content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def svd(A): """ Singular Value Decomposition Parameters ---------- A: af.Array A 2 dimensional arrayfire array. Returns ------- (U,S,Vt): tuple of af.Arrays - U - A unitary matrix - S - An array containing the elements of diagonal matrix - Vt - A unitary matrix Note ---- - The original matrix `A` is preserved and additional storage space is required for decomposition. - If the original matrix `A` need not be preserved, use `svd_inplace` instead. - The original matrix `A` can be reconstructed using the outputs in the following manner. >>> Smat = af.diag(S, 0, False) >>> A_recon = af.matmul(af.matmul(U, Smat), Vt) """ U = Array() S = Array() Vt = Array() safe_call(backend.get().af_svd(c_pointer(U.arr), c_pointer(S.arr), c_pointer(Vt.arr), A.arr)) return U, S, Vt
7b7d48dc1782d1e02eca01b657895372170caf6c
3,649,740
def parse_content_type_header(value): """ maintype "/" subtype *( ";" parameter ) The maintype and substype are tokens. Theoretically they could be checked against the official IANA list + x-token, but we don't do that. """ ctype = ContentType() recover = False if not value: ctype.defects.append(errors.HeaderMissingRequiredValue( "Missing content type specification")) return ctype try: token, value = get_token(value) except errors.HeaderParseError: ctype.defects.append(errors.InvalidHeaderDefect( "Expected content maintype but found {!r}".format(value))) _find_mime_parameters(ctype, value) return ctype ctype.append(token) # XXX: If we really want to follow the formal grammar we should make # mantype and subtype specialized TokenLists here. Probably not worth it. if not value or value[0] != '/': ctype.defects.append(errors.InvalidHeaderDefect( "Invalid content type")) if value: _find_mime_parameters(ctype, value) return ctype ctype.maintype = token.value.strip().lower() ctype.append(ValueTerminal('/', 'content-type-separator')) value = value[1:] try: token, value = get_token(value) except errors.HeaderParseError: ctype.defects.append(errors.InvalidHeaderDefect( "Expected content subtype but found {!r}".format(value))) _find_mime_parameters(ctype, value) return ctype ctype.append(token) ctype.subtype = token.value.strip().lower() if not value: return ctype if value[0] != ';': ctype.defects.append(errors.InvalidHeaderDefect( "Only parameters are valid after content type, but " "found {!r}".format(value))) # The RFC requires that a syntactically invalid content-type be treated # as text/plain. Perhaps we should postel this, but we should probably # only do that if we were checking the subtype value against IANA. del ctype.maintype, ctype.subtype _find_mime_parameters(ctype, value) return ctype ctype.append(ValueTerminal(';', 'parameter-separator')) ctype.append(parse_mime_parameters(value[1:])) return ctype
24722c1dd5784896fd6aa8b39cd29eb76fec155a
3,649,741
import numpy def csr_matrix_multiply(S, x): # noqa """Multiplies a :class:`scipy.sparse.csr_matrix` S by an object-array vector x. """ h, w = S.shape result = numpy.empty_like(x) for i in range(h): result[i] = sum(S.data[idx]*x[S.indices[idx]] # noqa pylint:disable=unsupported-assignment-operation for idx in range(S.indptr[i], S.indptr[i+1])) return result
77e1630cbdd59f53b1b2885b731e73a14fb18b35
3,649,742
def calculate_sem_IoU(pred_np, seg_np, num_classes): """Calculate the Intersection Over Union of the predicted classes and the ground truth Args: pred_np (array_like): List of predicted class labels seg_np (array_like): List of ground truth labels num_classes (int): Number of classes in the dataset """ I_all = np.zeros(num_classes) U_all = np.zeros(num_classes) for sem_idx in range(len(seg_np)): for sem in range(num_classes): I = np.sum(np.logical_and(pred_np[sem_idx] == sem, seg_np[sem_idx] == sem)) U = np.sum(np.logical_or(pred_np[sem_idx] == sem, seg_np[sem_idx] == sem)) I_all[sem] += I U_all[sem] += U return I_all / U_all
e8e360cb8aad0f2226aa54c88c01485840017f2d
3,649,743
def _invert(M, eps): """ Invert matrices, with special fast handling of the 1x1 and 2x2 cases. Will generate errors if the matrices are singular: user must handle this through his own regularization schemes. Parameters ---------- M: np.ndarray [shape=(..., nb_channels, nb_channels)] matrices to invert: must be square along the last two dimensions eps: [scalar] regularization parameter to use _only in the case of matrices bigger than 2x2 Returns ------- invM: np.ndarray, [shape=M.shape] inverses of M """ nb_channels = M.shape[-1] if nb_channels == 1: # scalar case invM = 1.0/(M+eps) elif nb_channels == 2: # two channels case: analytical expression det = ( M[..., 0, 0]*M[..., 1, 1] - M[..., 0, 1]*M[..., 1, 0]) invDet = 1.0/(det) invM = np.empty_like(M) invM[..., 0, 0] = invDet*M[..., 1, 1] invM[..., 1, 0] = -invDet*M[..., 1, 0] invM[..., 0, 1] = -invDet*M[..., 0, 1] invM[..., 1, 1] = invDet*M[..., 0, 0] else: # general case : no use of analytical expression (slow!) invM = np.linalg.pinv(M, eps) return invM
119c16ad816dd37b7e5eb23c121ef5affc8851f5
3,649,744
from pathlib import Path def read_densecsv_to_anndata(ds_file: Path): """Reads a dense text file in csv format into the AnnData format.""" return read_densemat_to_anndata(ds_file, sep=",")
cee99509b6744972ad7a9530d66b59c06f7deec5
3,649,745
def _singleton(name): """Returns a singleton object which represents itself as `name` when printed, but is only comparable (via identity) to itself.""" return type(name, (), {'__repr__': lambda self: name})()
b07003e1716115864bf1914d4b523b36d0f0471f
3,649,747
def get_zone(*, zone_name: str): """ Get zone with given zone name. Args: zone_name: zone name, e.g. "haomingyin.com" Returns: json: zone details """ params = dict(name=zone_name) zones = _get("zones", params=params) if not zones: raise CloudflareAPIError(f"Unable to fetch zone {zone_name}") return zones[0]
5e79ec900af7e5cc4d457d04292e55e2e3abc9ec
3,649,748
def execute(connection, cmdline, **kwargs): """generic function to execute command for device | Parameters: | connection (Adaptor): connection of device | cmdline (str): command line | kwargs (dict): additional keyword arguments for command line execution | Returns: | str: output of command line """ result = Dgs.execute_cmdline(connection, cmdline, **kwargs) return result
7f3424cb8a747fab87a5a67c880ec755d9c9cb96
3,649,750
def json_to_numpy_mask(shapes, width, height): """Converts JSON labels with pixel classifications into NumPy arrays""" img = Image.new("L", (width, height), 0) for shape in shapes: if shape["label"] == "barrel": barrel_lst = [tuple(i) for i in shape["points"]] ImageDraw.Draw(img).polygon(barrel_lst, outline=1, fill=1) if shape["label"] == "line": line_lst = [tuple(i) for i in shape["points"]] ImageDraw.Draw(img).polygon(line_lst, outline=2, fill=2) mask = np.array(img) return mask
33757246478d854d15f71a0737174ac6952514ef
3,649,751
import types import typing def _format_call(value: ast3.Call, context: types.Context) -> typing.Text: """Format a function call like 'print(a*b, foo=x)'""" try: return _format_call_horizontal(value, context) except errors.NotPossible: return _format_call_vertical(value, context)
2019f50943bb597948248dfda9ce8620d3286377
3,649,752
def get_tags(repo_dir): """ _get_tags_ returns a list of tags for the given repo, ordered as newest first """ repo = git.Repo(repo_dir) tags_with_date = { tag.name: tag.commit.committed_date for tag in repo.tags } return sorted(tags_with_date, key=tags_with_date.get, reverse=True)
aa5462ff0b15501cf486a2bf49837f0dd60ecfaf
3,649,753
def readh5(filename, GroupName=None): """ Read the HDF5 file 'filename' into a class. Groups within the hdf5 file are by default loaded as sub classes, unless they include a _read_as attribute (see sharpy.postproc.savedata). In this case, group can be loaded as classes, dictionaries, lists or tuples. filename: string to file location GroupName = string or list of strings. Default is None: if given, allows reading a specific group h5 file. Warning: Groups that need to be read as lists and tuples are assumed to conform to the format used in sharpy.postproc.savedata """ Hinst = ReadInto() ### read and scan file hdfile = h5.File(filename, 'r') NamesList = [] # dataset names hdfile.visit(NamesList.append) ### Identify higher level groups / attributes if GroupName is None: MainLev = [] for name in NamesList: if '/' not in name: MainLev.append(name) else: if type(GroupName) is list: MainLev = GroupName else: MainLev = [GroupName] ### Loop through higher level for name in MainLev: # sub-group if type(hdfile[name]) is h5._hl.group.Group: Ginst = read_group(hdfile[name]) try: Ginst.name = name except: pass setattr(Hinst, name, Ginst) else: setattr(Hinst, name, hdfile[name][()]) # close and return hdfile.close() return Hinst
9ab33071916a634da6ddc68df56fe29429ef6313
3,649,754
def calc_E_E_hs_d_t(W_dash_k_d_t, W_dash_s_d_t, W_dash_w_d_t, W_dash_b1_d_t, W_dash_b2_d_t, W_dash_ba1_d_t, theta_ex_d_Ave_d, L_dashdash_ba2_d_t): """1時間当たりの給湯機の消費電力量 (kWh/h) (1) Args: W_dash_k_d_t(ndarray): 1時間当たりの台所水栓における太陽熱補正給湯負荷 (MJ/h) W_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における太陽熱補正給湯負荷 (MJ/h) W_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における太陽熱補正給湯負荷 (MJ/h) W_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯負荷 (MJ/h) W_dash_b2_d_t(ndarray): 1時間当たりの自動湯はり時における太陽熱補正給湯負荷 (MJ/h) W_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における太陽熱補正給湯負荷 (MJ/h) theta_ex_d_Ave_d(ndarray): 日平均外気温度 (℃) L_dashdash_ba2_d_t(ndarray): 1時間当たりの浴槽追焚時における太陽熱補正給湯負荷 (MJ/h) Returns: ndarray: 1日当たりの給湯機の消費電力量 (kWh/d) """ # 給湯機の待機時及び水栓給湯時の補機による消費電力 (2) E_E_hs_aux1_d_t = get_E_E_hs_aux1_d_t(W_dash_k_d_t, W_dash_s_d_t, W_dash_w_d_t, W_dash_b1_d_t, W_dash_ba1_d_t, theta_ex_d_Ave_d) # 給湯機の湯はり時の補機による消費電力量 (3) E_E_hs_aux2_d_t = get_E_E_hs_aux2_d_t(W_dash_b2_d_t) # 給湯機の保温時の補機による消費電力量 (4) E_E_hs_aux3_d_t = calc_E_E_hs_aux3_d_t(L_dashdash_ba2_d_t) print('E_E_hs_aux1 = {}'.format(np.sum(E_E_hs_aux1_d_t))) print('E_E_hs_aux2 = {}'.format(np.sum(E_E_hs_aux2_d_t))) print('E_E_hs_aux3 = {}'.format(np.sum(E_E_hs_aux3_d_t))) return E_E_hs_aux1_d_t + E_E_hs_aux2_d_t + E_E_hs_aux3_d_t
d76a65d4d30b0c2cf59b837e188473827425d576
3,649,755
def best_promo(order): """ 选择可用的最佳折扣 """ return max(promo(order) for promo in promos)
db4001b4e04a167171da02da92e4234489bf13a5
3,649,756
