content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def valida_cnpj(cnpj): """ Valida CNPJs, retornando apenas a string de números válida. # CNPJs errados >>> validar_cnpj('abcdefghijklmn') False >>> validar_cnpj('123') False >>> validar_cnpj('') False >>> validar_cnpj(None) False >>> validar_cnpj('12345678901234') False >>> validar_cnpj('11222333000100') False # CNPJs corretos >>> validar_cnpj('11222333000181') '11222333000181' >>> validar_cnpj('11.222.333/0001-81') '11222333000181' >>> validar_cnpj(' 11 222 333 0001 81 ') '11222333000181' """ cnpj = ''.join(re.findall('\d', str(cnpj))) if (not cnpj) or (len(cnpj) < 14): return False # Pega apenas os 12 primeiros dígitos do CNPJ e # gera os 2 dígitos que faltam inteiros = list(map(int, cnpj)) novo = inteiros[:12] prod = [5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] while len(novo) < 14: r = sum([x*y for (x, y) in zip(novo, prod)]) % 11 if r > 1: f = 11 - r else: f = 0 novo.append(f) prod.insert(0, 6) # Se o número gerado coincidir com o número original, é válido if novo == inteiros: return cnpj return False
4b3d2591e6f196cccdd8d68089e36f22ba1d1a98
1,723
def km_miles(kilometers): """Usage: Convert kilometers to miles""" return kilometers/1.609
5480c065f904dfc1959691e158653fd0e6bb67e6
1,724
def is_enterprise_learner(user): """ Check if the given user belongs to an enterprise. Cache the value if an enterprise learner is found. Arguments: user (User): Django User object. Returns: (bool): True if given user is an enterprise learner. """ cached_is_enterprise_key = get_is_enterprise_cache_key(user.id) if cache.get(cached_is_enterprise_key): return True if EnterpriseCustomerUser.objects.filter(user_id=user.id).exists(): # Cache the enterprise user for one hour. cache.set(cached_is_enterprise_key, True, 3600) return True return False
76bbf24dafec3ec26ec23504b8d064fbe5c21c52
1,725
def point_cloud(depth, colors): """Transform a depth image into a point cloud with one point for each pixel in the image, using the camera transform for a camera centred at cx, cy with field of view fx, fy. depth is a 2-D ndarray with shape (rows, cols) containing depths from 1 to 254 inclusive. The result is a 3-D array with shape (rows, cols, 3). Pixels with invalid depth in the input have NaN for the z-coordinate in the result. """ rows, cols = depth.shape c, r = np.meshgrid(np.arange(cols), np.arange(rows), sparse=True) valid = (depth > 0) & (depth < 255) z = np.where(valid, depth / 256.0, np.nan) x = np.where(valid, z * (c - cx) / fx, 0) y = np.where(valid, z * (r - cy) / fy, 0) points = np.dstack((x, y, z)) print('points:{}, colors:{}'.format(np.shape(points), np.shape(colors))) reflect_matrix = np.identity(3) # reflect on x axis reflect_matrix[0] *= -1 points = np.matmul(points, reflect_matrix) out_fn = 'point_cloud.ply' # filter by min disparity mask = disparity > disparity.min() out_points = points[mask] out_colors = colors[mask] idx = np.fabs(out_points[:, -1]) < 50 # 10.5 # filter by dimension print('out_points:{}'.format(np.shape(out_points))) out_points = out_points[idx] out_colors = out_colors.reshape(-1, 3) out_colors = out_colors[idx] write_ply(out_fn, out_points, out_colors) # reproject on the image ----------------------------------- reflected_pts = np.matmul(out_points, reflect_matrix) projected_img, _ = cv2.projectPoints(reflected_pts, np.identity(3), np.array([0., 0., 0.]), K_left, D_left) projected_img = projected_img.reshape(-1, 2) blank_img = np.zeros(colors.shape, 'uint8') img_colors = colors[mask][idx].reshape(-1, 3) for i, pt in enumerate(projected_img): pt_x = int(pt[0]) pt_y = int(pt[1]) if pt_x > 0 and pt_y > 0: # use the BGR format to match the original image type col = (int(img_colors[i, 2]), int(img_colors[i, 1]), int(img_colors[i, 0])) cv2.circle(blank_img, (pt_x, pt_y), 1, col) return blank_img, out_points
75aa681fa817b29e23ed76beb8504ef1bbaa5d67
1,726
import tqdm def structural_email(data, pos_parser=True, bytedata_parser_threshold=50, reference_parser_match_type=2): """ This is a parser pipeline, parser order matters. 1. string => structure email to separate => header, body, others 2. body => remove typo and some irrelevant words => body 3. body => parse and remove email from body => body_no_email 4. body_no_email => parse and remove binary data like BMP or picture from body => body_no_binary_no_email 5. body_no_binary_no_email => separate email reference and reply => reply, previous_one, previous_two @param data: data text series including all the training set or test set @return: structural information """ print("Preprocessing for unstructure email...") header_info = [] body_info = [] others_info = [] tag_info = [] for string in tqdm(data): # structure parsers header, body, others = structure_parser(string) body = typo_parser(body) body_no_email, emails = email_address_parser(body) body_no_binary_no_email, bytedata = bytedata_parser(body_no_email, threshold=bytedata_parser_threshold) # main parser reply, previous_one, previous_two = reference_parser(body_no_binary_no_email, match_type=reference_parser_match_type) if pos_parser: target_tag = set(['NN', 'NNS', 'NNPS']) tag_reply = pos_tag_parser(reply, target_tag) tag_previous_one = pos_tag_parser(previous_one, target_tag) tag_previous_two = pos_tag_parser(previous_two, target_tag) tag_info.append([tag_reply, tag_previous_one, tag_previous_two]) # append data in loops header_info.append(header) body_info.append([reply, previous_one, previous_two]) others_info.append(others + [emails] + [bytedata]) a1 = pd.DataFrame.from_dict(header_info) a2 = pd.DataFrame(body_info, columns=["reply", "reference_one", "reference_two"]) a3 = pd.DataFrame(others_info, columns=["date", "delivered_to", "to_domains", "error_message", "contained_emails", "long_string"]) if pos_parser: a4 = pd.DataFrame(tag_info, columns=["tag_reply", "tag_reference_one", "tag_reference_two"]) structure_email = pd.concat([a1, a2, a3, a4], axis=1) else: structure_email = pd.concat([a1, a2, a3], axis=1) return structure_email
b68227f10ae6e78f6e12ab174e2360c0828e2038
1,727
import six def build_batches(data, conf, turn_cut_type='tail', term_cut_type='tail'): """ Build batches """ _turns_batches = [] _tt_turns_len_batches = [] _every_turn_len_batches = [] _response_batches = [] _response_len_batches = [] _label_batches = [] batch_len = len(data[six.b('y')]) // conf['batch_size'] for batch_index in six.moves.range(batch_len): _turns, _tt_turns_len, _every_turn_len, _response, _response_len, _label = build_one_batch( data, batch_index, conf, turn_cut_type='tail', term_cut_type='tail') _turns_batches.append(_turns) _tt_turns_len_batches.append(_tt_turns_len) _every_turn_len_batches.append(_every_turn_len) _response_batches.append(_response) _response_len_batches.append(_response_len) _label_batches.append(_label) ans = { "turns": _turns_batches, "tt_turns_len": _tt_turns_len_batches, "every_turn_len": _every_turn_len_batches, "response": _response_batches, "response_len": _response_len_batches, "label": _label_batches } return ans
e82411d5b51171c9590bd5f150dfeca666b3a3a6
1,728
def is_notebook(): """Check if pyaedt is running in Jupyter or not. Returns ------- bool """ try: shell = get_ipython().__class__.__name__ if shell == "ZMQInteractiveShell": return True # Jupyter notebook or qtconsole else: return False except NameError: return False
51c0806ba17cbaef5732379a5e9c68d8eb171d31
1,729
def strategy(history, memory): """ Tit-for-tat, except we punish them N times in a row if this is the Nth time they've initiated a defection. memory: (initiatedDefections, remainingPunitiveDefections) """ if memory is not None and memory[1] > 0: choice = 0 memory = (memory[0], memory[1] - 1) return choice, memory num_rounds = history.shape[1] opponents_last_move = history[1, -1] if num_rounds >= 1 else 1 our_last_move = history[0, -1] if num_rounds >= 1 else 1 our_second_last_move = history[0, -2] if num_rounds >= 2 else 1 opponent_initiated_defection = ( opponents_last_move == 0 and our_last_move == 1 and our_second_last_move == 1 ) choice = 0 if opponent_initiated_defection else 1 if choice == 0: memory = (1, 0) if memory is None else (memory[0] + 1, memory[0]) return choice, memory
bf8d09417c246f9f88a721dfcc4408f49195fd1a
1,730
def get_primitives(name=None, primitive_type=None, primitive_subtype=None): """Get a list of the available primitives. Optionally filter by primitive type: ``transformation`` or ``aggregation``. Args: primitive_type (str): Filter by primitive type. ``transformation`` or ``aggregation``. Returns: list: List of the names of the available primitives. """ filters = {} if primitive_type: if primitive_type not in ('transformation', 'aggregation'): raise ValueError('primitive_type must be `transformation` or `aggregation`.') filters['classifiers.type'] = primitive_type if primitive_subtype: if primitive_subtype not in ('amplitude', 'frequency', 'frequency_time'): raise ValueError( 'primitive_subtype must be `amplitude`, `frequency` or `frequency_time`.') filters['classifiers.subtype'] = primitive_subtype return discovery.find_primitives(name or 'sigpro', filters)
