content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _check_molecule_format(val): """If it seems to be zmatrix rather than xyz format we convert before returning""" atoms = [x.strip() for x in val.split(";")] if atoms is None or len(atoms) < 1: # pylint: disable=len-as-condition raise QiskitNatureError("Molecule format error: " + val) # An xyz format has 4 parts in each atom, if not then do zmatrix convert # Allows dummy atoms, using symbol 'X' in zmatrix format for coord computation to xyz parts = [x.strip() for x in atoms[0].split(" ")] if len(parts) != 4: try: zmat = [] for atom in atoms: parts = [x.strip() for x in atom.split(" ")] z = [parts[0]] for i in range(1, len(parts), 2): z.append(int(parts[i])) z.append(float(parts[i + 1])) zmat.append(z) xyz = z2xyz(zmat) new_val = "" for atm in xyz: if atm[0].upper() == "X": continue if new_val: new_val += "; " new_val += f"{atm[0]} {atm[1]} {atm[2]} {atm[3]}" return new_val except Exception as exc: raise QiskitNatureError("Failed to convert atom string: " + val) from exc return val
d546251f02c6ee3bfe44256edff439ba4d3b4c31
2,418
def measure_area_perimeter(mask): """A function that takes either a segmented image or perimeter image as input, and calculates the length of the perimeter of a lesion.""" # Measure area: the sum of all white pixels in the mask image area = np.sum(mask) # Measure perimeter: first find which pixels belong to the perimeter. perimeter = measure.perimeter(mask) return area, perimeter
f443b7208c8c452480f0f207153afc5aa1f11d41
2,419
from typing import Any from unittest.mock import Mock def mock_object(**params: Any) -> "Mock": # type: ignore # noqa """creates an object using params to set attributes >>> option = mock_object(verbose=False, index=range(5)) >>> option.verbose False >>> option.index [0, 1, 2, 3, 4] """ return type("Mock", (), params)()
52140b52d29a424b3f16f0e26b03c19f4afbb0b4
2,421
def get_words(message): """Get the normalized list of words from a message string. This function should split a message into words, normalize them, and return the resulting list. For splitting, you should split on spaces. For normalization, you should convert everything to lowercase. Args: message: A string containing an SMS message Returns: The list of normalized words from the message. """ words = message.strip().split() norm_words = [word.lower() for word in words] # apply stop words nonstop_words = [word for word in norm_words if not word in stop_words] # apply stemming stem_words = [ps.stem(word) for word in nonstop_words] return stem_words
dec592d3574da70c27368c4642f5fa47d23b5225
2,422
def hasPathSum(self, root, sum): """ :type root: TreeNode :type sum: int :rtype: bool """ if root is None: return False if sum - root.val == 0 and root.left is None and root.right is None: return True else: return self.hasPathSum(root.left, sum - root.val) or self.hasPathSum(root.right, sum - root.val)
ffab5b8205aa9785c86ac365bd6e854319138627
2,424
def _(node: IntJoin, ctx: AnnotateContext) -> BoxType: """All references available on either side of the Join nodes are available.""" lt = box_type(node.over) rt = box_type(node.joinee) t = union(lt, rt) node.typ = t return t
c5d2c94f58c019399ebfcc431994ab339f317b0c
2,425
import json def detect_global_table_updates(record): """This will detect DDB Global Table updates that are not relevant to application data updates. These need to be skipped over as they are pure noise. :param record: :return: """ # This only affects MODIFY events. if record['eventName'] == 'MODIFY': # Need to compare the old and new images to check for GT specific changes only (just pop off the GT fields) old_image = remove_global_dynamo_specific_fields(record['dynamodb']['OldImage']) new_image = remove_global_dynamo_specific_fields(record['dynamodb']['NewImage']) if json.dumps(old_image, sort_keys=True) == json.dumps(new_image, sort_keys=True): return True return False
43d9cd6558b0e935a4e195e80932104699564230
2,426
from typing import List import warnings def fix_telecined_fades(clip: vs.VideoNode, tff: bool | int | None = None, thr: float = 2.2) -> vs.VideoNode: """ A filter that gives a mathematically perfect solution to fades made *after* telecining (which made perfect IVTC impossible). This is an improved version of the Fix-Telecined-Fades plugin that deals with overshoot/undershoot by adding a check. Make sure to run this *after* IVTC/deinterlacing! If the value surpases thr * original value, it will not affect any pixels in that frame to avoid it damaging frames it shouldn't need to. This helps a lot with orphan fields as well, which would otherwise create massive swings in values, sometimes messing up the fade fixing. If you pass your own float clip, you'll want to make sure to properly dither it down after. If you don't do this, you'll run into some serious issues! Taken from this gist and modified by LightArrowsEXE. <https://gist.github.com/blackpilling/bf22846bfaa870a57ad77925c3524eb1> :param clip: Input clip :param tff: Top-field-first. `False` sets it to Bottom-Field-First. If None, get the field order from the _FieldBased prop. :param thr: Threshold for when a field should be adjusted. Default is 2.2, which appears to be a safe value that doesn't cause it to do weird stuff with orphan fields. :return: Clip with only fades fixed """ def _ftf(n: int, f: List[vs.VideoFrame]) -> vs.VideoNode: avg = (get_prop(f[0], 'PlaneStatsAverage', float), get_prop(f[1], 'PlaneStatsAverage', float)) if avg[0] != avg[1]: mean = sum(avg) / 2 fixed = (sep[0].std.Expr(f"x {mean} {avg[0]} / dup {thr} <= swap 1 ? *"), sep[1].std.Expr(f"x {mean} {avg[1]} / *")) else: fixed = sep # type: ignore return core.std.Interleave(fixed).std.DoubleWeave()[::2] # I want to catch this before it reaches SeperateFields and give newer users a more useful error if get_prop(clip.get_frame(0), '_FieldBased', int) == 0 and tff is None: raise vs.Error("fix_telecined_fades: 'You must set `tff` for this clip!'") elif isinstance(tff, (bool, int)): clip = clip.std.SetFieldBased(int(tff) + 1) clip32 = depth(clip, 32).std.Limiter() bits = get_depth(clip) sep = clip32.std.SeparateFields().std.PlaneStats() sep = sep[::2], sep[1::2] # type: ignore # I know this isn't good, but frameeval breaks otherwise ftf = core.std.FrameEval(clip32, _ftf, sep) # and I don't know how or why if bits == 32: warnings.warn("fix_telecined_fades: 'Make sure to dither down BEFORE setting the FieldBased prop to 0! " "Not doing this MAY return some of the combing!'") else: ftf = depth(ftf, bits, dither_type=Dither.ERROR_DIFFUSION) ftf = ftf.std.SetFieldBased(0) return ftf
d28b78bdb65ffc0c1d354fbbde25391d7ce389b1
2,427
from typing import Union from typing import Optional from io import StringIO def compare_rdf(expected: Union[Graph, str], actual: Union[Graph, str], fmt: Optional[str] = "turtle") -> Optional[str]: """ Compare expected to actual, returning a string if there is a difference :param expected: expected RDF. Can be Graph, file name, uri or text :param actual: actual RDF. Can be Graph, file name, uri or text :param fmt: RDF format :return: None if they match else summary of difference """ def rem_metadata(g: Graph) -> IsomorphicGraph: # Remove list declarations from target for s in g.subjects(RDF.type, RDF.List): g.remove((s, RDF.type, RDF.List)) for t in g: if t[1] in (META.generation_date, META.source_file_date, META.source_file_size, TYPE.generation_date, TYPE.source_file_date, TYPE.source_file_size): g.remove(t) g_iso = to_isomorphic(g) return g_iso # Bypass compare if settings have turned it off if SKIP_RDF_COMPARE: print(f"tests/utils/compare_rdf.py: {SKIP_RDF_COMPARE_REASON}") return None expected_graph = to_graph(expected, fmt) expected_isomorphic = rem_metadata(expected_graph) actual_graph = to_graph(actual, fmt) actual_isomorphic = rem_metadata(actual_graph) # Graph compare takes a Looong time in_both, in_old, in_new = graph_diff(expected_isomorphic, actual_isomorphic) # if old_iso != new_iso: # in_both, in_old, in_new = graph_diff(old_iso, new_iso) old_len = len(list(in_old)) new_len = len(list(in_new)) if old_len or new_len: txt = StringIO() with redirect_stdout(txt): print("----- Missing Triples -----") if old_len: print_triples(in_old) print("----- Added Triples -----") if new_len: print_triples(in_new) return txt.getvalue() return None
f2e128e1c43c5c207e99c30bb32c14f4c4b71798
2,429
def start_engine(engine_name, tk, context): """ Creates an engine and makes it the current engine. Returns the newly created engine object. Example:: >>> import sgtk >>> tk = sgtk.sgtk_from_path("/studio/project_root") >>> ctx = tk.context_empty() >>> engine = sgtk.platform.start_engine('tk-maya', tk, ctx) >>> engine <Sgtk Engine 0x10451b690: tk-maya, env: shotgun> :param engine_name: Name of the engine to launch, e.g. tk-maya :param tk: :class:`~sgtk.Sgtk` instance to associate the engine with :param context: :class:`~sgtk.Context` object of the context to launch the engine for. :returns: :class:`Engine` instance :raises: :class:`TankEngineInitError` if an engine could not be started for the passed context. """ return _start_engine(engine_name, tk, None, context)
bb755d359f5a950aa182545803de0a1ca4d6aaee
2,430
