content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def truth_seed_box(true_params, init_range, az_ind=4, zen_ind=5): """generate initial box limits from the true params Parameters ---------- true_params : np.ndarray init_range : np.ndarray Returns ------- np.ndarray shape is (n_params, 2); returned energy limits are in units of log energy """ n_params = len(true_params) true_params = np.copy(true_params[:, np.newaxis]) # clip true energies between 0.3 GeV and 1000 GeV true_params[-2:] = true_params[-2:].clip(0.3, 1000) limits = np.empty((n_params, 2), np.float32) limits[:-2] = true_params[:-2] + init_range[:-2] limits[-2:] = np.log10(true_params[-2:]) + init_range[-2:] limits[az_ind] = limits[az_ind].clip(0, 2 * np.pi) limits[zen_ind] = limits[zen_ind].clip(0, np.pi) return limits
3c3087702be4b91589f7e75f5c7e2f18776a658a
3,489
def summary(task): """Given an ImportTask, produce a short string identifying the object. """ if task.is_album: return u'{0} - {1}'.format(task.cur_artist, task.cur_album) else: return u'{0} - {1}'.format(task.item.artist, task.item.title)
87387c47e90998c270f6f8f2f63ceacebd4cdc78
3,491
def ds_tc_resnet_model_params(use_tf_fft=False): """Generate parameters for ds_tc_resnet model.""" # model parameters model_name = 'ds_tc_resnet' params = model_params.HOTWORD_MODEL_PARAMS[model_name] params.causal_data_frame_padding = 1 # causal padding on DataFrame params.clip_duration_ms = 160 params.use_tf_fft = use_tf_fft params.mel_non_zero_only = not use_tf_fft params.feature_type = 'mfcc_tf' params.window_size_ms = 5.0 params.window_stride_ms = 2.0 params.wanted_words = 'a,b,c' params.ds_padding = "'causal','causal','causal','causal'" params.ds_filters = '4,4,4,2' params.ds_repeat = '1,1,1,1' params.ds_residual = '0,1,1,1' # no residuals on strided layers params.ds_kernel_size = '3,3,3,1' params.ds_dilation = '1,1,1,1' params.ds_stride = '2,1,1,1' # streaming conv with stride params.ds_pool = '1,2,1,1' # streaming conv with pool params.ds_filter_separable = '1,1,1,1' # convert ms to samples and compute labels count params = model_flags.update_flags(params) # compute total stride pools = model_utils.parse(params.ds_pool) strides = model_utils.parse(params.ds_stride) time_stride = [1] for pool in pools: if pool > 1: time_stride.append(pool) for stride in strides: if stride > 1: time_stride.append(stride) total_stride = np.prod(time_stride) # override input data shape for streaming model with stride/pool params.data_stride = total_stride params.data_shape = (total_stride * params.window_stride_samples,) # set desired number of frames in model frames_number = 16 frames_per_call = total_stride frames_number = (frames_number // frames_per_call) * frames_per_call # number of input audio samples required to produce one output frame framing_stride = max( params.window_stride_samples, max(0, params.window_size_samples - params.window_stride_samples)) signal_size = framing_stride * frames_number # desired number of samples in the input data to train non streaming model params.desired_samples = signal_size params.batch_size = 1 return params
b018fa56efd67d8378496d5b4b1975580fc92f89
3,492
def expected_calibration_error_evaluator(test_data: pd.DataFrame, prediction_column: str = "prediction", target_column: str = "target", eval_name: str = None, n_bins: int = 100, bin_choice: str = "count") -> EvalReturnType: """ Computes the expected calibration error (ECE), given true label and prediction scores. See "On Calibration of Modern Neural Networks"(https://arxiv.org/abs/1706.04599) for more information. The ECE is the distance between the actuals observed frequency and the predicted probabilities, for a given choice of bins. Perfect calibration results in a score of 0. For example, if for the bin [0, 0.1] we have the three data points: 1. prediction: 0.1, actual: 0 2. prediction: 0.05, actual: 1 3. prediction: 0.0, actual 0 Then the predicted average is (0.1 + 0.05 + 0.00)/3 = 0.05, and the empirical frequency is (0 + 1 + 0)/3 = 1/3. Therefore, the distance for this bin is:: |1/3 - 0.05| ~= 0.28. Graphical intuition:: Actuals (empirical frequency between 0 and 1) | * | * | * ______ Predictions (probabilties between 0 and 1) Parameters ---------- test_data : Pandas' DataFrame A Pandas' DataFrame with with target and prediction scores. prediction_column : Strings The name of the column in `test_data` with the prediction scores. target_column : String The name of the column in `test_data` with the binary target. eval_name : String, optional (default=None) The name of the evaluator as it will appear in the logs. n_bins: Int (default=100) The number of bins. This is a trade-off between the number of points in each bin and the probability range they span. You want a small enough range that still contains a significant number of points for the distance to work. bin_choice: String (default="count") Two possibilities: "count" for equally populated bins (e.g. uses `pandas.qcut` for the bins) "prob" for equally spaced probabilities (e.g. uses `pandas.cut` for the bins), with distance weighed by the number of samples in each bin. Returns ------- log: dict A log-like dictionary with the expected calibration error. """ if eval_name is None: eval_name = "expected_calibration_error_evaluator__" + target_column if bin_choice == "count": bins = pd.qcut(test_data[prediction_column], q=n_bins) elif bin_choice == "prob": bins = pd.cut(test_data[prediction_column], bins=n_bins) else: raise AttributeError("Invalid bin_choice") metric_df = pd.DataFrame({"bins": bins, "predictions": test_data[prediction_column], "actuals": test_data[target_column]}) agg_df = metric_df.groupby("bins").agg({"bins": "count", "predictions": "mean", "actuals": "mean"}) sample_weight = None if bin_choice == "prob": sample_weight = agg_df["bins"].values distance = mean_absolute_error(agg_df["actuals"].values, agg_df["predictions"].values, sample_weight=sample_weight) return {eval_name: distance}
0f34a5c0883325324b11fd9b97a8a55250574392
3,493
def format_bytes(size): """ Takes a byte size (int) and returns a formatted, human-interpretable string """ # 2**10 = 1024 power = 2 ** 10 n = 0 power_labels = {0: " bytes", 1: "KB", 2: "MB", 3: "GB", 4: "TB"} while size >= power: size /= power n += 1 return str(round(size, 2)) + power_labels[n]
332b9d43c044da92ef7a9b16e57cfa7d552de12f
3,494
def load_input_data(filenames, Ag_class): """ Load the files specified in filenames. Parameters --- filenames: a list of names that specify the files to be loaded. Ag_class: classification of sequences from MiXCR txt file (i.e., antigen binder = 1, non-binder = 0) """ # Combine the non-binding sequence data sets. # Non-binding data sets include Ab+ data and Ag- # sorted data for all 3 libraries l_data = [] for file in filenames: l_data.append( mixcr_input('data/' + file, Ag_class, seq_len=15) ) mHER_H3 = pd.concat(l_data) # Drop duplicate sequences mHER_H3 = mHER_H3.drop_duplicates(subset='AASeq') # Remove 'CAR/CSR' motif and last two amino acids mHER_H3['AASeq'] = [x[3:-2] for x in mHER_H3['AASeq']] # Shuffle sequences and reset index mHER_H3 = mHER_H3.sample(frac=1).reset_index(drop=True) return mHER_H3
9ae9cc814f150168ca1703b1a4af54bc440b4425
3,495
from typing import Optional def get_maximum_value( inclusive: Optional[Edge] = None, exclusive: Optional[Edge] = None, ignore_unlimited: bool = False, ) -> Result[Boundary, TestplatesError]: """ Gets maximum boundary. :param inclusive: inclusive boundary value or None :param exclusive: exclusive boundary value or None :param ignore_unlimited: indicates whether to ignore unlimited values or not """ return get_value_boundary( MAXIMUM_EXTREMUM, inclusive=inclusive, exclusive=exclusive, ignore_unlimited=ignore_unlimited, )
3ef7557ed3f7f353e0765a92fb008449409039a8
3,496
from typing import List def build_graph(order: int, edges: List[List[int]]) -> List[List[int]]: """Builds an adjacency list from the edges of an undirected graph.""" adj = [[] for _ in range(order)] for u, v in edges: adj[u].append(v) adj[v].append(u) return adj
86bdd0d4314777ff59078b1c0f639e9439f0ac08
3,497
import torch import math def construct_scheduler( optimizer, cfg: OmegaConf, ): """ Creates a learning rate scheduler for a given model :param optimizer: the optimizer to be used :return: scheduler """ # Unpack values from cfg.train.scheduler_params scheduler_type = cfg.train.scheduler decay_factor = cfg.train.scheduler_params.decay_factor decay_steps = cfg.train.scheduler_params.decay_steps patience = cfg.train.scheduler_params.patience warmup_epochs = cfg.train.scheduler_params.warmup_epochs warmup = warmup_epochs != -1 if scheduler_type == "multistep": lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=decay_steps, gamma=1.0 / decay_factor, ) elif scheduler_type == "plateau": lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode="max", factor=1.0 / decay_factor, patience=patience, verbose=True, # threshold_mode="rel", # min_lr=2.5e-4, ) elif scheduler_type == "exponential": lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer, gamma=decay_factor, last_epoch=-1, ) elif scheduler_type == "cosine": size_dataset = DATASET_SIZES[cfg.dataset] if warmup: # If warmup is used, then we need to substract this from T_max. T_max = (cfg.train.epochs - warmup_epochs) * math.ceil( size_dataset / float(cfg.train.batch_size) ) # - warmup epochs else: T_max = cfg.train.epochs * math.ceil( size_dataset / float(cfg.train.batch_size) ) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=T_max, eta_min=1e-6, ) else: lr_scheduler = None print( f"WARNING! No scheduler will be used. cfg.train.scheduler = {scheduler_type}" ) if warmup and lr_scheduler is not None: size_dataset = DATASET_SIZES[cfg.dataset] lr_scheduler = ckconv.nn.LinearWarmUp_LRScheduler( optimizer=optimizer, lr_scheduler=lr_scheduler, warmup_iterations=warmup_epochs * math.ceil(size_dataset / float(cfg.train.batch_size)), ) return lr_scheduler
d0ed907aa3582978cb3adf5eada895366dc1282f
3,498
import numpy def GenerateSerialGraph(num_samples, block_size): """ Generates a (consistent) serial graph. """ N = num_samples num_blocks = N // block_size if N % block_size != 0: err = "num_samples(%d) must be a multiple of block_size (%d)" % (num_samples, block_size) raise Exception(err) if num_blocks < 2: err = "the number of blocks %d should be at least 2 (%d/%d)" % (num_blocks, num_samples, block_size) raise Exception(err) node_weights = numpy.ones(N) * 2.0 node_weights[:block_size] = 1.0 node_weights[-block_size:] = 1.0 edge_weights = {} w = 1.0 for block in range(num_blocks - 1): for i in range(block_size): for j in range(block_size): edge_weights[(i + block * block_size, j + (block + 1) * block_size)] = w edge_weights[(j + (block + 1) * block_size, i + block * block_size)] = w # Loops are simply overwritten return node_weights, edge_weights
