content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def lh_fus(temp):
"""latent heat of fusion
Args:
temp (float or array): temperature [K]
Returns:
float or array: latent heat of fusion
"""
return 3.336e5 + 1.6667e2 * (FREEZE - temp) | 8127970612b031d2aaf7598379f41b549a3268e1 | 3,649,620 |
def to_eaf(file_path, eaf_obj, pretty=True):
"""
modified function from https://github.com/dopefishh/pympi/blob/master/pympi/Elan.py
Write an Eaf object to file.
:param str file_path: Filepath to write to, - for stdout.
:param pympi.Elan.Eaf eaf_obj: Object to write.
:param bool pretty: Flag to set pretty printing.
"""
def rm_none(x):
try: # Ugly hack to test if s is a string in py3 and py2
basestring
def isstr(s):
return isinstance(s, basestring)
except NameError:
def isstr(s):
return isinstance(s, str)
return {k: v if isstr(v) else str(v) for k, v in x.items()
if v is not None}
# Annotation Document
ADOCUMENT = etree.Element('ANNOTATION_DOCUMENT', eaf_obj.adocument)
# Licence
for m in eaf_obj.licenses:
n = etree.SubElement(ADOCUMENT, 'LICENSE', {'LICENSE_URL': m[1]})
n.text = m[0]
# Header
HEADER = etree.SubElement(ADOCUMENT, 'HEADER', eaf_obj.header)
# Media descriptiors
for m in eaf_obj.media_descriptors:
etree.SubElement(HEADER, 'MEDIA_DESCRIPTOR', rm_none(m))
# Linked file descriptors
for m in eaf_obj.linked_file_descriptors:
etree.SubElement(HEADER, 'LINKED_FILE_DESCRIPTOR', rm_none(m))
# Properties
for k, v in eaf_obj.properties:
etree.SubElement(HEADER, 'PROPERTY', {'NAME': k}).text = str(v)
# Time order
TIME_ORDER = etree.SubElement(ADOCUMENT, 'TIME_ORDER')
for t in sorted(eaf_obj.timeslots.items(), key=lambda x: int(x[0][2:])):
etree.SubElement(TIME_ORDER, 'TIME_SLOT', rm_none(
{'TIME_SLOT_ID': t[0], 'TIME_VALUE': t[1]}))
# Tiers
for t in sorted(eaf_obj.tiers.items(), key=lambda x: x[1][3]):
tier = etree.SubElement(ADOCUMENT, 'TIER', rm_none(t[1][2]))
for a in t[1][0].items():
ann = etree.SubElement(tier, 'ANNOTATION')
alan = etree.SubElement(ann, 'ALIGNABLE_ANNOTATION', rm_none(
{'ANNOTATION_ID': a[0], 'TIME_SLOT_REF1': a[1][0],
'TIME_SLOT_REF2': a[1][1], 'SVG_REF': a[1][3]}))
etree.SubElement(alan, 'ANNOTATION_VALUE').text = a[1][2]
for a in t[1][1].items():
ann = etree.SubElement(tier, 'ANNOTATION')
rean = etree.SubElement(ann, 'REF_ANNOTATION', rm_none(
{'ANNOTATION_ID': a[0], 'ANNOTATION_REF': a[1][0],
'PREVIOUS_ANNOTATION': a[1][2], 'SVG_REF': a[1][3]}))
etree.SubElement(rean, 'ANNOTATION_VALUE').text = a[1][1]
# Linguistic types
for l in eaf_obj.linguistic_types.values():
etree.SubElement(ADOCUMENT, 'LINGUISTIC_TYPE', rm_none(l))
# Locales
for lc, (cc, vr) in eaf_obj.locales.items():
etree.SubElement(ADOCUMENT, 'LOCALE', rm_none(
{'LANGUAGE_CODE': lc, 'COUNTRY_CODE': cc, 'VARIANT': vr}))
# Languages
for lid, (ldef, label) in eaf_obj.languages.items():
etree.SubElement(ADOCUMENT, 'LANGUAGE', rm_none(
{'LANG_ID': lid, 'LANG_DEF': ldef, 'LANG_LABEL': label}))
# Constraints
for l in eaf_obj.constraints.items():
etree.SubElement(ADOCUMENT, 'CONSTRAINT', rm_none(
{'STEREOTYPE': l[0], 'DESCRIPTION': l[1]}))
# Controlled vocabularies
for cvid, (descriptions, cv_entries, ext_ref) in\
eaf_obj.controlled_vocabularies.items():
cv = etree.SubElement(ADOCUMENT, 'CONTROLLED_VOCABULARY',
rm_none({'CV_ID': cvid, 'EXT_REF': ext_ref}))
for lang_ref, description in descriptions:
des = etree.SubElement(cv, 'DESCRIPTION', {'LANG_REF': lang_ref})
if description:
des.text = description
for cveid, (values, ext_ref) in cv_entries.items():
cem = etree.SubElement(cv, 'CV_ENTRY_ML', rm_none({
'CVE_ID': cveid, 'EXT_REF': ext_ref}))
for value, lang_ref, description in values:
val = etree.SubElement(cem, 'CVE_VALUE', rm_none({
'LANG_REF': lang_ref, 'DESCRIPTION': description}))
val.text = value
# Lexicon refs
for l in eaf_obj.lexicon_refs.values():
etree.SubElement(ADOCUMENT, 'LEXICON_REF', rm_none(l))
# Exteral refs
for eid, (etype, value) in eaf_obj.external_refs.items():
etree.SubElement(ADOCUMENT, 'EXTERNAL_REF', rm_none(
{'EXT_REF_ID': eid, 'TYPE': etype, 'VALUE': value}))
# https://github.com/dopefishh/pympi/blob/master/pympi/Elan.py
return '<?xml version="1.0" encoding="UTF-8"?>'+etree.tostring(ADOCUMENT, encoding='utf-8').decode("utf-8") | 605e7f711f34661daae6869419d6f8bebb05a2c4 | 3,649,621 |
def query_for_build_status(service, branch, target, starting_build_id):
"""Query Android Build Service for the status of the 4 builds in the target
branch whose build IDs are >= to the provided build ID"""
try:
print ('Querying Android Build APIs for builds of {} on {} starting at'
' buildID {}').format(target, branch, starting_build_id)
return service.build().list(buildType='submitted',
branch=branch, target=target, maxResults='4',
startBuildId=starting_build_id).execute()
except errors.HttpError as error:
print 'HTTP Error while attempting to query the build status.'
print error
return None | 4e1e04dae1ce13217374207a1b57d7380552dfc5 | 3,649,623 |
def create_pool(
dsn=None,
*,
min_size=10,
max_size=10,
max_queries=50000,
max_inactive_connection_lifetime=300.0,
setup=None,
init=None,
loop=None,
authenticator=None,
**connect_kwargs,
):
"""Create an Asyncpg connection pool through Approzium authentication.
Takes same arguments as ``asyncpg.create_pool`` in addition to the
`authenticator` argument
:return: An instance of :class:`~approzium.asyncpg.pool._ApproziumPool`.
Example:
.. code-block:: python
>>> import approzium
>>> from approzium.asyncpg import create_pool
>>> auth = approzium.AuthClient("myauthenticator.com:6001", disable_tls=True)
>>> pool = await create_pool(user='postgres', authenticator=auth)
>>> con = await pool.acquire()
>>> try:
... await con.fetch('SELECT 1')
... finally:
... await pool.release(con)
"""
return _ApproziumPool(
dsn,
connection_class=Connection,
min_size=min_size,
max_size=max_size,
max_queries=max_queries,
loop=loop,
setup=setup,
init=init,
max_inactive_connection_lifetime=max_inactive_connection_lifetime,
authenticator=authenticator,
**connect_kwargs,
) | 0b50a4cba07fb4797e04cc384dd46d1e21deed12 | 3,649,624 |
import logging
def _get_all_schedule_profile_entries_v1(profile_name, **kwargs):
"""
Perform a GET call to get all entries of a QoS schedule profile
:param profile_name: Alphanumeric name of the schedule profile
:param kwargs:
keyword s: requests.session object with loaded cookie jar
keyword url: URL in main() function
:return: Dictionary containing schedule profile entry URIs
"""
target_url = kwargs["url"] + "system/qos/%s/queues" % profile_name
response = kwargs["s"].get(target_url, verify=False)
if not common_ops._response_ok(response, "GET"):
logging.warning("FAIL: Getting dictionary of URIs of entries in QoS schedule profile '%s' failed with status code %d: %s"
% (profile_name, response.status_code, response.text))
else:
logging.info("SUCCESS: Getting dictionary of URIs of entries in QoS schedule profile '%s' succeeded" % profile_name)
schedule_profile_entries = response.json()
# for some reason, this API returns a list when empty, and a dictionary when there is data
# make this function always return a dictionary
if not schedule_profile_entries:
return {}
else:
return schedule_profile_entries | 32d6278ce6704feb5831012c2d0050b226fc7dfa | 3,649,625 |
def loadSource(path):
"""Loads a list of transportReactions. Format:
R("Macgamb_Transp")
R("Madnb_Transp")
R("MalaDb_Transp")..."""
file = open(path, 'r')
sources = [line.strip() for line in file]
file.close()
return sources | 244e9e5619a5039822ef14dfbb3d99b55cb6cc74 | 3,649,626 |
from typing import Optional
import struct
def frombin(
__data: Bitcode,
__dtype: SupportedDataType | bytes,
num: int = 1,
*,
encoding: Optional[str] = None,
signed: bool = True,
) -> ValidDataset:
"""converts a string of 0 and 1 back into the original data
Args:
data (BinaryCode): a string of 0 and 1
dtype (Union[int, float, str]): the desired data type to convert to
Raises:
TypeError: if the desired datatype is not of the integer, floats or strings data type
Returns:
Union[int, float, str]: converted data
"""
if __dtype is int:
stop = len(__data)
step = stop // num
if signed:
decoded_data = [None] * num
for index, i in enumerate(range(0, stop, step)):
bindata = __data[i : i + step]
decoded_data[index] = int("-%s" % (bindata) if bindata[0] == "1" else bindata, 2)
else:
decoded_data = [int(__data[i : i + step], 2) for i in range(0, stop, step)]
return decoded_data if num != 1 else decoded_data[0]
bytedata = int(__data, 2).to_bytes((len(__data) + 7) // 8, config.ENDIAN)
if __dtype in ("s", str):
return "".join(bytes.decode(bytedata, encoding or config.DEFAULT_STR_FORMAT))
else:
try:
decoded_data = list(
struct.unpack("%s%s%s" % (">" if config.ENDIAN == "big" else "<", num, __dtype), bytedata)
)
return decoded_data if num != 1 else decoded_data[0]
except struct.error:
raise TypeError(f"cannot convert byte data to '{__dtype}'") | 6fa7219ea8622071c7bb3277c8b59717543e9286 | 3,649,627 |
def check_size():
"""Assumes the problem size has been set by set_size before some operation.
