content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def alt2temp_ratio(H, alt_units=default_alt_units): """ Return the temperature ratio (temperature / standard temperature for sea level). The altitude is specified in feet ('ft'), metres ('m'), statute miles, ('sm') or nautical miles ('nm'). If the units are not specified, the units in default_units.py are used. Examples: Calculate the temperature ratio at 8,000 (default altitude units) >>> alt2temp_ratio(8000) 0.94499531494013533 Calculate the temperature ratio at 8,000 m. >>> alt2temp_ratio(8000, alt_units = 'm') 0.81953843484296374 """ # function tested in tests/test_std_atm.py return alt2temp(H, alt_units, temp_units='K') / T0
c46ca3d63169676ccda223f475927a902a82a15e
1,838
def encode_message(key, message): """ Encodes the message (string) using the key (string) and pybase64.urlsafe_b64encode functionality """ keycoded = [] if not key: key = chr(0) # iterating through the message for i in range(len(message)): # assigning a key_character based on the given key key_character = key[i % len(key)] # each char of the message has the key_char added (in ascii values) # and is converted back to normal, and appended to the keycoded values keycoded.append( chr((ord(message[i]) + ord(key_character)) % 256) ) encoded = pybase64.urlsafe_b64encode( "".join(keycoded).encode() # convert to bytes object (builtin) ).decode() # back to text return encoded
ea3a5403878dc58f1faa586c9851863a670c8cd0
1,839
def add_sibling(data, node_path, new_key, new_data, _i=0): """ Traversal-safe method to add a siblings data node. :param data: The data object you're traversing. :param node_path: List of path segments pointing to the node you're creating a sibling of. Same as node_path of traverse() :param new_key: The sibling key to create. :param new_data: The new data to be stored at the key. """ if _i < len(node_path) - 1: return add_sibling(data[node_path[_i]], node_path, new_key, new_data, _i + 1) else: data[new_key] = new_data
4bc11315eab686659edc9f7eb8479508d3ca37fb
1,842
def draw_pnl(ax, df): """ Draw p&l line on the chart. """ ax.clear() ax.set_title('Performance') index = df.index.unique() dt = index.get_level_values(level=0) pnl = index.get_level_values(level=4) ax.plot( dt, pnl, '-', color='green', linewidth=1.0, label='Performance' ) def perc(val): return '{:2f}'.format(val) ax.format_ydata = perc set_legend(ax) format_ax(ax)
6210c1861943bf61a7df8dbe2124f8f0f5e77e89
1,843
def maxRstat(Z, R, i): """ Return the maximum statistic for each non-singleton cluster and its children. Parameters ---------- Z : array_like The hierarchical clustering encoded as a matrix. See `linkage` for more information. R : array_like The inconsistency matrix. i : int The column of `R` to use as the statistic. Returns ------- MR : ndarray Calculates the maximum statistic for the i'th column of the inconsistency matrix `R` for each non-singleton cluster node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]``, where ``Q(j)`` the set of all node ids corresponding to nodes below and including ``j``. See Also -------- linkage : for a description of what a linkage matrix is. inconsistent : for the creation of a inconsistency matrix. Examples -------- >>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat >>> from scipy.spatial.distance import pdist Given a data set ``X``, we can apply a clustering method to obtain a linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can be also used to obtain the inconsistency matrix ``R`` associated to this clustering process: >>> X = [[0, 0], [0, 1], [1, 0], ... [0, 4], [0, 3], [1, 4], ... [4, 0], [3, 0], [4, 1], ... [4, 4], [3, 4], [4, 3]] >>> Z = median(pdist(X)) >>> R = inconsistent(Z) >>> R array([[1. , 0. , 1. , 0. ], [1. , 0. , 1. , 0. ], [1. , 0. , 1. , 0. ], [1. , 0. , 1. , 0. ], [1.05901699, 0.08346263, 2. , 0.70710678], [1.05901699, 0.08346263, 2. , 0.70710678], [1.05901699, 0.08346263, 2. , 0.70710678], [1.05901699, 0.08346263, 2. , 0.70710678], [1.74535599, 1.08655358, 3. , 1.15470054], [1.91202266, 1.37522872, 3. , 1.15470054], [3.25 , 0.25 , 3. , 0. ]]) `scipy.cluster.hierarchy.maxRstat` can be used to compute the maximum value of each column of ``R``, for each non-singleton cluster and its children: >>> maxRstat(Z, R, 0) array([1. , 1. , 1. , 1. , 1.05901699, 1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266, 3.25 ]) >>> maxRstat(Z, R, 1) array([0. , 0. , 0. , 0. , 0.08346263, 0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872, 1.37522872]) >>> maxRstat(Z, R, 3) array([0. , 0. , 0. , 0. , 0.70710678, 0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054, 1.15470054]) """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') if type(i) is not int: raise TypeError('The third argument must be an integer.') if i < 0 or i > 3: raise ValueError('i must be an integer between 0 and 3 inclusive.') if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") n = Z.shape[0] + 1 MR = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) return MR
d63c6370e9d896a2e315012fa92fa650d1acaee8
1,844
import re def strip_characters(text): """Strip characters in text.""" t = re.sub('\(|\)|:|,|;|\.|’|”|“|\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t
763ddc837ef9be19aa067e362c312ebd88632ed7
1,845
def make_std_secgroup(name, desc="standard security group"): """ Returns a standarized resource group with rules for ping and ssh access. The returned resource can be further configured with additional rules by the caller. The name parameter is used to form the name of the ResourceGroup, and also provides the name of the SecGroup that is created in the ResourceGroup. """ return ResourceGroup("%s_std_secgroup" % name, group=SecGroup(name, desc), ping_rule=SecGroupRule("ping_rule", ctxt.comp.container.group, ip_protocol="icmp", from_port=-1, to_port=-1), ssh_rule=SecGroupRule("ssh_rule", ctxt.comp.container.group, ip_protocol="tcp", from_port=22, to_port=22), )
b53a65bdc04871c0d7ca56574c1852906b2d9351
1,847
def parse_plot_args(*args, **options): """Parse the args the same way plt.plot does.""" x = None y = None style = None if len(args) == 1: y = args[0] elif len(args) == 2: if isinstance(args[1], str): y, style = args else: x, y = args elif len(args) == 3: x, y, style = args return x, y, style
7687ed00785c1ab20fdf2f7bdc969fde3c75840f
1,848
def publications_classification_terms_get(search=None): # noqa: E501 """List of Classification Terms List of Classification Terms # noqa: E501 :param search: search term applied :type search: str :rtype: ApiOptions """ return 'do some magic!'
6633c91d59a5df7805979bd85a01f8eb1c269946
1,849
def lu_decompose(tri_diagonal): """Decompose a tri-diagonal matrix into LU form. Parameters ---------- tri_diagonal : TriDiagonal Represents the matrix to decompose. """ # WHR Appendix B: perform LU decomposition # # d[0] = hd[0] # b[i] = hu[i] # # Iterative algorithm: # d[i] = hd[i] - hu[i-1] a[i-1] # a[i] = hl[i] / d[i] hd, hu, hl = tri_diagonal b = hu # We want to vectorize the calculation of d and a as much as possible, # instead of using WHR's iterative algorithm directly. # # Substitute a[i-1] into the expression for d[i] to get a recurrence # relation for d: # # d[i] = hd[i] - hu[i-1] a[i-1] # = hd[i] - hu[i-1] * hl[i-1] / d[i-1] # # Let c[i] = hu[i-1] * hl[i-1]. # c[0] = 0, which is meaningless but convenient for the helper. # # d[i] = hd[i] - c[i] / d[i-1] c = np.empty_like(hd) c[0] = 0.0 np.multiply(hu, hl, c[1:]) np.negative(c, c) d = hd.copy() solve_lu_d(c, d) # a[i] = hl[i] / d[i] a = np.divide(hl, d[:-1]) return TriDiagonalLU(d, b, a)
423bb853d96b534055bd00b3c768158c86826b1b
1,850
def _card(item): """Handle card entries Returns: title (append " - Card" to the name, username (Card brand), password (card number), url (none), notes (including all card info) """ notes = item.get('notes', "") or "" # Add card info to the notes notes = notes + ("\n".join([f"{i}: {j}" for i, j in item.get('card', "").items()])) return f"{item['name']} - Card", \ item.get('card', {}).get('brand', '') or "", \ item.get('card', {}).get('number', "") or "", \ "", \ notes
fc7d5e4b960019b05ffe7ca02fd3d1a94d69b303
1,851
def s3(): """Boto3 S3 resource.""" return S3().resource
6402deaafa2ae7d599de1c8e8c67b9e669c06463
1,852