7348c08051aa0b7ec51f79f1f6f2097ab5857ef8
3,499
def load_ref_system(): """ Returns alpha-d-rhamnopyranose as found in the IQMol fragment library. All credit to https://github.com/nutjunkie/IQmol """ return psr.make_system(""" C -0.8728 1.4263 -0.3270 O -1.5909 0.3677 0.2833 C -1.1433 -0.9887 0.0086 C 0.3390 -1.0821 0.4414 O 0.8751 -2.3755 0.1209 C 1.1868 -0.1193 -0.4147 C 0.6705 1.3308 -0.3098 O 1.0480 1.9270 0.9344 O 2.5224 -0.0436 0.1069 C -2.0793 -1.8494 0.8365 O -1.2047 1.4329 -1.7148 H -1.2520 -1.1765 -1.0826 H 0.4676 -0.8772 1.5266 H 1.2377 -0.4682 -1.4721 H 1.1005 1.9572 -1.1305 H -1.2644 2.3269 0.1977 H -2.1732 1.3552 -1.8431 H 1.9510 1.6015 1.1977 H 2.8904 -0.9551 0.1994 H 0.5074 -3.0553 0.7225 H -2.0383 -1.5878 1.9031 H -3.1236 -1.6900 0.5276 H -1.8591 -2.9160 0.7258 """)
ba8d952cb777fac9e9d445c0865027c2fe25fbe4
3,500
def find_python_root_dir(possibles): """Find a python root in a list of dirs If all dirs have the same name, and one of them has setup.py then it is probably common Python project tree, like /path/to/projects/cd /path/to/projects/cd/cd Or, if all dirs are the same, except that one has an egg suffix, like /path/to/dotsite/dotsite /path/to/dotsite/dotsite.egg-info then ignore the egg """ names = {_.basename() for _ in possibles} if len(names) == 1: for possible in possibles: setup = possible / "setup.py" if setup.isfile(): return possible eggless = {paths.path(p.replace(".egg-info", "")) for p in possibles} if len(eggless) == 1: return eggless.pop() return None
849d9f967899f1cdba7f9579891afbb7fb0580dc
3,502
import time def findEndpoint(): """ scroll to bottom to get the last number """ print("Fetching school count") clickToOpen() # get scroller scrollbar = driver.find_elements_by_class_name("scrollbar-inner")[1] driver.execute_script("arguments[0].scrollBy(0,2);", scrollbar) inner = driver.find_elements_by_class_name("scroll-bar") time.sleep(2) top = float(inner[1].get_attribute("style").split("top: ")[-1].replace("px;", "")) # scroll until while top < 159: driver.execute_script("arguments[0].scrollBy(0,200);", scrollbar) time.sleep(0.3) top = float(inner[1].get_attribute("style").split("top: ")[-1].replace("px;", "")) time.sleep(2) # get point-inset vis = driver.find_element_by_class_name("visibleGroup") children = vis.find_elements_by_xpath(".//div[@class='slicerItemContainer']") last = children[-1].get_attribute("aria-posinset") print(f"School count: {last}") time.sleep(1) return int(last)
7f979df78ff7dbebc4819ee4f09c86d9d8c243c0
3,504
def _shake_shake_block(x, output_filters, stride, is_training): """Builds a full shake-shake sub layer.""" batch_size = tf.shape(x)[0] # Generate random numbers for scaling the branches rand_forward = [ tf.random_uniform( [batch_size, 1, 1, 1], minval=0, maxval=1, dtype=tf.float32) for _ in range(2) ] rand_backward = [ tf.random_uniform( [batch_size, 1, 1, 1], minval=0, maxval=1, dtype=tf.float32) for _ in range(2) ] # Normalize so that all sum to 1 total_forward = tf.add_n(rand_forward) total_backward = tf.add_n(rand_backward) rand_forward = [samp / total_forward for samp in rand_forward] rand_backward = [samp / total_backward for samp in rand_backward] zipped_rand = zip(rand_forward, rand_backward) branches = [] for branch, (r_forward, r_backward) in enumerate(zipped_rand): with tf.variable_scope('branch_{}'.format(branch)): b = _shake_shake_branch(x, output_filters, stride, r_forward, r_backward, is_training) branches.append(b) res = _shake_shake_skip_connection(x, output_filters, stride) return res + tf.add_n(branches)
29170e867ab8a01277adbbd49f60960408ceb28b
3,505
def get_all_paged_events(decision, conn, domain, task_list, identity, maximum_page_size): """ Given a poll_for_decision_task response, check if there is a nextPageToken and if so, recursively poll for all workflow events, and assemble a final decision response to return """ # First check if there is no nextPageToken, if there is none # return the decision, nothing to page next_page_token = None try: next_page_token = decision["nextPageToken"] except KeyError: next_page_token = None if next_page_token is None: return decision # Continue, we have a nextPageToken. Assemble a full array of events by continually polling all_events = decision["events"] while next_page_token is not None: try: next_page_token = decision["nextPageToken"] if next_page_token is not None: decision = conn.poll_for_decision_task(domain, task_list, identity, maximum_page_size, next_page_token) for event in decision["events"]: all_events.append(event) except KeyError: next_page_token = None # Finally, reset the original decision response with the full set of events decision["events"] = all_events return decision
5125c5bbff547a02496443477aee88165ece9d80
3,506
def get_pools(): """ gets json of pools. schema follows #{ # "kind": "tm:ltm:pool:poolcollectionstate", # "selfLink": "https://localhost/mgmt/tm/ltm/pool?ver=11.5.3", # "items": [ # { # "kind": "tm:ltm:pool:poolstate", # "name": "mypoolname", # "partition": "mypartition", # "fullPath": "/mypartition/mypoolname", # "generation": 1, # "selfLink": "https://localhost/mgmt/tm/ltm/pool/~mypartition~mypoolname?ver=11.5.3", # "allowNat": "yes", # "allowSnat": "yes", # "ignorePersistedWeight": "disabled", # "ipTosToClient": "pass-through", # "ipTosToServer": "pass-through", # "linkQosToClient": "pass-through", # "linkQosToServer": "pass-through", # "loadBalancingMode": "round-robin", # "minActiveMembers": 0, # "minUpMembers": 0, # "minUpMembersAction": "failover", # "minUpMembersChecking": "disabled", # "monitor": "/Common/gateway_icmp ", # "queueDepthLimit": 0, # "queueOnConnectionLimit": "disabled", # "queueTimeLimit": 0, # "reselectTries": 0, # "slowRampTime": 10, # "membersReference": { # "link": "url-for-rest-request-for-pool-members", # "isSubcollection": true # } # } ## ,(repeated as needed for additional pools) # ] #} """ global f5rest_url return (get_f5json(f5rest_url + 'ltm/pool'))
36baa4d556a69a9498357b1a5534433fc8732683
3,507
def set_runner_properties(timestep, infguard=False, profile_nodenet=False, profile_world=False, log_levels={}, log_file=None): """Sets the speed of the nodenet calculation in ms. Argument: timestep: sets the calculation speed. """ if log_file: if not tools.is_file_writeable(log_file): return False, "Can not write to specified log file." logger.set_logfile(log_file) runner_config['log_file'] = log_file if log_levels: set_logging_levels(log_levels) runner_config['runner_timestep'] = timestep runner_config['runner_infguard'] = bool(infguard) runner_config['profile_nodenet'] = bool(profile_nodenet) runner_config['profile_world'] = bool(profile_world) runner['timestep'] = timestep return True, ""
a2ddcd6b33304cef4c03a55a78a691fa9b5d1112
3,508
def chunk_sum(vec, chunksize): """Computes the sums of chunks of points in a vector. """ Nchunks = len(vec)//chunksize end = Nchunks*chunksize arr = np.reshape(vec[:end], [Nchunks, chunksize]) sums = np.sum(arr, 1) return sums
036bfe2d2277d90339c2bcacc1c0943a96a52ece
3,509
def get_feature_definitions(df, feature_group): """ Get datatypes from pandas DataFrame and map them to Feature Store datatypes. :param df: pandas.DataFrame :param feature_group: FeatureGroup :return: list """ # Dtype int_, int8, int16, int32, int64, uint8, uint16, uint32 # and uint64 are mapped to Integral feature type. # Dtype float_, float16, float32 and float64 # are mapped to Fractional feature type. # string dtype is mapped to String feature type. # Our schema of our data that we expect # _after_ SageMaker Processing feature_definitions = [] for column in df.columns: feature_type = feature_group._DTYPE_TO_FEATURE_DEFINITION_CLS_MAP.get( str(df[column].dtype), None ) feature_definitions.append( FeatureDefinition(column, feature_type) ) # you can alternatively define your own schema return feature_definitions
75573b3e8ed1f666b68dde2067b5b14655c341de
3,511
def draw_2d_wp_basis(shape, keys, fmt='k', plot_kwargs={}, ax=None, label_levels=0): """Plot a 2D representation of a WaveletPacket2D basis.""" coords, centers = _2d_wp_basis_coords(shape, keys) if ax is None: fig, ax = plt.subplots(1, 1) else: fig = ax.get_figure() for coord in coords: ax.plot(coord[0], coord[1], fmt) ax.set_axis_off() ax.axis('square') if label_levels > 0: for key, c in centers.items(): if len(key) <= label_levels: ax.text(c[0], c[1], key, horizontalalignment='center', verticalalignment='center') return fig, ax
5e731fa02c833f36c0cde833bfdb5d4b30706519
3,512
import numpy def build_normalizer(signal, sample_weight=None): """Prepares normalization function for some set of values transforms it to uniform distribution from [0, 1]. Example of usage: >>>normalizer = build_normalizer(signal) >>>pylab.hist(normalizer(background)) >>># this one should be uniform in [0,1] >>>pylab.hist(normalizer(signal)) :param numpy.array signal: shape = [n_samples] with floats :param numpy.array sample_weight: shape = [n_samples], non-negative weights associated to events. """ sample_weight = check_sample_weight(signal, sample_weight) assert numpy.all(sample_weight >= 0.), 'sample weight must be non-negative' sorter = numpy.argsort(signal) signal, sample_weight = signal[sorter], sample_weight[sorter] predictions = numpy.cumsum(sample_weight) / numpy.sum(sample_weight) def normalizing_function(data): return numpy.interp(data, signal, predictions) return normalizing_function
b4227364899468ca2017d9bedd87aff4bf35d9c6
3,513
from typing import Callable from typing import Tuple def get_phased_trajectory(init_state: np.ndarray, update_fn: Callable) -> Tuple[np.ndarray, HashableNdArray]: """ evolve an initial state until it reaches a limit cycle Parameters ---------- init_state update_fn Returns ------- trajectory, phase-point pair """ state = init_state trajectory = list() trajectory_set = set() # set lookup should be faster # compute state by state until we have a repeat hashable_state = HashableNdArray(state) while hashable_state not in trajectory_set: trajectory.append(hashable_state) trajectory_set.add(hashable_state) state = update_fn(state) hashable_state = HashableNdArray(state) # separate trajectory into in-bound and limit-cycle parts repeated_state = HashableNdArray(state) repeated_state_index = trajectory.index(repeated_state) limit_cycle = trajectory[repeated_state_index:] # find state in limit cycle with smallest hash (i.e. smallest lexicographic # ordering if there is no integer overflow) # this is our phase fixing point cycle_min_index: int = 0 cycle_min: int = hash(limit_cycle[0]) for idx in range(1, len(limit_cycle)): nxt_hash: int = hash(limit_cycle[idx]) if nxt_hash < cycle_min: cycle_min_index = idx cycle_min = nxt_hash # get trajectory with phase phase_idx: int = len(trajectory) - len(limit_cycle) + cycle_min_index phased_trajectory = np.array( [hashable.array for hashable in trajectory[:phase_idx]], dtype=np.int64 ) return phased_trajectory, trajectory[phase_idx]
