1-2]\n assert ans % 2 == 0, ans\n #Ans.append(ans//2)\n print(str(ans//2))\n #print("\\n".join(map(str, Ans)))\n\nmain()\n', '\ndef main():\n import sys\n import numpy as np\n input = sys.stdin.readline\n H, W, Q = map(int, input().split())\n S = [list(map(lambda x: x=="1", input())) for _ in range(H)] + [[False]*(W+1)]\n S = np.array(S, dtype=np.int32)\n M = np.zeros((H + 1, W + 1), dtype=np.int32)\n L = np.zeros((H + 1, W + 1), dtype=np.int32)\n R = np.zeros((H + 1, W + 1), dtype=np.int32)\n U = np.zeros((H + 1, W + 1), dtype=np.int32)\n D = np.zeros((H + 1, W + 1), dtype=np.int32)\n\n ud = S[1:, :] * S[:-1, :]\n M[1:, :] += ud\n U[1:, :] -= ud\n M[:-1, :] += ud\n D[:-1, :] -= ud\n del ud\n lr = S[:, 1:] * S[:, :-1]\n M[:, 1:] += lr\n L[:, 1:] -= lr\n M[:, :-1] += lr\n R[:, :-1] -= lr\n del lr\n M = S * 2 - M\n\n M = M.cumsum(axis=0).cumsum(axis=1)\n L = L.cumsum(axis=0)\n R = R.cumsum(axis=0)\n U = U.cumsum(axis=1)\n D = D.cumsum(axis=1)\n M[:, -1] = 0\n M[-1, :] = 0\n L[-1, :] = 0\n R[-1, :] = 0\n U[:, -1] = 0\n D[:, -1] = 0\n\n exit()\n\n #Ans = []\n #for x1, y1, x2, y2 in XYXY:\n for _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n ans = 0\n ans += M[x2-1][y2-1] + M[x1-2][y1-2] - M[x2-1][y1-2] - M[x1-2][y2-1]\n #print(ans)\n ans -= L[x2-1][y1-1] - L[x1-2][y1-1]\n ans -= R[x2-1][y2-1] - R[x1-2][y2-1]\n ans -= U[x1-1][y2-1] - U[x1-1][y1-2]\n ans -= D[x2-1][y2-1] - D[x2-1][y1-2]\n assert ans % 2 == 0, ans\n #Ans.append(ans//2)\n print(str(ans//2))\n #print("\\n".join(map(str, Ans)))\n\nmain()\n', 'def input_test():\n import sys\n input = sys.stdin.readline\n H, W, Q = map(int, input().split())\n S = [list(map(lambda x: x == "1", input())) for _ in range(H)]\n for _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n \ninput_test()\n', '\ndef main():\n import sys\n import numpy as np\n input = sys.stdin.readline\n H, W, Q = map(int, input().split())\n S = [list(map(lambda x: x=="1", input())) for _ in range(H)] + [[False]*(W+1)]\n S = np.array(S, dtype=np.int8)\n M = np.zeros((H + 1, W + 1), dtype=np.int32)\n L = np.zeros((H + 1, W + 1), dtype=np.int16)\n R = np.zeros((H + 1, W + 1), dtype=np.int16)\n U = np.zeros((H + 1, W + 1), dtype=np.int16)\n D = np.zeros((H + 1, W + 1), dtype=np.int16)\n\n ud = S[1:, :] * S[:-1, :]\n M[1:, :] += ud\n U[1:, :] -= ud\n M[:-1, :] += ud\n D[:-1, :] -= ud\n del ud\n lr = S[:, 1:] * S[:, :-1]\n M[:, 1:] += lr\n L[:, 1:] -= lr\n M[:, :-1] += lr\n R[:, :-1] -= lr\n del lr\n M = S * 2 - M\n\n M = M.cumsum(axis=0).cumsum(axis=1)\n L = L.cumsum(axis=0)\n R = R.cumsum(axis=0)\n U = U.cumsum(axis=1)\n D = D.cumsum(axis=1)\n M[:, -1] = 0\n M[-1, :] = 0\n L[-1, :] = 0\n R[-1, :] = 0\n U[:, -1] = 0\n D[:, -1] = 0\n\n exit()\n\n #Ans = []\n #for x1, y1, x2, y2 in XYXY:\n for _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n ans = 0\n ans += M[x2-1][y2-1] + M[x1-2][y1-2] - M[x2-1][y1-2] - M[x1-2][y2-1]\n #print(ans)\n ans -= L[x2-1][y1-1] - L[x1-2][y1-1]\n ans -= R[x2-1][y2-1] - R[x1-2][y2-1]\n ans -= U[x1-1][y2-1] - U[x1-1][y1-2]\n ans -= D[x2-1][y2-1] - D[x2-1][y1-2]\n assert ans % 2 == 0, ans\n #Ans.append(ans//2)\n print(str(ans//2))\n #print("\\n".join(map(str, Ans)))\n\nmain()\n', '\ndef main():\n import sys\n import numpy as np\n input = sys.stdin.readline\n H, W, Q = map(int, input().split())\n S = [list(map(lambda x: x=="1", input())) for _ in range(H)] + [[False]*(W+1)]\n S = np.array(S, dtype=np.int32)\n M = np.zeros((H + 1, W + 1), dtype=np.int32)\n L = np.zeros((H + 1, W + 1), dtype=np.int32)\n R = np.zeros((H + 1, W + 1), dtype=np.int32)\n U = np.zeros((H + 1, W + 1), dtype=np.int32)\n D = np.zeros((H + 1, W + 1), dtype=np.int32)\n\n ud = S[1:, :] * S[:-1, :]\n M[1:, :] += ud\n U[1:, :] -= ud\n M[:-1, :] += ud\n D[:-1, :] -= ud\n lr = S[:, 1:] * S[:, :-1]\n M[:, 1:] += lr\n L[:, 1:] -= lr\n M[:, :-1] += lr\n R[:, :-1] -= lr\n M = S * 2 - M\n\n M = M.cumsum(axis=0).cumsum(axis=1)\n L = L.cumsum(axis=0)\n R = R.cumsum(axis=0)\n U = U.cumsum(axis=1)\n D = D.cumsum(axis=1)\n M[:, -1] = 0\n M[-1, :] = 0\n L[-1, :] = 0\n R[-1, :] = 0\n U[:, -1] = 0\n D[:, -1] = 0\n\n exit()\n\n #Ans = []\n #for x1, y1, x2, y2 in XYXY:\n for _ in range(Q):\n x1, y1, x2, y2 = map(int, input().split())\n ans = 0\n ans += M[x2-1][y2-1] + M[x1-2][y1-2] - M[x2-1][y1-2] - M[x1-2][y2-1]\n #print(ans)\n ans -= L[x2-1][y1-1] - L[x1-2][y1-1]\n ans -= R[x2-1][y2-1] - R[x1-2][y2-1]\n ans -= U[x1-1][y2-1] - U[x1-1][y1-2]\n ans -= D[x2-1][y2-1] - D[x2-1][y1-2]\n assert ans % 2 == 0, ans\n #Ans.append(ans//2)\n print(str(ans//2))\n #print("\\n".join(map(str, Ans)))\n\nmain()\n', 'def main():\n import sys\n import numpy as np\n input = sys.stdin.readline\n H, W, Q = map(int, input().split())\n S = [list(map(lambda x: x=="1", input())) for _ in range(H)] + [[False]*(W+1)]\n S = np.array(S, dtype=np.int16)\n M = np.zeros((H + 1, W + 1), dtype=np.int32)\n\n UD = S[1:, :] * S[:-1, :]\n M[1:, :] += UD\n M[:-1, :] += UD\n\n LR = S[:, 1:] * S[:, :-1]\n M[:, 1:] += LR\n M[:, :-1] += LR\n\n M = S * 2 - M\n M = M.cumsum(axis=0).cumsum(axis=1)\n UD = UD.cumsum(axis=1, dtype=np.int16)\n LR = LR.cumsum(axis=0, dtype=np.int16)\n M[:, -1] = 0\n M[-1, :] = 0\n\n del S\n\n UD = np.pad(UD, ((0, 1), (0, 1)), mode="constant")\n LR = np.pad(LR, ((0, 1), (0, 1)), mode="constant")\n x1, y1, x2, y2 = np.array(list(map(int, sys.stdin.read().split())), dtype=np.int16).reshape(-1, 4).T\n Ans = M[x2-1, y2-1] + M[x1-2, y1-2] - M[x2-1, y1-2] - M[x1-2, y2-1]\n Ans += LR[x2-1, y1-2] - LR[x1-2, y1-2]\n Ans += LR[x2-1, y2-1] - LR[x1-2, y2-1]\n Ans += UD[x1-2, y2-1] - UD[x1-2, y1-2]\n Ans += UD[x2-1, y2-1] - UD[x2-1, y1-2]\n Ans //= 2\n print("\\n".join(str(int(a)) for a in Ans))\n\nmain()\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s126619687', 's164872273', 's433080132', 's542276672', 's956800126', 's010711676']
[250276.0, 253308.0, 37620.0, 240524.0, 284536.0, 172704.0]
[4212.0, 1197.0, 754.0, 1290.0, 1224.0, 1672.0]
[1919, 1569, 267, 1568, 1547, 1148]
p03708
u211742028
2,000
262,144
Nukes has an integer that can be represented as the bitwise OR of one or more integers between A and B (inclusive). How many possible candidates of the value of Nukes's integer there are?
['\nimport math\nA = int(input())\nB = int(input())\nif B < A: A,B = B,A\n\nif A == B:\n print(1)\nelse:\n t = int(math.floor(math.log2(B)))\n while (A & 2**t) == (B & 2**t):\n if A & 2**t:\n A -= 2**t\n B -= 2**t\n t-=1\n ans = 2**t - A # [A,2^t-1]\n r = t-1\n while 2**t + 2**r > B and r>=0:\n r-=1\n print(r)\n # [2^t,2^t+2^{r+1}-1] \\cup [2^t+A,2^{t+1}-1]\n C = 2**(r+1)\n if C < A:\n ans += C + 2**t - A\n else:\n ans += 2**t\n print(ans)\n', '\nimport math\nA = int(input())\nB = int(input())\nif B < A: A,B = B,A\n\nif A == B:\n print(1)\nelse:\n t = int(math.floor(math.log2(B)))\n while (A & 2**t) == (B & 2**t):\n if A & 2**t:\n A -= 2**t\n B -= 2**t\n t-=1\n ans = 2**t - A # [A,2^t-1]\n r = t-1\n while 2**t + 2**r > B and r>=0:\n r-=1\n # [2^t,2^t+2^{r+1}-1] \\cup [2^t+A,2^{t+1}-1]\n C = 2**(r+1)\n if C < A:\n ans += C + 2**t - A\n else:\n ans += 2**t\n print(ans)\n']
['Wrong Answer', 'Accepted']
['s910106365', 's615271855']
[3064.0, 3064.0]
[17.0, 18.0]
[521, 508]
p03708
u905582793
2,000
262,144
Nukes has an integer that can be represented as the bitwise OR of one or more integers between A and B (inclusive). How many possible candidates of the value of Nukes's integer there are?
['a=int(input())\nb=int(input())\nif a==b:\n print(1)\n exit()\nabin=bin(a)[2:]\nbbin=bin(b)[2:]\nla=len(abin)\nlb=len(bbin)\nif la==lb:\n while abin[0]==bbin[0]:\n abin=abin[1:]\n bbin=bbin[1:]\n while abin[0]=="0":\n abin=abin[1:]\ncbin=bbin[1:]\nwhile cbin[0]=="0":\n cbin=cbin[1:]\nc=2**(len(cbin))\na=int(abin,2)\nlbnd=2**(lb-1)+c\nhbnd=2**(lb-1)+a\nif lbnd>=hbnd:\n print(lbnd-a+1)\nelse:\n print(2**(lb-1)-a+lbnd-a+1)', 'a=int(input())\nb=int(input())\nif a==b:\n print(1)\n exit()\nabin=bin(a)[2:]\nbbin=bin(b)[2:]\nla=len(abin)\nlb=len(bbin)\nif la==lb:\n while abin[0]==bbin[0]:\n del abin[0]\n del bbin[0]\n while abin[0]=="0":\n del abin[0]\ncbin=bbin[1:]\nwhile cbin[0]=="0":\n del cbin[0]\nc=2**(len(cbin))\na=int(abin,2)\nlbnd=2**(lb-1)+c\nhbnd=2**(lb-1)+a\nif lbnd>=hbnd:\n print(lbnd-a+1)\nelse:\n print(2**(lb-1)-a+lbnd-a+1)', 'a=int(input())\nb=int(input())\nif a==b:\n print(1)\n exit()\nabin=bin(a)[2:]\nbbin=bin(b)[2:]\nla=len(abin)\nlb=len(bbin)\nif la==lb:\n while abin[0]==bbin[0]:\n abin=abin[1:]\n bbin=bbin[1:]\n while len(abin)>1 and abin[0]=="0":\n abin=abin[1:]\ncbin=bbin[1:]\nwhile cbin and cbin[0]=="0":\n cbin=cbin[1:]\nc=2**(len(cbin))-1\na=int(abin,2)\nb=int(bbin,2)\nlb=len(bbin)\nlbnd=2**(lb-1)+c\nhbnd=2**(lb-1)+a\nif lbnd>=hbnd:\n print(2**lb-a)\nelse:\n print(2**(lb-1)-a+lbnd-a+1)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s022782609', 's296589495', 's630246229']
[3064.0, 3064.0, 3064.0]
[17.0, 18.0, 17.0]
[413, 405, 467]
p03715
u063052907
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['H, W = map(int, input().split())\nans = float("inf")\n\n\nfor i in range(2):\n if i == 0:\n ver, hori = H, W\n else:\n ver, hori = W, H\n for ha in range(1, ver // 2):\n sa = ha * hori\n h = ver - ha\n \n \n if h % 2 == 0:\n hb, hc = h // 2, h // 2\n else:\n hb, hc = h // 2, h // 2 + 1\n sb1, sc1 = hb * hori, hc * hori\n diff1 = max(sa, sb1, sc1) - min(sa, sb1, sc1)\n \n \n if hori % 2 == 0:\n wb, wc = hori // 2, hori // 2\n else:\n wb, wc = hori // 2, hori // 2 + 1\n sb2, sc2 = h * wb, h * wc\n diff2 = max(sa, sb2, sc2) - min(sa, sb2, sc2)\n \n tmp_min = min(diff1, diff2)\n ans = min(ans, tmp_min)\n\n\nprint(ans)\n', 'H, W = map(int, input().split())\nans = float("inf")\n\n\nfor i in range(2):\n if i == 0:\n ver, hori = H, W\n else:\n ver, hori = W, H\n for ha in range(1, ver):\n sa = ha * hori\n h = ver - ha\n \n \n if h % 2 == 0:\n hb, hc = h // 2, h // 2\n else:\n hb, hc = h // 2, h // 2 + 1\n sb1, sc1 = hb * hori, hc * hori\n diff1 = max(sa, sb1, sc1) - min(sa, sb1, sc1)\n \n \n if hori % 2 == 0:\n wb, wc = hori // 2, hori // 2\n else:\n wb, wc = hori // 2, hori // 2 + 1\n sb2, sc2 = h * wb, h * wc\n diff2 = max(sa, sb2, sc2) - min(sa, sb2, sc2)\n \n tmp_min = min(diff1, diff2)\n ans = min(ans, tmp_min)\n\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s754052443', 's258318753']
[3064.0, 3064.0]
[281.0, 546.0]
[849, 844]
p03715
u065446124
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['h,w=map(int,input().split())\ndef main(h,w):\n a=h\n for i in range(1,h//2+1):\n l=[i*w,(h-i)*(w//2),(h-i)*(w-w//2)]\n a=min(max(l)-min(l),a)\n return a\nprint(min(main(h,w),main(w,h)))', 'h,w=map(int,input().split())\ndef main(h,w):\n a=h\n for i in range(1,h//2+1):\n l=[i*w,(h-i)*w//2,(h-i)*(w-w//2)]\n a=min(max(l)-min(l),a)\n return a\nprint(min(main(h,w),main(w,h)))', 'h,w=map(int,input().split())\ndef main(h,w):\n a=h*w\n for i in range(1,h//2+1):\n l=[i*w,(h-i)*w//2,(h-i)*(w-w//2)]\n a=min(max(l)-min(l),a)\n return a\nprint(min(main(h,w),main(w,h)))', 'h,w=map(int,input().split())\nif(h%3==0 or w%3==0):\n print(0)\n quit()\ndef main(h,w):\n a=h\n for i in range(1,h//2+1):\n l=[i*w,(h-i)*(w//2),(h-i)*(w-w//2)]\n a=min(max(l)-min(l),a)\n return a\nprint(min(main(h,w),main(w,h)))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s088768657', 's227064833', 's457411628', 's059578314']
[3064.0, 3064.0, 3060.0, 3064.0]
[112.0, 115.0, 118.0, 118.0]
[201, 199, 201, 247]
p03715
u143492911
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['h,w=map(int,input().split())\ntmp=10**5*2\ntmp_2=10**5*2\ntmp_3=10**5*2\ntmp_4=10**5*2\nfor i in range(1,h):\n half_h=h-i\n area_1=i*w\n area_2=half_h//2*w\n area_3=half_h-(half_h//2)*w\n ans=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans<tmp:\n tmp=ans\nfor j in range(1,w):\n half_w=w-j\n area_1=h*j\n area_2=half_w//2*h\n area_3=half_w-(half_w//2)*h\n ans_2=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans_2<tmp_2:\n tmp_2=ans_2\nfor i in range(1,h):\n half_w=w//2\n area_1=i*half_w\n area_2=i*(w-half_w)\n area_3=(h-i)*w\n ans_3=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans_3<tmp_3:\n tmp_3=ans_3\nfor j in range(1,w):\n half_h=h//2\n area_1=h*j\n area_2=(w-j)*half_h\n area_3=(w-j)*(h-half_h)\n ans_4=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans_4<tmp_4:\n tmp_4=ans_4\nprint(min(tmp,tmp_2,tmp_3,tmp_4))\n', 'h,w=map(int,input().split())\ntmp=h*w\ntmp_2=h*w\ntmp_3=h*w\ntmp_4=h*w\nfor i in range(1,h):\n half_h=h-i\n area_1=i*w\n area_2=half_h//2*w\n area_3=(half_h-(half_h//2))*w\n ans=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans<tmp:\n tmp=ans\nfor j in range(1,w):\n half_w=w-j\n area_1=h*j\n area_2=(half_w//2)*h\n area_3=(half_w-half_w//2)*h\n ans_2=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans_2<tmp_2:\n tmp_2=ans_2\nfor i in range(1,h):\n half_w=w//2\n area_1=i*half_w\n area_2=i*(w-half_w)\n area_3=(h-i)*w\n ans_3=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans_3<tmp_3:\n tmp_3=ans_3\nfor j in range(1,w):\n half_h=h//2\n area_1=h*j\n area_2=(w-j)*half_h\n area_3=(w-j)*(h-half_h)\n ans_4=max(area_1,area_2,area_3)-min(area_1,area_2,area_3)\n if ans_4<tmp_4:\n tmp_4=ans_4\nprint(min(tmp,tmp_2,tmp_3,tmp_4))\n']