def random_joint_positions(robot): """ Generates random joint positions within joint limits for the given robot. @type robot: orpy.Robot @param robot: The OpenRAVE robot @rtype: np.array @return: """ # Get the limits of the active DOFs lower, upper = robot.GetActiveDOFLimits() positions = lower + np.random.rand(len(lower))*(upper-lower) return positions
49fe770a8cc22945e79c892d54754c50f19974e8
3,649,757
def test_cancel_examples(example): """ We can't specify examples in test_fuzz_cancel (because we use data, see https://hypothesis.readthedocs.io/en/latest/data.html#interactive-draw), so we have this here for explicit examples. """ stream_req, stream_resp, draws = example def draw(lst): if draws: this_draw = draws.pop(0) for name, evt in lst: if name == this_draw: return name, evt raise AssertionError( f"{this_draw} not in list: {[name for name, _ in lst]}" ) else: return lst[0] _test_cancel(stream_req, stream_resp, draw)
c3a3a970a77f136c39e86666c0485163d0fbb408
3,649,758
import pickle def fetch_pickle(filename): """ Fetches any variable saved into a picklefile with the given filename. Parameters: filename (str): filename of the pickle file Returns: variable (any pickle compatible type): variable that was saved into the picklefile. """ with open(filename, 'rb') as picklefile: variable = pickle.load(picklefile) return variable
172c18520619d102b520658949d2464d5ecfb05c
3,649,759
def check_clockwise(poly): """Checks if a sequence of (x,y) polygon vertice pairs is ordered clockwise or not. NOTE: Counter-clockwise (=FALSE) vertice order reserved for inner ring polygons""" clockwise = False if (sum(x0*y1 - x1*y0 for ((x0, y0), (x1, y1)) in zip(poly, poly[1:] + [poly[0]]))) < 0: clockwise = not clockwise return clockwise
5e9f8fba6cd11e33dfe60a89e62eeac2ac24c805
3,649,760
def bookList(request): """测试""" # 查询书籍信息:使用默认的管理器对象 : 在管理器上调用过滤器方法会返回查询集 # book_list = BookInfo.objects.all() # 查询书籍信息:使用自定义的管理器对象 # book_list = BookInfo.books.all() # 以下代码演示,自定义管理器的类给模型类新增初始化方法: 类比books.all() # book1 = BookInfo.books.create_model('zxc') # book2 = BookInfo.books.create_model('zxj') # book_list = [book1,book2] # 以下代码演示,限制查询集:limit 0,2 # book_list = BookInfo.books.all()[:2] # 以下代码演示基础条件查询 : filter(模型属性__条件运算符=值) # 1.查询id为1的书籍 : exact 判断相等,可以省虐,直接等号, pk 等价于 主键 # book_list = BookInfo.books.filter(id=1) # 2.查询书名包含‘湖’的书籍 : contains :包含,类似于 like # book_list = BookInfo.books.filter(name__contains='湖') # 3.查询书名以‘部’结尾的书籍:endswith :以什么什么结尾;startswith以什么什么开头 # book_list = BookInfo.books.filter(name__endswith='部') # 4.查询书名不为空的书籍 : isnull : 判断是否为空,False表示不为空,两个否定表示肯定 "容易懵逼" # book_list = BookInfo.books.filter(name__isnull=False) # 5.查询编号为2或4的书籍 in : 表示只能在指定的元素中选择,不表示区间 "容易懵逼" # book_list = BookInfo.books.filter(id__in=[2,4]) # 6.查询编号大于2的书籍 gt 大于, gte 大于等于, lt 小于, lte 小于等于 # book_list = BookInfo.books.filter(id__gt=2) # 7.查询id不等于3的书籍:exclude 查询满足条件以外的数据 # book_list = BookInfo.books.exclude(id=3) # 8.查询1980年发表的书籍 # book_list = BookInfo.books.filter(pub_date__year='1980') # 9.查询1990年1月1日后发表的书籍 # book_list = BookInfo.books.filter(pub_date__gt='1990-1-1') # from datetime import date # book_list = BookInfo.books.filter(pub_date__gt=date(1990,1,1)) # 以下代码,演示F对象和Q对象查询 : F('模型属性') Q(属性名__条件运算符=值) | Q(属性名__条件运算符=值) # 1.查询阅读量大于评论量的书籍 # book_list = BookInfo.books.filter(readcount__gt=F('commentcount')) # 2.查询阅读量大于2倍评论量的书籍 : F()支持计算 # book_list = BookInfo.books.filter(readcount__gt=F('commentcount') * 2) # 1.查询阅读量大于20,或编号小于3的图书 # book_list = BookInfo.books.filter(Q(readcount__gt=20) | Q(id__lt=3)) # 2.查询编号不等于3的书籍 ~Q() book_list = BookInfo.books.filter(~Q(id=3)) # 以下代码演示聚合过滤器aggregate();该过滤器可以调用出聚合函数的 Avg(), Sum(), max(), min(), count() # 需求:计算阅读量的总数 aggregate() 返回单个字典对象 {'readcount__sum': 134} total_count = BookInfo.books.aggregate(Sum('readcount')) # 以下代码演示基础关联查询 # 1.查询编号为1的图书中所有人物信息 : 一查多 : peopleinfo_set book1 = BookInfo.books.get(id=1) people_list1 = book1.peopleinfo_set.all() # 2.查询编号为1的英雄出自的书籍 : 多查一 : people1.book : 调用关联的外键属性即可 people1 = PeopleInfo.objects.get(id=1) book2 = people1.book # 以下代码演示内连接 : filter(关联的模型类小写__属性名__条件运算符=值) # 1.查询书名为"天龙八部"的所有人物信息 : 一查多 : 内连接需要使用外键作为关联的模型类 people_list2 = PeopleInfo.objects.filter(book__name='天龙八部') # 2.查询书籍中人物的描述包含"降龙"的书籍 : 多查一 book_list2 = BookInfo.books.filter(peopleinfo__description__contains='降龙') # 构造上下文 context = { 'book_list':book_list, 'total_count':total_count, 'people_list1':people_list1, 'book2':book2, 'people_list2':people_list2, 'book_list2':book_list2 } return render(request, 'Book/booklist.html', context)
b9b05f259d5cdb9d0570268c0f08eaafc8ba6cc1
3,649,761
def format_stats(stats): """Format statistics for printing to a table""" result = '' for key, value in stats.items(): result += f'{key} - {value}\n' return result[:-1]
2d01b6c48b83f8e8810f4609183b39fad871f942
3,649,762
def imcrop(img, bboxes, scale=1.0, pad_fill=None): """Crop image patches. 3 steps: scale the bboxes -> clip bboxes -> crop and pad. Args: img (ndarray): Image to be cropped. bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes. scale (float, optional): Scale ratio of bboxes, the default value 1.0 means no padding. pad_fill (Number | list[Number]): Value to be filled for padding. Default: None, which means no padding. Returns: list[ndarray] | ndarray: The cropped image patches. """ chn = 1 if img.ndim == 2 else img.shape[2] if pad_fill is not None: if isinstance(pad_fill, (int, float)): pad_fill = [pad_fill for _ in range(chn)] assert len(pad_fill) == chn _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32) clipped_bbox = bbox_clip(scaled_bboxes, img.shape) patches = [] for i in range(clipped_bbox.shape[0]): x1, y1, x2, y2 = tuple(clipped_bbox[i, :]) if pad_fill is None: patch = img[y1:y2 + 1, x1:x2 + 1, ...] else: _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :]) if chn == 1: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1) else: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn) patch = np.array( pad_fill, dtype=img.dtype) * np.ones( patch_shape, dtype=img.dtype) x_start = 0 if _x1 >= 0 else -_x1 y_start = 0 if _y1 >= 0 else -_y1 w = x2 - x1 + 1 h = y2 - y1 + 1 patch[y_start:y_start + h, x_start:x_start + w, ...] = img[y1:y1 + h, x1:x1 + w, ...] patches.append(patch) if bboxes.ndim == 1: return patches[0] else: return patches
244d6c39410c5d51780a8d3a261810986c17d779
3,649,763
def timestamp2str(ts): """ Converts Timestamp object to str containing date and time """ date = ts.date().strftime("%Y-%m-%d") time = ts.time().strftime("%H:%M:%S") return ' '.join([date, time])
0e847a8af0cbbacf18df911e3070ac7c70e504b7
3,649,764
from operator import index def define_class_functions(processes, stages, progress): """ Define and return class of unit tests for stand-alone functions for the given configuration. """ class Test_functions(TestCase): def test_mapreduce(self): logger = log() if progress else None result = mr4mp.mapreduce( index, merge, range(50), processes=processes, stages=stages, progress=logger ) self.assertEqual(result, result_reference) if progress: self.assertEqual( logger.to_list(), list(range(50)) if stages is not None else [] ) def test_mapconcat(self): logger = log() if progress else None result = mr4mp.mapconcat( add_one, range(0, 100), processes=processes, stages=stages, progress=logger ) self.assertEqual(list(result), list(range(1, 101))) if progress: self.assertEqual( logger.to_list(), list(range(100)) if stages is not None else [] ) return Test_functions
0dc8df39e49f1e7591be7a7b8e80dc1266714cc4
3,649,765
def concept(*reference): """Reference to a semantic concept. Parameters ---------- *reference : :obj:`str` Keys pointing to the ruleset defining this concept in the rules file of an ontology. Returns ------- :obj:`CubeProxy` A textual reference to the concept that can be solved by the query processor. Examples -------- >>> sq.concept("entity", "water") { "type": "concept", "reference": [ "entity", "water" ] } """ obj = {"type": "concept", "reference": reference} return CubeProxy(obj)
c3e01f48ca962c5312a0cf8d6deb66eecc062078
3,649,766
import torch def collate_tensors(batch, stack_tensors=torch.stack): """ Collate a list of type ``k`` (dict, namedtuple, list, etc.) with tensors. Inspired by: https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py#L31 Args: batch (list of k): List of rows of type ``k``. stack_tensors (callable): Function to stack tensors into a batch. Returns: k: Collated batch of type ``k``. Example use case: This is useful with ``torch.utils.data.dataloader.DataLoader`` which requires a collate function. Typically, when collating sequences you'd set ``collate_fn=partial(collate_tensors, stack_tensors=encoders.text.stack_and_pad_tensors)``. Example: >>> import torch >>> batch = [ ... { 'column_a': torch.randn(5), 'column_b': torch.randn(5) }, ... { 'column_a': torch.randn(5), 'column_b': torch.randn(5) }, ... ] >>> collated = collate_tensors(batch) >>> {k: t.size() for (k, t) in collated.items()} {'column_a': torch.Size([2, 5]), 'column_b': torch.Size([2, 5])} """ if all([torch.is_tensor(b) for b in batch]): return stack_tensors(batch) if (all([isinstance(b, dict) for b in batch]) and all([b.keys() == batch[0].keys() for b in batch])): return {key: collate_tensors([d[key] for d in batch], stack_tensors) for key in batch[0]} elif all([is_namedtuple(b) for b in batch]): # Handle ``namedtuple`` return batch[0].__class__(**collate_tensors([b._asdict() for b in batch], stack_tensors)) elif all([isinstance(b, list) for b in batch]): # Handle list of lists such each list has some column to be batched, similar to: # [['a', 'b'], ['a', 'b']] → [['a', 'a'], ['b', 'b']] transposed = zip(*batch) return [collate_tensors(samples, stack_tensors) for samples in transposed] else: return batch
cbd1098188e3d47b705e25edeae636624ebbec47
3,649,767