This checks if the size was changed
Size is defined as (PIs, POs, ANDS, FF, max_bmc)
Returns TRUE is size is the same"""
global npi, npo, nands, nff, nmd
#print n_pis(),n_pos(),n_ands(),n_latches()
result = ((npi == n_pis()) and (npo == n_pos()) and (nands == n_ands()) and (nff == n_latches()) )
return result | 361edb3b4f20a3ae4920c784ad2d1c56fe35e2d6 | 3,649,628 |
def vrms2dbm(vp):
"""
Converts a scalar or a numpy array from volts RMS to dbm assuming there is an impedence of 50 Ohm
Arguments:
- vp: scalar or numpy array containig values in volt RMS to be converted in dmb
Returns:
- scalar or numpy array containing the result
"""
return 10. * np.log10(20. * (vp) ** 2.) | 7d0f76ab74cf82d2d56f97840153f1b9bc3cb8a8 | 3,649,629 |
def aa_i2c_read (aardvark, slave_addr, flags, data_in):
"""usage: (int return, u08[] data_in) = aa_i2c_read(Aardvark aardvark, u16 slave_addr, AardvarkI2cFlags flags, u08[] data_in)
All arrays can be passed into the API as an ArrayType object or as
a tuple (array, length), where array is an ArrayType object and
length is an integer. The user-specified length would then serve
as the length argument to the API funtion (please refer to the
product datasheet). If only the array is provided, the array's
intrinsic length is used as the argument to the underlying API
function.
Additionally, for arrays that are filled by the API function, an
integer can be passed in place of the array argument and the API
will automatically create an array of that length. All output
arrays, whether passed in or generated, are passed back in the
returned tuple."""
if not AA_LIBRARY_LOADED: return AA_INCOMPATIBLE_LIBRARY
# data_in pre-processing
__data_in = isinstance(data_in, int)
if __data_in:
(data_in, num_bytes) = (array_u08(data_in), data_in)
else:
(data_in, num_bytes) = isinstance(data_in, ArrayType) and (data_in, len(data_in)) or (data_in[0], min(len(data_in[0]), int(data_in[1])))
if data_in.typecode != 'B':
raise TypeError("type for 'data_in' must be array('B')")
# Call API function
(_ret_) = api.py_aa_i2c_read(aardvark, slave_addr, flags, num_bytes, data_in)
# data_in post-processing
if __data_in: del data_in[max(0, min(_ret_, len(data_in))):]
return (_ret_, data_in) | 59cca99e3ae811e957f9dd053205f3639c1451a4 | 3,649,630 |
def urbandictionary_search(search):
"""
Searches urbandictionary's API for a given search term.
:param search: The search term str to search for.
:return: definition str or None on no match or error.
"""
if str(search).strip():
urban_api_url = 'http://api.urbandictionary.com/v0/define?term=%s' % search
response = util.web.http_get(url=urban_api_url, json=True)
if response['json'] is not None:
try:
definition = response['json']['list'][0]['definition']
return definition.encode('ascii', 'ignore')
except (KeyError, IndexError):
return None
else:
return None | 3cd63486adc11f3ca20d4cd6216006d3f2d2239f | 3,649,632 |
def Performance(ALGORITHM_CONFIG, CELLULAR_MODEL_CONFIG, alog_name):
"""
Performance testing
"""
# Server profile: num_ues=200, APs=16, Scale=200.0, explore_radius=1
loadbalanceRL = interface.Rainman2(SETTINGS)
loadbalanceRL.algorithm_config = ALGORITHM_CONFIG
loadbalanceRL.environment_config = CELLULAR_MODEL_CONFIG
if alog_name=='linear':
result_linear = loadbalanceRL.run_experiment(
'Cellular', 'Qlearning', 'LinearRegression')
return result_linear
if alog_name=='Naive':
result_Naive = loadbalanceRL.run_experiment(
'Cellular', 'Qlearning', 'Naive')
return result_Naive
if alog_name=='NN':
result_NN = loadbalanceRL.run_experiment(
'Cellular', 'Qlearning', 'NN')
return result_NN
if alog_name=='DQN':
result_DQN = loadbalanceRL.run_experiment(
'Cellular', 'Qlearning', 'DQN')
return result_DQN | 87e5d6b0c400af0262b6a2c746e855b9b71a5c35 | 3,649,633 |
def launch(sid):
"""
Launch a scan
Launch the scan specified by the sid.
"""
data = connect('POST', '/scans/{0}/launch'.format(sid))
return data['scan_uuid'] | fa99e7a50e9e2ddb30ba131ebd61c998c2cdabaa | 3,649,634 |
import ast
def transpose_dict(data, data_key):
"""Function: transpose_dict
Description: Transpose specified keys in a list of dictionaries
to specified data types or None.
Arguments:
(input) data -> Initial list of dictionaries.
(input) data_key -> Dictionary of keys and data types.
(output) mod_data -> Modified list of dictionaries.
"""
data = list(data)
data_key = dict(data_key)
mod_data = list()
literal_list = ["bool", "list"]
for list_item in data:
list_item = dict(list_item)
for item in set(list_item.keys()) & set(data_key.keys()):
if not list_item[item] or list_item[item] == "None":
list_item[item] = None
elif data_key[item] == "int":
list_item[item] = int(list_item[item])
elif data_key[item] in literal_list:
list_item[item] = ast.literal_eval(list_item[item])
mod_data.append(list_item)
return mod_data | 7675ea2f80e9e85993dc99a2a31df04abfeba2c8 | 3,649,635 |
def aligner_to_symbol(calls):
"""
Assign symbols to different aligners in the input file
Set the attribute of the class instances
return a list of indices for which each aligner is found uniquely and all aligners
sorted by aligners
"""
symbols = ['o', '+', 'x', 'v', '*', 'D', 's', 'p', '8', 'X']
aligners = sorted(set([c.aligner for c in calls]), reverse=True)
aligner_to_symbol_dict = {a: s for a, s in zip(aligners, symbols)}
for c in calls:
c.shape = aligner_to_symbol_dict[c.aligner]
index_and_aligners = zip([[c.aligner for c in calls].index(i) for i in aligners], aligners)
return zip(*sorted(index_and_aligners, key=lambda x: x[1])) | b9cef3ae33b6ce84daf78a8bc8ce528f97d7a8a6 | 3,649,636 |
def nfvi_create_subnet(network_uuid, subnet_name, ip_version, subnet_ip,
subnet_prefix, gateway_ip, dhcp_enabled, callback):
"""
Create a subnet
"""
cmd_id = _network_plugin.invoke_plugin('create_subnet', network_uuid,
subnet_name, ip_version, subnet_ip,
subnet_prefix, gateway_ip,
dhcp_enabled, callback=callback)
return cmd_id | 383a0ffeb6e364f761c8d4038bf8e53f367021c1 | 3,649,638 |
def convertCRS(powerplants, substations, towers, crs, grid):
"""
:param powerplants:
:param substations:
:param towers:
:param crs:
:return:
"""
substations.to_crs(crs)
# powerplants = powerplants.set_crs(crs)
# powerplants = powerplants.to_crs(crs)
# print(powerplants.crs)
towers = towers.to_crs(crs)
return(substations, powerplants, towers, grid) | 9fcb8c51323c00935ba2c882502a273f2bf532ff | 3,649,639 |
def get_pathway(page_name, end_pg, max_len, trail, paths):
"""
Finds a list of all paths from a starting wikipedia page to an end page
Assumes page_name is a valid wikipedia article title and end_pg is a valid
Wikipedia Page Object
Args:
page_name: (Str) The name of the current article
end_pg: (Wikipedia Page) The page the path should end at
max_len: (Int) The number of maximum steps between the start page and
the end page
trail: (List) The current path being searched
Paths: (List) A set of all the paths between
the starting page and the end page
Returns nothing but appends a given list of paths
"""
trail.append(page_name) # add the current page to the current trail
# Check if the page has the the end page as a link and
# add it to thhe list of paths
if h.has_end(page_name, end_pg):
# if the page contains a link to the end page
# add the end page to the trail, and add the trail to the paths list
trail.append(end_pg.title)
paths.append(trail)
print(f"**Pathway {len(paths)}**: {h.plot_path(trail)}")
return None
# if the trail is above the maximum length return none
elif max_len <= 1:
print(f"Not a path: {trail}")
return None
else:
# Check each of the links in the page
# Continue branching looking for the end
for link in h.get_links(page_name):
if link not in trail:
if h.is_page(link):
get_pathway(link, end_pg, max_len - 1, trail[:], paths) | 3b8effcb1f5295a854d32cc6438093f5ba7c1fa4 | 3,649,640 |
def clip_to_ndc(point_clip_space, name="clip_to_ndc"):
"""Transforms points from clip to normalized device coordinates (ndc).
Note:
In the following, A1 to An are optional batch dimensions.
Args:
point_clip_space: A tensor of shape `[A1, ..., An, 4]`, where the last
dimension represents points in clip space.
name: A name for this op. Defaults to "clip_to_ndc".
Raises:
ValueError: If `point_clip_space` is not of size 4 in its last dimension.
Returns:
A tensor of shape `[A1, ..., An, 3]`, containing `point_clip_space` in
normalized device coordinates.
"""
with tf.name_scope(name):
point_clip_space = tf.convert_to_tensor(value=point_clip_space)
shape.check_static(
tensor=point_clip_space,
tensor_name="point_clip_space",
has_dim_equals=(-1, 4))
w = point_clip_space[..., -1:]
return point_clip_space[..., :3] / w | ee49d891da941b6da48797035c5b976f5d10762d | 3,649,641 |
def read_number(dtype, prompt='', floor=None, ceil=None, repeat=False):
""" Reads a number within specified bounds. """
while True:
try:
result = dtype(input(prompt))
if floor is not None and result < floor:
raise ValueError(f'Number must be no less than {floor}.')
if ceil is not None and result > ceil:
raise ValueError(f'Number must be no greater than {ceil}.')
except ValueError as e:
print(e)
result = None
if result is not None or not repeat:
return result | a528b1f5912ba4bab0b87c87004311778eaa8187 | 3,649,643 |
from typing import Optional
def dem_adjust(
da_elevtn: xr.DataArray,
da_flwdir: xr.DataArray,
da_rivmsk: Optional[xr.DataArray] = None,
flwdir: Optional[pyflwdir.FlwdirRaster] = None,
connectivity: int = 4,
river_d8: bool = False,
logger=logger,
) -> xr.DataArray:
"""Returns hydrologically conditioned elevation.
The elevation is conditioned to D4 (`connectivity=4`) or D8 (`connectivity=8`)
flow directions based on the algorithm described in Yamazaki et al. [1]_
The method assumes the original flow directions are in D8. Therefore, if
`connectivity=4`, an intermediate D4 conditioned elevation raster is derived
first, based on which new D4 flow directions are obtained used to condition the
original elevation.
Parameters
----------
da_elevtn, da_flwdir, da_rivmsk : xr.DataArray
elevation [m+REF]
D8 flow directions [-]
binary river mask [-], optional
flwdir : pyflwdir.FlwdirRaster, optional
D8 flow direction raster object. If None it is derived on the fly from `da_flwdir`.
connectivity: {4, 8}
D4 or D8 flow connectivity.
river_d8 : bool
If True and `connectivity==4`, additionally condition river cells to D8.
Requires `da_rivmsk`.