c833a2b1d52dc135a4518aa6fa7147ae58b73b9a
1,731
def _unpack_batch_channel(data, old_shape): """Unpack the data channel dimension. """ data = nnvm.sym.transpose(data, axes=(0, 4, 1, 5, 2, 3)) data = nnvm.sym.reshape(data, shape=old_shape) return data
1b59f6fbceabef3a28b4180a5bc808621e11c6b7
1,732
def get_branch_user(branch): """Get user name for given branch.""" with Command('git', 'log', '--pretty=tformat:%an', '-1', branch) as cmd: for line in cmd: return line
0845dc69cbd949c1f739ca877c0b182740fa7bdb
1,733
from .qtmultimedia import find_system_cameras from electrum_cintamani import qrscanner def find_system_cameras() -> Mapping[str, str]: """Returns a camera_description -> camera_path map.""" if sys.platform == 'darwin' or sys.platform in ('windows', 'win32'): try: except ImportError as e: return {} else: return find_system_cameras() else: # desktop Linux and similar return qrscanner.find_system_cameras()
adefb85f99494f71e1c55e74f8b4e589d96daacf
1,734
def _shape_list(x): """Return list of dims, statically where possible.""" static = x.get_shape().as_list() shape = tf.shape(x) ret = [] for i, static_dim in enumerate(static): dim = static_dim or shape[i] ret.append(dim) return ret
0add2ba771dd99817654ce48c745db5c5f09d3aa
1,735
import packaging def upgrade_common(ctx, config, deploy_style): """ Common code for upgrading """ remotes = upgrade_remote_to_config(ctx, config) project = config.get('project', 'ceph') extra_pkgs = config.get('extra_packages', []) log.info('extra packages: {packages}'.format(packages=extra_pkgs)) for remote, node in remotes.items(): system_type = teuthology.get_system_type(remote) assert system_type in ('deb', 'rpm') pkgs = get_package_list(ctx, config)[system_type] log.info("Upgrading {proj} {system_type} packages: {pkgs}".format( proj=project, system_type=system_type, pkgs=', '.join(pkgs))) if isinstance(extra_pkgs, dict): pkgs += extra_pkgs.get(system_type, []) else: pkgs += extra_pkgs installed_version = packaging.get_package_version(remote, 'ceph-common') upgrade_version = get_upgrade_version(ctx, node, remote) log.info("Ceph {s} upgrade from {i} to {u}".format( s=system_type, i=installed_version, u=upgrade_version )) if _upgrade_is_downgrade(installed_version, upgrade_version): raise RuntimeError( "An attempt to upgrade from a higher version to a lower one " "will always fail. Hint: check tags in the target git branch." ) deploy_style(ctx, node, remote, pkgs, system_type) verify_package_version(ctx, node, remote) return len(remotes)
13840203bceb6b6ae069d47fa03a278dac3b0bc6
1,736
def convert2define(name): """ returns the name of the define used according to 'name' which is the name of the file """ header = toupper(toalphanum(name)) return "__" + header + "__"
9f48181310db2732a26b846cb8270eb44bd06004
1,737
def url_exists(url): """ Checks if a url exists :param url: :return: """ p = urlparse(url) conn = httplib.HTTPConnection(p.netloc) conn.request('HEAD', p.path) resp = conn.getresponse() return resp.status == 301 or resp.status == 200
3ef7d71fed0c85d4e75e910e5354b817c656c0d7
1,738
def add_header(cmd): """ :param cmd: the command with its values :return: adds a header and returns it, ready to be send """ # get the length of the length of the cmd (for how many spaces needed) header = str(len(cmd)) for i in range(get_digits(len(cmd)), HEADERSIZE): header = header + " " return header + cmd
91a23eaee6ddd01ce5b5d62b3d43221b25bcd541
1,739
def stat_selector(player, stat, in_path, year): """ Selects stat for player in game year selected Parameters ---------- player The player being assessed (str) stat The stat being assessed (str) in_path The path to the folder containing player data (str) year The year of game to look at (int) Returns ------- stat_selected A number indicating the selected stat value (int) """ df = fifa_file_opener(in_path, year) player_row = df.loc[df["short_name"] == player] stat_selected = int(player_row[stat]) return stat_selected
7f04086e4e3baee273baa1b90e1e0735856091d5
1,740
import torch def get_cali_samples(train_data_loader, num_samples, no_label=True): """Generate sub-dataset for calibration. Args: train_data_loader (torch.utils.data.DataLoader): num_samples (int): no_label (bool, optional): If the dataloader has no labels. Defaults to True. Returns: torch.Tensor: Concatenated data matrix. """ cali_data_list = [] if no_label: for batch_data in train_data_loader: cali_data_list.append(batch_data["image"]) if len(cali_data_list) >= num_samples: break else: for batch_data, _ in train_data_loader: cali_data_list.append(batch_data) if len(cali_data_list) >= num_samples: break return torch.cat(cali_data_list, dim=0)[:num_samples].cpu()
297ea0384b1e7f0a6ea51fc37325e57eb1cb8afa
1,741
from typing import List from typing import Tuple import requests import json def fetch_available_litteraturbanken_books() -> List[Tuple[str, str]]: """Fetch available books from Litteraturbanken.""" url = "https://litteraturbanken.se/api/list_all/etext?exclude=text,parts,sourcedesc,pages,errata&filter_and=%7B%22sort_date_imprint.date:range%22:%221248,2020%22,%22export%3Etype%22:%5B%22xml%22,%22txt%22,%22workdb%22%5D%7D&filter_or=%7B%7D&filter_string=&from=0&include=lbworkid,titlepath,title,titleid,work_titleid,shorttitle,mediatype,searchable,imported,sortfield,sort_date_imprint.plain,main_author.authorid,main_author.surname,main_author.type,work_authors.authorid,work_authors.surname,startpagename,has_epub,sort_date.plain,export&partial_string=true&sort_field=popularity%7Cdesc&suggest=true&to=1000" response = requests.get(url) response.raise_for_status() response = json.loads(response.text) books = [] for book in response["data"]: has_text = False for export in book["export"]: if export["type"] == "txt": has_text = True break if not has_text: continue filename = "LB_{}_{}_{}_etext.txt".format(book["main_author"]["authorid"], book["titleid"], book["sort_date_imprint"]["plain"]) if filename in blacklist: continue books.append((filename, book["lbworkid"])) return books
ff14af499335c6229d1f8d995c343c62fff7db74
1,742
def soup_from_psf(psf): """ Returns a Soup from a .psf file """ soup = pdbatoms.Soup() curr_res_num = None is_header = True for line in open(psf): if is_header: if "NATOM" in line: n_atom = int(line.split()[0]) is_header = False continue words = line.split() atom_num = int(words[0]) chain_id = words[1] res_num = int(words[2]) res_type = words[3] atom_type = words[4] charge = float(words[6]) mass = float(words[7]) if chain_id.startswith('WT') or chain_id.startswith('ION'): is_hetatm = True chain_id = " " else: is_hetatm = False chain_id = chain_id[0] if curr_res_num != res_num: res = pdbatoms.Residue(res_type, chain_id, res_num) soup.append_residue(res) curr_res_num = res_num atom = pdbatoms.Atom() atom.vel = v3.vector() atom.chain_id = chain_id atom.is_hetatm = is_hetatm atom.num = atom_num atom.res_num = res_num atom.res_type = res_type atom.type = atom_type atom.mass = mass atom.charge = charge atom.element = data.guess_element(res_type, atom_type) soup.insert_atom(-1, atom) if len(soup.atoms()) == n_atom: break convert_to_pdb_atom_names(soup) return soup
6b84e9428bec66e65b0d06dd81b238370f1602a8
1,743
def check_api(): """ 复核货品入库 post req: withlock { erp_order_code, lines: [{ barcode, location, lpn, qty },] w_user_code, w_user_name } """ w_user_code = request.json.pop('w_user_code', None) w_user_name = request.json.pop('w_user_name', None) order = Stockin.query.t_query.filter_by(erp_order_code=request.json.pop('erp_order_code')) \ .with_for_update().first() if order.state == 'create' or order.state == 'part': lines = request.json['lines'] action = StockinAction(order) for line in lines: line['qty'] = int(line.get('qty', 0) or 0) if line.get('qty', 0) <= 0: continue action.check(order=order, w_user_code=w_user_code, w_user_name=w_user_name, **line) order.state = 'part' # 不允许超收时,收完一次后,判断单子是否入库完成; 允许超收的话,单子只能手动关闭 if not g.owner.is_overcharge: finish = True for line in order.lines: if not (line.qty_real >= line.qty): finish = False order.state = 'all' if finish else 'part' if order.state == 'all': order.finish() db.session.commit() return json_response({'status': 'success', 'msg': u'ok', 'data': order.as_dict}) db.session.rollback() return json_response({'status': 'fail', 'msg': u'订单在(%s)状态中,不能再收货'%(order.state), 'data': order.as_dict})
7c91f2c9068f762cb6681210f52ffe7d1a6ca259
1,744
def quadratic_form(u, Q, v, workers=1, **kwargs): """ Compute the quadratic form uQv, with broadcasting Parameters ---------- u : (..., M) array The u vectors of the quadratic form uQv Q : (..., M, N) array The Q matrices of the quadratic form uQv v : (..., N) array The v vectors of the quadratic form uQv workers : int, optional The number of parallel threads to use along gufunc loop dimension(s). If set to -1, the maximum number of threads (as returned by ``multiprocessing.cpu_count()``) are used. Returns ------- qf : (...) array The result of the quadratic forms Notes ----- Numpy broadcasting rules apply. Implemented for types single, double, csingle and cdouble. Numpy conversion rules apply. This is similar to PDL inner2 Examples -------- The result in absence of broadcasting is just as np.dot(np.dot(u,Q),v) or np.dot(u, np.dot(Q,v)) >>> u = np.array([2., 3.]) >>> Q = np.array([[1.,1.], [0.,1.]]) >>> v = np.array([1.,2.]) >>> quadratic_form(u,Q,v) 12.0 >>> np.dot(np.dot(u,Q),v) 12.0 >>> np.dot(u, np.dot(Q,v)) 12.0 """ with _setup_gulinalg_threads(workers): out = _impl.quadratic_form(u, Q, v, **kwargs) return out