def build_boundaries_layers(cyt_coord, nuc_coord, rna_coord): """ Parameters ---------- cyt_coord : np.ndarray, np.int64 Array of cytoplasm boundaries coordinates with shape (nb_points, 2). nuc_coord : np.ndarray, np.int64 Array of nucleus boundaries coordinates with shape (nb_points, 2). rna_coord : np.ndarray, np.int64 Array of mRNAs coordinates with shape (nb_points, 2) or (nb_points, 3). Returns ------- cyt_boundaries : np.ndarray, np.float32 A 2-d binary tensor with shape (y, x) showing cytoplasm boundaries. border. nuc_boundaries : np.ndarray, np.float32 A 2-d binary tensor with shape (y, x) showing nucleus boundaries. rna_layer : np.ndarray, np.float32 Binary image of mRNAs localizations with shape (y, x). """ # check parameters stack.check_array(cyt_coord, ndim=2, dtype=[np.int64]) if nuc_coord is not None: stack.check_array(nuc_coord, ndim=2, dtype=[np.int64]) if rna_coord is not None: stack.check_array(rna_coord, ndim=2, dtype=[np.int64]) # build surface binary matrices from coordinates cyt_surface, nuc_surface, rna_layer, _ = stack.from_coord_to_surface( cyt_coord=cyt_coord, nuc_coord=nuc_coord, rna_coord=rna_coord) # from surface binary matrices to boundaries binary matrices cyt_boundaries = stack.from_surface_to_boundaries(cyt_surface) nuc_boundaries = stack.from_surface_to_boundaries(nuc_surface) # cast layer in float32 cyt_boundaries = stack.cast_img_float32(cyt_boundaries) nuc_boundaries = stack.cast_img_float32(nuc_boundaries) rna_layer = stack.cast_img_float32(rna_layer) return cyt_boundaries, nuc_boundaries, rna_layer
a99efab6ccc3044c04df330ca9c3ce0ebbf0c413
3,649,768
def predicted_actual_chart(actual, predicted, title="Predicted vs Actual Values"): """Predicted vs actual values curve.""" source = pd.DataFrame({"x": actual, "y": predicted}) scatter = scatter_chart(source, "Actual", "Residual", title=title) vmin = source.min().min() vmax = source.max().max() _df = pd.DataFrame({"x": [vmin, vmax], "y": [vmin, vmax]}) baseline = alt.Chart(_df).mark_line(strokeDash=[20, 5], color="black").encode( alt.X("x"), alt.Y("y"), ) return scatter + baseline
91588a9d79bfa8eaea39067042b7e4b3c6784b7e
3,649,769
from operator import mul from operator import inv def interpolate(R1,R2,u): """Interpolate linearly between the two rotations R1 and R2. """ R = mul(inv(R1),R2) m = moment(R) angle = vectorops.norm(m) if angle==0: return R1 axis = vectorops.div(m,angle) return mul(R1,rotation(axis,angle*u))
d4aaa976e52b6f44f44c4f26eccb59f1b85f9f0b
3,649,772
def plot_spikes( spikes: dict, ax: plt.Axes = None, markersize: int = None, color: tp.Union[str, tp.Any] = "k", ) -> plt.Axes: """Plot Spikes returned by NeuroDriver's OutputRecorder""" if ax is None: fig = plt.gcf() ax = fig.add_subplot() for n, (name, ss) in enumerate(spikes.items()): if "data" not in ss: raise EOSPlotterException(f"'data' field missing for node {name}") if "data" in ss and "time" in ss: raise EOSPlotterException( f"Data for node {name} is not compatible with required format, " "data mush only have 'data' field. Did you mean " "to call plot_data?" ) if len(ss["data"]) > 0: ax.plot( ss["data"], np.full(len(ss["data"]), n), "|", c=color, markersize=markersize, ) return ax
d757c9c342e34e45820ee81f45e0bc59b8cbc277
3,649,773
def boardToString(board): """ return a string representation of the current board. """ # global board # b = board rg = range(board.size()) s = "┌────┬────┬────┬────┐\n|"+"|\n╞════╪════╪════╪════╡\n|".join( ['|'.join([getCellStr(board, x, y) for x in rg]) for y in rg]) s = "\n" + s + "|\n└────┴────┴────┴────┘" return s
2ea53d0ce7448ab0073176195195f1c4fb028a71
3,649,774
def create_data_ops(batch_size, num_elements_min_max): """Returns graphs containg the inputs and targets for classification. Refer to create_data_dicts_tf and create_linked_list_target for more details. Args: batch_size: batch size for the `input_graphs`. num_elements_min_max: a 2-`tuple` of `int`s which define the [lower, upper) range of the number of elements per list. Returns: inputs_op: a `graphs.GraphsTuple` which contains the input list as a graph. targets_op: a `graphs.GraphsTuple` which contains the target as a graph. sort_indices_op: a `graphs.GraphsTuple` which contains the sort indices of the list elements a graph. ranks_op: a `graphs.GraphsTuple` which contains the ranks of the list elements as a graph. data_dicts_to_graphs_tuple: Creates a `graphs.GraphsTuple` containing tensors from data dicts. """ inputs_op, sort_indices_op, ranks_op = create_graph_dicts_tf( batch_size, num_elements_min_max) # show["inputs_graphs"] = inputs_op # show["sort_indices_graphs"] = sort_indices_op # show["ranks_graphs"] = ranks_op inputs_op = utils_tf.data_dicts_to_graphs_tuple(inputs_op) sort_indices_op = utils_tf.data_dicts_to_graphs_tuple(sort_indices_op) ranks_op = utils_tf.data_dicts_to_graphs_tuple(ranks_op) inputs_op = utils_tf.fully_connect_graph_dynamic(inputs_op) # Adds edges to a graph by fully-connecting the nodes. sort_indices_op = utils_tf.fully_connect_graph_dynamic(sort_indices_op) ranks_op = utils_tf.fully_connect_graph_dynamic(ranks_op) targets_op = create_linked_list_target(batch_size, sort_indices_op) nodes = tf.concat((targets_op.nodes, 1.0 - targets_op.nodes), axis=1) edges = tf.concat((targets_op.edges, 1.0 - targets_op.edges), axis=1) targets_op = targets_op._replace(nodes=nodes, edges=edges) return inputs_op, targets_op, sort_indices_op, ranks_op
fd38b1a7d0d8e9e4633fa6fcefc5b1c1614c97fc
3,649,775
def location_matches(stmt): """Return a matches_key which takes geo-location into account.""" if isinstance(stmt, Event): context_key = get_location(stmt) matches_key = str((stmt.concept.matches_key(), context_key)) elif isinstance(stmt, Influence): subj_context_key = get_location(stmt.subj) obj_context_key = get_location(stmt.obj) matches_key = str((stmt.matches_key(), subj_context_key, obj_context_key)) else: matches_key = stmt.matches_key() return matches_key
be261d2dcf7be09330542a4cd2c18b3261ef0eca
3,649,777
def parse_files(files, options): """Build datastructures from lines""" lines = [] for line in finput(files, openhook=compr): if (type(line) is bytes): line = line.decode('utf-8') lines.append(line.rstrip().split("|")) db = {} db['rp'], db['users'], db['msgprof'], db['logins'] = {}, {}, {}, 0 # Audit log format we're trying to parse below: # datetime|req_bind|req_id|rp|msg_profile|idp|resp_bind|resp_id|user|authn_mech|attribs|name_id|assert_id|ip for event in lines: try: rp, msg_profile, user = list(event[i] for i in [3, 4, 8]) except ValueError: print(linesep.join([ "ERROR: Unsupported log file format or compressed logs with Python < 2.5", "See the documentation."])) term(-1) if msg_profile.lower().find("sso") > -1: db['logins'] += 1 # we almost always need to count rps: if len(rp) > 0: if rp in db['rp']: db['rp'][rp] += 1 else: db['rp'][rp] = 1 # only count users if asked to if len(user) > 0: if options.uniqusers or options.xml or options.rrd or options.json: if user in db['users']: db['users'][user] += 1 else: db['users'][user] = 1 # only count message profiles and rps if asked to if options.msgprofiles: if msg_profile in db['msgprof']: if rp in db['msgprof'][msg_profile]: db['msgprof'][msg_profile][rp] += 1 else: db['msgprof'][msg_profile][rp] = 1 else: db['msgprof'][msg_profile] = {} db['msgprof'][msg_profile][rp] = 1 return db
926f805d87ead9af1099f39bfb57be0b4b775e0a
3,649,779
def resize_preserving_order(nparray: np.ndarray, length: int) -> np.ndarray: """Extends/truncates nparray so that ``len(result) == length``. The elements of nparray are duplicated to achieve the desired length (favours earlier elements). Constructs a zeroes array of length if nparray is empty. See Also -------- resize_array : cycles elements instead of favouring earlier ones make_even : similar earlier-favouring behaviour for balancing 2 iterables Examples -------- Normal usage:: resize_preserving_order(np.array([]), 5) # np.array([0., 0., 0., 0., 0.]) nparray = np.array([[1, 2], [3, 4]]) resize_preserving_order(nparray, 1) # np.array([[1, 2]]) resize_preserving_order(nparray, 3) # np.array([[1, 2], # [1, 2], # [3, 4]]) """ if len(nparray) == 0: return np.zeros((length, *nparray.shape[1:])) if len(nparray) == length: return nparray indices = np.arange(length) * len(nparray) // length return nparray[indices]
e074b1135d2192a9b0cf2d9b91f6d99f22408220
3,649,780
def push(service, key, data): """Push Called to push data to the sync cache Args: service (str): The name of the service using the sync key (mixed): The key to push the data onto data (mixed): The data to be pushed Returns: bool|string """ # Make sure the service and key are strings if not isinstance(service, basestring): service = str(service) if not isinstance(key, basestring): key = str(key) # Generate the JSON sJSON = JSON.encode({ "service": service, "key": key, "data": data }) # Check if anyone is interested in the key lSessions = _moRedis.smembers("%s%s" % (service, key)) # If there are any sessions if lSessions: # For each session found for sSession in lSessions: # Add the message to its list p = _moRedis.pipeline() p.lpush(sSession, sJSON) p.expire(sSession, 21600) p.execute() # Now publish the message for anyone using websockets _moRedis.publish("%s%s" % (service, key), sJSON) # Return OK return True
2be85735b1c4965e5a0cdf35b5f62267ce31cc6e
3,649,781
def get_db_filenames(database_name): """ This is used to populate the dropdown menu, so users can only access their data if their name is in the user column""" con = sql.connect(database_name) c = con.cursor() names_list = [] for row in c.execute( """SELECT Dataset_Name FROM master_table"""): names_list.append(row[0]) con.close() exists_list = [] for name in names_list: if if_file_exists_in_db(database_name, name): exists_list.append(name) return exists_list
7ffdd7cfb24d135ddc20353799dd0c7d21504232
3,649,783
import string def Calculate(values, mode=0, bin_function=None): """Return a list of (value, count) pairs, summarizing the input values. Sorted by increasing value, or if mode=1, by decreasing count. If bin_function is given, map it over values first. """ if bin_function: values = list(map(bin_function, values)) bins = {} for val in values: v = "%f-%f" % tuple(val) bins[v] = bins.get(v, 0) + 1 bb = list(bins.items()) if mode: bb.sort(lambda x, y: cmp(y[1], x[1])) else: bb.sort() r = [] for v, n in bb: x, y = list(map(string.atof, string.split(v, "-"))) r.append((x, y, n)) return r
bb3f40eec7733d948e66e00c3bafdd032acb6372
3,649,784
import time def getToday(format=3): """返回今天的日期字串""" t = time.time() date_ary = time.localtime(t) if format == 1: x = time.strftime("%Y%m%d", date_ary) elif format == 2: x = time.strftime("%H:%M", date_ary) elif format == 3: x = time.strftime("%Y/%m/%d", date_ary) elif format == 4: x = time.strftime("%Y/%m/%d %H:%M", date_ary) elif format == 5: x = time.strftime("%y%m%d", date_ary) elif format == 6: x = time.strftime("%Y-%m-%d", date_ary) elif format == 7: x = time.strftime("%Y/%m/%d %H:%M:%S", date_ary) elif format == 8: x = time.strftime("%Y-%m-%d %H:%M", date_ary) elif format == 9: x = time.strftime("%Y-%m-%d %H:%M:%S", date_ary) elif format == 10: x = time.strftime("%Y年%m月%d日 %H:%M", date_ary) else: x = time.strftime("%Y-%m-%d %H:%M:%S", date_ary) return x