def SUE(xmean=None,ymean=None,xstdev=None,ystdev=None,rho=None, \ xskew=None,yskew=None,xmin=None,xmax=None,ymin=None,ymax=None, \ Npt=300,xisln=False,yisln=False): """ SKEWED UNCERTAINTY ELLIPSES (SUE) Function to plot uncertainty SUEs (or 1 sigma contour of a bivariate split-normal distribution). The parameters are the means (xmean,ymean), the standard deviations (xstdev,ystdev), the skewnesses (xskew,yskew) and the correlation coefficients (rho). The optional bounds (xmin,xmax,ymin,ymax) have the effect of truncating the SUEs in case there is a range of parameter space that is forbidden. It is important to notice that the xisln/yisln parameters are not related to the log settings of the axes where we plot the SUE, but are here to indicate that the moments of the variable to plot correspond to the natural logarithm (ln) of the variable we want to display. For instance, for displaying the ellipses of (x,y) where, for x, the moments are those of lnx, we would write: SUE(xmean=mean_of_lnx,ymean=mean_of_y,xstdev=stdev_of_lnx, \ ystdev=stdev_of_y,xskew=skewness_of_lnx,yskew=skewness_of_y, \ rho=correl_coeff_of_lnx_and_y,xisln=True) """ # Rotation angle theta = 1./2 * np.arctan( 2*rho*xstdev*ystdev / (xstdev**2-ystdev**2) ) # Numerically solve for taux and tauy (tau=1.D2 ==> skew=0.99) taugrid = ramp(N=10000,x0=1.E-2,x1=1.E2,log=True) Ax = np.sqrt(np.pi/2) \ * ( (np.cos(theta))**3*xskew*xstdev**3 \ + (np.sin(theta))**3*yskew*ystdev**3 ) \ / ( (np.sin(theta))**6 + (np.cos(theta))**6 ) \ * ( ( (np.cos(theta))**2 - (np.sin(theta))**2 ) \ / ( (np.cos(theta))**2*xstdev**2 \ - (np.sin(theta))**2*ystdev**2 ) )**1.5 Ay = np.sqrt(np.pi/2) \ * ( (np.cos(theta))**3*yskew*ystdev**3 \ - (np.sin(theta))**3*xskew*xstdev**3 ) \ / ( (np.cos(theta))**6 + (np.sin(theta))**6 ) \ * ( ( (np.cos(theta))**2 - (np.sin(theta))**2 ) \ / ( (np.cos(theta))**2*ystdev**2 \ - (np.sin(theta))**2*xstdev**2 ) )**1.5 taux = np.exp(np.interp(Ax,Ctau(taugrid)/(Btau(taugrid))**1.5, \ np.log(taugrid))) tauy = np.exp(np.interp(Ay,Ctau(taugrid)/(Btau(taugrid))**1.5, \ np.log(taugrid))) if (not np.isfinite(taux) or taux > 1.E2): taux = 1.E2 if (not np.isfinite(tauy) or tauy > 1.E2): tauy = 1.E2 # Rest of the parameters lambdax = np.sqrt( ( (np.cos(theta))**2*xstdev**2 \ - (np.sin(theta))**2*ystdev**2 ) \ / ( (np.cos(theta))**2 - (np.sin(theta))**2 ) / Btau(taux) ) lambday = np.sqrt( ( (np.cos(theta))**2*ystdev**2 \ - (np.sin(theta))**2*xstdev**2 ) \ / ( (np.cos(theta))**2 - (np.sin(theta))**2 ) / Btau(tauy) ) x0 = xmean - np.sqrt(2/np.pi) * ( np.cos(theta)*lambdax*(taux-1) \ - np.sin(theta)*lambday*(tauy-1) ) y0 = ymean - np.sqrt(2/np.pi) * ( np.sin(theta)*lambdax*(taux-1) \ + np.cos(theta)*lambday*(tauy-1) ) # Draw the SUE matrot = np.array([ [ np.cos(theta), -np.sin(theta) ], \ [ np.sin(theta), np.cos(theta) ] ]) xell_ax1 = np.zeros(2) yell_ax1 = np.zeros(2) xell_ax2 = np.zeros(2) yell_ax2 = np.zeros(2) for k in np.arange(4): if (k == 0): xell_sub = ramp(N=Npt,x0=-lambdax,x1=0) + x0 rx = 1-(xell_sub-x0)**2/lambdax**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = -lambday * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan elif (k == 1): xell_sub = ramp(N=Npt,x0=0,x1=lambdax*taux) + x0 rx = 1-(xell_sub-x0)**2/lambdax**2/taux**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = -lambday * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan elif (k == 2): xell_sub = (ramp(N=Npt,x0=0,x1=lambdax*taux))[::-1] + x0 rx = 1-(xell_sub-x0)**2/lambdax**2/taux**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = lambday*tauy * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan elif (k == 3): xell_sub = (ramp(N=Npt,x0=-lambdax,x1=0))[::-1] + x0 rx = 1-(xell_sub-x0)**2/lambdax**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = lambday*tauy * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan # Add the limit case (half ellipse) mask = np.logical_and(np.isfinite(yell_sub),np.isfinite(xell_sub)) xell_sub = xell_sub[mask] yell_sub = yell_sub[mask] Nsub = np.count_nonzero(mask) # Rotate the ellipse for j in np.arange(Nsub): vecell = np.matmul(matrot, \ np.array([xell_sub[j]-x0,yell_sub[j]-y0])) xell_sub[j] = vecell[0] + x0 yell_sub[j] = vecell[1] + y0 if (k == 0): xell = xell_sub yell = yell_sub else: xell = np.concatenate((xell,xell_sub)) yell = np.concatenate((yell,yell_sub)) xplot = np.concatenate((xell,[xell[0]])) yplot = np.concatenate((yell,[yell[0]])) # Logs and limits if (xisln): xplot = np.exp(xplot) x0 = np.exp(x0) if (yisln): yplot = np.exp(yplot) y0 = np.exp(y0) if (xmin != None): xplot[xplot < xmin] = xmin if (x0 < xmin): x0 = xmin if (xmax != None): xplot[xplot > xmax] = xmax if (x0 > xmax): x0 = xmax if (ymin != None): yplot[yplot < ymin] = ymin if (y0 < ymin): y0 = ymin if (ymax != None): yplot[yplot > ymax] = ymax if (y0 > ymax): y0 = ymax return(xplot,yplot,x0,y0)
8b298a2d2ba04a3f1262205f19b1993a4701e279
1,853
def create_label(places, size, corners, resolution=0.50, x=(0, 90), y=(-50, 50), z=(-4.5, 5.5), scale=4, min_value=np.array([0., -50., -4.5])): """Create training Labels which satisfy the range of experiment""" x_logical = np.logical_and((places[:, 0] < x[1]), (places[:, 0] >= x[0])) y_logical = np.logical_and((places[:, 1] < y[1]), (places[:, 1] >= y[0])) z_logical = np.logical_and((places[:, 2] + size[:, 0]/2. < z[1]), (places[:, 2] + size[:, 0]/2. >= z[0])) xyz_logical = np.logical_and(x_logical, np.logical_and(y_logical, z_logical)) center = places.copy() center[:, 2] = center[:, 2] + size[:, 0] / 2. # Move bottom to center sphere_center = ((center[xyz_logical] - min_value) / (resolution * scale)).astype(np.int32) train_corners = corners[xyz_logical].copy() anchor_center = sphere_to_center(sphere_center, resolution=resolution, scale=scale, min_value=min_value) #sphere to center for index, (corner, center) in enumerate(zip(corners[xyz_logical], anchor_center)): train_corners[index] = corner - center return sphere_center, train_corners
1ae1ed49674fbcee15fb6a8201e69be2c82630f9
1,854
def usage(): """Serve the usage page.""" return render_template("meta/access.html")
909272906678c9980f379342b87c8af6a00ab89c
1,855
def GetCache(name, create=False): """Returns the cache given a cache indentfier name. Args: name: The cache name to operate on. May be prefixed by "resource://" for resource cache names or "file://" for persistent file cache names. If only the prefix is specified then the default cache name for that prefix is used. create: Creates the persistent cache if it exists if True. Raises: CacheNotFound: If the cache does not exist. Returns: The cache object. """ types = { 'file': file_cache.Cache, 'resource': resource_cache.ResourceCache, } def _OpenCache(cache_class, name): try: return cache_class(name, create=create) except cache_exceptions.Error as e: raise Error(e) if name: for cache_id, cache_class in types.iteritems(): if name.startswith(cache_id + '://'): name = name[len(cache_id) + 3:] if not name: name = None return _OpenCache(cache_class, name) return _OpenCache(resource_cache.Cache, name)
b8e1796d772506d4abb9f8261df33b4cf6777934
1,856
def rf_local_divide_int(tile_col, scalar): """Divide a Tile by an integral scalar""" return _apply_scalar_to_tile('rf_local_divide_int', tile_col, scalar)
0a8c44cafcc44d323fb931fc1b037759ad907d18
1,857
from typing import Any from typing import Dict def or_(*children: Any) -> Dict[str, Any]: """Select devices that match at least one of the given selectors. >>> or_(tag('sports'), tag('business')) {'or': [{'tag': 'sports'}, {'tag': 'business'}]} """ return {"or": [child for child in children]}
0bda8654ddc0f5dac80c8eb51b0d6d55b57c9e2a
1,858
def get_width_and_height_from_size(x): """ Obtains width and height from a int or tuple """ if isinstance(x, int): return x, x if isinstance(x, list) or isinstance(x, tuple): return x else: raise TypeError()
581c9f332613dab5de9b786ce2bac3387ee1bd3b
1,859
def remove_stopwords(lista,stopwords): """Function to remove stopwords Args: lista ([list]): list of texts stopwords ([list]): [description] Returns: [list]: List of texts without stopwords """ lista_out = list() for idx, text in enumerate(lista): text = ' '.join([word for word in text.split() if word not in stopwords]) text = text.strip() lista_out.append(text) #print("Len original: {} - Len processed stopwords: {}".format(len(lista),len(lista_out))) return lista_out
edca74bb3a041a65a628fcd3f0c71be5ad4858df
1,860
def get_users_report(valid_users, ibmcloud_account_users): """get_users_report()""" users_report = [] valid_account_users = [] invalid_account_users = [] # use case 1: find users in account not in valid_users for account_user in ibmcloud_account_users: # check if account user is in valid_users is_valid_user=False for valid_user in valid_users: if ( account_user["email"] == valid_user["email"] ): account_user["name"] = valid_user["name"] account_user["identities"] = valid_user["identities"] if "resourceGroups" in valid_user: account_user["resourceGroups"] = valid_user["resourceGroups"] account_user["manager"] = valid_user["manager"] account_user["association"] = valid_user["association"] is_valid_user=True if is_valid_user: valid_account_users.append(account_user) else: invalid_account_users.append(account_user) users_report = { "valid_account_users" : valid_account_users, "invalid_account_users" : invalid_account_users } return users_report
a96f8835496f82d8b6f8cd4f248ed8a03676795b
1,862
def insert_bn(names): """Insert bn layer after each conv. Args: names (list): The list of layer names. Returns: list: The list of layer names with bn layers. """ names_bn = [] for name in names: names_bn.append(name) if 'conv' in name: position = name.replace('conv', '') names_bn.append(f'bn{position}') return names_bn
efe1e6a3218fb33f74c17f90a06e2d18d17442e5
1,863
def convert_format(parameters): """Converts dictionary database type format to serial transmission format""" values = parameters.copy() for key, (index, format, value) in values.items(): if type(format) == type(db.Int): values[key] = (index, 'i', value) # signed 32 bit int (arduino long) elif type(format) == type(db.Int16): values[key] = (index, 'h', value) elif type(format) == type(db.Float): values[key] = (index, 'f', value) elif type(format) == type(db.String32): values[key] = (index, 's', value) elif type(format) == type(db.StringN): values[key] = (index, 's', value) elif type(format) == type(db.Time): values[key] = (index, 'd', value) return values
