content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def demander_nombre(mini: int = None, maxi: int = None) -> int: """ Demande un nombre à l'utilisateur, situé entre min et max. :param mini: le minimum :param maxi: le maximum :return: le nombre entrée par l'utilisateur """ message = 'Veuillez rentrer un nombre:' if mini is not None and maxi is not None: message = f'Veuillez rentrer un nombre entre {mini} et {maxi}:' elif mini is not None and maxi is None: message = f'Veuillez rentrer un nombre supérieur à {mini}:' while True: nombre = input(message + '\n> ') # On s'assure que l'utilisateur vient de rentrer un nombre try: # On convertit en nombre base 10 nombre = int(nombre) except ValueError: print('Valeur incorrecte.') continue # Le nombre est désormais un entier. On vérifie qu'il coincide avec les valeurs min/max if mini is not None and nombre < mini: print(f'Le nombre entré est trop petit. Il doit valoir au moins {mini}') elif maxi is not None and nombre > maxi: print(f'Le nombre entré est trop grand. Il doit valoir au maximum {maxi}') else: return nombre
ac5b949af1ad4ede2f956c7da5d4c2136dc47b15
2,542
from datetime import datetime def temporal_filter(record_date_time, time_or_period, op): """ Helper function to perform temporal filters on feature set :param record_date_time: datetime field value of a feature :type record_date_time: :class:`datetime.datetime` :param time_or_period: the time instant or time span to use as a filter :type time_or_period: :class:`datetime.datetime` or a tuple of two datetimes or a tuple of one datetime and one :class:`datetime.timedelta` :param op: the comparison operation :type op: str :return: a comparison expression result :rtype: bool """ d = datetime.strptime(record_date_time, "%Y-%m-%dT%H:%M:%SZ") result = None # perform before and after operations if op in ['BEFORE', 'AFTER']: query_date_time = datetime.strptime( time_or_period.value, "%Y-%m-%dT%H:%M:%SZ") if op == 'BEFORE': return d <= query_date_time elif op == 'AFTER': return d >= query_date_time # perform during operation elif 'DURING' in op: low, high = time_or_period low = datetime.strptime(low.value, "%Y-%m-%dT%H:%M:%SZ") high = datetime.strptime(high.value, "%Y-%m-%dT%H:%M:%SZ") result = d >= low and d <= high if 'BEFORE' in op: result = d <= high elif 'AFTER' in op: result = d >= low return result
9f76d6a6eb96da9359c4bbb80f6cfb1dfdcb4159
2,544
def convert_rgb2gray(image, convert_dic): """convert rgb image to grayscale Parameters ---------- image: array RGB image. Channel order should be RGB. convert_dic: dict dictionary key is str(rgb list), value is grayscale value Returns ------- image_gray: array Grayscale image """ image_r = image[:, :, 0] image_g = image[:, :, 1] image_b = image[:, :, 2] im_shape = image_r.shape image_gray = np.zeros(im_shape) for i in range(im_shape[0]): for j in range(im_shape[1]): image_gray[i, j] = convert_dic[str([image_r[i, j], image_g[i, j], image_b[i, j]])] return image_gray
0132719ef88d139d1d3da4e52312faef25443efd
2,548
def get_external_storage_path(): """Returns the external storage path for the current app.""" return _external_storage_path
a33704c5b3267a7211c94b5a3a8d8d73b3889d68
2,549
def blur(old_img): """ :param old_img: a original image :return: a blurred image """ blur_img = SimpleImage.blank(old_img.width, old_img.height) for x in range(old_img.width): for y in range(old_img.height): if x == 0 and y == 0: # Upper left corner old_pixel_00 = old_img.get_pixel(x, y) # Reference point old_pixel_s = old_img.get_pixel(x, y + 1) # South old_pixel_e = old_img.get_pixel(x + 1, y) # East old_pixel_se = old_img.get_pixel(x + 1, y + 1) # Southeast blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_00.red + old_pixel_s.red + old_pixel_e.red + old_pixel_se.red) // 4 blur_pixel.green = (old_pixel_00.green + old_pixel_s.green + old_pixel_e.green + old_pixel_se.green) \ // 4 blur_pixel.blue = (old_pixel_00.blue + old_pixel_s.blue + old_pixel_e.blue + old_pixel_se.blue) // 4 elif x == 0 and y == old_img.height - 1: # Bottom left old_pixel_0h = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) # North old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) # Northeast blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_0h.red + old_pixel_n.red + old_pixel_e.red + old_pixel_ne.red) // 4 blur_pixel.green = (old_pixel_0h.green + old_pixel_n.green + old_pixel_e.green + old_pixel_ne.green) \ // 4 blur_pixel.blue = (old_pixel_0h.blue + old_pixel_n.blue + old_pixel_e.blue + old_pixel_ne.blue) // 4 elif x == old_img.width - 1 and y == 0: # Upper right corner old_pixel_w0 = old_img.get_pixel(x, y) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_w = old_img.get_pixel(x - 1, y) # West old_pixel_sw = old_img.get_pixel(x - 1, y + 1) # Southwest blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_w0.red + old_pixel_s.red + old_pixel_w.red + old_pixel_sw.red) // 4 blur_pixel.green = (old_pixel_w0.green + old_pixel_s.green + old_pixel_w.green + old_pixel_sw.green) \ // 4 blur_pixel.blue = (old_pixel_w0.blue + old_pixel_s.blue + old_pixel_w.blue + old_pixel_sw.blue) // 4 elif x == old_img.width - 1 and y == old_img.height - 1: # Bottom right corner old_pixel_wh = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) # Northwest blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_wh.red + old_pixel_n.red + old_pixel_w.red + old_pixel_nw.red) // 4 blur_pixel.green = (old_pixel_wh.green + old_pixel_n.green + old_pixel_w.green + old_pixel_nw.green) \ // 4 blur_pixel.blue = (old_pixel_wh.blue + old_pixel_n.blue + old_pixel_w.blue + old_pixel_nw.blue) // 4 elif x == 0 and y != 0 and y != old_img.height - 1: # Left side except for head and tail old_pixel_0y = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_se = old_img.get_pixel(x + 1, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_0y.red + old_pixel_n.red + old_pixel_s.red + old_pixel_ne.red + old_pixel_e.red + old_pixel_se.red) // 6 blur_pixel.green = (old_pixel_0y.green + old_pixel_n.green + old_pixel_s.green + old_pixel_ne.green + old_pixel_e.green + old_pixel_se.green) // 6 blur_pixel.blue = (old_pixel_0y.blue + old_pixel_n.blue + old_pixel_s.blue + old_pixel_ne.blue + old_pixel_e.blue + old_pixel_se.blue) // 6 elif y == 0 and x != 0 and x != old_img.width - 1: # Top except for head and tail old_pixel_x0 = old_img.get_pixel(x, y) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_sw = old_img.get_pixel(x - 1, y + 1) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_se = old_img.get_pixel(x + 1, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_x0.red + old_pixel_w.red + old_pixel_s.red + old_pixel_sw.red + old_pixel_e.red + old_pixel_se.red) // 6 blur_pixel.green = (old_pixel_x0.green + old_pixel_w.green + old_pixel_s.green + old_pixel_sw.green + old_pixel_e.green + old_pixel_se.green) // 6 blur_pixel.blue = (old_pixel_x0.blue + old_pixel_w.blue + old_pixel_s.blue + old_pixel_sw.blue + old_pixel_e.blue + old_pixel_se.blue) // 6 elif x == old_img.width - 1 and y != 0 and y != old_img.height - 1: # right side except for head and tail old_pixel_wy = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_sw = old_img.get_pixel(x - 1, y + 1) old_pixel_s = old_img.get_pixel(x, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_wy.red + old_pixel_n.red + old_pixel_s.red + old_pixel_nw.red + old_pixel_w.red + old_pixel_sw.red) // 6 blur_pixel.green = (old_pixel_wy.green + old_pixel_n.green + old_pixel_s.green + old_pixel_nw.green + old_pixel_w.green + old_pixel_sw.green) // 6 blur_pixel.blue = (old_pixel_wy.blue + old_pixel_n.blue + old_pixel_s.blue + old_pixel_nw.blue + old_pixel_w.blue + old_pixel_sw.blue) // 6 elif y == old_img.height - 1 and x != 0 and x != old_img.width - 1: # Bottom except for head and tail old_pixel_xh = old_img.get_pixel(x, y) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) old_pixel_e = old_img.get_pixel(x + 1, y) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_xh.red + old_pixel_w.red + old_pixel_nw.red + old_pixel_n.red + old_pixel_e.red + old_pixel_ne.red) // 6 blur_pixel.green = (old_pixel_xh.green + old_pixel_w.green + old_pixel_nw.green + old_pixel_n.green + old_pixel_e.green + old_pixel_ne.green) // 6 blur_pixel.blue = (old_pixel_xh.blue + old_pixel_w.blue + old_pixel_nw.blue + old_pixel_n.blue + old_pixel_e.blue + old_pixel_ne.blue) // 6 else: # middle parts having 8 neighbors old_pixel_xy = old_img.get_pixel(x, y) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_sw = old_img.get_pixel(x - 1, y + 1) old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_se = old_img.get_pixel(x + 1, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_xy.red + old_pixel_w.red + old_pixel_nw.red + old_pixel_n.red + old_pixel_e.red + old_pixel_ne.red + old_pixel_s.red + old_pixel_sw.red + old_pixel_se.red) // 9 blur_pixel.green = (old_pixel_xy.green + old_pixel_w.green + old_pixel_nw.green + old_pixel_n.green + old_pixel_e.green + old_pixel_ne.green + old_pixel_s.green + old_pixel_sw.green + old_pixel_se.green) // 9 blur_pixel.blue = (old_pixel_xy.blue + old_pixel_w.blue + old_pixel_nw.blue + old_pixel_n.blue + old_pixel_e.blue + old_pixel_ne.blue + old_pixel_s.blue + old_pixel_sw.blue + old_pixel_se.blue) // 9 return blur_img
771a6e906ea8b485d4166de311c17a441f469158
2,550
import re def generate_table_row(log_file, ancestry, official_only, code): """ Takes an imported log and ancestry and converts it into a properly formatted pandas table. Keyword arguments: log_file -- output from import_log() ancestry -- a single ancestry code official_only -- a boolean indicating if all fields should be imported into the table, or only the official ones. Returns: dict of arguments: new values """ # verify that ancestry is correct matches = [l for l in log_file if re.search('Searching for ancestry: ' + \ ancestry, l)] if len(matches) == 0: raise ValueError('ALERT: Incorrect ancestry passed in for code ' + code + '. Passed in value: ' + ancestry) dict_of_vals = {'ancestry': ancestry, 'phenotype_code': code} nrow_orig = num_cols = None for line in log_file: nrow_orig = _parse_single_term(nrow_orig, 'Original number of rows: ([0-9]*)', line, int) num_cols = _parse_single_term(num_cols, 'Found ([0-9]*) ancestry specific columns:', line, int) dict_of_vals.update({'original_nrow': nrow_orig, 'ancestry_specific_ncols': num_cols}) if dict_of_vals['ancestry_specific_ncols'] != 0: tf_boundary = [idx for idx, l in enumerate(log_file) if re.search('Now running LDSC in (vanilla|stratified) mode.',l)] log_file_official = log_file[(tf_boundary[0]+1):(len(log_file)+1)] log_file_unofficial = log_file[0:tf_boundary[0]] if not official_only: unofficial_dict = _parse_unofficial_log(log_file_unofficial) dict_of_vals.update(unofficial_dict) official_dict, error_str = _parse_official_log(log_file_official) else: if not official_only: unofficial_dict = _parse_unofficial_log(log_file) dict_of_vals.update(unofficial_dict) official_dict, _ = _parse_official_log(log_file) error_str = 'No ' + ancestry + '-specific columns found.' dict_of_vals.update(official_dict) if error_str is not None: dict_of_vals.update({'missing_data_note': error_str}) return pd.DataFrame(dict_of_vals, index=[ancestry + ':' + code])
c72bdef2aafbc15c54b80337c80f03ae8d8f1e00
2,551