603aa9f3e626d51132b70b87321453cfacba579a
3,515
import logging import time def exponential_backoff(func): """ Retries a Boto3 call up to 5 times if request rate limits are hit. The time waited between retries increases exponentially. If rate limits are hit 5 times, exponential_backoff raises a :py:class:sceptre.exceptions.RetryLimitExceededException(). :param func: a function that uses boto calls :type func: func :returns: The decorated function. :rtype: func :raises: sceptre.exceptions.RetryLimitExceededException """ logger = logging.getLogger(__name__) @wraps(func) def decorated(*args, **kwargs): max_retries = 5 attempts = 0 while attempts < max_retries: try: return func(*args, **kwargs) except ClientError as e: if e.response["Error"]["Code"] == "Throttling": logger.error("Request limit exceeded, pausing...") time.sleep(2 ** attempts) attempts += 1 else: raise e raise RetryLimitExceededError( "Exceeded request limit {0} times. Aborting.".format(max_retries) ) return decorated
63db7514b88eb64ca0ee5d626be5a59f7d40d7d6
3,516
def post_config_adobe_granite_saml_authentication_handler(key_store_password=None, key_store_password_type_hint=None, service_ranking=None, service_ranking_type_hint=None, idp_http_redirect=None, idp_http_redirect_type_hint=None, create_user=None, create_user_type_hint=None, default_redirect_url=None, default_redirect_url_type_hint=None, user_id_attribute=None, user_id_attribute_type_hint=None, default_groups=None, default_groups_type_hint=None, idp_cert_alias=None, idp_cert_alias_type_hint=None, add_group_memberships=None, add_group_memberships_type_hint=None, path=None, path_type_hint=None, synchronize_attributes=None, synchronize_attributes_type_hint=None, clock_tolerance=None, clock_tolerance_type_hint=None, group_membership_attribute=None, group_membership_attribute_type_hint=None, idp_url=None, idp_url_type_hint=None, logout_url=None, logout_url_type_hint=None, service_provider_entity_id=None, service_provider_entity_id_type_hint=None, assertion_consumer_service_url=None, assertion_consumer_service_url_type_hint=None, handle_logout=None, handle_logout_type_hint=None, sp_private_key_alias=None, sp_private_key_alias_type_hint=None, use_encryption=None, use_encryption_type_hint=None, name_id_format=None, name_id_format_type_hint=None, digest_method=None, digest_method_type_hint=None, signature_method=None, signature_method_type_hint=None, user_intermediate_path=None, user_intermediate_path_type_hint=None): # noqa: E501 """post_config_adobe_granite_saml_authentication_handler # noqa: E501 :param key_store_password: :type key_store_password: str :param key_store_password_type_hint: :type key_store_password_type_hint: str :param service_ranking: :type service_ranking: int :param service_ranking_type_hint: :type service_ranking_type_hint: str :param idp_http_redirect: :type idp_http_redirect: bool :param idp_http_redirect_type_hint: :type idp_http_redirect_type_hint: str :param create_user: :type create_user: bool :param create_user_type_hint: :type create_user_type_hint: str :param default_redirect_url: :type default_redirect_url: str :param default_redirect_url_type_hint: :type default_redirect_url_type_hint: str :param user_id_attribute: :type user_id_attribute: str :param user_id_attribute_type_hint: :type user_id_attribute_type_hint: str :param default_groups: :type default_groups: List[str] :param default_groups_type_hint: :type default_groups_type_hint: str :param idp_cert_alias: :type idp_cert_alias: str :param idp_cert_alias_type_hint: :type idp_cert_alias_type_hint: str :param add_group_memberships: :type add_group_memberships: bool :param add_group_memberships_type_hint: :type add_group_memberships_type_hint: str :param path: :type path: List[str] :param path_type_hint: :type path_type_hint: str :param synchronize_attributes: :type synchronize_attributes: List[str] :param synchronize_attributes_type_hint: :type synchronize_attributes_type_hint: str :param clock_tolerance: :type clock_tolerance: int :param clock_tolerance_type_hint: :type clock_tolerance_type_hint: str :param group_membership_attribute: :type group_membership_attribute: str :param group_membership_attribute_type_hint: :type group_membership_attribute_type_hint: str :param idp_url: :type idp_url: str :param idp_url_type_hint: :type idp_url_type_hint: str :param logout_url: :type logout_url: str :param logout_url_type_hint: :type logout_url_type_hint: str :param service_provider_entity_id: :type service_provider_entity_id: str :param service_provider_entity_id_type_hint: :type service_provider_entity_id_type_hint: str :param assertion_consumer_service_url: :type assertion_consumer_service_url: str :param assertion_consumer_service_url_type_hint: :type assertion_consumer_service_url_type_hint: str :param handle_logout: :type handle_logout: bool :param handle_logout_type_hint: :type handle_logout_type_hint: str :param sp_private_key_alias: :type sp_private_key_alias: str :param sp_private_key_alias_type_hint: :type sp_private_key_alias_type_hint: str :param use_encryption: :type use_encryption: bool :param use_encryption_type_hint: :type use_encryption_type_hint: str :param name_id_format: :type name_id_format: str :param name_id_format_type_hint: :type name_id_format_type_hint: str :param digest_method: :type digest_method: str :param digest_method_type_hint: :type digest_method_type_hint: str :param signature_method: :type signature_method: str :param signature_method_type_hint: :type signature_method_type_hint: str :param user_intermediate_path: :type user_intermediate_path: str :param user_intermediate_path_type_hint: :type user_intermediate_path_type_hint: str :rtype: None """ return 'do some magic!'
b6b082929904123f96c044753995ff1d19cb9cbf
3,517
import json def _pcheck(block): """ Helper for multiprocesses: check a block of logs Args: block List[List[str], int]: lines, block_id Returns: [type]: [description] """ results = [] lines, block_id = block for li, line in enumerate(lines): json_line = json.loads(line) result = [ "%s: %s" % (e.error_type, e.message) for e in [ validate_normalized(json_line), check_timestamp_digits(json_line["timestamp"]) if "timestamp" in json_line else None, check_time(json_line), ] if e ] global_line_number = block_id * BLOCK_SIZE + li results.append((global_line_number, result)) return results
3a581e3440079d5f31b00c86d84abee3eca0a396
3,519
import sqlite3 def fetch_exon_locations(database): """ Queries the database to create a dictionary mapping exon IDs to the chromosome, start, end, and strand of the exon """ conn = sqlite3.connect(database) cursor = conn.cursor() query = """ SELECT e.edge_ID, loc1.chromosome, MIN(loc1.position,loc2.position), MAX(loc1.position,loc2.position), e.strand FROM edge e LEFT JOIN location loc1 ON e.v1 = loc1.location_ID LEFT JOIN location loc2 ON e.v2 = loc2.location_ID WHERE e.edge_type = 'exon';""" cursor.execute(query) exon_location_tuples = cursor.fetchall() # Create dictionary exon_locations = {} for loc_tuple in exon_location_tuples: exon_ID = loc_tuple[0] exon_locations[exon_ID] = loc_tuple[1:] conn.close() return exon_locations
54cdd3ffa2ccd10bd777f9130caaae992ac3d451
3,520
import http def add(request): """Displays/processes a form to create a collection.""" data = {} if request.method == 'POST': form = forms.CollectionForm( request.POST, request.FILES, initial=initial_data_from_request(request)) aform = forms.AddonsForm(request.POST) if form.is_valid(): collection = form.save(default_locale=request.LANG) collection.save() if aform.is_valid(): aform.save(collection) collection_message(request, collection, 'add') statsd.incr('collections.created') log.info('Created collection %s' % collection.id) return http.HttpResponseRedirect(collection.get_url_path()) else: data['addons'] = Addon.objects.filter(pk__in=aform.clean_addon()) data['comments'] = aform.clean_addon_comment() else: form = forms.CollectionForm() data.update(form=form, filter=get_filter(request)) return render_cat(request, 'bandwagon/add.html', data)
04491d0465e09057a2e6c3cc7b80f41ff84314ec
3,521
def get_camera_pose_cpp(): """ Returns camera pose """ rospy.wait_for_service('/asr_robot_model_services/GetCameraPose', timeout=5) pose = rospy.ServiceProxy('/asr_robot_model_services/GetCameraPose',GetPose) return pose().pose
b52be4a613d1de482387f6643ea12181f84f6cf4
3,522
import copy def _convert_model_from_bytearray_to_object(model_bytearray): """Converts a tflite model from a bytearray into a parsable object.""" model_object = schema_fb.Model.GetRootAsModel(model_bytearray, 0) model_object = schema_fb.ModelT.InitFromObj(model_object) model_object = copy.deepcopy(model_object) return model_object
9579b58438571b41e8451a13d5e292e142cd6b57
3,523
import requests def get_service_mapping(): """ Get mapping dict of service types Returns: A mapping dict which maps service types names to their ids """ # Get all Service types: all_service_type = requests.get(base_url + 'services/v2/service_types', headers=headers3).json() # Make Dict of service names and ids service_name_to_id = {service_type['attributes']['name']:service_type['id'] for service_type in all_service_type['data']} return service_name_to_id
8a8adb8fff086b323dd95012c1a901918afa2bc2
3,524
def get_recently_viewed(request): """ get settings.PRODUCTS_PER_ROW most recently viewed products for current customer """ t_id = tracking_id(request) views = ProductView.objects.filter(tracking_id=t_id).values( 'product_id').order_by('-date')[0:PRODUCTS_PER_ROW] product_ids = [v['product_id'] for v in views] return Product.active.filter(id__in=product_ids)
048187566446294285c7c8fe48b3dafba5efdcc1
3,525
import re def chapter_by_url(url): """Helper function that iterates through the chapter scrapers defined in cu2.scrapers.__init__ and returns an initialized chapter object when it matches the URL regex. """ for Chapter in chapter_scrapers: if re.match(Chapter.url_re, url): return Chapter.from_url(url)
83112ab2b68faf7d48a7a8fab3cd359ff442550d
3,526
def get_model_name(part_num): """ 根据型号获取设备名称 :param part_num: :return: """ models = current_config.MODELS for model_name, model_part_num in models.items(): if model_part_num == part_num: return model_name
843489174c844e05752f499f250a30b157ae386e
3,527
def run_get_pk(process, *args, **inputs): """Run the process with the supplied inputs in a local runner that will block until the process is completed. :param process: the process class or process function to run :param inputs: the inputs to be passed to the process :return: tuple of the outputs of the process and process node pk """ if isinstance(process, Process): runner = process.runner else: runner = manager.get_manager().get_runner() return runner.run_get_pk(process, *args, **inputs)