6cd0abdf3d49ce38ba61ba6da9ee107663b1a8b9
1,745
def reorg(dat): """This function grabs the data from the dictionary of data types (organized by ID), and combines them into the :class:`dolfyn.ADPdata` object. """ outdat = apb.ADPdata() cfg = outdat['config'] = db.config(_type='Nortek AD2CP') cfh = cfg['filehead config'] = dat['filehead config'] cfg['model'] = (cfh['ID'].split(',')[0][5:-1]) outdat['props'] = {} outdat['props']['inst_make'] = 'Nortek' outdat['props']['inst_model'] = cfg['model'] outdat['props']['inst_type'] = 'ADP' for id, tag in [(21, ''), (24, '_b5'), (26, '_ar')]: if id == 26: collapse_exclude = [0] else: collapse_exclude = [] if id not in dat: continue dnow = dat[id] cfg['burst_config' + tag] = lib.headconfig_int2dict( lib.collapse(dnow['config'], exclude=collapse_exclude, name='config')) outdat['mpltime' + tag] = lib.calc_time( dnow['year'] + 1900, dnow['month'], dnow['day'], dnow['hour'], dnow['minute'], dnow['second'], dnow['usec100'].astype('uint32') * 100) tmp = lib.beams_cy_int2dict( lib.collapse(dnow['beam_config'], exclude=collapse_exclude, name='beam_config'), 21) cfg['ncells' + tag] = tmp['ncells'] cfg['coord_sys' + tag] = tmp['cy'] cfg['nbeams' + tag] = tmp['nbeams'] for ky in ['SerialNum', 'cell_size', 'blanking', 'nom_corr', 'data_desc', 'vel_scale', 'power_level']: # These ones should 'collapse' # (i.e., all values should be the same) # So we only need that one value. cfg[ky + tag] = lib.collapse(dnow[ky], exclude=collapse_exclude, name=ky) for ky in ['c_sound', 'temp', 'press', 'heading', 'pitch', 'roll', 'temp_press', 'batt_V', 'temp_mag', 'temp_clock', 'mag', 'accel', 'ambig_vel', 'xmit_energy', 'error', 'status0', 'status', '_ensemble', 'ensemble']: # No if statement here outdat[ky + tag] = dnow[ky] for ky in [ 'vel', 'amp', 'corr', 'alt_dist', 'alt_quality', 'alt_status', 'ast_dist', 'ast_quality', 'ast_offset_time', 'ast_pressure', 'altraw_nsamp', 'altraw_dist', 'altraw_samp', 'echo', 'orientmat', 'angrt', 'percent_good', 'std_pitch', 'std_roll', 'std_heading', 'std_press' ]: if ky in dnow: outdat[ky + tag] = dnow[ky] for grp, keys in defs._burst_group_org.items(): if grp not in outdat and \ len(set(defs._burst_group_org[grp]) .intersection(outdat.keys())): outdat[grp] = db.TimeData() for ky in keys: if ky == grp and ky in outdat and \ not isinstance(outdat[grp], db.TimeData): tmp = outdat.pop(grp) outdat[grp] = db.TimeData() outdat[grp][ky] = tmp #print(ky, tmp) if ky + tag in outdat and not \ isinstance(outdat[ky + tag], db.TimeData): outdat[grp][ky + tag] = outdat.pop(ky + tag) # Move 'altimeter raw' data to it's own down-sampled structure if 26 in dat: ard = outdat['altraw'] = db.MappedTime() for ky in list(outdat.iter_data(include_hidden=True)): if ky.endswith('_ar'): grp = ky.split('.')[0] if '.' in ky and grp not in ard: ard[grp] = db.TimeData() ard[ky.rstrip('_ar')] = outdat.pop(ky) N = ard['_map_N'] = len(outdat['mpltime']) parent_map = np.arange(N) ard['_map'] = parent_map[np.in1d(outdat.sys.ensemble, ard.sys.ensemble)] outdat['config']['altraw'] = db.config(_type='ALTRAW', **ard.pop('config')) outdat.props['coord_sys'] = {'XYZ': 'inst', 'ENU': 'earth', 'BEAM': 'beam'}[cfg['coord_sys'].upper()] tmp = lib.status2data(outdat.sys.status) # returns a dict outdat.orient['orient_up'] = tmp['orient_up'] # 0: XUP, 1: XDOWN, 4: ZUP, 5: ZDOWN # Heding is: 0,1: Z; 4,5: X return outdat
2389be25e7052016a6a710803b7b661a7eb1606c
1,746
def get_oauth2_service_account_keys(): """A getter that returns the required OAuth2 service account keys. Returns: A tuple containing the required keys as strs. """ return _OAUTH2_SERVICE_ACCOUNT_KEYS
bcded81a6884dc40b9f2ccb32e8b14df450b6fd6
1,748
def grammar_info(df, col): """return three separate attributes with clean abstract, flesh score and sentence count""" df['clean_abstract'] = clean_text(df[col]) df['flesch_score'] = df[col].apply(flesch_score) df['sentence_count'] = sentence_count(df[col]) return df
7606121f68434a760255cca10e75840ca058c50c
1,751
def landing(): """Landing page""" return render_template('public/index.html')
462b8f4451008832c6883be64dc23712bc76c907
1,753
def uniform_decay(distance_array, scale): """ Transform a measurement array using a uniform distribution. The output is 1 below the scale parameter and 0 above it. Some sample values. Measurements are in multiple of ``scale``; decay value are in fractions of the maximum value: +---------------+---------------+ | measurement | decay value | +===============+===============+ | 0.0 | 1.0 | +---------------+---------------+ | 0.25 | 1.0 | +---------------+---------------+ | 0.5 | 1.0 | +---------------+---------------+ | 0.75 | 1.0 | +---------------+---------------+ | 1.0 | 1.0 | +---------------+---------------+ """ return (distance_array <= scale).astype(np.float64)
e643e7e962d3b6e29c2c23c0aa682e77a539d04b
1,754
def pid_to_service(pid): """ Check if a PID belongs to a systemd service and return its name. Return None if the PID does not belong to a service. Uses DBUS if available. """ if dbus: return _pid_to_service_dbus(pid) else: return _pid_to_service_systemctl(pid)
925f67611d83b3304db673e5e3d0c0a7dafd8211
1,755
def Frequencies(bands, src): """ Count the number of scalars in each band. :param: bands - the bands. :param: src - the vtkPolyData source. :return: The frequencies of the scalars in each band. """ freq = dict() for i in range(len(bands)): freq[i] = 0; tuples = src.GetPointData().GetScalars().GetNumberOfTuples() for i in range(tuples): x = src.GetPointData().GetScalars().GetTuple1(i) for j in range(len(bands)): if x <= bands[j][2]: freq[j] = freq[j] + 1 break return freq
081e37f0d2d9d5a70266b24372d75d94d86fcbb0
1,756
from typing import Callable import torch from typing import Dict def get_loss_fn(loss: str) -> Callable[..., torch.Tensor]: """ Get loss function as a PyTorch functional loss based on the name of the loss function. Choices include 'cross_entropy', 'nll_loss', and 'kl_div'. Args: loss: a string indicating the loss function to return. """ loss_fn_mapping: Dict[str, Callable[..., torch.Tensor]] = { 'cross_entropy': F.cross_entropy, 'nll_loss': F.nll_loss, 'kl_div': F.kl_div, } try: loss_fn: Callable[..., torch.Tensor] = loss_fn_mapping[loss] except KeyError: raise ValueError(f'Loss function {loss} is not supported.') return loss_fn
ebbb20dba1b7573c615c35d683a59c9a5151b0e9
1,757
def FormatAddress(chainIDAlias: str, hrp: str, addr: bytes) -> str: """FormatAddress takes in a chain prefix, HRP, and byte slice to produce a string for an address.""" addr_str = FormatBech32(hrp, addr) return f"{chainIDAlias}{addressSep}{addr_str}"
4004e2367e13abb890d22b653b4ac849bf615d1a
1,758
from typing import List from operator import or_ async def get_journal_scopes( db_session: Session, user_id: str, user_group_id_list: List[str], journal_id: UUID ) -> List[JournalPermissions]: """ Returns list of all permissions (group user belongs to and user) for provided user and journal. """ journal_spec = JournalSpec(id=journal_id) await find_journal(db_session, journal_spec) if journal_id is None: raise JournalNotFound( "In order to get journal permissions, journal_id must be specified" ) query = db_session.query(JournalPermissions).filter( JournalPermissions.journal_id == journal_id ) if user_id is None and user_group_id_list is None: raise InvalidParameters( "In order to get journal permissions, at least one of user_id, or user_group_id_list must be specified" ) query = query.filter( or_( JournalPermissions.holder_id == user_id, JournalPermissions.holder_id.in_(user_group_id_list), ) ) journal_permissions = query.all() if not journal_permissions: raise PermissionsNotFound(f"No permissions for journal_id={journal_id}") return journal_permissions
2f3fcc3cbfdc124a10ee04a716c76f7e2144e0de
1,759
import re def clean_script_title(script_title): """Cleans up a TV/movie title to save it as a file name. """ clean_title = re.sub(r'\s+', ' ', script_title).strip() clean_title = clean_title.replace('\\', BACKSLASH) clean_title = clean_title.replace('/', SLASH) clean_title = clean_title.replace(':', COLON) clean_title = clean_title.replace('*', STAR) clean_title = clean_title.replace('<', LESS_THAN) clean_title = clean_title.replace('>', GREATER_THAN) clean_title = clean_title.replace('?', QUESTION_MARK) clean_title = clean_title.replace('|', PIPE) return clean_title
6dcee3b05e9654e65e0f8eb78be9383d349adff2
1,760