def read_preflib_file(filename, setsize=1, relative_setsize=None, use_weights=False): """Reads a single preflib file (soi, toi, soc or toc). Parameters: filename: str Name of the preflib file. setsize: int Number of top-ranked candidates that voters approve. In case of ties, more than `setsize` candidates are approved. Paramer `setsize` is ignored if `relative_setsize` is used. relative_setsize: float in (0, 1] Indicates which proportion of candidates of the ranking are approved (rounded up). In case of ties, more candidates are approved. E.g., if a voter has 10 approved candidates and `relative_setsize` is 0.75, then the approval set contains the top 8 candidates. use_weights: bool If False, treat vote count in preflib file as the number of duplicate ballots, i.e., the number of voters that have this approval set. If True, treat vote count as weight and use this weight in class Voter. Returns: profile: abcvoting.preferences.Profile Preference profile extracted from preflib file, including names of candidates """ if setsize <= 0: raise ValueError("Parameter setsize must be > 0") if relative_setsize and (relative_setsize <= 0.0 or relative_setsize > 1.0): raise ValueError("Parameter relative_setsize not in interval (0, 1]") with open(filename, "r") as f: line = f.readline() num_cand = int(line.strip()) candidate_map = {} for _ in range(num_cand): parts = f.readline().strip().split(",") candidate_map[int(parts[0].strip())] = ",".join(parts[1:]).strip() parts = f.readline().split(",") try: voter_count, _, unique_orders = [int(p.strip()) for p in parts] except ValueError: raise PreflibException( f"Number of voters ill specified ({str(parts)}), should be triple of integers" ) approval_sets = [] lines = [line.strip() for line in f.readlines() if line.strip()] if len(lines) != unique_orders: raise PreflibException( f"Expected {unique_orders} lines that specify voters in the input, " f"encountered {len(lines)}" ) for line in lines: parts = line.split(",") if len(parts) < 1: continue try: count = int(parts[0]) except ValueError: raise PreflibException(f"Each ranking must start with count/weight ({line})") ranking = parts[1:] # ranking starts after count if len(ranking) == 0: raise PreflibException("Empty ranking: " + str(line)) if relative_setsize: num_appr = int(ceil(len(ranking) * relative_setsize)) else: num_appr = setsize approval_set = _approval_set_from_preflib_datastructures(num_appr, ranking, candidate_map) approval_sets.append((count, approval_set)) # normalize candidates to 0, 1, 2, ... cand_names = [] normalize_map = {} for cand in candidate_map.keys(): cand_names.append(candidate_map[cand]) normalize_map[cand] = len(cand_names) - 1 profile = Profile(num_cand, cand_names=cand_names) for count, approval_set in approval_sets: normalized_approval_set = [] for cand in approval_set: normalized_approval_set.append(normalize_map[cand]) if use_weights: profile.add_voter(Voter(normalized_approval_set, weight=count)) else: profile.add_voters([normalized_approval_set] * count) if use_weights: if len(profile) != unique_orders: raise PreflibException("Number of voters wrongly specified in preflib file.") else: if len(profile) != voter_count: raise PreflibException("Number of voters wrongly specified in preflib file.") return profile
6feec6e786e47cdc11021021ffa91a1f96597567
2,552
def get_row(client, instance, file_=None): """Get one row of a family table. Args: client (obj): creopyson Client. instance (str): Instance name. `file_` (str, optional): File name. Defaults is currently active model. Returns: (dict): colid (str): Column ID. value (depends on datatype): Cell value. datatype (str): Data type. coltype (str): Column Type; a string corresponding to the Creo column type. """ data = {"instance": instance} if file_ is not None: data["file"] = file_ else: active_file = client.file_get_active() if active_file: data["file"] = active_file["file"] return client._creoson_post("familytable", "get_row", data, "columns")
c8e8c90a81d553d06ce9f78eb1be582e5b034ac6
2,553
def hospitalization_to_removed(clip_low=2, clip_high=32.6, mean=8.6, std=6.7): """ Returns the time for someone to either get removed after being hospitalized in days within range(clip_low, clip_high), of a truncated_norm(mean, std). """ return sample_truncated_norm(clip_low, clip_high, mean, std)
e1da5283e32b5734927436af72fdbd002c0844b1
2,554
def test_inheritance(): """ test inheritance from different module """ # test module test_data = doc.MatObject.matlabify('test_data') test_submodule = test_data.getter('test_submodule') sfdm = test_submodule.getter('super_from_diff_mod') ok_(isinstance(sfdm, doc.MatClass)) eq_(sfdm.bases,['MyAbstractClass', 'MyHandleClass']) bases = sfdm.getter('__bases__') eq_(bases['MyAbstractClass'].module, 'test_data') eq_(bases['MyHandleClass'].module, 'test_data') return sfdm
0f29de2ef67318010feed25ea0ffc08e2dc44162
2,555
from collections import Counter def split_mon_unmon(data, labels): """ Splits into monitored and unmonitored data If a data point only happens once, we also consider it unmonitored @return monitored_data, monitored_label, unmonitored_data """ occurence = Counter(labels) monitored_data, unmonitored_data = [], [] monitored_label = [] for d, l in zip(data, labels): if l == UNKNOWN_WEBPAGE or occurence[l] == 1: unmonitored_data.append(d) else: monitored_data.append(d) monitored_label.append(l) return monitored_data, monitored_label, unmonitored_data
b1d0cac2e12f4386bf04eb355811f230b18f38ca
2,556
def sum_and_count(x, y): """A function used for calculating the mean of a list from a reduce. >>> from operator import truediv >>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9] >>> truediv(*reduce(sum_and_count, l)) == 20.11111111111111 True >>> truediv(*fpartial(sum_and_count)(l)) == 20.11111111111111 True """ try: return (x[0] + y, x[1] + 1) except TypeError: return ((x or 0) + (y or 0), len([i for i in [x, y] if i is not None]))
d43cc8dc39fb35afae4f6a4e32d34221d525f5d3
2,558
def animTempCustom(): """ Temporarily play a custom animation for a set amount of time. API should expect a full `desc` obect in json alongside a timelimit, in ms. """ colorList = request.form.get('colors').split(',') colorsString = "" for colorName in colorList: c = Color(colorName) colorsString += "[{},{},{}],".format( int(255*c.red), int(255*c.green), int(255*c.blue) ) colorsString = colorsString[0:-1] print(colorsString) colors = colorsString bp.newAnim( '$bpa.strip.Twinkle', colors ) return "Animation animation set to RGB!"
2d9cea92d7c1c93d73fcf9b325b7b58225b4ba13
2,559
from unittest.mock import Mock def mock_stripe_invoice(monkeypatch): """Fixture to monkeypatch stripe.Invoice.* methods""" mock = Mock() monkeypatch.setattr(stripe, "Invoice", mock) return mock
a88923ba6d4a6dda9bf3b2fcda3bb717efe36cee
2,560
def read_project(output_dir): """Read existing project data """ try: yaml = YAML() with open(project_yaml_file(output_dir), encoding='utf-8') as project: project_data = yaml.load(project) for key, value in project_data.items(): if value == None: project_data[key] = [] except FileNotFoundError: project_data = { 'name': "Test Project", 'scenario_sets': [], 'narrative_sets': [], 'region_definitions': [], 'interval_definitions': [], 'units': [], 'scenarios': [], 'narratives': [] } return project_data
90cfd7d143176925d8a99f4d577bc7de9eb360e2
2,561
def bytes_to_int(byte_array: bytes) -> int: """ Bytes to int """ return int.from_bytes(byte_array, byteorder='big')
442452faeb1a4e7c346b6f4355095f179701f8f1
2,562
def ask(query, default=None): """Ask a question.""" if default: default_q = ' [{0}]'.format(default) else: default_q = '' inp = input("{query}{default_q}: ".format(query=query, default_q=default_q)).strip() if inp or default is None: return inp else: return default
54564ee00749ddb2e5c409d781552f3ca5fcd847
2,563
def _clean_kwargs(keep_name=False, **kwargs): """ Sanatize the arguments for use with shade """ if "name" in kwargs and not keep_name: kwargs["name_or_id"] = kwargs.pop("name") return __utils__["args.clean_kwargs"](**kwargs)
326d849b030a11ebc21e364f6a05eef9ab019637
2,564
def calculate_pnl_per_equity(df_list): """Method that calculate the P&L of the strategy per equity and returns a list of P&L""" pnl_per_equity = [] # initialize the list of P&L per equity for df in df_list: # iterates over the dataframes of equities pnl = df['Strategy Equity'].iloc[-1] - df['Buy and Hold Equity'].iloc[-1] # calculating the difference at the last point pnl_per_equity.append(pnl) return pnl_per_equity
4f6ac1b9f6a949215c6b805f05a65897393f3288
2,566
import http def search(q_str: str) -> dict: """search in genius Args: q_str (str): query string Returns: dict: search response """ data = {'songs': [], 'lyric': []} response = http.get( 'https://genius.com/api/search/multi?per_page=5', params={'q': q_str}, headers=headers).json() sections = response['response']['sections'] if len(sections[1]['hits']) == 0 and len(sections[2]) == 0: return False for section in response['response']['sections'][1:3]: if section['type'] == 'song': for song in section['hits']: music = song['result'] # print(music) if len(data['songs']) == 0: data['songs'].append(dict_builder(music)) if data['songs'][-1]['api_path'] != music['api_path']: data['songs'].append(dict_builder(music)) elif section['type'] == 'lyric': for lyric in section['hits']: music = lyric['result'] if len(data['lyric']) == 0: data['lyric'].append(dict_builder(music)) if data['lyric'][-1]['api_path'] != music['api_path']: data['songs'].append(dict_builder(music)) return data
7421220e43415fb17b29db26f1fc6902e88144a4
2,567
def geocode(level=None, names=None, countries=None, states=None, counties=None, scope=None) -> NamesGeocoder: """ Create a `Geocoder`. Allows to refine ambiguous request with `where()` method, scope that limits area of geocoding or with parents. Parameters ---------- level : {'country', 'state', 'county', 'city'} The level of administrative division. Autodetection by default. names : list or str Names of objects to be geocoded. For 'state' level: 'US-48' returns continental part of United States (48 states) in a compact form. countries : list Parent countries. Should have same size as names. Can contain strings or `Geocoder` objects. states : list Parent states. Should have same size as names. Can contain strings or `Geocoder` objects. counties : list Parent counties. Should have same size as names. Can contain strings or `Geocoder` objects. scope : str or `Geocoder` Limits area of geocoding. If parent country is set then error will be generated. If type is a string - geoobject should have geocoded scope in parents. If type is a `Geocoder` - geoobject should have geocoded scope in parents. Scope should contain only one entry. Returns ------- `NamesGeocoder` Geocoder object specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 5 from IPython.display import display from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() states = geocode('state').scope('Italy').get_boundaries(6) display(states.head()) ggplot() + geom_map(data=states) | .. jupyter-execute:: :linenos: :emphasize-lines: 5, 8 from IPython.display import display from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() states = geocode(level='state', scope='US').get_geocodes() display(states.head()) names = ['York'] * len(states.state) cities = geocode(names=names, states=states.state).ignore_not_found().get_centroids() display(cities.head()) ggplot() + \\ geom_livemap() + \\ geom_point(data=cities, tooltips=layer_tooltips().line('@{found name}')) """ return NamesGeocoder(level, names) \ .scope(scope) \ .countries(countries) \ .states(states) \ .counties(counties)
25ab4ff7887d09a41c19b6ec8ee9057151483b2e
2,569
def fpAbs(x): """ Returns the absolute value of the floating point `x`. So: a = FPV(-3.2, FSORT_DOUBLE) b = fpAbs(a) b is FPV(3.2, FSORT_DOUBLE) """ return abs(x)
d69f5f07b651ed4466ff768601c77f90232b8827
2,570
from io import StringIO import json def volumes(container:str) -> list: """ Return list of 'container' volumes (host,cont) """ buf = StringIO() _exec( docker, 'inspect', '-f', "'{{json .Mounts}}'", container, _out=buf ) res = buf.getvalue().strip() vols_list = json.loads(res[1:-1]) # vols = {d['Source']:d['Destination'] for d in vols_list} vols = [(d['Source'],d['Destination']) for d in vols_list] return vols
5191df9ab4aa58a80fba90872da6091bc58f8be2
2,571
def names(): """Return stock summary information""" helper = SQLHelper() conn = helper.getConnection() repo = robinhoodRepository(conn) stockInfo = repo.getAllStocks() return json_response(stockInfo, 200)
d543ab5254e95e903e8b74db1ab5b0266859b083
2,572
def get_bot_group_config(bot_id): """Returns BotGroupConfig for a bot with given ID. Returns: BotGroupConfig or None if not found. Raises: BadConfigError if there's no cached config and the current config at HEAD is not passing validation. """ cfg = _fetch_bot_groups() gr = cfg.direct_matches.get(bot_id) if gr is not None: return gr for prefix, gr in cfg.prefix_matches: if bot_id.startswith(prefix): return gr return cfg.default_group
025b2a9a91f2a744668fd6c438db0f5c4edd0a98
2,573