def parse_vaulttext(b_vaulttext): """Parse the vaulttext. Args: b_vaulttext: A byte str containing the vaulttext (ciphertext, salt, crypted_hmac). Returns: A tuple of byte str of the ciphertext suitable for passing to a Cipher class's decrypt() function, a byte str of the salt, and a byte str of the crypted_hmac. Raises: AnsibleVaultFormatError: If the vaulttext format is invalid. """ # SPLIT SALT, DIGEST, AND DATA try: return _parse_vaulttext(b_vaulttext) except AnsibleVaultFormatError: raise except Exception as exc: raise AnsibleVaultFormatError(f'Vault vaulttext format error: {exc}')
1b1b6e2aaf1893401d93f750248892ffebae26a6
2,431
import sqlite3 def does_column_exist_in_db(db, table_name, col_name): """Checks if a specific col exists""" col_name = col_name.lower() query = f"pragma table_info('{table_name}');" all_rows = [] try: db.row_factory = sqlite3.Row # For fetching columns by name cursor = db.cursor() cursor.execute(query) all_rows = cursor.fetchall() except sqlite3.Error as ex: print(f'Query error, query={query} Error={ex}') for row in all_rows: if row['name'].lower() == col_name: return True return False
90abc20c9643e93641e37c0e94fd504cbcf09928
2,432
import hmac def make_secure_val(val): """Takes hashed pw and adds salt; this will be the cookie""" return '%s|%s' % (val, hmac.new(secret, val).hexdigest())
6b29f5f3a447bca73ac02a1d7843bdbb6d982db9
2,433
import random def get_ad_contents(queryset): """ Contents의 queryset을 받아서 preview video가 존재하는 contents를 랜덤으로 1개 리턴 :param queryset: Contents queryset :return: contents object """ contents_list = queryset.filter(preview_video__isnull=False) max_int = contents_list.count() - 1 if max_int < 0: return while True: idx = random.randint(0, max_int) contents = contents_list[idx] if contents: return contents
233d1e5f736a9cff38731dd292d431f098bee17a
2,434
def Image_CanRead(*args, **kwargs): """ Image_CanRead(String filename) -> bool Returns True if the image handlers can read this file. """ return _core_.Image_CanRead(*args, **kwargs)
f82e31860480611baf6a5f920515466c0d37acab
2,435
def flatten(lst): """Flatten a list.""" return [y for l in lst for y in flatten(l)] if isinstance(lst, (list, np.ndarray)) else [lst]
0aed241d06725dee9a99512ab2ea5c3f6c02008d
2,436
def calc_mean_score(movies): """Helper method to calculate mean of list of Movie namedtuples, round the mean to 1 decimal place""" ratings = [m.score for m in movies] mean = sum(ratings) / max(1, len(ratings)) return round(mean, 1)
6f837ff251e6221227ba4fa7da752312437da90f
2,437
def srun(hosts, cmd, srun_params=None): """Run srun cmd on slurm partition. Args: hosts (str): hosts to allocate cmd (str): cmdline to execute srun_params(dict): additional params for srun Returns: CmdResult: object containing the result (exit status, stdout, etc.) of the srun command """ cmd = srun_str(hosts, cmd, srun_params) try: result = run_command(cmd, timeout=30) except DaosTestError as error: result = None raise SlurmFailed("srun failed : {}".format(error)) return result
2e339d90c2de4b1ae81f7e4671c1f726a725a68c
2,438
def COSclustering(key, emb, oracle_num_speakers=None, max_num_speaker=8, MIN_SAMPLES=6): """ input: key (str): speaker uniq name emb (np array): speaker embedding oracle_num_speaker (int or None): oracle number of speakers if known else None max_num_speakers (int): maximum number of clusters to consider for each session MIN_SAMPLES (int): minimum number of samples required for NME clustering, this avoids zero p_neighbour_lists. Default of 6 is selected since (1/rp_threshold) >= 4. output: Y (List[int]): speaker labels """ est_num_spks_out_list = [] mat = get_eigen_matrix(emb) if oracle_num_speakers: max_num_speaker = oracle_num_speakers X_conn_spkcount, rp_thres_spkcount, est_num_of_spk, lambdas, p_neigh = NMEanalysis(mat, max_num_speaker) if emb.shape[0] > MIN_SAMPLES: X_conn_from_dist = get_X_conn_from_dist(mat, p_neigh) else: X_conn_from_dist = mat if oracle_num_speakers: est_num_of_spk = oracle_num_speakers est_num_spks_out_list.append([key, str(est_num_of_spk)]) # Perform spectral clustering spectral_model = sklearn_SpectralClustering( affinity='precomputed', eigen_solver='amg', random_state=0, n_jobs=-1, n_clusters=est_num_of_spk, eigen_tol=1e-10, ) Y = spectral_model.fit_predict(X_conn_from_dist) return Y
a3b967251683da1e29004a937625d7006a0519ed
2,439
import torch def gauss_distance(sample_set, query_set, unlabeled_set=None): """ (experimental) function to try different approaches to model prototypes as gaussians Args: sample_set: features extracted from the sample set query_set: features extracted from the query set query_set: features extracted from the unlabeled set """ b, n, k, c = sample_set.size() sample_set_std = sample_set.std(2).view(b, 1, n, c) sample_set_mean = sample_set.mean(2).view(b, 1, n, c) query_set = query_set.view(b, n * k, 1, c) d = (query_set - sample_set_mean) / sample_set_std return -torch.sum(d ** 2, 3) / np.sqrt(c)
b7583988d79d70bda9c3ab6ee0690042645ed714
2,440
def make_mps_left(mps,truncate_mbd=1e100,split_s=False): """ Put an mps into left canonical form Args: mps : list of mps tensors The MPS stored as a list of mps tensors Kwargs: truncate_mbd : int The maximum bond dimension to which the mps should be truncated Returns: mps : list of mps tensors The resulting left-canonicalized MPS """ # Figure out size of mps N = len(mps) # Loop backwards for site in range(N-1): #tmpprint('\t\t\t\tSite: {}'.format(site)) mps = move_gauge_right(mps,site, truncate_mbd=truncate_mbd, return_ent=False, return_wgt=False, split_s=split_s) # Remove empty indices at the ends of the mps mps = remove_empty_ends(mps) # Return results return mps
f2de408b82877050bf24a822c54b4520dad40f2e
2,441
def word_after(line, word): """'a black sheep', 'black' -> 'sheep'""" return line.split(word, 1)[-1].split(' ', 1)[0]
cfa16244d00af8556d7955b7edeb90bac0a213ba
2,442
def domain_in_domain(subdomain, domain): """Returns try if subdomain is a sub-domain of domain. subdomain A *reversed* list of strings returned by :func:`split_domain` domain A *reversed* list of strings as returned by :func:`split_domain` For example:: >>> domain_in_domain(['com', 'example'], ... ['com', 'example', 'www']) True""" if len(subdomain) <= len(domain): i = 0 for d in subdomain: if d != domain[i]: return False i += 1 return True else: return False
cb1b3a3f899f13c13d4168c88ca5b9d4ee345e47
2,443
def polygon_from_boundary(xs, ys, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0, xtol=0.0): """Polygon within box left of boundary given by (xs, ys) xs, ys: coordinates of boundary (ys ordered increasingly) """ xs = np.asarray(xs) ys = np.asarray(ys) xs[xs > xmax-xtol] = xmax xs[xs < xmin+xtol] = xmin index = -1 while xs[index] == xmin: index -= 1 if index < -2: xs, ys = xs[:index+2], ys[:index+2] vertices = zip(xs, ys) if len(xs) == 1: vertices.append((xs[0], ymax)) vertices.append((xmin, ymax)) elif xs[-1] >= xmax-xtol: if xs[-1] < xmax: vertices.append((xmax, ys[-1])) if ys[-1] < ymax: vertices.append((xmax, ymax)) vertices.append((xmin, ymax)) elif xs[-1] > xmin: vertices.append((xmin, ys[-1])) if (xs[0] > xmin) or (ys[0] > ymin): vertices.append((xmin, ymin)) if ys[0] > ymin: vertices.append((xs[0], ymin)) vertices = np.asarray(vertices) return vertices
4e75cd8b11038432224836b427658226d4c820d7
2,444
def is_degenerate(op, tol=1e-12): """Check if operator has any degenerate eigenvalues, determined relative to mean spacing of all eigenvalues. Parameters ---------- op : operator or 1d-array Operator or assumed eigenvalues to check degeneracy for. tol : float How much closer than evenly spaced the eigenvalue gap has to be to count as degenerate. Returns ------- n_dgen : int Number of degenerate eigenvalues. """ op = np.asarray(op) if op.ndim != 1: evals = eigvalsh(op) else: evals = op l_gaps = evals[1:] - evals[:-1] l_tol = tol * (evals[-1] - evals[0]) / op.shape[0] return np.count_nonzero(abs(l_gaps) < l_tol)
2d2672c711c1e4320de151484cdeb7463cf0abd8
2,445
def _get_skip_props(mo, include_operational=False, version_filter=True): """ Internal function to skip mo property if not to be considered for sync. """ skip_props = [] for prop in mo.prop_meta: mo_property_meta = mo.prop_meta[prop] if mo_property_meta is None: continue # not include operational property if not include_operational: if mo_property_meta.access in (MoPropertyMeta.INTERNAL, MoPropertyMeta.READ_ONLY): skip_props.append(prop) # checks if property is part of current or earlier ucsm schema if version_filter: version = mo.get_handle().version if version is None or version < mo_property_meta.version or \ mo_property_meta.access == MoPropertyMeta.INTERNAL: skip_props.append(prop) return skip_props
dd24798c84f47a954eb324092c3cfb46c23a062e
2,446
def generate_split_problem(): """Generates a 'Split' problem configuration. Returns (environment, robot, start configuration, goal configuration).""" walls = [rectangle(0, 400, 0, 10), rectangle(0, 400, 290, 300), rectangle(0, 10, 0, 300), rectangle(390, 400, 0, 300), rectangle(180, 220, 100, 200)] split_environment = Environment(walls) robot_geometry = Polygon([(-15, -15), (-15, 15), (15, 15), (15, -15)]) robot = Robot(robot_geometry) start = np.array([50, 150, 0]) goal = np.array([350, 150, 0]) return split_environment, robot, start, goal
a2a3ab0495dcf5a109ed2eb2e92bb0db424edd53
2,447
def problem_generator(difficulty=3): """ This function generates mathematical expressions as string. It is not very smart and will generate expressions that have answers the lex function cannot accept. """ operators = ["/", "*", "+", "-"] numeric_lim = difficulty * 7 output = "" for i in range(difficulty + 3): if i % 2 == 0: output += str(randint(1, numeric_lim)) + " " else: output += operators[randint(0, len(operators) - 1)] + " " if output[len(output) - 2] in operators: output += str(randint(1, numeric_lim)) return output
