XiaomanZhang's picture
Upload folder using huggingface_hub
bba66ea verified
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import ipdb
import wandb
import tasks as tasks
from common.config import Config
from common.dist_utils import get_rank, init_distributed_mode
from common.logger import setup_logger
from common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from common.registry import registry
from common.utils import now
# imports modules for registration
from datasets.builders import *
from models import *
from runners import *
from tasks import *
from copy import deepcopy
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
# if 'LOCAL_RANK' in os.environ:
# os.environ['LOCAL_RANK'] = str(os.environ['LOCAL_RANK'])
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# cudnn.enabled = True
# cudnn.benchmark = True
# cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
return runner_cls
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
cfg = Config(parse_args())
init_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
cfg.pretty_print()
# Initialize wandb
if get_rank() == 0: # Only initialize wandb on the master process
wandb.init(
project=cfg.run_cfg.output_dir.split("/")[-1],
config=cfg.to_dict(), # Log your config to wandb
name=job_id, # Use job_id as the run name
job_type="training",
)
task = tasks.setup_task(cfg)
task.init_wandb(cfg)
datasets = task.build_datasets(cfg)
model = task.build_model(cfg)
runner = get_runner_class(cfg)(
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
)
runner.train()
if get_rank() == 0:
wandb.finish()
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
main()