def add_utm(url_, campaign, source='notification', medium='email'): """Add the utm_* tracking parameters to a URL.""" return urlparams( url_, utm_campaign=campaign, utm_source=source, utm_medium=medium)
d428daf58db7b0b5d5dabfd4bac6f70e900bd311
2,574
def is_forest(G): """Return True if the input graph is a forest Parameters ---------- G : NetworkX Graph An undirected graph. Returns ------- True if the input graph is a forest Notes ----- For undirected graphs only. """ for graph in nx.connected_component_subgraphs(G): if not nx.is_tree(graph): return False return True
6aade3d2407b8af1cd8662b9efdc604d304341fe
2,575
def parse_uri(uri): """ This implies that we are passed a uri that looks something like: proto://username:password@hostname:port/database In most cases, you can omit the port and database from the string: proto://username:password@hostname Also, in cases with no username, you can omit that: proto://:password@hostname:port/database Also supports additional arguments: proto://hostname:port/database?arg1=val&arg2=vals :param str uri: URI to parse :rtype: dict :returns: Dictionary with parsed URL components .. note:: This function may move, as the currently location may not be optimal. Location will be finalized by 1.0.0 stable release. """ proto = uri.split('://')[0] uri = uri.split('://')[1] _host = uri.split('@')[-1] _host = _host.split(':') if len(_host) == 2: host = _host[0] if '/' in _host[1]: port = int(_host[1].split('/')[0]) else: port = int(_host[1]) else: host = _host[0] if '/' in host: host = host.split('/')[0] port = None if "@" in uri: _cred = uri[0:uri.rfind(':'.join(_host)) - 1] _cred = _cred.split(':') if len(_cred) == 2: _user = _cred[0] _pass = _cred[1] else: _user = _cred[0] _pass = None else: _user = None _pass = None database = uri.split('/') if len(database) >= 2: database = database[1] if '?' in database: _db = database.split('?') database = _db[0] args = parse_qs(_db[1], keep_blank_values = True) else: args = None else: database = None args = None return { "protocol": proto, "resource": uri, "host": host, "port": port, "username": _user, "password": _pass, "database": database, "args": args, "uri": "{}://{}".format(proto, uri), }
5204d803a5d0f6995c49883a892bc6b22cef9443
2,577
def pwgen(pw_len=16): """Generate a random password with the given length. Allowed chars does not have "I" or "O" or letters and digits that look similar -- just to avoid confusion. """ return get_random_string( pw_len, 'abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789' )
3c5a07440a6d3eee7c1bc9162089c434cfe6c45d
2,578
def compute_tree_distances(tree): """ Computes the matrix of pairwise distances between leaves of the tree """ num_leaves = len(get_leaves(tree)) - 1 distances = np.zeros([num_leaves, num_leaves]) for leaf in range(num_leaves): distance_dictionary, tmp = nx.multi_source_dijkstra(tree.to_undirected(), [leaf], weight = 'time') for target_leaf in range(num_leaves): distances[leaf, target_leaf] = distance_dictionary[target_leaf] return distances
b4bdd81e0f4c8d5577813f6e68ece9f0a8992e19
2,580
def create_rndm_backgr_selections(annotations, files, length, num, no_overlap=False, trim_table=False): """ Create background selections of uniform length, randomly distributed across the data set and not overlapping with any annotations, including those labelled 0. The random sampling is performed without regard to already created background selections. Therefore, it is in principle possible that some of the created selections will overlap, although in practice this will only occur with very small probability, unless the number of requested selections (num) is very large and/or the (annotation-free part of) the data set is small in size. To avoid any overlap, set the 'no_overlap' to True, but note that this can lead to longer execution times. Args: annotations: pandas DataFrame Annotation table. files: pandas DataFrame Table with file durations in seconds. Should contain columns named 'filename' and 'duration'. length: float Selection length in seconds. num: int Number of selections to be created. no_overlap: bool If True, randomly selected segments will have no overlap. trim_table: bool Keep only the columns prescribed by the Ketos annotation format. Returns: table_backgr: pandas DataFrame Output selection table. Example: >>> import pandas as pd >>> import numpy as np >>> from ketos.data_handling.selection_table import select >>> >>> #Ensure reproducible results by fixing the random number generator seed. >>> np.random.seed(3) >>> >>> #Load and inspect the annotations. >>> df = pd.read_csv("ketos/tests/assets/annot_001.csv") >>> print(df) filename start end label 0 file1.wav 7.0 8.1 1 1 file1.wav 8.5 12.5 0 2 file1.wav 13.1 14.0 1 3 file2.wav 2.2 3.1 1 4 file2.wav 5.8 6.8 1 5 file2.wav 9.0 13.0 0 >>> >>> #Standardize annotation table format >>> df, label_dict = standardize(df, return_label_dict=True) >>> print(df) start end label filename annot_id file1.wav 0 7.0 8.1 2 1 8.5 12.5 1 2 13.1 14.0 2 file2.wav 0 2.2 3.1 2 1 5.8 6.8 2 2 9.0 13.0 1 >>> >>> #Enter file durations into a pandas DataFrame >>> file_dur = pd.DataFrame({'filename':['file1.wav','file2.wav','file3.wav',], 'duration':[18.,20.,15.]}) >>> >>> #Create randomly sampled background selection with fixed 3.0-s length. >>> df_bgr = create_rndm_backgr_selections(df, files=file_dur, length=3.0, num=12, trim_table=True) >>> print(df_bgr.round(2)) start end label filename sel_id file1.wav 0 1.06 4.06 0 1 1.31 4.31 0 2 2.26 5.26 0 file2.wav 0 13.56 16.56 0 1 14.76 17.76 0 2 15.50 18.50 0 3 16.16 19.16 0 file3.wav 0 2.33 5.33 0 1 7.29 10.29 0 2 7.44 10.44 0 3 9.20 12.20 0 4 10.94 13.94 0 """ # compute lengths, and discard segments shorter than requested length c = files[['filename','duration']] if 'offset' in files.columns.names: c['offset'] = files['offset'] else: c['offset'] = 0 c.reset_index(drop=True, inplace=True) c['length'] = c['duration'] - length c = c[c['length'] >= 0] # cumulative length cs = c['length'].cumsum().values.astype(float) cs = np.concatenate(([0],cs)) # output filename, start, end = [], [], [] # randomply sample df = pd.DataFrame() while (len(df) < num): times = np.random.random_sample(num) * cs[-1] for t in times: idx = np.argmax(t < cs) - 1 row = c.iloc[idx] fname = row['filename'] start = t - cs[idx] + row['offset'] end = start + length q = query(annotations, filename=fname, start=start, end=end) if len(q) > 0: continue if no_overlap and len(df) > 0: q = query(df.set_index(df.filename), filename=fname, start=start, end=end) if len(q) > 0: continue x = {'start':start, 'end':end} y = files[files['filename']==fname].iloc[0].to_dict() z = {**x, **y} df = df.append(z, ignore_index=True) if len(df) == num: break # sort by filename and offset df = df.sort_values(by=['filename','start'], axis=0, ascending=[True,True]).reset_index(drop=True) # re-order columns col_names = ['filename','start','end'] if not trim_table: names = df.columns.values.tolist() for name in col_names: names.remove(name) col_names += names df = df[col_names] df['label'] = 0 #add label # transform to multi-indexing df = use_multi_indexing(df, 'sel_id') return df
01eac8bc0a624b56d419ce3cb75744792af1472f
2,581
def GetPartition(partition_name, target_os): """Return the partition to install to. Args: partition_name: partition name from command-line {'primary', 'secondary', 'other'} target_os: 'fiberos' or 'android' Returns: 0 or 1 Raises: Fatal: if no partition could be determined """ if partition_name == 'other': if target_os == GetOs(): boot = GetBootedPartition() else: boot = GetActivePartitionFromHNVRAM(target_os) assert boot in [None, 0, 1] if boot is None: # Policy decision: if we're booted from NFS, install to secondary return 1 else: return boot ^ 1 elif partition_name in ['primary', 0]: return 0 elif partition_name in ['secondary', 1]: return 1 else: raise Fatal('--partition must be one of: primary, secondary, other')
b3f030779bd29bbe695ba3769372f4af700d7cb7
2,583
import aiohttp import json async def call_dialogflow(message, config, lang=DEFAULT_LANGUAGE): """Call the Dialogflow api and return the response.""" async with aiohttp.ClientSession() as session: payload = { "v": DIALOGFLOW_API_VERSION, "lang": lang, "sessionId": message.connector.name, "query": message.text, } headers = { "Authorization": "Bearer " + config["access-token"], "Content-Type": "application/json", } resp = await session.post( DIALOGFLOW_API_ENDPOINT, data=json.dumps(payload), headers=headers ) result = await resp.json() _LOGGER.info(_("Dialogflow response - %s"), json.dumps(result)) return result
e670748dc4d0318d047b0f0ded6d857597112d49
2,584
def gettgd(sat, eph, type=0): """ get tgd: 0=E5a, 1=E5b """ sys = gn.sat2prn(sat)[0] if sys == uGNSS.GLO: return eph.dtaun * rCST.CLIGHT else: return eph.tgd[type] * rCST.CLIGHT
c7231769b0e9be5287b2b2f76c8dcdc7bd409a89
2,585
def random_sign_uniform(shape, minval=None, maxval=None, dtype=dtypes.float32, seed=None): """Tensor with (possibly complex) random entries from a "sign Uniform". Letting `Z` be a random variable equal to `-1` and `1` with equal probability, Samples from this `Op` are distributed like ``` Z * X, where X ~ Uniform[minval, maxval], if dtype is real, Z * (X + iY), where X, Y ~ Uniform[minval, maxval], if dtype is complex. ``` Args: shape: `TensorShape` or Python list. Shape of the returned tensor. minval: `0-D` `Tensor` giving the minimum values. maxval: `0-D` `Tensor` giving the maximum values. dtype: `TensorFlow` `dtype` or Python dtype seed: Python integer seed for the RNG. Returns: `Tensor` with desired shape and dtype. """ dtype = dtypes.as_dtype(dtype) with ops.name_scope("random_sign_uniform"): unsigned_samples = random_uniform( shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed) if seed is not None: seed += 12 signs = math_ops.sign( random_ops.random_uniform(shape, minval=-1., maxval=1., seed=seed)) return unsigned_samples * math_ops.cast(signs, unsigned_samples.dtype)
b942253c14438c72c19d648a0d0358d8cd280bd0
2,586
def ones_v(n): """ Return the column vector of ones of length n. """ return matrix(1, (n,1), 'd')
46936660025c1b5bd533b78143301d1218b568d7
2,587
def test_encrypt_and_decrypt_two(benchmark: BenchmarkFixture) -> None: """Benchmark encryption and decryption run together.""" primitives.decrypt = pysodium.crypto_aead_xchacha20poly1305_ietf_decrypt primitives.encrypt = pysodium.crypto_aead_xchacha20poly1305_ietf_encrypt def encrypt_and_decrypt() -> bytes: token = version2.encrypt(MESSAGE, KEY, FOOTER) return version2.decrypt(token, KEY, FOOTER) plain_text = benchmark(encrypt_and_decrypt) assert plain_text == MESSAGE
1b632ae28f147fa4d98dcdda982bf3d17b2c17dd
2,588
def get_fy_parent_nucl(fy_lib): """Gets the list of fission parents from a fission yield dictionnary. Parameters ---------- fy_lib: dict A fission yield dictionnary """ fy_nucl = get_fy_nucl(fy_lib) fy_parent = [] sample_zamid = fy_nucl[0] sample = fy_lib[sample_zamid] for fission_parent in sample: fy_parent.append(fission_parent) return fy_parent
feb2ec2adfda4d9df4993cc89545564e4c0d1a54
2,590
from functools import partial import array def initialize ( is_test, no_cam ) : """job machine Tableをもとに個体、世代の初期設定""" jmTable = getJmTable ( is_test ) MAX_JOBS = jmTable.getJobsCount() MAX_MACHINES = jmTable.getMachinesCount() # makespan最小化 creator.create ( "FitnessMin", base.Fitness, weights=(-1.0,) ) # 個体はジョブ番号のリスト #creator.create ( "Individual", list, fitness=creator.FitnessMin ) creator.create ( "Individual", array.array, typecode='b', fitness=creator.FitnessMin ) # 'b' is signed char toolbox = base.Toolbox() # ゼロからMAX_MACHINES未満までがMAX_JOBS回ランダムに並ぶ個体と設定 gen_ind = partial ( initIndividual, MAX_JOBS, MAX_MACHINES ) toolbox.register ( "individual", tools.initIterate, creator.Individual, gen_ind ) # 初期世代を生成する関数を登録、初期世代はIndividualのリストとして設定 toolbox.register ( "population", tools.initRepeat, list, toolbox.individual ) # 評価関数を登録 toolbox.register ( "evaluate", schedule.eval, jmTable ) # 交叉関数を登録 toolbox.register ( "mate", schedule.crossover ) # 突然変異を登録 toolbox.register ( "mutate", schedule.mutation ) # ルーレット選択を登録 toolbox.register ( "select", tools.selRoulette ) # 置換操作を登録 if no_cam : # 通常の置換操作 toolbox.register ( "getArgWorst", schedule.getArgWorst ) else : # クラスタ平均法(CAM)による置換操作 toolbox.register ( "getArgWorst", schedule.getArgWorstCAM ) return toolbox, jmTable