f1859784a065a22adb83c33d46623fcafa470096
2,448
from typing import Tuple import math def logical_factory_dimensions(params: Parameters ) -> Tuple[int, int, float]: """Determine the width, height, depth of the magic state factory.""" if params.use_t_t_distillation: return 12*2, 8*2, 6 # Four T2 factories l1_distance = params.l1_distance l2_distance = params.code_distance t1_height = 4 * l1_distance / l2_distance t1_width = 8 * l1_distance / l2_distance t1_depth = 5.75 * l1_distance / l2_distance ccz_depth = 5 ccz_height = 6 ccz_width = 3 storage_width = 2 * l1_distance / l2_distance ccz_rate = 1 / ccz_depth t1_rate = 1 / t1_depth t1_factories = int(math.ceil((ccz_rate * 8) / t1_rate)) t1_factory_column_height = t1_height * math.ceil(t1_factories / 2) width = int(math.ceil(t1_width * 2 + ccz_width + storage_width)) height = int(math.ceil(max(ccz_height, t1_factory_column_height))) depth = max(ccz_depth, t1_depth) return width, height, depth
95846f5f58e5c342ca81b3f51a9bacfb31bf777a
2,449
def data(): """ Data providing function: This function is separated from create_model() so that hyperopt won't reload data for each evaluation run. """ d_file = 'data/zinc_100k.h5' data_train, data_test, props_train, props_test, tokens = utils.load_dataset(d_file, "TRANSFORMER", True) x_train = [data_train, data_train, props_train] y_train = None x_test = [data_test, data_test, props_test] y_test = None return x_train, y_train, x_test, y_test
354ace6fdfc9f8f9ec0702ea8a0a03853b8d7f49
2,451
def mongos_program(logger, job_num, executable=None, process_kwargs=None, mongos_options=None): # pylint: disable=too-many-arguments """Return a Process instance that starts a mongos with arguments constructed from 'kwargs'.""" args = [executable] mongos_options = mongos_options.copy() if "port" not in mongos_options: mongos_options["port"] = network.PortAllocator.next_fixture_port(job_num) suite_set_parameters = mongos_options.get("set_parameters", {}) _apply_set_parameters(args, suite_set_parameters) mongos_options.pop("set_parameters") # Apply the rest of the command line arguments. _apply_kwargs(args, mongos_options) _set_keyfile_permissions(mongos_options) process_kwargs = make_historic(utils.default_if_none(process_kwargs, {})) return make_process(logger, args, **process_kwargs), mongos_options["port"]
a342db697d39e48ea0261e5ddfd89bdd99b6dced
2,453
def markerBeings(): """标记众生区块 Content-Type: application/json { "token":"", "block_id":"" } 返回 json { "is_success":bool, "data": """ try: info = request.get_json() # 验证token token = info["token"] if not auth.verifyToken(token): http_message = HttpMessage(is_success=False, data="Token无效") return http_message.getJson() # 获取列表 beings_block_id = info["block_id"] if blockOfGarbage.addGarbageBlockQueue(beings_block_id): http_message = HttpMessage(is_success=True, data="标记成功") return http_message.getJson() else: http_message = HttpMessage(is_success=False, data="该区块已经被标记") return http_message.getJson() except Exception as err: print(err) http_message = HttpMessage(is_success=False, data="参数错误") return http_message.getJson()
20b73bec5f6c27e365a90fe466e34445592f2bd3
2,454
def get_charges_with_openff(mol): """Starting from a openff molecule returns atomic charges If the charges are already defined will return them without change I not will calculate am1bcc charges Parameters ------------ mol : openff.toolkit.topology.Molecule Examples --------- from openff.toolkit.topology import Molecule mol = Molecule.from_file(SOME_FILE) # mol = Molecule.from_smiles(SMILES) get_charges_with_openff(mol) Returns ------------ np.array(float) charges in atomic units (elementary charge) Notes ---------- Some extra conformers may be generated because of https://github.com/openforcefield/openff-toolkit/issues/492 """ if (mol.partial_charges is None) or (np.allclose( mol.partial_charges / unit.elementary_charge, np.zeros([mol.n_particles]))): # NOTE: generate_conformers seems to be required for some molecules # https://github.com/openforcefield/openff-toolkit/issues/492 mol.generate_conformers(n_conformers=10) mol.compute_partial_charges_am1bcc() return mol.partial_charges.value_in_unit(unit.elementary_charge)
fa539ef60fda28a4983d632830f3a8ea813f5486
2,455
def parse_mdout(file): """ Return energies from an AMBER ``mdout` file. Parameters ---------- file : os.PathLike Name of Amber output file Returns ------- energies : dict A dictionary containing VDW, electrostatic, bond, angle, dihedral, V14, E14, and total energy. """ vdw, ele, bnd, ang, dih, v14, e14 = [], [], [], [], [], [], [] restraint = [] with open(file, "r") as f: for line in f.readlines(): words = line.rstrip().split() if len(words) > 1: if "BOND" in words[0]: bnd.append(float(words[2])) ang.append(float(words[5])) dih.append(float(words[8])) if "VDWAALS" in words[0]: vdw.append(float(words[2])) ele.append(float(words[5])) if "1-4" in words[0]: v14.append(float(words[3])) e14.append(float(words[7])) restraint.append(float(words[10])) energies = { "Bond": bnd, "Angle": ang, "Dihedral": dih, "V14": v14, "E14": e14, "VDW": vdw, "Ele": ele, "Restraint": restraint, "Total": [sum(x) for x in zip(bnd, ang, dih, v14, e14, vdw, ele)], } return energies
9310b0220d4b96b65e3484adf49edebda039dfad
2,456
from propy.AAComposition import GetSpectrumDict from typing import Optional from typing import List def aa_spectrum( G: nx.Graph, aggregation_type: Optional[List[str]] = None ) -> nx.Graph: """ Calculate the spectrum descriptors of 3-mers for a given protein. Contains the composition values of 8000 3-mers :param G: Protein Graph to featurise :type G: nx.Graph :param aggregation_type: Aggregation types to use over chains :type aggregation_type: List[Optional[str]] :return: Protein Graph with aa_spectrum feature added. G.graph["aa_spectrum_{chain | aggregation_type}"] :rtype: nx.Graph """ func = GetSpectrumDict feature_name = "aa_spectrum" return compute_propy_feature( G, func=func, feature_name=feature_name, aggregation_type=aggregation_type, )
dfd657452fda009c4420566f1456dc4bd32271ac
2,457
import hashlib def get_click_data(api, campaign_id): """Return a list of all clicks for a given campaign.""" rawEvents = api.campaigns.get(campaign_id).as_dict()["timeline"] clicks = list() # Holds list of all users that clicked. for rawEvent in rawEvents: if rawEvent["message"] == "Clicked Link": click = dict() # Builds out click document. click["user"] = hashlib.sha256( rawEvent["email"].encode("utf-8") ).hexdigest() click["source_ip"] = rawEvent["details"]["browser"]["address"] click["time"] = rawEvent["time"] click["application"] = get_application(rawEvent) clicks.append(click) return clicks
641836d73b2c5b2180a98ffc61d0382be74d2618
2,458
def multi_label_column_to_binary_columns(data_frame: pd.DataFrame, column: str): """ assuming that the column contains array objects, returns a new dataframe with binary columns (True/False) indicating presence of each distinct array element. :data_frame: the pandas DataFrame :column: the column with array values :return: a new DataFrame with binary columns """ label_unique_values = data_frame[column].str.replace( "'", '').str.split(',').explode().to_frame() drop_identical_values = label_unique_values[column].drop_duplicates( keep="first").tolist() multi_label_data_frame = pd.concat([data_frame, pd.crosstab(label_unique_values.index, label_unique_values[column])[drop_identical_values]], axis=1) return multi_label_data_frame
ab626530181740fc941e8efbbaf091bc06f0a0d8
2,459
def _GetBuilderPlatforms(builders, waterfall): """Get a list of PerfBuilder objects for the given builders or waterfall. Otherwise, just return all platforms. """ if builders: return {b for b in bot_platforms.ALL_PLATFORMS if b.name in builders} elif waterfall == 'perf': return bot_platforms.OFFICIAL_PLATFORMS elif waterfall == 'perf-fyi': return bot_platforms.FYI_PLATFORMS else: return bot_platforms.ALL_PLATFORMS
f6d7e636bcbd941b1dde8949c68be295e0aef227
2,462
def meeting_guide(context): """ Display the ReactJS drive Meeting Guide list. """ settings = get_meeting_guide_settings() json_meeting_guide_settings = json_dumps(settings) return { "meeting_guide_settings": json_meeting_guide_settings, "mapbox_key": settings["map"]["key"], "timezone": settings["timezone"], }
46d8d20fcb2bd4dacd45a510f51eaea292da0da6
2,463
import multiprocessing def generate_input_fn(file_path, shuffle, batch_size, num_epochs): """Generates a data input function. Args: file_path: Path to the data. shuffle: Boolean flag specifying if data should be shuffled. batch_size: Number of records to be read at a time. num_epochs: Number of times to go through all of the records. Returns: A function useed by `Estimator` to read data. """ def _input_fn(): """Returns features and target from input data. Defines the input dataset, specifies how to read the data, and reads it. Returns: A tuple os a dictionary containing the features and the target. """ num_threads = multiprocessing.cpu_count() dataset = tf.data.TextLineDataset(filenames=[file_path]) dataset = dataset.skip(1) dataset = dataset.map(lambda x: parse_csv( tf.expand_dims(x, -1)), num_parallel_calls=num_threads) dataset = dataset.map(get_features_target_tuple, num_parallel_calls=num_threads) if shuffle: dataset = dataset.shuffle(SHUFFLE_BUFFER_SIZE) dataset = dataset.batch(batch_size) dataset = dataset.repeat(num_epochs) dataset = dataset.prefetch(1) iterator = dataset.make_one_shot_iterator() features, target = iterator.get_next() return features, target return _input_fn