900c0a0d42dc2220c5e5030eeebd858e3e6a41bf
3,649,785
def _get_referenced(body, start, end, no_header, clean, as_xml, as_list): """Retrieve data from body between some start and end.""" if body is None or start is None or end is None: return None content_list = body.get_between( start, end, as_text=False, no_header=no_header, clean=clean ) if as_list: return content_list referenced = Element.from_tag("office:text") for chunk in content_list: referenced.append(chunk) if as_xml: return referenced.serialize() else: return referenced
2b3e1ce008461711c37e4af6dda7dc7d2e332d9e
3,649,786
import torch def info(filepath: str) -> AudioMetaData: """Get signal information of an audio file. Args: filepath (str): Path to audio file Returns: AudioMetaData: meta data of the given audio. """ sinfo = torch.ops.torchaudio.sox_io_get_info(filepath) return AudioMetaData(sinfo.get_sample_rate(), sinfo.get_num_frames(), sinfo.get_num_channels())
e3ff5929f563977c44f25f8f51f3a7014f43b397
3,649,787
def _override_regex_to_allow_long_doctest_lines(): """Allow too-long lines for doctests. Mostly a copy from `pylint/checkers/format.py` Parts newly added are marked with comment, "[PYTA added]: ..." """ def new_check_lines(self, lines, i): """check lines have less than a maximum number of characters """ max_chars = self.config.max_line_length ignore_long_line = self.config.ignore_long_lines def check_line(line, i, prev_line=None): if not line.endswith('\n'): self.add_message('missing-final-newline', line=i) else: # exclude \f (formfeed) from the rstrip stripped_line = line.rstrip('\t\n\r\v ') if not stripped_line and _EMPTY_LINE in self.config.no_space_check: # allow empty lines pass elif line[len(stripped_line):] not in ('\n', '\r\n'): self.add_message('trailing-whitespace', line=i) # Don't count excess whitespace in the line length. line = stripped_line mobj = OPTION_RGX.search(line) if mobj and mobj.group(1).split('=', 1)[0].strip() == 'disable': line = line.split('#')[0].rstrip() if len(line) > max_chars and not ignore_long_line.search(line): self.add_message('line-too-long', line=i, args=(len(line), max_chars)) return i + 1 unsplit_ends = { '\v', '\x0b', '\f', '\x0c', '\x1c', '\x1d', '\x1e', '\x85', '\u2028', '\u2029'} unsplit = [] _split_lines = lines.splitlines(True) # [PYTA added]: enumerate to get line_i index. for line_i, line in enumerate(_split_lines): if line[-1] in unsplit_ends: unsplit.append(line) continue if unsplit: unsplit.append(line) line = ''.join(unsplit) unsplit = [] # [PYTA added]: Skip error message for long doctest lines doctest_tokens = compile(r'^\s*>>>.*?\n$') if match(doctest_tokens, line): continue elif line_i > 0 and match(doctest_tokens, _split_lines[line_i-1]): continue i = check_line(line, i) if unsplit: check_line(''.join(unsplit), i) FormatChecker.check_lines = new_check_lines
9b9d1b5eefaa9e61d1e8915aef988fbc25756d1a
3,649,788
import types def handle(*, artifacts: oa_types.SimplePropertyArtifacts) -> types.TColumn: """ Handle a simple property. Args: artifacts: The artifacts of the simple property. Returns: The constructed column. """ return facades.sqlalchemy.simple.construct(artifacts=artifacts)
2c9d5cd47b2aecb7603430c8eec7b326ce3c249f
3,649,789
def rollout_representation(representation_model, steps, obs_embed, action, prev_states, done): """ Roll out the model with actions and observations from data. :param steps: number of steps to roll out :param obs_embed: size(time_steps, batch_size, n_agents, embedding_size) :param action: size(time_steps, batch_size, n_agents, action_size) :param prev_states: RSSM state, size(batch_size, n_agents, state_size) :return: prior, posterior states. size(time_steps, batch_size, n_agents, state_size) """ priors = [] posteriors = [] for t in range(steps): prior_states, posterior_states = representation_model(obs_embed[t], action[t], prev_states) prev_states = posterior_states.map(lambda x: x * (1.0 - done[t])) priors.append(prior_states) posteriors.append(posterior_states) prior = stack_states(priors, dim=0) post = stack_states(posteriors, dim=0) return prior.map(lambda x: x[:-1]), post.map(lambda x: x[:-1]), post.deter[1:]
2736609ab54d477c3fad2ab7a4e3270772517a08
3,649,790
def generate_random_ast(schema, rng): """End-to-end simulator for AST of Core DSL.""" distributions = [schemum[1] for schemum in schema] partition_alpha = rng.gamma(1,1) partition = generate_random_partition(partition_alpha, len(distributions), rng) row_dividers = [generate_random_row_divider(rng) for _i in partition] primitives = [ [output, dist, generate_random_hyperparameters(dist, rng)] for output, dist in enumerate(distributions) ] return [ [row_divider, [primitives[b] for b in block]] for row_divider, block in zip(row_dividers, partition) ]
9547f815ad07af33b182c7edf7ea646ec9fdd49f
3,649,792
def _opcode_to_string(opcode): """Return the printable name for a REIL opcode. Args: opcode (reil.Opcode): The opcode to provide in printable form. Returns: A string representing the opcode. """ return _opcode_string_map[opcode]
a1307efe0af8d223360a9ca0f2d9e96913ccb601
3,649,793
def get_shot(shot): """Retrieves shot object from database and returns as dictionary. Raises exception if shot is not found. """ return __get_conn().get_entity(__table_name(), shot['PartitionKey'], shot['RowKey'])
0e9ad55427bba2074f7a77d94b61e7bae34bcbda
3,649,794
def report_value_count(data_frame: pd.DataFrame, column: str, digits: int = 2) -> str: """ Report the number and percentage of non-empty values in the column. Parameters ---------- data_frame : pandas.DataFrame A data frame with one or more columns. column : str The name of the column to report on. digits : int, optional The number of digits to report in the percentage (default 2). Returns ------- str The number of non-empty cells and a percentage of the total number of rows. """ count = data_frame[column].notnull().sum() # The type of `count` is `numpy.int64` which when divided by zero yields `nan`. # This is undesired and we rather raise an exception here. if len(data_frame) == 0: raise ZeroDivisionError("The data frame is empty!") return f"{humanize.intcomma(count)} ({count / len(data_frame):.{digits}%})"
d31d9e8bae216f7931f96ec08992d6319d4c3645
3,649,795
def input_fn(is_training, data_dir, batch_size, num_epochs=1, num_parallel_calls=1, multi_gpu=False): """Input_fn using the tf.data input pipeline for CIFAR-10 dataset. Args: is_training: A boolean denoting whether the input is for training. data_dir: The directory containing the input data. batch_size: The number of samples per batch. num_epochs: The number of epochs to repeat the dataset. num_parallel_calls: The number of records that are processed in parallel. This can be optimized per data set but for generally homogeneous data sets, should be approximately the number of available CPU cores. multi_gpu: Whether this is run multi-GPU. Note that this is only required currently to handle the batch leftovers, and can be removed when that is handled directly by Estimator. Returns: A dataset that can be used for iteration. """ filenames = get_filenames(is_training, data_dir) dataset = tf.data.FixedLengthRecordDataset(filenames, _RECORD_BYTES) num_images = is_training and _NUM_IMAGES['train'] or _NUM_IMAGES['validation'] return resnet_run_loop.process_record_dataset( dataset, is_training, batch_size, _NUM_IMAGES['train'], parse_record, num_epochs, num_parallel_calls, examples_per_epoch=num_images, multi_gpu=multi_gpu)
5d27f5a04b409ad4b04ce9885b592b0454ae0b4b
3,649,796
def getWinners(players, game): """ Return a list of winners :param players: :param game: :return: """ # get score for each player for i in range(0, len(game.players)): game.players[i].credits = scoreFor(i, game) currentPlayer = whoseTurn(game) # add 1 to players who had less turns best = 0 winners = [] for i in range(0, len(game.players)): if best < game.players[i].credits: best = game.players[i].credits winners.append(i) elif best == game.players[i].credits: if i <= currentPlayer: winners.append(i) else: if currentPlayer in winners: winners = [] winners.append(i) return winners
a872d4f9ed596e31ae9a129c9054f9bb95a6e765
3,649,797
def read_xsf(filepath): """ :param filepath filepath of the xtd file :return cell and atoms need to build the pymatflow.structure.crystal object """ a = ase.io.read(filepath, format='xsf') cell = a.cell.tolist() atoms = [] for i in range(len(a.arrays['numbers'])): for item in base.element: if base.element[item].number == a.arrays['numbers'][i]: symbol = item break atoms.append(base.Atom( symbol, a.arrays['positions'][i, 0], a.arrays['positions'][i, 1], a.arrays['positions'][i, 2] )) return cell, atoms
97152eb3d18752e78689598bb0c8603c13051623
3,649,798
def elina_abstract0_bound_linexpr(man, a, linexpr): """ Returns the ElinaInterval taken by an ElinaLinexpr0 over an ElinaAbstract0. Parameters ---------- man : ElinaManagerPtr Pointer to the ElinaManager. a : ElinaAbstract0Ptr Pointer to the ElinaAbstract0. linexpr : ElinaLinexpr0Ptr Pointer to the ElinaLinexpr0. Returns ------- interval : ElinaIntervalPtr Pointer to the ElinaInterval. """ interval = None try: elina_abstract0_bound_linexpr_c = elina_auxiliary_api.elina_abstract0_bound_linexpr elina_abstract0_bound_linexpr_c.restype = ElinaIntervalPtr elina_abstract0_bound_linexpr_c.argtypes = [ElinaManagerPtr, ElinaAbstract0Ptr, ElinaLinexpr0Ptr] interval = elina_abstract0_bound_linexpr_c(man, a, linexpr) except: print('Problem with loading/calling "elina_abstract0_bound_linexpr" from "libelinaux.so"') print('Make sure you are passing ElinaManagerPtr, ElinaAbstract0Ptr, ElinaLinexpr0Ptr to the function') return interval
2764507b79f3326741496a92642be75b5afb8ce4
3,649,799