f306cf9b5400ea92b92709bc6986d6b87ea909b2
2,591
def perform_variants_query(job, **kwargs): """Query for variants. :param job: API to interact with the owner of the variants. :type job: :class:`cibyl.sources.zuul.transactions.JobResponse` :param kwargs: See :func:`handle_query`. :return: List of retrieved variants. :rtype: list[:class:`cibyl.sources.zuul.transactions.VariantResponse`] """ return job.variants().get()
c779080e2ef8c1900c293f70996e17bae932b142
2,592
import torch def get_model(share_weights=False, upsample=False): # pylint: disable=too-many-statements """ Return a network dict for the model """ block0 = [{'conv1_1': [3, 64, 3, 1, 1]}, {'conv1_2': [64, 64, 3, 1, 1]}, {'pool1_stage1': [2, 2, 0]}, {'conv2_1': [64, 128, 3, 1, 1]}, {'conv2_2': [128, 128, 3, 1, 1]}, {'pool2_stage1': [2, 2, 0]}, {'conv3_1': [128, 256, 3, 1, 1]}, {'conv3_2': [256, 256, 3, 1, 1]}, {'conv3_3': [256, 256, 3, 1, 1]}, {'conv3_4': [256, 256, 3, 1, 1]}, {'pool3_stage1': [2, 2, 0]}, {'conv4_1': [256, 512, 3, 1, 1]}, {'conv4_2': [512, 512, 3, 1, 1]}] if share_weights: print("defining network with shared weights") network_dict = get_shared_network_dict() else: network_dict = get_network_dict() def define_base_layers(block, layer_size): layers = [] for i in range(layer_size): one_ = block[i] for k, v in zip(one_.keys(), one_.values()): if 'pool' in k: layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])] else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers += [conv2d, nn.ReLU(inplace=True)] return layers def define_stage_layers(cfg_dict): layers = define_base_layers(cfg_dict, len(cfg_dict) - 1) one_ = cfg_dict[-1].keys() k = list(one_)[0] v = cfg_dict[-1][k] conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers += [conv2d] return nn.Sequential(*layers) # create all the layers of the model base_layers = define_base_layers(block0, len(block0)) pre_stage_layers = define_base_layers(network_dict['block_pre_stage'], len(network_dict['block_pre_stage'])) blocks = {'block0': nn.Sequential(*base_layers), 'block_pre_stage': nn.Sequential(*pre_stage_layers)} if share_weights: shared_layers_s1 = define_base_layers(network_dict['block1_shared'], len(network_dict['block1_shared'])) shared_layers_s2 = define_base_layers(network_dict['block2_shared'], len(network_dict['block2_shared'])) blocks['block1_shared'] = nn.Sequential(*shared_layers_s1) blocks['block2_shared'] = nn.Sequential(*shared_layers_s2) for k, v in zip(network_dict.keys(), network_dict.values()): if 'shared' not in k and 'pre_stage' not in k: blocks[k] = define_stage_layers(v) class PoseModel(nn.Module): """ Pose Model class """ def __init__(self, model_dict, upsample=False): super(PoseModel, self).__init__() self.upsample = upsample self.basemodel = model_dict['block0'] self.pre_stage = model_dict['block_pre_stage'] if share_weights: self.stage1_shared = model_dict['block1_shared'] self.stage1_1 = model_dict['block1_1'] self.stage2_1 = model_dict['block2_1'] # self.stage3_1 = model_dict['block3_1'] # self.stage4_1 = model_dict['block4_1'] # self.stage5_1 = model_dict['block5_1'] # self.stage6_1 = model_dict['block6_1'] if share_weights: self.stage2_shared = model_dict['block2_shared'] self.stage1_2 = model_dict['block1_2'] self.stage2_2 = model_dict['block2_2'] # self.stage3_2 = model_dict['block3_2'] # self.stage4_2 = model_dict['block4_2'] # self.stage5_2 = model_dict['block5_2'] # self.stage6_2 = model_dict['block6_2'] def forward(self, *inputs): out1_vgg = self.basemodel(inputs[0]) out1 = self.pre_stage(out1_vgg) if share_weights: out1_shared = self.stage1_shared(out1) else: out1_shared = out1 out1_1 = self.stage1_1(out1_shared) out1_2 = self.stage1_2(out1_shared) out2 = torch.cat([out1_1, out1_2, out1], 1) if share_weights: out2_shared = self.stage2_shared(out2) else: out2_shared = out2 out2_1 = self.stage2_1(out2_shared) out2_2 = self.stage2_2(out2_shared) # out3 = torch.cat([out2_1, out2_2, out1], 1) # out3_1 = self.stage3_1(out3) # out3_2 = self.stage3_2(out3) # out4 = torch.cat([out3_1, out3_2, out1], 1) # # out4_1 = self.stage4_1(out4) # out4_2 = self.stage4_2(out4) # out5 = torch.cat([out4_1, out4_2, out1], 1) # # out5_1 = self.stage5_1(out5) # out5_2 = self.stage5_2(out5) # out6 = torch.cat([out5_1, out5_2, out1], 1) # # out6_1 = self.stage6_1(out6) # out6_2 = self.stage6_2(out6) if self.upsample: # parameters to check for up-sampling: align_corners = True, mode='nearest' upsampler = nn.Upsample(scale_factor=2, mode='bilinear') out2_1_up = upsampler(out2_1) out2_2_up = upsampler(out2_2) return out1_1, out1_2, out2_1, out2_2, out2_1_up, out2_2_up return out1_1, out1_2, out2_1, out2_2 model = PoseModel(blocks, upsample=upsample) return model
364050799adc3312e4a46081e4a82338407f177b
2,593
def bootstrap(config_uri, request=None, options=None): """ Load a WSGI application from the PasteDeploy config file specified by ``config_uri``. The environment will be configured as if it is currently serving ``request``, leaving a natural environment in place to write scripts that can generate URLs and utilize renderers. This function returns a dictionary with ``app``, ``root``, ``closer``, ``request``, and ``registry`` keys. ``app`` is the WSGI app loaded (based on the ``config_uri``), ``root`` is the traversal root resource of the Pyramid application, and ``closer`` is a parameterless callback that may be called when your script is complete (it pops a threadlocal stack). .. note:: Most operations within :app:`Pyramid` expect to be invoked within the context of a WSGI request, thus it's important when loading your application to anchor it when executing scripts and other code that is not normally invoked during active WSGI requests. .. note:: For a complex config file containing multiple :app:`Pyramid` applications, this function will setup the environment under the context of the last-loaded :app:`Pyramid` application. You may load a specific application yourself by using the lower-level functions :meth:`pyramid.paster.get_app` and :meth:`pyramid.scripting.prepare` in conjunction with :attr:`pyramid.config.global_registries`. ``config_uri`` -- specifies the PasteDeploy config file to use for the interactive shell. The format is ``inifile#name``. If the name is left off, ``main`` will be assumed. ``request`` -- specified to anchor the script to a given set of WSGI parameters. For example, most people would want to specify the host, scheme and port such that their script will generate URLs in relation to those parameters. A request with default parameters is constructed for you if none is provided. You can mutate the request's ``environ`` later to setup a specific host/port/scheme/etc. ``options`` Is passed to get_app for use as variable assignments like {'http_port': 8080} and then use %(http_port)s in the config file. See :ref:`writing_a_script` for more information about how to use this function. """ app = get_app(config_uri, options=options) env = prepare(request) env['app'] = app return env
608629eb380765ebafa4009946a30b9f46de6ff9
2,594
def readSegy(filename) : """ Data,SegyHeader,SegyTraceHeaders=getSegyHeader(filename) """ printverbose("readSegy : Trying to read "+filename,0) data = open(filename).read() filesize=len(data) SH=getSegyHeader(filename) bps=getBytePerSample(SH) ntraces = (filesize-3600)/(SH['ns']*bps+240) # ntraces = 100 printverbose("readSegy : Length of data : " + str(filesize),2) SH["ntraces"]=ntraces; ndummy_samples=240/bps printverbose("readSegy : ndummy_samples="+str(ndummy_samples),6) printverbose("readSegy : ntraces=" + str(ntraces) + " nsamples="+str(SH['ns']),2) # GET TRACE index=3600; nd=(filesize-3600)/bps # READ ALL SEGY TRACE HEADRES SegyTraceHeaders = getAllSegyTraceHeaders(SH,data) printverbose("readSegy : reading segy data",2) # READ ALL DATA EXCEPT FOR SEGY HEADER #Data = zeros((SH['ns'],ntraces)) revision=SH["SegyFormatRevisionNumber"] if (revision==100): revision=1 dsf=SH["DataSampleFormat"] DataDescr=SH_def["DataSampleFormat"]["descr"][revision][dsf] printverbose("readSegy : SEG-Y revision = "+str(revision),1) printverbose("readSegy : DataSampleFormat="+str(dsf)+"("+DataDescr+")",1) if (SH["DataSampleFormat"]==1): printverbose("readSegy : Assuming DSF=1, IBM FLOATS",2) Data1 = getValue(data,index,'ibm',endian,nd) elif (SH["DataSampleFormat"]==2): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", 32bit INT",2) Data1 = getValue(data,index,'l',endian,nd) elif (SH["DataSampleFormat"]==3): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", 16bit INT",2) Data1 = getValue(data,index,'h',endian,nd) elif (SH["DataSampleFormat"]==5): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", IEEE",2) Data1 = getValue(data,index,'float',endian,nd) elif (SH["DataSampleFormat"]==8): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", 8bit CHAR",2) Data1 = getValue(data,index,'B',endian,nd) else: printverbose("readSegy : DSF=" + str(SH["DataSampleFormat"]) + ", NOT SUPORTED",2) Data = Data1[0] printverbose("readSegy : - reshaping",2) Data=reshape(Data,(ntraces,SH['ns']+ndummy_samples)) printverbose("readSegy : - stripping header dummy data",2) Data=Data[:,ndummy_samples:(SH['ns']+ndummy_samples)] printverbose("readSegy : - transposing",2) Data=transpose(Data) # SOMEONE NEEDS TO IMPLEMENT A NICER WAY DO DEAL WITH DSF=8 if (SH["DataSampleFormat"]==8): for i in arange(ntraces): for j in arange(SH['ns']): if Data[i][j]>128: Data[i][j]=Data[i][j]-256 printverbose("readSegy : read data",2) return Data,SH,SegyTraceHeaders
5e3920255aa49c70e0e898b2d3915c05afc7f869
2,595
def planar_transform(imgs, masks, pixel_coords_trg, k_s, k_t, rot, t, n_hat, a): """transforms imgs, masks and computes dmaps according to planar transform. Args: imgs: are L X [...] X C, typically RGB images per layer masks: L X [...] X 1, indicating which layer pixels are valid pixel_coords_trg: [...] X H_t X W_t X 3; pixel (u,v,1) coordinates of target image pixels. k_s: intrinsics for source cameras, are [...] X 3 X 3 matrices k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices rot: relative rotation, are [...] X 3 X 3 matrices t: [...] X 3 X 1, translations from source to target camera n_hat: L X [...] X 1 X 3, plane normal w.r.t source camera frame a: L X [...] X 1 X 1, plane equation displacement Returns: imgs_transformed: L X [...] X C images in trg frame masks_transformed: L X [...] X 1 masks in trg frame dmaps_trg: L X [...] X 1, indicating per pixel inverse depth Assumes the first dimension corresponds to layers. """ with tf.name_scope('planar_transform'): n_layers = imgs.get_shape().as_list()[0] rot_rep_dims = [n_layers] rot_rep_dims += [1 for _ in range(len(k_s.get_shape()))] cds_rep_dims = [n_layers] cds_rep_dims += [1 for _ in range(len(pixel_coords_trg.get_shape()))] k_s = tf.tile(tf.expand_dims(k_s, axis=0), rot_rep_dims) k_t = tf.tile(tf.expand_dims(k_t, axis=0), rot_rep_dims) t = tf.tile(tf.expand_dims(t, axis=0), rot_rep_dims) rot = tf.tile(tf.expand_dims(rot, axis=0), rot_rep_dims) pixel_coords_trg = tf.tile( tf.expand_dims(pixel_coords_trg, axis=0), cds_rep_dims) ndims_img = len(imgs.get_shape()) imgs_masks = tf.concat([imgs, masks], axis=ndims_img - 1) imgs_masks_trg = homography.transform_plane_imgs( imgs_masks, pixel_coords_trg, k_s, k_t, rot, t, n_hat, a) imgs_trg, masks_trg = tf.split(imgs_masks_trg, [3, 1], axis=ndims_img - 1) dmaps_trg = homography.trg_disp_maps(pixel_coords_trg, k_t, rot, t, n_hat, a) return imgs_trg, masks_trg, dmaps_trg
18f90706b996ee9ba81ab7142313dcaa761cf773
2,596