def _calc_cumsum_matrix_jit(X, w_list, p_ar, open_begin): """Fast implementation by numba.jit.""" len_x, len_y = X.shape # cumsum matrix D = np.ones((len_x, len_y), dtype=np.float64) * np.inf if open_begin: X = np.vstack((np.zeros((1, X.shape[1])), X)) D = np.vstack((np.zeros((1, D.shape[1])), D)) w_list[:, 0] += 1 # number of patterns num_pattern = p_ar.shape[0] # max pattern length max_pattern_len = p_ar.shape[1] # pattern cost pattern_cost = np.zeros(num_pattern, dtype=np.float64) # step cost step_cost = np.zeros(max_pattern_len, dtype=np.float64) # number of cells num_cells = w_list.shape[0] for cell_idx in range(num_cells): i = w_list[cell_idx, 0] j = w_list[cell_idx, 1] if i == j == 0: D[i, j] = X[0, 0] continue for pidx in range(num_pattern): # calculate local cost for each pattern for sidx in range(1, max_pattern_len): # calculate step cost of pair-wise cost matrix pattern_index = p_ar[pidx, sidx, 0:2] ii = int(i + pattern_index[0]) jj = int(j + pattern_index[1]) if ii < 0 or jj < 0: step_cost[sidx] = np.inf continue else: step_cost[sidx] = X[ii, jj] \ * p_ar[pidx, sidx, 2] pattern_index = p_ar[pidx, 0, 0:2] ii = int(i + pattern_index[0]) jj = int(j + pattern_index[1]) if ii < 0 or jj < 0: pattern_cost[pidx] = np.inf continue pattern_cost[pidx] = D[ii, jj] \ + step_cost.sum() min_cost = pattern_cost.min() if min_cost != np.inf: D[i, j] = min_cost return D
a282f68ca5789c97582f9535b5a255066bba44d9
1,762
def create_field_texture_coordinates(fieldmodule: Fieldmodule, name="texture coordinates", components_count=3, managed=False) -> FieldFiniteElement: """ Create texture coordinates finite element field of supplied name with number of components 1, 2, or 3 and the components named "u", "v" and "w" if used. New field is not managed by default. """ return create_field_finite_element(fieldmodule, name, components_count, component_names=("u", "v", "w"), managed=managed, type_coordinate=True)
e19e964e0828006beae3c9e71f30fb0c846de1de
1,763
import uuid def get_cert_sha1_by_openssl(certraw: str) -> str: """calc the sha1 of a certificate, return openssl result str""" res: str = None tmpname = None try: tmpname = tmppath / f"{uuid.uuid1()}.crt" while tmpname.exists(): tmpname = tmppath / f"{uuid.uuid1()}.crt" tmpname.write_text(certraw, encoding="utf-8") cmd = f"openssl x509 -in {tmpname} -fingerprint -noout -sha1" res = exec_openssl(cmd) except Exception as ex: raise Exception(f"Parse ssl data error, err:{ex}") finally: if tmpname is not None: tmpname.unlink() return res
4b92531473e8488a87d14c8ecc8c88d4d0adef0d
1,764
from typing import Union def get_dderivative_skewness(uni_ts: Union[pd.Series, np.ndarray], step_size: int = 1) -> np.float64: """ :return: The skewness of the difference derivative of univariate time series within the function we use step_size to find derivative (default value of step_size is 1). """ return get_skewness(_difference_derivative(uni_ts, step_size))
11688b0cbd5dde2539cc3d5cfa8c5dccb9432f55
1,766
def extract_query(e: Event, f, woi, data): """ create a query array from the the event :param data: :param e: :param doi: """ assert woi[0] > 0 and woi[1] > 0 e_start_index = resolve_esi(e, data) st = int(e_start_index - woi[0] * f) ed = int(e_start_index + woi[0] * f) return Event(e.name, e.startT - woi[0], e.endT + woi[1], data[st:ed]), st, ed
7109e28a265ff49054036e4e4c16ace0fc5eebda
1,767
import ctypes def getForegroundClassNameUnicode(hwnd=None): """ Returns a unicode string containing the class name of the specified application window. If hwnd parameter is None, frontmost window will be queried. """ if hwnd is None: hwnd = win32gui.GetForegroundWindow() # Maximum number of chars we'll accept for the class name; the # rest will be truncated if it's longer than this. MAX_LENGTH = 1024 classNameBuf = ctypes.create_unicode_buffer( MAX_LENGTH ) retval = ctypes.windll.User32.GetClassNameW( hwnd, classNameBuf, len( classNameBuf ) ) if retval == 0: raise ctypes.WinError() return classNameBuf.value
82147d3da4c9374078bbeba64ef6968982dc2550
1,768
def read_mapping_from_csv(bind): """ Calls read_csv() and parses the loaded array into a dictionary. The dictionary is defined as follows: { "teams": { *team-name*: { "ldap": [] }, .... }, "folders: { *folder-id*: { "name": *folder-name*, "permissions": [ { "teamId": *team-name*, "permission0: *permission*" }, .... ] }, ... } :return: The csv's contents parsed into a dictionary as described above. """ result = {"teams": {}, "folders": {}} csv_content = read_csv(bind) is_header = True for line in csv_content: if not is_header: ldap = line[0] team = line[1] folder_name = line[3] folder_uuid = line[4] permission = line[5] if not team in result["teams"]: result["teams"][team] = {"ldap": []} if not ldap in result["teams"][team]["ldap"]: result["teams"][team]["ldap"].append(ldap) if not folder_uuid in result["folders"]: result["folders"][folder_uuid] = {"name": folder_name, "permissions": []} access = {"teamId": team, "permission": permission} if not access in result["folders"][folder_uuid]["permissions"]: result["folders"][folder_uuid]["permissions"].append(access) else: is_header = False return result
8ffe1b5f489bb3428cb0b2dd3cc7f9eafe9ecf27
1,769
from typing import Sequence from typing import Tuple def primal_update( agent_id: int, A: np.ndarray, W: np.ndarray, x: np.ndarray, z: np.ndarray, lam: np.ndarray, prev_x: np.ndarray, prev_z: np.ndarray, objective_grad: np.ndarray, feasible_set: CCS, alpha: float, tau: float, nu: float, others_agent_id: Sequence[int], others_lam: Sequence[np.ndarray], ) -> Tuple[np.ndarray, np.ndarray]: """ """ x = feasible_set.projection( x + alpha * (x - prev_x) - tau * objective_grad - np.matmul(A.T, lam) ) z = ( z + alpha * (z - prev_z) + nu * sum( [ W[agent_id, oai] * (lam - ol) for oai, ol in zip(others_agent_id, others_lam) ] ) ) return x, z
6a13bb9147b74c3803482f53273ebc831ca1662b
1,770
def norm_cmap(values, cmap, normalize, cm, mn, mx): """ Normalize and set colormap Parameters ---------- values Series or array to be normalized cmap matplotlib Colormap normalize matplotlib.colors.Normalize cm matplotlib.cm Returns ------- n_cmap mapping of normalized values to colormap (cmap) """ if (mn is None) and (mx is None): mn, mx = min(values), max(values) norm = normalize(vmin=mn, vmax=mx) n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap) return n_cmap, norm
25515df37fe6b7060acf681287156af2c58d4c03
1,771
def _cpx(odss_tuple, nterm, ncond): """ This function transforms the raw data for electric parameters (voltage, current...) in a suitable complex array :param odss_tuple: tuple of nphases*2 floats (returned by odsswr as couples of real, imag components, for each phase of each terminal) :type odss_tuple: tuple or list :param nterm: number of terminals of the underlying electric object :type nterm: int :param ncond: number of conductors per terminal of the underlying electric object :type ncond: int :returns: a [nterm x ncond] numpy array of complex floats :rtype: numpy.ndarray """ assert len(odss_tuple) == nterm * ncond * 2 cpxr = np.zeros([nterm, ncond], 'complex') def pairwise(iterable): # "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) for idx, couple in enumerate(pairwise(odss_tuple)): real = couple[0] imag = couple[1] cpxr[int(idx / ncond), (idx % ncond)] = np.sum([np.multiply(1j, imag), real], axis=0) cpxr[int(idx / ncond), (idx % ncond)] = np.sum([np.multiply(1j, imag), real], axis=0) return cpxr
f5931915550bb7ec9e713689c3d79997973eb252
1,772
def get_l2_distance_arad(X1, X2, Z1, Z2, \ width=0.2, cut_distance=6.0, r_width=1.0, c_width=0.5): """ Calculates the Gaussian distance matrix D for atomic ARAD for two sets of molecules K is calculated using an OpenMP parallel Fortran routine. Arguments: ============== X1 -- np.array of ARAD descriptors for molecules in set 1. X2 -- np.array of ARAD descriptors for molecules in set 2. Z1 -- List of lists of nuclear charges for molecules in set 1. Z2 -- List of lists of nuclear charges for molecules in set 2. Keyword arguments: width -- cut_distance -- r_width -- c_width -- Returns: ============== D -- The distance matrices for each sigma (4D-array, Nmol1 x Nmol2 x Natom1 x Natoms2) """ amax = X1.shape[1] assert X1.shape[3] == amax, "ERROR: Check ARAD decriptor sizes! code = 1" assert X2.shape[1] == amax, "ERROR: Check ARAD decriptor sizes! code = 2" assert X2.shape[3] == amax, "ERROR: Check ARAD decriptor sizes! code = 3" nm1 = len(Z1) nm2 = len(Z2) assert X1.shape[0] == nm1, "ERROR: Check ARAD decriptor sizes! code = 4" assert X2.shape[0] == nm2, "ERROR: Check ARAD decriptor sizes! code = 5" N1 = [] for Z in Z1: N1.append(len(Z)) N2 = [] for Z in Z2: N2.append(len(Z)) N1 = np.array(N1,dtype=np.int32) N2 = np.array(N2,dtype=np.int32) c1 = [] for charges in Z1: c1.append(np.array([PTP[int(q)] for q in charges], dtype=np.int32)) Z1_arad = np.zeros((nm1,amax,2)) for i in range(nm1): for j, z in enumerate(c1[i]): Z1_arad[i,j] = z c2 = [] for charges in Z2: c2.append(np.array([PTP[int(q)] for q in charges], dtype=np.int32)) Z2_arad = np.zeros((nm2,amax,2)) for i in range(nm2): for j, z in enumerate(c2[i]): Z2_arad[i,j] = z return atomic_arad_l2_distance_all(X1, X2, Z1_arad, Z2_arad, N1, N2, \ nm1, nm2, width, cut_distance, r_width, c_width, amax)
77a4656a6f0014453991b8619ea4c53c6eec2c78
1,773