import random import collections def load_papertext(train_rate=0.8, dev_rate=0.1, test_rate=0.1, max_length=50, download_from_label_studio=True): """ Aspect Base sentiment analysis :param kind: 是加载papertext数据,还是dem8的数据 :return: :rtype: """ export_dir = "/opt/nlp/data/papertext/" if download_from_label_studio: json_path = export_data(hostname='http://127.0.0.1:8080/api/', dirpath=export_dir, jsonfile="0707.json") data = collect_json(dirpath=export_dir) valid_data = [] for one in data: for complete in one['completions']: if complete.get('was_cancelled'): # 被取消了,那么跳过 continue else: # 只取第一个标注结果就行了,我们只有一个标注结果 if complete['result']: result_one = complete['result'][0] label = result_one['value']['choices'][0] location = one['data']['location'] location = location.replace('行数','lines num').replace('段落宽度','paragraph width').replace('段落高度','paragraph height').replace('页面宽','page width').replace('页面高','page height') text = one['data']['text'] valid_data.append([text,location,label]) print(f'从总的数据{len(data)}中, 共收集到有效数据{len(valid_data)}') random.seed(30) random.shuffle(valid_data) total = len(valid_data) train_num = int(total * train_rate) dev_num = int(total * dev_rate) test_num = int(total * test_rate) train_data = valid_data[:train_num] dev_data = valid_data[train_num:train_num+dev_num] test_data = valid_data[train_num+dev_num:] # 处理一下,保存的格式 def change_data(kind_data, name): cnts = collections.Counter() rows = [] for idx, one_data in enumerate(kind_data): content, location, label = one_data # label_id = labels2id[label] assert label in ['作者','页眉','页脚','段落','标题','参考','表格','图像','公式','其它'], "label不是特定的关键字,那么paper_task_def.yml配置文件中的labels就不能解析,会出现错误" sample = {'uid': idx, 'premise': content, 'hypothesis': location, 'label': label} cnts[label] +=1 rows.append(sample) print(f"{name}数据集的各个label的数量是: {cnts}") return rows papertext_train_data = change_data(train_data, name='train') papertext_dev_data = change_data(dev_data, name='dev') papertext_test_data = change_data(test_data, name='test') return papertext_train_data, papertext_dev_data, papertext_test_data
b0c4747aaf61dce82612162652218ce001a7f17e
3,649,800
import json def _load_cmake_spec(): """Load and return the CMake spec from disk""" try: with open(CMAKE_SPEC_FILE()) as fp: return json.load(fp) except (OSError, IOError, ValueError): return None
32d239ec667aa6f24da6f426d0c2dbf1984f3409
3,649,802
def read(): """ Read temperature :return: temperature """ # global ds18b20 location = '/sys/bus/w1/devices/' + ds18b20 + '/w1_slave' tfile = open(location) text = tfile.read() tfile.close() secondline = text.split("\n")[1] temperaturedata = secondline.split(" ")[9] temperature = float(temperaturedata[2:]) temperature = temperature / 1000 return temperature
7e4c689d5cce6b28c28314eb7e1773e9af1a5061
3,649,804
import time def wine(root): """Title of Database: Wine recognition data Updated Sept 21, 1998 by C.Blake : Added attribute information These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines. Number of Instances class 1 59 class 2 71 class 3 48 Data storage directory: root = `/user/.../mydata` wine data: `root/wine/wine.txt` `root/wine/wine.json` Args: root: str, Store the absolute path of the data directory. example:if you want data path is `/user/.../mydata/wine`, root should be `/user/.../mydata`. Returns: Store the absolute path of the data directory, is `root/wine`. """ start = time.time() task_path = assert_dirs(root, 'wine') url_introduce = 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names' url_txt = 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data' rq.files(url_introduce, gfile.path_join(task_path, 'introduce.txt'), verbose=0) rq.table(url_txt, gfile.path_join(task_path, 'wine.txt'), names=['label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline']) print('wine dataset download completed, run time %d min %.2f sec' %divmod((time.time()-start), 60)) return task_path
f2a9a3b66b276b563dc03919becc326f35d77b3a
3,649,805
def initialize_scenario_data(): """Will initialize the Scenario Data. :return an empty ScenarioData named tuple :rtype ScenarioData """ actors = {} companies = {} scenario_data = ScenarioData(actors, companies) return scenario_data
4bbb26b84abef89fc6636bd382d0308cbc8e7573
3,649,806
def dynamicMass(bulk_density, lat, lon, height, jd, velocity, decel, gamma=1.0, shape_factor=1.21): """ Calculate dynamic mass at the given point on meteor's trajectory. Either a single set of values can be given (i.e. every argument is a float number), or all arguments must be numpy arrays. Arguments: bulk_density: [float] Bulk density of the meteoroid in kg/m^3. lat: [float] Latitude of the meteor (radians). lon: [flaot] Longitude of the meteor (radians). height: [float] Height of the meteor (meters). jd: [float] Julian date of the meteor. velocity: [float] Velocity of the meteor (m/s). decel: [float] Deceleration in m/s^2. Keyword arguments: gamma: [flot] Drag coefficient. 1 by defualt. shape_factor: [float] Shape factory for the body. 1.21 (sphere) by default. Other values: - sphere = 1.21 - hemisphere = 1.92 - cube = 1.0 - brick 2:3:5 = 1.55 Return: dyn_mass: [float] Dynamic mass in kg. """ # Calculate the atmosphere density at the given point atm_dens = getAtmDensity_vect(lat, lon, height, jd) # Calculate the dynamic mass dyn_mass = (1.0/(bulk_density**2))*((gamma*(velocity**2)*atm_dens*shape_factor)/decel)**3 return dyn_mass
48920ecaef4c039672a387f4da45297861b6da56
3,649,807
def input_fn_tfrecords(files_name_pattern, num_epochs, batch_size, mode): """ Input functions which parses TFRecords. :param files_name_pattern: File name to TFRecords. :param num_epochs: Number of epochs. :param batch_size: Batch size. :param mode: Input function mode. :return: features and label. """ return tf.data.experimental.make_batched_features_dataset( file_pattern=files_name_pattern, batch_size=batch_size, features=get_metadata().schema.as_feature_spec(), reader=tf.data.TFRecordDataset, num_epochs=num_epochs, shuffle=True if mode == tf.estimator.ModeKeys.TRAIN else False, shuffle_buffer_size=1 + (batch_size * 2), prefetch_buffer_size=1, )
bd2b5bf41c2ea9fbb28d7e2cdc5c8f22e8bbac93
3,649,808
def validate(number): """Check if the number provided is a valid RUC number. This checks the length, formatting, check digit and check sum.""" number = compact(number) if len(number) != 13: raise InvalidLength() if not number.isdigit(): raise InvalidFormat() if number[:2] < '01' or number[:2] > '24': raise InvalidComponent() # invalid province code if number[2] < '6': # 0..5 = natural RUC: CI plus establishment number if number[-3:] == '000': raise InvalidComponent() # establishment number wrong ci.validate(number[:10]) elif number[2] == '6': # 6 = public RUC if number[-4:] == '0000': raise InvalidComponent() # establishment number wrong if _checksum(number[:9], (3, 2, 7, 6, 5, 4, 3, 2, 1)) != 0: raise InvalidChecksum() elif number[2] == '9': # 9 = juridical RUC if number[-3:] == '000': raise InvalidComponent() # establishment number wrong if _checksum(number[:10], (4, 3, 2, 7, 6, 5, 4, 3, 2, 1)) != 0: raise InvalidChecksum() else: raise InvalidComponent() # third digit wrong return number
c09602c8b3301c6f1d4d467a1b7bfd607656c436
3,649,809
def parse_raw(data: bytes) -> dict: """ Parse the contents of an environment retrieved from flash or memory and provide an equivalent dictionary. The provided *data* should being at the start of the variable definitions. It **must not** contain the ``env_t`` metadata, such as the CRC32 word and the ``flags`` value (only present when compiled with "``CONFIG_SYS_REDUNDAND_ENVIRONMENT``". A :py:exc:`ValueError` is raised if no environment variables are found. """ results = {} regex = raw_var_regex() for match in regex.finditer(data): name = match.group('name').decode('ascii') value = match.group('value').decode('ascii') results[name] = value if not results: raise ValueError('No environment variables found') return results
c40c08a099d7468a4ec19da90ce9062d8ddd6ed1
3,649,810
from typing import List def _list_registered_paths() -> List[str]: """List available paths registered to this service.""" paths = [] for rule in application.url_map.iter_rules(): rule = str(rule) if rule.startswith("/api/v1"): paths.append(rule) return paths
56f27aa4b33191cbd779e0e173295431670d26ab
3,649,811
def input_fn(request_body, request_content_type): """An input_fn that loads a pickled numpy array""" if request_content_type == "application/python-pickle": array = np.load(BytesIO(request_body), allow_pickle=True) return array else: raise Exception("Please provide 'application/python-pickle' as a request content type")
0f6387dffc3ade2097888a92ef1af99f4d367ef8
3,649,812
def game(x_train, x_test, y_train, y_test, algo='rf', show_train_scores=True): """Standard Alogrithms fit and return scores. * Default Random State is set as 192 when posible. * Available models - dc, rf, gb, knn, mc_ovo_rf, mc_ova_rf """ if algo is 'dc': clf = clf = DummyClassifier(strategy='most_frequent', random_state=192) elif algo is 'rf': clf = RandomForestClassifier(n_jobs=-1, random_state=192) elif algo is 'gb': clf = GradientBoostingClassifier(random_state=192) elif algo is 'knn': clf = KNeighborsClassifier() elif algo is 'mc_ovo_rf': clf = OneVsOneClassifier(RandomForestClassifier(n_jobs=-1, random_state=192)) elif algo is 'mc_ova_rf': clf = OneVsRestClassifier(RandomForestClassifier(n_jobs=-1, random_state=192)) else: print('improper model name, please check help') return 0, 0 clf = clf.fit(x_train, y_train) # if user does not opt ac_score, f1_score = 0, 0 if show_train_scores: print('Training Scores') ac_score, f1_score = check_metric(clf.predict(x_train), y_train) print('\nTesting Scores') ac_score1, f1_score1 = check_metric(clf.predict(x_test), y_test) ret = {'classifier': clf, 'test_ac_score': ac_score, 'test_f1_score': f1_score, 'train_ac_score': ac_score1, 'train_f1_score': f1_score1, } return ret
9a225f04d5d883bc70c4f4f9036ddfee7b206dbc
3,649,813