def convertDynamicRenderStates(data, builder): """ Converts dynamic render states. The data map is expected to contain the following elements: - lineWidth: float width for the line. Defaults to 1. - depthBiasConstantFactor: float value for the depth bias constant factor. Defaults to 0. - depthBiasClamp: float value for the depth bias clamp. Defaults to 0. - depthBiasSlopeFactor: float value for the depth bias slope factor. Defaults to 0. - blendConstants: array of 4 floats for the blend color. Defaults to [0, 0, 0, 0]. - depthBounds: array of 2 floats for the min and max depth value. Defaults to [0, 1]. - stencilCompareMask: int compare mask for both the front and back stencil. Defaults to 0xFFFFFFFF. - frontStencilCompareMask: int compare mask for just the front stencil. - backStencilCompareMask: int compare mask for just the back stencil. - stencilWriteMask: int write mask for both the front and back stencil. Defaults to 0. - frontStencilWriteMask: int write mask for just the front stencil. - backStencilWriteMask: int write mask for just the back stencil. - stencilReference: int reference for both the front and back stencil. Defaults to 0. - frontStencilReference: int reference for just the front stencil. - backStencilReference: int reference for just the back stencil. """ def readFloat(value, name): try: return float(value) except: raise Exception('Invalid ' + name + ' float value "' + str(value) + '".') def readUInt(value, name): try: intVal = int(value) if intVal < 0: raise Exception() return intVal except: raise Exception('Invalid ' + name + ' unsigned int value "' + str(value) + '".') lineWidth = readFloat(data.get('lineWidth', 1.0), 'line width') depthBiasConstantFactor = readFloat(data.get('depthBiasConstantFactor', 0.0), 'depth bias constant factor') depthBiasClamp = readFloat(data.get('depthBiasClamp', 0.0), 'depth bias clamp') depthBiasSlopeFactor = readFloat(data.get('depthBiasSlopeFactor', 0.0), 'depth bias slope factor') colorValue = data.get('blendConstants', [0.0, 0.0, 0.0, 0.0]) try: if len(colorValue) != 4: raise Exception() except: raise Exception('Blend constants value must be an array of 4 floats.') blendConstants = [] for c in colorValue: blendConstants.append(readFloat(c, 'blend constant')) depthBoundsValue = data.get('depthBounds', [0.0, 1.0]) try: if len(depthBoundsValue) != 2: raise Exception() except: raise Exception('Depth bounds value must be an array of 2 floats.') depthBounds = [] for b in depthBoundsValue: depthBounds.append(readFloat(b, 'depth bounds')) stencilCompareMask = data.get('stencilCompareMask', 0xFFFFFFFF) frontStencilCompareMask = readUInt(data.get('frontStencilCompareMask', stencilCompareMask), 'stencil compare mask') backStencilCompareMask = readUInt(data.get('backStencilCompareMask', stencilCompareMask), 'stencil compare mask') stencilWriteMask = data.get('stencilWriteMask', 0) frontStencilWriteMask = readUInt(data.get('frontStencilWriteMask', stencilWriteMask), 'stencil write mask') backStencilWriteMask = readUInt(data.get('backStencilWriteMask', stencilWriteMask), 'stencil write mask') stencilReference = data.get('stencilReference', 0) frontStencilReference = readUInt(data.get('frontStencilReference', stencilReference), 'stencil reference') backStencilReference = readUInt(data.get('backStencilReference', stencilReference), 'stencil reference') DynamicRenderStates.Start(builder) DynamicRenderStates.AddLineWidth(builder, lineWidth) DynamicRenderStates.AddDepthBiasConstantFactor(builder, depthBiasConstantFactor) DynamicRenderStates.AddDepthBiasClamp(builder, depthBiasClamp) DynamicRenderStates.AddDepthBiasSlopeFactor(builder, depthBiasSlopeFactor) DynamicRenderStates.AddBlendConstants(builder, CreateColor4f(builder, *blendConstants)) DynamicRenderStates.AddDepthBounds(builder, CreateVector2f(builder, *depthBounds)) DynamicRenderStates.AddFrontStencilCompareMask(builder, frontStencilCompareMask) DynamicRenderStates.AddBackStencilCompareMask(builder, backStencilCompareMask) DynamicRenderStates.AddFrontStencilWriteMask(builder, frontStencilWriteMask) DynamicRenderStates.AddBackStencilWriteMask(builder, backStencilWriteMask) DynamicRenderStates.AddFrontStencilReference(builder, frontStencilReference) DynamicRenderStates.AddBackStencilReference(builder, backStencilReference) return DynamicRenderStates.End(builder)
5c27ebd4401d8b6c0388bfe6f1973c137404ddf5
2,597
def binary_search(a, search_value): """ @name binary_search @param a array """ N = len(a) l = 0 r = len(a) - 1 while(True): try: result = binary_search_iteration(a, l, r, search_value) l, r = result except TypeError: return -1 if not result else result
5fc2748a76d89c2559cda8bc9dacd16d90b2aa5e
2,598
from typing import Dict from typing import Any from typing import cast def _key_match(d1: Dict[str, Any], d2: Dict[str, Any], key: str) -> bool: """ >>> _key_match({"a": 1}, {"a": 2}, "a") False >>> _key_match({"a": 1}, {"a": 2}, "b") True >>> _key_match({"a": 2}, {"a": 1}, "a") False >>> _key_match({"a": 1}, {"a": 1}, "a") True >>> _key_match({"a": 2}, {"b": 1}, "a") False >>> _key_match({"b": 2}, {"a": 1}, "a") False """ try: return (key not in d1 and key not in d2) or cast(bool, d1[key] == d2[key]) except KeyError: return False
8e76ee70c6209b357b13890a9fcf2b0b7d770c1b
2,599
def calculate(over): """Returns the value of the first triangle number to have over the specified number of divisors""" triangle = 0 count = sum(range(triangle)) while True: if num_divisors(count) > over: answer = count return answer triangle += 1 count = sum(range(triangle))
e7391bea108261bb2b7abc64cbdd6ba6285deaae
2,600
import numpy def convert_image_to_kernel(im: Image, oversampling, kernelwidth): """ Convert an image to a griddata kernel :param im: Image to be converted :param oversampling: Oversampling of Image spatially :param kernelwidth: Kernel width to be extracted :return: numpy.ndarray[nchan, npol, oversampling, oversampling, kernelwidth, kernelwidth] """ naxis = len(im.shape) assert numpy.max(numpy.abs(im.data)) > 0.0, "Image is empty" nchan, npol, ny, nx = im.shape assert nx % oversampling == 0, "Oversampling must be even" assert ny % oversampling == 0, "Oversampling must be even" assert kernelwidth < nx and kernelwidth < ny, "Specified kernel width %d too large" assert im.wcs.wcs.ctype[0] == 'UU', 'Axis type %s inappropriate for construction of kernel' % im.wcs.wcs.ctype[0] assert im.wcs.wcs.ctype[1] == 'VV', 'Axis type %s inappropriate for construction of kernel' % im.wcs.wcs.ctype[1] newwcs = WCS(naxis=naxis + 2) for axis in range(2): newwcs.wcs.ctype[axis] = im.wcs.wcs.ctype[axis] newwcs.wcs.crpix[axis] = kernelwidth // 2 newwcs.wcs.crval[axis] = 0.0 newwcs.wcs.cdelt[axis] = im.wcs.wcs.cdelt[axis] * oversampling newwcs.wcs.ctype[axis + 2] = im.wcs.wcs.ctype[axis] newwcs.wcs.crpix[axis + 2] = oversampling // 2 newwcs.wcs.crval[axis + 2] = 0.0 newwcs.wcs.cdelt[axis + 2] = im.wcs.wcs.cdelt[axis] # Now do Stokes and Frequency newwcs.wcs.ctype[axis + 4] = im.wcs.wcs.ctype[axis + 2] newwcs.wcs.crpix[axis + 4] = im.wcs.wcs.crpix[axis + 2] newwcs.wcs.crval[axis + 4] = im.wcs.wcs.crval[axis + 2] newwcs.wcs.cdelt[axis + 4] = im.wcs.wcs.cdelt[axis + 2] newdata_shape = [nchan, npol, oversampling, oversampling, kernelwidth, kernelwidth] newdata = numpy.zeros(newdata_shape, dtype=im.data.dtype) assert oversampling * kernelwidth < ny assert oversampling * kernelwidth < nx ystart = ny // 2 - oversampling * kernelwidth // 2 xstart = nx // 2 - oversampling * kernelwidth // 2 yend = ny // 2 + oversampling * kernelwidth // 2 xend = nx // 2 + oversampling * kernelwidth // 2 for chan in range(nchan): for pol in range(npol): for y in range(oversampling): slicey = slice(yend + y, ystart + y, -oversampling) for x in range(oversampling): slicex = slice(xend + x, xstart + x, -oversampling) newdata[chan, pol, y, x, ...] = im.data[chan, pol, slicey, slicex] return create_image_from_array(newdata, newwcs, polarisation_frame=im.polarisation_frame)
fe1a2a81421a5f3c09e6c6439aeb7b52e217967f
2,601
def prob(X, w): """ X: Nxd w: dx1 --- prob: N x num_classes(2)""" y = tf.constant(np.array([0.0, 1.0]), dtype=tf.float32) prob = tf.exp(tf.matmul(X, w) * y) / (1 + tf.exp(tf.matmul(X, w))) return prob
b916f75bc3596bbbff701b6dbb3b43add0f06373
2,602
def get_date_strings(): """ Get date strings for last month and this month in "%Y%m" format, e.g. "202201" """ today = date.today() first = today.replace(day=1) last_month = first - timedelta(days=1) this_month_string = today.strftime("%Y%m") last_month_string = last_month.strftime("%Y%m") return this_month_string, last_month_string
cc09f710d86efcc73a7e653d30cc2d590ba865e6
2,604
import torch from typing import Tuple def rotate( img: torch.Tensor, boxes: np.ndarray, angle: float, ) -> Tuple[torch.Tensor, np.ndarray]: """Rotate image around the center, interpolation=NEAREST, pad with 0 (black) Args: img: image to rotate boxes: array of boxes to rotate as well angle: angle in degrees. +: counter-clockwise, -: clockwise Returns: A tuple of rotated img (tensor), rotated boxes (np array) """ rotated_img = F.rotate(img, angle=angle, fill=0) # Interpolation NEAREST by default _boxes = deepcopy(boxes) if boxes.dtype == int: # Compute relative boxes _boxes = _boxes.astype(float) _boxes[:, [0, 2]] = _boxes[:, [0, 2]] / img.shape[2] _boxes[:, [1, 3]] = _boxes[:, [1, 3]] / img.shape[1] # Compute rotated bboxes: xmin, ymin, xmax, ymax --> x, y, w, h, alpha r_boxes = rotate_boxes(_boxes, angle=angle, min_angle=0) if boxes.dtype == int: # Back to absolute boxes r_boxes[:, [0, 2]] *= img.shape[2] r_boxes[:, [1, 3]] *= img.shape[1] return rotated_img, r_boxes
acd5c83a857b1bdb2312a078cfd972f9a1a0df9f
2,606
def _letterbox_image(img, w_in, h_in): """To get the image in boxed format.""" imc, imh, imw = img.shape if (w_in / imw) < (h_in / imh): new_w = w_in new_h = imh * w_in // imw else: new_h = h_in new_w = imw * h_in // imh resized = _resize_image(img, new_w, new_h) boxed = np.full((imc, h_in, w_in), 0.5, dtype=float) _, resizedh, resizedw = resized.shape boxed[:, int((h_in - new_h) / 2) :int((h_in - new_h) / 2) + resizedh, int((w_in - new_w) / 2) :int((w_in - new_w) / 2) + resizedw] = resized return boxed
918e96f3ac7f5b1c8f7177ad759dab0579763e77
2,607
def to_RRDB(**kwargs): """ Residual in Residual Dense Blocks """ kwargs["n_filer"] = (" ",) * len(kwargs["n_filer"]) # remove x label return _Box(fill="{rgb:white,1;black,3}", **kwargs)
2b1afd5f4a8c65364fcdee18fc8da3da71eade08
2,608
def continuous_agg_dict_features(n, n_feats, ks): """Listdict-like continuous aggregated features. Parameters ---------- n: int the number of the elements to create their features. n_feats: int the number of features. ks: int the number of perturbations. Returns ------- features: list the random features we want to compute. """ features = [] for k in range(ks): features.append(continuous_dict_features(n, n_feats)) return features
ec98930c124553a86ef50db58cf7e13107bf6e52
2,609
def counts_matrix(x, quantiles): """Count samples in strata Get eta, the number of samples in ``x`` binned by ``quantiles`` in each variable, for continuous variables. The shape of eta is the same as the shape of ``x``, and the shape of ``quantiles`` should be (``numpy.shape(x)[0] + 1``, ``numpy.shape(x)[1]``) for 2D, or (``numpy.size(x) + 1``,) for 1D Parameters ---------- x : :class:`numpy.ndarray` (Nx,) or (Nx, Npredictors) The sampled predictors, with observations as rows and predictors (if more than 1) as columns quantiles : :class:`numpy.ndarray` (Nx + 1,) or (Nx + 1, Npredictors) The quantiles which mark the edge of strata. The 0th axis must be one element longer than the 0th axis of ``x`` Returns ------- eta : :class:`numpy.ndarray`[``int``] (Nx,) or (Nx, Npredictors) The matrix of counts in strata, with the same shape as ``x`` """ if np.ndim(quantiles) == 1: eta = np.histogram(np.squeeze(x), bins=quantiles)[0].astype(int) else: eta = np.array([ np.histogram(xj, bins=qj)[0].astype(int) for xj, qj in zip( np.asarray(x).T, np.asarray(quantiles).T)]).T return eta
935cd19913e420ea6713ca74ead19f720bdef782
2,610
import logging def get_xml_string(stream_pointer): """ This function checks for valid xml in a stream and skips bytes until it hits something that looks like xml. In general, this 'skipping' should never be used, as we expect to see well-formed XML from the server. stream_pointer: input stream returns: string of xml """ # This function avoid stream_pointer.seek() for the vast majority # of cases (when xml is formatted correctly) just because i don't # like using 'seek' (never know when you're getting non-rewindable # streams c = stream_pointer.read(1) count = 0 while c != '<' and c != '': count = count + 1 c = stream_pointer.read(1) if c == '': stream_pointer.seek(0) logging.error("Poorly formatted schema - no '<' found", \ extra={'xml':stream_pointer.read()}) return xml_string = "<" + stream_pointer.read() if count > 0: stream_pointer.seek(0) logging.error("Poorly formatted schema", \ extra={'xml':stream_pointer.read()}) return xml_string