abf9dd66000eca392344f9663fa8418b9e596098
2,464
import numpy def amp_phase_to_complex(lookup_table): """ This constructs the function to convert from AMP8I_PHS8I format data to complex64 data. Parameters ---------- lookup_table : numpy.ndarray Returns ------- callable """ _validate_lookup(lookup_table) def converter(data): if not isinstance(data, numpy.ndarray): raise ValueError('requires a numpy.ndarray, got {}'.format(type(data))) if data.dtype.name != 'uint8': raise ValueError('requires a numpy.ndarray of uint8 dtype, got {}'.format(data.dtype.name)) if len(data.shape) == 3: raise ValueError('Requires a three-dimensional numpy.ndarray (with band ' 'in the last dimension), got shape {}'.format(data.shape)) out = numpy.zeros((data.shape[0], data.shape[1], data.shape[2]/2), dtype=numpy.complex64) amp = lookup_table[data[:, :, 0::2]] theta = data[:, :, 1::2]*(2*numpy.pi/256) out.real = amp*numpy.cos(theta) out.imag = amp*numpy.sin(theta) return out return converter
dea38027654a5a2b6ab974943dbdc57b36835a8e
2,465
from operator import concat def combine_aqs_cmaq(model, obs): """Short summary. Parameters ---------- model : type Description of parameter `model`. obs : type Description of parameter `obs`. Returns ------- type Description of returned object. """ g = obs.df.groupby('Species') comparelist = sort(obs.df.Species.unique()) dfs = [] for i in comparelist: if (i == 'OZONE'): # & ('O3' in model.keys): print('Interpolating Ozone:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='O3', aqs_param=i) print(fac) cmaq = model.get_var(lay=0, param='O3').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) # df.Obs, df.CMAQ = df.Obs, df.CMAQ df.Units = 'PPB' dfs.append(df) elif i == 'PM2.5': if ('PM25_TOT' in model.keys) | ('ASO4J' in model.keys): print('Interpolating PM2.5:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='PM25', aqs_param=i) cmaq = model.get_var(lay=0, param='PM25').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'CO': if 'CO' in model.keys: print('Interpolating CO:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='CO', aqs_param=i) cmaq = model.get_var(lay=0, param='CO').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NOY': if 'NOY' in model.keys: print('Interpolating NOY:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NOY', aqs_param=i) cmaq = model.get_var(lay=0, param='NOY').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'SO2': if 'SO2' in model.keys: print('Interpolating SO2') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='SO2', aqs_param=i) cmaq = model.get_var(lay=0, param='SO2').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NOX': if ('NO' in model.keys) | ('NO2' in model.keys): print('Interpolating NOX:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NOX', aqs_param=i) cmaq = model.get_var(lay=0, param='NOX').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NO': if ('NO' in model.keys): print('Interpolating NO:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NO', aqs_param=i) cmaq = model.get_var(lay=0, param='NO').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NO2': if ('NO2' in model.keys): print('Interpolating NO2:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NO2', aqs_param=i) cmaq = model.get_var(lay=0, param='NO2').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'SO4f': if ('PM25_SO4' in model.keys) | ('ASO4J' in model.keys) | ('ASO4I' in model.keys): print('Interpolating PSO4:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='SO4f', aqs_param=i) cmaq = model.get_var(lay=0, param='SO4f').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'PM10': if ('PM_TOTAL' in model.keys) or ('ASO4K' in model.keys): print('Interpolating PM10:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='PM10', aqs_param=i) cmaq = model.get_var(lay=0, param='PM10').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'NO3f': if ('PM25_NO3' in model.keys) | ('ANO3J' in model.keys) | ('ANO3I' in model.keys): print('Interpolating PNO3:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='NO3f', aqs_param=i) cmaq = model.get_var(lay=0, param='NO3F').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'ECf': if ('PM25_EC' in model.keys) | ('AECI' in model.keys) | ('AECJ' in model.keys): print('Interpolating PEC:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='ECf', aqs_param=i) cmaq = model.get_var(lay=0, param='ECf').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'OCf': if ('APOCJ' in model.keys): print('Interpolating OCf:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='OCf', improve_param=i) cmaqvar = model.get_var(lay=0, param='OC').compute() * fac df = interpo.interp_to_obs(cmaqvar, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'ETHANE': if ('ETHA' in model.keys): print('Interpolating Ethane:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='ETHA', aqs_param=i) cmaq = model.get_var(lay=0, param='ETHA').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'BENZENE': if ('BENZENE' in model.keys): print('Interpolating BENZENE:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='BENZENE', aqs_param=i) cmaq = model.get_var(lay=0, param='BENZENE').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'TOLUENE': if ('TOL' in model.keys): print('Interpolating Toluene:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='TOL', aqs_param=i) cmaq = model.get_var(lay=0, param='TOL').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'ISOPRENE': if ('ISOP' in model.keys): print('Interpolating Isoprene:') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='ISOP', aqs_param=i) cmaq = model.get_var(lay=0, param='ISOP').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'O-XYLENE': if ('XYL' in model.keys): print('Interpolating Xylene') df = g.get_group(i) fac = epa_util.check_cmaq_units(df, param='XYL', aqs_param=i) cmaq = model.get_var(lay=0, param='XYL').compute() * fac df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'WS': if ('WSPD10' in model.keys): print('Interpolating WS:') df = g.get_group(i) cmaq = model.get_var(lay=0, param='WSPD10') df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'TEMP': if 'TEMP2' in model.keys: print('Interpolating TEMP:') df = g.get_group(i) cmaq = model.get_var(lay=0, param='TEMP2') df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) elif i == 'WD': if ('WDIR10' in model.keys): print('Interpolating WD:') df = g.get_group(i) cmaq = model.get_var(lay=0, param='WDIR10') df = interpo.interp_to_obs(cmaq, df, model.latitude.values, model.longitude.values, radius=model.dset.XCELL) dfs.append(df) df = concat(dfs) df.dropna(subset=['Obs', 'model'], inplace=True) return df
bbc6ba6faf0f580d35674a912c245349d00d2a95
2,466
def read_1d_spikes(filename): """Reads one dimensional binary spike file and returns a td_event event. The binary file is encoded as follows: * Each spike event is represented by a 40 bit number. * First 16 bits (bits 39-24) represent the neuronID. * Bit 23 represents the sign of spike event: 0=>OFF event, 1=>ON event. * the last 23 bits (bits 22-0) represent the spike event timestamp in microseconds. Parameters ---------- filename : str name of spike file. Returns ------- Event spike event. Examples -------- >>> td_event = read_1d_spikes(file_path) """ with open(filename, 'rb') as input_file: input_byte_array = input_file.read() input_as_int = np.asarray([x for x in input_byte_array]) x_event = (input_as_int[0::5] << 8) | input_as_int[1::5] c_event = input_as_int[2::5] >> 7 t_event = ( (input_as_int[2::5] << 16) | (input_as_int[3::5] << 8) | (input_as_int[4::5]) ) & 0x7FFFFF # convert spike times to ms return Event(x_event, None, c_event, t_event / 1000)
034d6de1e38734fcfe131027956d781752163c33
2,468
def _parse_step_log(lines): """Parse the syslog from the ``hadoop jar`` command. Returns a dictionary which potentially contains the following keys: application_id: a string like 'application_1449857544442_0002'. Only set on YARN counters: a map from counter group -> counter -> amount, or None if no counters found (only YARN prints counters) errors: a list of errors, with the following keys: hadoop_error: message: lines of error, as as string start_line: first line of log containing the error (0-indexed) num_lines: # of lines of log containing the error attempt_id: ID of task attempt with this error job_id: a string like 'job_201512112247_0003'. Should always be set output_dir: a URI like 'hdfs:///user/hadoop/tmp/my-output-dir'. Should always be set on success. """ return _parse_step_log_from_log4j_records( _parse_hadoop_log4j_records(lines))
251b0e89157a1c3fa152cbf50daa5e0b10e17bcc
2,469
import re def is_regex(regex, invert=False): """Test that value matches the given regex. The regular expression is searched against the value, so a match in the middle of the value will succeed. To specifically match the beginning or the whole regex, use anchor characters. If invert is true, then matching the regex will cause the test to fail. """ # pylint: disable=unused-argument # args defined by test definition rex = re.compile(regex) def is_regex_test(conf, path, value): match = rex.search(value) if invert and match: return u'"{0}" matches /{1}/'.format(value, regex) if not invert and not match: return u'"{0}" does not match /{1}/'.format(value, regex) return None return is_regex_test