def _swap_endian(val, length): """ Swap the endianness of a number """ if length <= 8: return val if length <= 16: return (val & 0xFF00) >> 8 | (val & 0xFF) << 8 if length <= 32: return ((val & 0xFF000000) >> 24 | (val & 0x00FF0000) >> 8 | (val & 0x0000FF00) << 8 | (val & 0x000000FF) << 24) raise Exception('Cannot swap endianness for length ' + length)
4b3b879ad04e43e9454b904ba65420a8d477b629
1,774
def get_analysis(output, topology, traj): """ Calls analysis fixture with the right arguments depending on the trajectory type. Parameters ----------- output : str Path to simulation 'output' folder. topology : str Path to the topology file. traj : str Trajectory type: xtc or pdb. """ traj = traj if traj else "pdb" trajectory = f"trajectory.{traj}" analysis = Analysis( resname="LIG", chain="Z", simulation_output=output, skip_initial_structures=False, topology=topology, water_ids_to_track=[("A", 2109), ("A", 2124)], traj=trajectory, ) return analysis
0382f4e672aba3ab754de7d26d27c7921239951f
1,775
def get_callback_class(module_name, subtype): """ Can return None. If no class implementation exists for the given subtype, the module is searched for a BASE_CALLBACKS_CLASS implemention which is used if found. """ module = _get_module_from_name(module_name) if subtype is None: return _get_callback_base_class(module) try: return getattr(module, subtype + CALLBACK_PREFIX) # If the callback implementation for this subtype doesn't exist, # attempt to load the BASE_CALLBACKS_CLASS class. except AttributeError: return _get_callback_base_class(module)
cf04ddcc28c43b82db44d8be96419efbc166330f
1,776
def index(): """Toon de metingen""" return render_template('index.html', metingen=Meting.query.all())
3d92b912c0af513b6d20a094799f7dfb60220a75
1,777
def about(template): """ Attach a template to a step which can be used to generate documentation about the step. """ def decorator(step_function): step_function._about_template = template return step_function return decorator
7c00256e39481247857b34dcd5b7783a39b0a8bd
1,778
import torch def _extend_batch_dim(t: torch.Tensor, new_batch_dim: int) -> torch.Tensor: """ Given a tensor `t` of shape [B x D1 x D2 x ...] we output the same tensor repeated along the batch dimension ([new_batch_dim x D1 x D2 x ...]). """ num_non_batch_dims = len(t.shape[1:]) repeat_shape = (new_batch_dim, *(1 for _ in range(num_non_batch_dims))) return t.repeat(repeat_shape)
7ee1d0930f843a9d31bcc4934d675109f3b2df9b
1,779
def get_client(config): """ get_client returns a feature client configured using data found in the settings of the current application. """ storage = _features_from_settings(config.registry.settings) return Client(storage)
650f0d294514a4d13afd9ab010d6d4bdd4045c43
1,781
from datetime import datetime def fra_months(z): # Apologies, this function is verbose--function modeled after SSA regulations """A function that returns the number of months from date of birth to FRA based on SSA chart""" # Declare global variable global months_to_fra # If date of birth is 1/1/1938 or earlier, full retirement age (FRA) is 65 if z < datetime.date(1938, 1, 2): months_to_fra = 780 # If date of birth is between 1/2/1938 and 1/1/1939, then (FRA) is age 65 + 2 months elif z < datetime.date(1939, 1, 2): months_to_fra = 782 # If date of birth is between 1/2/1939 and 1/1/1940, then (FRA) is age 65 + 4 months elif z < datetime.date(1940, 1, 2): months_to_fra = 784 # If date of birth is between 1/2/1940 and 1/1/1941, then (FRA) is age 65 + 6 months elif z < datetime.date(1941, 1, 2): months_to_fra = 786 # If date of birth is between 1/2/1941 and 1/1/1942, then (FRA) is age 65 + 8 months elif z < datetime.date(1942, 1, 2): months_to_fra = 788 # If date of birth is between 1/2/1942 and 1/1/1943, then (FRA) is age 65 + 10 months elif z < datetime.date(1943, 1, 2): months_to_fra = 790 # If date of birth is between 1/2/1943 and 1/1/1955, then (FRA) is age 66 elif z < datetime.date(1955, 1, 2): months_to_fra = 792 # If date of birth is between 1/2/1955 and 1/1/1956, then (FRA) is age 66 + 2 months elif z < datetime.date(1956, 1, 2): months_to_fra = 794 # If date of birth is between 1/2/1956 and 1/1/1957, then (FRA) is age 66 + 4 months elif z < datetime.date(1957, 1, 2): months_to_fra = 796 # If date of birth is between 1/2/1957 and 1/1/1958, then (FRA) is age 66 + 6 months elif z < datetime.date(1958, 1, 2): months_to_fra = 798 # If date of birth is between 1/2/1958 and 1/1/1959, then (FRA) is age 66 + 8 months elif z < datetime.date(1959, 1, 2): months_to_fra = 800 # If date of birth is between 1/2/1959 and 1/1/1960, then (FRA) is age 66 + 10 months elif z < datetime.date(1960, 1, 2): months_to_fra = 802 # If date of birth is 1/2/1960 or later, then (FRA) is age 67 else: months_to_fra = 804 return months_to_fra
70ba416f6415fd5db08244ae7543db0573f74b2d
1,783
def set_global_format_spec(formats: SpecDict): """Set the global default format specifiers. Parameters ---------- formats: dict[type, str] Class-based format identifiers. Returns ------- old_spec : MultiFormatSpec The previous globally-set formatters. Example ------- >>> s = section.Elastic2D(1, 29000, 10, 144) >>> print(s) section Elastic 1 29000 10 144 >>> set_global_format_spec({float: '#.3g'}) MultiFormatSpec(int='d', float='g') >>> print(s) section Elastic 1 2.90e+04 10.0 144. """ old_spec = _GLOBAL_FORMAT_SPEC.copy() _GLOBAL_FORMAT_SPEC.update(formats) return old_spec
1494a6ff2ad71aa9ed0d20bc0620a124d404e5da
1,784
def gen_base_pass(length=15): """ Generate base password. - A new password will be generated on each call. :param length: <int> password length. :return: <str> base password. """ generator = PassGen() return generator.make_password(length=length)
571683589e13b8dcbd74573b31e5fc7644360bfe
1,785
def split_component_chars(address_parts): """ :param address_parts: list of the form [(<address_part_1>, <address_part_1_label>), .... ] returns [(<char_0>, <address_comp_for_char_0), (<char_1>, <address_comp_for_char_1),.., (<char_n-1>, <address_comp_for_char_n-1)] """ char_arr = [] for address_part, address_part_label in address_parts: # The address part of the tuple (address_part, address_part_label) for c in address_part: char_arr.append((c, address_part_label)) return char_arr
f4f3dd59378a689e9048cee96b8d6f12e9d8fe21
1,786
import json def report_metrics(topic, message): """ 将metric数据通过datamanage上报到存储中 :param topic: 需要上报的topic :param message: 需要上报的打点数据 :return: 上报结果 """ try: res = DataManageApi.metrics.report({"kafka_topic": topic, MESSAGE: message, TAGS: [DEFAULT_GEOG_AREA_TAG]}) logger.info(f"report capacity metric {json.dumps(message)}") if res.is_success(): return True else: logger.warning(f"report metric failed. {json.dumps(message)} {res.message}") return False except Exception: logger.error("query metric failed, encounter some exception", exc_info=True) return False
28f0bf1671b4116b26b8dba3f0c0a34174a0597a
1,787
def wg_completion_scripts_cb(data, completion_item, buffer, completion): """ Complete with known script names, for command '/weeget'. """ global wg_scripts wg_read_scripts(download_list=False) if len(wg_scripts) > 0: for id, script in wg_scripts.items(): weechat.hook_completion_list_add(completion, script["full_name"], 0, weechat.WEECHAT_LIST_POS_SORT) return weechat.WEECHAT_RC_OK
b9dc0d5e736cfeb1dc98d09b8e12c6a52696d89d
1,788
def getG(source): """ Read the Graph from a textfile """ G = {} Grev = {} for i in range(1,N+1): G[i] = [] Grev[i] = [] fin = open(source) for line in fin: v1 = int(line.split()[0]) v2 = int(line.split()[1]) G[v1].append(v2) Grev[v2].append(v1) fin.close() return G, Grev
6e9a8a5c69267403ee3c624670c60af547d37a46
1,789
import re def remove_version(code): """ Remove any version directive """ pattern = '\#\s*version[^\r\n]*\n' regex = re.compile(pattern, re.MULTILINE|re.DOTALL) return regex.sub('\n', code)
101ada9490137a879ea287076989a732942368f8
1,790
def unlabeled_balls_in_labeled_boxes(balls, box_sizes): """ OVERVIEW This function returns a generator that produces all distinct distributions of indistinguishable balls among labeled boxes with specified box sizes (capacities). This is a generalization of the most common formulation of the problem, where each box is sufficiently large to accommodate all of the balls, and is an important example of a class of combinatorics problems called 'weak composition' problems. CONSTRUCTOR INPUTS n: the number of balls box_sizes: This argument is a list of length 1 or greater. The length of the list corresponds to the number of boxes. `box_sizes[i]` is a positive integer that specifies the maximum capacity of the ith box. If `box_sizes[i]` equals `n` (or greater), the ith box can accommodate all `n` balls and thus effectively has unlimited capacity. ACKNOWLEDGMENT I'd like to thank Chris Rebert for helping me to convert my prototype class-based code into a generator function. """ if not isinstance(balls, int): raise TypeError("balls must be a non-negative integer.") if balls < 0: raise ValueError("balls must be a non-negative integer.") if not isinstance(box_sizes,list): raise ValueError("box_sizes must be a non-empty list.") capacity= 0 for size in box_sizes: if not isinstance(size, int): raise TypeError("box_sizes must contain only positive integers.") if size < 1: raise ValueError("box_sizes must contain only positive integers.") capacity+= size if capacity < balls: raise ValueError("The total capacity of the boxes is less than the " "number of balls to be distributed.") return _unlabeled_balls_in_labeled_boxes(balls, box_sizes)