['Wrong Answer', 'Accepted']
['s744285439', 's743118890']
[3064.0, 3064.0]
[438.0, 468.0]
[931, 935]
p03715
u187205913
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['h,w = map(int,input().split())\ns1 = (h//3+h%3)*w - (h//3)*3\ns2 = (w//3+w%3)*h - (w//3)*3\ns3 = max((h//2)*w,(h//2+h%2)*(w//2+w%2))-min((h//2)*w,(h//2+h%2)*(w//2))\ns4 = max((w//2)*h,(w//2+w%2)*(h//2+h%2))-min((w//2)*h,(w//2+w%2)*(h//2))\nprint(min(s1,s2,s3,s4))', 'h,w = map(int,input().split())\nans = 10**9\nans = min(ans,(h//3+min(1,h%3))*w-(h//3)*w)\nans = min(ans,(w//3+min(1,w%3))*h-(w//3)*h)\nfor i in range(1,h//2+1):\n s1 = i*w\n s2 = (h-i)*(w//2)\n s3 = (h-i)*(w//2+w%2)\n ans = min(ans,max(s1,s2,s3)-min(s1,s2,s3))\nfor i in range(1,w//2+1):\n s1 = i*h\n s2 = (w-i)*(h//2)\n s3 = (w-i)*(h//2+h%2)\n ans = min(ans,max(s1,s2,s3)-min(s1,s2,s3))\nprint(ans)']
['Wrong Answer', 'Accepted']
['s371693836', 's291877417']
[3064.0, 3064.0]
[17.0, 139.0]
[258, 409]
p03715
u243492642
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['# coding: utf-8\nimport array, bisect, collections, copy, heapq, itertools, math, random, re, string, sys, time\n\nsys.setrecursionlimit(10 ** 7)\nINF = 10 ** 20\nMOD = 10 ** 9 + 7\n\n\ndef II(): return int(input())\ndef ILI(): return list(map(int, input().split()))\ndef IAI(LINE): return [ILI() for __ in range(LINE)]\ndef IDI(): return {key: value for key, value in ILI()}\n\n\ndef read():\n N = II()\n a = ILI()\n return (N, a)\n\n\ndef solve(N, a):\n a_lef = a[0: N]\n a_rig = [-i for i in a[2 * N: 3 * N]]\n heapq.heapify(a_lef)\n heapq.heapify(a_rig)\n sum_lef = sum(a_lef)\n sum_rig = sum(a_rig)\n l_sum_lef = [sum_lef]\n l_sum_rig = [sum_rig]\n \n for i in range(1, N + 1):\n heapq.heappush(a_lef, a[N - 1 + i])\n lef_pop = heapq.heappop(a_lef)\n sum_lef += a[N - 1 + i] - lef_pop\n l_sum_lef.append(sum_lef)\n \n heapq.heappush(a_rig, -a[2 * N - i])\n rig_pop = heapq.heappop(a_rig)\n sum_rig += -a[2 * N - i] - rig_pop\n l_sum_rig.append(sum_rig)\n\n ans = -INF\n\n for i in range(N + 1):\n num_dif = l_sum_lef[i] + l_sum_rig[N - i]\n ans = max(ans, num_dif)\n\n return ans\n\n\ndef main():\n params = read()\n print(solve(*params))\n\n\nif __name__ == "__main__":\n main()\n', '# coding: utf-8\nimport array, bisect, collections, copy, heapq, itertools, math, random, re, string, sys, time\nsys.setrecursionlimit(10 ** 7)\nINF = 10 ** 20\nMOD = 10 ** 9 + 7\n\n\ndef II(): return int(input())\ndef ILI(): return list(map(int, input().split()))\ndef IAI(LINE): return [ILI() for __ in range(LINE)]\ndef IDI(): return {key: value for key, value in ILI()}\n\n\ndef read():\n H, W = ILI()\n return (H, W)\n\ndef solve(H, W):\n ans = INF\n \n if H % 3 == 0 or W % 3 == 0:\n return 0\n else:\n ans = min(ans, H, W)\n\n if W % 2 == 0:\n for h in range(1, H):\n num_1 = h * W\n num_2 = (H - h) * W // 2\n ans = min(ans, abs(num_1 - num_2))\n else:\n for h in range(1, H):\n num_1 = h * W\n num_2 = (H - h) * (W // 2)\n num_3 = (H - h) * (W // 2 + 1)\n nums = sorted([num_1, num_2, num_3])\n ans = min(ans, (nums[2] - nums[0]))\n\n if H % 2 == 0:\n for w in range(1, W):\n num_1 = w * H\n num_2 = (W - w) * H // 2\n ans = min(ans, abs(num_1 - num_2))\n else:\n for w in range(1, W):\n num_1 = w * H\n num_2 = (W - w) * (H // 2)\n num_3 = (W - w) * (H // 2 + 1)\n nums = sorted([num_1, num_2, num_3])\n ans = min(ans, (nums[2] - nums[0]))\n \n return ans\n\n\ndef main():\n params = read()\n print(solve(*params))\n\n\nif __name__ == "__main__":\n main()\n']
['Runtime Error', 'Accepted']
['s766594323', 's361989570']
[5236.0, 6360.0]
[59.0, 152.0]
[1263, 1469]
p03715
u346308892
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['import math\na,b=list(map(int,input().split(" ")))\n\ndef solve(a,b,fc):\n\n S=a*b\n\n if fc=="floor":\n x=math.ceil((S//3)/a)\n else:\n x=math.floor((S//3)/a)\n S_l=(b-x)*math.floor(a/2)\n S_U=a*x\n S_r=(b-x)*math.ceil(a/2)\n\n SMax=max(S_l,S_U,S_r)\n SMin=min(S_l,S_U,S_r)\n return SMax-SMin\n\n\n\ns1=solve(a,b,"floor")\ns2=solve(a,b,"ceil")\ns3=solve(b,a,"floor")\ns4=solve(b,a,"ceil")', 'import math\na,b=list(map(int,input().split(" ")))\n\ndef solve(a,b,fc):\n\n S=a*b\n\n if fc=="ceil":\n x=math.ceil((S/3)/a)\n else:\n x=math.floor((S/3)/a)\n l=math.floor(a/2)\n S_l=(b-x)*l\n S_U=a*x\n S_r=(b-x)*(a-l)\n\n SMax=max(S_l,S_U,S_r)\n SMin=min(S_l,S_U,S_r)\n return abs(SMax-SMin)\n\n\n\ns1=solve(a,b,"floor")\ns2=solve(a,b,"ceil")\ns3=solve(b,a,"floor")\ns4=solve(b,a,"ceil")\nprint(min(s1,s2,s3,s4))\n', '\nimport math\na,b=list(map(int,input().split(" ")))\n\ndef solve(a,b,fc):\n\n S=a*b\n\n if fc=="floor":\n x=math.ceil((S//3)/a)\n else:\n x=math.floor((S//3)/a)\n S_l=(b-x)*math.floor(a/2)\n S_U=a*x\n S_r=(b-x)*math.ceil(a/2)\n\n SMax=max(S_l,S_U,S_r)\n SMin=min(S_l,S_U,S_r)\n return SMax-SMin\n\n\n\nsa=solve(a,b,"floor")\nsb=solve(b,a,"ceil")\nprint(min(sa,sb))\n', 'import math\na,b=list(map(int,input().split(" ")))\n\ndef solve(a,b,fc):\n\n S=a*b\n\n if fc=="ceil":\n x=math.ceil((S/3)/a)\n else:\n x=math.floor((S/3)/a)\n l=math.floor(a/2)\n S_l=(b-x)*l\n S_U=a*x\n S_r=(b-x)*(a-l)\n\n SMax=max(S_l,S_U,S_r)\n SMin=min(S_l,S_U,S_r)\n return abs(SMax-SMin)\n\ndef solve3(a,b,dupplicate=True):\n la=math.ceil(a/3)\n lc=math.floor(a/3)\n if dupplicate:\n lb=la\n else:\n lb=lc\n\n Sa=la*b\n Sb=lc*b\n return abs(Sa-Sb)\n\n\n\n\ns1=solve(a,b,"floor")\ns2=solve(a,b,"ceil")\ns3=solve(b,a,"floor")\ns4=solve(b,a,"ceil")\ns5=solve3(a,b)\ns6=solve3(a,b,False)\ns7=solve3(b,a)\ns8=solve3(b,a,False)\n\nprint(min(s1,s2,s3,s4,s5,s6,s7,s8))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s015732482', 's176482597', 's222208594', 's548894909']
[3064.0, 3064.0, 3064.0, 3064.0]
[17.0, 18.0, 18.0, 17.0]
[406, 432, 383, 700]
p03715
u405256066
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['from sys import stdin\nH, W = [int(x) for x in stdin.readline().rstrip().split()]\nsa = 0\nsb = 0\nsc = 0\nans = 10**9\n\nfor h in range(1, H):\n sa = h*W\n sb = (H-h)*(W//2)\n sc = (H-h)*(W-(W//2))\n tmp = max(sa, sb, sc)-min(sa, sb, sc)\n ans = min(ans, tmp)\n\nfor w in range(1, W):\n sa = H*W\n sb = (W-w)*(H//2)\n sc = (W-w)*(H-(H//2))\n tmp = max(sa, sb, sc)-min(sa, sb, sc)\n ans = min(ans, tmp)\n\nprint(ans)', 'from sys import stdin\nH, W = [int(x) for x in stdin.readline().rstrip().split()]\nsa = 0\nsb = 0\nsc = 0\nans = 10**9\n\nfor h in range(1, H):\n sa = h*W\n sb = (H-h)*(W//2)\n sc = (H-h)*(W-(W//2))\n tmp = max(sa, sb, sc)-min(sa, sb, sc)\n ans = min(ans, tmp)\n\nfor w in range(1, W):\n sa = H*w\n sb = (W-w)*(H//2)\n sc = (W-w)*(H-(H//2))\n tmp = max(sa, sb, sc)-min(sa, sb, sc)\n ans = min(ans, tmp)\n\nfor h in range(1, H):\n sa = h*W\n sb = ((H-h)//2)*W\n sc = ((H-h)-((H-h)//2))*W\n tmp = max(sa, sb, sc)-min(sa, sb, sc)\n ans = min(ans, tmp)\n\nfor w in range(1, W):\n sa = H*w\n sb = ((W-w)//2)*H\n sc = ((W-w)-((W-w)//2))*H\n tmp = max(sa, sb, sc)-min(sa, sb, sc)\n ans = min(ans, tmp)\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s269804783', 's291363703']
[3064.0, 3064.0]
[261.0, 534.0]
[425, 733]
p03715
u405779580
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['h, w = map(int, input().split())\nif h%3 == 0 or w%3 ==0:\n print(0)\nelse:\n def calculate_d(x, y):\n d = h*w + 1\n i = x//2\n s1, s2 = 0, d\n for i in range(x):\n s1 = (y//2)*i\n s2 = y*(x-i)\n s3 = (y-y//2)*i\n new_d = max(abs(s1-s2), abs(s1-s3))\n if s1 < s2:\n i = \n if d > new_d:\n d = new_d\n continue\n else:\n break\n return d\n d1 = calculate_d(h, w)\n d2 = calculate_d(w, h)\n print(min(d1,d2))', 'h, w = map(int, input().split())\ndef calculate_t(x, y):\n min_d = 1e12\n for i in range(x):\n s1 = (y//2)*i\n s2 = y*(x-i)\n s3 = (y-y//2)*i\n min_d = min(min_d, max(s1,s2,s3) - min(s1,s2,s3))\n return min_d\ndef calculate_3(x, y):\n min_d = 1e12\n for i in range(x):\n w1 = i\n w2 = (x-i)//2\n w3 = x - w1 -w2\n min_d = min(min_d, (max(w1,w2,w3)-min(w1,w2,w3))*y)\n return min_d\nif (h*w)%3 == 0:\n print(0)\nelse:\n d1 = calculate_t(h,w)\n d2 = calculate_t(w,h)\n d3 = calculate_3(h,w)\n d4 = calculate_3(w,h)\n print(min(d1,d2,d3,d4))']
['Runtime Error', 'Accepted']
['s057159441', 's470133673']
[3060.0, 3064.0]
[17.0, 362.0]
[570, 606]
p03715
u441575327
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
["H,W = list(map(int,input().split()))\n\nans = float('inf')\na,b,c = H//3*W,(H-H//3)*(W//2),(H-H//3)*(W-W//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = (H+2)//3*W,(H-(H+2)//3)*(W//2),(H-(H+2)//3)*(W-W//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = W//3*H,(W-W//3)*(H//2),(W-W//3)*(H-H//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = (W+2)//3*H,(W-(W+2)//3)*(H//2),(W-(W+2)//3)*(H-H//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = H//3*W,H//3*W,(H//3+1)*W\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = W//3*H,W//3*H,(W//3+1)*H\nans = min(ans,max(a,b,c)-min(a,b,c))\n\nprint(ans)", "H,W = list(map(int,input().split()))\n\nans = float('inf')\na,b,c = H//3*W,(H-H//3)*(W//2),(H-H//3)*(W-W//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = (H+2)//3*W,(H-(H+2)//3)*(W//2),(H-(H+2)//3)*(W-W//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = W//3*H,(W-W//3)*(H//2),(W-W//3)*(H-H//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = (W+2)//3*H,(W-(W+2)//3)*(H//2),(W-(W+2)//3)*(H-H//2)\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = H//3*W,H//3*W,((H+2)//3)*W\nans = min(ans,max(a,b,c)-min(a,b,c))\na,b,c = W//3*H,W//3*H,((W+2)//3)*H\nans = min(ans,max(a,b,c)-min(a,b,c))\n\nprint(ans)"]
['Wrong Answer', 'Accepted']
['s196464558', 's588918470']
[3064.0, 3064.0]
[18.0, 17.0]
[576, 580]
p03715
u503228842
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['H,W = map(int,input().split())\ndef f(H,W):\n # if H%3 == 0:\n # return 0\n w = W//2\n res = H*W\n for h in range(1,H):\n sb = (H-h)*w\n sc = (H-h)*(W-w)\n sa = h*W\n res = min(res, max(sa,sb,sc) - min(sa,sb,sc))\n return res\nans = min(f(H,W), f(W,H))\nprint(ans)\n', 'import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nH,W = map(int,read().split())\n\ndef F(H,W):\n opt = H * W + 100\n for a in range(1,W):\n x = H * a\n y = (W-a) * (H//2)\n z = (W-a) * (H-H//2)\n d = max(x,y,z) - min(x,y,z)\n if opt > d:\n opt = d\n if W >= 3:\n a = W//3\n b = (W-a)//2\n c = W-a-b\n d = (max(a,b,c) - min(a,b,c)) * H\n if opt > d:\n opt = d\n return opt\n\nanswer = min(F(H,W),F(W,H))\nprint(answer)\n']
['Wrong Answer', 'Accepted']
['s863425510', 's493199230']
[3060.0, 3064.0]
[186.0, 178.0]
[302, 568]
p03715
u557494880
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['N = int(input())\nA = list(map(int,input().split()))\nS = []\nP = A[:N]\nQ = A[2*N:]\nfor i in range(N):\n Q[i] *= -1\nR = A[N:2*N]\np = [0]*(N+1)\nq = [0]*(N+1)\nimport heapq\nheapq.heapify(P)\nheapq.heapify(Q)\nsp = sum(P)\nsq = sum(Q)\np[0] = sp\nq[0] = sq\n\nfor i in range(1,N+1):\n heapq.heappush(P,R[i-1])\n heapq.heappop(P)\n sp = sum(P)\n p[i] = sum(Q)\nfor i in range(1,N+1):\n heapq.heappush(Q,-R[-i])\n heapq.heappop(Q)\n sq = sum(Q)\n q[i] = sq\n\nans = -(10**100)\nfor k in range(N+1):\n ans = max(ans,p[k] + q[N-k])\n \nprint(ans)\n', 'N = int(input())\nA = list(map(int,input().split()))\nS = []\nP = A[:N]\nQ = A[2*N:]\nfor i in range(N):\n Q[i] *= -1\nR = A[N:2*N]\np = [0]*(N+1)\nq = [0]*(N+1)\nimport heapq\nheapq.heapify(P)\nheapq.heapify(Q)\nsp = sum(P)\nsq = sum(Q)\np[0] = sp\nq[0] = sq\n\nfor i in range(1,N+1):\n heapq.heappush(P,R[i-1])\n x = heapq.heappop(P)\n heapq.heappush(Q,-R[-i])\n y = heapq.heappop(Q)\n sp = sp + R[i-1] - x\n sq = sq - R[-i] - y\n p[i] = sp\n q[i] = sq\nans = -(10**100)\nfor k in range(N+1):\n ans = max(ans,p[k] + q[N-k])\n \nprint(ans)\n', 'W,H = map(int,input().split())\nans = 10**30\nfor i in range(1,W):\n a = H*i\n w = W - i\n b = max((w//2)*H,w*(H//2))\n c = w*H - b\n x = max(a,b,c) - min(a,b,c)\n ans = min(ans,x)\nfor i in range(1,H):\n a = W*i\n h = H - i\n b = max((W//2)*h,W*(h//2))\n c = h*W - b\n x = max(a,b,c) - min(a,b,c)\n ans = min(ans,x)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s281054744', 's745263130', 's579903878']
[3064.0, 3064.0, 3064.0]
[17.0, 17.0, 326.0]
[546, 543, 348]
p03715
u600402037