782c3b49b90347a48495f2b7b48e34c2418d31a1
3,528
def _random_mask(target_tokens, noise_probability=None, target_length=None): """ target_length其实是mask_length""" unk = 3 target_masks = get_base_mask(target_tokens) if target_length is None: target_length = target_masks.sum(1).float() if noise_probability is None: # sample from [0,1] target_length = target_length * target_length.clone().uniform_() # 要mask的长度 else: target_length = target_length * noise_probability target_length = target_length + 1 # make sure to mask at least one token. target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_(~target_masks, 2.0) _, target_rank = target_score.sort(1) target_cutoff = new_arange(target_rank) < target_length[:, None].long() prev_target_tokens = target_tokens.masked_fill( target_cutoff.scatter(1, target_rank, target_cutoff), unk) return prev_target_tokens
89e603c7a5bfd4fd6fa1d6a36cea3e429e7bd6b7
3,529
def calculate(cart): """Return the total shipping cost for the cart. """ total = 0 for line in cart.get_lines(): total += line.item.shipping_cost * line.quantity return total
4b6d9bd94ce3a5748f0d94ab4b23dab993b430e4
3,531
def arr_to_rgb(arr, rgb=(0, 0, 0), alpha=1, invert=False, ax=None): """ arr to be made a mask rgb:assumed using floats (0..1,0..1,0..1) or string """ # arr should be scaled to 1 img = np.asarray(arr, dtype=np.float64) img = img - np.nanmin(img) img = img / np.nanmax(img) im2 = np.zeros(img.shape + (4,)) if isinstance(rgb, str): rgb = mpl.colors.to_rgb(rgb) if invert: img = 1 - img im2[:, :, 3] = img * alpha r, g, b = rgb im2[:, :, 0] = r im2[:, :, 1] = g im2[:, :, 2] = b # if ax is None: # ax = plt.gca() # plt.sca(ax) # plt.imshow(im2) return im2
73a19cfed712d93cbbaa69454ca2df780bc523fa
3,532
def parameters(number, size, v=3): """ sets item parameters of items and puts in list :param number: number of items :param size: characteristic size of the items :param v: velocity :return: list with items """ param = [] for i in range(number): angle = randint(0, int(2 * pi * 100)) param.append({ 'x': randint(100, screen_width - 100), 'y': randint(100, screen_height - 100), 'vx': v * cos(angle / 100), 'vy': v * sin(angle / 100), 'r': randint(40, 255), 'g': randint(40, 255), 'b': randint(40, 255), 's': size }) return param
1b2ad225359c53ce4dd3feb9d356b1637c76c79c
3,533
def _validate_args_for_toeplitz_ops(c_or_cr, b, check_finite, keep_b_shape, enforce_square=True): """Validate arguments and format inputs for toeplitz functions Parameters ---------- c_or_cr : array_like or tuple of (array_like, array_like) The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the actual shape of ``c``, it will be converted to a 1-D array. If not supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. b : (M,) or (M, K) array_like Right-hand side in ``T x = b``. check_finite : bool Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs. keep_b_shape : bool Whether to convert a (M,) dimensional b into a (M, 1) dimensional matrix. enforce_square : bool, optional If True (default), this verifies that the Toeplitz matrix is square. Returns ------- r : array 1d array corresponding to the first row of the Toeplitz matrix. c: array 1d array corresponding to the first column of the Toeplitz matrix. b: array (M,), (M, 1) or (M, K) dimensional array, post validation, corresponding to ``b``. dtype: numpy datatype ``dtype`` stores the datatype of ``r``, ``c`` and ``b``. If any of ``r``, ``c`` or ``b`` are complex, ``dtype`` is ``np.complex128``, otherwise, it is ``np.float``. b_shape: tuple Shape of ``b`` after passing it through ``_asarray_validated``. """ if isinstance(c_or_cr, tuple): c, r = c_or_cr c = _asarray_validated(c, check_finite=check_finite).ravel() r = _asarray_validated(r, check_finite=check_finite).ravel() else: c = _asarray_validated(c_or_cr, check_finite=check_finite).ravel() r = c.conjugate() if b is None: raise ValueError('`b` must be an array, not None.') b = _asarray_validated(b, check_finite=check_finite) b_shape = b.shape is_not_square = r.shape[0] != c.shape[0] if (enforce_square and is_not_square) or b.shape[0] != r.shape[0]: raise ValueError('Incompatible dimensions.') is_cmplx = np.iscomplexobj(r) or np.iscomplexobj(c) or np.iscomplexobj(b) dtype = np.complex128 if is_cmplx else np.double r, c, b = (np.asarray(i, dtype=dtype) for i in (r, c, b)) if b.ndim == 1 and not keep_b_shape: b = b.reshape(-1, 1) elif b.ndim != 1: b = b.reshape(b.shape[0], -1) return r, c, b, dtype, b_shape
977a40e279d3a0000cc03b181e65182e2fe325cc
3,534
def get_application_id(): """Returns the app id from the app_identity service.""" return app_identity.get_application_id()
f23f6ac7473f81af6c2b40807dd20f8f602bbd96
3,536
def prior(X, ls, kernel_func=rbf, ridge_factor=1e-3, name=None): """Defines Gaussian Process prior with kernel_func. Args: X: (np.ndarray of float32) input training features. with dimension (N, D). kernel_func: (function) kernel function for the gaussian process. Default to rbf. ls: (float32) length scale parameter. ridge_factor: (float32) ridge factor to stabilize Cholesky decomposition. name: (str) name of the random variable Returns: (ed.RandomVariable) A random variable representing the Gaussian Process, dimension (N,) """ X = tf.convert_to_tensor(X, dtype=tf.float32) N, _ = X.shape.as_list() K_mat = kernel_func(X, ls=ls, ridge_factor=ridge_factor) return ed.MultivariateNormalTriL(loc=tf.zeros(N, dtype=tf.float32), scale_tril=tf.cholesky(K_mat), name=name)
6ca9d150924473a0b78baa8da4e0734b7719e615
3,537
def multiclass_eval(y_hat: FloatTensor, y: IntTensor) -> int: """ Returns number correct: how often the rounded predicted value matches gold. Arguments: y_hat: 2d (N x C): guesses for each class y: 2d (N x C): onehot representation of class labels Returns: nubmer correct """ # max(dim) returns both values and indices. compare best indices from # predictions and gold (which are just onehot) _, pred_idxes = y_hat.max(1) _, gold_idxes = y.max(1) return (pred_idxes == gold_idxes).sum()
6385d1113a0c29191a8951a30d8219278511451d
3,539
def extract止めないでお姉さま(item): """ Parser for '止めないで、お姉さま…' """ badwords = [ 'subs', ] if any([bad in item['tags'] for bad in badwords]): return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or 'preview' in item['title'].lower(): return None if 'WATTT' in item['tags']: return buildReleaseMessageWithType(item, 'WATTT', vol, chp, frag=frag, postfix=postfix) return False
1ee52b649fbf24452285c44538b1bfc0fe3cb0c8
3,541
import urllib import json def GetExpID(startRow=0,numRows=2000,totalRows = -1): """ Queries the Allen Mouse Brain Institute website for all gene expression data available for download. Returns: -------- GeneNames: list[dict()] list of all genes where expression data is available for download. Dict contains experiment/gene metadata. SectionDataSetID : list(int) corresponding SectionDataSetID (SectionDataSet: see "http://help.brain-map.org/display/api/Data+Model") ID needed to specify download target. """ startRow = startRow numRows = numRows totalRows = totalRows rows = [] GeneNames = [] SectionDataSetID = [] info = list() done = False while not done: r = "&start_row={0}&num_rows={1}".format(startRow,numRows) pagedUrl = API_DATA_PATH + "query.json?criteria=model::SectionDataSet,rma::criteria,products%5Bid$eq5%5D,rma::include,specimen(stereotaxic_injections(primary_injection_structure,structures))" + r source = urllib.request.urlopen(pagedUrl).read() response = json.loads(source) rows += response['msg'] for x in response['msg']: if x['failed'] == False : print(x['id']) info.append(x['id']) if totalRows < 0: totalRows = int(response['total_rows']) startRow += len(response['msg']) if startRow >= totalRows: done = True return info
f361e94b5d2c61bc80b182c2ee63a734d7e8dc4e
3,542
from typing import Counter def _add_biotype_attribute(gene_content): """ Add `biotype` attribute to all intervals in gene_content. Parameters ---------- gene_content_ : dict Intervals in gene separated by transcript id. Returns ------- dict Same gene_content_ object with added `biotype` attributes. """ gene_content = gene_content.copy() # Determine gene biotype: gbiotype = _get_biotype(gene_content['gene']) # List to keep track of all possible biotypes in gene: gene_biotypes = [gbiotype] if gbiotype else [] for transcript_id, transcript_intervals in gene_content.items(): if transcript_id == 'gene': continue first_exon = [i for i in transcript_intervals if i[2] in ['CDS', 'ncRNA']][0] biotype = _get_biotype(first_exon) gene_biotypes.append(biotype) new_intervals = [] for interval in transcript_intervals: new_intervals.append(_add_biotype_value(interval, biotype)) gene_content[transcript_id] = new_intervals # Finally, make also gene biotype: a list of all biotypes in gene, # sorted by frequency. Additionally, another sorting is added to sort # by alphabet if counts are equal. biotype = ', '.join([i[0] for i in sorted( sorted(Counter(gene_biotypes).items()), key=lambda x: x[1], reverse=True)]) gene_content['gene'] = _add_biotype_value(gene_content['gene'], biotype) return gene_content
21e09ebd4048acf4223855c23b819352aac013db
3,543
def random_solution(W, D, n): """ We generate a solution of size n """ sol = np.random.permutation(n) + 1 fitness_sol = fitness(W=W, D=D, sol=sol) return [fitness_sol, sol]
be95c1f08591e90e0e808ea7938763bb7fecd1da
3,544
def format_perm(model, action): """ Format a permission string "app.verb_model" for the model and the requested action (add, change, delete). """ return '{meta.app_label}.{action}_{meta.model_name}'.format( meta=model._meta, action=action)
12f532e28f685c2a38a638de63928f07039d44c8
3,545
def verify_password(plain_password: str, hashed_password: str) -> bool: """Verify plain password and hashed password. Args: plain_password (str): Plain text password. hashed_password (str): Hashed password. Returns: bool: Returns true if secret is verified against given hash. """ return pwd_context.verify(plain_password, hashed_password)
adb7ac87516a02298468858216481d9ddad1ce13
3,546
from typing import List from typing import Dict def render_siecle2(tpl: str, parts: List[str], data: Dict[str, str]) -> str: """ >>> render_siecle2("siècle2", ["1"], defaultdict(str)) 'I<sup>er</sup>' >>> render_siecle2("siècle2", ["I"], defaultdict(str)) 'I<sup>er</sup>' >>> render_siecle2("siècle2", ["i"], defaultdict(str)) 'I<sup>er</sup>' >>> render_siecle2("siècle2", ["18"], defaultdict(str)) 'XVIII<sup>e</sup>' >>> render_siecle2("siècle2", ["XVIII"], defaultdict(str)) 'XVIII<sup>e</sup>' >>> render_siecle2("siècle2", ["xviii"], defaultdict(str)) 'XVIII<sup>e</sup>' """ number = parts[0] number = int_to_roman(int(number)) if number.isnumeric() else number.upper() suffix = "er" if number == "I" else "e" return f"{number}{superscript(suffix)}"