Returns
-------
xr.Dataset
Dataset with hydrologically adjusted elevation ('elevtn') [m+REF]
References
----------
.. [1] Yamazaki et al. (2012). Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. Journal of Hydrology, 436-437, 81โ91. https://doi.org/10.1016/j.jhydrol.2012.02.045
See Also
--------
pyflwdir.FlwdirRaster.dem_adjust
pyflwdir.FlwdirRaster.dem_dig_d4
"""
# get flow directions for entire domain and for rivers
if flwdir is None:
flwdir = flwdir_from_da(da_flwdir, mask=False)
if connectivity == 4 and river_d8 and da_rivmsk is None:
raise ValueError('Provide "da_rivmsk" in combination with "river_d8"')
elevtn = da_elevtn.values
nodata = da_elevtn.raster.nodata
logger.info(f"Condition elevation to D{connectivity} flow directions.")
# get D8 conditioned elevation
elevtn = flwdir.dem_adjust(elevtn)
# get D4 conditioned elevation (based on D8 conditioned!)
if connectivity == 4:
rivmsk = da_rivmsk.values == 1 if da_rivmsk is not None else None
# derive D4 flow directions with forced pits at original locations
d4 = pyflwdir.dem.fill_depressions(
elevtn=flwdir.dem_dig_d4(elevtn, rivmsk=rivmsk, nodata=nodata),
nodata=nodata,
connectivity=connectivity,
idxs_pit=flwdir.idxs_pit,
)[1]
# condition the DEM to the new D4 flow dirs
flwdir_d4 = pyflwdir.from_array(
d4, ftype="d8", transform=flwdir.transform, latlon=flwdir.latlon
)
elevtn = flwdir_d4.dem_adjust(elevtn)
# condition river cells to D8
if river_d8:
flwdir_river = flwdir_from_da(da_flwdir, mask=rivmsk)
elevtn = flwdir_river.dem_adjust(elevtn)
# assert np.all((elv2 - flwdir_d4.downstream(elv2))>=0)
# save to dataarray
da_out = xr.DataArray(
data=elevtn,
coords=da_elevtn.raster.coords,
dims=da_elevtn.raster.dims,
)
da_out.raster.set_nodata(nodata)
da_out.raster.set_crs(da_elevtn.raster.crs)
return da_out | d59f5bae1df44cc84c4eb98d8dd14ca923dc4809 | 3,649,644 |
from copy import copy
from numpy import zeros, unique
from itertools import product
def trainModel(label,bestModel,obs,trainSet,testSet,modelgrid,cv,optMetric='auc'):
""" Train a message classification model """
pred = zeros(len(obs))
fullpred = zeros((len(obs),len(unique(obs))))
model = copy(bestModel.model)
#find the best model via tuning grid
for tune in [dict(list(zip(modelgrid, v))) for v in product(*list(modelgrid.values()))]:
for k in list(tune.keys()):
setattr(model,k,tune[k])
i = 0
for tr, vl in cv:
model.fit(trainSet.ix[tr].values,obs[tr])
pred[vl] = model.predict_proba(trainSet.ix[vl].values)[:,1]
fullpred[vl,:] = model.predict_proba(trainSet.ix[vl].values)
i += 1
bestModel.updateModel(pred,fullpred,obs,model,trainSet.columns.values,tune,optMetric=optMetric)
#re-train with all training data
bestModel.model.fit(trainSet.values,obs)
print(bestModel)
return {label: {'pred': pred, 'test_pred':bestModel.model.predict_proba(testSet)[:,1]}} | fdf60d23894bfd997cdf7fa82cb59257ad7b2954 | 3,649,645 |
def vm_deploy(vm, force_stop=False):
"""
Internal API call used for finishing VM deploy;
Actually cleaning the json and starting the VM.
"""
if force_stop: # VM is running without OS -> stop
cmd = 'vmadm stop %s -F >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid)
else: # VM is stopped and deployed -> start
cmd = 'vmadm start %s >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid)
msg = 'Deploy server'
lock = 'vmadm deploy ' + vm.uuid
meta = {
'output': {
'returncode': 'returncode',
'stderr': 'message',
'stdout': 'json'
},
'replace_stderr': ((vm.uuid, vm.hostname),),
'msg': msg, 'vm_uuid': vm.uuid
}
callback = ('api.vm.base.tasks.vm_deploy_cb', {'vm_uuid': vm.uuid})
return execute(ERIGONES_TASK_USER, None, cmd, meta=meta, lock=lock, callback=callback,
queue=vm.node.fast_queue, nolog=True, ping_worker=False, check_user_tasks=False) | 324dffa2a181d4b796a8f263eeb57d1452826c78 | 3,649,646 |
def get_monitor_value(image, monitor_key):
"""Return the monitor value from an image using an header key.
:param fabio.fabioimage.FabioImage image: Image containing the header
:param str monitor_key: Key containing the monitor
:return: returns the monitor else returns 1.0
:rtype: float
"""
if monitor_key is None or monitor_key == "":
return 1.0
try:
monitor = header_utils.get_monitor_value(image, monitor_key)
return monitor
except header_utils.MonitorNotFound:
logger.warning("Monitor %s not found. No normalization applied.", monitor_key)
return 1.0
except Exception as e:
logger.warning("Fail to load monitor. No normalization applied. %s", str(e))
return 1.0 | cf74ab608837b6f5732a70d997afa1fe424b2ee1 | 3,649,649 |
def default_thread_index (value, threads):
"""
find index in threads array value
:param value:
:param threads:
:return:
"""
value_index = threads.index(value)
return value_index | 7be2efb6579f2880f53dac11705ba6a068c2d92d | 3,649,651 |
import requests
def new_things(url):
"""Attempts to register new things on the directory
Takes 1 argument:
url - URL containing thing descriptions to register
"""
response = requests.post('{}/things/register_url'.format(settings.THING_DIRECTORY_HOST), headers={
'Authorization': settings.THING_DIRECTORY_KEY,
}, json={'url':url})
response.raise_for_status()
return response.json()['uuids'] | 0336d094e9581f3382dd33ac8a9bf8fd43754d82 | 3,649,652 |
def isID(value):
"""Checks if value looks like a Ulysses ID; i.e. is 22 char long.
Not an exact science; but good enougth to prevent most mistakes.
"""
return len(value) == 22 | 527db9446adc2b88c2117bd35c74474c3e7bad24 | 3,649,653 |
def tool_on_path(tool: str) -> str:
"""
Helper function to determine if a given tool is on the user's PATH variable. Wraps around
runspv.tool_on_path().
:param tool: the tool's filename to look for.
:return: the path of the tool, else ToolNotOnPathError if the tool isn't on the PATH.
"""
return runspv.tool_on_path(tool) | 52963a818bcea59eaaec1d20000d3a4a1296ee26 | 3,649,654 |
def DefineDecode(i, n, invert=False):
"""
Decode the n-bit number i.
@return: 1 if the n-bit input equals i
"""
class _Decode(Circuit):
name = 'Decode_{}_{}'.format(i, n)
IO = ['I', In(Bits[ n ]), 'O', Out(Bit)]
@classmethod
def definition(io):
if n <= 8:
j = 1 << i
if invert:
m = 1 << n
mask = (1 << m) - 1
j = mask & (~j)
decode = ROMN(j, n)
else:
nluts = (n + 3) // 4
data = nluts * [0]
for j in range(nluts):
data[j] = (i >> 4*j) & 0xf # 4-bit pieces
decode = FlatHalfCascade(n, 4, data, ZERO, 1)
wire(io.I, decode.I)
wire(decode.O, io.O)
return _Decode | 9be19b191a1048dffd8a6fe82caabdcb1dd33f42 | 3,649,655 |
def absent(name, database, **client_args):
"""
Ensure that given continuous query is absent.
name
Name of the continuous query to remove.
database
Name of the database that the continuous query was defined on.
"""
ret = {
"name": name,
"changes": {},
"result": True,
"comment": "continuous query {0} is not present".format(name),
}
if __salt__["influxdb.continuous_query_exists"](database, name, **client_args):
if __opts__["test"]:
ret["result"] = None
ret["comment"] = (
"continuous query {0} is present and needs to be removed"
).format(name)
return ret
if __salt__["influxdb.drop_continuous_query"](database, name, **client_args):
ret["comment"] = "continuous query {0} has been removed".format(name)
ret["changes"][name] = "Absent"
return ret
else:
ret["comment"] = "Failed to remove continuous query {0}".format(name)
ret["result"] = False
return ret
return ret | f280dad71275cd576edbefac9376463a2ab91fc7 | 3,649,656 |
def get_ads(client, customer_id, new_ad_resource_names):
"""Retrieves a google.ads.google_ads.v4.types.AdGroupAd instance.
Args:
client: A google.ads.google_ads.client.GoogleAdsClient instanc e.
customer_id: (str) Customer ID associated with the account.
new_ad_resource_names: (str) Resource name associated with the Ad group.
Returns:
An instance of the google.ads.google_ads.v4.types.AdGroupAd message
class of the newly created ad group ad.
"""
def formatter(given_string):
"""This helper function is used to assign ' ' to names of resources
so that this formatted string can be used within an IN clause.
Args:
given_string: (str) The string to be formatted.
"""
results = []
for i in given_string:
results.append(repr(i))
return ','.join(results)
resouce_names = formatter(new_ad_resource_names)
ga_service = client.get_service('GoogleAdsService', version='v4')
query = ('SELECT ad_group_ad.ad.id, '
'ad_group_ad.ad.expanded_text_ad.headline_part1, '
'ad_group_ad.ad.expanded_text_ad.headline_part2, '
'ad_group_ad.status, ad_group_ad.ad.final_urls, '
'ad_group_ad.resource_name '
'FROM ad_group_ad '
'WHERE ad_group_ad.resource_name in ({}) '.
format(resouce_names))
response = ga_service.search(customer_id, query, PAGE_SIZE)
response =iter(response)
ads = []
while response:
try:
current_row = next(response)
ads.append(current_row.ad_group_ad)
except StopIteration:
break
return ads | 3e1bc99901490c53c66418a63238cf76de282896 | 3,649,657 |
def corrfact_vapor_rosolem(h, h_ref=None, const=0.0054):
"""Correction factor for vapor correction from absolute humidity (g/m3).
The equation was suggested by Rosolem et al. (2013).
If no reference value for absolute humidity ``h_ref`` is provided,
the average value will be used.
Parameters
----------
h : float or array of floats
Absolute humidity (g / m3)
h_ref : float
Reference value for absolute humidity
const : float
Empirical constant, defaults to 0.0054
Returns
-------
output : float or array of floats
Correction factor for water vapor effect (dimensionless)
"""
if h_ref is None:
h_ref = np.mean(h)
return 1 + const * (h - h_ref) | 6add20bf118e85e77f245776101169efb9ba4eac | 3,649,658 |
def sine_ease_out(p):
"""Modeled after quarter-cycle of sine wave (different phase)"""
return sin(p * tau) | 58a78ad44e04df42f0533b6a94e51d04398407a9 | 3,649,659 |
def _extract_codes_from_element_text(dataset, parent_el_xpath, condition=None): # pylint: disable=invalid-name
"""Extract codes for checking from a Dataset. The codes are being extracted from element text.
Args:
dataset (iati.data.Dataset): The Dataset to check Codelist values within.
parent_el_xpath (str): An XPath to locate the element(s) with the attribute of interest.
condition (str): An optional XPath expression to limit the scope of what is extracted.
Returns:
list of tuple: A tuple in the format: `(str, int)` - The `str` is a matching code from within the Dataset; The `int` is the sourceline at which the parent element is located.