def get_convolutional_model(vocab_size: int, input_length: int, num_classes: int, embedding_size: int=300, model_size: str='small' ) -> Model: """Create a character convolutional model Parameters ---------- vocab_size: the number of characters in the vocabulary input_length: the size of the input sequences (must be least 160) num_classes: the number of output classes embedding_size: the vector size of character representations model_size: 'large' or 'small' feature sizes Returns ------- tf.keras.Model: an uncompiled keras model """ if model_size.lower() == 'small': conv_filters = 256 dnn_size = 1024 elif model_size.lower() == 'large': conv_filters = 1024 dnn_size = 2048 else: ValueError("model size must be either 'small' or 'large'") if input_length < 160: ValueError('The input sequences must be at least 160 characters long') model = Sequential() model.add(layers.Embedding( vocab_size, embedding_size, input_length=input_length, name='character_embedding' )) model.add(layers.Dropout(0.2, name='input_dropout')) model.add(layers.Conv1D( filters=conv_filters, kernel_size=7, activation='relu', name='conv_1')) model.add(layers.MaxPooling1D( pool_size=3, name='pooling_1')) model.add(layers.Conv1D( filters=conv_filters, kernel_size=7, activation='relu', name='conv_2')) model.add(layers.MaxPooling1D( pool_size=3, name='pooling_2')) model.add(layers.Conv1D( filters=conv_filters, kernel_size=3, activation='relu', name='conv_3')) model.add(layers.Conv1D( filters=conv_filters, kernel_size=3, activation='relu', name='conv_4')) model.add(layers.Conv1D( filters=conv_filters, kernel_size=3, activation='relu', name='conv_5')) model.add(layers.Conv1D( filters=conv_filters, kernel_size=7, activation='relu', name='conv_6')) model.add(layers.MaxPooling1D( pool_size=3, name='pooling_3')) model.add(layers.Flatten(name='flatten')) model.add(layers.Dense(dnn_size, activation='relu', name='dense_out_1')) model.add(layers.Dropout(0.5, name='post_dropout_1')) model.add(layers.Dense(dnn_size, activation='relu', name='dense_out_2')) model.add(layers.Dropout(0.5, name='post_dropout_2')) model.add(layers.Dense(num_classes, activation='softmax', name='output')) return model
aafd9fe6141a05c433508ff0a9583d9c42a7de5b
3,649,814
def parse_test_config(doc): """ Get the configuration element. """ test_config = doc.documentElement if test_config.tagName != 'configuration': raise RuntimeError('expected configuration tag at root') return test_config
c61c2f4e43c5501c461bb92b63609162b2918860
3,649,815
import textwrap def _get_control_vars(control_vars): """ Create the section of control variables Parameters ---------- control_vars: str Functions to define control variables. Returns ------- text: str Control variables section and header of model variables section. """ text = textwrap.dedent(""" ########################################################################## # CONTROL VARIABLES # ########################################################################## def _init_outer_references(data): for key in data: __data[key] = data[key] def time(): return __data['time']() """) text += control_vars text += textwrap.dedent(""" ########################################################################## # MODEL VARIABLES # ########################################################################## """) return text
614a6ca5bc8ac7354f63bfceabaff4eb4b93208a
3,649,816
def echo(): """Echo data""" return request.get_data() + '\n'
75aad93e46925ed086be87b18a96d756fa1c6425
3,649,817
import logging def _get_signature_def(signature_def_key, export_dir, tags): """Construct a `SignatureDef` proto.""" signature_def_key = ( signature_def_key or signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY) metagraph_def = saved_model_cli.get_meta_graph_def(export_dir, tags) try: signature_def = signature_def_utils.get_signature_def_by_key( metagraph_def, signature_def_key) except ValueError as e: try: formatted_key = _DEFAULT_INPUT_ALTERNATIVE_FORMAT.format( signature_def_key) signature_def = signature_def_utils.get_signature_def_by_key( metagraph_def, formatted_key) logging.warning('Could not find signature def "%s". ' 'Using "%s" instead', signature_def_key, formatted_key) except ValueError: raise ValueError( 'Got signature_def_key "{}". Available signatures are {}. ' 'Original error:\n{}'.format( signature_def_key, list(metagraph_def.signature_def), e)) return signature_def
d0bedd323fb68ad41553034a08b64dc73f85faf3
3,649,819
def illuminance_to_exposure_value(E, S, c=250): """ Computes the exposure value :math:`EV` from given scene illuminance :math:`E` in :math:`Lux`, *ISO* arithmetic speed :math:`S` and *incident light calibration constant* :math:`c`. Parameters ---------- E : array_like Scene illuminance :math:`E` in :math:`Lux`. S : array_like *ISO* arithmetic speed :math:`S`. c : numeric, optional *Incident light calibration constant* :math:`c`. With a flat receptor, *ISO 2720:1974* recommends a range for :math:`c`. of 240 to 400 with illuminance in :math:`Lux`; a value of 250 is commonly used. With a hemispherical receptor, *ISO 2720:1974* recommends a range for :math:`c` of 320 to 540 with illuminance in :math:`Lux`; in practice, values typically are between 320 (Minolta) and 340 (Sekonic). Returns ------- ndarray Exposure value :math:`EV`. Notes ----- - The exposure value :math:`EV` indicates a combination of camera settings rather than the focal plane exposure, i.e. luminous exposure, photometric exposure, :math:`H`. The focal plane exposure is time-integrated illuminance. References ---------- :cite:`Wikipediabj` Examples -------- >>> illuminance_to_exposure_value(2.5, 100) 0.0 """ E = as_float_array(E) S = as_float_array(S) c = as_float_array(c) EV = np.log2(E * S / c) return EV
7c03f816e801f04735687a2a2adb6f4969877bb2
3,649,820
from typing import Counter def feedback(code, guess): """ Return a namedtuple Feedback(blacks, whites) where blacks is the number of pegs from the guess that are correct in both color and position and whites is the number of pegs of the right color but wrong position. """ blacks = sum(g == c for g, c in zip(guess, code)) whites = sum((Counter(guess) & Counter(code)).values()) - blacks return Feedback(blacks, whites)
bab57da2d7c60869988d6c24b69b8eab1c7da173
3,649,821
from datetime import date from .models import PlacedDateBet def find_winning_dates(placed_bets, winning_date): """ Finds the placed bets with the dates closest to the winning date :param placed_bets: iterable of PlacedDateBet :param winning_date: datetime.date :return: list of winning PlacedDateBets """ assert isinstance(winning_date, date) dates = [] for placed_bet in placed_bets: assert isinstance(placed_bet, PlacedDateBet) dates.append(placed_bet.placed_date) timedeltas = [] for date in dates: timedeltas.append(abs(winning_date - date)) closest = min(timedeltas) indices = [] for i in range(0, len(timedeltas)): if timedeltas[i] == closest: indices.append(i) winning_bets = [] for index in indices: winning_bets.append(placed_bets[index]) return winning_bets
73315f2bebfcc0290f9372af935ded78011c7d4b
3,649,823
def create_greedy_policy(Q): """ Creates a greedy policy based on Q values. Args: Q: A dictionary that maps from state -> action values Returns: A function that takes an observation as input and returns a vector of action probabilities. """ def policy_fn(observation): a_probs = np.zeros(len(Q[observation])) a_probs[np.argmax(Q[observation])] = 1.0 return a_probs return policy_fn
01966964034504454e3be9926236706371c626c8
3,649,824
def get_tags(rule, method, **options): """ gets the valid tags for given rule. :param pyrin.api.router.handlers.base.RouteBase rule: rule instance to be processed. :param str method: http method name. :rtype: list[str] """ return get_component(SwaggerPackage.COMPONENT_NAME).get_tags(rule, method, **options)
4671d1d9c66934d6b22bee74801d07b30635b3b6
3,649,825
def get_paybc_transaction_request(): """Return a stub payment transaction request.""" return { 'clientSystemUrl': 'http://localhost:8080/abcd', 'payReturnUrl': 'http://localhost:8081/xyz' }
b913438562d4f2b0883e340b48843f9954faa8a4
3,649,826
def pretreatment(filename): """pretreatment""" poems = [] file = open(filename, "r") for line in file: #every line is a poem #print(line) title, poem = line.strip().split(":") #get title and poem poem = poem.replace(' ','') if '_' in poem or '《' in poem or '[' in poem or '(' in poem or '(' in poem: continue if len(poem) < 10 or len(poem) > 128: #filter poem continue poem = '[' + poem + ']' #add start and end signs poems.append(poem) print("唐诗总数: %d"%len(poems)) #counting words allWords = {} for poem in poems: for word in poem: if word not in allWords: allWords[word] = 1 else: allWords[word] += 1 #''' # erase words which are not common erase = [] for key in allWords: if allWords[key] < 2: erase.append(key) for key in erase: del allWords[key] #''' wordPairs = sorted(allWords.items(), key = lambda x: -x[1]) words, a= zip(*wordPairs) #print(words) words += (" ", ) wordToID = dict(zip(words, range(len(words)))) #word to ID wordTOIDFun = lambda A: wordToID.get(A, len(words)) poemsVector = [([wordTOIDFun(word) for word in poem]) for poem in poems] # poem to vector #print(poemsVector) #padding length to batchMaxLength batchNum = (len(poemsVector) - 1) // batchSize X = [] Y = [] #create batch for i in range(batchNum): batch = poemsVector[i * batchSize: (i + 1) * batchSize] maxLength = max([len(vector) for vector in batch]) temp = np.full((batchSize, maxLength), wordTOIDFun(" "), np.int32) for j in range(batchSize): temp[j, :len(batch[j])] = batch[j] X.append(temp) temp2 = np.copy(temp) #copy!!!!!! temp2[:, :-1] = temp[:, 1:] Y.append(temp2) return X, Y, len(words) + 1, wordToID, words
5aa85b3bda72d3efb3067ebcc06d7f4038d9990e
3,649,828
def forward_fdm(order, deriv, adapt=1, **kw_args): """Construct a forward finite difference method. Further takes in keyword arguments of the constructor of :class:`.fdm.FDM`. Args: order (int): Order of the method. deriv (int): Order of the derivative to estimate. adapt (int, optional): Number of recursive calls to higher-order derivatives to dynamically determine the step size. Defaults to `1`. Returns: :class:`.fdm.FDM`: The desired finite difference method. """ return FDM( list(range(order)), deriv, bound_estimator=_construct_bound_estimator( forward_fdm, order, adapt, **kw_args ), **kw_args )
7b5c46fcdfc1a186079b2a4f94a129b8f79dbfde
3,649,829
import requests def get_list_by_ingredient(ingredient): """ this should return data for filtered recipes by ingredient """ res = requests.get(f'{API_URL}/{API_KEY}/filter.php', params={"i":ingredient}) return res.json()
5bb34ffe635499a93decc5d4c080c638ee92c1b5
3,649,831
def chk_sudo(): """\ Type: decorator. The command will only be able to be executed by the author if the author is owner or have permissions. """ async def predicate(ctx): if is_sudoers(ctx.author): return True await ctx.message.add_reaction("🛑") raise excepts.NotMod() return commands.check(predicate)
45ddad31e761c9cf227a19fb78e3b3f52414c966
3,649,832
def have_same_items(list1, list2): """ Проверяет состоят ли массивы list1 и list2 из одинакового числа одних и тех же элементов Parameters ---------- list1 : list[int] отсортированный по возрастанию массив уникальных элементов list2 : list[int] массив произвольной длинны произвольных чисел Returns ------- bool """ return True