d0abd2703aebf3a05c0cc893c6678ed6683bb31a
3,547
def get_interactions(request): """Function to get the interactions for a molecule""" dist_dict = {"SingleAtomAcceptor_SingleAtomDonor": {"dist": 4.0}, # H-bonding "SingleAtomAcceptor_WeakDonor": {"dist": 3.0}, # Weak H-bond "Halogen_SingleAtomAcceptor": {"dist": 4.0}, # Halogen bonding "AcidicGroup_BasicGroup": {"dist": 4.0}, # Acid-base "Arom5_Arom6": {"dist": 5.5},"Arom6_Arom6": {"dist": 5.5},"Arom5_Arom5": {"dist": 5.5},# Aromatic-aromatic interactions "Arom6_Carbonyl": {"dist": 4.5}, "Arom5_Carbonyl": {"dist": 4.5},# Carbonyl-aromatic interactions - CARBONLY from PROTEIN ONLY!!!! "Hydrophobe_Hydrophobe": {"dist": 4.5}}#Hydrophobic interactions mol_pk = request.GET['obs_id'] my_dist = request.GET['dist'] host = request.get_host() mol = Molecule.objects.get(pk=mol_pk) out_l = [] prot = mol.prot_id # Get the interactions interactions = ProbeBit.objects.filter(prot_id=prot, mol_id=mol, dist__lte=my_dist) i = -1 for my_int in interactions: if my_int.type not in dist_dict: continue if my_int.dist > dist_dict[my_int.type]["dist"]: continue print "HERE" i += 1 out_l.append({}) f = my_int.probe_source_id out_l[i]["url_1"] = "http://"+host+'/WONKA/show_point/?x_com='+str(f.x_com)+'&y_com='+str(f.y_com)+'&z_com='+str(f.z_com) f = my_int.probe_dest_id out_l[i]["url_2"] = "http://"+host+'/WONKA/show_point/?x_com='+str(f.x_com)+'&y_com='+str(f.y_com)+'&z_com='+str(f.z_com) out_l[i]["dist"] = my_int.dist out_l[i]["type"] = my_int.type out_l[i]["angle_1"] = my_int.angle_1 out_l[i]["angle_2"] = my_int.angle_2 return HttpResponse(json.dumps(out_l))
86d4444b1c4a9251e8be91f453e1489234edf087
3,548
import json def sendmail_action(): """Send an email to the address entered in the sendmail form.""" if not MSGRAPHAPI.loggedin: redirect("/sendmail") email_body = json.dumps( { "Message": { "Subject": request.query.subject, "Body": {"ContentType": "HTML", "Content": request.query.body}, "ToRecipients": [{"EmailAddress": {"Address": request.query.to}}], }, "SaveToSentItems": "true", } ) # send the email response = MSGRAPHAPI.post(endpoint="me/microsoft.graph.sendMail", data=email_body) # refresh the sendmail page, showing result (status_code) for this action return template( "sendmail.tpl", dict( fullname=MSGRAPHAPI.loggedin_name, email=MSGRAPHAPI.loggedin_email, status_code=response.status_code, ), )
ed4f31ee22005e9ea1b3e24ca92b33be3980ebe2
3,549
import math def normal_to_angle(x, y): """ Take two normal vectors and return the angle that they give. :type x: float :param x: x normal :type y: float :param y: y normal :rtype: float :return: angle created by the two normals """ return math.atan2(y, x) * 180 / math.pi
c6f5b5e2952858cd3592b4e0849806b0ccd5de78
3,551
def glDeleteFramebuffersEXT( baseOperation, n, framebuffers=None ): """glDeleteFramebuffersEXT( framebuffers ) -> None """ if framebuffers is None: framebuffers = arrays.GLuintArray.asArray( n ) n = arrays.GLuintArray.arraySize( framebuffers ) return baseOperation( n, framebuffers )
8c14fa4ce55c6fe995c01822776b17728e132987
3,552
def outline(image, mask, color): """ Give a color to the outline of the mask Args: image: an image mask: a label color: a RGB color for outline Return: image: the image which is drawn outline """ mask = np.round(mask) yy, xx = np.nonzero(mask) for y, x in zip(yy, xx): if 0.0 < np.mean(mask[max(0, y - 1) : y + 2, max(0, x - 1) : x + 2]) < 1.0: image[max(0, y) : y + 1, max(0, x) : x + 1] = color return image
dc66410053e2326965c591a9d3b566e477133295
3,554
import socket def is_open_port(port): """ Check if port is open :param port: port number to be checked :type port: int :return: is port open :rtype: bool """ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind(("127.0.0.1", port)) except socket.error: return False return True
df81cc942f39d00bbdb8cb11628666a117c9788f
3,556
def stopping_fn_from_metric(metric_name: str): """ Returns a stopping function for ignite.handlers.EarlyStopping using the given metric name. """ def stopping_fn(engine: Engine): return engine.state.metrics[metric_name] return stopping_fn
c6b47fd417134eb72c017a4cd55b8dfc995ea0c5
3,557
def build_attribute_set(items, attr_name): """Build a set off of a particular attribute of a list of objects. Adds 'None' to the set if one or more of the objects in items is missing the attribute specified by attr_name. """ attribute_set = set() for item in items: attribute_set.add(getattr(item, attr_name, None)) return attribute_set
2cee5922463188a4a8d7db79d6be003e197b577f
3,559
def potential_fn(q): """ - log density for the normal distribution """ return 0.5 * np.sum(((q['z'] - true_mean) / true_std) ** 2)
f2b4ff07b7188494c9901c85f3b920e9d273a3f4
3,560
import yaml def patch_rbac(rbac_v1: RbacAuthorizationV1Api, yaml_manifest) -> RBACAuthorization: """ Patch a clusterrole and a binding. :param rbac_v1: RbacAuthorizationV1Api :param yaml_manifest: an absolute path to yaml manifest :return: RBACAuthorization """ with open(yaml_manifest) as f: docs = yaml.safe_load_all(f) role_name = "" binding_name = "" for dep in docs: if dep["kind"] == "ClusterRole": print("Patch the cluster role") role_name = dep["metadata"]["name"] rbac_v1.patch_cluster_role(role_name, dep) print(f"Patched the role '{role_name}'") elif dep["kind"] == "ClusterRoleBinding": print("Patch the binding") binding_name = dep["metadata"]["name"] rbac_v1.patch_cluster_role_binding(binding_name, dep) print(f"Patched the binding '{binding_name}'") return RBACAuthorization(role_name, binding_name)
1830cc26dc79674bfb628556e34572ddc6d6e89e
3,562
def _shp_to_boundary_gdf(shp_file_path): """.shpかshpが格納された.zipを指定してgdfを作成する Args: shp_file_path (Path): 変換対象のshpファイルを格納するディレクトリのパス文字列 Returns: gpd.GeoDataFrame: shpを変換したGeoDataFrame """ s2g = ShapeToGeoPandas(str(shp_file_path.resolve())) gdf = s2g.gdf necessary_columns = [ "KEY_CODE", "PREF", "CITY", "PREF_NAME", "CITY_NAME", "geometry"] geo_d = GdfDissolve(gdf, necessary_columns) geo_d.join_columns("AREA_CODE", "PREF", "CITY") geo_d.dissolve_poly("AREA_CODE") boundary_gdf = geo_d.new_gdf geojson_obj = geojson_str_to_obj(df_to_geojson(boundary_gdf)) write_geojson(geojson_obj, "./created/", "boundary.geojson") output_csv_from_df(boundary_gdf, "./created/", "boundary.csv") return boundary_gdf
4e1aef42f6bb16f184f0669b37dc7720851bee14
3,563
import random def insert_site(site, seq, offset=None): """Inserts a sequence (represeting a site) into a larger sequence (which is a sequence object rather than a series of letters.""" # inputs: # site The site to be inserted # offsets the offset where the site is to be inserted # seq The sequence into which the specified site is to # be implanted # get sequence info name = seq.getName() seq_data = seq.getSeq() assert ((offset == None) or ((offset >= 0) and \ (offset <= (len(seq_data) - len(site))))) # select a random offset if none given: if (offset == None): # insert signal in a random position, from 0 up to m (= l - w) offset = random.randint(0,(len(seq_data) - len(site))) # insert the signal signal_seq = seq_data[:offset]+str(site)+seq_data[(offset + len(site)):] # create a modified sequence object to return new_seq = sequence.Seq(name, signal_seq) return new_seq
88a4df8e2ab094337a27d0e2d84c2078dfed5cc4
3,564
def sex2bpzmags(f, ef, zp=0., sn_min=1., m_lim=None): """ This function converts a pair of flux, error flux measurements from SExtractor into a pair of magnitude, magnitude error which conform to BPZ input standards: - Nondetections are characterized as mag=99, errormag=m_1sigma - Objects with absurd flux/flux error combinations or very large errors are characterized as mag=-99 errormag=0. """ nondetected = less_equal(f, 0.) * greater( ef, 0) #Flux <=0, meaningful phot. error nonobserved = less_equal(ef, 0.) #Negative errors #Clip the flux values to avoid overflows f = clip(f, 1e-100, 1e10) ef = clip(ef, 1e-100, 1e10) nonobserved += equal(ef, 1e10) nondetected += less_equal( old_div(f, ef), sn_min) #Less than sn_min sigma detections: consider non-detections detected = logical_not(nondetected + nonobserved) m = zeros(len(f)) * 1. em = zeros(len(ef)) * 1. m = where(detected, -2.5 * log10(f) + zp, m) m = where(nondetected, 99., m) m = where(nonobserved, -99., m) em = where(detected, 2.5 * log10(1. + old_div(ef, f)), em) if not m_lim: em = where(nondetected, -2.5 * log10(ef) + zp, em) else: em = where(nondetected, m_lim, em) em = where(nonobserved, 0., em) return m, em
ec95566f680326cd550626495a6983d0221ae29b
3,565
def get_elk_command(line): """Return the 2 character command in the message.""" if len(line) < 4: return "" return line[2:4]
550eda4e04f57ae740bfd294f9ec3b243e17d279
3,566
def safe_div(a, b): """ Safe division operation. When b is equal to zero, this function returns 0. Otherwise it returns result of a divided by non-zero b. :param a: number a :param b: number b :return: a divided by b or zero """ if b == 0: return 0 return a / b
68e5bccbe812315b9a1d27a1fa06d26d5339d6fd
3,567
def decrypt_story(): """ Using the methods you created in this problem set, decrypt the story given by the function getStoryString(). Use the functions getStoryString and loadWords to get the raw data you need. returns: string - story in plain text """ story = CiphertextMessage(get_story_string()) return story.decrypt_message()
af636efedf5e95847c4a7dd52031cfc3dfa094a0
3,568
def shouldAvoidDirectory(root, dirsToAvoid): """ Given a directory (root, of type string) and a set of directory paths to avoid (dirsToAvoid, of type set of strings), return a boolean value describing whether the file is in that directory to avoid. """ subPaths = root.split('/') for i, subPath in enumerate(subPaths): dir = '/'.join(subPaths[:i+1]) if dir in dirsToAvoid: return True return False
afc92111f57031eb1e2ba797d80ea4abc2a7ccd0
3,569
def atom_explicit_hydrogen_valences(xgr): """ explicit hydrogen valences, by atom """ return dict_.transform_values(atom_explicit_hydrogen_keys(xgr), len)
e409b82606f113373086ca52689baeb117d3a8ea
3,570
def change_account_type(user_id): """Change a user's account type.""" if current_user.id == user_id: flash('You cannot change the type of your own account. Please ask ' 'another administrator to do this.', 'error') return redirect(url_for('admin.user_info', user_id=user_id)) user = User.query.get(user_id) if user is None: abort(404) form = ChangeAccountTypeForm() if form.validate_on_submit(): user.role = form.role.data db.session.add(user) db.session.commit() flash('Role for user {} successfully changed to {}.'.format( user.full_name(), user.role.name), 'form-success') return render_template('admin/manage_user.html', user=user, form=form)