fae756d54cbef6ecc7de07d123513b773ccf1433
1,864
import warnings def getproj4(epsg): """ Get projection file (.prj) text for given epsg code from spatialreference.org. See: https://www.epsg-registry.org/ .. deprecated:: 3.2.11 This function will be removed in version 3.3.5. Use :py:class:`flopy.discretization.structuredgrid.StructuredGrid` instead. Parameters ---------- epsg : int epsg code for coordinate system Returns ------- prj : str text for a projection (*.prj) file. """ warnings.warn( "SpatialReference has been deprecated and will be removed in version " "3.3.5. Use StructuredGrid instead.", category=DeprecationWarning, ) return get_spatialreference(epsg, text="proj4")
80dccf9722f7dd45cca87dcd78775868cfe545ad
1,866
def vpn_tunnel_inside_cidr(cidr): """ Property: VpnTunnelOptionsSpecification.TunnelInsideCidr """ reserved_cidrs = [ "169.254.0.0/30", "169.254.1.0/30", "169.254.2.0/30", "169.254.3.0/30", "169.254.4.0/30", "169.254.5.0/30", "169.254.169.252/30", ] cidr_match_re = compile( r"^169\.254\.(?:25[0-5]|2[0-4]\d|[01]?\d\d?)" r"\.(?:25[0-5]|2[0-4]\d|[01]?\d\d?)\/30$" ) if cidr in reserved_cidrs: raise ValueError( 'The following CIDR blocks are reserved and cannot be used: "%s"' % (", ".join(reserved_cidrs)) ) elif not cidr_match_re.match(cidr): raise ValueError( "%s is not a valid CIDR." " A size /30 CIDR block from the 169.254.0.0/16 must be specified." % cidr ) return cidr
01807a4db2fc80cf8253b0e000e412b0dce1a528
1,867
def choose_media_type(accept, resource_types): """choose_media_type(accept, resource_types) -> resource type select a media type for the response accept is the Accept header from the request. If there is no Accept header, '*/*' is assumed. If the Accept header cannot be parsed, HTTP400BadRequest is raised. resource_types is an ordered list of available resource types, with the most desirable type first. To find a match, the types in the Accept header are ordered by q value (descending), and each is compared with the available resource types in order. The first matching media type is returned. If not match is found, HTTP406NotAcceptable is raised. """ # This function is exposed in the script dpf_choose_media_type, # so if changes are made here, that script's documentation # should be updated to reflect them. # list of (type, subtype, q) accept_types = [] for part in accept.split(','): part = part.strip() if ';' not in part: mt = part q = 1.0 else: (mt, q) = part.split(';', 1) mt = mt.strip() q = q.strip() if not q.startswith('q='): raise HTTP400BadRequest('text/plain', 'Bad Accept header.\n') try: q = float(q[2:]) except ValueError: raise HTTP400BadRequest('text/plain', 'Bad Accept header.\n') if '/' not in mt: raise HTTP400BadRequest('text/plain', 'Bad Accept header.\n') (type, subtype) = mt.split('/', 1) accept_types.append((type, subtype, q)) accept_types.sort(cmp_accept_type) accept_types.reverse() for (type, subtype, q) in accept_types: for available_type in resource_types: (a_type, a_subtype) = available_type.split('/', 1) if type != '*' and type != a_type: continue if subtype != '*' and subtype != a_subtype: continue return available_type raise HTTP406NotAcceptable()
876ad2ace8af69f5c6dc83d91d598220935987d5
1,868
import math def get_border_removal_size(image: Image, border_removal_percentage: float = .04, patch_width: int = 8): """ This function will compute the border removal size. When computing the boarder removal the patch size becomes important the output shape of the image will always be an even factor of the patch size. This allows the later computations to evenly fit the image. :param image: input image to get the dimentions :param border_removal_percentage: how much of the boarder to remove :param patch_width: the width size of the patches in pixels. :return: how many pixes to be removed around the boarder """ w, h = image.size return int(math.ceil(w * border_removal_percentage / patch_width)) * patch_width
f0f236b1d2a13058042269e0e85f52f37fb47b5e
1,869
def get_natural_num(msg): """ Get a valid natural number from the user! :param msg: message asking for a natural number :return: a positive integer converted from the user enter. """ valid_enter = False while not valid_enter: given_number = input(msg).strip() if given_number.isdigit(): num = int(given_number) valid_enter = True return num
77bed94bf6d3e5ceb56d58eaf37e3e687e3c94ba
1,870
from typing import Optional def _decode_panoptic_or_depth_map(map_path: str) -> Optional[str]: """Decodes the panoptic or depth map from encoded image file. Args: map_path: Path to the panoptic or depth map image file. Returns: Panoptic or depth map as an encoded int32 numpy array bytes or None if not existing. """ if not tf.io.gfile.exists(map_path): return None with tf.io.gfile.GFile(map_path, 'rb') as f: decoded_map = np.array(Image.open(f)).astype(np.int32) if FLAGS.panoptic_divisor > 0 and map_path.endswith(_LABEL_SUFFIX): semantic_map = decoded_map[:, :, 0] instance_map = ( decoded_map[:, :, 1] * _ENCODED_INSTANCE_LABEL_DIVISOR + decoded_map[:, :, 2]) decoded_map = semantic_map * FLAGS.panoptic_divisor + instance_map return decoded_map.tobytes()
1f3b81827ba911614d8979b187b8cde7f10078fe
1,871
def splitstr(s, l=25): """ split string with max length < l "(i/n)" """ arr = [len(x) for x in s.split()] out = [] counter = 5 tmp_out = '' for i in xrange(len(arr)): if counter + arr[i] > l: out.append(tmp_out) tmp_out = '' counter = 5 else: tmp_out += s.split()[i] + ' ' counter = len(tmp_out) + 5 return out
0d84d7bbf420d1f97993be459764c37fed50f8b3
1,872
import re def SplitRequirementSpecifier(requirement_specifier): """Splits the package name from the other components of a requirement spec. Only supports PEP 508 `name_req` requirement specifiers. Does not support requirement specifiers containing environment markers. Args: requirement_specifier: str, a PEP 508 requirement specifier that does not contain an environment marker. Returns: (string, string), a 2-tuple of the extracted package name and the tail of the requirement specifier which could contain extras and/or a version specifier. Raises: Error: No package name was found in the requirement spec. """ package = requirement_specifier.strip() tail_start_regex = r'(\[|\(|==|>=|!=|<=|<|>|~=|===)' tail_match = re.search(tail_start_regex, requirement_specifier) tail = '' if tail_match: package = requirement_specifier[:tail_match.start()].strip() tail = requirement_specifier[tail_match.start():].strip() if not package: raise Error(r'Missing package name in requirement specifier: \'{}\''.format( requirement_specifier)) return package, tail
d71eee50c162756ac7aae0bd120323d50d3ab255
1,873
def arctanh(var): """ Wrapper function for atanh """ return atanh(var)
955d09821d78703c99fc2e51f70ca0fc47b0c943
1,874
def predict_sentiment(txt: str, direc: str = 'models/sentiment/saved_models/model50') -> float: """ predicts sentiment of string only use for testing not good for large data because model is loaded each time input is a txt string optional directory change for using different models returns a value from -1 to 1 Aproaching -1 being a negative sentiment Aproaching 1 being a positive sentiment """ vals = spacy.load(direc)(txt).cats return vals["pos"] if vals["pos"]>vals["neg"] else -1*vals["neg"]
d7ff2d361792032eb097e0b0e9818da6ce3af1e5
1,875
import numpy def logfbank(signal, samplerate=16000, winlen=0.025, winstep=0.01, nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97, winfunc=lambda x: numpy.ones((x,))): """Compute log Mel-filterbank energy features from an audio signal. :param signal: the audio signal from which to compute features. Should be an N*1 array :param samplerate: the samplerate of the signal we are working with. :param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds) :param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds) :param nfilt: the number of filters in the filterbank, default 26. :param nfft: the FFT size. Default is 512. :param lowfreq: lowest band edge of mel filters. In Hz, default is 0. :param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2 :param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97. :param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming :returns: A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. """ feat, energy = fbank(signal, samplerate, winlen, winstep, nfilt, nfft, lowfreq, highfreq, preemph, winfunc) return numpy.log(feat)
670d5faf73fcca6da249d9b5c9fb6965eafab855
1,876
def get_rmsd( pose, second_pose, overhang = 0): """ Get RMSD assuming they are both the same length! """ #id_map = get_mask_for_alignment(pose, second_pose, cdr, overhang) #rms = rms_at_corresponding_atoms_no_super(pose, second_pose, id_map) start = 1 + overhang end = pose.total_residue() - overhang l = Loop(start, end) loops = Loops() loops.push_back(l) rms = loop_rmsd(pose, second_pose, loops, False, True) return rms
80af3478fe946243cba5e7f3e45c61a8ea9af1d1
1,877