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['import sys\nimport numpy as np\n\nsr = lambda: sys.stdin.readline().rstrip()\nir = lambda: int(sr())\nlr = lambda: list(map(int, sr().split()))\n\nH, W = lr()\nif H%3==0 or W%3==0:\n answer = 0\nelse:\n answer = min(H, W)\n\ndef cal(H, W):\n h = H // 3\n area = [h * W, (H-h) * (W//2), (H-h) * ((W+1)//2)]\n answer = min(answer, max(area)-min(area))\n h += 1\n area = [h * W, (H-h) * (W//2), (H-h) * ((W+1)//2)]\n answer = min(answer, max(area)-min(area))\n\ncal(H, W)\ncal(W, H)\nprint(answer)\n# 13', 'import sys\n\nsr = lambda: sys.stdin.readline().rstrip()\nir = lambda: int(sr())\nlr = lambda: list(map(int, sr().split()))\n\nH, W = lr()\nif H%3==0 or W%3==0:\n answer = 0\nelse:\n answer = min(H, W)\n\ndef cal(H, W):\n global answer\n h = H // 3\n area = [h * W, (H-h) * (W//2), (H-h) * ((W+1)//2)]\n answer = min(answer, max(area)-min(area))\n h += 1\n area = [h * W, (H-h) * (W//2), (H-h) * ((W+1)//2)]\n answer = min(answer, max(area)-min(area))\n\ncal(H, W)\ncal(W, H)\nprint(answer)\n# 13']
['Runtime Error', 'Accepted']
['s563701345', 's920365830']
[15508.0, 3064.0]
[196.0, 18.0]
[550, 549]
p03715
u648881683
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
["import bisect, collections, copy, heapq, itertools, math, string, sys\ninput = lambda: sys.stdin.readline().rstrip() \nsys.setrecursionlimit(10**7)\nINF = float('inf')\ndef I(): return int(input())\ndef F(): return float(input())\ndef SS(): return input()\ndef LI(): return [int(x) for x in input().split()]\ndef LI_(): return [int(x)-1 for x in input().split()]\ndef LF(): return [float(x) for x in input().split()]\ndef LSS(): return input().split()\n\ndef diff_min(L):\n len_L = len(L)\n ret = min([abs(L[i] - L[(i+1)%len_L]) for i in range(len_L)])\n return ret\n\ndef resolve():\n H, W = LI()\n\n ans = 0\n if H % 3 != 0 and W % 3 != 0:\n \n ans = min(H, W)\n\n \n s = [0] * 3\n \n for _ in range(2):\n s[0] = H * W // 3\n s[1] = (H * W - s[0]) // 2\n s[2] = (H * W - s[0]) - s[1]\n ans = min(diff_min(s), ans)\n s[0] = H * (W // 3 + 1)\n s[1] = (H * W - s[0]) // 2\n s[2] = (H * W - s[0]) - s[1]\n ans = min(diff_min(s), ans)\n H, W = W, H\n \n print(ans)\n\n print(ans)\n\nif __name__ == '__main__':\n resolve()\n", "import bisect, collections, copy, heapq, itertools, math, string, sys\ninput = lambda: sys.stdin.readline().rstrip() \nsys.setrecursionlimit(10**7)\nINF = float('inf')\ndef I(): return int(input())\ndef F(): return float(input())\ndef SS(): return input()\ndef LI(): return [int(x) for x in input().split()]\ndef LI_(): return [int(x)-1 for x in input().split()]\ndef LF(): return [float(x) for x in input().split()]\ndef LSS(): return input().split()\n\ndef resolve():\n H, W = LI()\n\n ans = INF\n if H % 3 == 0 or W % 3 == 0:\n ans = 0\n else:\n \n ans = min(H, W)\n\n \n s = [0] * 3\n \n for _ in range(2):\n s[0] = H * (W // 3)\n s[1] = (W - W // 3) * (H // 2)\n s[2] = (W - W // 3) * (H - H // 2)\n ans = min(max(s)- min(s), ans)\n s[0] = H * (W // 3 + 1)\n s[1] = (W - (W // 3 + 1)) * (H // 2)\n s[2] = (W - (W // 3 + 1)) * (H - H // 2)\n ans = min(max(s)- min(s), ans)\n H, W = W, H\n \n print(ans)\n\nif __name__ == '__main__':\n resolve()\n"]
['Wrong Answer', 'Accepted']
['s269367069', 's198571753']
[10124.0, 10112.0]
[39.0, 40.0]
[1254, 1187]
p03715
u692632484
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['temp=input().split()\nH=int(temp[0])\nW=int(temp[1])\n\nINF=100000000\n\nans=INF\n\nif H%3==0 or W%3==0:\n\tprint(0)\nif H%2==0:\n\tfor i in range(W):\n\t\tS1=H*i\n\t\tS2=int(H/2)*(W-i)\n\t\tif abs(S1-S2)<ans:\n\t\t\tans=abs(S1-S2)\nif W%2==0:\n\tans=INF\n\tfor i in range(H):\n\t\tS1=W*i\n\t\tS2=int(W/2)*(H-i)\n\t\tif abs(S1-S2)<ans:\n\t\t\tans=min(ans,abs(S1-S2))\n\t\t\t\nfor i in range(H):\n\tfor j in range(W):\n\t\t\n\t\tS1=W*i\n\t\tS2=j*(H-i)\n\t\tS3=(W-j)*(H-i)\n\t\tminS=min(S1,S2,S3)\n\t\tmaxS=max(S1,S2,S3)\n\t\tif maxS-minS<ans:\n\t\t\tans=maxS-minS\n\t\t\n\t\tS1=H*j\n\t\tS2=i*(W-j)\n\t\tS3=(H-i)*(W-j)\n\t\tminS=min(S1,S2,S3)\n\t\tmaxS=max(S1,S2,S3)\n\t\tif maxS-minS<ans:\n\t\t\tans=maxS-minS\n\nans=min(ans,H,W)\n\n\t\n\t\nprint(ans)\n\t', 'temp=input().split()\nH=int(temp[0])\nW=int(temp[1])\n\nINF=10000000000\nans=INF\n\nif H%3==0 or W%3==0:\n\tans=0\nans=min(ans,H,W)\n\nfor i in range(H):\n\tS1=W*i\n\tS2=int(W/2)*(H-i)\n\tS3=(W-int(W/2))*(H-i)\n\tif max(S1,S2,S3)-min(S1,S2,S3)<ans:\n\t\tans=max(S1,S2,S3)-min(S1,S2,S3)\nfor i in range(W):\n\tS1=H*i\n\tS2=int(H/2)*(W-i)\n\tS3=(H-int(H/2))*(W-i)\n\tif max(S1,S2,S3)-min(S1,S2,S3)<ans:\n\t\tans=max(S1,S2,S3)-min(S1,S2,S3)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s685520294', 's857053030']
[3064.0, 3064.0]
[2104.0, 292.0]
[717, 448]
p03715
u810735437
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return [area1, area2]\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n\n tmp = solve2(h, w - w2)\n tmp = max_minus_min(tmp)\n ans = min(ans, tmp)\n\n tmp = solve2(w - w2, h)\n tmp = max_minus_min(tmp)\n ans = min(ans, tmp)\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n return 7, 7\n # area1 = h * (w // 2)\n # area2 = h * w - area1\n # return area1, area2\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n ans = min(ans, max_minus_min([area1] + solve2(h, w - w2)))\n ans = min(ans, max_minus_min([area1] + solve2(w - w2, h)))\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return area1, area2\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n ans = min(ans, max_minus_min([area1] + solve2(h, w - w2)))\n ans = min(ans, max_minus_min([area1] + solve2(w - w2, h)))\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return [area1, area2]\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n\n tmp = solve2(h, w - w2)\n tmp = max_minus_min(tmp)\n # ans = min(ans, max_minus_min([area1, tmp[0], tmp[1]])\n\n tmp = solve2(w - w2, h)\n # ans = min(ans, max_minus_min([area1, tmp[0], tmp[1]])\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return [area1, area2]\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n\n tmp = solve2(h, w - w2)\n tmp = max_minus_min(tmp)\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return [area1, area2]\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n\n tmp = solve2(h, w - w2)\n ans = min(ans, max_minus_min([area1, tmp[0], tmp[1]])\n\n tmp = solve2(w - w2, h)\n ans = min(ans, max_minus_min([area1, tmp[0], tmp[1]])\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return [area1, area2]\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n\n tmp = solve2(h, w - w2)\n # ans = min(ans, max_minus_min([area1, tmp[0], tmp[1]])\n\n tmp = solve2(w - w2, h)\n # ans = min(ans, max_minus_min([area1, tmp[0], tmp[1]])\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n # return max(areas) - min(areas)\n return 999\n \ndef solve2(h, w):\n return 7, 7\n # area1 = h * (w // 2)\n # area2 = h * w - area1\n # return area1, area2\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n \n tmp = max_minus_min([area1] + solve2(h, w - w2))\n\n # ans = min(ans, max_minus_min([area1] + solve2(h, w - w2)))\n # ans = min(ans, max_minus_min([area1] + solve2(w - w2, h)))\n return ans\n\nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return area1, area2\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n # for w2 in range(w_div_3, w_div_3 + 2):\n # area1 = w2 * h\n # ans = min(ans, max_minus_min([area1, *solve2(h, w - w2)]))\n # ans = min(ans, max_minus_min([area1, *solve2(w - w2, h)]))\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n # return max(areas) - min(areas)\n return 999\n \ndef solve2(h, w):\n return 7, 7\n # area1 = h * (w // 2)\n # area2 = h * w - area1\n # return area1, area2\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n ans = min(ans, max_minus_min([area1] + solve2(h, w - w2)))\n ans = min(ans, max_minus_min([area1] + solve2(w - w2, h)))\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n', 'def max_minus_min(areas):\n # print("areas", areas)\n return max(areas) - min(areas)\n \ndef solve2(h, w):\n area1 = h * (w // 2)\n area2 = h * w - area1\n return [area1, area2]\n \ndef solve(h, w):\n w_div_3 = w // 3;\n ans = 1e9\n for w2 in range(w_div_3, w_div_3 + 2):\n area1 = w2 * h\n ans = min(ans, max_minus_min([area1] + solve2(h, w - w2)))\n ans = min(ans, max_minus_min([area1] + solve2(w - w2, h)))\n return ans\n \nH, W = map(int, input().split())\nprint(min(solve(H,W), solve(W,H)))\n']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s029237287', 's207943562', 's287592720', 's337676252', 's455055382', 's574667340', 's786262038', 's849111502', 's899384619', 's918925825', 's880420210']
[3060.0, 3064.0, 3064.0, 3064.0, 2940.0, 2940.0, 3060.0, 3060.0, 2940.0, 3060.0, 3064.0]
[17.0, 18.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 19.0]
[495, 546, 524, 619, 373, 582, 586, 633, 532, 563, 526]
p03715
u814986259
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['import math\nH,W=map(int,input().split())\nif H%3==0 or W%3==0:\n print(0)\n exit(0)\nS=[0]*3\ns=H*import math\nH,W=map(int,input().split())\nif H%3==0 or W%3==0:\n print(0)\n exit(0)\nS=[0]*3\ns=H*W/3\nw0=math.ceil(s/H)\nh0=math.ceil(s/W)\n\nS[0]=w0*H\nw1=W-W/3\nw0=math.ceil(s/H)\nh0=math.ceil(s/W)\n\nS[0]=w0*H\nw1=W-w0\nif w1%2==0 or H%2==0:\n S[1]=(H*w1)//2\n S[2]=(H*w1)//2\nelse:\n s1=H*w1/2\n w10=math.ceil(s1/H)\n h10=math.ceil(s1/w1)\n S[2]=max((w1-w10)*H,(H-h10)*w1)\nans=abs(S[0]-S[2])\n\nS[0]=W*h0\nh1=H-h0\nif h1%2==0 or W%2==0:\n S[1]=(W*h1)//2\n S[2]=(W*h1)//2\nelse:\n s1=h1*W/2\n w11=math.ceil(s1/h1)\n h11=math.ceil(s1/W)\n S[2]=max((W-w11)*h1,(h1-h11)*W)\nans=min(ans,abs(S[0]-S[2]))\n\n\nS=[0]*3\ns=H*W/3\nw0=math.floor(s/H)\nh0=math.floor(s/W)\n\nS[0]=w0*H\nw1=W-w0\nif w1%2==0 or H%2==0:\n S[1]=(H*w1)//2\n S[2]=(H*w1)//2\nelse:\n s1=H*w1/2\n w10=math.floor(s1/H)\n h10=math.floor(s1/w1)\n S[2]=max((w1-w10)*H,(H-h10)*w1)\nans=min(ans,abs(S[0]-S[2]))\n\nS[0]=W*h0\nh1=H-h0\nif h1%2==0 or W%2==0:\n S[1]=(W*h1)//2\n S[2]=(W*h1)//2\nelse:\n s1=h1*W/2\n w11=math.floor(s1/h1)\n h11=math.floor(s1/W)\n S[2]=max((W-w11)*h1,(h1-h11)*W)\nans=min(ans,abs(S[0]-S[2]))\n\nprint(ans)', 'import math\nH,W=map(int,input().split())\nif H%3==0 or W%3==0:\n print(0)\n exit(0)\nS=[0]*3\ns=H*W/3\nw0=math.ceil(s/H)\nh0=math.ceil(s/W)\n\nS[0]=w0*H\nw1=W-W/3\nw0=math.ceil(s/H)\nh0=math.ceil(s/W)\n\nS[0]=w0*H\nw1=W-w0\nif w1%2==0 or H%2==0:\n S[1]=(H*w1)//2\n S[2]=(H*w1)//2\nelse:\n s1=H*w1/2\n w10=math.ceil(s1/H)\n h10=math.ceil(s1/w1)\n S[2]=max((w1-w10)*H,(H-h10)*w1)\nans=abs(S[0]-S[2])\n\nS[0]=W*h0\nh1=H-h0\nif h1%2==0 or W%2==0:\n S[1]=(W*h1)//2\n S[2]=(W*h1)//2\nelse:\n s1=h1*W/2\n w11=math.ceil(s1/h1)\n h11=math.ceil(s1/W)\n S[2]=max((W-w11)*h1,(h1-h11)*W)\nans=min(ans,abs(S[0]-S[2]))\n\n\nS=[0]*3\ns=H*W/3\nw0=math.floor(s/H)\nh0=math.floor(s/W)\n\nS[0]=w0*H\nw1=W-w0\nif w1%2==0 or H%2==0:\n S[1]=(H*w1)//2\n S[2]=(H*w1)//2\nelse:\n s1=H*w1/2\n w10=math.floor(s1/H)\n h10=math.floor(s1/w1)\n S[2]=max((w1-w10)*H,(H-h10)*w1)\nans=min(ans,abs(S[0]-S[2]))\n\nS[0]=W*h0\nh1=H-h0\nif h1%2==0 or W%2==0:\n S[1]=(W*h1)//2\n S[2]=(W*h1)//2\nelse:\n s1=h1*W/2\n w11=math.floor(s1/h1)\n h11=math.floor(s1/W)\n S[2]=max((W-w11)*h1,(h1-h11)*W)\nans=min(ans,abs(S[0]-S[2]))\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s745978389', 's748266099']
[2940.0, 3192.0]
[17.0, 18.0]
[1148, 1053]
p03715
u821432765
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['H, W = [int(i) for i in input().split()]\n\n\nif H%3==0 or W%3==0:\n print(0)\n\nmind = 10**18\n\nfor h in range(H+1):\n a = [W*h]\n a.append((W//2)*(H-h))\n a.append(((W//2)+(1 if W%2 else 0))*(H-h))\n mind = min(mind, max(a)-min(a))\n\nfor w in range(W+1):\n a = [w*H]\n a.append((W-w)*(H//2))\n a.append((W-w)*((H//2)+(1 if H%2 else 0)))\n mind = min(mind, max(a)-min(a))\n\nprint(mind)', 'H, W = [int(i) for i in input().split()]\n\n\nif H%3==0 or W%3==0:\n print(0)\n quit()\n\nmind = 10**18\n\nfor h in range(H+1):\n a = [W*h]\n if W%2==0 or (H-h)%2==0:\n a.append(int(W/2*(H-h)))\n else:\n a.append(W*(H-h)-min(H-h, W)*(max(H-h, W)//2))\n a.append(W*(H-h)-a[-1])\n mind = min(mind, max(a)-min(a))\n\n\nfor w in range(W+1):\n a = [w*H]\n if (W-w)%2==0 or H%2==0:\n a.append(int((W-w)/2*H))\n else:\n a.append((W-w)*H-min(W-w, H)*(max(W-w, h)//2))\n a.append((W-w)*h-a[-1])\n mind = min(mind, max(a)-min(a))\n\nprint(mind)']
['Wrong Answer', 'Accepted']
['s784481077', 's721908315']
[3188.0, 3188.0]
[296.0, 314.0]
[436, 618]
p03715
u911446944
2,000
262,144
There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle. Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize S_{max} \- S_{min}, where S_{max} is the area (the number of blocks contained) of the largest piece, and S_{min} is the area of the smallest piece. Find the minimum possible value of S_{max} - S_{min}.