0db71b3dae2b2013650b65ecacfe6aed0cd8366b
2,470
def get_obj(obj): """Opens the url of `app_obj`, builds the object from the page and returns it. """ open_obj(obj) return internal_ui_operations.build_obj(obj)
f6deddc62f7f3f59ab93b553c64b758340b5fa6c
2,471
def process(frame): """Process initial frame and tag recognized objects.""" # 1. Convert initial frame to grayscale grayframe = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # For every model: for model, color, parameters in ( (MODEL_FACE, (255, 255, 0), {'scaleFactor': 1.1, 'minNeighbors': 5, 'minSize': (30, 30)}), (MODEL_EYE, (0, 0, 255), {'scaleFactor': 1.1, 'minNeighbors': 5, 'minSize': (20, 20)}), *((model, (0, 255, 0), {'scaleFactor': 1.1, 'minNeighbors': 5, 'minSize': (20, 20)}) for model in MODELS_PLATE), ): # 2. Apply model, recognize objects objects = model.detectMultiScale(grayframe, **parameters) # 3. For every recognized object, draw a rectangle around it for (x, y, w, h) in objects: cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) # BGR # 4. Return initial color frame with rectangles return frame
c0c977d522f292d6cbb03c4e64eabc3d11342e0f
2,472
from datetime import datetime def tzoffset(): """UTC to America/New_York offset.""" return datetime.timedelta(hours=5)
05e883eeae63ad1dd7b287dd0b331b13b11b8cd1
2,473
def KICmag(koi,band): """ Returns the apparent magnitude of given KOI star in given band. returns KICmags(koi)[band] """ return KICmags(koi)[band]
767ff04c9319acd698daa05f084e8ee9c456a628
2,475
from typing import List def list_to_decimal(nums: List[int]) -> int: """Accept a list of positive integers in the range(0, 10) and return a integer where each int of the given list represents decimal place values from first element to last. E.g [1,7,5] => 175 [0,3,1,2] => 312 Place values are 10**n where n represents the digit position Eg to calculate 1345, we have 5 1's, 4 10's, 3 100's and 1 1000's 1, 3 , 4 , 5 1000's, 100's, 10's, 1's """ for num in nums: if isinstance(num, bool) or not isinstance(num, int): raise TypeError elif not num in range(0, 10): raise ValueError return int("".join(map(str, nums)))
7727ce610987fc9da03a5e23ec8674d1deb7c7f0
2,476
def str_to_bool(v): """ :type v: str """ return v.lower() in ("true", "1")
3eb7ae9e1fe040504ea57c65ed1cbd48be9269cf
2,477
def home_event_manager(): """ Route for alumni's home :return: """ if "idUsers" in session and session["UserTypes_idUserTypes"] == 2: return redirect("/events") else: session.clear() return redirect("/login")
7facf96fbd5d8bbcb7fb867cac7a150a31185dde
2,478
import hashlib def md5_encode(text): """ 把數據 md5 化 """ md5 = hashlib.md5() md5.update(text.encode('utf-8')) encodedStr = md5.hexdigest().upper() return encodedStr
b08f656f5ab0858accfbf54e03d95635a3598e13
2,480
from typing import Counter def _ngrams(segment, n): """Extracts n-grams from an input segment. Parameters ---------- segment: list Text segment from which n-grams will be extracted. n: int Order of n-gram. Returns ------- ngram_counts: Counter Contain all the nth n-grams in segment with a count of how many times each n-gram occurred. """ ngram_counts = Counter() for i in range(0, len(segment) - n + 1): ngram = tuple(segment[i:i + n]) ngram_counts[ngram] += 1 return ngram_counts
580cad34eb03359988eb2ce6f77dad246166b890
2,481
def build_varint(val): """Build a protobuf varint for the given value""" data = [] while val > 127: data.append((val & 127) | 128) val >>= 7 data.append(val) return bytes(data)
46f7cd98b6858c003cd66d87ba9ec13041fcf9db
2,482
import re def python_safe_name(s): """ Return a name derived from string `s` safe to use as a Python function name. For example: >>> s = "not `\\a /`good` -safe name ??" >>> assert python_safe_name(s) == 'not_good_safe_name' """ no_punctuation = re.compile(r'[\W_]', re.MULTILINE).sub s = s.lower() s = no_punctuation(' ', s) s = '_'.join(s.split()) if py2 and isinstance(s, unicode): s = s.encode('ascii', 'ignore') return s
463d7c3bf4f22449a0a1c28897654d3ccb5e94cb
2,483
def hash_bytes(hash_type: SupportedHashes, bytes_param: bytes) -> bytes: """Hash arbitrary bytes using a supported algo of your choice. Args: hash_type: SupportedHashes enum type bytes_param: bytes to be hashed Returns: hashed bytes """ hasher = get_hash_obj(hash_type) hasher.update(bytes_param) return hasher.digest()
8f9c05fd050e6f89d6bc5213c03f4002cc341cb0
2,484
def analyze(osi, num_inc=1, dt=None, dt_min=None, dt_max=None, jd=None): """ Performs an analysis step. Returns 0 if successful, and <0 if fail Parameters ---------- osi num_inc dt dt_min dt_max jd Returns ------- """ op_type = 'analyze' if dt is None: parameters = [int(num_inc)] elif dt_min is None: parameters = [int(num_inc), float(dt)] else: parameters = [int(num_inc), float(dt), dt_min, dt_max, jd] return osi.to_process(op_type, parameters)
6c748a49c5e54cf88a04002d98995f4fd90d5130
2,485
from typing import Any import importlib def load_class(path: str) -> Any: """ Load a class at the provided location. Path is a string of the form: path.to.module.class and conform to the python import conventions. :param path: string pointing to the class to load :return: the requested class object """ try: log.info('loading class : [{}]'.format(path)) module_name, class_name = path.rsplit('.', 1) mod = importlib.import_module(module_name) return getattr(mod, class_name) except Exception: raise ProcessingError('Class loading error : expecting path.to.module.ClassName, got : {}'.format(path))
c6ae2cd20f71a68a6ec05ef5693656d0db7f2703
2,486
def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf # >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] # >>> dcg_at_k(r, 1) # 3.0 # >>> dcg_at_k(r, 1, method=1) # 3.0 # >>> dcg_at_k(r, 2) # 5.0 # >>> dcg_at_k(r, 2, method=1) # 4.2618595071429155 # >>> dcg_at_k(r, 10) # 9.6051177391888114 # >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0.
a52b2e3735461ea7749f092aa35cfe8a55f33e3f
2,487
def metric_section(data_model, metric, level) -> str: """Return the metric as Markdown section.""" markdown = markdown_header(metric["name"], level=level, index=True) markdown += markdown_paragraph(metric["description"]) markdown += definition_list("Default target", metric_target(metric)) markdown += definition_list("Scales", *metric_scales(metric)) markdown += definition_list("Default tags", *metric["tags"]) markdown += "```{admonition} Supporting sources\n" for source in metric["sources"]: source_name = data_model["sources"][source]["name"] default = " (default)" if source == metric.get("default_source", "no default source") else "" markdown += f"- [{source_name}]({metric_source_slug(metric['name'], source_name)}){default}\n" markdown += "```\n" return markdown
6c02e707b6de7c2d89e7eb590d3d9252f13ae9b7
2,488
def MAKEFOURCC(ch0: str, ch1: str, ch2: str, ch3: str) -> int: """Implementation of Window's `MAKEFOURCC`. This is simply just returning the bytes of the joined characters. `MAKEFOURCC(*"DX10")` can also be implemented by `Bytes(b"DX10")`. Args: ch0 (str): First char ch1 (str): Second char ch2 (str): Third char ch3 (str): Fourth char Returns: int: The integer representation of given characters. **Reference**: `Microsoft <https://goo.gl/bjtMFA>`__ """ return (ord(ch0) << 0) | (ord(ch1) << 8) | (ord(ch2) << 16) | (ord(ch3) << 24)
91afd9dcc8f1cd8c5ef167bdb560c8bf2d89b228
2,491
def sort_configs(configs): # pylint: disable=R0912 """Sort configs by global/package/node, then by package name, then by node name Attributes: configs (list): List of config dicts """ result = [] # Find all unique keys and sort alphabetically _keys = [] for config in configs: if config["key"] not in _keys: _keys.append(config["key"]) _keys = sorted(_keys, key=str.lower) # For each key find globals, then packages, then nodes for key in _keys: _packages = [] _nodes = [] for config in configs: if config["key"] == key: if config["type"] == "global": result.append(config) elif config["type"] == "package": _packages.append(config) elif config["type"] == "node": _nodes.append(config) # Sort the package end node elements alphabetically _package_ids = sorted([_package["id"] for _package in _packages], key=str.lower) for package in _package_ids: for config in configs: if config["key"] == key and config["type"] == "package" and config["id"] == package: result.append(config) break _node_ids = sorted([_node["id"] for _node in _nodes], key=str.lower) for node in _node_ids: for config in configs: if config["key"] == key and config["type"] == "node" and config["id"] == node: result.append(config) break return result
5c05214af42a81b35986f3fc0d8670fbef2e2845
2,492
def _add_student_submit(behave_sensibly): """Allow addition of new students Handle both "good" and "bad" versions (to keep code DRY) """ try: if behave_sensibly: do_add_student_good( first_name=request.forms.first_name, last_name=request.forms.last_name, card_info=request.forms.card_info, ) else: do_add_student_bad( first_name=request.forms.first_name, last_name=request.forms.last_name, card_info=request.forms.card_info, ) except psycopg2.DatabaseError: pass return redirect("/students")
780b0e667a841b51b1b64c8c8156cebda3d586e9
2,495