def inverse(a: int, n: int): """ calc the inverse of a in the case of module n, where a and n must be mutually prime. a * x = 1 (mod n) :param a: (int) :param n: (int) :return: (int) x """ assert greatest_common_divisor(a, n) == 1 return greatest_common_divisor_with_coefficient(a, n)[1] % n
1012c4c69b81dccd2ecfd0c5cddf7a7bd9b2c1f8
1,878
def create_app(): """Create the Flask application.""" return app
7ff5c1e66ab48a5f262beb7abfa21e28680605c9
1,879
def generate_prime_candidate(length): """ Genera un integer impar aleatorimanete param size: tamanio del numero deseado return:integer """ p = big_int(length) p |= (1 << length - 1) | 1 return p
bdae69644156191a5388b23d7cf1853b8b0273b6
1,880
def PathPrefix(vm): """Determines the prefix for a sysbench command based on the operating system. Args: vm: VM on which the sysbench command will be executed. Returns: A string representing the sysbench command prefix. """ if vm.OS_TYPE == os_types.RHEL: return INSTALL_DIR else: return '/usr/'
e0ade1847bce77f3b4efd9f801b36b219917f0b8
1,881
from typing import Union import asyncio def get_next_valid_seq_number( address: str, client: SyncClient, ledger_index: Union[str, int] = "current" ) -> int: """ Query the ledger for the next available sequence number for an account. Args: address: the account to query. client: the network client used to make network calls. ledger_index: The ledger index to use for the request. Must be an integer ledger value or "current" (the current working version), "closed" (for the closed-and-proposed version), or "validated" (the most recent version validated by consensus). The default is "current". Returns: The next valid sequence number for the address. """ return asyncio.run(main.get_next_valid_seq_number(address, client, ledger_index))
cb2a502aabc474ab79ea14bd2305dda5bfe8b479
1,882
import re def apps_list(api_filter, partial_name, **kwargs): """List all defined applications. If you give an optional command line argument, the apps are filtered by name using this string.""" params = {} if api_filter: params = {"filter": api_filter} rv = okta_manager.call_okta("/apps", REST.get, params=params) # now filter by name, if given if partial_name: matcher = re.compile(partial_name) rv = list(filter(lambda x: matcher.search(x["name"]), rv)) return rv
bafb2f1eb65e735b40613e302fcbc85507c25cb8
1,883
def jacquez(s_coords, t_coords, k, permutations=99): """ Jacquez k nearest neighbors test for spatio-temporal interaction. :cite:`Jacquez:1996` Parameters ---------- s_coords : array (n, 2), spatial coordinates. t_coords : array (n, 1), temporal coordinates. k : int the number of nearest neighbors to be searched. permutations : int, optional the number of permutations used to establish pseudo- significance (the default is 99). Returns ------- jacquez_result : dictionary contains the statistic (stat) for the test and the associated p-value (pvalue). stat : float value of the Jacquez k nearest neighbors test for the dataset. pvalue : float p-value associated with the statistic (normally distributed with k-1 df). Examples -------- >>> import numpy as np >>> import libpysal as lps >>> from pointpats import SpaceTimeEvents, jacquez Read in the example data and create an instance of SpaceTimeEvents. >>> path = lps.examples.get_path("burkitt.shp") >>> events = SpaceTimeEvents(path,'T') The Jacquez test counts the number of events that are k nearest neighbors in both time and space. The following runs the Jacquez test on the example data and reports the resulting statistic. In this case, there are 13 instances where events are nearest neighbors in both space and time. # turning off as kdtree changes from scipy < 0.12 return 13 >>> np.random.seed(100) >>> result = jacquez(events.space, events.t ,k=3,permutations=99) >>> print(result['stat']) 13 The significance of this can be assessed by calling the p- value from the results dictionary, as shown below. Again, no space-time interaction is observed. >>> result['pvalue'] < 0.01 False """ time = t_coords space = s_coords n = len(time) # calculate the nearest neighbors in space and time separately knnt = lps.weights.KNN.from_array(time, k) knns = lps.weights.KNN.from_array(space, k) nnt = knnt.neighbors nns = knns.neighbors knn_sum = 0 # determine which events are nearest neighbors in both space and time for i in range(n): t_neighbors = nnt[i] s_neighbors = nns[i] check = set(t_neighbors) inter = check.intersection(s_neighbors) count = len(inter) knn_sum += count stat = knn_sum # return the results (if no inference) if not permutations: return stat # loop for generating a random distribution to assess significance dist = [] for p in range(permutations): j = 0 trand = np.random.permutation(time) knnt = lps.weights.KNN.from_array(trand, k) nnt = knnt.neighbors for i in range(n): t_neighbors = nnt[i] s_neighbors = nns[i] check = set(t_neighbors) inter = check.intersection(s_neighbors) count = len(inter) j += count dist.append(j) # establish the pseudo significance of the observed statistic distribution = np.array(dist) greater = np.ma.masked_greater_equal(distribution, stat) count = np.ma.count_masked(greater) pvalue = (count + 1.0) / (permutations + 1.0) # report the results jacquez_result = {'stat': stat, 'pvalue': pvalue} return jacquez_result
dc71d74cc0e0159e1164d659ca3f07f3b9a61dd6
1,884
def array2tensor(array, device='auto'): """Convert ndarray to tensor on ['cpu', 'gpu', 'auto'] """ assert device in ['cpu', 'gpu', 'auto'], "Invalid device" if device != 'auto': return t.tensor(array).float().to(t.device(device)) if device == 'auto': return t.tensor(array).float().to(t.device('cuda' if t.cuda.is_available() else 'cpu'))
53826ad5b19a4e030bc3e98857c9b3285094370f
1,885
def to_json(graph): """Convert this graph to a Node-Link JSON object. :param BELGraph graph: A BEL graph :return: A Node-Link JSON object representing the given graph :rtype: dict """ graph_json_dict = node_link_data(graph) # Convert annotation list definitions (which are sets) to canonicalized/sorted lists graph_json_dict['graph'][GRAPH_ANNOTATION_LIST] = { keyword: list(sorted(values)) for keyword, values in graph_json_dict['graph'][GRAPH_ANNOTATION_LIST].items() } # Convert set to list graph_json_dict['graph'][GRAPH_UNCACHED_NAMESPACES] = list(graph_json_dict['graph'][GRAPH_UNCACHED_NAMESPACES]) return graph_json_dict
325053a0838bbf1ab70a4fb61e17f93f27c80dab
1,886
def export(df: pd.DataFrame): """ From generated pandas dataframe to xml configuration :param df: computed pandas dataframe :return: """ return df
445e91a419746afef8062dcc1e6691572ba9390d
1,887
def has_same_attributes(link1, link2): """ Return True if the two links have the same attributes for our purposes, ie it is OK to merge them together into one link Parameters: link1 - Link object link2 - Link object Return value: True iff link1 and link2 have compatible attributes """ return (link1.linktype == link2.linktype and abs(link1.B - link2.B) < EPS and abs(link1.power - link2.power) < EPS and abs(link1.capacity - link2.capacity) < EPS)
e80f62d01ef18e547a2e7718ac2bb1ca3001b84f
1,888
def test_signals_creation(test_df, signal_algorithm): """Checks signal algorithms can create a signal in a Pandas dataframe.""" test_df_copy = test_df.copy() original_columns = test_df.columns # We check if the test series has the columns needed for the rule to calculate. required_columns = Api.required_inputs_for_algorithm(signal_algorithm) all_present = True for ii_requirement in required_columns: if ii_requirement not in original_columns: all_present = False # If columns are missing, we anticipate a KeyError will trigger. if not all_present: with pytest.raises(KeyError): Api.calculate_signal(test_df_copy, signal_algorithm) return True # Otherwise we expect to parse successfully. df_with_signal = Api.calculate_signal(test_df_copy, signal_algorithm) if not isinstance(df_with_signal, pd.DataFrame): print(df_with_signal) print("Type was: ", type(df_with_signal)) raise TypeError("Bad output format.") # Signal algorithms should be adding new columns with float, int or NaN data. new_columns = False for ii_column_name in df_with_signal.columns: if ii_column_name not in original_columns: new_columns = True for ii_value in df_with_signal[ii_column_name]: if not isinstance(ii_value, (float, int)): assert ii_value is "NaN" # At least one new column should have been added. Otherwise output is overriding input columns. if not new_columns: raise AssertionError( "No new columns were created by the signal function: ", df_with_signal.columns, " versus original of ", original_columns, )
5a4515092d778090a77ce5933ad2e79b4d62df36
1,889
def get_prev_day(d): """ Returns the date of the previous day. """ curr = date(*map(int, d.split('-'))) prev = curr - timedelta(days=1) return str(prev)
9195c0be4fc25a68b0bb94e953bafd407c5931a3
1,890
import types def copy_function(old_func, updated_module): """Copies a function, updating it's globals to point to updated_module.""" new_func = types.FunctionType(old_func.__code__, updated_module.__dict__, name=old_func.__name__, argdefs=old_func.__defaults__, closure=old_func.__closure__) new_func.__dict__.update(old_func.__dict__) new_func.__module__ = updated_module.__name__ return new_func