['n = int(input())\narray = [int(i) for i in input().split()]\nans=-1e14\n\nfor i in range(n, 2*n+1):\n l_array = sorted(array[:i])\n r_array = sorted(array[i:])\n ans = max(ans, sum(l_array[i-n:])-sum(r_array[:n]))\n\nprint(ans)', 'h,w = [int(i) for i in input().split()]\n\ndef solve(h,w):\n ans = min(h,w)\n for i in range(1,h):\n p1 = w*i\n p2 = (h-i)*(w//2)\n p3 = h*w-p1-p2\n ans = min(ans, max(p1,p2,p3)-min(p1,p2,p3))\n return ans \n\nans = min(solve(h,w), solve(w,h))\nif h*w % 3 == 0:\n ans = 0\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s223390467', 's429428326']
[3060.0, 3064.0]
[17.0, 204.0]
[227, 310]
p03716
u038408819
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
["N = int(input())\na = list(map(int, input().split()))\n\nimport heapq\nque1 = []\nheapq.heapify(que1)\nS = [0] * (2*N + 1)\nfor i in range(N):\n S[i + 1] = S[i] + a[i]\n #que1.append(a[i])\n heapq.heappush(que1, a[i])\nque2 = []\nheapq.heapify(que2)\nT = [0] * (2*N + 1)\nfor i in range(N):\n T[i + 1] = T[i] + a[3*N - i - 1]\n \n heapq.heappush(que2, -a[3*N - i - 1])\n\nfor i in range(N, 2*N):\n mi = heapq.heappop(que1)\n print(mi)\n if a[i] > mi:\n S[i + 1] = S[i] - mi + a[i]\n #heapq.heappop(que1)\n heapq.heappush(que1, a[i])\n else:\n S[i + 1] = S[i]\n heapq.heappush(que1, mi)\nfor i in range(N, 2*N):\n ma = heapq.heappop(que2) * -1\n print(ma)\n if a[3*N - i - 1] < ma:\n T[i + 1] = T[i] - ma + a[3*N - i - 1]\n #heapq.heappop(que2)\n \n heapq.heappush(que2, -a[3*N - i - 1])\n else:\n T[i + 1] = T[i]\n heapq.heappush(que2, -ma)\n\nres = -float('Inf')\nfor i in range(N, 2*N + 1):\n res = max(res, S[i] - T[3*N - i])\nprint(res)\n", "N = int(input())\na = list(map(int, input().split()))\n\nimport heapq\nque1 = []\nheapq.heapify(que1)\nS = [0] * (2*N + 1)\nfor i in range(N):\n S[i + 1] = S[i] + a[i]\n #que1.append(a[i])\n heapq.heappush(que1, a[i])\nque2 = []\nheapq.heapify(que2)\nT = [0] * (2*N + 1)\nfor i in range(N):\n T[i + 1] = T[i] + a[3*N - i - 1]\n \n heapq.heappush(que2, -a[3*N - i - 1])\n\nfor i in range(N, 2*N):\n mi = heapq.heappop(que1)\n print(mi)\n if a[i] > mi:\n S[i + 1] = S[i] - mi + a[i]\n #heapq.heappop(que1)\n heapq.heappush(que1, a[i])\n else:\n S[i + 1] = S[i]\n heapq.heappush(que1, mi)\nfor i in range(N, 2*N):\n ma = heapq.heappop(que2) * -1\n print(ma)\n if a[3*N - i - 1] < ma:\n T[i + 1] = T[i] - ma + a[3*N - i - 1]\n #heapq.heappop(que2)\n \n heapq.heappush(que2, -a[3*N - i - 1])\n else:\n T[i + 1] = T[i]\n heapq.heappush(que2, -ma)\n\nres = -float('Inf')\nfor i in range(N, 2*N):\n res = max(res, S[i] - T[3*N - i])\nprint(res)", "N = int(input())\na = list(map(int, input().split()))\n\nimport heapq\nque1 = []\nheapq.heapify(que1)\nS = [0] * (2*N + 1)\nfor i in range(N):\n S[i + 1] = S[i] + a[i]\n #que1.append(a[i])\n heapq.heappush(que1, a[i])\nque2 = []\nheapq.heapify(que2)\nT = [0] * (2*N + 1)\nfor i in range(N):\n T[i + 1] = T[i] + a[3*N - i - 1]\n \n heapq.heappush(que2, -a[3*N - i - 1])\n\nfor i in range(N, 2*N):\n mi = heapq.heappop(que1)\n #print(mi)\n if a[i] > mi:\n S[i + 1] = S[i] - mi + a[i]\n #heapq.heappop(que1)\n heapq.heappush(que1, a[i])\n else:\n S[i + 1] = S[i]\n heapq.heappush(que1, mi)\nfor i in range(N, 2*N):\n ma = heapq.heappop(que2) * -1\n #print(ma)\n if a[3*N - i - 1] < ma:\n T[i + 1] = T[i] - ma + a[3*N - i - 1]\n #heapq.heappop(que2)\n \n heapq.heappush(que2, -a[3*N - i - 1])\n else:\n T[i + 1] = T[i]\n heapq.heappush(que2, -ma)\n\nres = -float('Inf')\nfor i in range(N, 2*N + 1):\n res = max(res, S[i] - T[3*N - i])\nprint(res)\n"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s077575791', 's458349180', 's375090405']
[38552.0, 38700.0, 37084.0]
[844.0, 848.0, 584.0]
[1077, 1072, 1079]
p03716
u104282757
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['# D\nimport numpy as np\nN = int(input())\nA = np.array(list(map(int, input().split())))\n\n# pop from left\npopleft = [0]*(N+1)\nA_LEFT = np.argsort(A[:(2*N)])\nind_left = 1\nfor i in range(N):\n while popleft[ind_left] > 0:\n ind_left += 1\n if A_LEFT[i] < N:\n popleft[ind_left] = A[A_LEFT[i]]\n else:\n popleft[A_LEFT[i] - (N-2)] = A[A_LEFT[i]]\nleft_sum = np.cumsum(A)[(N-1):2*N] - np.cumsum(np.array(popleft))\n\n# pop from right\npopright = [0]*(N+1)\nA_RIGHT = np.argsort(-A[::-1][:(2*N-1)])\nind_right = 1\nfor i in range(N):\n while popright[ind_right] > 0:\n ind_right += 1\n if A_RIGHT[i] < N:\n popright[ind_right] = A[3*N - 1 - A_RIGHT[i]]\n else:\n popright[A_RIGHT[i] - (N-2)] = A[3*N - 1 - A_RIGHT[i]]\nright_sum = np.cumsum(A[::-1])[(N-1):2*N] - np.cumsum(np.array(popright))\n\n# print(popleft)\n# print(popright)\nres = (left_sum - right_sum[::-1]).max()\n# extreme case\nres1 = (np.sort(A[:2*N])[N:]).sum() - A[2*N:].sum()\nres2 = A[:N].sum() - (np.sort(A[N:])[:N]).sum()\nprint(max(res, res1, res2))', '# D\nimport numpy as np\nN = int(input())\nA = np.array(list(map(int, input().split())))\n\n# pop from left\npopleft = [0]*(N+1)\nA_LEFT = np.argsort(A[:(2*N)])\nind_left = 1\nfor i in range(N):\n while popleft[ind_left] > 0:\n ind_left += 1\n if A_LEFT[i] < N:\n popleft[ind_left] = A[A_LEFT[i]]\n else:\n popleft[A_LEFT[i] - (N-2)] = A[A_LEFT[i]]\nleft_sum = np.cumsum(A)[(N-1):2*N] - np.cumsum(np.array(popleft))\n\n# pop from right\npopright = [0]*(N+1)\nA_RIGHT = np.argsort(-A[::-1][:(2*N)])\nind_right = 1\nfor i in range(N):\n while popright[ind_right] > 0:\n ind_right += 1\n if A_RIGHT[i] < N:\n popright[ind_right] = A[3*N - 1 - A_RIGHT[i]]\n else:\n popright[A_RIGHT[i] - (N-2)] = A[3*N - 1 - A_RIGHT[i]]\nright_sum = np.cumsum(A[::-1])[(N-1):2*N] - np.cumsum(np.array(popright))\n\n# print(popleft)\n# print(popright)\nres = (left_sum - right_sum[::-1]).max()\n# extreme case\nres1 = (np.sort(A[:2*N])[N:]).sum() - A[2*N:].sum()\nres2 = A[:N].sum() - (np.sort(A[N:])[:N]).sum()\nprint(max(res, res1, res2))', '# D\nimport numpy as np\nN = int(input())\nA = np.array(list(map(int, input().split())))\n\n# pop from left\npopleft = [0]*(N+1)\nA_LEFT = np.argsort(A[:(2*N)])\nind_left = 1\nfor i in range(N):\n while popleft[ind_left] > 0:\n ind_left += 1\n if A_LEFT[i] < N:\n popleft[ind_left] = A[A_LEFT[i]]\n else:\n popleft[max(ind_left, A_LEFT[i] - (N-1))] = A[A_LEFT[i]]\nleft_sum = np.cumsum(A)[(N-1):(2*N)] - np.cumsum(np.array(popleft))\n\n# pop from right\npopright = [0]*(N+1)\nA_RIGHT = np.argsort(-A[::-1][:(2*N)])\nind_right = 1\nfor i in range(N):\n while popright[ind_right] > 0:\n ind_right += 1\n if A_RIGHT[i] < N:\n popright[ind_right] = A[3*N - 1 - A_RIGHT[i]]\n else:\n popright[max(ind_right, A_RIGHT[i] - (N-1))] = A[3*N - 1 - A_RIGHT[i]]\nright_sum = np.cumsum(A[::-1])[(N-1):(2*N)] - np.cumsum(np.array(popright))\n\n# print(popleft)\n# print(popright)\nres = (left_sum - right_sum[::-1]).max()\n# extreme case\nres1 = (np.sort(A[:2*N])[N:]).sum() - A[2*N:].sum()\nres2 = A[:N].sum() - (np.sort(A[N:])[:N]).sum()\nprint(max(res, res1, res2))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s263341736', 's637801728', 's090906902']
[47368.0, 46136.0, 47368.0]
[1012.0, 1025.0, 1227.0]
[1044, 1042, 1077]
p03716
u131638468
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nn=int(input())\na=list(map(int,input().split()))\nans=0\nfor i in range(n+1):\n m=0\n b1=a[:n+i]\n b2=a[n+i:]\n heapq.heapify(b1)\n heapq.heapify(b2)\n for j in range(i):\n b=heapq.heappop(b1)\n for j in range(n-i):\n b=heapq.heappop(b2)\n m=sum(b1)-sum(b2)\n if ans<m or i==0:\n ans=m\nprint(ans)', 'import heapq\nn=int(input())\na=list(map(int,input().split()))\nans=[0 for i in range(n+1)]\nans[0]=sum(a[:n])\nb=a[:n]\nheapq.heapify(b)\nsb=sum(b)\nfor i in range(n):\n sb+=a[n+i]\n c=heapq.heappushpop(b,a[n+i])\n sb-=c\n ans[i+1]=sb\nb=a[2*n:]\nfor i in range(n):\n b[i]=-b[i]\nheapq.heapify(b)\nans[n]+=sum(b)\nsb=sum(b)\nfor i in range(n-1,-1,-1):\n sb-=a[n+i]\n c=heapq.heappushpop(b,-a[n+i])\n sb-=c\n ans[i]+=sb\nprint(max(ans))']
['Wrong Answer', 'Accepted']
['s655458325', 's759479281']
[38292.0, 38148.0]
[2108.0, 375.0]
[312, 421]
p03716
u139112865
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nn = int(input())\na = list(map(int, input().split()))\n\nl = a[:n]\nheapq.heapify(l)\nmemo_l = [0 for _ in range(n+1)]\nmemo_l[0] = sum(a[:n])\n\nfor i in range(1, n+1):\n memo_l[i] = memo_l[i-1]\n if l[0] < a[n+i-1]:\n x = heapq.heappop(l)\n heapq.heappush(l, a[n+i-1])\n memo_l[i] += a[n+i-1] - x\n\n\nr = [-a[-i] for i in range(1, n+1)]\nheapq.heapify(r)\nmemo_r = [0 for _ in range(n+1)]\nmemo_r[0] = sum(a[-n:])\n\nfor i in range(1, n+1):\n memo_r[i] = memo_r[i-1]\n if abs(x) > a[-n-i]:\n x = heapq.heappop(r)\n heapq.heappush(r, -a[-n-i])\n memo_r[i] += x + a[-n-i]\n\n\nans = - 10 ** 20\nfor i in range(n+1):\n ans = max(ans, memo_l[i] - memo_r[n-i])\n\nprint(ans)', 'import heapq\nn = int(input())\na = list(map(int, input().split()))\n\nl = a[:n]\nheapq.heapify(l)\nmemo_l = [0 for _ in range(n+1)]\nmemo_l[0] = sum(a[:n])\n\nfor i in range(1, n+1):\n memo_l[i] = memo_l[i-1]\n if l[0] < a[n+i-1]:\n x = heapq.heappop(l)\n heapq.heappush(l, a[n+i-1])\n memo_l[i] += a[n+i-1] - x\n\n\nr = [-a[-i] for i in range(1, n+1)]\nheapq.heapify(r)\nmemo_r = [0 for _ in range(n+1)]\nmemo_r[0] = sum(a[-n:])\n\nfor i in range(1, n+1):\n memo_r[i] = memo_r[i-1]\n if abs(r[0]) > a[-n-i]:\n x = heapq.heappop(r)\n heapq.heappush(r, -a[-n-i])\n memo_r[i] += x + a[-n-i]\n\n\nans = - 10 ** 20\nfor i in range(n+1):\n ans = max(ans, memo_l[i] - memo_r[n-i])\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s331084925', 's813713085']
[43852.0, 42828.0]
[356.0, 346.0]
[709, 712]
p03716
u147458211
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nN = int(input())\na = list(map(int, input().split()))\n\nmax_result = -1000000\n\nfor k in range(N, 2*N+1):\n print("----------------")\n big_a = a[:k]\n heapq.heapify(big_a)\n print(big_a)\n small_a =[(-x, x) for x in a[k:]]\n heapq.heapify(small_a)\n print(small_a)\n\n for i in range(len(big_a) - N):\n heapq.heappop(big_a)\n print(big_a)\n\n for i in range(len(small_a) - N):\n heapq.heappop(small_a)\n print(small_a)\n\n big_sum = sum(big_a)\n small_sum = 0\n for i in small_a:\n small_sum += i[1]\n\n if (big_sum - small_sum) > max_result:\n max_result = big_sum - small_sum\n\nprint(max_result)\n\n', "import heapq\nN = int(input())\na = list(map(int, input().split()))\n\nmax_result = -1000000\n\nbig_a = a[:N]\nbig_sum = [sum(big_a)]\nheapq.heapify(big_a)\nfor i in range(N):\n heapq.heappush(big_a, a[N+i])\n p = heapq.heappop(big_a)\n big_sum.append(big_sum[-1] + a[N+i] - p)\n\nsmall_a = [-i for i in a[-N:]]\nsmall_sum = [sum(small_a)]\nheapq.heapify(small_a)\nfor i in range(N):\n heapq.heappush(small_a, -a[-N-i-1])\n p = heapq.heappop(small_a)\n small_sum.append(small_sum[-1] - a[-N-i-1] - p)\n\nmax_result = -float('inf')\n\nfor m,s in zip(big_sum, small_sum[::-1]):\n max_result = max(m + s, max_result)\n\nprint(max_result)\n\n"]
['Wrong Answer', 'Accepted']
['s506980286', 's728501985']
[121884.0, 38420.0]
[2107.0, 459.0]
[613, 616]
p03716
u163703551
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import sys\nimport heapq\n\n\ndef solve(n, a):\n res = -10 ** 20\n for i in range(n, 2 * n + 1):\n l = a[0:i]\n r = a[i:3 * n]\n l.sort(reverse=True)\n r.sort()\n res0 = sum(l[0:n]) - sum(r[0:n])\n if res0 > res:\n res = res0\n return res\n\n\ndef find_best(n, a):\n h = list()\n s = 0\n best_s = 0\n res = list()\n for i in range(0, 2 * n):\n heapq.heappush(h, a[i])\n s += a[i]\n if len(h) > n:\n m = heapq.heappop(h)\n s -= m\n if len(h) == n:\n if best_s < s:\n best_s = s\n res.append(best_s)\n return res\n\n\ndef solve_large(n, a):\n res = -10 ** 20\n max_l = find_best(n, a)\n b = [-x for x in reversed(a)]\n max_r = find_best(n, b)\n max_r.reverse()\n for l, r in zip(max_l, max_r):\n res0 = l + r\n if res < res0:\n res = res0\n return res\n\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(solve_large(n, a))\n', "import os\nimport sys\nimport heapq\n\n\ndef solve(n, a):\n res = -10 ** 20\n for i in range(n, 2 * n + 1):\n l = a[0:i]\n r = a[i:3 * n]\n l.sort(reverse=True)\n r.sort()\n res0 = sum(l[0:n]) - sum(r[0:n])\n if res0 > res:\n res = res0\n return res\n\n\ndef find_best(n, a):\n h = list()\n s = 0\n best_s = -10**20\n res = list()\n for i in range(0, 2 * n):\n heapq.heappush(h, a[i])\n s += a[i]\n if len(h) > n:\n m = heapq.heappop(h)\n s -= m\n if len(h) == n:\n if best_s < s:\n best_s = s\n res.append(best_s)\n return res\n\n\ndef solve_large(n, a):\n res = -10 ** 20\n max_l = find_best(n, a)\n b = [-x for x in reversed(a)]\n max_r = find_best(n, b)\n max_r.reverse()\n for l, r in zip(max_l, max_r):\n res0 = l + r\n if res < res0:\n res = res0\n return res\n\n\ninput_file = 'd1.in'\nif os.path.exists(input_file):\n sys.stdin = open(input_file)\nn = int(input())\na = list(map(int, input().split()))\nprint(solve_large(n, a))\n"]
['Wrong Answer', 'Accepted']
['s419310295', 's232415184']
[37212.0, 37212.0]
[484.0, 481.0]
[1026, 1099]
p03716
u197457087
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\n\nN = int(input())\nA = list(map(int,input().split()))\nC = A[N:(2*N)]\n\nL = []\nR = []\nfor i in range(N):\n heapq.heappush(L,A[i]) \n heapq.heappush(R,-A[-1-i]) \n \n#print(L,R,C)\n\nlp = 0 \nrp = 0\nfor i in range(N):\n #print(i,lp,rp)\n if C[lp] - L[0] >= -C[-1-rp] - R[0]: \n heapq.heappush(L, C[lp]) \n temp = heapq.heappop(L)\n lp += 1\n else:\n heapq.heappush(R, -C[-1-rp])\n temp = heapq.heappop(R) \n rp += 1\nprint(L,R,lp,rp)\nans = sum(L) + sum(R)\nprint(ans)\n ', "import heapq\n\nN = int(input())\nA = list(map(int,input().split()))\nC = A[N:(2*N)]\n\nL = []\nR = []\nfor i in range(N):\n heapq.heappush(L,A[i]) \n heapq.heappush(R,-A[-1-i]) \n\n\nansL = [sum(L)]\nfor i in range(N):\n heapq.heappush(L,C[i])\n rmv = heapq.heappop(L)\n temp = ansL[i] + C[i] - rmv \n ansL.append(temp)\n \n\nansR = [sum(R)]\nfor i in range(N):\n heapq.heappush(R,-C[-1-i])\n rmv = heapq.heappop(R)\n temp = ansR[i] - C[-1-i] - rmv\n ansR.append(temp)\n \n\nans = -float('inf')\nfor i in range(N+1):\n temp = ansL[i]+ansR[-1-i]\n ans = max(ans,temp)\n#print(ansL,ansR)\nprint(ans)"]
['Wrong Answer', 'Accepted']
['s522750953', 's443714117']
[38420.0, 37212.0]
[336.0, 527.0]
[760, 907]
p03716
u207097826
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['# -*- coding: utf-8 -*-\n"""\nCreated on Sun May 3 18:58:46 2020\n\n@author: naoki\n"""\nfrom heapq import heappush, heappop\nimport sys\n\nN = int(input())\na = list(map(int,input().split()))\n\nhq = []\nhq_r = []\nfor i in range(N):\n heappush(hq,a[i])\n heappush(hq_r,-1*a[-1-i])\n\n\nmax_A = [0 for _ in range(N+1)]\nmax_A[0] = sum(hq)\n\nmin_C = [0 for _ in range(N+1)]\nmin_C[0] = sum(hq_r) * (-1)\n\nfor i in range(N):\n heappush(hq, a[N+i])\n heappush(hq_r, -1*a[-N-1-i])\n minus = heappop(hq)\n minus_r = heappop(hq_r)\n max_A[i+1] = max_A[i] + a[N+i] - minus\n min_C[i+1] = min_C[i] + a[-N-1-i] + minus_r\n \nmax_val = -10e+100\nprint(max_val)\nfor i in range(N+1):\n kari = max_A[i] - min_C[-1-i]\n if max_val < kari:\n max_val =kari\nprint(max_val)', '\n\nN = int(input())\na = list(map(int, input().split()))\n\nA = (a[0:N])\nA = deque(sorted(A))\nB = deque(a[N:2*N])\nC = a[2*N:3*N]\nC = deque(sorted(C, reverse = True))\n\noriginal_score = 0\nfor i in range(N):\n original_score += A[i] - C[i]\n\nleft = 0\nright = 0\n\nfor i in range(N):\n left_candidate = B[left] - A[left]\n right_candidate = C[right] - B[-1-right]\n \n if left_candidate >= right_candidate:\n left+=1\n original_score+=left_candidate\n else:\n right+=1\n original_score+=right_candidate\nprint(original_score)', '# -*- coding: utf-8 -*-\n"""\nCreated on Sun May 3 18:58:46 2020\n\n@author: naoki\n"""\nfrom heapq import heappush, heappop\nimport sys\n\nN = int(input())\na = list(map(int,input().split()))\n\nhq = []\nhq_r = []\nfor i in range(N):\n heappush(hq,a[i])\n heappush(hq_r,-1*a[-1-i])\n\n\nmax_A = [0 for _ in range(N+1)]\nmax_A[0] = sum(hq)\n\nmin_C = [0 for _ in range(N+1)]\nmin_C[0] = sum(hq_r) * (-1)\n\nfor i in range(N):\n heappush(hq, a[N+i])\n heappush(hq_r, -1*a[-N-1-i])\n minus = heappop(hq)\n minus_r = heappop(hq_r)\n max_A[i+1] = max_A[i] + a[N+i] - minus\n min_C[i+1] = min_C[i] + a[-N-1-i] + minus_r\n \nmax_val = -10e+100\nfor i in range(N+1):\n kari = max_A[i] - min_C[-1-i]\n if max_val < kari:\n max_val =kari\nprint(max_val)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s096813467', 's362292592', 's469812461']
[37212.0, 37084.0, 37212.0]
[516.0, 93.0, 539.0]
[762, 549, 747]
p03716
u310678820
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['from heapq import heappush, heappop\nn=int(input())\na=list(map(int, input().split()))\nq1=[]\nq2=[]\ns1=[]\ns2=[]\nfor i in range(n):\n heappush(q1, a[i])\ns1.append(sum(a[0:n]))\nfor ai in a[n:2*n]:\n heappush(q1, ai)\n m=heappop(q1)\n s1.append(s1[-1]+ai-m)\na=a[::-1]\nfor i in range(n):\n heappush(q2, -a[i])\ns2.append(-sum(a[0:n]))\nfor ai in [-i for i in a[n:2*n]]:\n heappush(q2, ai)\n m=heappop(q2)\n s2.append(s2[-1]+ai-m)\nans=-1\nprint(s1, s2)\nfor i in range(n+1):\n ans=max(s1[i]+s2[-i-1], ans)\nprint(ans) ', 'from heapq import heappush, heappop\nn=int(input())\na=list(map(int, input().split()))\nq1=[]\nq2=[]\ns1=[]\ns2=[]\nfor i in range(n):\n heappush(q1, a[i])\ns1.append(sum(a[0:n]))\nfor ai in a[n:2*n]:\n heappush(q1, ai)\n m=heappop(q1)\n s1.append(s1[-1]+ai-m)\na=a[::-1]\nfor i in range(n):\n heappush(q2, -a[i])\ns2.append(-sum(a[0:n]))\nfor ai in [-i for i in a[n:2*n]]:\n heappush(q2, ai)\n m=heappop(q2)\n s2.append(s2[-1]+ai-m)\nans=s1[0]+s2[-1]\nfor i in range(n+1):\n ans=max(s1[i]+s2[-i-1], ans)\nprint(ans) ']
['Wrong Answer', 'Accepted']
['s315703699', 's269665319']
[39460.0, 37212.0]
[453.0, 434.0]
[523, 522]
p03716