"""
# include the condition
if condition:
parent_el_xpath = parent_el_xpath + '[' + condition + ']'
parents_to_check = dataset.xml_tree.xpath(parent_el_xpath)
located_codes = list()
for parent in parents_to_check:
located_codes.append((parent.text, parent.sourceline))
return located_codes | 45e4ec2a61dc38066ad9a71d41e63a48c6ccde23 | 3,649,660 |
def rotate_im(img, angle, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None):
"""Rotate the image.
Rotate the image such that the rotated image is enclosed inside the tightest
rectangle. The area not occupied by the pixels of the original image is colored
black.
Parameters
----------
image : numpy.ndarray
numpy image
angle : float
angle by which the image is to be rotated
Returns
-------
numpy.ndarray
Rotated Image
"""
# grab the dimensions of the image and then determine the
# centre
(h, w) = img.shape[:2]
(cX, cY) = (w // 2, h // 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
warp_fn = _maybe_process_in_chunks(
cv2.warpAffine, M=M, dsize=(nW, nH), flags=interpolation, borderMode=border_mode, borderValue=value
)
return warp_fn(img) | 40ab5d9761bdb2044fe99af4d5a51187edd34327 | 3,649,661 |
def list_modules(curdir=CURDIR, pattern=MOD_FILENAME_RE):
"""List names from {ok,ng}*.py.
"""
return sorted(
m.name.replace('.py', '')
for m in curdir.glob('*.py') if pattern.match(m.name)
) | 249b276ec5f42534a4ad162c02110bcf1f9cadf0 | 3,649,662 |
def encode_set_validator_config_and_reconfigure_script(
validator_account: AccountAddress,
consensus_pubkey: bytes,
validator_network_addresses: bytes,
fullnode_network_addresses: bytes,
) -> Script:
"""# Summary
Updates a validator's configuration, and triggers a reconfiguration of the system to update the
validator set with this new validator configuration.
Can only be successfully sent by a
Validator Operator account that is already registered with a validator.
# Technical Description
This updates the fields with corresponding names held in the `ValidatorConfig::ValidatorConfig`
config resource held under `validator_account`. It then emits a `DiemConfig::NewEpochEvent` to
trigger a reconfiguration of the system. This reconfiguration will update the validator set
on-chain with the updated `ValidatorConfig::ValidatorConfig`.
# Parameters
| Name | Type | Description |
| ------ | ------ | ------------- |
| `validator_operator_account` | `&signer` | Signer reference of the sending account. Must be the registered validator operator for the validator at `validator_address`. |
| `validator_account` | `address` | The address of the validator's `ValidatorConfig::ValidatorConfig` resource being updated. |
| `consensus_pubkey` | `vector<u8>` | New Ed25519 public key to be used in the updated `ValidatorConfig::ValidatorConfig`. |
| `validator_network_addresses` | `vector<u8>` | New set of `validator_network_addresses` to be used in the updated `ValidatorConfig::ValidatorConfig`. |
| `fullnode_network_addresses` | `vector<u8>` | New set of `fullnode_network_addresses` to be used in the updated `ValidatorConfig::ValidatorConfig`. |
# Common Abort Conditions
| Error Category | Error Reason | Description |
| ---------------- | -------------- | ------------- |
| `Errors::NOT_PUBLISHED` | `ValidatorConfig::EVALIDATOR_CONFIG` | `validator_address` does not have a `ValidatorConfig::ValidatorConfig` resource published under it. |
| `Errors::REQUIRES_ROLE` | `Roles::EVALIDATOR_OPERATOR` | `validator_operator_account` does not have a Validator Operator role. |
| `Errors::INVALID_ARGUMENT` | `ValidatorConfig::EINVALID_TRANSACTION_SENDER` | `validator_operator_account` is not the registered operator for the validator at `validator_address`. |
| `Errors::INVALID_ARGUMENT` | `ValidatorConfig::EINVALID_CONSENSUS_KEY` | `consensus_pubkey` is not a valid ed25519 public key. |
| `Errors::INVALID_STATE` | `DiemConfig::EINVALID_BLOCK_TIME` | An invalid time value was encountered in reconfiguration. Unlikely to occur. |
# Related Scripts
* `Script::create_validator_account`
* `Script::create_validator_operator_account`
* `Script::add_validator_and_reconfigure`
* `Script::remove_validator_and_reconfigure`
* `Script::set_validator_operator`
* `Script::set_validator_operator_with_nonce_admin`
* `Script::register_validator_config`
"""
return Script(
code=SET_VALIDATOR_CONFIG_AND_RECONFIGURE_CODE,
ty_args=[],
args=[
TransactionArgument__Address(value=validator_account),
TransactionArgument__U8Vector(value=consensus_pubkey),
TransactionArgument__U8Vector(value=validator_network_addresses),
TransactionArgument__U8Vector(value=fullnode_network_addresses),
],
) | 8b5e5d259750eecf3cea78e9abba82300baa2626 | 3,649,663 |
def _do_ecf_reference_data_import(
import_method,
widget,
logwidget=None,
specification_items=None,
ecfdate=None,
datecontrol=None,
):
"""Import a new ECF club file.
widget - the manager object for the ecf data import tab
"""
ecffile = widget.datagrid.get_data_source().dbhome
# The commented code fails if tkinter is compiled without --enable-threads
# as in OpenBSD 5.7 i386 packages. The standard build from FreeBSD ports
# until early 2015 at least, when this change was introduced, is compiled
# with --enable-threads so the commented code worked. Not sure if the
# change in compiler on FreeBSD from gcc to clang made a difference. The
# Microsoft Windows' Pythons seem to be compiled with --enable-threads
# because the commented code works in that environment. The situation on
# OS X, and any GNU-Linux distribution, is not known.
# Comparison with the validate_and_copy_ecf_ogd_players_post_2006_rules()
# method in the sibling module sqlite3ecfogddataimport, which worked on
# OpenBSD 5.7 as it stood, highlighted the changes needed.
# ecfdate = widget.get_ecf_date()
if not ecffile:
return False
if not ecfdate:
return False
results = widget.get_appsys().get_results_database()
if not results:
return False
results.do_database_task(
import_method,
logwidget=logwidget,
taskmethodargs=dict(
ecffile=ecffile,
ecfdate=ecfdate,
parent=widget.get_widget(),
# datecontrol=widget.ecfdatecontrol.get(),
datecontrol=datecontrol, # See --enable-threads comment just above.
),
use_specification_items=specification_items,
)
return True | 593b1ac77688c92c9fcd3ea8fafb3f5089849293 | 3,649,664 |
import ast
import inspect
def ast_operators(node):
"""Return a set of all operators and calls in the given AST, or return an error if any are invalid."""
if isinstance(node, (ast.Name, ast.Constant)):
return set()
elif isinstance(node, ast.BinOp):
return {type(node.op)} | ast_operators(node.left) | ast_operators(node.right)
elif isinstance(node, ast.UnaryOp):
return {type(node.op)} | ast_operators(node.operand)
elif isinstance(node, ast.Call):
if node.func.id not in METRIC_OPS:
raise ValueError(f"Unknown fn `{node.func.id}` in metric equation.")
# Make sure the number of args matches the fn signature
fn_argspec = inspect.getfullargspec(METRIC_OPS[node.func.id])
if (not node.args or
(fn_argspec.varargs is None and fn_argspec.varkw is None
and len(node.args) != len(fn_argspec.args))):
raise ValueError(f"Unexpected number of args to {node.func.id}")
return {node.func.id}.union(*(ast_operators(arg) for arg in node.args))
else:
raise TypeError(node) | ce5c69e228fbab682cd41330a058b6f16b8d5d1a | 3,649,665 |
def calibrate_clock(out, tolerance=0.002, dcor=False):
"""\
currently for F2xx only:
recalculate the clock calibration values and write them to the flash.
"""
device = get_msp430_type() >> 8
variables = {}
if device == 0xf2:
# first read the segment form the device, so that only the calibration values
# are updated. any other data in SegmentA is not changed.
segment_a = memory.Memory()
segment_a.append(memory.Segment(0x10c0, jtag._parjtag.memread(0x10c0, 64)))
# get the settings for all the frequencies
for frequency in calibvalues_memory_map:
measured_frequency, dco, bcs1 = clock.setDCO(
frequency * (1 - tolerance),
frequency * (1 + tolerance),
maxrsel=15,
dcor=dcor
)
variables['f%dMHz_dcoctl' % (frequency / 1e6)] = TYPE_8BIT, dco
variables['f%dMHz_bcsctl1' % (frequency / 1e6)] = TYPE_8BIT, bcs1
out.write('BCS settings for %s: DCOCTL=0x%02x BCSCTL1=0x%02x\n' % (
nice_frequency(measured_frequency), dco, bcs1)
)
segment_a.setMem(calibvalues_memory_map[frequency]['DCO'], chr(dco))
segment_a.setMem(calibvalues_memory_map[frequency]['BCS1'], chr(bcs1))
# erase segment and write new values
jtag._parjtag.memerase(jtag.ERASE_SEGMENT, segment_a[0].startaddress)
jtag._parjtag.memwrite(segment_a[0].startaddress, segment_a[0].data)
else:
raise NotImplementedError("--calibrate is not supported on %Xxx" % device)
return variables | 6ad9940a0b43aff54317ff0b054a5a8e84fa5f73 | 3,649,666 |
def get_rejection_listings(username):
"""
Get Rejection Listings for a user
Args:
username (str): username for user
"""
activities = models.ListingActivity.objects.for_user(username).filter(
action=models.ListingActivity.REJECTED)
return activities | 47f7078f193de651f282d1823900cd876bf9fd93 | 3,649,667 |
def quadratic_weighted_kappa(y_true, y_pred):
"""
QWK (Quadratic Weighted Kappa) Score
Args:
y_true:
target array.
y_pred:
predict array. must be a discrete format.
Returns:
QWK score
"""
return cohen_kappa_score(y_true, y_pred, weights='quadratic') | fe3208d58cfbed7fdc51ee6069bb4d72584ea6d7 | 3,649,668 |
def statistika():
"""Posodobi podatke in preusmeri na statistika.html"""
check_user_id()
data_manager.load_data_from_file()
data_manager.data_for_stats()
return bottle.template("statistika.html", data_manager=data_manager) | afc72610e4ca245089b131d06dfb5ed8a172615c | 3,649,669 |
def decrement(x):
"""Given a number x, returns x - 1 unless that would be less than
zero, in which case returns 0."""
x -= 1
if x < 0:
return 0
else:
return x | 56b95324c147a163d3bdd0e9f65782095b0a4def | 3,649,670 |
def get_dagmaf(maf: msa.Maf) -> DAGMaf.DAGMaf:
"""Converts MAF to DagMaf.
Args:
maf: MAF to be converted.
Returns:
DagMaf built from the MAF.