2973a1961e25686fcbd2003dd366429cbd4c67eb
3,649,833
def analyze(geometry_filenames, mode='global', training_info=None, stride=None, box_size=None, configs=None, descriptor=None, model=None, format_=None, descriptors=None, save_descriptors=False, save_path_descriptors=None, nb_jobs=-1, **kwargs): """ Apply ARISE to given list of geometry files. This function is key to reproduce the single- and polycrystalline predictions in: [1] A. Leitherer, A. Ziletti, and L.M. Ghiringhelli, arXiv ??? (2021). Parameters: gometry_filenames: list list of geometry files to be analyzed. mode: str (default='global') If 'global', a global descriptor will be calculated and a global label (plus uncertainty) predicted. If 'local', the strided pattern matching algorithm introduced in [1] is applied. stride: float (default=None) Step size in strided pattern matching algorithm. Only relevant if mode='local'. If no value is specified, a stride of 4 Angstroem in each direction, for each of the geometry files is used. box_size: float (default=None) Size of the box employed in strided pattern matching algorithm. Only relevant if mode='local'. If no value is specified, a box size of 16 Angstroem is used, for each of the geometry files. configs: object (default=None) configuration object, defining folder structure. For more details, please have a look at the function set_configs from ai4materials.utils.utils_config descriptor: ai4materials descriptor object (default=None) If None, the SOAP descriptor as implemented in the quippy package (see ai4materials.descritpors.quippy_soap_descriptor) with the standard settings employed in [1] will be used. model: str, (default=None) If None, the model of [1] will be automatically loaded. Otherwise the path to the model h5 file needs to be specified alongside information on the training set (in particular, the relation between integer class labels and class labels). training_info: path to dict (default=None) Information on the realtion between int labels and structure labels. If model=None, training information of [1] will be loaded regardless of this keyword. If model not None, then specification of training_info is mandatory. The structure of this dictionary is defined as dict = {'data': ['nb_classes': 108, 'classes': [text label class 0, text label class 1, ... ie ordered class labels]]} format_: str, optional (default=None) format of geometry files. If not specified, the input files are assumed to have aims format in case of global mode, and xyz format in case of local mode. descriptors: path to desc or numpy array, optional (default=None) If mode=local, then this must be a path to a desc file containing the descriptors. If mode=global, then this must be a numpy array containing the descriptors. save_descriptors: bool, optional (default=False) Decides whether to save calculated descriptors into specified savepath or not (only for mode=local). save_path_descriptors: str, optional (default=None) path into which descriptors are saved (for mode=global) """ if not model == None: if training_info == None: raise ValueError("No information on the relation between int and str class labels is provided.") #if not (type(model) == str or type(model)==keras.engine.training.Model): # raise NotImplementedError("Either specifiy path or model loaded from h5 via keras.models.load_model") if stride == None: stride = [[4.0, 4.0, 4.0] for _ in range(len(geometry_filenames))] if box_size == None: box_size = [16.0 for _ in range(len(geometry_filenames))] if format_ == None: if mode == 'global': format_ = 'aims' elif mode == 'local': format_ = 'xyz' if not model == None: try: model_file_ending = model.split('.')[1] if not model_file_ending == '.h5': raise NotImplementedError("Model path must link to h5 file.") except: raise ValueError("Model must be a path to a h5 file or None. In the latter case, a pretrained model is loaded.") if mode == 'global': predictions, uncertainty = global_(geometry_filenames, descriptor=descriptor, model=model, format_=format_, descriptors=descriptors, save_descriptors=save_descriptors, save_path_descriptors=save_path_descriptors, **kwargs) elif mode == 'local': predictions, uncertainty = local(geometry_filenames, stride, box_size, configs, descriptor=descriptor, model=model, format_=format_, desc_filename=descriptors, nb_jobs=nb_jobs, **kwargs) else: raise ValueError("Argument 'mode' must either be 'local' or 'global'.") return predictions, uncertainty
eeec9ac33a91b41b8a90f825aef0fc7605bdbf58
3,649,834
def get_params(name, seed): """Some default parameters. Note that this will initially include training parameters that you won't need for metalearning since we have our own training loop.""" configs = [] overrides = {} overrides["dataset_reader"] = {"lazy": True} configs.append(Params(overrides)) configs.append( Params({"random_seed": seed, "numpy_seed": seed, "pytorch_seed": seed}) ) configs.append(Params.from_file("config/ud/en/udify_bert_finetune_en_ewt.json")) configs.append(Params.from_file("config/udify_base.json")) return util.merge_configs(configs)
02d70be07a2d7afe793e657d6fb38fefe99171ce
3,649,835
def rgb2hex(rgb): """Converts an RGB 3-tuple to a hexadeximal color string. EXAMPLE ------- >>> rgb2hex((0,0,255)) '#0000FF' """ return ('#%02x%02x%02x' % tuple(rgb)).upper()
4c3323e34fcd2c1b4402ebe5f433c5fd9320cce9
3,649,836
from typing import Union import re from typing import Optional def path_regex( path_regex: Union[str, re.Pattern], *, disable_stage_removal: Optional[bool] = False ): """Validate the path in the event against the given path pattern. The following APIErrorResponse subclasses are used: PathNotFoundError: When the path doesn't match. Args: path: A regular expression to validate against. disable_stage_removal (bool): Preserve the original path with stage. """ return _get_decorator( validate_path_regex, path_regex=path_regex, disable_stage_removal=disable_stage_removal, update_event=True, )
5c54d71a20fa7795b9e6eefa508de5b8516378a6
3,649,837
async def root(): """Health check""" return {"status": "OK"}
80c3c7ff9e1abebbb9f38dc11a5ecd5a7fe5414a
3,649,838
from typing import Dict from typing import List def build_foreign_keys( resources: Dict[str, dict], prune: bool = True, ) -> Dict[str, List[dict]]: """Build foreign keys for each resource. A resource's `foreign_key_rules` (if present) determines which other resources will be assigned a foreign key (`foreign_keys`) to the reference's primary key: * `fields` (List[List[str]]): Sets of field names for which to create a foreign key. These are assumed to match the order of the reference's primary key fields. * `exclude` (Optional[List[str]]): Names of resources to exclude. Args: resources: Resource descriptors by name. prune: Whether to prune redundant foreign keys. Returns: Foreign keys for each resource (if any), by resource name. * `fields` (List[str]): Field names. * `reference['resource']` (str): Reference resource name. * `reference['fields']` (List[str]): Reference resource field names. Examples: >>> resources = { ... 'x': { ... 'schema': { ... 'fields': ['z'], ... 'primary_key': ['z'], ... 'foreign_key_rules': {'fields': [['z']]} ... } ... }, ... 'y': { ... 'schema': { ... 'fields': ['z', 'yy'], ... 'primary_key': ['z', 'yy'], ... 'foreign_key_rules': {'fields': [['z', 'zz']]} ... } ... }, ... 'z': {'schema': {'fields': ['z', 'zz']}} ... } >>> keys = build_foreign_keys(resources) >>> keys['z'] [{'fields': ['z', 'zz'], 'reference': {'resource': 'y', 'fields': ['z', 'yy']}}] >>> keys['y'] [{'fields': ['z'], 'reference': {'resource': 'x', 'fields': ['z']}}] >>> keys = build_foreign_keys(resources, prune=False) >>> keys['z'][0] {'fields': ['z'], 'reference': {'resource': 'x', 'fields': ['z']}} """ tree = _build_foreign_key_tree(resources) keys = {} for name in tree: firsts = [] followed = [] for fields in tree[name]: path = _traverse_foreign_key_tree(tree, name, fields) firsts.append(path[0]) followed.extend(path[1:]) keys[name] = firsts if prune: # Keep key if not on path of other key keys[name] = [key for key in keys[name] if key not in followed] return keys
96cb032a03445400eeee57a23a4024ae06f62573
3,649,839
import ipaddress def port_scan(ip): """Run a scan to determine what services are responding. Returns nmap output in JSON format. """ # validate input valid_ip = ipaddress.ip_address(ip) # nnap requires a `-6` option if the target is IPv6 v6_flag = '-6 ' if valid_ip.version == 6 else '' nmap_command = f'sudo nmap {v6_flag}{valid_ip} --stats-every 60 -oX - ' \ '-R -Pn -T4 --host-timeout 120m --max-scan-delay 5ms ' \ '--max-retries 2 --min-parallelism 32 ' \ '--defeat-rst-ratelimit -sV -O -sS -p1-65535' completed_process = run_it(nmap_command) xml_string = completed_process.stdout.decode() data = bf.data(fromstring(xml_string)) return data
c33cd56635338d3476e4ce5348376a1f6b2cfd68
3,649,840
def create_table(p, table_name, schema): """Create a new Prism table. Parameters ---------- p : Prism Instantiated Prism class from prism.Prism() table_name : str The name of the table to obtain details about. If the default value of None is specified, details regarding first 100 tables is returned. schema : list A list of dictionaries containing the schema Returns ------- If the request is successful, a dictionary containing information about the table is returned. """ p.create_bearer_token() table = p.create_table(table_name, schema=schema) return table
43c8c789d4e212d2d98d68f4f22e3f0fb0a97552
3,649,841
def get_args(): """ Parses and processes args, returning the modified arguments as a dict. This is to maintain backwards compatibility with the old of parsing arguments. """ parser = make_parser() args = parser.parse_args() process_args(args) return vars(args)
8a6f31bd0c9547a007bdd7644d148e8ba0e126d1
3,649,842
from typing import Iterable def run_asm_pprinter(ir: gtirb.IR, args: Iterable[str] = ()) -> str: """ Runs the pretty-printer to generate an assembly output. :param ir: The IR object to print. :param args: Any additional arguments for the pretty printer. :returns: The assembly string. """ asm, _ = run_asm_pprinter_with_outputput(ir, args) return asm
8d71a4b91f90cb449f65d5c95ec740d78836a071
3,649,843