u367130284
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['def f(a):q=a[:n];heapify(q);return sum(q)+cumsum([e-heappushpop(q,e)for e in a[n:n-~n]]);from heapq import*;from numpy import*;n,*a=map(int,open(0).read().split());print(max(map(sum,zip(f(a),f([-e for e in a[::-1]])[::-1]))))', 'def f(a):\n\tq=a[:n];s=sum(q);heapify(q)\n\tfor e in a[n:2*n]:yield s;s+=e-heappushpop(q,e)\nfrom heapq import*;n,*a=map(int,open(0).read().split());print(max(map(sum,zip(f(a),list(f([-e for e in a[::-1]]))[::-1]))))', 'def f(a):q=a[:n];heapify(q);return sum(q)+cumsum([e-heappushpop(q,e)for e in a[n:n-~n]])\nfrom heapq import*;from numpy import*;n,*a=map(int,open(0).read().split());print(max(map(sum,zip(f(a),f([-e for e in a[::-1]])[::-1]))))', 'def f(a):\n\tq=a[:n];s=sum(q);heapify(q);yield s\n\tfor e in a[n:2*n]:s+=e-heappushpop(q,e);yield s\nfrom heapq import*;n,*a=map(int,open(0).read().split());print(max(map(sum,zip(f(a),list(f([-e for e in a[::-1]]))[::-1]))))']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s254703592', 's386946796', 's918639303', 's765321529']
[3064.0, 36308.0, 45252.0, 36308.0]
[17.0, 279.0, 1631.0, 268.0]
[225, 211, 225, 219]
p03716
u450956662
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nN = int(input())\nA = list(map(int, input().split()))\nR = [a for a in A[:N]]\nM = [a for a in A[N:2*N]]\nB = [-a for a in A[2*N:3*N]]\nres_R = [0] * (N + 1)\nres_B = [0] * (N + 1)\nres_R[0] = sum(R)\nres_B[N] = -sum(B)\nheapq.heapify(R)\nheapq.heapify(B)\nfor i in range(N):\n heapq.heappush(R, M[i])\n a = heapq.heappop(R)\n res_R[i+1] = res_R[i] + M[i] - a\n heapq.heappush(B, -M[N-i-1])\n a = heapq.heappop(B)\n res_B[N-i-1] = res_B[N-i] + M[N-i-1] + a\nprint(max(r - b for r, b in zip(res_R, res_B)))\nprint(res_R)\nprint(res_B)', 'import heapq\nN = int(input())\nA = list(map(int, input().split()))\nR = [a for a in A[:N]]\nM = [a for a in A[N:2*N]]\nB = [-a for a in A[2*N:3*N]]\nres_R = [0] * (N + 1)\nres_B = [0] * (N + 1)\nres_R[0] = sum(R)\nres_B[N] = -sum(B)\nheapq.heapify(R)\nheapq.heapify(B)\nfor i in range(N):\n heapq.heappush(R, M[i])\n a = heapq.heappop(R)\n res_R[i+1] = res_R[i] + M[i] - a\n heapq.heappush(B, -M[N-i-1])\n a = heapq.heappop(B)\n res_B[N-i-1] = res_B[N-i] + M[N-i-1] + a\nprint(max(r - b for r, b in zip(res_R, res_B)))']
['Wrong Answer', 'Accepted']
['s335183011', 's433950988']
[37644.0, 37212.0]
[480.0, 458.0]
[544, 518]
p03716
u536113865
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['ai = lambda: list(map(int,input().split()))\n\nn = int(input())\na = ai()\n\nans = 0\nfor k in range(n):\n af = a[:n+k]\n ar = a[n+k:]\n aa = sum(sorted(af)[:n]) + sum(sorted(af, reverse=True)[:n])\n ans = max(ans, aa)\n\nprint(ans)', 'ai = lambda: list(map(int,input().split()))\n\nn = int(input())\na = ai()\n\nbig = sum(a[:n])\nsmall = sum(a[2*n:])\n\nimport heapq\naf = a[:n]\nheapq.heapify(af)\nar = [-i for i in a[2*n:]]\nheapq.heapify(ar)\n\nans = [[0,0] for _ in range(n+1)]\nans[0][0] = big\nans[-1][1] = small\n\nfor k in range(n):\n if af[0] < a[n+k]:\n b = heapq.heapreplace(af, a[n+k])\n big += a[n+k] - b\n ans[k+1][0] = big\n\nfor k in range(n):\n if -ar[0] > a[-n-k-1]:\n s = heapq.heapreplace(ar, -a[-n-k-1])\n small += a[-n-k-1] + s\n ans[-k-2][1] = small\n\nprint(max(i-j for i,j in ans))\n']
['Wrong Answer', 'Accepted']
['s441601434', 's474993453']
[39012.0, 38468.0]
[2109.0, 439.0]
[232, 582]
p03716
u557494880
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['N = int(input())\nA = list(map(int,input().split()))\nS = []\nP = A[:N]\nQ = A[2*N:]\nfor i in range(N):\n Q[i] *= -1\nR = A[N:2*N]\np = [0]*(N+1)\nq = [0]*(N+1)\nimport heapq\nheapq.heapify(P)\nheapq.heapify(Q)\nsp = sum(P)\nsq = sum(Q)\np[0] = sp\nq[0] = sq\n\nfor i in range(1,N+1):\n heapq.heappush(P,R[i-1])\n heapq.heappop(P)\n sp = sum(P)\n p[i] = sum(Q)\nfor i in range(1,N+1):\n heapq.heappush(Q,-R[-i])\n heapq.heappop(Q)\n sq = sum(Q)\n q[i] = sq\n\nans = -(10**100)\nfor k in range(N+1):\n ans = max(ans,p[k] + q[N-k])\n \nprint(ans)\n', 'N = int(input())\nA = list(map(int,input().split()))\nS = []\nfor i in range(N+1):\n P = A[:(N+i)]\n Q = A[(N+i):]\n for l in range(len(Q)):\n Q[l] *= -1\n heapq.heapify(P)\n heapq.heapify(Q)\n j = 0\n k = 0\n while j < i:\n heapq.heappop(P)\n while k < N-i:\n heapq.heappop(Q)\n s = sum(P) + sum(Q)\n S.append(s)\nans = min(S)\nprint(ans)', 'N = int(input())\nA = list(map(int,input().split()))\nS = []\nimport heapq\nfor i in range(N+1):\n P = A[:(N+i)]\n Q = A[(N+i):]\n for l in range(len(Q)):\n Q[l] *= -1\n heapq.heapify(P)\n heapq.heapify(Q)\n j = 0\n k = 0\n while j < i:\n heapq.heappop(P)\n j += 1\n while k < N-i:\n heapq.heappop(Q)\n k += 1\n s = sum(P) + sum(Q)\n S.append(s)\nans = min(S)\nprint(ans)', 'N = int(input())\nA = list(map(int,input().split()))\nS = []\nP = A[:N]\nQ = A[2*N:]\nfor i in range(N):\n Q[i] *= -1\nR = A[N:2*N]\np = [0]*(N+1)\nq = [0]*(N+1)\nimport heapq\nheapq.heapify(P)\nheapq.heapify(Q)\nsp = sum(P)\nsq = sum(Q)\np[0] = sp\nq[0] = sq\n\nfor i in range(1,N+1):\n heapq.heappush(P,R[i-1])\n x = heapq.heappop(P)\n heapq.heappush(Q,-R[-i])\n y = heapq.heappop(Q)\n sp = sp + R[i-1] - x\n sq = sq - R[-i] - y\n p[i] = sp\n q[i] = sq\nans = -(10**100)\nfor k in range(N+1):\n ans = max(ans,p[k] + q[N-k])\n \nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s775514001', 's776774021', 's999105011', 's439911358']
[39124.0, 41172.0, 39124.0, 40724.0]
[2109.0, 124.0, 2105.0, 466.0]
[546, 374, 417, 543]
p03716
u704284486
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nimport sys\ndef main():\n N = int(sys.stdin.readline())\n A = list(map(int,sys.stdin.readline().split()))\n front = []\n back = []\n heapq.heapify(front)\n heapq.heapify(back)\n ans = 0\n L = 3*N\n f_end = 0\n b_start = L-1\n for i in range(L):\n a = A[i]\n b = A[3*N-1-i]\n if i == 3*N-1-i:\n s1 = a-front[0]\n s2 = -b-back[0]\n if f_end > b_start:break\n if s1 >= s2 >= 0:\n heapq.heappop(front)\n heapq.heappush(front,a)\n break\n elif 0 <= s1 < s2:\n heapq.heappop(back)\n heapq.heappush(back,-b)\n break\n if len(front) == N:\n if front[0] < a:\n if i < b_start:\n heapq.heappop(front)\n heapq.heappush(front,a)\n f_end = i\n else:\n heapq.heappush(front,a)\n f_end = i\n if len(back) == N:\n if back[0] < -b:\n if f_end < 3*N-1-i:\n heapq.heappop(back)\n heapq.heappush(back,-b)\n b_start = 3*N-1-i\n else:\n heapq.heappush(back,-b)\n b_start = 3*N-1-i\n ans = sum(front)+sum(back)\n print(ans)\n print(front)\n print(back)\n\nif __name__ == "__main__":\n main()', 'import heapq\nimport sys\ndef main():\n N = int(sys.stdin.readline())\n A = list(map(int,sys.stdin.readline().split()))\n front = A[:N]\n back = list(map(lambda x:x*(-1),A[2*N:]))\n heapq.heapify(front)\n heapq.heapify(back)\n s1 = sum(front)\n s2 = sum(back)\n s1_list = [s1]\n ans = 0\n for i in range(N,2*N):\n a = A[i]\n heapq.heappush(front,a)\n min_front = heapq.heappop(front)\n s1 = s1-min_front+a\n s1_list.append(s1)\n ans = s2 +s1_list.pop()\n for i in reversed(range(N,2*N)):\n b = -A[i]\n heapq.heappush(back,b)\n min_back = heapq.heappop(back)\n s2 = s2-min_back+b\n ans = max(ans,s2+s1_list.pop())\n print(ans)\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Accepted']
['s750876682', 's946867719']
[39516.0, 39084.0]
[436.0, 369.0]
[1382, 750]
p03716
u765237551
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nn = int(input())\nxs = list(map(int, input().split()))\nhead = heapq.heapify(xs[:n])\nbody = xs[n:2*n]\nbody_and_tail = sorted(xs[n:])\nsum_tail = sum(body_and_tail_list[:n])\nunused_tail = heapq.heapify(body_and_tail[-n:])\nans = -1000000000000000000000\ntemp = sum(head) - sum_tail\nfor b in body:\n heapq.push(head, b)\n temp = temp - heapq.pop(head) - heapq.pop(unused_tail) + 2*b\n ans = max(ans, temp)\nprint(ans)', 'import heapq\nn = int(input())\nxs = list(map(int, input().split()))\nhead = [(x, x) for x in xs[:n]]\nheapq.heapify(head)\nbody = xs[n:-n]\ntail = [(-x, x) for x in xs[-n:]]\nheapq.heapify(tail)\n\ndef f(heap, body, sign, initial):\n answer = [initial]\n acc = initial\n for b in body:\n heapq.heappush(heap, (sign*b, b))\n _, x = heapq.heappop(heap)\n acc = acc + b - x\n answer.append(acc)\n return answer\n \nprint(max(x - y for x, y in zip(\n f(head, body, 1, sum(xs[:n])),\n f(tail, body[::-1], -1, sum(xs[-n:]))[::-1])))']
['Runtime Error', 'Accepted']
['s221073679', 's589196679']
[38148.0, 45584.0]
[177.0, 647.0]
[428, 552]
p03716
u777923818
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['# -*- coding: utf-8 -*-\ndef inpl(): return tuple(map(int, input().split()))\nfrom bisect import bisect_left, insort\nN = int(input())\nA = inpl()\n\nbefore = sorted(A[:N])\nmiddle = sorted(A[N:-N])\nafter = sorted(A[-N:])\n\nS_before = [sum(before)]\nS_after = [sum(after)]\n\nfor m in middle:\n if before[0] < m:\n S_before.append(S_before[-1] + m - before[0])\n insort(before, m)\n before = before[1:]\n else:\n S_before.append(S_before[-1])\n\nfor m in middle[::-1]:\n if after[-1] > m:\n S_after.append(S_after[-1] - m + after[-1])\n insort(after, m)\n after = after[:-1]\n else:\n S_after.append(S_after[-1]) \n\nprint(max([b-a for b, a in zip(S_before, S_after[::-1])])) \n', '# -*- coding: utf-8 -*-\ndef inpl(): return list(map(int, input().split()))\nfrom heapq import heapify, heapreplace \n\nN = int(input())\nA = inpl()\nL = A[:N]\nM = A[N:2*N]\nR = [-a for a in A[2*N:]]\nans = sum(L) + sum(R)\nheapify(L)\nheapify(R)\n\n\ni = 0\nj = N+1\n\nS = [0]*(N+1)\n\ns = 0\nfor i, m in enumerate(M):\n if m > L[0]:\n s += m - heapreplace(L, m)\n S[i+1] += s\n\ns = 0\nfor i, m in enumerate(M[::-1]):\n if m < -R[0]:\n s += -m - heapreplace(R, -m)\n S[-i-2] += s\n\nans += max(S)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s435237666', 's735291469']
[39508.0, 37212.0]
[2105.0, 319.0]
[721, 505]
p03716
u784022244
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nN=int(input())\nA=list(map(int, input().split()))\n\nclass MaxHeap:\n def __init__(self, li):\n self.hp = []\n for e in li:\n heappush(self.hp, -e)\n\n def push(self, x):\n heappush(self.hp, -x)\n\n def pop(self):\n ret = heappop(self.hp)\n ret *= -1\n return ret\n\n def seak(self):\n return -self.hp[0]\n\n def sum(self):\n return -sum(self.hp)\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:]\n\nheapq.heapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n p=heapq.heappushpop(A1,a)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nA3=MaxHeap(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n A3.push(a)\n A3_sum+=a\n p=A3.pop()\n A3_sum-=p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'from heapq import heapify, heappop, heappush\nN=int(input())\nA=list(map(int, input().split()))\n\nclass MaxHeap:\n def __init__(self, li):\n self.hp = []\n for e in li:\n heappush(self.hp, -e)\n\n def push(self, x):\n heappush(self.hp, -x)\n\n def pop(self):\n ret = heappop(self.hp)\n ret *= -1\n return ret\n\n def seak(self):\n return -self.hp[0]\n\n def sum(self):\n return -sum(self.hp)\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:]\n\nheapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n heappush(A1, a)\n p=heappop(A1)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nA3=MaxHeap(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n A3.push(a)\n A3_sum+=a\n p=A3.pop()\n A3_sum-=p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'from heapq import heapify, heappop, heappush\nN=int(input())\nA=list(map(int, input().split()))\n\nclass MaxHeap:\n def __init__(self, li):\n self.hp = []\n for e in li:\n heappush(self.hp, -e)\n\n def push(self, x):\n heappush(self.hp, -x)\n\n def pop(self):\n ret = heappop(self.hp)\n ret *= -1\n return ret\n\n def seak(self):\n return -self.hp[0]\n\n def sum(self):\n return -sum(self.hp)\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:]\n\nheapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n heappush(A1, a)\n p=heappop(A1)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nA3=MaxHeap(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n A3.heappush(a)\n A3_sum+=a\n p=A3.heappop()\n A3_sum-=p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'import heapq\nN=int(input())\nA=list(map(int, input().split()))\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:3*N]\n\nheapq.heapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n p=heapq.heappushpop(A1,a)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nheapq.heapify(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n p=heapq.heappushpop(A3,a)\n A3_sum+=a-p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'from heapq import heapify, heappop, heappush\nN=int(input())\nA=list(map(int, input().split()))\n\nclass MaxHeap:\n def __init__(self, li):\n self.hp = []\n for e in li:\n heappush(self.hp, -e)\n\n def push(self, x):\n heappush(self.hp, -x)\n\n def pop(self):\n ret = heappop(self.hp)\n ret *= -1\n return ret\n\n def seak(self):\n return -self.hp[0]\n\n def sum(self):\n return -sum(self.hp)\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:]\n\nheapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n heappush(A1, a)\n p=heappop(A1)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nA3=MaxHeap(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n A3.push(a)\n A3_sum+=a\n p=A3.pop()\n A3_sum-=p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'from heapq import heapify, heappop, heappush\nN=int(input())\nA=list(map(int, input().split()))\n\nclass MaxHeap:\n def __init__(self, li):\n self.hp = []\n for e in li:\n heappush(self.hp, -e)\n\n def push(self, x):\n heappush(self.hp, -x)\n\n def pop(self):\n ret = heappop(self.hp)\n ret *= -1\n return ret\n\n def seak(self):\n return -self.hp[0]\n\n def sum(self):\n return -sum(self.hp)\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:]\n\nheapq.heapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n p=heapq.heappushpop(A1,a)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nA3=MaxHeap(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n A3.push(a)\n A3_sum+=a\n p=A3.pop()\n A3_sum-=p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'import heapq\nN=int(input())\nA=list(map(int, input().split()))\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:3*N]\n\nheapq.heapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n p=heapq.heappushpop(A1,a)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nheapq.heapify(A3)\nA3_sum=sum(A3)\nA3_li=[A3_sum]\nfor a in A3[::-1]:\n p=heapq.heappushpop(A3,a)\n A3_sum+=a-p\n A3_li.append(A3_sum)\n \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)', 'from heapq import heapify, heappop, heappush\nN=int(input())\nA=list(map(int, input().split()))\n\nclass MaxHeap:\n def __init__(self, li):\n self.hp = []\n for e in li:\n heappush(self.hp, -e)\n\n def push(self, x):\n heappush(self.hp, -x)\n\n def pop(self):\n ret = heappop(self.hp)\n ret *= -1\n return ret\n\n def seak(self):\n return -self.hp[0]\n\n def sum(self):\n return -sum(self.hp)\n\nA1=A[:N]\nA2=A[N:2*N]\nA3=A[2*N:]\n\nheapify(A1)\nA1_sum=sum(A1)\nA1_li=[A1_sum]\nfor a in A2:\n heappush(A1, a)\n p=heappop(A1)\n A1_sum+=a-p\n A1_li.append(A1_sum)\n \nA3_sum=sum(A3)\nA3=MaxHeap(A3)\n\nA3_li=[A3_sum]\nfor a in A2[::-1]:\n A3.push(a)\n A3_sum+=a\n p=A3.pop()\n A3_sum-=p\n A3_li.append(A3_sum)\n \nA3_li=A3_li[::-1] \nans=False\nfor a1, a3 in zip(A1_li, A3_li):\n if not ans:\n ans=a1-a3\n else:\n ans=max(ans, a1-a3)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s104531825', 's490809408', 's498627219', 's656642416', 's661389503', 's679904458', 's913212012', 's754759547']
[37212.0, 37212.0, 37212.0, 38288.0, 37212.0, 37212.0, 40196.0, 37212.0]
[197.0, 238.0, 236.0, 311.0, 247.0, 99.0, 325.0, 438.0]
[857, 889, 897, 496, 889, 889, 476, 890]
p03716
u858136677
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['import heapq\nimport bisect\n\nn = int(input())\nn = n*3\na = list(map(int,input().split()))\n\nbig = a[0:n//3]\ntempmin = a[n//3::]\ntempmin.sort()\nsmall = tempmin[0:n//3]\nspare = tempmin[n//3::]\n\nans = sum(big)-sum(small)\nmxm = ans\n\nheapq.heapify(small)\nheapq.heapify(spare)\n\nfor i in range(n//3,2*n//3):\n if len(spare) != 0 and a[i] >= spare[0]:\n index = bisect.bisect_left(spare,a[i])\n spare.pop(index)\n\n if a[i] > big[0]:\n ans += a[i]-big[0]\n index = bisect.bisect_left(big,a[i])\n big.insert(index,a[i])\n big.pop(0)\n \n if a[i] < small[-1]:\n ans -= spare[0]-a[i]\n heapq.heappush(small,spare[0])\n heapq.heappop(spare)\n index = bisect.bisect_left(small,a[i])\n small.pop(index)\n \n if ans > mxm:\n mxm = ans\nprint(mxm)', 'import heapq\nimport bisect\n\nn = int(input())\nn = n*3\na = list(map(int,input().split()))\n\nleft = a[0:n//3]\nright = list(-i for i in a[2*n//3:])\n\nleftsum = [0 for i in range(n//3+1)]\nrightsum = [0 for i in range(n//3+1)]\n\nheapq.heapify(left)\nleftsum[0] = sum(left)\nfor i in range(n//3):\n k = i + n//3\n heapq.heappush(left,a[k])\n temp = heapq.heappop(left)\n leftsum[i+1] = leftsum[i]+a[k]-temp\n\nheapq.heapify(right)\nrightsum[-1] = -sum(right)\nfor i in range(n//3)[::-1]:\n k = i + n//3\n heapq.heappush(right,-a[k])\n temp = -heapq.heappop(right)\n rightsum[i] = rightsum[i+1] - temp + a[k]\n\n\n\n\nmxm = -sum(a)\nfor i in range(n//3+1):\n if leftsum[i]-rightsum[i] > mxm:\n mxm = leftsum[i]-rightsum[i]\nprint(mxm)']
['Runtime Error', 'Accepted']
['s443979243', 's872017013']
[37212.0, 37212.0]
[2104.0, 478.0]
[810, 734]
p03716
u875291233
2,000
262,144
Let N be a positive integer. There is a numerical sequence of length 3N, a = (a_1, a_2, ..., a_{3N}). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a') - (the sum of the elements in the second half of a'). Find the maximum possible score of a'.