3fa2e3d05bfc66cee592c4c40cc1e9349e512c3a
2,611
import re def parse_header(header): """Parse header div for pub. title, authors journal, year, and doi.""" # TITLE title = header.find('h1').text.strip() # JOURNAL journal = header.find('button').text.strip() # PUBLICATION YEAR pub_date = header.find('span', attrs={'class': "cit"}).text year = re.search(r"(\d{4}).*?[\.;]", pub_date).group(1) # DOI doi_cit = header.find(attrs={'class': "citation-doi"}) doi = doi_cit.text.strip().lstrip("doi: ").rstrip(".") if doi_cit else "" # AUTHORS authors = [parse_author(a) for a in header.find_all( 'span', attrs={'class': "authors-list-item"})] authors = [a for a in authors if a] return (title, journal, year, doi, authors)
70dc1defbd9e6098e0754164d0dd23c7c79074d6
2,612
def put_this_into_the_db(query, param): """put this value into the database see : find_by_exactly_this_query() Arguments: query {[type]} -- [description] param {[type]} -- [description] Returns: bool -- [description] """ # Connect to the database connection = pymysql.connect(host='localhost', user='root', password='(drElizabeth)', db='communications', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) try: with connection.cursor() as cursor: # Create a new record sql = query cursor.execute(sql, param) # connection is not autocommit by default. So you must commit to save # your changes. connection.commit() except Exception as e: print(e) connection.close() return False connection.close() return True
08cebe330cea5f10189342c6f3ec4f9f7cc022e1
2,614
def _gen_new_aux_page(label: str, is_title: bool) -> str: """Generate latex for auxillary pages""" page = [] if is_title: page.append("\\thispagestyle{empty}") page.append("\\begin{center}") page.append("\t\\vfil") page.append("\t\\vspace*{0.4\\textheight}\n") page.append("\t\\Huge") page.append(f"\t\\bf{{{label}}}\n") page.append("\t\\normalsize") page.append("\\end{center}") return "\n".join(page)
3ff31ae80f007fd5da2dd6153ea605978421c086
2,615
def expand_matrix_col(matrix, max_size, actual_size): """ add columns of zeros to the right of the matrix """ return np.append(matrix, np.zeros((matrix.shape[0], max_size - actual_size), dtype=matrix.dtype), axis=1)
23b20b443c880d1658eeec89910f9f3384576e6e
2,616
import logging def vms_list(access_token, config_id): """List FlexVM Virtual Machines""" logging.info("--> List FlexVM Virtual Machines...") uri = FLEXVM_API_BASE_URI + "vms/list" headers = COMMON_HEADERS.copy() headers["Authorization"] = f"Bearer {access_token}" body = {"configId": config_id} results = requests_post(uri, body, headers) return results
eed35eefae4e26d743e0e96e791b6f5dd84d0c2f
2,617
from unittest.mock import patch def method_mock(cls, method_name, request): """ Return a mock for method *method_name* on *cls* where the patch is reversed after pytest uses it. """ _patch = patch.object(cls, method_name) request.addfinalizer(_patch.stop) return _patch.start()
b14d991c42e0c05a51d9c193c3769b1e1e71dd1f
2,619
def get_eps_float32(): """Return the epsilon value for a 32 bit float. Returns ------- _ : np.float32 Epsilon value. """ return np.finfo(np.float32).eps
e0506637aa3f9c29dc33d1256ce21d7dc686a4cd
2,620
def distributions_to_params(nest): """Convert distributions to its parameters, keep Tensors unchanged. Only returns parameters that have tf.Tensor values. Args: nest (nested Distribution and Tensor): Each Distribution will be converted to dictionary of its Tensor parameters. Returns: A nest of Tensor/Distribution parameters. Each leaf is a Tensor or a dict corresponding to one distribution, with keys as parameter name and values as tensors containing parameter values. """ def _to_params(dist_or_tensor): if isinstance(dist_or_tensor, tfp.distributions.Distribution): params = dist_or_tensor.parameters return { k: params[k] for k in params if isinstance(params[k], tf.Tensor) } elif isinstance(dist_or_tensor, tf.Tensor): return dist_or_tensor else: raise ValueError( "Only Tensor or Distribution is allowed in nest, ", "got %s. nest is %s" % (dist_or_tensor, nest)) return tf.nest.map_structure(_to_params, nest)
bfa1cfd043bd46667de8ed07fd54fef959b272ae
2,621
def _return_xarray_system_ids(xarrs: dict): """ Return the system ids for the given xarray object Parameters ---------- xarrs Dataset or DataArray that we want the sectors from Returns ------- list system identifiers as string within a list """ return list(xarrs.keys())
8380d1c2ae9db48eb4b97138dcd910d58085073e
2,622
def sub(a, b): """Subtracts b from a and stores the result in a.""" return "{b} {a} ?+1\n".format(a=a, b=b)
dcc0ddfc9dbefe05d79dea441b362f0ddfe82627
2,623
def metrics_cluster(models = None, ytrain = None, ytest = None, testlabels = None, trainlabels = None, Xtrain = None, Xtest = None): """ Calculates Metrics such as accuracy, balanced accuracy, specificity, sensitivity, precision, True Positives, True Negatives etc. These metrics are calculated for each cluster: models: predictive models trained in each cluster ytrain: Target labels of training set ytest: target labels of test set testlabels: a matrix with numbers from 0 to c-1 number of clusters indicating in which cluster each data point belongs in the test set trainlabels: the same as testlabels but for training data Xtrain: trainiing data Xtest: testing data """ # matrix with metrics for each cluster metricsTrain = [] #metrics for test data in each cluster metricsTest = [] columns = ['cluster', 'size', 'high_cost%','low_cost%', 'TP', 'TN', 'FP', 'FN', 'FPR', 'specificity', 'sensitivity', 'precision', 'accuracy', 'balanced accuracy', 'f1', 'auc'] #Calculate the Metrics for Each Cluster for cluster in np.arange( len( models ) ): #INDEXES OF CLUSTER "cluster" inC = np.where( trainlabels == cluster )[0] inCT = np.where( testlabels == cluster )[0] #predict probabilities of data in cluster "cluster" #to be 1 probTrain = models[cluster].predict_proba(Xtrain[inC])[:, 1] probTest = models[cluster].predict_proba(Xtest[inCT])[:, 1] #calculate optimal tau based on F1 try: tau = optimalTau(probTrain, ytrain[inC]) except: tau = 0.5 print(" Warning tau setted to 0.5 due to error(s) \ in <<optimalTau>> function" ) #CALCULATE METRICS : ACCURACY, RECALL, PRECISION , #BALANCED ACCURACY ETC metTrain , _= calc_metrics( custom_prob = probTrain, y = ytrain[inC], cluster = cluster, tau = tau ) metTest, _ = calc_metrics( custom_prob = probTest, y = ytest[inCT], cluster = cluster, tau = tau) metricsTrain.append( metTrain ) metricsTest.append( metTest ) #Create a dataframe with metrics for better Visualization metricsTrain = pd.DataFrame ( metricsTrain, columns = columns ) metricsTest = pd.DataFrame( metricsTest, columns = columns ) return metricsTrain, metricsTest
c9c131385a47df3de511db0e85ece20131647d4e
2,624
def prune_cloud_borders (numpy_cloud, clearance=1.2 ): """Delete points at the clouds' borders in range of distance, restricting the x-y plane (ground)""" # get min/max of cloud cloud_max_x = np.max (numpy_cloud[:, 0]) cloud_min_x = np.min (numpy_cloud[:, 0]) cloud_max_y = np.max (numpy_cloud[:, 1]) cloud_min_y = np.min (numpy_cloud[:, 1]) # define 4 borders borders = [cloud_max_x - clearance, cloud_min_x + clearance, cloud_max_y - clearance, cloud_min_y + clearance] # index all points within borders numpy_cloud = numpy_cloud[numpy_cloud[:, 0] < borders[0]] numpy_cloud = numpy_cloud[numpy_cloud[:, 0] > borders[1]] numpy_cloud = numpy_cloud[numpy_cloud[:, 1] < borders[2]] numpy_cloud = numpy_cloud[numpy_cloud[:, 1] > borders[3]] return numpy_cloud
f208c9778343c3240803b52ff3e5f4701a8bb1cb
2,625
def factory(name, Base, Deriveds): """Find the base or derived class by registered name. Parameters ---------- Base: class Start the lookup here. Deriveds: iterable of (name, class) A list of derived classes with their names. Returns ------- class """ Derived = Base for (nm, NmCl) in Deriveds: if nm == name: Derived = NmCl break return Derived
1bce29651004cf1f04740fd95a4f62c6c2277a72
2,626
def root_sum_square(values, ax_val, index, Nper, is_aper, is_phys, unit): """Returns the root sum square (arithmetic or integral) of values along given axis Parameters ---------- values: ndarray array to derivate ax_val: ndarray axis values index: int index of axis along which to derivate Nper: int number of periods to replicate is_aper: bool True if values is anti-periodic along axis is_phys: bool True if physical quantity (time/angle/z) Returns ------- values: ndarray root sum square of values """ # To sum dB or dBA if "dB" in unit: return my_sum(values, index, Nper, is_aper, unit) else: if is_aper and Nper is not None: # Remove anti-periodicity since values is squared is_aper = False if ax_val.size == 1: # Do not use integrate for single point axes is_phys = False if is_phys: values = integrate(values ** 2, ax_val, index, Nper, is_aper, is_phys) else: values = my_sum(values ** 2, index, Nper, is_aper, unit) return np.sqrt(values)
2af20718dc4d7a6b8d40e939a46d140fda5bf375
2,627
import json def comment_on_tweet(): """" http://127.0.0.1:5000/user/comment_on_tweet body = { "id": "5da61dbed78b3b2b10a53582", "comments" : { "commenter" : "[email protected]", "comment" : "comments against tweet : 7" } } """ data = request.get_json() tweet_id = data['id'] record = tweetDB.find({'_id': ObjectId(tweet_id)}) if record is None: return json.dumps({'error': "No collaborations to update matched id"}) else: try: if 'comments' in data and isinstance(data['comments'], object): result = tweetDB.update( {"_id": ObjectId(tweet_id)}, { '$push': { "comments": data['comments'] } } ) return json.dumps({"success": True}) except Exception as e: return json.dumps({"error": "Exception found"})
232854a883a4bbd99a46dc3dc46e9a47fb1993dc
2,628
def generate_git_api_header(event, sig): """ Create header for GitHub API Request, based on header information from https://developer.github.com/webhooks/. :param event: Name of the event type that triggered the delivery. :param sig: The HMAC hex digest of the response body. The HMAC hex digest is generated using the sha1 hash function and the secret as the HMAC key. """ return Headers([ ('X-GitHub-Event', event), ('X-GitHub-Delivery', "72d3162e-cc78-11e3-81ab-4c9367dc0958"), ('X-Hub-Signature', f"sha1={sig}"), ('User-Agent', "GitHub-Hookshot/044aadd"), ('Content-Type', "application/json"), ('Content-Length', 6615) ])
9b60d9eb6a8ea962bb7426970f2c2b82a229ef12
2,629
def var_gaussian(r, level=5, modified=False): """ Returns the Parametric Gauusian VaR of a Series or DataFrame If "modified" is True, then the modified VaR is returned, using the Cornish-Fisher modification """ # compute the Z score assuming it was Gaussian z = norm.ppf(level/100) if modified: # modify the Z score based on observed skewness and kurtosis s = skewness(r) k = kurtosis(r) z = (z + (z**2 - 1)*s/6 + (z**3 -3*z)*(k-3)/24 - (2*z**3 - 5*z)*(s**2)/36 ) return -(r.mean() + z*r.std(ddof=0))
2ff13a6b222663a200b77e526475331bfacd9c07
2,630
import math def lnglat_to_tile(lon, lat, zoom): """Get the tile which contains longitude and latitude. :param lon: longitude :param lat: latitude :param zoom: zoom level :return: tile tuple """ lon, lat = truncate(lon, lat) n = 1 << zoom tx = int((lon + 180.0) / 360.0 * n) ty = int((1.0 - math.asinh(math.tan(math.radians(lat))) / math.pi) / 2.0 * n) return Tile(tx, ty, zoom)
84e1c103b03a2ec80a9585c8c852045c5d58cb76
2,631
