WeiChow's picture
upload code
e5c7128 verified
from abc import ABC, abstractmethod
import dlimp as dl
import tensorflow as tf
import tensorflow_datasets as tfds
class TfdsModFunction(ABC):
@classmethod
@abstractmethod
def mod_features(
cls,
features: tfds.features.FeaturesDict,
) -> tfds.features.FeaturesDict:
"""
Modifies the data builder feature dict to reflect feature changes of ModFunction.
"""
...
@classmethod
@abstractmethod
def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
"""
Perform arbitrary modifications on the dataset that comply with the modified feature definition.
"""
...
def mod_obs_features(features, obs_feature_mod_function):
"""Utility function to only modify keys in observation dict."""
return tfds.features.FeaturesDict(
{
"steps": tfds.features.Dataset(
{
"observation": tfds.features.FeaturesDict(
{
key: obs_feature_mod_function(
key, features["steps"]["observation"][key]
)
for key in features["steps"]["observation"].keys()
}
),
**{
key: features["steps"][key]
for key in features["steps"].keys()
if key not in ("observation",)
},
}
),
**{key: features[key] for key in features.keys() if key not in ("steps",)},
}
)
class ResizeAndJpegEncode(TfdsModFunction):
MAX_RES: int = 256
@classmethod
def mod_features(
cls,
features: tfds.features.FeaturesDict,
) -> tfds.features.FeaturesDict:
def downsize_and_jpeg(key, feat):
"""Downsizes image features, encodes as jpeg."""
if len(feat.shape) >= 2 and feat.shape[0] >= 64 and feat.shape[1] >= 64: # is image / depth feature
should_jpeg_encode = (
isinstance(feat, tfds.features.Image) and "depth" not in key
)
if len(feat.shape) > 2:
new_shape = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES, feat.shape[2])
else:
new_shape = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES)
if isinstance(feat, tfds.features.Image):
return tfds.features.Image(
shape=new_shape,
dtype=feat.dtype,
encoding_format="jpeg" if should_jpeg_encode else "png",
doc=feat.doc,
)
else:
return tfds.features.Tensor(
shape=new_shape,
dtype=feat.dtype,
doc=feat.doc,
)
return feat
return mod_obs_features(features, downsize_and_jpeg)
@classmethod
def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
def resize_image_fn(step):
# resize images
for key in step["observation"]:
if len(step["observation"][key].shape) >= 2 and (
step["observation"][key].shape[0] >= 64
or step["observation"][key].shape[1] >= 64
):
size = (ResizeAndJpegEncode.MAX_RES,
ResizeAndJpegEncode.MAX_RES)
if "depth" in key:
step["observation"][key] = tf.cast(
dl.utils.resize_depth_image(
tf.cast(step["observation"][key], tf.float32), size
),
step["observation"][key].dtype,
)
else:
step["observation"][key] = tf.cast(
dl.utils.resize_image(step["observation"][key], size),
tf.uint8,
)
return step
def episode_map_fn(episode):
episode["steps"] = episode["steps"].map(resize_image_fn)
return episode
return ds.map(episode_map_fn)
class FilterSuccess(TfdsModFunction):
@classmethod
def mod_features(
cls,
features: tfds.features.FeaturesDict,
) -> tfds.features.FeaturesDict:
return features # no feature changes
@classmethod
def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
return ds.filter(lambda e: e["success"])
class FlipImgChannels(TfdsModFunction):
FLIP_KEYS = ["image"]
@classmethod
def mod_features(
cls,
features: tfds.features.FeaturesDict,
) -> tfds.features.FeaturesDict:
return features # no feature changes
@classmethod
def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
def flip(step):
for key in cls.FLIP_KEYS:
if key in step["observation"]:
step["observation"][key] = step["observation"][key][..., ::-1]
return step
def episode_map_fn(episode):
episode["steps"] = episode["steps"].map(flip)
return episode
return ds.map(episode_map_fn)
class FlipWristImgChannels(FlipImgChannels):
FLIP_KEYS = ["wrist_image", "hand_image"]
TFDS_MOD_FUNCTIONS = {
"resize_and_jpeg_encode": ResizeAndJpegEncode,
"filter_success": FilterSuccess,
"flip_image_channels": FlipImgChannels,
"flip_wrist_image_channels": FlipWristImgChannels,
}