['# coding: utf-8\n# Your code here!\nn = int(input())\na = [int(i) for i in input().split()]\n\nfrom heapq import *\n\npq1 = a[:n]\nheapify(pq1)\ns = sum(pq1)\nscore1 = [s]\nfor i in range(n):\n c=heappushpop(pq1, a[n+i])\n s += a[n+i] - c\n score1.append(s)\n\npq2 = [-i for i in a[2*n:]]\nheapify(pq2)\ns = sum(pq2)\nscore2 = [s]\nfor i in range(1,n+1):\n c=heappushpop(pq2, -a[2*n-i])\n s += -a[2*n-i] - c\n score2.append(s)\n\nprint(score1)\nprint(score2)\nans = -10**17\nfor i,j in zip(score1,reversed(score2)):\n ans = max(ans, i+j)\n\nprint(ans)\n \n', '# coding: utf-8\n# Your code here!\nimport sys\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nn,*a = map(int,read().split())\n\nfrom heapq import *\n\ndef get(q,a):\n v = sum(q)\n res = [v]\n for i in a[n:2*n]:\n x = heappushpop(q,i)\n v += i-x\n res.append(v)\n return res\n\nq = a[:n]\nheapify(q)\nres1 = get(q,a)\n\na = [-i for i in a[::-1]]\nq = a[:n]\nheapify(q)\nres2 = get(q,a)\n\n#print(res1)\n#print(res2)\n\nprint(max(i+j for i,j in zip(res1,res2[::-1])))\n\n\n\n\n\n\n\n']
['Wrong Answer', 'Accepted']
['s034415946', 's535044248']
[38780.0, 42152.0]
[436.0, 233.0]
[547, 485]
p03717
u226155577
2,000
262,144
There are N squares arranged in a row. The squares are numbered 1, 2, ..., N, from left to right. Snuke is painting each square in red, green or blue. According to his aesthetic sense, the following M conditions must all be satisfied. The i-th condition is: * There are exactly x_i different colors among squares l_i, l_i + 1, ..., r_i. In how many ways can the squares be painted to satisfy all the conditions? Find the count modulo 10^9+7.
['\nN, M = map(int, input().split())\nr_min = [0]*(N+1); r_max = [N+1]*(N+1)\ng_min = [0]*(N+1); g_max = [N+1]*(N+1)\nfor i in range(M):\n l, r, x = map(int, input().split())\n\n \n if x == 1:\n \n \n g_max[r] = min(g_max[r], l-1)\n elif x == 2:\n \n \n g_min[r] = max(g_min[r], l)\n r_max[r] = min(r_max[r], l-1)\n elif x == 3:\n \n \n r_min[r] = max(r_min[r], l)\n\nMOD = 10**9 + 7\n\ndef check(r, g, k):\n return (r_min[k] <= r <= r_max[k] and g_min[k] <= g <= g_max[k])\n\n\n\nque = [{} for i in range(N+1)]\nque[0][0, 0] = 1\nfor k in range(N-1):\n cur = que[k]\n nxt = que[k+1]\n for key, val in cur.items():\n \n r, g = key\n\n \n if check(g, k, k+1):\n nxt[g, k] = (nxt.get((g, k), 0) + val) % MOD\n if check(r, k, k+1):\n nxt[r, k] = (nxt.get((r, k), 0) + val) % MOD\n if check(r, g, k+1):\n nxt[r, g] = (nxt.get((r, g), 0) + val) % MOD\nans = 0\nfor key, val in que[N-1].items():\n r, g = key\n if check(g, k, k+1):\n ans += val\n if check(r, k, k+1):\n ans += val\n if check(r, g, k+1):\n ans += val\n ans %= MOD\n\nprint(ans)', 'MOD = 10**9 + 7\nN, M = map(int, input().split())\nS = [[N+1]*(N+1) for i in [0,1,2]]\nT = [[0]*(N+1) for i in [0,1,2]]\n\nC = [0]*(N+1)\nfor i in range(M):\n l, r, x = map(int, input().split())\n if r-l < x-1:\n print(0)\n exit(0)\n S[x-1][r] = min(S[x-1][r], l)\n T[x-1][r] = max(T[x-1][r], l)\n C[r] = 1\n\nS0, S1, S2 = S\nT0, T1, T2 = T\n\nok = 1\nfor i in range(N+1):\n if not T2[i] < S1[i] or not T1[i] < S0[i]:\n ok = 0\n break\n\nif not ok:\n print(0)\n exit(0)\n\nRM = [N+1]*(N+1); GM = [N+1]*(N+1)\nfor i in range(N-1, -1, -1):\n RM[i] = min(RM[i+1], S1[i+1])\n GM[i] = min(GM[i+1], S0[i+1])\n\n\nX = {(0, 0): 3}\nD = [0]*(N+1); D[0] = 6\nB = [{} for i in range(N+1)]\nB[0][0] = 3\nbb = 0\nfor b in range(1, N):\n t2 = T2[b+1]; s1 = S1[b+1]; t1 = T1[b+1]; s0 = S0[b+1]\n\n rm = RM[b]\n gm = GM[b]\n if t1 <= b < gm:\n F = B[b]\n for z in range(t2, min(rm, b)):\n v = D[z] % MOD\n if v:\n F[z] = v; D[z] += v; D[b] += v\n if C[b+1]:\n for g in range(bb, min(t1, b)):\n for r, v in B[g].items():\n D[r] -= v; D[g] -= v\n B[g] = None\n bb = max(t1, bb)\n for g in range(bb, b):\n for r, v in B[g].items():\n if not t2 <= r < s1:\n D[r] -= v; D[g] -= v\n B[g] = {r: v for r, v in B[g].items() if t2 <= r < s1}\nans = 0\nfor b in range(bb, N+1):\n if B[b]:\n ans += sum(B[b].values())\nprint(ans % MOD)']
['Runtime Error', 'Accepted']
['s714208834', 's469337312']
[122348.0, 6772.0]
[2111.0, 1258.0]
[1948, 1490]
p03717
u327466606
2,000
262,144
There are N squares arranged in a row. The squares are numbered 1, 2, ..., N, from left to right. Snuke is painting each square in red, green or blue. According to his aesthetic sense, the following M conditions must all be satisfied. The i-th condition is: * There are exactly x_i different colors among squares l_i, l_i + 1, ..., r_i. In how many ways can the squares be painted to satisfy all the conditions? Find the count modulo 10^9+7.
['from collections import defaultdict\n\nMOD = 1000000007\niist = lambda: map(int,input().split())\n\nN,M = iist()\nQ = defaultdict(list)\nfor i in range(M):\n l,r,x = iist()\n Q[r].append((l,x))\n\nif any(x != 1 for l,x in Q[1]):\n print(0)\n exit(0)\n\ndp = defaultdict(int)\ndp[0,0] = 3\n\nx_sum = [3]\ny_sum = [3]\ns = 3\n\nfor pk in range(1,N):\n k = pk+1\n\n dp.update(((i,pk),s%MOD) for i,s in enumerate(map(sum, zip(x_sum,y_sum))))\n\n for i in range(pk):\n x_sum[i] += dp[i,pk]\n x_sum.append(0)\n y_sum.append((2*s)%MOD)\n s *= 3\n\n removes = [(i,j) for i,j in dp.keys()\n if any(x != (l<=i)+(l<=j)+1 for l,x in Q[k])]\n\n for i,j in removes:\n c = dp[i,j]\n del dp[i,j]\n x_sum[i] -= c\n y_sum[j] -= c\n s -= c\n\n for i,j in range(pk):\n x_sum[i] %= MOD\n y_sum[i] %= MOD\n s %= MOD\n\nprint(s)', 'x_sum = [3]\ny_sum = [3]\ns = 3\n\nfor pk in range(1,N):\n k = pk+1\n\n for i,c in enumerate(map(sum,zip(x_sum,y_sum))):\n c %= MOD\n dp[i,pk] = c\n x_sum[i] += c\n\n x_sum.append(0)\n y_sum.append(2*s%MOD)\n s = 3*s%MOD\n subQ = Q[k]\n\n for i,j in list(dp.keys()):\n for l,x in subQ:\n if x != (l<=i)+(l<=j):\n c = dp[i,j]\n x_sum[i] -= c\n y_sum[j] -= c\n y_sum[j] %= MOD\n s -= c\n del dp[i,j]\n break\n\n for i in range(pk):\n x_sum[i] %= MOD\n s %= MOD\n\nprint(s)', 'from collections import defaultdict\n\nMOD = 1000000007\niist = lambda: map(int,input().split())\n\nN,M = iist()\nQ = defaultdict(list)\nfor i in range(M):\n l,r,x = iist()\n Q[r].append((l,x-1))\n\nif any(x != 0 for l,x in Q[1]):\n print(0)\n exit(0)\n\ndp = {(0,0):3}\nmemo = [6]\ns = 3\n\nfor pk in range(1,N):\n k = pk+1\n\n for i,c in enumerate(memo):\n c %= MOD\n dp[i,pk] = c\n memo[i] *= 2\n memo[i] %= MOD\n\n memo.append(2*s%MOD)\n s = 3*s%MOD\n subQ = Q[k]\n\n for i,j in list(dp.keys()):\n for l,x in subQ:\n if x != (l<=i)+(l<=j):\n c = dp[i,j]\n memo[i] -= c\n memo[j] -= c\n s -= c\n del dp[i,j]\n break\n\n s %= MOD\n\nprint(s)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s673699357', 's936462260', 's697682291']
[3436.0, 3064.0, 12524.0]
[22.0, 17.0, 1487.0]
[806, 516, 672]
p03723
u020390084
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["#!/usr/bin/env python3\nimport sys\n# input = sys.stdin.r/eadline\ndef INT(): return int(input())\ndef MAP(): return map(int,input().split())\ndef LI(): return list(map(int,input().split()))\n\ndef main():\n A,B,C = MAP()\n if not(A%2==0 and B%2==0 and C%2==0):\n print(0)\n return\n \n if A==B==C:\n print(-1)\n return\n answer = 0\n \n while A%2==0 and B%2==0 and C%2==0:\n x = A//2\n y = B//2\n z = C//2\n A = y+z\n B = x+y\n C = y+z\n answer += 1\n print(answer)\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\nimport sys\n# input = sys.stdin.r/eadline\ndef INT(): return int(input())\ndef MAP(): return map(int,input().split())\ndef LI(): return list(map(int,input().split()))\n\ndef main():\n A,B,C = MAP()\n if not (A%2==0 and B%2==0 and C%2==0):\n print(0)\n return\n\n if A==B==C:\n print(-1)\n return\n answer = 0\n \n while A%2==0 and B%2==0 and C%2==0:\n x = A//2\n y = B//2\n z = C//2\n A = y+z\n B = x+y\n C = y+z\n answer += 1\n print(answer)\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\nimport sys\n# input = sys.stdin.r/eadline\ndef INT(): return int(input())\ndef MAP(): return map(int,input().split())\ndef LI(): return list(map(int,input().split()))\n\ndef main():\n A,B,C = MAP()\n # if not (A%2==0 and B%2==0 and C%2==0):\n # print(0)\n # return\n\n if A==B==C:\n print(-1)\n return\n answer = 0\n \n while A%2==0 and B%2==0 and C%2==0:\n x = A//2\n y = B//2\n z = C//2\n A = y+z\n B = x+y\n C = y+z\n answer += 1\n print(answer)\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\nimport sys\n# input = sys.stdin.r/eadline\ndef INT(): return int(input())\ndef MAP(): return map(int,input().split())\ndef LI(): return list(map(int,input().split()))\n\ndef main():\n A,B,C = MAP()\n if A==B==C:\n if A%2==1 or B%2==1 or C%2==1:\n print(0)\n else:\n print(-1)\n return\n answer = 0\n \n while A%2==0 and B%2==0 and C%2==0:\n x = A//2\n y = B//2\n z = C//2\n A = y+z\n B = x+z\n C = y+x\n answer += 1\n print(answer)\n\nif __name__ == '__main__':\n main()\n"]
['Time Limit Exceeded', 'Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s038013138', 's156826558', 's214277455', 's054932331']
[3064.0, 3064.0, 3064.0, 3064.0]
[2104.0, 2104.0, 2104.0, 20.0]
[585, 578, 584, 580]
p03723
u022979415
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["from functools import reduce\nfrom fractions import gcd\n\n\ndef main():\n cookies = list(map(int, input().split()))\n answer = -1\n if cookies[0] % 2 or cookies[1] % 2 or cookies[2] % 2:\n answer = 0\n elif len(set(cookies)) > 1:\n answer = reduce(gcd, cookies) - 1\n print(answer)\n\n\nif __name__ == '__main__':\n main()\n\n", "def main():\n cookies = list(map(int, input().split()))\n answer = 0\n if cookies[0] == cookies[1] == cookies[2] and cookies[0] % 2 == 0:\n answer = -1\n elif all(cookies[i] % 2 == 0 for i in range(3)):\n half = [0, 0, 0]\n sum_cookies = sum(cookies)\n while all(cookies[i] % 2 == 0 for i in range(3)):\n for i in range(3):\n half[i] = (sum_cookies - cookies[i]) // 2\n cookies[0] = half[1] + half[2]\n cookies[1] = half[0] + half[2]\n cookies[2] = half[1] + half[0]\n answer += 1\n print(answer)\n\n\nif __name__ == '__main__':\n main()\n\n"]
['Wrong Answer', 'Accepted']
['s008013996', 's504584048']
[5128.0, 3064.0]
[37.0, 18.0]
[342, 636]
p03723
u029929095
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A,B,C=map(int,input().split())\ncount=0\n#if A==B and A==C:\nprint("-1")\nexit()\nwhile True:\n a,b,c=A/2,B/2,C/2\n A,B,C=b+c,a+c,a+b\n count+=1\n if A%2==1 or B%2==1 or C%2==1:\n break\nprint(count)', 'A,B,C=map(int,input().split())\ncount=0\nif A%2==0 and A==B and A==C:\n print("-1")\n exit()\nwhile True:\n if A%2==1 or B%2==1 or C%2==1:\n break\n a,b,c=A/2,B/2,C/2\n A,B,C=b+c,a+c,a+b\n count+=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s059097375', 's616980721']
[3060.0, 3060.0]
[20.0, 17.0]
[195, 209]
p03723
u035907840
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A, B, C = map(int, input().split())\nS = A+B+C\n\nk = 0\nwhile True:\n if A==B==C:\n k = -1\n break\n k += 1\n An = (B + C)//2\n Bn = (A + C)//2\n Cn = (B + A)//2\n A = An \n B = Bn \n C = Cn \n print(A,B,C)\n if A%2==1 or B%2==1 or C%2==1 or min([A,B,C])<1:\n break\n\nprint(k)', 'A, B, C = map(int, input().split())\nS = A+B+C\n\nk = 0\nflag = 0\nwhile k<100:\n if A%2==1 or B%2==1 or C%2==1 or min([A,B,C])<1:\n flag = 1\n break\n An = (B + C)//2\n Bn = (A + C)//2\n Cn = (B + A)//2\n A = An \n B = Bn \n C = Cn \n k += 1\n\nif not flag:\n k = -1\n\nprint(k)']
['Wrong Answer', 'Accepted']
['s191484795', 's625091782']
[9124.0, 9132.0]
[29.0, 26.0]
[314, 308]
p03723
u038408819
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['abc = list(map(int, input().split()))\nans = 0\nfor i in range(10 ** 6): \n if abc[0] % 2 != 0:\n print(ans)\n break\n else:\n tmp1 = abc[1] // 2 + abc[2] // 2\n\n if abc[1] % 2 != 0:\n print(ans)\n break\n else:\n tmp2 = abc[0] // 2 + abc[2] // 2\n \n if abc[2] % 2 != 0:\n print(ans)\n break\n else:\n tmp3 = abc[0] // 2 + abc[2] // 2\n \n abc[0] = tmp1\n abc[1] = tmp2\n abc[2] = tmp3\n ans += 1\n\nprint(-1)', 'abc = list(map(int, input().split()))\nans = 0\nfor i in range(10 ** 6): \n if abc[0] % 2 != 0:\n print(ans)\n quit()\n break\n else:\n tmp1 = abc[1] // 2 + abc[2] // 2\n\n if abc[1] % 2 != 0:\n print(ans)\n quit()\n break\n else:\n tmp2 = abc[0] // 2 + abc[2] // 2\n \n if abc[2] % 2 != 0:\n print(ans)\n quit()\n break\n else:\n tmp3 = abc[0] // 2 + abc[2] // 2\n \n abc[0] = tmp1\n abc[1] = tmp2\n abc[2] = tmp3\n ans += 1\n\nprint(-1)']
['Wrong Answer', 'Accepted']
['s935838649', 's250480255']
[3188.0, 3064.0]
[1202.0, 1200.0]
[494, 539]
p03723
u039860745
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A,B,C = map(int, input().split())\na = [A]\nb = [B]\nc = [C]\ncount = 0\nfor i in range(10 ** 9):\n \n if a[i] == b[i] == c[i]:\n count = -1\n break\n elif a[i] % 2 == 1 or b[i] % 2 == 0 or c[i] % 2 == 1:\n break\n else:\n a.append(b[i] / 2 + c[i] / 2)\n b.append(a[i] / 2 + c[i] / 2)\n c.append(a[i] / 2 + b[i] / 2)\n count += 1\n\nprint(count)', 'A,B,C = map(int, input().split())\na = [A]\nb = [B]\nc = [C]\ncount = 0\nfor i in range(10 ** 9):\n \n if a[i] == b[i] == c[i]:\n count = -1\n break\n elif a[i] % 2 == 1 or b[i] % 1 == 0 or c[i] % 2 == 1:\n break\n else:\n a.append(b[i] / 2 + c[i] / 2)\n b.append(a[i] / 2 + c[i] / 2)\n c.append(a[i] / 2 + b[i] / 2)\n count += 1\n\nprint(count)', 'A,B,C = map(int, input().split())\na = [A]\nb = [B]\nc = [C]\ncount = 0\nsum = A + B + C\nfor i in range(10 ** 9):\n\n if a[i] == b[i] == c[i]:\n if a[i] % 2 == 0 and b[i] % 2 == 0 and c[i] % 2 == 0:\n count = -1\n break\n else:\n count = 0\n break\n elif a[i] % 2 == 0 and b[i] % 2 == 0 and c[i] % 2 == 0:\n a.append(b[i] / 2 + c[i] / 2)\n b.append(a[i] / 2 + c[i] / 2)\n c.append(a[i] / 2 + b[i] / 2)\n count += 1\n else:\n break\n\n\nprint(count)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s404788100', 's862618214', 's869912750']