def _get_table_reference(self, table_id): """Constructs a TableReference. Args: table_id (str): The ID of the table. Returns: google.cloud.bigquery.table.TableReference: A table reference for a table in this dataset. """ return TableReference(self, table_id)
e92dc5fbeac84b902e50d5302539503246c39f30
2,496
def get_present_types(robots): """Get unique set of types present in given list""" return {type_char for robot in robots for type_char in robot.type_chars}
75c33e0bf5f97afe93829c51086100f8e2ba13af
2,498
def _deserialize_row(params, mask): """ This is for stochastic vectors where some elements are forced to zero. Such a vector is defined by a number of parameters equal to the length of the vector minus one and minus the number of elements forced to zero. @param params: an array of statistical parameters @param mask: bools such that False forces zero probability @return: a mask-conformant list of nonnegative floats """ row = np.zeros(mask.shape) row[mask] = [1.0] + np.exp(params).tolist() row /= row.sum() return row
004775ef669ce7698570091c7212912d0f309bee
2,499
import re def ruru_old_log_checker(s): """ 古いログ形式ならTrue、そうでないならFalseを返す :param s: :return: """ time_data_regex = r'[0-9]{4}\/[0-9]{2}\/[0-9]{2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}' # るる鯖新ログ形式なら1つ目のdiv:d12150で時刻が取得可能。そうでないなら取得不可 time_data = re.search(time_data_regex, str(s.find('div', class_='d12150'))) return False if time_data else True
54f6a94dab98ef6947496b8e1f95401d99424ee2
2,500
def scale_z_by_atom(z, scale, copy=True): """ Parameters ---------- z_ : array, shape (n_trials, n_atoms, n_times - n_times_atom + 1) Can also be a list of n_trials LIL-sparse matrix of shape (n_atoms, n_times - n_times_atom + 1) The sparse activation matrix. scale : array, shape = (n_atoms, ) The scales to apply on z. """ if is_list_of_lil(z): n_trials, n_atoms, n_times_valid = get_z_shape(z) assert n_atoms == len(scale) if copy: z = deepcopy(z) for z_i in z: for k in range(z_i.shape[0]): z_i.data[k] = [zikt * scale[k] for zikt in z_i.data[k]] else: if copy: z = z.copy() z *= scale[None, :, None] return z
b87368c1ea8dcd18fcbfd85ef8cde5450d5fcf33
2,502
def index(): """ example action using the internationalization operator T and flash rendered by views/default/index.html or views/generic.html if you need a simple wiki simply replace the two lines below with: return auth.wiki() """ if auth.is_logged_in(): # # if newly registered user is not in auth_membership add him as an administrator if not db(db.auth_membership.user_id == auth.user_id).count() > 0: auth.add_membership(auth.id_group(ADMIN), auth.user_id) session.user_info = get_user_info() response.user_info = session.user_info if request.user_agent().is_mobile: return response.render('../views/default/index-m.html') else: return response.render('../views/default/index.html')
d48d29ee65ddf064dc2f424f2be9f46da23cbd4a
2,503
def compute_classification_metrics_at_ks(is_match, num_predictions, num_trgs, k_list=[5,10], meng_rui_precision=False): """ :param is_match: a boolean np array with size [num_predictions] :param predicted_list: :param true_list: :param topk: :return: {'precision@%d' % topk: precision_k, 'recall@%d' % topk: recall_k, 'f1_score@%d' % topk: f1, 'num_matches@%d': num_matches} """ assert is_match.shape[0] == num_predictions #topk.sort() if num_predictions == 0: precision_ks = [0] * len(k_list) recall_ks = [0] * len(k_list) f1_ks = [0] * len(k_list) num_matches_ks = [0] * len(k_list) num_predictions_ks = [0] * len(k_list) else: num_matches = np.cumsum(is_match) num_predictions_ks = [] num_matches_ks = [] precision_ks = [] recall_ks = [] f1_ks = [] for topk in k_list: if topk == 'M': topk = num_predictions elif topk == 'G': #topk = num_trgs if num_predictions < num_trgs: topk = num_trgs else: topk = num_predictions if meng_rui_precision: if num_predictions > topk: num_matches_at_k = num_matches[topk-1] num_predictions_at_k = topk else: num_matches_at_k = num_matches[-1] num_predictions_at_k = num_predictions else: if num_predictions > topk: num_matches_at_k = num_matches[topk - 1] else: num_matches_at_k = num_matches[-1] num_predictions_at_k = topk precision_k, recall_k, f1_k = compute_classification_metrics(num_matches_at_k, num_predictions_at_k, num_trgs) precision_ks.append(precision_k) recall_ks.append(recall_k) f1_ks.append(f1_k) num_matches_ks.append(num_matches_at_k) num_predictions_ks.append(num_predictions_at_k) return precision_ks, recall_ks, f1_ks, num_matches_ks, num_predictions_ks
189a6491e1b5d8e3bf8869586b69667eb1b9d9c9
2,504
def compute_dose_median_scores(null_dist_medians, dose_list): """ Align median scores per dose, this function return a dictionary, with keys as dose numbers and values as all median scores for each dose """ median_scores_per_dose = {} for dose in dose_list: median_list = [] for keys in null_distribution_medians: dose_median_list = null_distribution_medians[keys][dose-1] median_list += dose_median_list median_scores_per_dose[dose] = median_list return median_scores_per_dose
ec23f186c10a6921cdae9d4965a51343dc78011e
2,506
def generate_converter(name, taskdep, **options) : """ taskdep 是执行该程序之前应该执行的任务 task_html_generator 表示的是能够生成html的任务,我们需要从这个任务中提取result taskname是生成的任务名 """ converter = options.get('converter', Pandoc("-f", "html", "-t", "markdown", "--wrap=none")) flowdep = options.get('flowdep', taskdep[0]) return lift_process_to_task(name, converter, taskdep, flowdep=flowdep)
3e60abfcdabfb0c35ff8b9692b21b27af2300da8
2,507
def symmetric_product(tensor): """ Symmetric outer product of tensor """ shape = tensor.size() idx = list(range(len(shape))) idx[-1], idx[-2] = idx[-2], idx[-1] return 0.5 * (tensor + tensor.permute(*idx))
4f96ab5f0bd41080352b1e5e806b6a73b3506950
2,508
import torch def prep_image(img, inp_dim): """ Function: Prepare image for inputting to the neural network. Arguments: img -- image it self inp_dim -- dimension for resize the image (input dimension) Return: img -- image after preparing """ img = (letterbox_image(img, (inp_dim, inp_dim))) img = img[:,:,::-1].transpose((2,0,1)).copy() img = torch.from_numpy(img).float().div(255.0).unsqueeze(0) return img
4f32717cb06b32cab2e0b92d3a24a9a665baf27b
2,509
async def auth_check(request): """ No-op view to set the session cookie, this is used by websocket since the "Set-Cookie" header doesn't work with 101 upgrade """ return json_response(status='ok')
60419c8d32bbc41525ebf44d4d7bcabe8a117df0
2,510
def check_constraint(term_freq,top_terms,top_terms_test_freq): """ Check the constraint 12%-30% for the test set term_freq is the dictionnary of all term frequencies top_terms is the list of terms we care about (first 300?) top_terms_freq is an array of frequency of top terms in test set. RETURN True if constraint satisfied, False otherwise """ return check_constraint_12pc(term_freq,top_terms,top_terms_test_freq) and check_constraint_30pc(term_freq,top_terms,top_terms_test_freq)
d2b31c68d1a8cd1a7d8471818cc46de943496aaa
2,511
import pytz def predict_split(history, prediction_length=7*24, hyperparameters={}): """ This function predicts a time series of gas prices by splitting it into a tren and a residual and then applying a feature pipeline and predicting each of them individually. Keyword arguments: history -- the time series to split up prediction_length -- the number of time steps to predict (default 7*24) hyperparameters -- values used for the prediction model (default {}) Return value: 2 time series predicted: trend and residual """ #extract parameters r = hyperparameters["r"] if "r" in hyperparameters else default_hyperparameters["r"] #split data trend, res = split_trend(history) #create index for prediction time series index_pred = pd.date_range( start=history.index.max() + timedelta(hours=1), end=history.index.max() + timedelta(hours=prediction_length), freq="1H", tz=pytz.utc ) #predict the trend trend_pred = predict_ts( (trend - trend.shift(1)).fillna(0.), get_feature_pipeline("trend", hyperparameters), index_pred, hyperparameters=hyperparameters ).cumsum() + trend.iloc[-1] #compute residual prediction res_pred = predict_ts( res.iloc[-r:], get_feature_pipeline("res", hyperparameters), index_pred, hyperparameters=hyperparameters ) #alternative: using AR from statsmodels #res_model = AR(res) #res_results = res_model.fit(disp=-1, maxlag=p) #res_pred = res_results.predict(len(res), len(res) + prediction_length) #return result return trend_pred, res_pred
025d4b753754ad18a04b46f95002f9ab54ccd9bd
2,514
def SFRfromLFIR(LFIR): """ Kennicut 1998 To get Star formation rate from LFIR (8-1000um) LFIR in erg s-1 SFR in Msun /year """ SFR = 4.5E-44 * LFIR return SFR
4adf401bbf2c6547cea817b52eb881531db8c798
2,515