e09022f734faa1774a3ac592c0e12b0b007ae8e3
1,891
import random def get_random_color(): """ 获得一个随机的bootstrap颜色字符串标识 :return: bootstrap颜色字符串 """ color_str = [ 'primary', 'secondary', 'success', 'danger', 'warning', 'info', 'dark', ] return random.choice(color_str)
898814996aa5ada8f4000244887af382b8b9e1bc
1,892
def logged_run(cmd, buffer): """Return exit code.""" pid = Popen(cmd, stdout=PIPE, stderr=STDOUT) pid.wait() buffer.write(pid.stdout.read()) return pid.returncode
99a1aa4f8997ef7665a8e994b3df3d4ffe8a844b
1,894
import json def create_iam_role(iam_client): """Create an IAM role for the Redshift cluster to have read only access to S3. Arguments: iam_client (boto3.client) - IAM client Returns: role_arn (str) - ARN for the IAM Role """ # Create the role if it doesn't already exist. try: print('Creating IAM Role...') redshift_role = iam_client.create_role( Path="/", RoleName=IAM_ROLE_NAME, Description="Allows Redshift clusters to call AWS services", AssumeRolePolicyDocument=json.dumps( { 'Statement': [ { 'Action': 'sts:AssumeRole', 'Effect': 'Allow', 'Principal': {'Service': 'redshift.amazonaws.com'} } ], 'Version': '2012-10-17' } ) ) except Exception as e: print(e) # Attach the policy. try: iam_client.attach_role_policy( RoleName=IAM_ROLE_NAME, PolicyArn="arn:aws:iam::aws:policy/AmazonS3ReadonlyAccess" ) except Exception as e: print(e) # Return the Role ARN. role_arn = iam_client.get_role(RoleName=IAM_ROLE_NAME)['Role']['Arn'] print('Role ARN: %s' % role_arn) return role_arn
949026bae3edc1dacc5057427ecf3e21490bd9b8
1,897
import array def cone_face_to_span(F): """ Compute the span matrix F^S of the face matrix F, that is, a matrix such that {F x <= 0} if and only if {x = F^S z, z >= 0}. """ b, A = zeros((F.shape[0], 1)), -F # H-representation: A x + b >= 0 F_cdd = Matrix(hstack([b, A]), number_type=NUMBER_TYPE) F_cdd.rep_type = RepType.INEQUALITY P = Polyhedron(F_cdd) V = array(P.get_generators()) for i in xrange(V.shape[0]): if V[i, 0] != 0: # 1 = vertex, 0 = ray raise NotConeFace(F) return V[:, 1:].T
ae928e179085116fa8ac48fd01841458bdcd38ec
1,898
def neighborhood(index, npoints, maxdist=1): """ Returns the neighbourhood of the current index, = all points of the grid separated by up to *maxdist* from current point. @type index: int @type npoints: int @type maxdist int @rtype: list of int """ return [index + i for i in range(-maxdist, maxdist + 1) if i != 0 and 0 <= index + i <= npoints - 1]
98166d810daa6b99862a4c9f6d1629fdfa571bd0
1,899
def data_check(data): """Check the data in [0,1].""" return 0 <= float(data) <= 1
b292ef07a024e53d82e706f0d88d50d6318d6593
1,900
import re def tokenize(text): """ Tokenization function to process text data Args: text: String. disaster message. Returns: clean_tokens: list. token list from text message. """ url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' # get list of all urls using regex detected_urls = re.findall(url_regex, text) # replace each url in text string with placeholder for url in detected_urls: text = text.replace(url, "urlplaceholder") # tokenize text tokens = word_tokenize(text) # initiate lemmatizer lemmatizer = WordNetLemmatizer() # iterate through each token clean_tokens = [] for tok in tokens: # lemmatize, normalize case, and remove leading/trailing white space clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens
d5ee0929c0b6fad243b87c2b7e82270859b9b3f3
1,901
def get_symbol_historical(symbol_name): """Returns the available historical data for a symbol as a dictionary.""" # Get the data symbol_data = get_symbol_data(symbol_name) # Build the response response = symbol_data.to_dict(orient="records") return response
37578652a13ff2b705c46185aba8cd47a73dc6e0
1,902
def guesses(word): """ return all of the first and second order guesses for this word """ result = list(known(*first_order_variants(word))) result.sort() return result
9a74372e701d526d74df1df613b8648f47830202
1,903
def em(X, sf, inits, K, L, n_iter=100, n_inner_iter=50, tol=1e-5, zero_inflated=True): """ run EM algorithm on the given init centers return the clustering labels with the highest log likelihood """ # add prepare reduced data here print("start em algorithm") res = _em(X, sf, inits, K, L, n_iter, n_inner_iter, tol, zero_inflated) max_idx = np.argmax([r['llf'] for r in res]) sol = res[max_idx] em_labels = np.argmax(sol['rho'], axis=1).flatten() sol['labels'] = em_labels return sol
7a53c14caf56958fed80241bf347071b84a62280
1,904
def update_logger(evo_logger, x, fitness, memory, top_k, verbose=False): """ Helper function to keep track of top solutions. """ # Check if there are solutions better than current archive vals = jnp.hstack([evo_logger["top_values"], fitness]) params = jnp.vstack([evo_logger["top_params"], x]) concat_top = jnp.hstack([jnp.expand_dims(vals, 1), params]) sorted_top = concat_top[concat_top[:, 0].argsort()] # Importantly: Params are stored as flat vectors evo_logger["top_values"] = sorted_top[:top_k, 0] evo_logger["top_params"] = sorted_top[:top_k, 1:] evo_logger["log_top_1"].append(evo_logger["top_values"][0]) evo_logger["log_top_mean"].append(jnp.mean(evo_logger["top_values"])) evo_logger["log_top_std"].append(jnp.std(evo_logger["top_values"])) evo_logger["log_gen_1"].append(jnp.min(fitness)) evo_logger["log_gen_mean"].append(jnp.mean(fitness)) evo_logger["log_gen_std"].append(jnp.std(fitness)) evo_logger["log_sigma"].append(memory["sigma"]) evo_logger["log_gen"].append(memory["generation"]) if verbose: print(evo_logger["log_gen"][-1], evo_logger["top_values"]) return evo_logger
8efd1bbc4f0c1cde17e2ef425ae82cf3f5967df3
1,906
def ae(nb_features, input_shape, nb_levels, conv_size, nb_labels, enc_size, name='ae', prefix=None, feat_mult=1, pool_size=2, padding='same', activation='elu', use_residuals=False, nb_conv_per_level=1, batch_norm=None, enc_batch_norm=None, ae_type='conv', # 'dense', or 'conv' enc_lambda_layers=None, add_prior_layer=False, add_prior_layer_reg=0, use_logp=True, conv_dropout=0, include_mu_shift_layer=False, single_model=False, # whether to return a single model, or a tuple of models that can be stacked. final_pred_activation='softmax', do_vae=False): """ Convolutional Auto-Encoder. Optionally Variational. Optionally Dense middle layer "Mostly" in that the inner encoding can be (optionally) constructed via dense features. Parameters: do_vae (bool): whether to do a variational auto-encoder or not. enc_lambda_layers functions to try: K.softsign a = 1 longtanh = lambda x: K.tanh(x) * K.log(2 + a * abs(x)) """ # naming model_name = name # volume size data ndims = len(input_shape) - 1 if isinstance(pool_size, int): pool_size = (pool_size,) * ndims # get encoding model enc_model = conv_enc(nb_features, input_shape, nb_levels, conv_size, name=model_name, feat_mult=feat_mult, pool_size=pool_size, padding=padding, activation=activation, use_residuals=use_residuals, nb_conv_per_level=nb_conv_per_level, conv_dropout=conv_dropout, batch_norm=batch_norm) # middle AE structure if single_model: in_input_shape = None in_model = enc_model else: in_input_shape = enc_model.output.shape.as_list()[1:] in_model = None mid_ae_model = single_ae(enc_size, in_input_shape, conv_size=conv_size, name=model_name, ae_type=ae_type, input_model=in_model, batch_norm=enc_batch_norm, enc_lambda_layers=enc_lambda_layers, include_mu_shift_layer=include_mu_shift_layer, do_vae=do_vae) # decoder if single_model: in_input_shape = None in_model = mid_ae_model else: in_input_shape = mid_ae_model.output.shape.as_list()[1:] in_model = None dec_model = conv_dec(nb_features, in_input_shape, nb_levels, conv_size, nb_labels, name=model_name, feat_mult=feat_mult, pool_size=pool_size, use_skip_connections=False, padding=padding, activation=activation, use_residuals=use_residuals, final_pred_activation='linear', nb_conv_per_level=nb_conv_per_level, batch_norm=batch_norm, conv_dropout=conv_dropout, input_model=in_model) if add_prior_layer: dec_model = add_prior(dec_model, [*input_shape[:-1], nb_labels], name=model_name, prefix=model_name + '_prior', use_logp=use_logp, final_pred_activation=final_pred_activation, add_prior_layer_reg=add_prior_layer_reg) if single_model: return dec_model else: return (dec_model, mid_ae_model, enc_model)
ab5bbed13e5636ab506612776920eaffa67b8b3e
1,907
def parser_config(p): """JLS file info.""" p.add_argument('--verbose', '-v', action='store_true', help='Display verbose information.') p.add_argument('filename', help='JLS filename') return on_cmd
ea9e20fd055933d7e1b1b5f92da76875f7f318e6
1,910
def decentralized_training_strategy(communication_rounds, epoch_samples, batch_size, total_epochs): """ Split one epoch into r rounds and perform model aggregation :param communication_rounds: the communication rounds in training process :param epoch_samples: the samples for each epoch :param batch_size: the batch_size for each epoch :param total_epochs: the total epochs for training :return: batch_per_epoch, total_epochs with communication rounds r """ if communication_rounds >= 1: epoch_samples = round(epoch_samples / communication_rounds) total_epochs = round(total_epochs * communication_rounds) batch_per_epoch = round(epoch_samples / batch_size) elif communication_rounds in [0.2, 0.5]: total_epochs = round(total_epochs * communication_rounds) batch_per_epoch = round(epoch_samples / batch_size) else: raise NotImplementedError( "The communication round {} illegal, should be 0.2 or 0.5".format(communication_rounds)) return batch_per_epoch, total_epochs