6390226744c2d4b756b43e880707accc333893d5
1,791
def beginning_next_non_empty_line(bdata, i): """ doc """ while bdata[i] not in EOL: i += 1 while bdata[i] in EOL: i += 1 return i
0a372729a7ad794a9385d87be39d62b1e6831b71
1,792
import collections def VisualizeBoxes(image, boxes, classes, scores, class_id_to_name, min_score_thresh=.25, line_thickness=4, groundtruth_box_visualization_color='black', skip_scores=False, skip_labels=False, text_loc='TOP'): """Visualize boxes on top down image.""" box_to_display_str_map = collections.defaultdict(str) box_to_color_map = collections.defaultdict(str) num_boxes = boxes.shape[0] for i in range(num_boxes): if scores is not None and scores[i] < min_score_thresh: continue box = tuple(boxes[i].tolist()) display_str = '' if not skip_labels: if classes[i] in class_id_to_name: class_name = class_id_to_name[classes[i]] display_str = str(class_name) else: display_str = 'N/A' if not skip_scores: if not display_str: display_str = '{}%'.format(int(100 * scores[i])) else: display_str = '{}: {}%'.format(display_str, int(100 * scores[i])) box_to_display_str_map[box] = display_str if scores is None: box_to_color_map[box] = groundtruth_box_visualization_color else: box_to_color_map[box] = PIL_COLOR_LIST[classes[i] % len(PIL_COLOR_LIST)] # Draw all boxes onto image. for box, color in box_to_color_map.items(): DrawBoundingBoxOnImage( image, box, color=color, thickness=line_thickness, display_str=box_to_display_str_map[box], text_loc=text_loc) return image
b02216a5a2e7fa7029dd0fea298efd1d593bab88
1,793
def cal_softplus(x): """Calculate softplus.""" return np.log(np.exp(x) + 1)
a966826f1e508ca1a197e63396ae9e2f779bcf96
1,795
def prepare_spark_conversion(df: pd.DataFrame) -> pd.DataFrame: """Pandas does not distinguish NULL and NaN values. Everything null-like is converted to NaN. However, spark does distinguish NULL and NaN for example. To enable correct spark dataframe creation with NULL and NaN values, the `PANDAS_NULL` constant is used as a workaround to enforce NULL values in pyspark dataframes. Pyspark treats `None` values as NULL. Parameters ---------- df: pd.DataFrame Input dataframe to be prepared. Returns ------- df_prepared: pd.DataFrame Prepared dataframe for spark conversion. """ return df.where(df.ne(PANDAS_NULL), None)
f18ddfc3e77809908bf8fa365c1acf8a8d5069c6
1,797
def loyalty(): """Пересчитать индекс лояльности""" articles = Article.objects.all() if articles.count() == 0: logger.info('Пока нет статей для пересчёта. Выходим...') return False logger.info('Начало пересчёта индекса лояльности') logger.info(f'Количество материалов: {articles.count()}') texts = [item.text for item in articles] dt = DefineText(texts) themes, _ = dt.article_theme() sentiments, _ = dt.article_sentiment() for article, theme, sentiment in zip(articles, themes, sentiments): article.theme = bool(theme) article.sentiment = sentiment article.save()
3db3214e1d6d2f2f3d54f9c1d01807ed9558ef6b
1,800
import json def user_info(request): """Returns a JSON object containing the logged-in student's information.""" student = request.user.student return HttpResponse(json.dumps({ 'academic_id': student.academic_id, 'current_semester': int(student.current_semester), 'name': student.name, 'username': request.user.username}), content_type="application/json")
41c1bcc8f69d97f76acbe7f15c4bc5cbc2ea6b60
1,801
def extract_brain_activation(brainimg, mask, roilabels, method='mean'): """ Extract brain activation from ROI. Parameters ---------- brainimg : array A 4D brain image array with the first dimension correspond to pictures and the rest 3D correspond to brain images mask : array A 3D brain image array with the same size as the rest 3D of brainimg. roilabels : list, array ROI labels method : str Method to integrate activation from each ROI, by default is 'mean'. Returns ------- roisignals : list Extracted brain activation. Each element in the list is the extracted activation of the roilabels. Due to different label may contain different number of activation voxels, the output activation could not stored as numpy array list. """ if method == 'mean': calc_way = partial(np.mean, axis=1) elif method == 'std': calc_way = partial(np.std, axis=1) elif method == 'max': calc_way = partial(np.max, axis=1) elif method == 'voxel': calc_way = np.array else: raise Exception('We haven''t support this method, please contact authors to implement.') assert brainimg.shape[1:] == mask.shape, "brainimg and mask are mismatched." roisignals = [] for i, lbl in enumerate(roilabels): roisignals.append(calc_way(brainimg[:, mask==lbl])) return roisignals
fac20ea1c99696aab84137964dbbfdfa7bd66612
1,802
def logit(x): """ Elementwise logit (inverse logistic sigmoid). :param x: numpy array :return: numpy array """ return np.log(x / (1.0 - x))
4ce2474a9eb97208613268d3005959a4a162dbe0
1,803
import hashlib import binascii def _base58_decode(address: str) -> bool: """ SEE https://en.bitcoin.it/wiki/Base58Check_encoding """ try: decoded_address = base58.b58decode(address).hex() result, checksum = decoded_address[:-8], decoded_address[-8:] except ValueError: return False else: for _ in range(1, 3): result = hashlib.sha256(binascii.unhexlify(result)).hexdigest() return checksum == result[:8]
e0610e882b64511743376ce7a0370e7600436411
1,804
def get_average_matrix(shape, matrices): """ Take the average matrix by a list of matrices of same shape """ return _ImageConvolution().get_average_matrix(shape, matrices)
dfdd4995751bb2894a7bada961d863bb800e79a5
1,805
def music(hot_music_url, **kwargs): """ get hot music result :return: HotMusic object """ result = fetch(hot_music_url, **kwargs) # process json data datetime = parse_datetime(result.get('active_time')) # video_list = result.get('music_list', []) musics = [] music_list = result.get('music_list', []) for item in music_list: music = data_to_music(item.get('music_info', {})) music.hot_count = item.get('hot_value') musics.append(music) # construct HotMusic object and return return HotMusic(datetime=datetime, data=musics)
cf49e0648bb84ff9aa033bf49f732260770b47f5
1,807
def parse_from_docstring(docstring, spec='operation'): """Returns path spec from docstring""" # preprocess lines lines = docstring.splitlines(True) parser = _ParseFSM(FSM_MAP, lines, spec) parser.run() return parser.spec
37026d6e0fd0edf476d59cdd33ac7ec2d04eb38d
1,808
def collection_headings(commodities) -> CommodityCollection: """Returns a special collection of headings to test header and chapter parenting rules.""" keys = ["9900_80_0", "9905_10_0", "9905_80_0", "9910_10_0", "9910_80_0"] return create_collection(commodities, keys)
545419cd79fbd86d0a16aad78996977ea1ff4605
1,809
import getpass def get_ssh_user(): """Returns ssh username for connecting to cluster workers.""" return getpass.getuser()
166048aa258bd0b2c926d03478e8492a405b0f7e
1,810
def tryf(body, *handlers, elsef=None, finallyf=None): """``try``/``except``/``finally`` as a function. This allows lambdas to handle exceptions. ``body`` is a thunk (0-argument function) that represents the body of the ``try`` block. ``handlers`` is ``(excspec, handler), ...``, where ``excspec`` is either an exception type, or a tuple of exception types. ``handler`` is a 0-argument or 1-argument function. If it takes an argument, it gets the exception instance. Handlers are tried in the order specified. ``elsef`` is a thunk that represents the ``else`` block. ``finallyf`` is a thunk that represents the ``finally`` block. Upon normal completion, the return value of ``tryf`` is the return value of ``elsef`` if that was specified, otherwise the return value of ``body``. If an exception was caught by one of the handlers, the return value of ``tryf`` is the return value of the exception handler that ran. If you need to share variables between ``body`` and ``finallyf`` (which is likely, given what a ``finally`` block is intended to do), consider wrapping the ``tryf`` in a ``let`` and storing your variables there. If you want them to leak out of the ``tryf``, you can also just create an ``env`` at an appropriate point, and store them there. """ def accepts_arg(f): try: if arity_includes(f, 1): return True except UnknownArity: # pragma: no cover return True # just assume it return False def isexceptiontype(exc): try: if issubclass(exc, BaseException): return True except TypeError: # "issubclass() arg 1 must be a class" pass return False # validate handlers for excspec, handler in handlers: if isinstance(excspec, tuple): # tuple of exception types if not all(isexceptiontype(t) for t in excspec): raise TypeError(f"All elements of a tuple excspec must be exception types, got {excspec}") elif not isexceptiontype(excspec): # single exception type raise TypeError(f"excspec must be an exception type or tuple of exception types, got {excspec}") # run try: ret = body() except BaseException as exception: # Even if a class is raised, as in `raise StopIteration`, the `raise` statement # converts it into an instance by instantiating with no args. So we need no # special handling for the "class raised" case. # https://docs.python.org/3/reference/simple_stmts.html#the-raise-statement # https://stackoverflow.com/questions/19768515/is-there-a-difference-between-raising-exception-class-and-exception-instance/19768732 exctype = type(exception) for excspec, handler in handlers: if isinstance(excspec, tuple): # tuple of exception types # this is safe, exctype is always a class at this point. if any(issubclass(exctype, t) for t in excspec): if accepts_arg(handler): return handler(exception) else: return handler() else: # single exception type if issubclass(exctype, excspec): if accepts_arg(handler): return handler(exception) else: return handler() else: if elsef is not None: return elsef() return ret finally: if finallyf is not None: finallyf()