3c13b4ea1d3b080a4c925d576eee29c61346363a
3,571
import re def test_runner(filtered_tests, args): """ Driver function for the unit tests. Prints information about the tests being run, executes the setup and teardown commands and the command under test itself. Also determines success/failure based on the information in the test case and generates TAP output accordingly. """ testlist = filtered_tests tcount = len(testlist) index = 1 tap = str(index) + ".." + str(tcount) + "\n" for tidx in testlist: result = True tresult = "" if "flower" in tidx["category"] and args.device == None: continue print("Test " + tidx["id"] + ": " + tidx["name"]) prepare_env(tidx["setup"]) (p, procout) = exec_cmd(tidx["cmdUnderTest"]) exit_code = p.returncode if (exit_code != int(tidx["expExitCode"])): result = False print("exit:", exit_code, int(tidx["expExitCode"])) print(procout) else: match_pattern = re.compile(str(tidx["matchPattern"]), re.DOTALL) (p, procout) = exec_cmd(tidx["verifyCmd"]) match_index = re.findall(match_pattern, procout) if len(match_index) != int(tidx["matchCount"]): result = False if result == True: tresult += "ok " else: tresult += "not ok " tap += tresult + str(index) + " " + tidx["id"] + " " + tidx["name"] + "\n" if result == False: tap += procout prepare_env(tidx["teardown"]) index += 1 return tap
39e1af33a563dd9915ec6f107c8dd1f199528cab
3,572
def get_all_infos_about_argument(db_argument: Argument, main_page, db_user, lang) -> dict: """ Returns bunch of information about the given argument :param db_argument: The argument :param main_page: url of the application :param db_user: User :param lang: Language :rtype: dict :return: dictionary with many information or an error """ _t = Translator(lang.ui_locales) return_dict = dict() db_votes = DBDiscussionSession.query(ClickedArgument).filter(ClickedArgument.argument_uid == db_argument.uid, ClickedArgument.is_valid == True, ClickedStatement.is_up_vote == True).all() db_author = DBDiscussionSession.query(User).get(db_argument.author_uid) return_dict['vote_count'] = str(len(db_votes)) return_dict['author'] = db_author.global_nickname return_dict['author_url'] = main_page + '/user/' + str(db_author.uid) return_dict['gravatar'] = get_profile_picture(db_author) return_dict['timestamp'] = sql_timestamp_pretty_print(db_argument.timestamp, db_argument.lang) text = get_text_for_argument_uid(db_argument.uid) return_dict['text'] = start_with_capital(text) supporters = [] gravatars = dict() public_page = dict() for vote in db_votes: db_author = DBDiscussionSession.query(User).get(vote.author_uid) name = db_author.global_nickname if db_user.nickname == db_author.nickname: name += ' (' + _t.get(_.itsYou) + ')' supporters.append(name) gravatars[name] = get_profile_picture(db_author) public_page[name] = main_page + '/user/' + str(db_author.uid) return_dict['supporter'] = supporters return_dict['gravatars'] = gravatars return_dict['public_page'] = public_page return return_dict
56c03e8d11d23c3726b54b2d2be954ecefba786b
3,573
def average_proxy(ray, method, proxy_type): """ method to average proxy over the raypath. Simple method is direct average of the proxy: $\sum proxy(r) / \sum dr$. Other methods could be: $1/(\sum 1 / proxy)$ (better for computing \delta t) """ total_proxy = 0. try: methode.evaluation except (NameError, AttributeError): method.evaluation = None # in case the variable was not defined. if method.evaluation == "inverse": for _, point in enumerate(ray): _proxy = method.proxy_singlepoint(point, proxy_type)[proxy_type] total_proxy += 1. / _proxy number = len(ray) proxy = 1. / total_proxy / float(number) else: for j, point in enumerate(ray): _proxy = method.proxy_singlepoint(point, proxy_type)[proxy_type] total_proxy += _proxy number = len(ray) proxy = total_proxy / float(number) return proxy
912925339f6a2087020781e898de102c3ee4f0d6
3,574
import _datetime from datetime import datetime def after(base=_datetime, diff=None): """ count datetime after diff args :param base: str/datetime/date :param diff: str :return: datetime """ _base = parse(base) if isinstance(_base, datetime.date): _base = midnight(_base) result_dict = dp(diff) for unit in result_dict: _val = result_dict[unit] if not _val: continue if unit == 'years': _base = _base.replace(year=(_base.year + _val)) elif unit == 'months': if _base.month + _val <= 12: _base = _base.replace(month=_base.month + _val) else: _month_diff = (_base.month + _val) - 12 _base = _base.replace(year=_base.year + 1).replace(month=_month_diff) elif unit in ['days', 'hours', 'minutes', 'seconds']: _base = _base + datetime.timedelta(**{unit: _val}) return _base
80f3ccb2d45f247a93a0d69bf0a55bc9264ee7de
3,575
import string def open_lib(ifile): """Opens lib with name ifile and returns stationmeta, arraydim, rlengths, heights, sectors, data.""" with open(ifile, 'rb') as f: lines = f.readlines() lines = [x.strip() for x in lines] data = {} lines = filter(lambda x: x.strip(), lines) data["meta"] = lines[0] printable = set(string.printable) data["meta"] = filter(lambda x: x in printable, data["meta"]) data["dim"] = np.array(lines[1].split()).astype(int) data["R"] = np.array(lines[2].split()).astype(float) #[m] data["H"] = np.array(lines[3].split()).astype(float) #[m] data["sect"] = int(data["dim"][2]) data_block = lines[4:] # frequencies data["f"] = convert_to_np(data_block[::len(data["H"])*2+1],data["sect"]) # create masks for A, k value mask = np.ones(len(data_block), dtype=bool) mask[::len(data["H"])*2+1] = False AK = convert_to_np(list(compress(data_block,mask)),data["sect"]) data["A"] = AK[::2] data["k"] = AK[1::2] f.close() return data
22fb842112f1558ab086058d997e08cb416e9a19
3,576
def convert_examples_to_features(examples, intent_label_list, slot_label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, intent_label_list, slot_label_list, max_seq_length, tokenizer) features.append(feature) return features
078f6e23e3a2f42a12851763a3424d938569d25b
3,577
from bs4 import BeautifulSoup def get_blb_links(driver): """takes (driver) and returns list of links to scrape""" homepage = "https://www.bloomberg.com/europe" rootpage = "https://www.bloomberg.com" driver.get(homepage) ssm = driver.find_elements_by_class_name("single-story-module")[0].get_attribute( "outerHTML" ) spm_1 = driver.find_elements_by_class_name("story-package-module")[0].get_attribute( "outerHTML" ) spm_2 = driver.find_elements_by_class_name("story-package-module")[1].get_attribute( "outerHTML" ) oped = driver.find_elements_by_class_name("story-package-module")[2].get_attribute( "outerHTML" ) soup = BeautifulSoup(ssm + spm_1 + spm_2 + oped, "lxml") links = [ rootpage + link.get("href") for link in soup.findAll("a") if "/news/" in link.get("href") ] links = list(dict.fromkeys(links)) return links
f2ecf967aa6e755b51e43450239b5606013cb9bf
3,578
def randomProfile(freq,psd): """ Generate a random profile from an input PSD. freq should be in standard fft.fftfreq format psd should be symmetric as with a real signal sqrt(sum(psd)) will equal RMS of profile """ amp = np.sqrt(psd)*len(freq) ph = randomizePh(amp) f = amp*ph sig = np.fft.ifft(f) return np.real(sig)
54477fc37bb81c24c0bde3637112a18613201565
3,579
def getP(W, diagRegularize = False): """ Turn a similarity matrix into a proability matrix, with each row sum normalized to 1 :param W: (MxM) Similarity matrix :param diagRegularize: Whether or not to regularize the diagonal of this matrix :returns P: (MxM) Probability matrix """ if diagRegularize: P = 0.5*np.eye(W.shape[0]) WNoDiag = np.array(W) np.fill_diagonal(WNoDiag, 0) RowSum = np.sum(WNoDiag, 1) RowSum[RowSum == 0] = 1 P = P + 0.5*WNoDiag/RowSum[:, None] return P else: RowSum = np.sum(W, 1) RowSum[RowSum == 0] = 1 P = W/RowSum[:, None] return P
1c5c7da2e86b5c800660acaf825507914cd630ce
3,580
def get_structure_index(structure_pattern,stream_index): """ Translates the stream index into a sequence of structure indices identifying an item in a hierarchy whose structure is specified by the provided structure pattern. >>> get_structure_index('...',1) [1] >>> get_structure_index('.[.].',1) [1, 0] >>> get_structure_index('.[[...],..].',1) [1, 0, 0] >>> get_structure_index('.[[...]...].',2) [1, 0, 1] >>> get_structure_index('.[[...]...].',3) [1, 0, 2] >>> get_structure_index('.[[...]...].',4) [1, 1] >>> get_structure_index('.[[...]...].',5) [1, 2] >>> get_structure_index('.[[...]...].',6) [1, 3] >>> get_structure_index('.[[...]...].',7) [2] """ structure_index = [0] current_stream_index = 0 for p in structure_pattern: if p == '[': structure_index.append(0) elif p == '.': if current_stream_index == stream_index: return structure_index structure_index[-1] += 1 current_stream_index += 1 elif p == ']': structure_index.pop(-1) structure_index[-1] += 1 else: raise Exception('Invalid character in structure pattern: %s' % repr(p)) raise Exception('Provided stream index does not exist in the provided structure pattern')
8f1def101aa2ec63d1ea69382db9641bf0f51380
3,581
import random import torch def n_knapsack(n_knapsacks=5, n_items=100, # Should be divisible by n_knapsack n_weights_per_items=500, use_constraints=False, method='trust-constr', backend='tf' ): """ Here we solve a continuous relaxation of the multiknapsack problem. """ # Let's emulate the multiknapsack problem with random weights weights_ = random((n_weights_per_items, n_items)) # We create knapsacks with attribution of the items to knapsacks [0,1,2,3,4] as: # [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4] capacity_knapsacks = weights_.reshape( (n_weights_per_items, -1, n_knapsacks)).sum(-2) if backend == 'tf': weights_ = tf.constant(weights_, tf.float32) capacity_knapsacks_ = tf.constant(capacity_knapsacks, tf.float32) def func(W): # We use softmax to impose the constraint that the attribution of items to knapsacks should sum to one if use_constraints: W = tf.nn.softmax(W, 1) # We add a penalty only when the weights attribution sums higher than the knapsacks capacity. res = tf.nn.relu(weights_@W-capacity_knapsacks_) res = tf.reduce_mean(res**2) return res dev = None else: dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") weights_ = torch.tensor(weights_, dtype=torch.float32, device=dev) capacity_knapsacks_ = torch.tensor( capacity_knapsacks, dtype=torch.float32, device=dev) def func(W): # We use softmax to impose the constraint that the attribution of items to knapsacks should sum to one if use_constraints: W = torch.nn.functional.softmax(W, 1) # We add a penalty only when the weights attribution sums higher than the knapsacks capacity. res = torch.nn.functional.relu(weights_@W-capacity_knapsacks_) res = (res**2).mean() return res if use_constraints: if backend == 'tf': def eq_fun(W): return tf.reduce_sum(W, 1)-1 else: def eq_fun(W): return W.sum(1)-1 constraints = { 'type': 'eq', 'fun': eq_fun, 'lb': 0, 'ub': 0, 'use_autograd': False } else: constraints = None Winit = np.zeros((n_items, n_knapsacks)) res = minimize(func, Winit, tol=1e-8, constraints=constraints, bounds=(0, None), method=method, torch_device=dev, backend=backend) return res