3a743208af50d7c7865d5d5f86a4f58b0ba98a4d
1,911
def create_config_file_lines(): """Wrapper for creating the initial config file content as lines.""" lines = [ "[default]\n", "config_folder = ~/.zettelkasten.d\n", "\n", "def_author = Ammon, Mathias\n", "def_title = Config Parsed Test Title\n", "def_location_specifier = None\n", "\n", "location = ~/zettelkasten\n", "\n", "initial_folder_structure = \n", " lobby,\n", " %(sources_directory)s,\n", " _sources/audios,\n", " _sources/images,\n", " _sources/pdfs,\n", " _sources/videos\n", "\n", "name_sep = /\n", "\n", "required_attributes = \n", " uid,\n", " category,\n", " subcategory\n", "\n", "sources_directory = _sources\n", "\n", "styles_file = styles.cfg\n", "\n", "reserved_folder_names = \n", " lobby,\n", " %(sources_directory)s,\n", " pytest_dir,\n", " doctest_dir,\n", " .zettelkasten.d\n", "\n", "zettelkasten_bib_file = zettelkasten.bib\n", "\n", "[source_file_formats]\n", "audios = \n", " mp3,\n", " wav\n", "images = \n", " webp,\n", " jpg,\n", " jpeg,\n", " png\n", "pdfs =\n", " pdf,\n", " odt\n", "videos =\n", " mkv,\n", " webm,\n", " mp4\n", "\n", "[zettel_meta_attribute_defaults]\n", "# required for zettel adding to work \n", "category= None\n", "subcategory= None\n", "# optional\n", "author = Mathias Ammon\n", "topics =\n", "tags =\n", "doc = today\n", "\n", "[zettel_meta_attribute_labels]\n", "# required for zettel adding to work\n", "uid = #+Title:\n", "category = #+Category:\n", "subcategory = #+Subcategory:\n", "# optional\n", "author = #+Author:\n", "doc = #+DOC:\n", "dole = #+DOLE:\n", "topics = #+Topics:\n", "tags = #+Tags:\n", ] return lines
d0d1057c3f450636279a8df9d4a39977f1eeef42
1,912
def p_planes_tangent_to_cylinder(base_point, line_vect, ref_point, dist, ): """find tangent planes of a cylinder passing through a given point () .. image:: ../images/plane_tangent_to_one_cylinder.png :scale: 80 % :align: center Parameters ---------- base_point : point point M line_vect : vector direction of the existing bar's axis, direction [the other pt, base_pt], **direction very important!** ref_point : point point Q dist : float cylinder radius Returns ------- list of two [ref_point, local_y, local_x] local x = QB local_y // line_vect """ l_vect = normalize_vector(line_vect) tangent_pts = lines_tangent_to_cylinder(base_point, line_vect, ref_point, dist) if tangent_pts is None: return None base_pt, upper_tang_pt, lower_tang_pt = tangent_pts r1 = subtract_vectors(add_vectors(base_pt, upper_tang_pt), ref_point) r1 = normalize_vector(r1) r2 = subtract_vectors(add_vectors(base_pt, lower_tang_pt), ref_point) r2 = normalize_vector(r2) return [[ref_point, l_vect, r1], [ref_point, l_vect, r2]]
e8928e4314cadede97bef977c0348e32832157ad
1,913
def BOPTools_AlgoTools3D_OrientEdgeOnFace(*args): """ * Get the edge <aER> from the face <aF> that is the same as the edge <aE> :param aE: :type aE: TopoDS_Edge & :param aF: :type aF: TopoDS_Face & :param aER: :type aER: TopoDS_Edge & :rtype: void """ return _BOPTools.BOPTools_AlgoTools3D_OrientEdgeOnFace(*args)
31da8b90e4ad5838b94a0481d937104845de735c
1,914
def create_store_from_creds(access_key, secret_key, region, **kwargs): """ Creates a parameter store object from the provided credentials. Arguments: access_key {string} -- The access key for your AWS account secret_key {string} -- The secret key for you AWS account region {string} -- The region you wish to connect to Keyword Arguments (Optional): session='session' {string} -- The session token you wish to use. Returns: Object -- An AWS parameter store object. """ session = kwargs.get('session') if 'session' in kwargs else '' store = EC2ParameterStore( aws_access_key_id=access_key, aws_secret_access_key=secret_key, aws_session_token=session, #optional region_name=region ) return store
8e0ec2a6579a6013d36b6933ee922a406730ee35
1,915
import abc def are_objects_equal(object1, object2): """ compare two (collections of) arrays or other objects for equality. Ignores nan. """ if isinstance(object1, abc.Sequence): items = zip(object1, object2) elif isinstance(object1, dict): items = [(value, object2[key]) for key, value in object1.items()] else: items = [(object1, object2)] # equal_nan does not exist in array_equal in old numpy npy_major_version = tuple(int(v) for v in np.__version__.split('.')[:2]) if npy_major_version < (1, 19): fixed = [(np.nan_to_num(a1), np.nan_to_num(a2)) for a1, a2 in items] return np.all([np.all(a1 == a2) for a1, a2 in fixed]) try: return np.all( [np.array_equal(a1, a2, equal_nan=True) for a1, a2 in items] ) except TypeError: # np.array_equal fails for arrays of type `object` (e.g: strings) return np.all([a1 == a2 for a1, a2 in items])
94b4b9a9f42bc8b1dd44d5e010b422082452f649
1,916
def get_recipes_from_dict(input_dict: dict) -> dict: """Get recipes from dict Attributes: input_dict (dict): ISO_639_1 language code Returns: recipes (dict): collection of recipes for input language """ if not isinstance(input_dict, dict): raise TypeError("Input is not type dict") recipes = input_dict return recipes
e710d9629d10897d4aae7bf3d5de5dbbe18196c5
1,917
def tasks_from_wdl(wdl): """ Return a dictionary of tasks contained in a .wdl file. The values are task definitions within the wdl """ return scopes_from_wdl("task", wdl)
24d302995dcfa274b4b04868f901f832b36ec5cd
1,918
async def get_category_item_route(category_id: CategoryEnum, item_id: ObjectID, db: AsyncIOMotorClient = Depends(get_database)) -> ItemInResponse: """Get the details about a particular item""" _res = await db[category_id]["data"].find_one({"_id": item_id}) if _res: return ItemInResponse(data=_res) raise HTTPException( status_code=404, detail=f'ObjectID {item_id} not found in {category_id}')
4feed87e3948994f8066268820355d9fdfe4999d
1,920
def weighted_SVD(matrix, error=None, full_matrices=False): """ Finds the most important modes of the given matrix given the weightings given by the error. matrix a horizontal rectangular matrix error weighting applied to the dimension corresponding to the rows """ if type(error) is type(None): error = np.ones(matrix.shape[0]) expanded_error = error[:,np.newaxis] to_svd = matrix / expanded_error (SVD_U, SVD_S, SVD_V_transpose) =\ la.svd(to_svd, full_matrices=full_matrices) SVD_U = SVD_U * expanded_error return SVD_U, SVD_S, SVD_V_transpose.T
5ca0f54af765f0694fb572ee3b82f4d59642bb06
1,921
def ingredients(): """Route to list all ingredients currently in the database. """ query = request.args.get("q") ingredients = db.get_ingredient_subset_from_db(query) return jsonify(ingredients)
376bcb8e16c0379676f9748f4a2858ea39ca33ab
1,922
def read_h5_particles(particles_file, refpart, real_particles, bucket_length, comm, verbose): """Read an array of particles from an HDF-5 file""" four_momentum = refpart.get_four_momentum() pmass = four_momentum.get_mass() E_0 = four_momentum.get_total_energy() p0c = four_momentum.get_momentum() myrank = comm.get_rank() mpisize = comm.get_size() if myrank==0 and verbose: print("Loading particles from h5 file: ", particles_file) if myrank == 0: #h5 = tables.open_file(particles_file) h5 = h5py.File(particles_file) # use explicit int conversion otherwise there seems to # be a typepython->C++ type mismatch of numpy.int64->int #num_total_particles = int(h5.root.particles.shape[0]) num_total_particles = int(h5['particles'].shape[0]) if verbose: print("Total of ", num_total_particles, " particles from file") # broadcast num particles to all nodes MPI.COMM_WORLD.bcast(num_total_particles, root=0) else: num_total_particles = None num_total_particles = MPI.COMM_WORLD.bcast(num_total_particles, root=0) if myrank == 0: particles = h5['particles'] # make sure the data has the correct shape, either [n,6] without # particles IDs or [n,7] with particle IDs. if (particles.shape[1] != 7): raise RuntimeError, "input data shape %shas incorrect number of particle coordinates"%repr(particles.shape) #Note: Synergia bunch constructor updated - commit 077b99d7 - 11/17/2016 #Using old constructor throws an ArgumentError of a non-standard type. # Using a try and except to handle both instances. try: # try the original constructor bunch = synergia.bunch.Bunch( refpart, num_total_particles, real_particles, comm, bucket_length) except Exception, e: #look to see if it's an ArgumentError by evaluating the traceback if (not str(e).startswith("Python argument types in")): raise else: # use the new constructor if verbose: print("Using updated bunch constructor") bunch = synergia.bunch.Bunch( refpart, num_total_particles, real_particles, comm) # now set the new parameter 'z_period_length' if bucket_length is not None: bunch.set_z_period_length(bucket_length) else: bucket_length = 1. #fix this quantity local_num = bunch.get_local_num() local_particles = bunch.get_local_particles() # Each processor will have a possibly different number of local particles. # rank 0 has to find out how many each of them has and distribute them n_particles_by_proc = MPI.COMM_WORLD.gather(local_num, 0) if myrank == 0: # copy in my particles this_rank_start = 0 local_particles[:,:] = particles[0:local_num, :] this_rank_start += local_num # send particles out to other ranks for r in range(1, mpisize): this_rank_end = this_rank_start+n_particles_by_proc[r] MPI.COMM_WORLD.send(obj=particles[this_rank_start:this_rank_end, :], dest=r) this_rank_start += n_particles_by_proc[r] else: # I'm not rank 0. Receive my particles lp = MPI.COMM_WORLD.recv(source=0) local_particles[:,:] = lp[:,:] return bunch