def inc_group_layers(n_list, d_list, c_list): """ Helper function for inc_tmm. Groups and sorts layer information. See coh_tmm for definitions of n_list, d_list. c_list is "coherency list". Each entry should be 'i' for incoherent or 'c' for 'coherent'. A "stack" is a group of one or more consecutive coherent layers. A "stack index" labels the stacks 0,1,2,.... The "within-stack index" counts the coherent layers within the stack 1,2,3... [index 0 is the incoherent layer before the stack starts] An "incoherent layer index" labels the incoherent layers 0,1,2,... An "alllayer index" labels all layers (all elements of d_list) 0,1,2,... Returns info about how the layers relate: * stack_d_list[i] = list of thicknesses of each coherent layer in the i'th stack, plus starting and ending with "inf" * stack_n_list[i] = list of refractive index of each coherent layer in the i'th stack, plus the two surrounding incoherent layers * all_from_inc[i] = j means that the layer with incoherent index i has alllayer index j * inc_from_all[i] = j means that the layer with alllayer index i has incoherent index j. If j = nan then the layer is coherent. * all_from_stack[i1][i2] = j means that the layer with stack index i1 and within-stack index i2 has alllayer index j * stack_from_all[i] = [j1 j2] means that the layer with alllayer index i is part of stack j1 with withinstack-index j2. If stack_from_all[i] = nan then the layer is incoherent * inc_from_stack[i] = j means that the i'th stack comes after the layer with incoherent index j, and before the layer with incoherent index j+1. * stack_from_inc[i] = j means that the layer with incoherent index i comes immediately after the j'th stack. If j=nan, it is not immediately following a stack. * num_stacks = number of stacks * num_inc_layers = number of incoherent layers * num_layers = number of layers total """ if (d_list.ndim != 1): raise ValueError("Problem with n_list or d_list!") if (d_list[0] != np.inf) or (d_list[-1] != np.inf): raise ValueError('d_list must start and end with inf!') if (c_list[0] != 'i') or (c_list[-1] != 'i'): raise ValueError('c_list should start and end with "i"') if not len(n_list) == d_list.size == len(c_list): raise ValueError('List sizes do not match!') inc_index = 0 stack_index = 0 stack_d_list = [] stack_n_list = [] all_from_inc = [] inc_from_all = [] all_from_stack = [] stack_from_all = [] inc_from_stack = [] stack_from_inc = [] stack_in_progress = False for alllayer_index in range(len(n_list)): if c_list[alllayer_index] == 'c': # coherent layer inc_from_all.append(np.nan) if not stack_in_progress: # this layer is starting new stack stack_in_progress = True ongoing_stack_d_list = [np.inf, d_list[alllayer_index]] ongoing_stack_n_list = [n_list[alllayer_index - 1], n_list[alllayer_index]] stack_from_all.append([stack_index, 1]) all_from_stack.append([alllayer_index - 1, alllayer_index]) inc_from_stack.append(inc_index - 1) within_stack_index = 1 else: # another coherent layer in the same stack ongoing_stack_d_list.append(d_list[alllayer_index]) ongoing_stack_n_list.append(n_list[alllayer_index]) within_stack_index += 1 stack_from_all.append([stack_index, within_stack_index]) all_from_stack[-1].append(alllayer_index) elif c_list[alllayer_index] == 'i': # incoherent layer stack_from_all.append(np.nan) inc_from_all.append(inc_index) all_from_inc.append(alllayer_index) if not stack_in_progress: # previous layer was also incoherent stack_from_inc.append(np.nan) else: # previous layer was coherent stack_in_progress = False stack_from_inc.append(stack_index) ongoing_stack_d_list.append(np.inf) stack_d_list.append(ongoing_stack_d_list) ongoing_stack_n_list.append(n_list[alllayer_index]) stack_n_list.append(ongoing_stack_n_list) all_from_stack[-1].append(alllayer_index) stack_index += 1 inc_index += 1 else: raise ValueError("Error: c_list entries must be 'i' or 'c'!") return {'stack_d_list': stack_d_list, 'stack_n_list': stack_n_list, 'all_from_inc': all_from_inc, 'inc_from_all': inc_from_all, 'all_from_stack': all_from_stack, 'stack_from_all': stack_from_all, 'inc_from_stack': inc_from_stack, 'stack_from_inc': stack_from_inc, 'num_stacks': len(all_from_stack), 'num_inc_layers': len(all_from_inc), 'num_layers': len(n_list)}
1b25975169839e54feae58f98b5de98916c51541
2,516
def get_heater_device_json(): """ returns information about the heater in json """ return '{\n "state" : "' + _pretty_state_identifier(brew_logic.heater_state) + '",\n "overridden" : "' + str(brew_logic.heater_override).lower() + '"\n }'
3997e9eee7cbb058adf4900b571c8458e2464e19
2,517
def rfc_deploy(): """This function trains a Random Forest classifier and outputs the out-of-sample performance from the validation and test sets """ df = pd.DataFrame() for pair in pairs: # retrieving the data and preparing the features dataset = gen_feat(pair) dataset.drop(['Open', 'High', 'Low', 'Close', 'volume'], axis=1, inplace=True) # selecting the features to train on cols = list(dataset.columns) feats = cols[2:] #splitting into training, validation and test sets df_train = dataset.iloc[:-100,:] train = df_train.copy() df_test = dataset.iloc[-100:,:] test = df_test.copy() train_f = train.iloc[:-100,:] valid = train.iloc[-100:,:] #training the algorithm m = rfc(train_f[feats], train_f['dir']) # test sets test_pred = m.predict(test[feats]) test_proba = m.predict_proba(test[feats]) df1 = pd.DataFrame(test_pred,columns=['prediction'], index=test.index) proba_short = [] proba_long = [] for x in range(len(test_proba)): proba_short.append(test_proba[x][0]) proba_long.append(test_proba[x][-1]) proba = {'proba_short': proba_short, 'proba_long': proba_long} df2 = pd.DataFrame(proba, index=test.index) df1['probability'] = np.where(df1['prediction'] == 1, df2['proba_long'], np.where(df1['prediction'] == -1, df2['proba_short'], 0)) df1['signal'] = np.where((df1['probability'] >= .7) & (df1['prediction'] == 1), 'Go Long', np.where((df1['probability'] >= 0.7) & (df1['prediction'] == -1), 'Go Short', 'Stand Aside')) df1.reset_index(inplace=True) df1['pair'] = pair df1.set_index('pair', inplace=True) entry_sig = df1[['probability', 'signal']].iloc[-1:] # Merge df = pd.concat([df, entry_sig], axis=0) #output return df
86c4aa5f44d23cce83f6cc9993c0e10cd124c423
2,518
def get_block(block_name): """Get block from BLOCK_REGISTRY based on block_name.""" if not block_name in BLOCK_REGISTRY: raise Exception(NO_BLOCK_ERR.format( block_name, BLOCK_REGISTRY.keys())) block = BLOCK_REGISTRY[block_name] return block
10b86c5045496a865907ef2617b2994d03f1312d
2,519
from pathlib import Path import yaml def _determine_role_name(var_file: Path) -> str: """ Lookup role name from directory or galaxy_info. """ if var_file.is_file(): role_path: Path = var_file.parent / ".." name = str(role_path.resolve().name) meta_path: Path = role_path / 'meta' / 'main.yml' if (meta_path.is_file()): with open(str(meta_path), 'r') as f: meta = yaml.load(f, Loader=SafeLoader) try: role_name = meta['galaxy_info']['role_name'] name = role_name except BaseException: pass return name
59e6d60234cc7988fe6c3005176f1c89cac5b60d
2,520
def coco17_category_info(with_background=True): """ Get class id to category id map and category id to category name map of COCO2017 dataset Args: with_background (bool, default True): whether load background as class 0. """ clsid2catid = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18, 18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 27, 26: 28, 27: 31, 28: 32, 29: 33, 30: 34, 31: 35, 32: 36, 33: 37, 34: 38, 35: 39, 36: 40, 37: 41, 38: 42, 39: 43, 40: 44, 41: 46, 42: 47, 43: 48, 44: 49, 45: 50, 46: 51, 47: 52, 48: 53, 49: 54, 50: 55, 51: 56, 52: 57, 53: 58, 54: 59, 55: 60, 56: 61, 57: 62, 58: 63, 59: 64, 60: 65, 61: 67, 62: 70, 63: 72, 64: 73, 65: 74, 66: 75, 67: 76, 68: 77, 69: 78, 70: 79, 71: 80, 72: 81, 73: 82, 74: 84, 75: 85, 76: 86, 77: 87, 78: 88, 79: 89, 80: 90 } catid2name = { 0: 'background', 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush' } if not with_background: clsid2catid = {k - 1: v for k, v in clsid2catid.items()} return clsid2catid, catid2name
f64be8c09b3372ad75826a6bfdc8a2f0bc4f9e25
2,523
def example_miller_set(example_crystal): """Generate an example miller set.""" ms = miller.set( crystal_symmetry=example_crystal.get_crystal_symmetry(), indices=flex.miller_index([(1, 1, 1)] * 8 + [(2, 2, 2)]), anomalous_flag=False, ) return ms
516eca404544d8f8af8dd664488006c67bef03b8
2,525
async def get(req): """ Get a complete analysis document. """ db = req.app["db"] analysis_id = req.match_info["analysis_id"] document = await db.analyses.find_one(analysis_id) if document is None: return not_found() sample = await db.samples.find_one({"_id": document["sample"]["id"]}, {"quality": False}) if not sample: return bad_request("Parent sample does not exist") read, _ = virtool.samples.utils.get_sample_rights(sample, req["client"]) if not read: return insufficient_rights() await virtool.subtractions.db.attach_subtraction(db, document) if document["ready"]: document = await virtool.analyses.format.format_analysis(req.app, document) return json_response(virtool.utils.base_processor(document))
e52598d27b73dd9ef5d24aba196f97f85fb47214
2,526