"""
sorted_blocks = sort_mafblocks(maf.filecontent)
dagmafnodes = [
DAGMaf.DAGMafNode(block_id=b.id,
alignment=b.alignment,
orient=b.orient,
order=b.order(),
out_edges=b.out_edges)
for b in sorted_blocks
]
return DAGMaf.DAGMaf(dagmafnodes) | 40fd06a9429874f1ca7188f2ff185c4dd8b64e01 | 3,649,671 |
def optdat10(area,lpdva,ndvab,nglb):
"""Fornece dados para a otimizacao"""
# Tipo de funcao objetivo: tpobj==1 ---Peso
# tpobj==2 ---Energia
# tpobj==3 ---Mรกxima tensรฃo
# tpobj==4 ---Mรกximo deslocamento
#
tpobj = 1
#
# Tipo de funcao restriรงรฃo: tpres==1 ---Peso
# tpres==2 ---Tensรฃo
# tpres==3 ---Tensรฃo e deslocamento
# tpres==4 ---Deslocamento
# tpres==5 ---Energia
tpres = 2
#
# Entrar com os valores limites das variรกveis de projeto
# vlb---limite inferiores
# vub---limite superiores
# x0 --- valor inicial
#
xpdva = np.zeros(ndvab)
for idvab in range(ndvab):
iel = lpdva[idvab]
xpdva[idvab] = area[iel]
x0 = xpdva
vlb = 0.1 * np.ones(ndvab)
vlb = 0.1 * np.ones(ndvab)
vub = 10 * np.ones(ndvab)
#
# Entrar com os valores limites das restriรงรตes
# clb---limites inferiores
# cub---limites superiores
cones = np.ones(len(area)) # relacionado ao nยบ de elementos
cones2 = np.ones(nglb) # relacionado ao nยบ de graus de liberdade
clb1 = -250 * cones
cub1 = 250 * cones
# clb1 = -20*cones
# cub1 = 20*cones
# dlb1 = -0.4*cones2
# dub1 = 0.4*cones2
clbv = 1.5e+06 - 2.2204e-16 # 0
cubv = 1.5e+06
clbd = -1 * (10 ** -3) * cones2
cubd = 1 * (10 ** -3) * cones2
elbv = 2e-2
eubv = 2e-2
if tpres == 1:
# VOLUME
cub = cubv
clb = clbv
elif tpres == 2:
# TENSOES
clb = clb1
cub = cub1
elif tpres == 3:
# TENSOES e DESLOCAMENTOS
clb = [clb1, clbd]
cub = [cub1, cubd]
elif tpres == 4:
# DESLOCAMENTOS
clb = clbd
cub = cubd
else:
# ENERGIA
clb = elbv
cub = eubv
dadosoptdat10= [tpobj,tpres,vlb,vub,x0,clb,cub]
return dadosoptdat10 | 064813cb2e66adfed6cb5e694614b88343a7613c | 3,649,672 |
def rotvec2quat(vec):
"""
A rotation vector is a 3 dimensional vector which is
co-directional to the axis of rotation and whose
norm gives the angle of rotation (in radians).
Args:
vec (list or np.ndarray): a rotational vector. Its norm
represents the angle of rotation.
Returns:
np.ndarray: quaternion [x,y,z,w] (shape: :math:`[4,]`).
"""
r = R.from_rotvec(vec)
return r.as_quat() | a19b7b67e9cd5877cc5045887d071e069892e0a6 | 3,649,673 |
def generate_pop(pop_size, length):
"""
ๅๅงๅ็ง็พค
:param pop_size: ็ง็พคๅฎน้
:param length: ็ผ็ ้ฟๅบฆ
:return bin_population: ไบ่ฟๅถ็ผ็ ็ง็พค
"""
decim_population = np.random.randint(0, 2**length-1, pop_size)
print(decim_population)
bin_population = [('{:0%sb}'%length).format(x) for x in decim_population]
return bin_population | d1248fe59161d2a75eaf08ffe2b180537c2d1af5 | 3,649,674 |
def CountClusterSizes(clusterLabels):
""" This function takes the labels produced by spectral clustering (or
other clustering algorithm) and counts the members in each cluster.
This is primarily to see the distribution of cluster sizes over all
windows, particularly to see if there singleton clusters or a significant
number of clusters with a small number of members.
Parameters
---------
clusterLabels: numpy array of int (clustered customers) - the cluster
label of each customer
Returns
-------
clusterCounts: numpy array of int (0,k) - the number of customers
in each cluster
"""
currentK = len(np.unique(clusterLabels))
clusterCounts = np.zeros((1,currentK),dtype=int)
for clustCtr in range(0,currentK):
indices = np.where(clusterLabels==clustCtr)[0]
clusterCounts[0,clustCtr] = len(indices)
return clusterCounts | 25bf78a83e55b72c7a33546450655efe7ee84874 | 3,649,676 |
def solver_problem1(digits_list):
"""input digits and return numbers that 1, 4, 7, 8 occurs"""
cnt = 0
for digits in digits_list:
for d in digits:
if len(d) in [2, 3, 4, 7]:
cnt += 1
return cnt | d1946d00d368ad498c9bb0a8562ec0ea76d26449 | 3,649,677 |
def spam_dotprods(rhoVecs, povms):
"""SPAM dot products (concatenates POVMS)"""
nEVecs = sum(len(povm) for povm in povms)
ret = _np.empty((len(rhoVecs), nEVecs), 'd')
for i, rhoVec in enumerate(rhoVecs):
j = 0
for povm in povms:
for EVec in povm.values():
ret[i, j] = _np.vdot(EVec.todense(), rhoVec.todense()); j += 1
# todense() gives a 1D array, so no need to transpose EVec
return ret | 95adc6ea8e1d33899a7dc96ba99589ef9bffb7fe | 3,649,678 |
def get_chi_atom_indices():
"""Returns atom indices needed to compute chi angles for all residue types.
Returns:
A tensor of shape [residue_types=21, chis=4, atoms=4]. The residue types are
in the order specified in rc.restypes + unknown residue type
at the end. For chi angles which are not defined on the residue, the
positions indices are by default set to 0.
"""
chi_atom_indices = []
for residue_name in rc.restypes:
residue_name = rc.restype_1to3[residue_name]
residue_chi_angles = rc.chi_angles_atoms[residue_name]
atom_indices = []
for chi_angle in residue_chi_angles:
atom_indices.append([rc.atom_order[atom] for atom in chi_angle])
for _ in range(4 - len(atom_indices)):
atom_indices.append(
[0, 0, 0, 0]
) # For chi angles not defined on the AA.
chi_atom_indices.append(atom_indices)
chi_atom_indices.append([[0, 0, 0, 0]] * 4) # For UNKNOWN residue.
return chi_atom_indices | 5ac6f2208e2819b8e0d04329cbfb94cb5dcd26ba | 3,649,680 |
def get_all_device_stats():
"""Obtain and return statistics for all attached devices."""
devices = get_devices()
stats = {}
for serial in devices:
model, device_stats = get_device_stats(serial)
if not stats.get(model):
stats[model] = {}
stats[model][serial] = device_stats
return stats | 9f2a50c4f6008120bc9527260f501f7e261dd19f | 3,649,681 |
def plot_coefs(coefficients, nclasses):
"""
Plot the coefficients for each label
coefficients: output from clf.coef_
nclasses: total number of possible classes
"""
scale = np.max(np.abs(coefficients))
p = plt.figure(figsize=(25, 5))
for i in range(nclasses):
p = plt.subplot(1, nclasses, i + 1)
p = plt.imshow(coefficients[i].reshape(28, 28),
cmap=plt.cm.RdBu, vmin=-scale, vmax=scale)
p = plt.axis('off')
p = plt.title('Class %i' % i)
return None | 356c6c4bb96b08a370b8c492275e638b059594e2 | 3,649,682 |
from datetime import datetime
def get_description():
""" Return a dict describing how to call this plotter """
desc = dict()
desc['data'] = True
desc['description'] = """This plot shows the number of days with a high
temperature at or above a given threshold. You can optionally generate
this plot for the year to date period.
"""
today = datetime.date.today()
desc['arguments'] = [
dict(type='station', name='station', default='IA2203',
label='Select Station:', network='IACLIMATE'),
dict(type="year", name="year", default=today.year,
label="Year to Compare:"),
dict(type='select', options=PDICT, default='full',
label='Day Period Limit:', name='limit'),
]
return desc | 479d98e9ab19dcc03332c1a95ccc0624cdcfe24d | 3,649,684 |
def calc_cost_of_buying(count, price):
"""ๆ ชใ่ฒทใใฎใซๅฟ
่ฆใชใณในใใจๆๆฐๆใ่จ็ฎ
"""
subtotal = int(count * price)
fee = calc_fee(subtotal)
return subtotal + fee, fee | 391909bbff35c6eb7d68c965e3f36317e4164b1a | 3,649,685 |
import signal
def update_lr(it_lr, alg, test_losses, lr_info=None):
"""Update learning rate according to an algorithm."""
if lr_info is None:
lr_info = {}
if alg == 'seung':
threshold = 10
if 'change' not in lr_info.keys():
lr_info['change'] = 0
if lr_info['change'] >= 4:
return it_lr, lr_info
# Smooth test_losses then check to see if they are still decreasing
if len(test_losses) > threshold:
smooth_test = signal.savgol_filter(np.asarray(test_losses), 3, 2)
check_test = np.all(np.diff(smooth_test)[-threshold:] < 0)
if check_test:
it_lr = it_lr / 2.
lr_info['change'] += 1
return it_lr, lr_info
elif alg is None or alg == '' or alg == 'none':
return it_lr, lr_info
else:
raise NotImplementedError('No routine for: %s' % alg) | de6ef7d700a9c4b549b6d500f6737c84dc032c95 | 3,649,687 |
from functools import reduce
def factors(n):
"""
return set of divisors of a number
"""
step = 2 if n%2 else 1
return set(reduce(list.__add__,
([i, n//i] for i in range(1, int(sqrt(n))+1, step) if n % i == 0))) | 687608f5397181892aa338c96ee299f91d7b5431 | 3,649,689 |
import decimal
def round_decimal(x, digits=0):
"""This function returns the round up float.