caaeb89920b3cc9e0b263c9b1fea5fc1615ad8b3
1,923
import logging def readAndMapFile(path): """ Main file breaker - this takes a given file and breaks it into arbitrary fragments, returning and array of fragments. For simplicity, this is breaking on newline characters to start with. May have to be altered to work with puncuation and/or special characters as needed. """ splitLines = [] def mapper(line): strippedLine = line.strip() if (len(strippedLine) > 0): splitLines.append(strippedLine) with open(path, "r", encoding=FILE_ENCODING) as f: content = f.read() items = content.split("\n") for i in items: logging.info("n-gram length = {}".format(len(i))) mapper(i) logging.info("Read {} lines of text from {}".format(len(splitLines), path)) return splitLines
4a542d1a08fcd88a1660de360c15d87949eddf11
1,924
def fetch_git_logs(repo, from_date, to_date, args): # pragma: no cover """Fetch all logs from Gitiles for the given date range. Gitiles does not natively support time ranges, so we just fetch everything until the range is covered. Assume that logs are ordered in reverse chronological order. """ cursor = '' commit_date = to_date data = [] while cursor is not None: page = fetch_git_page(repo, cursor) logs = page.get('log', []) cursor = page.get('next') for log in logs: committer = log.get('committer', {}) commit_date = date_from_git(committer.get('time')) if not commit_date: continue if commit_date > to_date: continue if commit_date < from_date: break files = set() for entry in log.get('tree_diff', []): files.add(entry['old_path']) files.add(entry['new_path']) if args.path_filter_include: if not any(matches_path_filter(p, args.path_filter_include) for p in files): continue if args.path_filter_exclude: if any(matches_path_filter(p, args.path_filter_exclude) for p in files): continue data.append({ 'author': log.get('author', {}).get('email'), 'date': commit_date, 'commit-bot': bool('commit-bot' in committer.get('email', '')), 'revision': log.get('commit'), }) if commit_date < from_date: break return data
1164b373e9b8f7186165712f8ac9e5e3d1a1f10f
1,925
import torch def _gen_bfp_op(op, name, bfp_args): """ Do the 'sandwich' With an original op: out = op(x, y) grad_x, grad_y = op_grad(grad_out) To the following: x_, y_ = input_op(x, y) Where input_op(x, y) -> bfp(x), bfp(y) and input_op_grad(grad_x, grad_y) -> bfp(grad_x), bfp(grad_y) out_ = op(x_, y_) out = output_op(out) Where output_op(out) -> bfp(out) and output_op_grad(grad_out) -> bfp(grad_out) This way we garantee that everything in and out of the forward and backward operations is properly converted to bfp """ name = _get_op_name(name, **bfp_args) class NewOpIn(torch.autograd.Function): @staticmethod def forward(ctx, x, w): return (float_to_bfp_batched(x, backward=False, **bfp_args), w) @staticmethod def backward(ctx, grad_x, grad_w): return (grad_x, grad_w) NewOpIn.__name__ = name + '_In' new_op_in = NewOpIn.apply class NewOpOut(torch.autograd.Function): @staticmethod def forward(ctx, op_out): return op_out @staticmethod def backward(ctx, op_out_grad): return float_to_bfp_batched(op_out_grad, backward=True, **bfp_args) NewOpOut.__name__ = name + '_Out' new_op_out = NewOpOut.apply def new_op(x, w, *args, **kwargs): x, w = new_op_in(x, w) out = op(x, w, *args, **kwargs) return new_op_out(out) return new_op
d430bd9d090d0a47fa4d6a8c173c77b08e2fdb66
1,926
def angleaxis_to_rotation_matrix(aa): """Converts the 3 element angle axis representation to a 3x3 rotation matrix aa: numpy.ndarray with 1 dimension and 3 elements Returns a 3x3 numpy.ndarray """ angle = np.sqrt(aa.dot(aa)) if angle > 1e-6: c = np.cos(angle); s = np.sin(angle); u = np.array([aa[0]/angle, aa[1]/angle, aa[2]/angle]); R = np.empty((3,3)) R[0,0] = c+u[0]*u[0]*(1-c); R[0,1] = u[0]*u[1]*(1-c)-u[2]*s; R[0,2] = u[0]*u[2]*(1-c)+u[1]*s; R[1,0] = u[1]*u[0]*(1-c)+u[2]*s; R[1,1] = c+u[1]*u[1]*(1-c); R[1,2] = u[1]*u[2]*(1-c)-u[0]*s; R[2,0] = u[2]*u[0]*(1-c)-u[1]*s; R[2,1] = u[2]*u[1]*(1-c)+u[0]*s; R[2,2] = c+u[2]*u[2]*(1-c); else: R = np.eye(3) return R
57d849f137684824aa23d393802dc247df987b59
1,927
def sendOrderFAK(self, orderType, price, volume, symbol, exchange, stop=False): """发送委托""" if self.trading: # 如果stop为True,则意味着发本地停止单 req = {} req['sid'] = self.sid if orderType == CTAORDER_BUY: req['direction'] = '0' req['offset'] = '0' elif orderType == CTAORDER_SELL: req['direction'] = '1' req['offset'] = '1' elif orderType == CTAORDER_SELL_TODAY: req['direction'] = '1' req['offset'] = '3' elif orderType == CTAORDER_SHORT: req['direction'] = '1' req['offset'] = '0' elif orderType == CTAORDER_COVER: req['direction'] = '0' req['offset'] = '1' elif orderType == CTAORDER_COVER_TODAY: req['direction'] = '0' req['offset'] = '3' req['symbol'] = symbol req['volume'] = volume req['price'] = price req['hedgeflag'] = '1' req['ordertype'] = '1' req['exchange'] = exchange vtOrderID = ctaEngine.sendOrder(req) return vtOrderID else: return None # ----------------------------------------------------------------------
5b72ab3cdfa0b4412df2861d1e23a4a55f1d7206
1,928
import itertools def unique(lst): """ :param lst: a list of lists :return: a unique list of items appearing in those lists """ indices = sorted(list(range(len(lst))), key=lst.__getitem__) indices = set(next(it) for k, it in itertools.groupby(indices, key=lst.__getitem__)) return [x for i, x in enumerate(lst) if i in indices]
0848d693681ff0f8bdbc0d0436b3d4450eee781e
1,929
def max_frequency(sig, FS): """Compute max frequency along the specified axes. Parameters ---------- sig: ndarray input from which max frequency is computed. FS: int sampling frequency Returns ------- f_max: int 0.95 of max_frequency using cumsum. """ f, fs = plotfft(sig, FS, doplot=False) t = np.cumsum(fs) try: ind_mag = np.where(t > t[-1]*0.95)[0][0] except: ind_mag = np.argmax(t) f_max = f[ind_mag] return f_max
19321fb47d47b99138e1d1551f3728df4c2b7370
1,930
def split(text): """Turns the mobypron.unc file into a dictionary""" map_word_moby = {} try: lines = text.split("\n") for line in lines: (word, moby) = line.split(" ", 1) map_word_moby[word] = moby except IOError as error: print(f"Failed due to IOError: {error}") return map_word_moby
ba051724f0399e918949c3e8b7fb010e2d87c9f9
1,931
def report(key_name=None, priority=-1, **formatters): """ Use this decorator to indicate what returns to include in the report and how to format it """ def tag_with_report_meta_data(cls): # guard: prevent bad coding by catching bad return key if key_name and key_name not in cls.return_keys: raise Exception("Task %s does not specify %s using the @returns decorator. " "It cannot be used in @report" % (cls.name, key_name)) report_entry = { "key_name": key_name, 'priority': priority, 'formatters': formatters, } if not hasattr(cls, 'report_meta'): cls.report_meta = [] cls.report_meta.append(report_entry) return cls return tag_with_report_meta_data
3830135de40bdc2a25bd3c6b6cecc194c6dbebac
1,932
import scipy def calc_momentum_def(x_loc, X, Y, U): """ calc_momentum_def() : Calculates the integral momentum deficit of scalar field U stored at \ locations X,Y on a vertical line that runs nearest to x_loc. """ U_line, x_line, x_idx_line = get_line_quantity(x_loc, X, Y, U) y_line = Y[:,x_idx_line] return scipy.integrate.trapz(U_line*(1-U_line), y_line)
7173450ebd779c07a80cef2deb37954ddb7509be
1,933
def display_unit_title(unit, app_context): """Prepare an internationalized display for the unit title.""" course_properties = app_context.get_environ() template = get_unit_title_template(app_context) return template % {'index': unit.index, 'title': unit.title}
9d8ffbf0672388bd890aaabb8e5fbdb5e193d3d2
1,934
def load_user(user_id): """Load the user object from the user ID stored in the session""" return User.objects(pk=user_id).first()
96df8d5e21f380369ae0c6ccc404a4f7880bf000
1,935
def get_complex_replay_list(): """ For full replays that have crashed or failed to be converted :return: """ return [ 'https://cdn.discordapp.com/attachments/493849514680254468/496153554977816576/BOTS_JOINING_AND_LEAVING.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/496153569981104129/BOTS_NO_POSITION.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/496153605074845734/ZEROED_STATS.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/496180938968137749/FAKE_BOTS_SkyBot.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/497149910999891969/NEGATIVE_WASTED_COLLECTION.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/497191273619259393/WASTED_BOOST_WHILE_SUPER_SONIC.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/501630263881760798/OCE_RLCS_7_CARS.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/561300088400379905/crossplatform_party.replay' ]