from typing import Union from typing import Mapping from typing import Any def get_cube_point_indexes(cube: xr.Dataset, points: Union[xr.Dataset, pd.DataFrame, Mapping[str, Any]], dim_name_mapping: Mapping[str, str] = None, index_name_pattern: str = DEFAULT_INDEX_NAME_PATTERN, index_dtype=np.float64, cube_asserted: bool = False) -> xr.Dataset: """ Get indexes of given point coordinates *points* into the given *dataset*. :param cube: The cube dataset. :param points: A mapping from column names to column data arrays, which must all have the same length. :param dim_name_mapping: A mapping from dimension names in *cube* to column names in *points*. :param index_name_pattern: A naming pattern for the computed indexes columns. Must include "{name}" which will be replaced by the dimension name. :param index_dtype: Numpy data type for the indexes. If it is a floating point type (default), then *indexes* will contain fractions, which may be used for interpolation. For out-of-range coordinates in *points*, indexes will be -1 if *index_dtype* is an integer type, and NaN, if *index_dtype* is a floating point types. :param cube_asserted: If False, *cube* will be verified, otherwise it is expected to be a valid cube. :return: A dataset containing the index columns. """ if not cube_asserted: assert_cube(cube) dim_name_mapping = dim_name_mapping if dim_name_mapping is not None else {} dim_names = _get_cube_data_var_dims(cube) col_names = [dim_name_mapping.get(dim_name, dim_name) for dim_name in dim_names] _validate_points(points, col_names, param_name="points") indexes = [] for dim_name, col_name in zip(dim_names, col_names): col = points[col_name] coord_indexes = get_dataset_indexes(cube, dim_name, col, index_dtype=index_dtype) indexes.append((index_name_pattern.format(name=dim_name), xr.DataArray(coord_indexes, dims=[INDEX_DIM_NAME]))) return xr.Dataset(dict(indexes))
b1f5eb134ab7119589b54c45b95065c2f57348dc
2,527
def auto_add(): """ 自动添加 1 查找所有amis文件 2 更新记录 3 记录按照app组织,生成dict 4 为每个app生成auto_urls.py :return: """ amis_json_file_list = get_amis_files() cnt = update_rcd(amis_json_file_list) aml_app_dict = get_rcd_by_app_name() add_needed_auto_urls(aml_app_dict) add_urls_needed(aml_app_dict) return cnt
17b6026f56793f3a6f76446145b7f65a6fe29a5a
2,528
from pathlib import Path from typing import Optional def _get_configs(cli_args: CLIArgs, project_root: Path) -> Configs: """ Deal with extra configs for 3rd party tool. Parameters ---------- cli_args Commandline arguments passed to nbqa project_root Root of repository, where .git / .hg / .nbqa.ini file is. Returns ------- Configs Taken from CLI (if given), else from .nbqa.ini. """ cli_config: Configs = Configs.parse_from_cli_args(cli_args) file_config: Optional[Configs] = config_parser.parse_config_from_file( cli_args, project_root ) if file_config is not None: cli_config = cli_config.merge(file_config) return cli_config
d9ef190a99b06f2d17bbc336ace86061ea215d97
2,529
from sklearn.preprocessing import RobustScaler def robust_standardize(df: pd.DataFrame, excluded_colnames: list = None) -> pd.DataFrame: """ Applies the RobustScaler from the module sklearn.preprocessing by removing the median and scaling the data according to the quantile range (IQR). This transformation is robust to outliers. Note: In case multiple dataframes are used (i.e., several partitions of the dataset in training and testing), make sure that all of them will be passed to this method at once, and as one single dataframe. Otherwise, the normalization will be carried out on local (as opposed to global) extrema, hence unrepresentative IQR. This is a bad practice. :param df: The dataframe to be normalized. :param excluded_colnames: The name of non-numeric (e.g., TimeStamp, ID etc.) that must be excluded before normalization takes place. They will be added back to the normalized data. :return: The same dataframe as input, with the label column unchanged, except that now the numerical values are transformed into new range determined by IQR. """ excluded_colnames = excluded_colnames if excluded_colnames else [] colnames_original_order = list(df) # Separate data (numeric) from those to be excluded (ids and class_labels) included_cnames = [colname for colname in list(df) if colname not in excluded_colnames] # Exclude all non-numeric columns df_numeric = df[included_cnames].select_dtypes(include=np.number) # set-difference between the original and numeric columns excluded_cnames = list(set(colnames_original_order) - set(list(df_numeric))) df_excluded = df[excluded_cnames] # prepare normalizer and normalize scaler = RobustScaler() res_ndarray = scaler.fit_transform(df_numeric) df_numeric = pd.DataFrame(res_ndarray, columns=list(df_numeric), dtype=float) # Reset the indices (so that they match) df_excluded.reset_index() df_numeric.reset_index() # Add the excluded columns back df_norm = df_excluded.join(df_numeric) # Restore the original oder of columns df_norm = df_norm[colnames_original_order] return df_norm
0727ce390e773405a221c6fb3248ddd5d40445b2
2,532
import math def meanStdDev( valueList, scale ): """Compute the mean and standard deviation of a *non-empty* list of numbers.""" numElements = len(valueList) if numElements == 0: return(None, 0.0) mean = float(sum(valueList)) / numElements variance = 0 for value in valueList: variance += math.pow( value - mean, 2 ) variance = variance / float(numElements) return (scale * mean, scale * math.sqrt(variance))
2970ae1e4382092eb67219373aa26b9ca75226a3
2,533
def audience_filter(digest, audience): """Check whether the current audience level should include that digest.""" return get_split( digest, [ { "key": "audience_{}".format(idx), "size": 1.0 } for idx in range(0, 100) ] ) < audience
811e4e94e68901bfeaedabfec5e16a30de55408c
2,534
def request_specific_data2num(batch_data): """ input: next_batch_requestable request_specific_data[slot]. change the data into processable type for tensorflow :param batch_data: 一个 batch 的训练数据 :return: 直接输入request-specific tracker 模型计算的数据 """ batchsize_request = len(batch_data) x_usr = np.zeros((batchsize_request, max_length, embedding_dim)) x_usr_len = np.zeros((batchsize_request), dtype='int32') x_slot = np.zeros((batchsize_request, embedding_dim)) for batch_id, data in enumerate(batch_data): for word_id, word in enumerate(data[1]): if word in vocab_dict: x_usr[batch_id, word_id, :] = embedding_table[word] else: x_usr[batch_id, word_id, :] = embedding_table['unk'] x_usr_len[batch_id] = len(data[1]) x_slot[batch_id, :] = embedding_table[data[2]] return x_usr, x_usr_len, x_slot
e8a5b414f00e43755719dfadc0b089177cb67152
2,535
def points_from_x0y0x1y1(xyxy): """ Constructs a polygon representation from a rectangle described as a list [x0, y0, x1, y1] """ [x0, y0, x1, y1] = xyxy return "%s,%s %s,%s %s,%s %s,%s" % ( x0, y0, x1, y0, x1, y1, x0, y1 )
8a7d766145dc31e6619b290b8d96a95983f9cc01
2,536
def get_columns(invoice_list, additional_table_columns): """return columns based on filters""" columns = [ _("Invoice") + ":Link/Sales Invoice:120", _("Posting Date") + ":Date:80", _("Status") + "::80", _("Customer") + ":Link/Customer:120", _("Sales Person") + ":Link/Sales Person:100", _("AR Status") + "::75", _("Territory") + ":Link/Territory:100", _("SKU") + ":Link/Item:100", _("Qty") + ":Float:50", _("Price List") + ":Currency/currency:120", _("Discount") + ":Currency/currency:120", _("Net Price") + ":Currency/currency:120", _("Amount") + ":Currency/currency:120" ] columns = columns + [_("Outstanding Amount") + ":Currency/currency:120"] return columns
c9849e62d401ec5cc8de52d266a39eccf4b4dbe8
2,537
def one_norm(a): """ Return the one-norm of the matrix. References: [0] https://www.mathworks.com/help/dsp/ref/matrix1norm.html Arguments: a :: ndarray(N x N) - The matrix to compute the one norm of. Returns: one_norm_a :: float - The one norm of a. """ return anp.max(anp.sum(anp.abs(a), axis=0))
c3e1c83d3776dda8ffa82b9b36d26866f390f6cc
2,538
def remove_nan_inf(df, reindex=True): """ Removes all rows that have NaN, inf or -inf as a value, and then optionally reindexes the dataframe. Parameters ---------- df : pd.DataFrame Dataframe to remove NaNs and Infs from. reindex : bool, optional Reindex the dataframe so that there are no missing indices. Returns ------- df : pd.DataFrame Dataframe with all the NaNs and Infs removed. """ df = df.replace([np.inf, -np.inf], np.nan).dropna() if reindex is True: df = df.reset_index(drop=True) return df
3b9339f2ee1315eac458925e5be5279e147d5c7d
2,539
def contingency_table(seg, gt, ignore_seg=[0], ignore_gt=[0], norm=True): """Return the contingency table for all regions in matched segmentations. Parameters ---------- seg : np.ndarray, int type, arbitrary shape A candidate segmentation. gt : np.ndarray, int type, same shape as `seg` The ground truth segmentation. ignore_seg : list of int, optional Values to ignore in `seg`. Voxels in `seg` having a value in this list will not contribute to the contingency table. (default: [0]) ignore_gt : list of int, optional Values to ignore in `gt`. Voxels in `gt` having a value in this list will not contribute to the contingency table. (default: [0]) norm : bool, optional Whether to normalize the table so that it sums to 1. Returns ------- cont : scipy.sparse.csc_matrix A contingency table. `cont[i, j]` will equal the number of voxels labeled `i` in `seg` and `j` in `gt`. (Or the proportion of such voxels if `norm=True`.) """ segr = seg.ravel() gtr = gt.ravel() ij = np.vstack((segr, gtr)) selector = np.ones(segr.shape, np.bool) data = np.ones(len(gtr)) for i in ignore_seg: selector[segr == i] = 0 for j in ignore_gt: selector[gtr == j] = 0 ij = ij[:, selector] data = data[selector] cont = sparse.coo_matrix((data, ij)).tocsc() if norm: cont /= float(cont.sum()) return cont
47284bb5aaa492b6cbc50794c8ccd8a1e63676b4
2,540
def get_basic_track_info(track): """ Given a track object, return a dictionary of track name, artist name, album name, track uri, and track id. """ # Remember that artist and album artist have different entries in the # spotify track object. name = track["name"] artist = track['artists'][0]['name'] album = track['album']['name'] uri = track["uri"] track_id = track['id'] output = {"name": name, "artist": artist, "album": album, "uri": uri, "id": track_id} return output
925f7bb00482e946ad7a6853bac8b243d24145c7
2,541