ed4068bad29aff385a86286eab224da3c1beefa5
3,582
def has_url(account: Accounts) -> bool: """Return True if the account's note or fields seem to contain a URL.""" if account.note and "http" in account.note.lower(): return True if "http" in str(account.fields).lower(): return True return False
d858ef1bedcac064bbc9a5c20de02b1438c5cdad
3,583
def conv2x2(in_planes, out_planes, stride=1, groups=1, dilation=1, padding=0): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=2, stride=stride, padding=padding, groups=groups, bias=False, dilation=dilation)
a96112cd56817940292f92b5417584f18b7d2fb7
3,584
def face_normals(P,T,normalize=True): """Computes normal vectors to triangles (faces). Args: P: n*3 float array T: m*3 int array normalize: Whether or not to normalize to unit vectors. If False, then the magnitude of each vector is twice the area of the corresponding triangle. Default is True Returns: A Numpy array of size (num_tri,3) containing the face normal vectors. """ P1 = P[T[:,0],:] P2 = P[T[:,1],:] P3 = P[T[:,2],:] N = np.cross(P2-P1,P3-P1) if normalize: N = (N.T/np.linalg.norm(N,axis =1)).T return N
379c82624aeb1a772befb91acee1b46a7ff7f937
3,585
import itertools def transform_pairwise(X, y): """Transforms data into pairs with balanced labels for ranking Transforms a n-class ranking problem into a two-class classification problem. Subclasses implementing particular strategies for choosing pairs should override this method. In this method, all pairs are choosen, except for those that have the same target value. The output is an array of balanced classes, i.e. there are the same number of -1 as +1 Reference: "Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich, T. Graepel, K. Obermayer. Authors: Fabian Pedregosa <[email protected]> Alexandre Gramfort <[email protected]> Args: X: (np.array), shape (n_samples, n_features) The data y: (np.array), shape (n_samples,) or (n_samples, 2) Target labels. If it's a 2D array, the second column represents the grouping of samples, i.e., samples with different groups will not be considered. Returns: X_trans: (np.array), shape (k, n_feaures) Data as pairs, where k = n_samples * (n_samples-1)) / 2 if grouping values were not passed. If grouping variables exist, then returns values computed for each group. y_trans: (np.array), shape (k,) Output class labels, where classes have values {-1, +1} If y was shape (n_samples, 2), then returns (k, 2) with groups on the second dimension. """ X_new, y_new, y_group = [], [], [] y_ndim = y.ndim if y_ndim == 1: y = np.c_[y, np.ones(y.shape[0])] comb = itertools.combinations(range(X.shape[0]), 2) for k, (i, j) in enumerate(comb): if y[i, 0] == y[j, 0] or y[i, 1] != y[j, 1]: # skip if same target or different group continue X_new.append(X[i] - X[j]) y_new.append(np.sign(y[i, 0] - y[j, 0])) y_group.append(y[i, 1]) # output balanced classes if y_new[-1] != (-1) ** k: y_new[-1] = -y_new[-1] X_new[-1] = -X_new[-1] if y_ndim == 1: return np.asarray(X_new), np.asarray(y_new).ravel() elif y_ndim == 2: return np.asarray(X_new), np.vstack((np.asarray(y_new), np.asarray(y_group))).T
d4c376fe1a594f6baecb78aeaa11e90bffcde8a5
3,586
def format_project_title(rank: int, project_id: str, status: str) -> str: """Formats a project title for display in Slack. Args: rank: The rank of in the list. Will be prepended to the title. project_id: The project ID. status: The status of the project. This is used to determine which emoji is used to prefix the title string. Returns: A formatted title string. """ project_link = generate_gcp_project_link(project_id) if status == SETTINGS.STATUS_WARNING: return f':warning: *{rank}. {project_link}*' return f':white_check_mark: *{rank}. {project_link}*'
35a8b7dd2c3e8afd3975ddf97056a81d631e3576
3,587
def fake_3dimage_vis(): """ :return: a Nifti1Image (3D) in RAS+ space Following characteristics: - shape[LR] = 7 - shape[PA] = 8 - shape[IS] = 9 Visual thing using voxel art... """ shape = (7,8,9) data = np.zeros(shape, dtype=np.float32, order="F") # "L" indices =np.array([ (0,1,6), (0,1,5), (0,1,4), (0,1,3), (0,1,2), (0,1,1), (0,2,1), (0,3,1), (0,4,1), (0,5,1), ]).T data[indices[0], indices[1], indices[2]] = 7 # "P" indices =np.array([ (1,0,6), (1,0,5), (1,0,4), (1,0,3), (1,0,2), (1,0,1), (2,0,6), (3,0,5), (3,0,4), (2,0,3), (1,0,2), ]).T data[indices[0], indices[1], indices[2]] = 9 # "I" indices =np.array([ (3,1,0), (2,1,0), (1,1,0), (4,1,0), (5,1,0), (3,1,0), (3,2,0), (3,3,0), (3,4,0), (3,5,0), (3,6,0), (3,7,0), (2,7,0), (1,7,0), (4,7,0), (5,7,0), ]).T data[indices[0], indices[1], indices[2]] = 9 affine = np.eye(4) return nibabel.nifti1.Nifti1Image(data, affine)
65d766d04a6a85e5cafcdc0d7c62e2f3974caa5b
3,588
import atexit def watch_dependencies(dependency, func, time_execution=15000, registry=None, app=current_app): """ Register dependencies metrics up """ if not registry: registry = app.extensions.get("registry", CollectorRegistry()) app.extensions["registry"] = registry # pylint: disable=invalid-name DEPENDENCY_UP = Gauge( 'dependency_up', 'records if a dependency is up or down. 1 for up, 0 for down', ["name"], registry=registry ) def register_dependecy(): DEPENDENCY_UP.labels(dependency).set(func()) scheduler = BackgroundScheduler() scheduler.add_job( func=register_dependecy, trigger="interval", seconds=time_execution/1000, max_instances=1, name='dependency', misfire_grace_time=2, replace_existing=True ) scheduler.start() # Shut down the scheduler when exiting the app atexit.register(scheduler.shutdown) return scheduler
f502f3e1e6beba5169160459bc0887462ac6662c
3,589
def view_cache_key(func, args, kwargs, extra=None): """ Calculate cache key for view func. Use url instead of not properly serializable request argument. """ if hasattr(args[0], 'build_absolute_uri'): uri = args[0].build_absolute_uri() else: uri = args[0] return 'v:' + func_cache_key(func, args[1:], kwargs, extra=(uri, extra))
85139dc6a77d3758b6e691b565361b390c643e91
3,590
def get_filter(sampling_freq, f_pass, f_stop, taps): """Get FIR filter coefficients using the Remez exchange algorithm. Args: f_pass (float): Passband edge. f_stop (float): Stopband edge. taps (int): Number of taps or coefficients in the resulting filter. Returns: (numpy.ndarray): Computed filter coefficients. """ return ffd.remez(taps, [0, f_pass/sampling_freq, f_stop/sampling_freq, 0.5], [0, 1])
a0fb303ad74ee6e60dd0521af5e00b4b1d1d42e0
3,591
def errorcode_from_error(e): """ Get the error code from a particular error/exception caused by PostgreSQL. """ return e.orig.pgcode
981b447d540e949834c10f4a05fb21769091b104
3,592
def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : SlotW28 A SlotW28 object Returns ------- point_dict: dict A dict of the slot point coordinates """ Rbo = self.get_Rbo() # alpha is the angle to rotate Z0 so ||Z1,Z8|| = W0 alpha = float(arcsin(self.W0 / (2 * Rbo))) slot_pitch = 2 * pi / self.Zs # comp point coordinate (in complex) Z0 = Rbo * exp(1j * 0) Z8 = Z0 * exp(-1j * alpha) if self.is_outwards(): Z7 = Z8 + self.H0 # Rotation to get the tooth on X axis Z7 = Z7 * exp(1j * slot_pitch / 2) Z8 = Z8 * exp(1j * slot_pitch / 2) # Z7 = x7 + 1j*y7 # Z6 = x + 1j * W3/2 # C2,Z6 _|_ Z6,Z5 => Re(C2) = Re(Z6) # ||Z6,zc2|| = R1 => Zc2 = x + 1j*(W3/2+R1) # ||Z7,zc2||² = R1² => (x7-x)²+ (y7-(W3/2+R1))² = R1² # x² - 2*x7 x + (x7²+(y7-(W3/2+R1))²-R1²) = 0 # D = 4*x7² - 4*(x7²+(y7-(W3/2+R1))²-R1²) = -4((y7-(W3/2+R1))²-R1²) # x = x7 + sqrt(-4((y7-(W3/2+R1))²-R1²))/2 Z6 = ( Z7.real + sqrt(-4 * ((Z7.imag - (self.W3 / 2.0 + self.R1)) ** 2 - self.R1 ** 2)) / 2 + 1j * self.W3 / 2.0 ) Z5 = Z6 + self.H3 rot_sign = 1 else: # inward slot Z7 = Z8 - self.H0 # Rotation to get the tooth on X axis Z7 = Z7 * exp(1j * slot_pitch / 2) Z8 = Z8 * exp(1j * slot_pitch / 2) Z6 = ( Z7.real - sqrt(-4 * ((Z7.imag - (self.W3 / 2.0 + self.R1)) ** 2 - self.R1 ** 2)) / 2 + 1j * self.W3 / 2.0 ) Z5 = Z6 - self.H3 rot_sign = -1 # Tooth ref to slot Z1, Z2, Z3, Z4 = ( Z8 * exp(-1j * slot_pitch / 2), Z7 * exp(-1j * slot_pitch / 2), Z6 * exp(-1j * slot_pitch / 2), Z5 * exp(-1j * slot_pitch / 2), ) point_dict = dict() point_dict["Z1"] = Z1 point_dict["Z2"] = Z2 point_dict["Z3"] = Z3 point_dict["Z4"] = Z4 # symetry point_dict["Z5"] = Z4.conjugate() point_dict["Z6"] = Z3.conjugate() point_dict["Z7"] = Z2.conjugate() point_dict["Z8"] = Z1.conjugate() # Center A = Arc1(Z2, Z3, rot_sign * self.R1, self.is_outwards()) point_dict["Zc1"] = A.get_center() point_dict["Zc2"] = (point_dict["Z4"] + point_dict["Z5"]) / 2 point_dict["Zc3"] = point_dict["Zc1"].conjugate() return point_dict
0938c9ecba5e9fc1ed76e804e8eab6f9bd97f253
3,593
from typing import IO def save_expected_plot(series: pd.Series, colour="C0") -> IO: """Return an image of the plot with the given `series` and `colour`.""" fig, ax = plt.subplots() ax.add_line(mpl_lines.Line2D(series.index, series.values, color=colour)) return _save_fig(fig, ax)
6c898a622f983cebd46fb368a40e2a492bddb37f
3,594
def GRU_architecture( GRU_layers, GRU_neurons, Dense_layers, Dense_neurons, add_Dropout, Dropout_rate, data_shape, ): """ Parameters ---------- GRU_layers : int Number of GRU layers. GRU_neurons : list List with the numbers of GRU cells in each GRU layer. Dense_layers : int Number of Dense layers after GRU layers. Dense_neurons : list List with the numbers of neurons in each fully-connecred layer. add_Dropout : bool Specifies whether dropout regularization should be applied. Dropout_rate : float Dropout rate - the number between 0 and 1. data_shape : tuple Shape of the training data. Returns ------- model : keras.engine.training.Model Model with the specified architecture. """ # data_shape[1] - lag, data_shape[2] - number of signals input_layer = Input((data_shape[1], data_shape[2])) # If there is only one GRU layer, than return_sequences should be false if GRU_layers == 1: layers_gru = GRU( GRU_neurons[0], activation="tanh", recurrent_activation="tanh", use_bias=True, return_sequences=False, )(input_layer) # For many GRU layers return_sequences should be True, to conncect layers with each other else: layers_gru = input_layer # Adding GRU layers for grul in range(0, GRU_layers - 1): layers_gru = GRU( GRU_neurons[grul], activation="tanh", recurrent_activation="tanh", use_bias=True, return_sequences=True, )(layers_gru) # Adding Dropout if add_Dropout: layers_gru = Dropout(Dropout_rate)(layers_gru) # Adding last GRU layer layers_gru = GRU( GRU_neurons[-1], activation="tanh", recurrent_activation="tanh", use_bias=True, return_sequences=False, )(layers_gru) # Adding Dropout if add_Dropout: layers_gru = Dropout(Dropout_rate)(layers_gru) # Adding Dense layers if asked for densel in range(Dense_layers): layers_gru = Dense(Dense_neurons[densel], activation="relu")(layers_gru) # Adding Dropout if add_Dropout: layers_gru = Dropout(Dropout_rate)(layers_gru) # Adding output layer output = Dense(1, activation="linear")(layers_gru) model = Model(inputs=input_layer, outputs=output) return model