[9176.0, 9168.0, 9144.0]
[27.0, 26.0, 28.0]
[385, 385, 528]
p03723
u057415180
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['cookie = list(map(int, input().split()))\nsc = sum(cookie)\ncnt = -1\nif cookie[0] == cookie[1] and cookie[1] == cookie[2] and cookie[0]%2 == 0:\n print(-1)\n exit()\nmemo = [0]*3\nwhile cookie[0]%2 == 0 and cookie[1]%2 == 0 and cookie[2]%2 == 0:\n memo[0] = (cookie[1] + cookie[2]) // 2\n memo[1] = (cookie[0] + cookie[2]) // 2\n memo[2] = (cookie[1] + cookie[0]) // 2\n for i in range(3):\n cookie[i] = memo[i]\n cnt += 1\n\nprint(cnt)', 'cookie = list(map(int, input().split()))\nsc = sum(cookie)\ncnt = 0\nif cookie[0] == cookie[1] and cookie[1] == cookie[2] and cookie[0]%2 == 0:\n print(-1)\n exit()\nmemo = [0]*3\nwhile cookie[0]%2 == 0 and cookie[1]%2 == 0 and cookie[2]%2 == 0:\n memo[0] = (cookie[1] + cookie[2]) // 2\n memo[1] = (cookie[0] + cookie[2]) // 2\n memo[2] = (cookie[1] + cookie[0]) // 2\n for i in range(3):\n cookie[i] = memo[i]\n cnt += 1\n\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s609209218', 's991348370']
[3064.0, 3064.0]
[17.0, 17.0]
[450, 449]
p03723
u094999522
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["*a, = map(int, input().split())\na = [bin(abs(a[i+1]-a[i]))[::-1].find('1') for i in range(2)].sort()\nprint(a[1] if a[0]*a[1]<0 else a[0])", "*a,=map(int,input().split())\nb=[bin(a[i+1]-a[i])[::-1].find('1')for i in (0,1)]\nprint((max(b)*(b[0]*b[1]<0) or min(b))*(1-sum(a)%2))"]
['Runtime Error', 'Accepted']
['s424739905', 's769243217']
[3060.0, 3060.0]
[18.0, 18.0]
[137, 132]
p03723
u098982053
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A,B,C = map(int,input().split())\nif A == B and B == C and C == A:\n print(-1)\nelse:\n count = 0\n while(A%2==0 and B%2 == 0 and C%2==0):\n A_ = A\n B_ = B\n A = (B+C)/2\n B = (A_+C)/2\n C = (A_+B_)/2\n print(A,B,C)\n count+=1\n print(count)', 'A,B,C = map(int,input().split())\nif A == B and B == C and C == A:\n print(-1 if A%2==0 else 0 )\nelse:\n count = 0\n while(A%2==0 and B%2 == 0 and C%2==0):\n A_ = A\n B_ = B\n A = (B+C)/2\n B = (A_+C)/2\n C = (A_+B_)/2\n count+=1\n print(count)\n']
['Wrong Answer', 'Accepted']
['s057143460', 's506005028']
[9092.0, 9176.0]
[32.0, 24.0]
[255, 257]
p03723
u102960641
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a,b,c = map(int, input().split())\nd,e,f = abs(b-a),abs(c-b),abs(a-c)\nif d == e and e == f:\n print(-1)\nans = 0\nelse:\n while d % 2 == 0 and e % 2 == 0 f % 2 == 0:\n ans += 1\n d //= 2\n e //= 2\n f //= 2\n else:\n print(ans)', 'a,b,c = map(int, input().split())\nd,e,f = abs(b-a),abs(c-b),abs(a-c)\nans = 0\nif d == e and e == f:\n print(-1)\nelse:\n while d % 2 == 0 and e % 2 == 0 f % 2 == 0:\n ans += 1\n d //= 2\n e //= 2\n f //= 2\n print(ans)', 'a,b,c = map(int, input().split())\nd,e,f = abs(b-a),abs(c-b),abs(a-c)\nans = 0\nif a % 2 == 1 or b % 2 == 1 or c % 2 == 1:\n print(0)\nelse: \n if d == e and e == f:\n print(-1)\n else:\n while d % 2 == 0 and e % 2 == 0 and f % 2 == 0:\n ans += 1\n d //= 2\n e //= 2\n f //= 2\n print(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s329582828', 's707626020', 's599202651']
[2940.0, 2940.0, 3064.0]
[18.0, 18.0, 18.0]
[234, 224, 307]
p03723
u103902792
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a,b,c = map(int,input().split())\n\nif a%2 or b%2 or c%2:\n print(0)\n exit()\nelif a==b==c:\n print(-1)\n exit()\n \nans =0\nwhile 1:\n if all(a%2==0, b%2==0, c%2==0):\n ans += 1\n else:\n print(ans)\n exit()\n a, b, c = (b+c)//2, (a+c)//2, (b+a)//2', 'a,b,c = map(int,input().split())\n\nif a%2 or b%2 or c%2:\n print(0)\n exit()\nelif a==b==c:\n print(-1)\n exit()\n \nans =0\nwhile 1:\n if all((a%2==0, b%2==0, c%2==0)):\n ans += 1\n else:\n print(ans)\n exit()\n a, b, c = (b+c)//2, (a+c)//2, (b+a)//2\n\n']
['Runtime Error', 'Accepted']
['s579662809', 's748789177']
[3064.0, 3064.0]
[17.0, 18.0]
[251, 255]
p03723
u106181248
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a, b, c = map(int,input().split())\nans = 0\n\nif a == b == c and a%2 == 0:\n print(-1) \n exit()\n\nwhile x%2 == 0 and y%2 == 0 and z%2 == 0:\n ans += 1\n\n x = b//2 + c//2\n y = a//2 + c//2\n z = a//2 + b//2\n \n a = x\n b = y\n c = z\n\nprint(ans)\n', 'a, b, c = map(int,input().split())\nans = 0\n\nif a == b == c and a%2 == 0:\n print(-1) \n exit()\n\nwhile x%2 == 0 and y%2 == 0 and z%2 == 1:\n ans += 1\n \n x = b//2 + c//2\n y = a//2 + c//2\n z = a//2 + b//2\n \n a = x\n b = y\n c = z\n\nprint(ans)\n', 'a, b, c = map(int,input().split())\nans = 0\nif a == b == c:\n if a%2 == 0:\n print(-1) \n else:\n print(ans) \n\nwhile True:\n ans += 1\n x = b//2 + c//2\n y = a//2 + c//2\n z = a//2 + b//2\n if x%2 == 1 or y%2 == 1 or z%2 == 1:\n break\n\nprint(ans)\n', 'a, b, c = map(int,input().split())\nans = 0\n\nif a == b == c and a%2 == 0:\n print(-1) \n exit()\n\nwhile a%2 == 0 and b%2 == 0 and c%2 == 0:\n ans += 1\n\n x = b//2 + c//2\n y = a//2 + c//2\n z = a//2 + b//2\n \n a = x\n b = y\n c = z\n\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s067337224', 's115925710', 's587676960', 's296961549']
[3060.0, 3060.0, 2940.0, 3060.0]
[17.0, 18.0, 2104.0, 17.0]
[270, 274, 305, 270]
p03723
u106342872
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['#! -*- coding:utf-8 -*-\na,b,c = map(int,input().split())\nprint(a,b,c)\n\ncount = 0\nflag = 0\nwhile True:\n at = (b+c)/2\n bt = (a+c)/2\n ct = (b+c)/2\n\n if flag == 1 and at == a and bt == b and ct == c:\n flag = 0\n break\n \n a = at\n b = bt\n c = ct\n \n count += 1\n flag = 1\n if a % 2 == 1 or b % 2 == 1 or c % 2 == 1:\n break\n\nif flag == 0:\n print(-1)\nelse:\n print(count)\n', '#! -*- coding:utf-8 -*-\na,b,c = map(int,input().split())\n\ncount = 0\nflag = 0\nwhile True:\n at = (b+c)/2\n bt = (a+c)/2\n ct = (b+a)/2\n\n if flag == 0 and (a % 2 == 1 or b % 2 == 1 or c % 2 == 1):\n flag = 1\n break\n if flag == 1 and at == a and bt == b and ct == c:\n flag = 0\n break\n \n a = at\n b = bt\n c = ct\n #print(a,b,c)\n count += 1\n flag = 1\n if a % 2 == 1 or b % 2 == 1 or c % 2 == 1:\n break\n\nif flag == 0:\n print(-1)\nelse:\n print(count)']
['Wrong Answer', 'Accepted']
['s439293640', 's446903621']
[3064.0, 3064.0]
[17.0, 18.0]
[423, 516]
p03723
u113107956
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a,b,c=map(int,input().split())\nif a==b==c:\n if a%2===b%2==c%2==0:\n print(-1)\n else:\n print(0)\n exit()\ncnt=0\nwhile a%2==b%2==c%2:\n A=a//2\n B=b//2\n C=c//2\n a,b,c=B+C,A+C,A+B\n cnt+=1\nprint(cnt)', 'a,b,c=map(int,input().split())\nif a==b==c:\n if a%2==b%2==c%2==0:\n print(-1)\n else:\n print(0)\n exit()\ncnt=0\nwhile a%2==b%2==c%2:\n A=a//2\n B=b//2\n C=c//2\n a,b,c=B+C,A+C,A+B\n cnt+=1\nprint(cnt)']
['Runtime Error', 'Accepted']
['s468472502', 's080399505']
[8852.0, 9100.0]
[24.0, 27.0]
[228, 227]
p03723
u118642796
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A,B,C = map(int,input().split())\nif A==B==C:\n print(-1)\nelse:\n ans = 0\n while True:\n if A%2 or B%2 or C%2:\n break\n else:\n A //=2\n B //=2\n C //=2\n print(ans)', 'A,B,C = map(int,input().split())\nif A==B==C:\n print(-1)\nelse:\n ans = 0\n while True:\n if A%2 or B%2 or C%2:\n break\n else:\n A,B,C = (B+C)//2,(A+C)//2,(A+B)//2\n print(ans)', 'A,B,C = map(int,input().split())\nif A==B==C:\n if A%2:\n print(0)\n else:\n print(-1)\nelse:\n ans = 0\n while True:\n if A%2 or B%2 or C%2:\n break\n else:\n A,B,C = (B+C)//2,(A+C)//2,(A+B)//2\n ans += 1\n print(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s269909298', 's764259198', 's835690370']
[2940.0, 3060.0, 3064.0]
[17.0, 17.0, 17.0]
[186, 188, 236]
p03723
u126823513
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a, b, c = map(int, input().split())\n\n\nif a % 2 == 0 or b % 2 == 0 or c % 2 == 0:\n print(0)\n exit(0)\nif a == b == c and a % 2 == 0:\n print(-1)\n exit(0)\n\ncounter = 0\nwhile True:\n counter += 1\n w_a = a / 2\n w_b = b / 2\n w_c = c / 2\n\n a = w_b + w_c\n b = w_a + w_c\n c = w_b + w_a\n\n if a % 2 == 1 or b % 2 == 1 or c % 2 == 1:\n print(counter)\n exit(0)\n', 'a, b, c = map(int, input().split())\n\n\nif a % 2 != 0 or b % 2 != 0 or c % 2 != 0:\n print(0)\n exit(0)\nif a == b == c and a % 2 == 0:\n print(-1)\n exit(0)\n\ncounter = 0\nwhile True:\n counter += 1\n w_a = a / 2\n w_b = b / 2\n w_c = c / 2\n\n a = w_b + w_c\n b = w_a + w_c\n c = w_b + w_a\n\n if a % 2 == 1 or b % 2 == 1 or c % 2 == 1:\n print(counter)\n exit(0)\n']
['Wrong Answer', 'Accepted']
['s211334028', 's167950020']
[3064.0, 3064.0]
[19.0, 18.0]
[395, 395]
p03723
u136395536
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A,B,C = (int(i) for i in input().split())\n\ntimes = 0\n\nif A%2==1 or B%2==1 or C%2==1:\n times = 0\nelse:\n while True:\n times += 1\n A = A / 2\n B = B / 2\n C = C / 2\n if A==B and C==A:\n times = -1\n break\n elif A<=1 or B<=1 or C<=1:\n break\n elif A%2==1 and B%2==1 and C%2==1:\n continue\n elif A%2==1 or B%2==1 or C%2==1:\n break\n \n \n\nprint(times)', 'A,B,C = (int(i) for i in input().split())\n\ntimes = 0\n\nif A%2==1 or B%2==1 or C%2==1:\n times = 0\nelse:\n while True:\n times += 1\n A = A / 2\n B = B / 2\n C = C / 2\n # print(A,B,C)\n if A==B and C==A:\n times = -1\n break\n elif A%2==1 and B%2==1 and C%2==1:\n continue\n elif A%2==1 or B%2==1 or C%2==1:\n break\n \n elif A%1!=0 or B%1!=0 or C%1!=0:\n break\n elif A<=1 or B<=1 or C<=1:\n break\n \n\nprint(times)']
['Wrong Answer', 'Accepted']
['s794641748', 's286664652']
[3064.0, 3064.0]
[17.0, 17.0]
[469, 629]
p03723
u152614052
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a,b,c = map(int,input().split())\ncnt=0\nfor i in range(100):\n if a==b==c and a%2==0:\n cnt = -1\n break\n elif a%2==0 and b%2==0 and c%2==10:\n t_a = b//2 + c//2\n t_b = a//2 + c//2\n t_c = a//2 + b//2\n a,b,c = t_a,t_b,t_c\n cnt+=1\n else:\n break\nprint(cnt)', 'a,b,c = map(int,input().split())\ncnt=0\nif a==b==c and a%2==0:\n cnt = -1\n break\nelif:\n for i in range(100):\n if a%2==0 and b%2==0 and c%2==10:\n t_a = b//2 + c//2\n t_b = a//2 + c//2\n t_c = a//2 + b//2\n a,b,c = t_a,t_b,t_c\n cnt+=1\n else:\n break\nprint(cnt)', 'a,b,c = map(int,input().split())\ncnt=0\nif a==b==c and a%2==0:\n cnt = -1\nelse:\n for i in range(100):\n if a%2==0 and b%2==0 and c%2==0:\n t_a = b//2 + c//2\n t_b = a//2 + c//2\n t_c = a//2 + b//2\n a,b,c = t_a,t_b,t_c\n cnt+=1\n else:\n break\nprint(cnt)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s289324515', 's873495027', 's362718347']
[3064.0, 2940.0, 3064.0]
[18.0, 18.0, 18.0]
[313, 341, 330]
p03723
u173025122
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['import random as rng\nimport itertools as it\nimport collections as col\nimport heapq as hq\nimport sys\nimport copy as cp\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\ndef dump_impl(*objects):\n print(*objects, file=sys.stderr)\n\n\ndef dump_dummy(*objects):\n pass\n\n\ndump = dump_impl if "DEBUG" in sys.argv else dump_dummy\n\n\ndef odd(n): return n & 1\n\n\ndef even(n): return not odd(n)\n\nS = input()\ndump(S)\nprint(S)\n\n', 'import random as rng\nimport itertools as it\nimport collections as col\nimport heapq as hq\nimport sys\nimport copy as cp\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\ndef dump_impl(*objects):\n print(*objects, file=sys.stderr)\n\n\ndef dump_dummy(*objects):\n pass\n\n\ndump = dump_impl if "DEBUG" in sys.argv else dump_dummy\n\n\ndef odd(n): return n & 1\n\n\ndef even(n): return not odd(n)\n\nS = input()\ndump(S)\nprint(S)\n\n', 'import random as rng\nimport itertools as it\nimport collections as col\nimport heapq as hq\nimport sys\nimport copy as cp\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\ndef dump_impl(*objects):\n print(*objects, file=sys.stderr)\n\n\ndef dump_dummy(*objects):\n pass\n\n\ndump = dump_impl if "DEBUG" in sys.argv else dump_dummy\n\n\ndef odd(n): return n & 1\n\n\ndef even(n): return not odd(n)\n\nS = input()\ndump(S)\nprint(S)\n\n', 'import random as rng\nimport itertools as it\nimport collections as col\nimport heapq as hq\nimport sys\nimport copy as cp\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\n\ndef dump_impl(*objects):\n print(*objects, file=sys.stderr)\n\n\ndef dump_dummy(*objects):\n pass\n\n\ndump = dump_impl if "DEBUG" in sys.argv else dump_dummy\n\n\ndef odd(n): return n & 1\n\n\ndef even(n): return not odd(n)\n\n\nA, B, C = map(int, input().split())\nans = 0\na, b, c = A, B, C\nwhile True:\n dump(a, b, c)\n if odd(a) or odd(b) or odd(c):\n print(ans)\n exit()\n if ans > 0 and a == A and b == B and c == C:\n print(-1)\n exit()\n a, b, c = (b+c)//2, (a+c)//2, (a+b)//2\n ans += 1\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s258106348', 's503093847', 's723175044', 's264336268']