from typing import Union from typing import Optional from typing import Callable from typing import Any def group_obs_annotation( adata: AnnData, gdata: AnnData, *, groups: Union[str, ut.Vector], name: str, formatter: Optional[Callable[[Any], Any]] = None, method: str = "majority", min_value_fraction: float = 0.5, conflict: Optional[Any] = None, inplace: bool = True, ) -> Optional[ut.PandasSeries]: """ Transfer per-observation data from the per-observation (cell) ``adata`` to the per-group-of-observations (metacells) ``gdata``. **Input** Annotated ``adata``, where the observations are cells and the variables are genes, and the ``gdata`` containing the per-metacells summed data. **Returns** Observations (Cell) Annotations ``<name>`` The per-group-observation annotation computed based on the per-observation annotation. If ``inplace`` (default: {inplace}), this is written to the ``gdata``, and the function returns ``None``. Otherwise this is returned as a pandas series (indexed by the group observation names). **Computation Parameters** 1. Iterate on all the observations (groups, metacells) in ``gdata``. 2. Consider all the cells whose ``groups`` annotation maps them into this group. 3. Consider all the ``name`` annotation values of these cells. 4. Compute an annotation value for the whole group of cells using the ``method``. Supported methods are: ``unique`` All the values of all the cells in the group are expected to be the same, use this unique value for the whole groups. ``majority`` Use the most common value across all cells in the group as the value for the whole group. If this value doesn't have at least ``min_value_fraction`` (default: {min_value_fraction}) of the cells, use the ``conflict`` (default: {conflict}) value instead. """ group_of_cells = ut.get_o_numpy(adata, groups, formatter=ut.groups_description) values_of_cells = ut.get_o_numpy(adata, name, formatter=formatter) value_of_groups = np.empty(gdata.n_obs, dtype=values_of_cells.dtype) assert method in ("unique", "majority") if method == "unique": with ut.timed_step(".unique"): value_of_groups[group_of_cells] = values_of_cells else: assert method == "majority" with ut.timed_step(".majority"): for group_index in range(gdata.n_obs): cells_mask = group_of_cells == group_index cells_count = np.sum(cells_mask) assert cells_count > 0 values_of_cells_of_group = values_of_cells[cells_mask] unique_values_of_group, unique_counts_of_group = np.unique(values_of_cells_of_group, return_counts=True) majority_index = np.argmax(unique_counts_of_group) majority_count = unique_counts_of_group[majority_index] if majority_count / cells_count < min_value_fraction: value_of_groups[group_index] = conflict else: majority_value = unique_values_of_group[majority_index] value_of_groups[group_index] = majority_value if inplace: ut.set_o_data(gdata, name, value_of_groups) return None return ut.to_pandas_series(value_of_groups, index=gdata.obs_names)
fc9abd9a983d24869f46efb71d29cd2db53508da
2,632
def generate_languages(request): """ Returns the languages list. """ validate_api_secret_key(request.data.get('app_key')) request_serializer = GenerateLanguagesRequest(data=request.data) if request_serializer.is_valid(): get_object_or_404(TheUser, auth_token=request.data.get('user_token')) list_of_languages = Language.objects.all() return Response({'detail': 'successful', 'data': [language.language for language in list_of_languages]}, status=status.HTTP_200_OK) else: return invalid_data_response(request_serializer)
67856b4bac293e272debb0ac9f2a2e0c863f4cdb
2,634
def all_stocks(): """ #查询当前所有正常上市交易的股票列表 :return: """ data = pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,name,area,industry,list_date') return data["symbol"].values
582381319bd0b613758f41de2005e192c802a923
2,635
import requests import json def getBotHash(userID, isCompile=False): """Gets the checksum of a user's bot's zipped source code""" params = {"apiKey": API_KEY, "userID": userID} if isCompile: params["compile"] = 1 result = requests.get(MANAGER_URL+"botHash", params=params) print("Getting bot hash:") print(result.text) return json.loads(result.text).get("hash")
700d5418212836e1ad20a3a336587436cf1e93de
2,636
def next_remote_buffer_uuid(number=1): """Return the next uuid of a remote buffer.""" global remote_buffer_counter if number == 1: ret = remote_buffer_counter else: ret = np.arange(remote_buffer_counter, remote_buffer_counter + number) remote_buffer_counter = (remote_buffer_counter + number) % (1 << 60) return ret
da31c68dd199ff765ec6eaab17912dd4e3ea8ee4
2,637
def ball_collide(i): """ This function will handle the ball collide interaction between brick and paddle :param i: (int) The index of the ball to interact :return: (Bool) If this ball collide with brick or paddle """ global score collide = False for j in range(2): for k in range(2): object_get = graphics.window.get_object_at(graphics.ball[i].x + graphics.ball[i].width * j, graphics.ball[i].y + graphics.ball[i].height * k) if object_get in graphics.brick: # brick lose life when being hit by ball index = graphics.brick.index(object_get) graphics.brick_collide(index) score += 1 collide = True elif object_get is graphics.paddle: collide = True return collide
33ee97dde1302578067e16b8251e5c3787901697
2,638
from pathlib import Path import tqdm def gen_sparse_graph(destination_folder: Path, vertices_number: int, edge_probability: float) -> Path: """ Generates sparse graph :param destination_folder: directory to save the graph :type destination_folder: Path :param vertices_number: number of vertices in the graph :type vertices_number: int :param edge_probability: probability of edge existence in the graph :type edge_probability: float :return: path to generated graph :rtype: Path """ tmp_graph = nx.generators.fast_gnp_random_graph(vertices_number, edge_probability) output_graph = rdflib.Graph() edges = list() for v, to in tmp_graph.edges(): edges.append((v, 'A', to)) edges.append((v, 'AR', to)) for subj, pred, obj in tqdm( edges, desc=f'G{vertices_number}-{edge_probability} generation' ): add_rdf_edge(subj, pred, obj, output_graph) target = destination_folder / f'G{vertices_number}-{edge_probability}.xml' write_to_rdf(target, output_graph) return target
79369b7c436ca903e5cbc620b95d6425d5646a55
2,639
def read_csv(path): """Reads the CSV file at the indicated path and returns a list of rows. Parameters: path (str): The path to a CSV file. Returns: list[row]: A list of rows. Each row is a list of strings and numbers. """ with open(path, 'rb') as f: return decode_csv(f.read())
7b979a9e15ae07cbdb2733ec071ea82664df5bab
2,642
def obj_mask(im): """Computes the mask for an image with transparent background Keyword arguments: im -- the input image (must be RGBA) """ A = im.split()[-1] T = ImageOps.invert(A) return Image.merge("RGBA", (T, T, T, A))
bfcb6c9c8877dc2507bc9bc658eeb1140fc950bc
2,643
def rnn(rnn_type, inputs, length, hidden_size, layer_num=1, dropout_keep_prob=None, concat=True): """ Implements (Bi-)LSTM, (Bi-)GRU and (Bi-)RNN 在这个module中,rnn是主要的接口,所以把rnn放在上面 Args: rnn_type: the type of rnn, such as lstm inputs: padded inputs into rnn, usually a d*p or l*p matrix length: the valid length of the inputs, usually the length of the sentence hidden_size: the size of hidden units layer_num: multiple rnn layer are stacked if layer_num > 1 dropout_keep_prob: dropout in RNN concat: When the rnn is bidirectional, the forward outputs and backward outputs are concatenated (such as a 2l*p matrix) if this is True, else we add them (add two matrices). Returns: RNN outputs and final state (such as the state of lstm) """ if not rnn_type.startswith('bi'): cell = get_cell(rnn_type, hidden_size, layer_num, dropout_keep_prob) # 得到cell,在z轴、y轴已经展开,但是在x轴上并没有延展 outputs, state = tf.nn.dynamic_rnn(cell, inputs, sequence_length=length, dtype=tf.float32) # 利用dynamic_rnn函数对cell在x轴方向上进行延展,并且把cell的inputs输入 # outputs的维度是hidden_size*length, state的维度是hidden_size*layer_num*2 if rnn_type.endswith('lstm'): c, h = state state = h # 把hidden state作为state else: # bidirectional rnn cell_fw = get_cell(rnn_type, hidden_size, layer_num, dropout_keep_prob) # forward cell cell_bw = get_cell(rnn_type, hidden_size, layer_num, dropout_keep_prob) # backward cell outputs, state = tf.nn.bidirectional_dynamic_rnn( cell_bw, cell_fw, inputs, sequence_length=length, dtype=tf.float32 ) # 双向rnn相比单向rnn,在hidden_size这个维度上变成了之前的2倍 state_fw, state_bw = state # 首先把state分离成forward state和backward state if rnn_type.endswith('lstm'): c_fw, h_fw = state_fw c_bw, h_bw = state_bw state_fw, state_bw = h_fw, h_bw # 对于lstm来说,我们要的state是hidden state if concat: outputs = tf.concat(outputs, 2) # 把两个tensor沿着hidden_size的维度连起来 state = tf.concat([state_fw, state_bw], 1) # state同样要沿着hidden_size的维度连起来 else: outputs = outputs[0] + outputs[1] state = state_fw + state_bw # 简单向量(张量)相加或者做平均处理 return outputs, state
80d06ed499c4668bd398efdf9358c8d72e2e3192
2,644
def find_expired(bucket_items, now): """ If there are no expired items in the bucket returns empty list >>> bucket_items = [('k1', 1), ('k2', 2), ('k3', 3)] >>> find_expired(bucket_items, 0) [] >>> bucket_items [('k1', 1), ('k2', 2), ('k3', 3)] Expired items are returned in the list and deleted from the bucket >>> find_expired(bucket_items, 2) ['k1'] >>> bucket_items [('k2', 2), ('k3', 3)] """ expired_keys = [] for i in range(len(bucket_items) - 1, -1, -1): key, expires = bucket_items[i] if expires < now: expired_keys.append(key) del bucket_items[i] return expired_keys
476fd079616e9f5c9ed56ee8c85171fcb0ddb172
2,645
import array def find_sprites(image=None, background_color=None): """ Find sprites @image: MUST be an Image object @background_color: optinal, whether tuple (RGB/ RGBA) or int (grayscale) """ def find_sprites_corners(sprite, label_map, numpy_array): columns = set() rows = set() for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): current_pixel = label_map[row_index][column_index] if current_pixel.label == sprite: columns.add(current_pixel.column) rows.add(current_pixel.row) return min(columns), min(rows), max(columns), max(rows) def collect_sprites(exist_sprites_label, label_map, numpy_array): """ Return A dictionary with key:the label of a sprite and value:it's Sprite object """ sprites = {} for sprite in exist_sprites_label: top_left_column, top_left_row, bottom_right_column, bottom_right_row = find_sprites_corners(sprite, label_map, numpy_array) sprites[sprite] = Sprite(sprite, top_left_column, top_left_row, bottom_right_column, bottom_right_row) return sprites def search_exist_sprites_label(pixels_to_sprites): """ Return a set of exist sprite's label inside the map """ exist_sprites = set() for key in pixels_to_sprites: exist_sprites.add(pixels_to_sprites[key]) return exist_sprites def unify_sprites(pixels_to_sprites, unified_matrix, numpy_array): """ Unify all pixels that are in a same sprite Return a 2D-array map of sprites """ for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): current_pixel = pixels_matrix[row_index][column_index] current_label = current_pixel.label # Ignore background pixels if current_label == 0 or current_label not in pixels_to_sprites: continue current_pixel.label = pixels_to_sprites[current_label] return unified_matrix def analyze_connected_sprites(connected_sprites): """ Find all pixels that are connected (belong to a same sprite) Return a dict: key: pixel'label value: sprite's label that key belong to """ pixels_to_sprites = {} for key in list(connected_sprites.keys()): if key not in connected_sprites or len(connected_sprites[key]) == 1: continue in_progress = True old_length = len(connected_sprites[key]) while in_progress: for value in connected_sprites[key]: if value not in connected_sprites: continue connected_sprites[key] = connected_sprites[key] | connected_sprites[value] if value in connected_sprites and value != key: del connected_sprites[value] if old_length == len(connected_sprites[key]): in_progress = False else: old_length = len(connected_sprites[key]) for key in connected_sprites: for value in connected_sprites[key]: pixels_to_sprites[value] = key return pixels_to_sprites def is_new_sprite(current_row, current_column, pixels_matrix, background_color): """ Return False if there is a non-background pixel adjacent to current pixel Ignores background pixels. """ neighbor_coordinates = [(-1, -1), (-1, 0), (-1, 1), (0, -1)] current_pixel = pixels_matrix[current_row][current_column] is_new_sprite = True # Ignore background pixels if current_pixel.is_background_pixel: return False # Check 4 neighbor of current pixels for coordinate in neighbor_coordinates: neighbor_row = current_row + coordinate[0] neighbor_column = current_column + coordinate[1] if 0 <= neighbor_row < image_height and 0 <= neighbor_column < image_width: neighbor_pixel = pixels_matrix[neighbor_row][neighbor_column] if neighbor_pixel.label == 0: continue if current_pixel.label != 0 and current_pixel.label != neighbor_pixel.label: connected_sprites.setdefault(current_pixel.label, set()).add(neighbor_pixel.label) else: pixels_matrix[current_row][current_column].label = neighbor_pixel.label is_new_sprite = False return is_new_sprite def is_ignored_pixel(current_pixel, numpy_array): """ Check if that pixel is considered background pixel Return False by default """ if (background_color == (0,0,0,0) and current_pixel[-1] == 0) or (current_pixel == array(background_color)).all() or (image.mode == "L" and current_pixel == background_color): return True return False def analyze_numpy_array(background_color): """ Convert image to numpy array then analyze each pixel @background_color: RGBA or RGB or grayscale formats Return Maps of pixels under format matrix and numpy array (multi-dimensional) """ numpy_array = array(image) pixels_matrix = zeros(numpy_array.shape, dtype=int).tolist() for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): current_pixel = numpy_array[row_index, column_index] pixels_matrix[row_index][column_index] = Pixel(row_index, column_index, is_ignored_pixel(current_pixel, numpy_array)) for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): if is_new_sprite(row_index, column_index, pixels_matrix, background_color): new_label = sprites_label[-1] + 1 pixels_matrix[row_index][column_index].label = new_label sprites_label.append(new_label) connected_sprites.setdefault(new_label, set()).add(new_label) return pixels_matrix, numpy_array def is_valid_background_color(): """ Check if arg @background_color is valid Return True by default """ # Not int or tuple if type(background_color) not in (int, tuple): return False # Invalid grayscale format if type(background_color) == int: if not 255 >= background_color >= 0 or image.mode != "L": return False # Invalid RGB/ RGBA format if type(background_color) == tuple: if len(background_color) not in (3,4) or image.mode == "L": return False for element in background_color: if type(element) != int or not 255 >= element >= 0: return False return True if background_color: pass elif image.mode == "RGBA": background_color = (0,0,0,0) else: background_color = find_most_common_color(image) # Check validation of arg background_color if not is_valid_background_color() or not image: print("Invalid arguments! Please try again!") return image_width, image_height = image.size # Store all connected sprites that can be unified latter connected_sprites = {} # List of pixels label exist inside the map sprites_label = [0] # Maps of pixels under format matrix and numpy array pixels_matrix, numpy_array = analyze_numpy_array(background_color) # Dict of pixels'label corresponding to sprite's label pixels_to_sprites = analyze_connected_sprites(connected_sprites) # Map of sprites under format 2D-matrix label_map = unify_sprites(pixels_to_sprites, pixels_matrix, numpy_array) # Set of sprite-label that exist inside the map exist_sprites_label = search_exist_sprites_label(pixels_to_sprites) # A dictionary with key:the label of a sprite and value:it's Sprite object sprites = collect_sprites(exist_sprites_label, label_map, numpy_array) return (sprites, label_map)
67a544e916ebd01fbddd16f755e386d820507433
2,646
def get_java_package(path): """Extract the java package from path""" segments = path.split("/") # Find different root start indecies based on potential java roots java_root_start_indecies = [_find(segments, root) for root in ["java", "javatests"]] # Choose the root that starts earliest start_index = min(java_root_start_indecies) if start_index == len(segments): fail("Cannot find java root: " + path) return ".".join(segments[start_index + 1:])
253e503a146cffe6a8c00786539d8e3a2d6374f7
2,647
def get_plugin(): """Return the filter.""" return TextFilter
b0d43cab9c3b887fd9735ecfdc5372a8e2aefb49
2,649
import time def caltech256(root): """Caltech256 dataset from http://www.vision.caltech.edu/Image_Datasets/Caltech256 Pictures of objects belonging to 256 categories. About 80 to 800 images per category. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc 'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a matlab script to view the annotaitons, 'show_annotations.m'. Attention: if exist dirs `root/caltech256`, api will delete it and create it. Data storage directory: root = `/user/.../mydata` caltech256 data: `root/caltech256/train/007.bat/xx.jpg` `root/caltech256/train/010.beer-mug/xx.ipg` `root/caltech256/train/064.elephant-101/xx.jpg` Args: root: str, Store the absolute path of the data directory. example:if you want data path is `/user/.../mydata/caltech256`, root should be `/user/.../mydata`. Returns: Store the absolute path of the data directory, is `root/caltech256`. """ start = time.time() task_path = assert_dirs(root, 'caltech256', make_root_dir=False) url = "http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar" rq.files(url, gfile.path_join(root, url.split('/')[-1])) un_tar(gfile.path_join(root, url.split('/')[-1]), task_path) gfile.rename(gfile.path_join(task_path, '256_ObjectCategories'), gfile.path_join(task_path, 'train')) gfile.remove(gfile.path_join(root, '256_ObjectCategories.tar')) print('caltech256 dataset download completed, run time %d min %.2f sec' %divmod((time.time()-start), 60)) return task_path
972cec00a3360fe0ace5b1fb8165e45718c137c1
2,650
def draw__mask_with_edge(cv2_image: np.ndarray, edge_size: int = 10) -> np.ndarray: """ From a color image, get a black white image each instance separated by a border. 1. Change a color image to black white image. 2. Get edge image from `cv2_image`, then invert it to separate instance by a border. 3. Merge 1 and 2. .. image:: https://i.imgur.com/YAHVVSl.png :width: 2496px :height: 1018px :scale: 25% :alt: mask_with_edge :align: center Parameters ---------- cv2_image : np.ndarray BGR color Image edge_size : int Edge size, by default 10 Returns ------- np.ndarray Grayscale image each instance separated by a border. Examples -------- >>> cv2_img: np.ndarray = cv2.imread("...") >>> edge_masked_image: np.ndarray = mask_with_edge(cv2_img, edge_size=10) """ img_edge = draw__edge_only(cv2_image, edge_size) not_img_edge = cv2.bitwise_not(img_edge) bw_image = img_color_to_bw(cv2_image) return mask_image(bw_image, mask_image=not_img_edge)
50a25b60fdfa83f8cd1ec707f4c0e63b3c621695
2,651
def get_functions(pdb_file): """Get the offset for the functions we are interested in""" methods = {'ssl3_new': 0, 'ssl3_free': 0, 'ssl3_connect': 0, 'ssl3_read_app_data': 0, 'ssl3_write_app_data': 0} try: # Do this the hard way to avoid having to load # the types stream in mammoth PDB files pdb = pdbparse.parse(pdb_file, fast_load=True) pdb.STREAM_DBI.load() pdb._update_names() pdb.STREAM_GSYM = pdb.STREAM_GSYM.reload() if pdb.STREAM_GSYM.size: pdb.STREAM_GSYM.load() pdb.STREAM_SECT_HDR = pdb.STREAM_SECT_HDR.reload() pdb.STREAM_SECT_HDR.load() # These are the dicey ones pdb.STREAM_OMAP_FROM_SRC = pdb.STREAM_OMAP_FROM_SRC.reload() pdb.STREAM_OMAP_FROM_SRC.load() pdb.STREAM_SECT_HDR_ORIG = pdb.STREAM_SECT_HDR_ORIG.reload() pdb.STREAM_SECT_HDR_ORIG.load() except AttributeError: pass try: sects = pdb.STREAM_SECT_HDR_ORIG.sections omap = pdb.STREAM_OMAP_FROM_SRC except AttributeError: sects = pdb.STREAM_SECT_HDR.sections omap = DummyOmap() gsyms = pdb.STREAM_GSYM if not hasattr(gsyms, 'globals'): gsyms.globals = [] #names = [] for sym in gsyms.globals: try: name = sym.name.lstrip('_').strip() if name.startswith('?'): end = name.find('@') if end >= 0: name = name[1:end] #names.append(name) if name in methods: off = sym.offset virt_base = sects[sym.segment-1].VirtualAddress addr = omap.remap(off+virt_base) if methods[name] == 0: methods[name] = addr else: methods[name] = -1 except IndexError: pass except AttributeError: pass #with open('names.txt', 'wb') as f_out: # for name in names: # f_out.write(name + "\n") return methods
e2a36d3799004c1f96d5bccb3c4f0a8ad3ce2607
2,652
import typing def empty_iterable() -> typing.Iterable: """ Return an empty iterable, i.e., an empty list. :return: an iterable :Example: >>> from flpy.iterators import empty_iterable >>> empty_iterable() [] """ return list()
904fe365abf94f790f962c9a49f275a6068be4f0
2,653
from re import M def nearest_pow_2(x): """ Finds the nearest integer that is a power of 2. In contrast to :func:`next_pow_2` also searches for numbers smaller than the input and returns them if they are closer than the next bigger power of 2. """ a = M.pow(2, M.ceil(M.log(x, 2))) b = M.pow(2, M.floor(M.log(x, 2))) if abs(a - x) < abs(b - x): return int(a) else: return int(b)
c9dba6f38badcedee02f7071fc5fcf82519dbdcb
2,654
def timestamp_preprocess(ds, column, name): """This function takes the timestamp in the dataset and create from it features according to the settings above Args: ds ([dataframe]): dataset column ([integer]): column index name ([string]): column name Returns: [dataframe]: dataset after transformation """ ts = pd.to_datetime(ds[name]) for feature in TIMESTAMP_FEATURES.keys(): if TIMESTAMP_FEATURES[feature] is not None: if feature == "timestamp": ds[feature] = ts elif feature == "day_of_week": ds[feature] = ts.apply(lambda X: X.day_of_week) elif feature == "day_of_month": ds[feature] = ts.apply(lambda X: X.day) elif feature == "month": ds[feature] = ts.apply(lambda X: X.month) elif feature == "hour": ds[feature] = ts.apply(lambda X: X.hour) elif feature == "minute": ds[feature] = ts.apply(lambda X: X.minute) elif feature == "year": ds[feature] = ts.apply(lambda X: X.year) return ds
18203f8e9a016d3302d5fe06d498d68403eb5805
2,655
def make_taubin_loss_function(x, y): """closure around taubin_loss_function to make surviving pixel positions availaboe inside. x, y: positions of pixels surviving the cleaning should not be quantities """ def taubin_loss_function(xc, yc, r): """taubin fit formula reference : Barcelona_Muons_TPA_final.pdf (slide 6) """ upper_term = (((x - xc) ** 2 + (y - yc) ** 2 - r ** 2) ** 2).sum() lower_term = (((x - xc) ** 2 + (y - yc) ** 2)).sum() return np.abs(upper_term) / np.abs(lower_term) return taubin_loss_function
b11aae3586cb387a6e280f5b0e985dcf6364306e
2,656
def init_rf_estimator(): """ Instantiate a Random forest estimator with the optimized hyper-parameters. :return: The RandomForest estimator instance. """ rf = RandomForestClassifier( criterion=RF_CRIT, min_samples_leaf=RF_MIN_SAMPLES_LEAF, max_features='auto', n_estimators=RF_N_ESTS, n_jobs=-1) return rf
1171b5582869151823da29c61545c857e04ffed6
2,657
def dict_filter(d, exclude=()): """ Exclude specified keys from a nested dict """ def fix_key(k): return str(k) if isinstance(k, builtin_str) else k if isinstance(d, list): return [dict_filter(e, exclude) for e in d] if isinstance(d, dict): items = ((fix_key(k), v) for k, v in d.items()) return { k: dict_filter(v, exclude) for k, v in items if k not in exclude } return d
afa87c730fd105741a3bf95601d682fa817b903d
2,658
async def mongoengine_multiple_objects_exception_handler(request, exc): """ Error handler for MultipleObjectsReturned. Logs the MultipleObjectsReturned error detected and returns the appropriate message and details of the error. """ logger.exception(exc) return JSONResponse( Response(success=False, error_code=422, message=str(exc)).dict() )
c0e3d8d25ee02b9240cbf02f532cb853cbc693ee
2,659
def _get_sample_times(*traces, **kwargs): """Get sample times for all the traces.""" # Set the time boundaries for the DataFrame. max_stop_time = max( [trace.stop_time() for trace in traces if isinstance(trace, Trace)] ) stop_time = kwargs.pop("stop_time", max_stop_time) min_start_time = min( [trace.start_time() for trace in traces if isinstance(trace, Trace)] ) start_time = kwargs.pop("start_time", min_start_time) # Get all the sample times of all the traces between the start and stop times. times = set([start_time, stop_time]) for trace in traces: times.update( set(trace.get_sample_times(start_time=start_time, stop_time=stop_time)) ) # If requested, fill in additional times between sample times. step = kwargs.pop("step", 0) if step: times.update(set(range(start_time, stop_time + 1, step))) # Sort sample times in increasing order. times = sorted(list(times)) return times
3e20bed62017e8306b3489ec41b7f6cd59a4c916
2,660