Parameters
----------
x : a float
digits : decimal point
Returns
----------
Rounded up float
"""
x = decimal.Decimal(str(x))
if digits == 0:
return int(x.quantize(decimal.Decimal("1"), rounding='ROUND_HALF_UP'))
if digits > 1:
string = '1e' + str(-1 * digits)
else:
string = '1e' + str(-1 * digits)
return float(x.quantize(decimal.Decimal(string), rounding='ROUND_HALF_UP')) | 8670fa1e9063376e012ebbc71df0a19c6205ea9c | 3,649,690 |
def basic_gn_stem(model, data, **kwargs):
"""Add a basic ResNet stem (using GN)"""
dim = 64
p = model.ConvGN(
data, 'conv1', 3, dim, 7, group_gn=get_group_gn(dim), pad=3, stride=2
)
p = model.Relu(p, p)
p = model.MaxPool(p, 'pool1', kernel=3, pad=1, stride=2)
return p, dim | 7cd1c1e0ff58431fc89acdec0f6c1d5f6fa9daa8 | 3,649,691 |
def log_scale(start,end,num):
"""Simple wrapper to generate list of numbers equally spaced in logspace
Parameters
----------
start: floar
Inital number
end: Float
Final number
num: Float
Number of number in the list
Returns
-------
list: 1d array
List of number spanning start to end, equally space in log space
"""
return np.logspace(np.log10(start), np.log10(end), num = num) | 32d3976cb9cbcceb4cef9af15da373ea84e4d0c7 | 3,649,692 |
def measure_xtran_params(neutral_point, transformation):
"""
Description: Assume that the transformation from robot coord to camera coord is: RotX -> RotY -> RotZ -> Tranl
In this case: RotX = 180, RotY = 0; RotZ = -90; Tranl: unknown
But we know coords of a determined neutral point in 2 coord systems,
hence we can measure Transl from robot centroid to camera centroid.(Step 2)
:param neutral_point : Dict, list of 2 coords of neutral_point in 2 coord systems
:param transformation : Dict, list of 3 rotating transformations
:return: r2c_xtran : Matrix 4x4 floats, transformation from robot coord to camera coord
:return: c2r_xtran : Matrix 4x4 floats, transformation from camera coord to robot coord
# :return: tranl : Matrix 4x4 floats, translation from robot coord to camera coord
"""
# 1: Load coords of the neutral point
neutral_robot = mm2m(coords=np.array(neutral_point['robot_coord'])) # neutral point coord in robot coord system
neutral_camera = mm2m(coords=np.array(neutral_point['camera_coord'])) # neutral point coord in camera coord system
rotx = create_rotx_matrix(theta=-transformation['rotx']) # load transformation matrix of rotation around x
roty = create_roty_matrix(theta=-transformation['roty']) # load transformation matrix of rotation around y
rotz = create_rotz_matrix(theta=-transformation['rotz']) # load transformation matrix of rotation around z
# 2: Find transformation between robot coord centroid and camera coord centroid
rotxyz = np.dot(np.dot(rotz, roty), rotx) # determine transformation matrix after rotate sequently around x, y, z
neutral_robot3 = np.dot(rotxyz, np.append(neutral_robot, 1))[:3] # find coord of neutral point after RotXYZ
Oc_in_3 = neutral_robot3 - neutral_camera # find coord of robot centroid in camera coord system
tranl = create_tranl_matrix(vector=-Oc_in_3)
# 3: Find transformation matrix from robot to camera
# r2c_xtran = np.dot(np.dot(np.dot(tranl, rotz), roty), rotx)
# c2r_xtran = np.linalg.inv(r2c_xtran)
return rotx, roty, rotz, tranl | c2758158d545dbc6c2591f7f64f1df159a0c82db | 3,649,693 |
def getPrefix(routetbl, peer_logical):
""" FUNCTION TO GET THE PREFIX """
for route in routetbl:
if route.via == peer_logical:
return route.name
else:
pass | 2ca32a1fd63d6fcefbcc9ac23e8636c73e88455b | 3,649,694 |
def Logger_log(level, msg):
"""
Logger.log(level, msg)
logs a message to the log.
:param int level: the level to log at.
:param str msg: the message to log.
"""
return _roadrunner.Logger_log(level, msg) | af552b17aaeebef9713efffedcabd75946c961f1 | 3,649,695 |
import typing
def obj_test(**field_tests: typing.Callable[[typing.Any], bool]) -> typing.Callable[[typing.Any], bool]:
"""Return a lambda that tests for dict with string keys and a particular type for each key"""
def test(dat: typing.Any) -> bool:
type_test(dict)(dat)
dom_test = type_test(str)
for dom, rng in dat.items():
dom_test(dom)
if dom not in field_tests:
continue
rng_test = field_tests[dom]
rng_test(rng)
missing = set(field_tests.keys()) - set(dat.keys())
if missing:
raise Exception(f"{dat!r} lacks fields {missing}")
return True
return test | 0439821b634807e178539b0444b69305c15e2e4e | 3,649,696 |
def hist2D(x, y, xbins, ybins, **kwargs):
""" Create a 2 dimensional pdf vias numpy histogram2d"""
H, xedg, yedg = np.histogram2d(x=x, y=y, bins=[xbins,ybins], density=True, **kwargs)
xcen = (xedg[:-1] + xedg[1:]) / 2
ycen = (yedg[:-1] + yedg[1:]) / 2
return xcen, ycen, H | 7f192f4db38e954aad96abc66fa4dc9c190acd82 | 3,649,697 |
def generate_ngram_dict(filename, tuple_length):
"""Generate a dict with ngrams as key following words as value
:param filename: Filename to read from.
:param tuple_length: The length of the ngram keys
:return: Dict of the form {ngram: [next_words], ... }
"""
def file_words(file_pointer):
"""Generator for words in a file"""
for line in file_pointer:
for word in line.split():
yield word
ngrams = defaultdict(lambda: set())
with open(filename, 'r') as fp:
word_list = []
for word in file_words(fp):
if len(word_list) < tuple_length:
word_list.append(word)
continue
ngrams[tuple(word_list)].add(word)
word_list = word_list[1:] + [word]
return {key: tuple(val) for key, val in ngrams.items()} | 45f7eccae852e61f20044448955cade00174998c | 3,649,698 |
def get_end_point(centerline, offset=0):
"""
Get last point(s) of the centerline(s)
Args:
centerline (vtkPolyData): Centerline(s)
offset (int): Number of points from the end point to be selected
Returns:
centerline_end_point (vtkPoint): Point corresponding to end of centerline.
"""
centerline_end_points = []
for i in range(centerline.GetNumberOfLines()):
line = extract_single_line(centerline, i)
centerline_end_points.append(line.GetPoint(line.GetNumberOfPoints() - 1 - offset))
return centerline_end_points | f476e93b55bb046cfb6afb61a2e3ae37a172def3 | 3,649,699 |
def random_train_test_split(df, train_frac, random_seed=None):
"""
This function randomizes the dta based on the seed and then splits the dataframe into train and test sets which are changed to their list of vector representations.
Args:
df (Dataframe): The dataframe which is to be used to generate the train and test split.
train_frac (int): The percentage in the range 0.0 to 1 that should be used for training.
random_seed (int, optional): The seed for randomising. Defaults to None which means a seed is chosen at random.
Returns:
tuple: The list of lists representing the vectors in the train and test data frame respectively,
"""
if random_seed is not None:
df = df.sample(frac=1, random_state=random_seed)
else:
df = df.sample(frac=1)
split_point = int(len(df.index) * train_frac)
train = to_vector(df[:split_point])
test = to_vector(df[split_point:])
return train, test | c3c399792bdc1026d74f1ccc7241bdb327f307d3 | 3,649,700 |
def calc_XY_pixelpositions(calibration_parameters, DATA_Q, nspots, UBmatrix=None,
B0matrix=IDENTITYMATRIX,
offset=0,
pureRotation=0,
labXMAS=0,
verbose=0,
pixelsize=0.079,
dim=(2048, 2048),
kf_direction="Z>0"):
"""
must: len(varying_parameter_values)=len(varying_parameter_indices)
DATA_Q: array of all 3 elements miller indices
nspots: indices of selected spots of DATA_Q
UBmatrix:
WARNING: All miller indices must be entered in DATA_Q, selection is done in xy_from_Quat
returns:
"""
# selecting nspots of DATA_Q
# print "DATA_Q in calc_XY_pixelpositions", DATA_Q
# print "nspots", nspots
# print "len(DATA_Q)", len(DATA_Q)
DATAQ = np.take(DATA_Q, nspots, axis=0)
trQ = np.transpose(DATAQ) # np.array(Hs, Ks,Ls) for further computations
# print "DATAQ in xy_from_Quat", DATAQ
if UBmatrix is not None:
R = UBmatrix
# q = UB * B0 * Q
trQ = np.dot(np.dot(R, B0matrix), trQ)
# results are qx,qy,qz
else:
print("I DON'T LIKE INITROT == None")
print("this must mean that INITROT = Identity ?...")
Qrot = trQ # lattice rotation due to quaternion
Qrotn = np.sqrt(np.sum(Qrot ** 2, axis=0)) # norms of Q vectors
twthe, chi = F2TC.from_qunit_to_twchi(Qrot / Qrotn, labXMAS=labXMAS)
# print "twthe, chi", twthe, chi
if verbose:
print("tDATA_Q", np.transpose(DATA_Q))
print("Qrot", Qrot)
print("Qrotn", Qrotn)
print("Qrot/Qrotn", Qrot / Qrotn)
print("twthe,chi", twthe, chi)
X, Y, theta = F2TC.calc_xycam_from2thetachi(
twthe,
chi,
calibration_parameters,
offset=offset,
verbose=0,
pixelsize=pixelsize,
kf_direction=kf_direction)
return X, Y, theta, R | 243bdb74da8aa429a0748d6d15b6b9d1f20814f3 | 3,649,701 |
def load_csv(path):
"""
Function for importing data from csv. Function uses weka implementation
of CSVLoader.
:param path: input file
:return: weka arff data
"""
args, _sufix = csv_loader_parser()
loader = Loader(classname='weka.core.converters.CSVLoader',
options=args_to_weka_options(args, _sufix))
return loader.load_file(path) | d7555cbe5e54543ca8f66e5f70d4f20b7b72b549 | 3,649,702 |
import json
def from_stream(stream, storage, form):
"""Reverses to_stream, returning data"""
if storage == "pure-plain":
assert isinstance(stream, str)
if isinstance(stream, str):
txt = stream
else:
assert not stream.startswith(MAGIC_SEAMLESS)
assert not stream.startswith(MAGIC_NUMPY)
txt = stream.decode("utf-8")
result = json.loads(txt)
return result
elif storage == "pure-binary":
b = BytesIO(stream)
arr0 = np.load(b, allow_pickle=False)
if arr0.ndim == 0 and arr0.dtype.char != "S":
arr = np.frombuffer(arr0,arr0.dtype)
return arr[0]
else:
return arr0
assert stream.startswith(MAGIC_SEAMLESS)
l = len(MAGIC_SEAMLESS)
s1 = stream[l:l+8]
s2 = stream[l+8:l+16]
len_jsons = np.frombuffer(s1, dtype=np.uint64).tolist()[0]
buffersize = np.frombuffer(s2, dtype=np.uint64).tolist()[0]
assert len(stream) == l + 16 + len_jsons + buffersize
bytes_jsons = stream[l+16:l+16+len_jsons]
jsons = json.loads(bytes_jsons.decode("utf-8"))
bytebuffer = stream[l+16+len_jsons:]
buffer = np.frombuffer(bytebuffer,dtype=np.uint8)
data = _from_stream(
None, storage, form,
jsons, buffer
)
return data | ee8c657162947354b3533b4fe607a11a8a6457ec | 3,649,703 |
def UniformExploration(j, state):
"""Fake player j that always targets all arms."""
return list(np.arange(state.K)) | 146b84ff0d9e28a8316e871b94e5bb82d67de997 | 3,649,705 |
def deduction_limits(data):
"""
Apply limits on itemized deductions
"""
# Split charitable contributions into cash and non-cash using ratio in PUF
cash = 0.82013
non_cash = 1. - cash
data['e19800'] = data['CHARITABLE'] * cash
data['e20100'] = data['CHARITABLE'] * non_cash
# Apply student loan interest deduction limit
data['e03210'] = np.where(data.SLINT > 2500, 2500, data.SLINT)
# Apply IRA contribution limit
deductable_ira = np.where(data.AGE >= 50,
np.where(data.ADJIRA > 6500, 6500, data.ADJIRA),
np.where(data.ADJIRA > 5500, 5500, data.ADJIRA))
data['e03150'] = deductable_ira
return data | ef1a6464e4bb0832a9398ad01e878c8aa4e6a620 | 3,649,706 |
def select_interacting(num_mtx, bin_mtx, labels):
"""
Auxiliary function for fit_msa_mdels.