ef5a75a848289ad9c129c2b73a6d6845dcd07cfe
1,936
import json def parse_registry(): """ Parses the provided registry.dat file and returns a dictionary of chunk file names and hashes. (The registry file is just a json dictionary containing a list of file names and hashes.) """ registry = request.values.get("registry", None) if registry is None: return None try: ret = json.loads(registry) except ValueError: return abort(400) if not isinstance(ret, dict): return abort(400) return ret
71d4cd0f2b9fb33b92861feb9ea882fc32ec7234
1,937
import math def get_cosine_with_hard_restarts_schedule_with_warmup(optim: Optimizer, num_warmup_step: float, num_training_step: int, num_cycles: float = 1., last_epoch: int = -1): """ get a scheduler with a linear warmup between ``[0, num_warmup_step)`` and then decreases it following a cosine function with several hard restarts. """ def lr_lambda(current_step): if current_step < num_warmup_step: return float(current_step) / float(max(1.0, num_warmup_step)) progress = float(current_step - num_warmup_step) / float(max(1, num_training_step - num_warmup_step)) if progress >= 1.0: return 0. return max(0., .5 * (1. + math.cos(math.pi * ((float(num_cycles) * progress) % 1.)))) return LambdaLR(optim, lr_lambda, last_epoch)
5327cb688885c8ecc271156364a06bffedd97775
1,938
import typing def home(): """ Render Homepage -------------------------------------------------------------- This site should be cached, because it is the main entry point for many users. """ bestseller: typing.List[Device] = get_bestsellers() specialist_manufacturers = Manufacturer.query.filter( (Manufacturer.name == "Samsung") | (Manufacturer.name == "Huawei") ).all() return render_template("shop/home.html", bestseller=bestseller, specialist_manufacturers=specialist_manufacturers)
ca452264e8a10af83e0cc7b5df592a9f618085ad
1,939
def reject_call(): """Ends the call when a user does not want to talk to the caller""" resp = twilio.twiml.Response() resp.say("I'm sorry, Mr. Baker doesn't want to talk to you. Goodbye scum.", voice='woman', language='en-GB') resp.hangup() return str(resp)
743e58b230a3a63df4c3e882139755b8d2c4bc55
1,940
def table_prep(data, columns=''): """ Data processor for table() function. You can call it separately as well and in return get a non-prettyfied summary table. Unless columns are defined, the three first columns are chosen by default. SYNTAX EXAMPLE: df['quality_score','influence_score','reach_score'] """ if data.shape[1] != 3: if len(columns) != 3: if data.shape[1] > 3: print("showing first three columns because no columns were \ specific / data had more than 3 columns") data = pd.DataFrame(data[data.columns[0:3]]) if data.shape[1] < 3: print("You need at least 3 columns of data for this table") quit() if len(columns) == 3: data = data[columns] desc = pd.DataFrame({'sum': data.sum().astype('int'), 'median': data.median(), 'mean': data.mean(), 'std': data.std()}) desc = desc.round(decimals=2) return desc
a9d3d75d2ac32ddf5ae4d5a17a10974b61c139ee
1,941
def lerp(a,b,t): """ Linear interpolation between from @a to @b as @t goes between 0 an 1. """ return (1-t)*a + t*b
12cb8690ba5e5f2a4c08c1cd29d3497513b63438
1,942
def convert_to_legacy_v3( game_tick_packet: game_data_struct.GameTickPacket, field_info_packet: game_data_struct.FieldInfoPacket = None): """ Returns a legacy packet from v3 :param game_tick_packet a game tick packet in the v4 struct format. :param field_info_packet a field info packet in the v4 struct format. Optional. If this is not supplied, none of the boost locations will be filled in. """ legacy_packet = GameTickPacket() legacy_packet.numBoosts = game_tick_packet.num_boost legacy_packet.numCars = game_tick_packet.num_cars for i in range(game_tick_packet.num_cars): convert_player_info(legacy_packet.gamecars[i], game_tick_packet.game_cars[i]) for i in range(game_tick_packet.num_boost): convert_boost_info(legacy_packet.gameBoosts[i], game_tick_packet.game_boosts[i]) if field_info_packet is not None: convert_vector(legacy_packet.gameBoosts[i].Location, field_info_packet.boost_pads[i].location) convert_ball_info(legacy_packet.gameball, game_tick_packet.game_ball) convert_game_info(legacy_packet.gameInfo, game_tick_packet.game_info) return legacy_packet
3e00e165233806957a010871c9218b1c02950063
1,943
import logging def _load_audio(audio_path, sample_rate): """Load audio file.""" global counter global label_names global start global end logging.info("Loading '%s'.", audio_path) try: lbl1=Alphabet[audio_path[-6]] lbl2 = Alphabet[audio_path[-5]] except: lbl1=1 + counter lbl2=2 + counter label_names=np.array([[lbl1,lbl2]]).astype(np.float32) counter = counter + 1 print('label names') print(audio_path) #print(audio_path[-6]+audio_path[-5]) print(label_names) beam.metrics.Metrics.counter('prepare-tfrecord', 'load-audio').inc() with tf.io.gfile.GFile(audio_path, 'rb') as f: audio_segment = ( pydub.AudioSegment.from_file(f) .set_channels(1).set_frame_rate(sample_rate)) audio = np.array(audio_segment.get_array_of_samples()).astype(np.float32) audio=audio[start:end] audio /= 2 ** (8 * audio_segment.sample_width) with tf.io.gfile.GFile(str(audio_path.replace("audio","audio_2")), 'rb') as sd: audio_segment_2 = ( pydub.AudioSegment.from_file(sd) .set_channels(1).set_frame_rate(sample_rate)) audio_2 = np.array(audio_segment_2.get_array_of_samples()).astype(np.float32) audio_2=audio_2[start:end] # Convert from int to float representation. audio_2 /= 2**(8 * audio_segment_2.sample_width) print('I am alive!') start = start + 64000 end = end + 64000 #print(audio) return {'audio': audio,'audio_2': audio_2}
5e8112c79164c800965f137c83ceb720aab17bdf
1,944
def generate_annotation_dict(annotation_file): """ Creates a dictionary where the key is a file name and the value is a list containing the - start time - end time - bird class. for each annotation in that file. """ annotation_dict = dict() for line in open(annotation_file): file_name, start_time, end_time, bird_class = line.strip().split('\t') if file_name not in annotation_dict: annotation_dict[file_name] = list() annotation_dict[file_name].append([start_time, end_time, bird_class]) return annotation_dict
f40f210075e65f3dbe68bb8a594deb060a23ad8b
1,945
def ishom(T, check=False, tol=100): """ Test if matrix belongs to SE(3) :param T: SE(3) matrix to test :type T: numpy(4,4) :param check: check validity of rotation submatrix :type check: bool :return: whether matrix is an SE(3) homogeneous transformation matrix :rtype: bool - ``ishom(T)`` is True if the argument ``T`` is of dimension 4x4 - ``ishom(T, check=True)`` as above, but also checks orthogonality of the rotation sub-matrix and validitity of the bottom row. .. runblock:: pycon >>> from spatialmath.base import * >>> import numpy as np >>> T = np.array([[1, 0, 0, 3], [0, 1, 0, 4], [0, 0, 1, 5], [0, 0, 0, 1]]) >>> ishom(T) >>> T = np.array([[1, 1, 0, 3], [0, 1, 0, 4], [0, 0, 1, 5], [0, 0, 0, 1]]) # invalid SE(3) >>> ishom(T) # a quick check says it is an SE(3) >>> ishom(T, check=True) # but if we check more carefully... >>> R = np.array([[1, 1, 0], [0, 1, 0], [0, 0, 1]]) >>> ishom(R) :seealso: :func:`~spatialmath.base.transformsNd.isR`, :func:`~isrot`, :func:`~spatialmath.base.transforms2d.ishom2` """ return ( isinstance(T, np.ndarray) and T.shape == (4, 4) and ( not check or ( base.isR(T[:3, :3], tol=tol) and np.all(T[3, :] == np.array([0, 0, 0, 1])) ) ) )
b4a0467d22940889e3071bf07d4a093d567409f3
1,946
def _get_stp_data(step_order=STEP_ORDER, n=N_PER_STEP): """Returns np.array of step-type enums data for sample data. Parameters ---------- step_order : list of (int, char) List of (Cycle number, step type code) for steps in sample procedure. n : int Number of datapoints per step. Returns ------- stp_data : np.array(int) """ return np.hstack([_get_step_stp_idx_data(step_code, n=n) for _, step_code in step_order])
d96a2604ac67e1a84ead39e0d2d39a5c6183a5cd
1,947
from typing import Union from typing import List def fuse_stride_arrays(dims: Union[List[int], np.ndarray], strides: Union[List[int], np.ndarray]) -> np.ndarray: """ Compute linear positions of tensor elements of a tensor with dimensions `dims` according to `strides`. Args: dims: An np.ndarray of (original) tensor dimensions. strides: An np.ndarray of (possibly permuted) strides. Returns: np.ndarray: Linear positions of tensor elements according to `strides`. """ return fuse_ndarrays([ np.arange(0, strides[n] * dims[n], strides[n], dtype=SIZE_T) for n in range(len(dims)) ])
06185cb0bcfccd30e7b006fa8fe4e28a6f5ae7f3
1,949
def extract_jasmine_summary(line): """ Example SUCCESS karma summary line: PhantomJS 2.1.1 (Linux 0.0.0): Executed 1 of 1 SUCCESS (0.205 secs / 0.001 secs) Exmaple FAIL karma summary line: PhantomJS 2.1.1 (Linux 0.0.0): Executed 1 of 1 (1 FAILED) ERROR (0.21 secs / 0.001 secs) """ # get totals totals = line.split(' Executed ')[1].split(' ') executed_tests, total_tests = int(totals[0]), int(totals[2]) # get failed if 'SUCCESS' in line: failed_tests = 0 else: failed_tests = int(totals[3][1:]) return { 'total_tests': total_tests, 'executed_tests': executed_tests, 'failed_tests': failed_tests, 'passed_tests': executed_tests - failed_tests }
f795ff015555cc3a2bd2d27527ae505a6dde9231
1,950