bde4282c4422272717e48a546430d2b93e9d0529
1,811
def obtain_sheet_music(score, most_frequent_dur): """ Returns unformated sheet music from score """ result = "" octaves = [3 for i in range(12)] accidentals = [False for i in range(7)] for event in score: for note_indx in range(len(event[0])): data = notenum2string(event[0][note_indx], accidentals, octaves) result += data[0] accidentals = data[1] octaves = data[2] if note_indx != len(event[0])-1: result += '-' if event[1] != most_frequent_dur: # Quarters are default result += '/' result += dur2mod(event[1], most_frequent_dur) result += ',' return result
4c216f2cca0d2054af355bc097c22ff2b7662969
1,812
def adjacency_matrix(edges): """ Convert a directed graph to an adjacency matrix. Note: The distance from a node to itself is 0 and distance from a node to an unconnected node is defined to be infinite. Parameters ---------- edges : list of tuples list of dependencies between nodes in the graph [(source node, destination node, weight), ...] Returns ------- out : tuple (names, adjacency matrix) names - list of unique nodes in the graph adjacency matrix represented as list of lists """ # determine the set of unique nodes names = set() for src, dest, _ in edges: # add source and destination nodes names.add(src) names.add(dest) # convert set of names to sorted list names = sorted(names) # determine initial adjacency matrix with infinity weights matrix = [[float('Inf')] * len(names) for _ in names] for src, dest, weight in edges: # update weight in adjacency matrix matrix[names.index(src)][names.index(dest)] = weight for src in names: matrix[names.index(src)][names.index(src)] = 0 # return list of names and adjacency matrix return names, matrix
b8743a6fa549b39d5cb24ae1f276e911b954ee5a
1,813
def estimate_Cn(P=1013, T=273.15, Ct=1e-4): """Use Weng et al to estimate Cn from meteorological data. Parameters ---------- P : `float` atmospheric pressure in hPa T : `float` temperature in Kelvin Ct : `float` atmospheric struction constant of temperature, typically 10^-5 - 10^-2 near the surface Returns ------- `float` Cn """ return (79 * P / (T ** 2)) * Ct ** 2 * 1e-12
b74dd0c91197c24f880521a06d6bcd205d749448
1,814
import ctypes def sg_get_scsi_status_str(scsi_status): """ Fetch scsi status string. """ buff = _get_buffer(128) libsgutils2.sg_get_scsi_status_str(scsi_status, 128, ctypes.byref(buff)) return buff.value.decode('utf-8')
2bdf7feb455ccbab659961ddbba04a9fa1daeb85
1,815
import math def numpy_grid(x, pad=0, nrow=None, uint8=True): """ thin wrap to make_grid to return frames ready to save to file args pad (int [0]) same as utils.make_grid(padding) nrow (int [None]) # defaults to horizonally biased rectangle closest to square uint8 (bool [True]) convert to img in range 0-255 uint8 """ x = x.clone().detach().cpu() nrow = nrow or int(math.sqrt(x.shape[0])) x = ((utils.make_grid(x, nrow=nrow, padding=pad).permute(1,2,0) - x.min())/(x.max()-x.min())).numpy() if uint8: x = (x*255).astype("uint8") return x
e83452bb2387d79ca307840487bb4bdd24efed87
1,816
import functools def if_active(f): """decorator for callback methods so that they are only called when active""" @functools.wraps(f) def inner(self, loop, *args, **kwargs): if self.active: return f(self, loop, *args, **kwargs) return inner
83b4eabaafa9602ad0547f87aeae99a63872152a
1,817
def obs_all_node_target_pairs_one_hot(agent_id: int, factory: Factory) -> np.ndarray: """One-hot encoding (of length nodes) of the target location for each node. Size of nodes**2""" num_nodes = len(factory.nodes) node_pair_target = np.zeros(num_nodes ** 2) for n in range(num_nodes): core_target_index = [] if factory.nodes[n].table != None and factory.nodes[n].table.has_core(): core_target_index = [ factory.nodes.index(factory.nodes[n].table.core.current_target) ] node_pair_target[n * num_nodes : (n + 1) * num_nodes] = np.asarray( one_hot_encode(num_nodes, core_target_index) ) else: node_pair_target[n * num_nodes : (n + 1) * num_nodes] = np.zeros(num_nodes) return node_pair_target
aed5fa19baf28c798f1e064b878b148867d19053
1,818
from typing import Callable from typing import List import math def repeat_each_position(shape: GuitarShape, length: int = None, repeats: int = 2, order: Callable = asc) -> List[ List[FretPosition]]: """ Play each fret in the sequence two or more times """ if length is not None: div_length = math.ceil(length / repeats) else: div_length = length pattern = order(shape, length=div_length) new_positions = [] for positions in pattern: new_positions.extend([positions] * repeats) if length is not None and len(new_positions) != length: new_positions = adjust_length(new_positions, length) return new_positions
9783e218134839410e02d4bc5210804d6a945d6d
1,819
import csv import gzip from StringIO import StringIO import pandas def gz_csv_read(file_path, use_pandas=False): """Read a gzipped csv file. """ with gzip.open(file_path, 'r') as infile: if use_pandas: data = pandas.read_csv(StringIO(infile.read())) else: reader = csv.reader(StringIO(infile.read())) data = [row for row in reader] return data
725132f37454b66b6262236966c96d4b48a81049
1,820
def init_block(in_channels, out_channels, stride, activation=nn.PReLU): """Builds the first block of the MobileFaceNet""" return nn.Sequential( nn.BatchNorm2d(3), nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False), nn.BatchNorm2d(out_channels), make_activation(activation) )
966ccb1ca1cb7e134db3ac40bb4daf54950743b1
1,821
def address_working(address, value=None): """ Find, insert or delete from database task address :param address: website address example: https://www.youtube.com/ :param value: True: add , False: remove, default: find :return: """ global db if value is True: db.tasks.insert_one({'Address': address}) return True if value is False: db.tasks.delete_many({'Address': address}) return False x = list(db.tasks.find({'Address': address})) if len(x) == 0: return False else: return True
5879fb6f3d4756aceb8424a5fc22fd232841802c
1,822
def merge_default_values(resource_list, default_values): """ Generate a new list where each item of original resource_list will be merged with the default_values. Args: resource_list: list with items to be merged default_values: properties to be merged with each item list. If the item already contains some property the original value will be maintained. Returns: list: list containing each item merged with default_values """ def merge_item(resource): return merge_resources(default_values, resource) return lmap(merge_item, resource_list)
c2e98260a34762d17185eacdfc2fb4be1b3a45f3
1,823
from datetime import datetime import pytz def finish_scheduling(request, schedule_item=None, payload=None): """ Finalize the creation of a scheduled action. All required data is passed through the payload. :param request: Request object received :param schedule_item: ScheduledAction item being processed. If None, it has to be extracted from the information in the payload. :param payload: Dictionary with all the required data coming from previous requests. :return: """ # Get the payload from the session if not given if payload is None: payload = request.session.get(session_dictionary_name) # If there is no payload, something went wrong. if payload is None: # Something is wrong with this execution. Return to action table. messages.error(request, _('Incorrect action scheduling invocation.')) return redirect('action:index') # Get the scheduled item if needed if not schedule_item: s_item_id = payload.get('schedule_id') if not s_item_id: messages.error(request, _('Incorrect parameters in action scheduling')) return redirect('action:index') # Get the item being processed schedule_item = ScheduledAction.objects.get(pk=s_item_id) # Check for exclude values and store them if needed exclude_values = payload.get('exclude_values') if exclude_values: schedule_item.exclude_values = exclude_values schedule_item.status = ScheduledAction.STATUS_PENDING schedule_item.save() # Create the payload to record the event in the log log_payload = { 'action': schedule_item.action.name, 