Used for fitting the models in hard EM; selects observations with a hidden
variable value of 1.
"""
if labels is None:
# This is the case when initializing the models
return num_mtx, bin_mtx, labels
else:
# This is the case inside the EM loop
labels = np.asarray(labels)
idxs = np.where(np.asarray(labels) == 1)[0]
int_num = np.take(num_mtx, idxs, axis=0)
int_bin = np.take(bin_mtx, idxs, axis=0)
weights = np.take(labels, idxs)
return int_num, int_bin, weights | 4c4f6fd7b44d4c388f7ce9ba30e91886548c85ee | 3,649,708 |
def _GenDiscoveryDoc(service_class_names, doc_format,
output_path, hostname=None,
application_path=None):
"""Write discovery documents generated from a cloud service to file.
Args:
service_class_names: A list of fully qualified ProtoRPC service names.
doc_format: The requested format for the discovery doc. (rest|rpc)
output_path: The directory to output the discovery docs to.
hostname: A string hostname which will be used as the default version
hostname. If no hostname is specificied in the @endpoints.api decorator,
this value is the fallback. Defaults to None.
application_path: A string containing the path to the AppEngine app.
Raises:
ServerRequestException: If fetching the generated discovery doc fails.
Returns:
A list of discovery doc filenames.
"""
output_files = []
service_configs = GenApiConfig(service_class_names, hostname=hostname,
application_path=application_path)
for api_name_version, config in service_configs.iteritems():
discovery_doc = _FetchDiscoveryDoc(config, doc_format)
discovery_name = api_name_version + '.discovery'
output_files.append(_WriteFile(output_path, discovery_name, discovery_doc))
return output_files | a135c3805ee5b81e2f0f505b1710531e3db7d1f1 | 3,649,709 |
import dateutil.parser
def nitestr(nite,sep=''):
"""
Convert an ephem.Date object to a nite string.
Parameters:
-----------
nite : ephem.Date object
sep : Output separator
Returns:
--------
nitestr : String representation of the nite
"""
if isinstance(nite,basestring):
nite = dateutil.parser.parse(nite)
nite = ephem.Date(nite)
strtuple = nite.tuple()[:3]
nitestr = '{:4d}{sep}{:02d}{sep}{:02d}'
nitestr = nitestr.format(*strtuple,sep=sep)
return nitestr | 493f34ad484bbd350254c45e38c41a9559a2ce14 | 3,649,710 |
def dump_tuple(tup):
"""
Dump a tuple to a string of fg,bg,attr (optional)
"""
return ','.join(str(i) for i in tup) | ffa4838e2794da9d525b60f4606633f8940480bb | 3,649,712 |
from operator import ne
def generate_fermi_question(cfg, logratio, filter_single_number_lhs=True):
"""
Generates one Fermi question.
Args:
cfg: Expression config
logratio: Log ratio standard deviation (for RHS)
filter_single_number_lhs: Whether to exclude lhs of a single numerical term
round_bound: For numbers greater than this, we express in standard
form and also make sure the rhs is rounded to 3 sig. figures
"""
done = False
rhs_limit = 10**15
while not done:
lhs = generate_expression(cfg)
L = ne.evaluate(lhs['numerical'])
if L > rhs_limit:
continue
if filter_single_number_lhs:
if len(lhs['quantity_ids']) == 0 and lhs['length'] <= 1:
continue
# Always sample the rhs from a
# lognormal with a larger variance the larger the number is
if L == 0:
R = 0
while R == 0: # Loop until we get an R != L
R = int(np.random.normal(0, 1))
else:
R = L
while R == L: # Loop until we hit an R != L
# Now we set the variance of the log RHS so that it
# grows as the quantity gets bigger
sd = 0.1 + log10(abs(L)) * 0.065 + log10(abs(L))**2 * 0.0042
R_raw = sample_lognormal(L, sd)
# Then round to 3 sf
if R_raw != 0:
R = int(round(R_raw, -int(floor(log10(abs(R_raw)))) + 2))
else:
R = 0
assert R != L
try:
R = ne.evaluate(str(R))
done = True
except:
pass
question = lhs['expression'] + ' < ' + "{:,}".format(int(R))
numerical = lhs['numerical'] + ' < ' + str(R)
fermi_question = FermiQuestion(lhs['length'], question, numerical, lhs['estimation_difficulty'],
lhs['quantity_ids'], lhs['categories'], lhs['quantity_strings'])
return fermi_question | 47ebeaa4389f7371fb56687788a696aa7e03426e | 3,649,714 |
def build_dataset(cfg, default_args=None):
"""Build a dataset from config dict.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
default_args (dict | None, optional): Default initialization arguments.
Default: None.
Returns:
Dataset: The constructed dataset.
"""
dataset = build_from_cfg(cfg, DATASETS, default_args)
return dataset | 12b7d9121b9395668b8d260790b980260e1e4ee5 | 3,649,715 |
def Packet_genReadUserTag(errorDetectionMode, buffer, size):
"""Packet_genReadUserTag(vn::protocol::uart::ErrorDetectionMode errorDetectionMode, char * buffer, size_t size) -> size_t"""
return _libvncxx.Packet_genReadUserTag(errorDetectionMode, buffer, size) | 111c391ee3bbef36e1d42666d608c72fb3e6c3cd | 3,649,716 |
def prefetch(tensor_dict, capacity):
"""Creates a prefetch queue for tensors.
Creates a FIFO queue to asynchronously enqueue tensor_dicts and returns a
dequeue op that evaluates to a tensor_dict. This function is useful in
prefetching preprocessed tensors so that the data is readily available for
consumers.
Example input pipeline when you don't need batching:
----------------------------------------------------
key, string_tensor = slim.parallel_reader.parallel_read(...)
tensor_dict = decoder.decode(string_tensor)
tensor_dict = preprocessor.preprocess(tensor_dict, ...)
prefetch_queue = prefetcher.prefetch(tensor_dict, capacity=20)
tensor_dict = prefetch_queue.dequeue()
outputs = Model(tensor_dict)
...
----------------------------------------------------
For input pipelines with batching, refer to core/batcher.py
Args:
tensor_dict: a dictionary of tensors to prefetch.
capacity: the size of the prefetch queue.
Returns:
a FIFO prefetcher queue
"""
names = tensor_dict.keys()
dtypes = [t.dtype for t in tensor_dict.values()]
shapes = [t.get_shape() for t in tensor_dict.values()]
prefetch_queue = tf.PaddingFIFOQueue(capacity, dtypes=dtypes,
shapes=shapes,
names=names,
name='prefetch_queue')
enqueue_op = prefetch_queue.enqueue(tensor_dict)
tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner(
prefetch_queue, [enqueue_op]))
tf.summary.scalar('queue/%s/fraction_of_%d_full' % (prefetch_queue.name,
capacity),
tf.to_float(prefetch_queue.size()) * (1. / capacity))
return prefetch_queue | 44320c6ea24d42b9add4bd3a3677b157ffcd24b8 | 3,649,717 |
def get_total_shares():
"""
Returns a list of total shares (all, attending, in person, represented) for all voting principles.
"""
total_shares = {
'heads': [0, 0, 0, 0] # [all, attending, in person, represented]
}
principle_ids = VotingPrinciple.objects.values_list('id', flat=True)
for principle_id in principle_ids:
total_shares[principle_id] = [Decimal(0), Decimal(0), Decimal(0), Decimal(0)]
# Query delegates.
delegates = User.objects.filter(groups=2).select_related('votingproxy', 'keypad').prefetch_related('shares')
shares_exists = VotingShare.objects.exists()
for delegate in delegates:
# Exclude delegates without shares -- who may only serve as proxies.
if shares_exists and delegate.shares.count() == 0:
continue
total_shares['heads'][0] += 1
# Find the authorized voter.
auth_voter = find_authorized_voter(delegate)
# If auth_voter is delegate himself set index to 2 (in person) else 3 (represented).
i = 2 if auth_voter == delegate else 3
attending = auth_voter is not None and auth_voter.is_present
if config['voting_enable_votecollector']:
attending = attending and hasattr(auth_voter, 'keypad')
if attending:
total_shares['heads'][i] += 1
# Add shares to total.
for share in delegate.shares.all():
total_shares[share.principle_id][0] += share.shares
if attending:
total_shares[share.principle_id][i] += share.shares
for k in total_shares.keys():
total_shares[k][1] = total_shares[k][2] + total_shares[k][3]
return total_shares | c70ca3be6e0b7b9df03257b81f5abec343efa37e | 3,649,718 |
def gen_check_box_idx():
""" Generate a list containing the coordinate of three
finder patterns in QR-code
Args:
None
Returns:
idx_check_box: a list containing the coordinate each pixel
of the three finder patterns
"""
idx_check_box = []
for i in range(7):
idx_check_box.append((0, i))
idx_check_box.append((6, i))
idx_check_box.append((30, i))
idx_check_box.append((36, i))
idx_check_box.append((0, 30+i))
idx_check_box.append((6, 30+i))
for i in range(1, 6):
idx_check_box.append((i, 0))
idx_check_box.append((i, 6))
idx_check_box.append((i, 30))
idx_check_box.append((i, 36))
idx_check_box.append((30+i, 0))
idx_check_box.append((30+i, 6))
for i in range(3):
for j in range(3):
idx_check_box.append((2+i, 2+j))
idx_check_box.append((32+i, 2+j))
idx_check_box.append((2+i, 32+j))
return idx_check_box | e26d9c5a3b093b52f54eb2c65b844215c40ddab8 | 3,649,719 |
import pandas
def preprocess_mc_parameters(n_rv, dict_safir_file_param, index_column='index'):
"""
NAME: preprocess_mc_parameters
AUTHOR: Ian Fu
DATE: 18 Oct 2018
DESCRIPTION:
Takes a dictionary object with each item represents a safir input variable, distributed or static, distributed
input parameter must be a dictionary object describing a distribution (see usage).
PARAMETERS:
:param n_rv: int, number of random samples for distributed parameters
:param dict_safir_in_param: dict, safir input (problem definition) file parameterised variable names
:param index_column: str, the returned DataFrame object
:return df_params: row equal to n_rv with columns the items in dict_safir_in_param
USAGE:
"""
# declare containers
dict_result_params_static = dict() # container for storing static parameters
dict_result_params_dist = dict() # container for storing distributed random parameters
# populate static parameters and extract
for key_, each_param in dict_safir_file_param.items():
if isinstance(each_param, dict):
dict_result_params_dist[key_] = each_param
else:
if isinstance(each_param, list):
if len(each_param) == n_rv:
dict_result_params_dist[key_] = each_param
else:
dict_result_params_static[key_] = [each_param] * n_rv
# make distribution random parameters
dict_result_params_dist = preprocess_safir_mc_parameters(n_rv, dict_result_params_dist)
# merge random distributed and static parameters
dict_result_params = {**dict_result_params_static, **dict_result_params_dist}
# make pandas.Dataframe
if index_column not in dict_result_params:
dict_result_params[index_column] = list(range(n_rv))
pf_params = pandas.DataFrame(dict_result_params)
pf_params.set_index(index_column, inplace=True)
return pf_params | 28d04122234572b57d978fc9e993707cea45a00d | 3,649,720 |
def AdjustColour(color, percent, alpha=wx.ALPHA_OPAQUE):
""" Brighten/Darken input colour by percent and adjust alpha
channel if needed. Returns the modified color.