[9816.0, 9948.0, 9840.0, 9740.0]
[34.0, 33.0, 36.0, 33.0]
[424, 424, 424, 694]
p03723
u178465329
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["\na, b, c = list(map(int, input().split(' ')))\ncnt = 0\nif a == b == c:\n cnt = -1 \nelse:\n while (a+1)%2 or (b+1)%2 or (c+1)%2:\n cnt += 1\n a,b,c=(b+c)/2,(a+c)/2,(a+b)/2\n\nprint(cnt)\n", "\na, b, c = list(map(int, input().split(' ')))\ncnt = 0\nif a == b == c:\n cnt = a%2-1\nelse:\n while not (a%2 or b%2 or c%2):\n cnt += 1\n a,b,c=(b+c)/2,(a+c)/2,(a+b)/2\n\nprint(cnt)\n"]
['Wrong Answer', 'Accepted']
['s640773094', 's824150858']
[2940.0, 2940.0]
[2103.0, 17.0]
[199, 194]
p03723
u188244611
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["def compute():\n a, b, c = [int(el) for el in input().split(' ')]\n record = set()\n record.add(frozenset([a,b,c]))\n count = 0\n while (b + c) % 2 == (a + c) % 2 == (a + b) % 2 == 0:\n a, b, c = (b+c)//2, (a+c)//2, (a+b)//2\n print(a, b, c)\n if {a, b, c} in record:\n print('-1')\n return\n else:\n count += 1\n record.add(frozenset([a, b, c]))\n print(count)\n return\n\ncompute()\n", "def compute():\n a, b, c = [int(el) for el in input().split(' ')]\n count = 0\n while a % 2 == b % 2 == c % 2 == 0:\n a, b, c = (b+c)//2, (a+c)//2, (a+b)//2\n count += 1\n if a == b == c:\n print(-1)\n return\n print(count)\n return\n\ncompute()\n"]
['Wrong Answer', 'Accepted']
['s095205827', 's593415662']
[3064.0, 3060.0]
[17.0, 17.0]
[460, 292]
p03723
u196697332
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['import numpy as np\nimport sys\n\nthree_cookies = list(map(int, input().split()))\n\nthree_div = [i % 2 for i in three_cookies]\nif all(three_div):\n print(0)\n sys.exit()\n\na_b_c = np.array(three_cookies)\nlis = np.array([[0, 0.5, 0.5], [0.5, 0, 0.5], [0.5, 0.5, 0]])\ni = 0\n\nwhile True:\n i += 1\n a_b_c = np.dot(lis, a_b_c)\n print(a_b_c)\n for j, item in enumerate(a_b_c):\n if three_cookies == a_b_c.tolist():\n print(-1)\n sys.exit()\n if item % 2 == 1:\n print(i)\n sys.exit()', 'import numpy as np\nimport sys\n\nthree_cookies = list(map(int, input().split()))\n\nthree_div = [i % 2 for i in three_cookies]\nif all(three_div) or any(three_div):\n print(0)\n sys.exit()\n\na_b_c = np.array(three_cookies)\nlis = np.array([[0, 0.5, 0.5], [0.5, 0, 0.5], [0.5, 0.5, 0]])\ni = 0\n\nwhile True:\n i += 1\n a_b_c = np.dot(lis, a_b_c)\n #print(a_b_c)\n for j, item in enumerate(a_b_c):\n if three_cookies == a_b_c.tolist():\n print(-1)\n sys.exit()\n if item % 2 == 1:\n print(i)\n sys.exit()']
['Wrong Answer', 'Accepted']
['s446945708', 's865387525']
[12796.0, 12424.0]
[159.0, 150.0]
[538, 557]
p03723
u201928947
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['from time import time\nt = time()\ncount = 0\na = int(input())\nb = int(input())\nc = int(input())\nwhile True:\n if a % 2 != 0 or b % 2 != 0 or c % 2 != 0:\n print(count)\n exit()\n count += 1\n a1 = b//2+c//2\n b1 = c//2+a//2\n c1 = a//2+b//2\n a = a1\n b = b1\n c = c1\n if time()-t >= 1.8:\n print(-1)\n exit()', 'from time import time\nt = time()\ncount = 0\na,b,c = map(int,input().split())\nwhile True:\n if a % 2 != 0 or b % 2 != 0 or c % 2 != 0:\n print(count)\n exit()\n count += 1\n a1 = b//2+c//2\n b1 = c//2+a//2\n c1 = a//2+b//2\n a = a1\n b = b1\n c = c1\n if time()-t >= 1.8:\n print(-1)\n exit()']
['Runtime Error', 'Accepted']
['s879118307', 's560575433']
[3064.0, 3064.0]
[17.0, 1818.0]
[350, 332]
p03723
u208120643
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['"""Boot-camp-for-Beginners_Easy013_A_Candy-Distribution-Again_30-August-2020.py"""\n\nA, B, C = map(int, input().split())\na, b, c = A, B, C\ni = 0\nwhile True:\n if (A % 2 == 0 and B % 2 == 0 and C % 2 == 0):\n if(A == a or B == b or C == c):\n print(-1)\n break\n i += 1\n a, b, c = A, B, C\n A = (b+c)/2\n B = (c+a)/2\n C = (a+b)/2\n else:\n if(A == a or B == b or C == c):\n print(-1)\n break\n print(i)\n break\n', '"""Boot-camp-for-Beginners_Easy013_A_Candy-Distribution-Again_30-August-2020.py"""\n\nA, B, C = map(int, input().split())\na, b, c = A, B, C\ni = 0\nwhile True:\n if (A % 2 == 0 and B % 2 == 0 and C % 2 == 0):\n i += 1\n a, b, c = A, B, C\n A = (b+c)/2\n B = (c+a)/2\n C = (a+b)/2\n print(A,B,C)\n if(A == a or B == b or C == c):\n print(-1)\n break\n else:\n if(A == a or B == b or C == c):\n print(-1)\n break\n print(i)\n break\n', '"""Boot-camp-for-Beginners_Easy013_A_Candy-Distribution-Again_30-August-2020.py"""\n\nA, B, C = map(int, input().split())\na, b, c = A, B, C\ni = 0\nwhile True:\n if (A % 2 == 0 and B % 2 == 0 and C % 2 == 0):\n i += 1\n a, b, c = A, B, C\n A = (b+c)/2\n B = (c+a)/2\n C = (a+b)/2\n# print(A,B,C)\n if(A == a or B == b or C == c):\n print(-1)\n break\n else:\n if(A == a or B == b or C == c):\n print(-1)\n break\n print(i)\n break\n', '"""Boot-camp-for-Beginners_Easy013_A_Candy-Distribution-Again_30-August-2020.py"""\n\nA, B, C = map(int, input().split())\na, b, c = A, B, C\ni = 0\nwhile True:\n if (A % 2 == 0 and B % 2 == 0 and C % 2 == 0):\n i += 1\n a, b, c = A, B, C\n A = (b+c)/2\n B = (c+a)/2\n C = (a+b)/2\n print(A,B,C)\n if(A == a and B == b and C == c):\n print(-1)\n break\n else:\n print(i)\n break\n if(A == a and B == b and C == c):\n print(-1)\n break\n', '"""Boot-camp-for-Beginners_Easy013_A_Candy-Distribution-Again_30-August-2020.py"""\n\nA, B, C = map(int, input().split())\na, b, c = A, B, C\ni = 0\nwhile True:\n if (A % 2 == 0 and B % 2 == 0 and C % 2 == 0):\n i += 1\n a, b, c = A, B, C\n A = (b+c)/2\n B = (c+a)/2\n C = (a+b)/2\n #print(A,B,C)\n if(A == a and B == b and C == c):\n print(-1)\n break\n else:\n print(i)\n break\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s255516734', 's420219061', 's449077224', 's528216539', 's627167696']
[9084.0, 9032.0, 9180.0, 9192.0, 9168.0]
[25.0, 25.0, 34.0, 27.0, 25.0]
[509, 530, 531, 534, 453]
p03723
u211236379
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['if A==B==C:\n print(-1)\nelse:\n for i in range(100000000):\n if A %2==0 and B%2==0 and C%2==0:\n a = A/2\n b = B/2\n c = C/2\n A = b+c\n B = a+c\n C = a+b\n else:\n print(i)\n exit()', 'A, B, C = map(int, input().split())\n\nif A==B==C:\n if A%2==0:\n print(-1)\n else:\n print(0)\n\nelse:\n for i in range(1000000000):\n if A %2==0 and B%2==0 and C%2==0:\n a = A/2\n b = B/2\n c = C/2\n A = b+c\n B = a+c\n C = a+b\n else:\n print(i)\n exit()\n\n']
['Runtime Error', 'Accepted']
['s923412157', 's473866878']
[3060.0, 3060.0]
[18.0, 17.0]
[278, 365]
p03723
u211805975
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["#13\na,b,c = map(int,input().split())\ncnt = 0\nwhile a%2 == b%2 == c%2 == 0:\n if a==b==c:\n print('-1')\n break\n else:\n a,b,c = b//2+c//2,c//2+a//2,a//2+b//2\n cnt+=1\n print(a,b,c)\n\nprint(cnt)", "#13\na,b,c = map(int,input().split())\ncnt = 0\nif a%2 == 1 or b%2 == 1 or c%2 == 1:\n print('0')\n\nelif a==b==c and a%2==0:\n print('-1')\n \nelif not a==b==c:\n while a%2 == b%2 == c%2 == 0:\n a,b,c = b//2+c//2,c//2+a//2,a//2+b//2\n cnt+=1\n print(cnt)"]
['Wrong Answer', 'Accepted']
['s012893148', 's397187024']
[3060.0, 3064.0]
[17.0, 18.0]
[228, 279]
p03723
u215341636
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a , b , c = map(int, input().split())\ncount = 0\nif a == 1 and b == 1 and c == 1:\n break\nelif a == b and a == c:\n count = -1\nelse:\n while a % 2 == 0 and b % 2 == 0 and c % 2 == 0:\n a_copy = a\n b_copy = b\n c_copy = c\n a = int(b_copy / 2 + c_copy / 2)\n b = int(a_copy / 2 + c_copy / 2)\n c = int(b_copy / 2 + a_copy / 2)\n count += 1\n \nprint(count)', 'a , b , c = map(int, input().split())\ncount = 0\nif a == 1 and b == 1 and c == 1:\n pass\nelif a == b and a == c:\n count = -1\nelse:\n while a % 2 == 0 and b % 2 == 0 and c % 2 == 0:\n a_copy = a\n b_copy = b\n c_copy = c\n a = int(b_copy / 2 + c_copy / 2)\n b = int(a_copy / 2 + c_copy / 2)\n c = int(b_copy / 2 + a_copy / 2)\n count += 1\n \nprint(count)']
['Runtime Error', 'Accepted']
['s112424583', 's327390480']
[3064.0, 3064.0]
[17.0, 17.0]
[368, 367]
p03723
u223646582
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A=sorted(list(map(int,input().split())))\n\nif A[2]==A[0]:\n print(-1)\nelse:\n c=A[2]-A[0]\n while c%2==1:\n c+=1\n c=c//2\n print(c)\n\n\n', 'A=sorted(list(map(int,input().split())))\n\nif A[2]==A[0]:\n print(-1)\nelse:\n c=A[2]-A[0]\n while c%2==0:\n c+=1\n c=c//2\n print(c)\n\n\n\n\n', 'A=sorted(list(map(int,input().split())))\n\nif A[2]==A[0] and A[0]%2==0:\n print(-1)\nelse:\n ans=0\n a=A[0]\n b=A[1]\n c=A[2]\n while a%2==0 and b%2==0 and c%2==0:\n ans+=1\n a,b,c=(b+c)//2,(a+c)//2,(a+b)//2\n print(ans)\n\n\n\n\n\n\n\n\n\n\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s031449777', 's737406833', 's683239523']
[2940.0, 2940.0, 3060.0]
[17.0, 17.0, 18.0]
[154, 156, 255]
p03723
u223904637
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a,b,c=map(int,input().split())\nif a==b and b==c and a%2=0:\n print(-1)\nelse:\n ans=0\n while a%2==0 ans b%2==0 and c%2==0:\n tmp=a\n tmp2=b\n a=(b+c)//2\n b=(c+tmp)//2\n c=(tmp+tmp2)//2\n ans+=1\n print(ans)', 'a,b,c=map(int,input().split())\nif a==b and b==c and a%2==0:\n print(-1)\nelse:\n ans=0\n while a%2==0 and b%2==0 and c%2==0:\n tmp=a\n tmp2=b\n a=(b+c)//2\n b=(c+tmp)//2\n c=(tmp+tmp2)//2\n ans+=1\n print(ans)']
['Runtime Error', 'Accepted']
['s833722238', 's704333740']
[2940.0, 3064.0]
[17.0, 17.0]
[251, 252]
p03723
u227085629
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['a,b,c = map(int,input().split())\nif a == b == c:\n if a%2 == b%2 == c%2 == 0:\n print(-1)\n else:\n print(0)\nt = 0\nelse:\n while t > -1:\n if a%2 == 1 or b%2 == 1 or c%2 == 1:\n break\n (a,b,c) = ((b+c)//2,(a+c)//2,(a+b)//2)\n t += 1\n print(t)', 'a,b,c = map(int,input().split())\nif a == b == c:\n if a%2 == b%2 == c%2 == 0:\n print(-1)\n else:\n print(0)\nelse:\n t = 0\n while t > -1:\n if a%2 == 1 or b%2 == 1 or c%2 == 1:\n break\n (a,b,c) = ((b+c)//2,(a+c)//2,(a+b)//2)\n t += 1\n print(t)\n']
['Runtime Error', 'Accepted']
['s400956895', 's110029082']
[2940.0, 3060.0]
[17.0, 17.0]
[258, 261]
p03723
u228232845
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
["import sys\n\n\ndef LI(): return list(map(int, sys.stdin.buffer.readline().split()))\ndef I(): return int(sys.stdin.buffer.readline())\ndef LS(): return sys.stdin.buffer.readline().rstrip().decode('utf-8').split()\ndef S(): return sys.stdin.buffer.readline().rstrip().decode('utf-8')\ndef IR(n): return [I() for i in range(n)]\ndef LIR(n): return [LI() for i in range(n)]\ndef SR(n): return [S() for i in range(n)]\ndef LSR(n): return [LS() for i in range(n)]\ndef SRL(n): return [list(S()) for i in range(n)]\ndef MSRL(n): return [[int(j) for j in list(S())] for i in range(n)]\n\n\na, b, c = LI()\nif a == b == c:\n print(-1)\nelse:\n ans = 0\n while True:\n if a % 2 or b % 2 or c % 2:\n break\n a, b, c = b // 2 + c // 2, a // 2 + c // 2, a // 2 + b // 2\n ans += 1\n print(ans)\n", "import sys\n\n\ndef LI(): return list(map(int, sys.stdin.buffer.readline().split()))\ndef I(): return int(sys.stdin.buffer.readline())\ndef LS(): return sys.stdin.buffer.readline().rstrip().decode('utf-8').split()\ndef S(): return sys.stdin.buffer.readline().rstrip().decode('utf-8')\ndef IR(n): return [I() for i in range(n)]\ndef LIR(n): return [LI() for i in range(n)]\ndef SR(n): return [S() for i in range(n)]\ndef LSR(n): return [LS() for i in range(n)]\ndef SRL(n): return [list(S()) for i in range(n)]\ndef MSRL(n): return [[int(j) for j in list(S())] for i in range(n)]\n\n\na, b, c = LI()\nif a == b == c:\n if a % 2:\n print(0)\n else:\n print(-1)\nelse:\n ans = 0\n while True:\n if a % 2 or b % 2 or c % 2:\n break\n a, b, c = b // 2 + c // 2, a // 2 + c // 2, a // 2 + b // 2\n ans += 1\n print(ans)\n"]
['Wrong Answer', 'Accepted']
['s046383664', 's617397510']
[3064.0, 3064.0]
[17.0, 17.0]
[806, 847]
p03723
u234189749
2,000
262,144
Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respectively. Now, they will exchange those cookies by repeating the action below: * Each person simultaneously divides his cookies in half and gives one half to each of the other two persons. This action will be repeated until there is a person with odd number of cookies in hand. How many times will they repeat this action? Note that the answer may not be finite.
['A,B,C = map(int,input().split())\n\nans = 0\n\nwhile (A%2 == 0) & (B%2 == 0) & (C%2 == 0):\n if (A==B) & (B==C) :\n ans = -1\n break\n\n a = (B+C)/2\n b = (A+C)/2\n c = (A+B)/2\n A = a\n B = b\n C = c\n ans += 1\n\nprint(ans)', 'A,B,C = map(int,input().split())\n\nans = 0\n\nwhile (A%2 == 0) & (B%2 == 0) & (C%2 == 0):\n if (A==B) & (B==C) :\n ans = -1\n break\n\n a = (B+C)/2\n b = (A+C)/2\n c = (A+B)/2\n A = a\n B = b\n C = c\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s384322936', 's767289035']
[2940.0, 3064.0]
[18.0, 17.0]
[250, 246]