'action_id': schedule_item.action.id, 'execute': schedule_item.execute.isoformat(), } if schedule_item.action.action_type == Action.PERSONALIZED_TEXT: log_payload.update({ 'email_column': schedule_item.item_column.name, 'subject': schedule_item.payload.get('subject'), 'cc_email': schedule_item.payload.get('cc_email', []), 'bcc_email': schedule_item.payload.get('bcc_email', []), 'send_confirmation': schedule_item.payload.get('send_confirmation', False), 'track_read': schedule_item.payload.get('track_read', False) }) log_type = Log.SCHEDULE_EMAIL_EDIT elif schedule_item.action.action_type == Action.PERSONALIZED_JSON: ivalue = None if schedule_item.item_column: ivalue = schedule_item.item_column.name log_payload.update({ 'item_column': ivalue, 'token': schedule_item.payload.get('subject') }) log_type = Log.SCHEDULE_JSON_EDIT else: log_type = None # Create the log Log.objects.register(request.user, log_type, schedule_item.action.workflow, log_payload) # Notify the user. Show the time left until execution and a link to # view the scheduled events with possibility of editing/deleting. # Successful processing. now = datetime.datetime.now(pytz.timezone(settings.TIME_ZONE)) tdelta = schedule_item.execute - now # Reset object to carry action info throughout dialogs request.session[session_dictionary_name] = {} request.session.save() # Create the timedelta string delta_string = '' if tdelta.days != 0: delta_string += ugettext('{0} days').format(tdelta.days) hours = tdelta.seconds / 3600 if hours != 0: delta_string += ugettext(', {0} hours').format(hours) minutes = (tdelta.seconds % 3600) / 60 if minutes != 0: delta_string += ugettext(', {0} minutes').format(minutes) # Successful processing. return render(request, 'scheduler/schedule_done.html', {'tdelta': delta_string, 's_item': schedule_item})
fa0fb4648ef9d750eca9f19ea435fd57ab433ad8
1,824
import json def analyze(results_file, base_path): """ Parse and print the results from gosec audit. """ # Load gosec json Results File with open(results_file) as f: issues = json.load(f)['Issues'] if not issues: print("Security Check: No Issues Detected!") return ([], [], []) else: high_risk = list() medium_risk = list() low_risk = list() # Sort Issues for issue in issues: if issue['severity'] == 'HIGH': high_risk.append(issue) elif issue['severity'] == 'MEDIUM': medium_risk.append(issue) elif issue['severity'] == 'LOW': low_risk.append(issue) # Print Summary print() print('Security Issue Summary:') print(' Found ' + str(len(high_risk)) + ' High Risk Issues') print(' Found ' + str(len(medium_risk)) + ' Medium Risk Issues') print(' Found ' + str(len(low_risk)) + ' Low Risk Issues') # Print Issues In Order of Importance if high_risk: header = ('= High Security Risk Issues =') print_category(header, high_risk, base_path) if medium_risk: header = ('= Medium Security Risk Issues =') print_category(header, medium_risk, base_path) if low_risk: header = ('= Low Security Risk Issues =') print_category(header, low_risk, base_path) return (high_risk, medium_risk, low_risk)
a016f4ba389305103c9bbab1db94706053237e5a
1,825
def _peaks(image,nr,minvar=0): """Divide image into nr quadrants and return peak value positions.""" n = np.ceil(np.sqrt(nr)) quadrants = _rects(image.shape,n,n) peaks = [] for q in quadrants: q_image = image[q.as_slice()] q_argmax = q_image.argmax() q_maxpos = np.unravel_index(q_argmax,q.shape) if q_image.flat[q_argmax] > minvar: peaks.append(np.array(q_maxpos) + q.origin) return peaks
f7ecc3e5fafd55c38a85b4e3a05a04b25cbd97cf
1,826
def connection_type_validator(type): """ Property: ConnectionInput.ConnectionType """ valid_types = [ "CUSTOM", "JDBC", "KAFKA", "MARKETPLACE", "MONGODB", "NETWORK", "SFTP", ] if type not in valid_types: raise ValueError("% is not a valid value for ConnectionType" % type) return type
cc2ed6096097c719b505356e69a5bb5cdc109495
1,828
import calendar import time def render_pretty_time(jd): """Convert jd into a pretty string representation""" year, month, day, hour_frac = sweph.revjul(jd) _, hours, minutes, seconds = days_frac_to_dhms(hour_frac/24) time_ = calendar.timegm((year,month,day,hours,minutes,seconds,0,0,0)) return time.strftime('%e %b %Y %H:%M UTC', time.gmtime(time_))
07c63429ae7881fbdec867e8bebab7578bfaacdd
1,830
import json def jsonify(obj): """Dump an object to JSON and create a Response object from the dump. Unlike Flask's native implementation, this works on lists. """ dump = json.dumps(obj) return Response(dump, mimetype='application/json')
72e1fb425507d5905ef96de05a146805f5aa4175
1,831
def section(stree): """ Create sections in a :class:`ScheduleTree`. A section is a sub-tree with the following properties: :: * The root is a node of type :class:`NodeSection`; * The immediate children of the root are nodes of type :class:`NodeIteration` and have same parent. * The :class:`Dimension` of the immediate children are either: :: * identical, OR * different, but all of type :class:`SubDimension`; * The :class:`Dimension` of the immediate children cannot be a :class:`TimeDimension`. """ class Section(object): def __init__(self, node): self.parent = node.parent self.dim = node.dim self.nodes = [node] def is_compatible(self, node): return (self.parent == node.parent and (self.dim == node.dim or node.dim.is_Sub)) # Search candidate sections sections = [] for i in range(stree.height): # Find all sections at depth `i` section = None for n in findall(stree, filter_=lambda n: n.depth == i): if any(p in flatten(s.nodes for s in sections) for p in n.ancestors): # Already within a section continue elif not n.is_Iteration or n.dim.is_Time: section = None elif section is None or not section.is_compatible(n): section = Section(n) sections.append(section) else: section.nodes.append(n) # Transform the schedule tree by adding in sections for i in sections: node = NodeSection() processed = [] for n in list(i.parent.children): if n in i.nodes: n.parent = node if node not in processed: processed.append(node) else: processed.append(n) i.parent.children = processed return stree
edd6682d1ff2a637049a801d548181d35e07961a
1,832
def was_csv_updated() -> bool: """ This function compares the last modified time on the csv file to the actions folder to check which was last modified. 1. check if csv or files have more actions. 2. if same number of actions, assume the update was made in the csv """ csv_actions = get_cas_from_csv() file_actions = get_cas_from_files() return ( True if len(csv_actions) >= len(file_actions) else False )
7cf78696fa59e8abbe968916191600a265c96305
1,833
import math def MakeBands(dR, numberOfBands, nearestInteger): """ Divide a range into bands :param dR: [min, max] the range that is to be covered by the bands. :param numberOfBands: the number of bands, a positive integer. :param nearestInteger: if True then [floor(min), ceil(max)] is used. :return: A List consisting of [min, midpoint, max] for each band. """ bands = list() if (dR[1] < dR[0]) or (numberOfBands <= 0): return bands x = list(dR) if nearestInteger: x[0] = math.floor(x[0]) x[1] = math.ceil(x[1]) dx = (x[1] - x[0]) / float(numberOfBands) b = [x[0], x[0] + dx / 2.0, x[0] + dx] i = 0 while i < numberOfBands: bands.append(b) b = [b[0] + dx, b[1] + dx, b[2] + dx] i += 1 return bands
104720371d1f83bf2ee2c8fddbf05401ec034560
1,834
import math def euler719(n=10**12): """Solution for problem 719.""" return sum(i*i for i in range(2, 1 + int(math.sqrt(n))) if can_be_split_in_sum(i*i, i))
3f814ed837ad58f73f901a81af34ac31b520b372
1,835
def inner(a, b): """ Inner product of two tensors. Ordinary inner product of vectors for 1-D tensors (without complex conjugation), in higher dimensions a sum product over the last axes. Note: Numpy argument out is not supported. On GPU, the supported dtypes are np.float16, and np.float32. On CPU, the supported dtypes are np.float16, np.float32, and np.float64. Args: a (Tensor): input tensor. If a and b are nonscalar, their last dimensions must match. b (Tensor): input tensor. If a and b are nonscalar, their last dimensions must match. Returns: Tensor or scalar, out.shape = a.shape[:-1] + b.shape[:-1]. Raises: ValueError: if x1.shape[-1] != x2.shape[-1]. Supported Platforms: Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> a = np.ones((5, 3)) >>> b = np.ones((2, 7, 3)) >>> output = np.inner(a, b) >>> print(output) [[[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]]] """ if F.rank(a) == 0 or F.rank(b) == 0: a = _expand(a, 1) b = _expand(b, 1) if F.rank(a) < F.rank(b): a, b = b, a return F.tensor_mul(a, b) _ = _check_shape_aligned(F.shape(a), F.shape(b)) aligned_shape_a = (F.shape_mul(F.shape(a)[:-1]), F.shape(a)[-1]) aligned_shape_b = (F.shape_mul(F.shape(b)[:-1]), F.shape(a)[-1]) a_aligned = F.reshape(a, aligned_shape_a) b_aligned = F.reshape(b, aligned_shape_b) res = _matmul_T(a_aligned, b_aligned) res = F.reshape(res, F.shape(a)[:-1] + F.shape(b)[:-1]) return res
b09ee6e22fd6c9bd7c1fd758fa62b38ad8fae1ab
1,836
def stern_warning(warn_msg: str) -> str: """Wraps warn_msg so that it prints in red.""" return _reg(colorama.Fore.RED, warn_msg)
639f0f6aaf3ce1f6ad46ed0f5d852be3457337fb
1,837