@param color: color object to adjust
@param percent: percent to adjust +(brighten) or -(darken)
@keyword alpha: amount to adjust alpha channel
"""
radj, gadj, badj = [ int(val * (abs(percent) / 100.0))
for val in color.Get() ]
if percent < 0:
radj, gadj, badj = [ val * -1 for val in [radj, gadj, badj] ]
else:
radj, gadj, badj = [ val or 255 for val in [radj, gadj, badj] ]
red = min(color.Red() + radj, 255)
green = min(color.Green() + gadj, 255)
blue = min(color.Blue() + badj, 255)
return wx.Colour(red, green, blue, alpha) | 76ca657e632467c5db730161a34f19633add06f4 | 3,649,721 |
def getdates(startdate, utc_to_local, enddate=None):
"""
Generate '~astropy.tot_time.Time' objects corresponding to 16:00:00 local tot_time on evenings of first and last
nights of scheduling period.
Parameters
----------
startdate : str or None
Start date (eg. 'YYYY-MM-DD'). If None, defaults to current date.
enddate : str or None
End date (eg. 'YYYY-MM-DD'). If None, defaults to day after start date.
utc_to_local : '~astropy.unit' hours
Time difference between utc and local tot_time.
Returns
-------
start : '~astropy.tot_time.core.Time'
UTC corresponding to 16:00 local tot_time on first night
end : '~astropy.tot_time.core.Time'
UTC corresponding to 16:00 local tot_time on last night
"""
if startdate is None:
current_utc = Time.now()
start = Time(str((current_utc + utc_to_local).iso)[0:10] + ' 16:00:00.00') - utc_to_local
else:
try:
start = Time(startdate + ' 16:00:00.00') - utc_to_local
except ValueError as e:
print(e)
raise ValueError('\"{}\" not a valid date. Expected string of the form \'YYYY-MM-DD\''.format(startdate))
if enddate is None: # default number of observation nights is 1
return start, None
else:
try:
end = Time(enddate + ' 16:00:00.00') - utc_to_local
diff = int((end - start).value) # difference between startdate and enddate
if diff <= 0:
raise ValueError('End date \"{}\" occurs before or on start date.'.format(enddate))
except ValueError as e:
print(e)
raise ValueError('\"{}\" not a valid date. '
'Must be after start date and of the form \'YYYY-MM-DD\''.format(enddate))
start.format = 'jd'
end.format = 'jd'
return start, end | 1bee7b83b2b4ce3f3347544441762287a3ff1c83 | 3,649,722 |
def get_dataframe_tail(n):
""" Returns last n rows of the DataFrame"""
return dataset.tail(n) | 03a01a9535da25d30c394a8339ebbd5bd0a80b03 | 3,649,724 |
import json
def json_formatter(result, verbose=False, indent=4, offset=0):
"""Format result as json."""
string = json.dumps(result, indent=indent)
string = string.replace("\n", "\n" + " "*offset)
return string | 512847722fa36eff408ac28d6e3dc8fde5c52af1 | 3,649,725 |
def _gumbel_softmax_sample(logits, temp=1, eps=1e-20):
"""
Draw a sample from the Gumbel-Softmax distribution
based on
https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb
(MIT license)
"""
dims = logits.dim()
gumbel_noise = _sample_gumbel(logits.size(), eps=eps, out=logits.data.new())
y = logits + Variable(gumbel_noise)
return F.softmax(y / temp, dims - 1) | a61eac3861cdca17c1d2856c83bc70e03168bc45 | 3,649,727 |
from re import VERBOSE
def interpolate_points(variable, variable_name, old_r, old_theta, new_r, new_theta):
"""Interpolate the old grid onto the new grid."""
grid = griddata(
(old_r, old_theta), variable, (new_r, new_theta), method=INTERPOLATION_LEVEL, fill_value=-1
)
n_error = 0
for i, element in enumerate(grid):
if element == -1:
n_error += 1
grid[i] = griddata(
(old_r, old_theta), variable, (new_r[i], new_theta[i]), method="nearest"
)
if VERBOSE:
print(f"{variable_name} interpolation problem for at r = {new_r[i]} theta = {np.rad2deg(new_theta[i])}")
if n_error:
print(f"There were {n_error} interpolation errors for {variable_name}")
return grid | 2a830e7cd04d5d0832d35a25bc58041ba192709b | 3,649,728 |
def currentProgram():
"""currentProgram page."""
return render_template(
"currentProgram-index.j2.html",
title="currentProgram",
subtitle="Demonstration of Flask blueprints in action.",
template="currentProgram-template",
currentProgram=getCurrentProgr(),
timeStarted=timeStarted,
) | f5c914560d3c1791e34749321b78951313d5f058 | 3,649,730 |
def checkIsMember(request):
"""
์ฌ์
์๋ฒํธ๋ฅผ ์กฐํํ์ฌ ์ฐ๋ํ์ ๊ฐ์
์ฌ๋ถ๋ฅผ ํ์ธํฉ๋๋ค.
- https://docs.popbill.com/statement/python/api#CheckIsMember
"""
try:
# ์กฐํํ ์ฌ์
์๋ฑ๋ก๋ฒํธ, '-' ์ ์ธ 10์๋ฆฌ
targetCorpNum = "1234567890"
response = statementService.checkIsMember(targetCorpNum)
return render(request, 'response.html', {'code': response.code, 'message': response.message})
except PopbillException as PE:
return render(request, 'exception.html', {'code': PE.code, 'message': PE.message}) | 861d4cc83102e036bb795bf8eafee2f7593925a4 | 3,649,731 |
from typing import List
from typing import Optional
from typing import Type
def f1_score(y_true: List[List[str]], y_pred: List[List[str]],
*,
average: Optional[str] = 'micro',
suffix: bool = False,
mode: Optional[str] = None,
sample_weight: Optional[List[int]] = None,
zero_division: str = 'warn',
scheme: Optional[Type[Token]] = None,
partial_match: bool = False):
"""Compute the F1 score.
The F1 score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.
The relative contribution of precision and recall to the F1 score are
equal. The formula for the F1 score is::
F1 = 2 * (precision * recall) / (precision + recall)
Args:
y_true : 2d array. Ground truth (correct) target values.
y_pred : 2d array. Estimated targets as returned by a tagger.
average : string, [None, 'micro' (default), 'macro', 'weighted']
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division:
- recall: when there are no positive labels
- precision: when there are no positive predictions
- f-score: both
If set to "warn", this acts as 0, but warnings are also raised.
mode : str, [None (default), `strict`].
if ``None``, the score is compatible with conlleval.pl. Otherwise,
the score is calculated strictly.
scheme : Token, [IOB2, IOE2, IOBES]
suffix : bool, False by default.
partial_match : bool, False by default.
Returns:
score : float or array of float, shape = [n_unique_labels].
Example:
>>> from seqeval.metrics import f1_score
>>> y_true = [['O', 'O', 'B-MISC', 'I-MISC', 'B-MISC', 'O', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'B-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> f1_score(y_true, y_pred, average='micro')
0.6666666666666666
>>> f1_score(y_true, y_pred, average='macro')
0.75
>>> f1_score(y_true, y_pred, average='weighted')
0.6666666666666666
>>> f1_score(y_true, y_pred, average=None)
array([0.5, 1. ])
"""
if mode == 'strict' and scheme:
_, _, f, _ = precision_recall_fscore_support_v1(y_true, y_pred,
average=average,
warn_for=('f-score',),
beta=1,
sample_weight=sample_weight,
zero_division=zero_division,
scheme=scheme,
suffix=suffix
)
else:
_, _, f, _ = precision_recall_fscore_support(y_true, y_pred,
average=average,
warn_for=('f-score',),
beta=1,
sample_weight=sample_weight,
zero_division=zero_division,
suffix=suffix,
partial_match=partial_match)
return f | 1354e306847af1decf59ae638a1cdecd265e569a | 3,649,732 |
from typing import Any
from typing import Counter
def calc_proportion_identical(lst: Any) -> float:
"""
Returns a value between 0 and 1 for the uniformity of the values
in LST, i.e. higher if they're all the same.
"""
def count_most_common(lst):
"""
Find the most common item in LST, and count how many times it occurs.
"""
# Counter(['a', 'b', 'a']).most_common(2) -> [
# ('a', 2),
# ('b', 1),
# ]
# so this gives the count of the most common (in this case 2 occurrences of 'a')
return Counter(lst).most_common(1)[0][1]
most_common = count_most_common(lst)
if most_common == 1:
return 0
else:
return most_common / len(lst) | adf467eba11694c5ea4583d7b53029110e59e25a | 3,649,733 |
def _rolling_mad(arr, window):
"""Rolling window MAD outlier detection on 1d array."""
outliers = []
for i in range(window, len(arr)):
cur = arr[(i - window) : i]
med, cur_mad = _mad(cur)
cur_out = cur > (med + cur_mad * 3)
idx = list(np.arange((i - window), i)[cur_out])
outliers += idx
outliers = list(set(outliers))
# turn index into boolean
bool_outliers = np.zeros(arr.shape[0], dtype=bool)
bool_outliers[outliers] = True
return bool_outliers | 3f28dde448b3c567a92fd22e499f812cd748a507 | 3,649,734 |
def compute_mean_and_cov(embeds, labels):
"""Computes class-specific means and shared covariance matrix of given embedding.
The computation follows Eq (1) in [1].
Args:
embeds: An np.array of size [n_train_sample, n_dim], where n_train_sample is
the sample size of training set, n_dim is the dimension of the embedding.
labels: An np.array of size [n_train_sample, ]
Returns:
mean_list: A list of len n_class, and the i-th element is an np.array of
size [n_dim, ] corresponding to the mean of the fitted Guassian distribution
for the i-th class.
cov: The shared covariance mmatrix of the size [n_dim, n_dim].
"""
n_dim = embeds.shape[1]
n_class = int(np.max(labels)) + 1
mean_list = []
cov = np.zeros((n_dim, n_dim))
for class_id in range(n_class):
data = embeds[labels == class_id]
data_mean = np.mean(data, axis=0)
cov += np.dot((data - data_mean).T, (data - data_mean))
mean_list.append(data_mean)
cov = cov / len(labels)
return mean_list, cov | b6d5624b0cea9f6162ffad819d4d5917391ac73e | 3,649,735 |
def wcenergy(seq: str, temperature: float, negate: bool = False) -> float:
"""Return the wc energy of seq binding to its complement."""
loop_energies = calculate_loop_energies_dict(temperature, negate)
return sum(loop_energies[seq[i:i + 2]] for i in range(len(seq) - 1)) | 90eae3d85e90019571e4f5d674fb93d58c1d7287 | 3,649,736 |
def upload_csv():
"""
Upload csv file
"""
upload_csv_form = UploadCSVForm()
if upload_csv_form.validate_on_submit():
file = upload_csv_form.csv.data
ClassCheck.process_csv_file(file)
flash('CSV file uploaded!', 'success')
return redirect('/') | 620cc3b4e11c71fe9dedd24631f641304313150f | 3,649,738 |
async def clean(request: Request) -> RedirectResponse:
"""Access this view (GET "/clean") to remove all session contents."""
request.session.clear()
return RedirectResponse("/") | 3ef0d9298fcd7879becc8ae246656a62086f639a | 3,649,739 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.