77c2aaed6a82f2f4aedade73649d843ff8afd2e2
3,595
def create_lock(name): """Creates a file in the /locks folder by the given name""" lock_path = get_lock_path(name) if not check_lock(lock_path): return touch_file(lock_path) else: return False
1f5e4d43a85a01aaba19295a72cdee20fd7adb1b
3,596
def gen_rigid_tform_rot(image, spacing, angle): """ generate a SimpleElastix transformation parameter Map to rotate image by angle Parameters ---------- image : sitk.Image SimpleITK image that will be rotated spacing : float Physical spacing of the SimpleITK image angle : float angle of rotation in degrees, rotates counter-clockwise if positive Returns ------- SimpleITK.ParameterMap of rotation transformation (EulerTransform) """ tform = BASE_RIG_TFORM.copy() image.SetSpacing((spacing, spacing)) bound_w, bound_h = compute_rot_bound(image, angle=angle) rot_cent_pt = image.TransformContinuousIndexToPhysicalPoint( ((bound_w - 1) / 2, (bound_h - 1) / 2) ) c_x, c_y = (image.GetSize()[0] - 1) / 2, (image.GetSize()[1] - 1) / 2 c_x_phy, c_y_phy = image.TransformContinuousIndexToPhysicalPoint( (c_x, c_y) ) t_x = rot_cent_pt[0] - c_x_phy t_y = rot_cent_pt[1] - c_y_phy tform["Spacing"] = [str(spacing), str(spacing)] tform["Size"] = [str(int(np.ceil(bound_w))), str(int(np.ceil(bound_h)))] tform["CenterOfRotationPoint"] = [str(rot_cent_pt[0]), str(rot_cent_pt[1])] tform["TransformParameters"] = [ str(np.radians(angle)), str(-1 * t_x), str(-1 * t_y), ] return tform
5cadbd59340328d1af5e4ec2c5c0c47e69e19013
3,597
def get_param_response(param_name, dict_data, num=0, default=None): """ :param param_name: 从接口返回值中要提取的参数 :param dict_data: 接口返回值 :param num: 返回值中存在list时,取指定第几个 :param default: 函数异常返回 :return: 提取的参数值 """ if isinstance(dict_data, dict): for k, v in dict_data.items(): if k == param_name: return v else: if isinstance(v, dict): ret = get_param_response(param_name, v) if ret is not default: return ret if isinstance(v, list): if num: try: if isinstance(v[num], dict): ret = get_param_response(param_name, v[num]) if ret is not default: return ret except IndexError: return {'error': ErrorCode.index_error} else: for i in v: if isinstance(i, dict): ret = get_param_response(param_name, i) if ret is not default: return ret if isinstance(v, str): try: value = eval(v) ret = get_param_response(param_name, value) if ret is not default: return ret except Exception: pass elif isinstance(dict_data, list): for content in dict_data: ret = get_param_response(param_name, content) if ret is not default: return ret return default
b9ffa5dfe6e9707771a812dad1d8d9284acbc2e7
3,598
def _strict_conv1d(x, h): """Return x * h for rank 1 tensors x and h.""" with ops.name_scope('strict_conv1d', values=[x, h]): x = array_ops.reshape(x, (1, -1, 1, 1)) h = array_ops.reshape(h, (-1, 1, 1, 1)) result = nn_ops.conv2d(x, h, [1, 1, 1, 1], 'SAME') return array_ops.reshape(result, [-1])
dabe247f97c285ed5d250d7d8d99dae5795a8fec
3,599
def timed_zip_map_agent(func, in_streams, out_stream, call_streams=None, name=None): """ Parameters ---------- in_streams: list of Stream The list of input streams of the agent. Each input stream is timed, i.e. the elements are pairs (timestamp, value) out_stream: Stream The single output stream of the agent. The output_stream is also timed. call_streams: list of Stream The list of call_streams. A new value in any stream in this list causes a state transition of this agent. name: Str Name of the agent created by this function. Returns ------- Agent. The agent created by this function. Notes ----- Each stream in in_streams must be a stream of tuples or lists or NumPy arrays where element[0] is a time and where time is a total order. Each stream in in_stream must be strictly monotonically increasing in time. out_stream merges the in_streams in order of time. An element of out_stream is a list where element[0] is a time T and element[1] is a list consisting of all elements of in in_streams that have time T. """ # Check types of arguments check_list_of_streams_type(list_of_streams=in_streams, agent_name=name, parameter_name='in_streams') check_stream_type(name, 'out_stream', out_stream) check_list_of_streams_type(list_of_streams=call_streams, agent_name=name, parameter_name='call_streams') num_in_streams = len(in_streams) indices = range(num_in_streams) # The transition function for this agent. def transition(in_lists, state): # Check the types of in_lists check_in_lists_type(name, in_lists, num_in_streams) # input_lists is the list of lists that this agent can operate on # in this transition. input_lists = [in_list.list[in_list.start:in_list.stop] for in_list in in_lists] # pointers is a list where pointers[i] is a pointer into the i-th # input lists pointers = [0 for i in indices] # stops is a list where pointers[i] must not exceed stops[i]. stops = [len(input_lists[i]) for i in indices] # output_list is the single output list for this agent. output_list = [] while all(pointers[i] < stops[i] for i in indices): # slice is a list with one element per input stream. # slice[i] is the value pointed to by pointers[i]. slice = [input_lists[i][pointers[i]] for i in indices] # slice[i][0] is the time field for slice[i]. # earliest_time is the earliest time pointed to by pointers. earliest_time = min(slice[i][0] for i in indices) # slice[i][1:] is the list of fields other than the time # field for slice[i]. # next_output_value is a list with one element for # each input stream. # next_output_value[i] is the empty list if the time # for slice[i] is later than earliest time. If the time # for slice[i] is the earliest time, hen next_output_value[i] # is the list of all the non-time fields. next_output_value = [slice[i][1] if slice[i][0] == earliest_time else None for i in indices] # increment pointers for this indexes where the time was the # earliest time. pointers = [pointers[i]+1 if slice[i][0] == earliest_time else pointers[i] for i in indices] # Make next_output a list consisting of a time: the earliest time # followed by a sequence of lists, one for each input stream. # Each list in this sequence consists of the non-time fields. next_output = [earliest_time] next_output.append(next_output_value) next_output = func(next_output) # output_list has an element for each time in the input list. output_list.append(next_output) # Return: (1) output_lists, the list of outputs, one per # output stream. This agent has a single output stream # and so output_lists = [output_list] # (2) the new state; the state is irrelevant for this # agent because all it does is merge streams. # (3) the new starting pointer into this stream for # this agent. Since this agent has read # pointers[i] number of elements in the i-th input # stream, move the starting pointer for the i-th input # stream forward by pointers[i]. return [output_list], state, [in_lists[i].start+pointers[i] for i in indices] # Finished transition # Create agent state = None # Create agent with the following parameters: # 1. list of input streams. # 2. list of output streams. This agent has a single output stream and so # out_streams is [out_stream]. # 3. transition function # 4. new state (irrelevant for this agent), so state is None # 5. list of calling streams # 6. Agent name return Agent(in_streams, [out_stream], transition, state, call_streams, name)
0c23ff84ed72ee25b04bf118d57203c7831702e8
3,600
def get_repository_ids_requiring_prior_install( trans, tsr_ids, repository_dependencies ): """ Inspect the received repository_dependencies and determine if the encoded id of each required repository is in the received tsr_ids. If so, then determine whether that required repository should be installed prior to it's dependent repository. Return a list of encoded repository ids, each of which is contained in the received list of tsr_ids, and whose associated repositories must be installed prior to the dependent repository associated with the received repository_dependencies. """ prior_install_ids = [] if repository_dependencies: for key, rd_tups in repository_dependencies.items(): if key in [ 'description', 'root_key' ]: continue for rd_tup in rd_tups: tool_shed, name, owner, changeset_revision, prior_installation_required = suc.parse_repository_dependency_tuple( rd_tup ) if asbool( prior_installation_required ): repository = suc.get_repository_for_dependency_relationship( trans.app, tool_shed, name, owner, changeset_revision ) if repository: encoded_repository_id = trans.security.encode_id( repository.id ) if encoded_repository_id in tsr_ids: prior_install_ids.append( encoded_repository_id ) return prior_install_ids
035e7f358b8af7d4915b255b988f1fabc56605c1
3,601
from typing import Iterable from typing import Tuple from typing import List def get_words_and_spaces( words: Iterable[str], text: str ) -> Tuple[List[str], List[bool]]: """Given a list of words and a text, reconstruct the original tokens and return a list of words and spaces that can be used to create a Doc. This can help recover destructive tokenization that didn't preserve any whitespace information. words (Iterable[str]): The words. text (str): The original text. RETURNS (Tuple[List[str], List[bool]]): The words and spaces. """ if "".join("".join(words).split()) != "".join(text.split()): raise ValueError(Errors.E194.format(text=text, words=words)) text_words = [] text_spaces = [] text_pos = 0 # normalize words to remove all whitespace tokens norm_words = [word for word in words if not word.isspace()] # align words with text for word in norm_words: try: word_start = text[text_pos:].index(word) except ValueError: raise ValueError(Errors.E194.format(text=text, words=words)) from None if word_start > 0: text_words.append(text[text_pos : text_pos + word_start]) text_spaces.append(False) text_pos += word_start text_words.append(word) text_spaces.append(False) text_pos += len(word) if text_pos < len(text) and text[text_pos] == " ": text_spaces[-1] = True text_pos += 1 if text_pos < len(text): text_words.append(text[text_pos:]) text_spaces.append(False) return (text_words, text_spaces)
205c48435018a99433fce298a6035de902774810
3,602
from typing import List import ast def parse_names(source: str) -> List['Name']: """Parse names from source.""" tree = ast.parse(source) visitor = ImportTrackerVisitor() visitor.visit(tree) return sum([split_access(a) for a in visitor.accessed], [])
42f622052bc8acd5cdec187cd16695cec3b86154
3,603