import re def fix_ccdsec(hdu): """ Fix CCDSEC keywords in image extensions """ section_regexp = re.compile(SECTION_STRING) # In unbinned space ccdsec = _get_key_value(hdu, 'CCDSEC') detsec = _get_key_value(hdu, 'DETSEC') if None in [ccdsec, detsec]: raise ValueError("CCDSEC {}; detsec {}".format(ccdsec, detsec)) updated = False ccd_coords = list(section_regexp.match(ccdsec).groups()) detector_coords = list(section_regexp.match(detsec).groups()) # Y coordinates should match! if ccd_coords[2:4] != detector_coords[2:4]: raise ValueError("Y values: {} {}".format(ccdsec, detsec)) # X coordinates maybe wrong if ccd_coords[0:2] != detector_coords[0:2]: for i, x in enumerate(detector_coords[0:2]): offset_x = int(x) - CCDWIDTH if offset_x <= 0: if ccd_coords[i] != detector_coords[i]: # Use DETSEC ccd_coords[i] = detector_coords[i] updated = True else: # Reset offset to x offset_x = x elif offset_x > CCDWIDTH: updated = True offset_x -= CCDWIDTH # update ccd_coords ccd_coords[i] = offset_x # Reset CCDSEC ccdsec = "[{}:{},{}:{}]".format(ccd_coords[0], ccd_coords[1], ccd_coords[2], ccd_coords[3]) hdu.header['CCDSEC'] = ccdsec return updated
1ce3e7e519f47f63f8894c3a29e269ca77d7cf5d
3,649,844
def reload(hdf): """Reload a hdf file, hdf = reload(hdf)""" filename = hdf.filename return load(filename)
6eb17d171b1181ac4ed974de6c36f83c00e72c57
3,649,845
def read_image(im_name, n_channel, data_dir='', batch_size=1, rescale=None): """ function for create a Dataflow for reading images from a folder This function returns a Dataflow object for images with file name containing 'im_name' in directory 'data_dir'. Args: im_name (str): part of image names (i.e. 'jpg' or 'im_'). n_channel (int): number of channels (3 for color images and 1 for grayscale images) data_dir (str): directory of images batch_size (int): number of images read from Dataflow for each batch rescale (bool): whether rescale image to 224 or not Returns: Image (object): batch images can be access by Image.next_batch_dict()['image'] """ def rescale_im(im, short_side=416): """ Pre-process for images images are rescaled so that the shorter side = 224 """ im = np.array(im) h, w = im.shape[0], im.shape[1] if h >= w: new_w = short_side im = imagetool.rescale_image(im, (int(h * new_w / w), short_side)) # im = skimage.transform.resize( # im, (int(h * new_w / w), short_side), preserve_range=True) else: new_h = short_side im = imagetool.rescale_image(im, (short_side, int(w * new_h / h))) # im = skimage.transform.resize( # im, (short_side, int(w * new_h / h)), preserve_range=True) # return im.astype('uint8') return im def normalize_im(im, *args): im = imagetool.rescale_image(im, rescale) # im = skimage.transform.resize( # im, rescale, preserve_range=True) # im = rescale_im(im, short_side=rescale) im = np.array(im) if np.amax(im) > 1: im = im / 255. return np.clip(im, 0., 1.) # if rescale: # pf_fnc = rescale_im # else: # pf_fnc = normalize_im if isinstance(rescale, int): rescale = [rescale, rescale] else: assert len(rescale) == 2 image_data = Image( im_name=im_name, data_dir=data_dir, n_channel=n_channel, shuffle=False, batch_dict_name=['image', 'shape'], pf_list=(normalize_im,())) image_data.setup(epoch_val=0, batch_size=batch_size) return image_data
017878c8afce1be73160b338407a920c4f01a286
3,649,846
def build_optimizer(config, model): """ Build optimizer, set weight decay of normalization to 0 by default. """ skip = {} skip_keywords = {} if hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay_keywords'): skip_keywords = model.no_weight_decay_keywords() parameters = set_weight_decay(model, skip, skip_keywords) opt_lower = config.TRAIN.OPTIMIZER.NAME.lower() optimizer = None if opt_lower == 'sgd': optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True, lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS, lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY) return optimizer
83a09ed34c24caff7367ba1e43e051f362dfa85c
3,649,847
def ising2d_worm(T_range, mcsteps, L): """T = temperature [K]; L = Length of grid.""" def new_head_position(worm, lattice): """ Extract current worm head position indices, then randomly set new worm head position index. lattice.occupied points to either lattice.bonds_x or lattice.bonds_y. """ [i, j] = worm.head bond_type = np.random.randint(1, worm.q) direction = ["Up", "Down", "Left", "Right"][np.random.randint(0, 4)] if direction=="Right": # use current indices to check for bond bond = [i, j] site = [0 if i==L-1 else i+1, j] lattice.bond_idx = 0 elif direction=="Left": # use new indices to check for bond site = [L-1 if i==0 else i-1, j] bond = [site[0], site[1]] lattice.bond_idx = 0 elif direction=="Up": # use current indices to check for bond bond = [i, j] site = [i, 0 if j==L-1 else j+1] lattice.bond_idx = 1 elif direction=="Down": # use new indices to check for bond site = [i, L-1 if j==0 else j-1] bond = [site[0], site[1]] lattice.bond_idx = 1 return bond, bond_type, site, lattice def accept_movement(current_bond, bond_type, temperature): """ Bond creation/deletion using Boltzman factor. Bonds are always deleted since 1/exp(-2/T) > 1 for all T>0. """ if current_bond: if current_bond==bond_type: # new_bond = 0 will delete the current bond accept_probability, new_bond = 1, 0 else: accept_probability, new_bond = 1-np.exp(-2/temperature), 0 else: accept_probability, new_bond = np.exp(-2/temperature), bond_type accept_move = True if np.random.rand()<accept_probability else False """ if current_bond==bond_type: accept_probability, new_bond = 1, 0 else: accept_probability, new_bond = np.exp(-2/temperature), bond_type accept_move = True if np.random.rand()<accept_probability else False """ return accept_move, new_bond def monte_carlo_step(lattice, worm, temperature): """ Since the lattice matrix is indexed as [column, row], we need to input the i, j indices in reversed order, as lattice.bond.occupied[j, i]. Measured quantities per step: Nb_step = number of bonds per step. G_micro = 2pt correlation function per micro_step corresponding to the partition function of the worm algorithm for the 2D Ising model. G_step = 2pt correlation function per step corresponding to the partition function of the metropolis algorithm for the 2D Ising model. * Note that G_micro(|i-j|) == G_step(|i-j|) when |i-j|=0. """ Nb_step = np.zeros((2)) G_micro, G_step = np.zeros((L+1)), np.zeros((L+1)) G_step_bool = np.zeros((L+1), dtype=bool) for micro_step in range(2*L**2): # propose head movement; [i, j] = new bond indices. [i, j], bond_type, new_site, lattice = new_head_position(worm, lattice) accept_move, bond_type = accept_movement(lattice.bonds[lattice.bond_idx, j, i], bond_type, temperature) if accept_move: # move worm head and either change or delete the bond. lattice.bonds[lattice.bond_idx, j, i] = bond_type worm.head = new_site # Update correlation function every microstep. diameter = worm.Diameter() G_micro[diameter] += 1 G_step_bool[diameter] = True if np.all(worm.head==worm.tail): # measure observables and reset worm when path is closed. G_step[G_step_bool] += 1 G_step_bool[:] = False B=(lattice.bonds>0).sum() Nb_step += B, B**2 worm.ResetPosition() return lattice, worm, G_micro, G_step, Nb_step # initialize main structures. print('Initializing Worm Algorithm.') observables = Observables(q, L, T_range, mcsteps) lattice = Lattice(L) worm = Worm(q, L) # correlation, correlation2, and bond_number each act as a pointer. correlation = observables.correlation #relates to G_micro correlation2 = observables.correlation2 #relates to G_step bond_number = observables.mean_bonds #relates to Nb_step print('Starting thermalization cycle ...') for step in range(int(mcsteps/5)): lattice, worm, G_micro, G_step, Nb_step = monte_carlo_step(lattice, worm, T_range[0]) print('Starting measurement cycle ...') for T_idx, T in enumerate(T_range): print(" ", "Running temperature =", T, "...") for step in range(mcsteps): lattice, worm, G_micro, G_step, Nb_step = monte_carlo_step(lattice, worm, T) # sum observables correlation[:, T_idx] += G_micro correlation2[:, T_idx] += G_step bond_number[:, T_idx] += Nb_step # average and store observables. observables.AverageObservables() print('Simulation Complete!') return observables, lattice, worm
6fba36aceb70f19605e20a460db7054b81264224
3,649,848
def valid_chapter_name(chapter_name): """ 判断目录名称是否合理 Args: chapter_name ([type]): [description] """ for each in ["目录"]: if each in chapter_name: return False return True
9ec71837503f969808a6a666a3bf999ee3290f03
3,649,849
from typing import Iterable from typing import Tuple def lex_min(perms: Iterable[Perm]) -> Tuple[Perm, ...]: """Find the lexicographical minimum of the sets of all symmetries.""" return min(all_symmetry_sets(perms))
4cbb7e78de32c46684c9e621db90708934bb5e33
3,649,850
def subfield(string, delim, occurrence): """ function to extract specified occurence of subfield from string using specified field delimiter eg select subfield('abc/123/xyz','/',0) returns 'abc' eg select subfield('abc/123/xyz','/',1) returns '123' eg select subfield('abc/123/xyz','/',2) returns 'xyz' eg select subfield('abc/123/xyz','/',3) returns '' """ """ # this logic matches the functions written for msql and psql, # because they do not have a string method to do this ans = '' found = 0 for ch in string: if ch == delim: found += 1 if found == occurrence + 1: break elif found == occurrence: ans += ch if not found: ans = '' # else it returns the entire string return ans """ # python does have a suitable string method, so use it if delim in string: try: return string.split(delim)[occurrence] except IndexError: # equivalent to the last example above return '' else: return ''
ef022d0ca05e969e8ad69e4644cd24d1b7f47cb8
3,649,851
def in_hull(points, hull): """ Test if points in `p` are in `hull` `p` should be a `NxK` coordinates of `N` points in `K` dimensions `hull` is either a scipy.spatial.Delaunay object or the `MxK` array of the coordinates of `M` points in `K`dimensions for which Delaunay triangulation will be computed """ # if not isinstance(hull,Delaunay): del points['flight_name'] del points['output'] del points['TEMPS'] del hull['flight_name'] del hull['output'] del hull['TEMPS'] hull = Delaunay(hull.as_matrix()) return hull.find_simplex(points.as_matrix())>=0
ab116c17b42c26648b02930824dd0ae591b32eef
3,649,852
def sample_random(X_all, N): """Given an array of (x,t) points, sample N points from this.""" set_seed(0) # this can be fixed for all N_f idx = np.random.choice(X_all.shape[0], N, replace=False) X_sampled = X_all[idx, :] return X_sampled
b2297c13cf7cf40dcdf82ea97e2029a96d7554ef
3,649,853