content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def list_all_connections(pg_id='root', descendants=True): """ Lists all connections for a given Process Group ID Args: pg_id (str): ID of the Process Group to retrieve Connections from descendants (bool): True to recurse child PGs, False to not Returns: (list): List of ConnectionEntity objects """ return list_all_by_kind('connections', pg_id, descendants)
6df326ff521f175b3ccfe4b1d2488328fe6e6213
3,649,976
def _GetTombstoneData(device, tombstone_file): """Retrieve the tombstone data from the device Args: device: An instance of DeviceUtils. tombstone_file: the tombstone to retrieve Returns: A list of lines """ return device.old_interface.GetProtectedFileContents( '/data/tombstones/' + tombstone_file)
99322ea3d67e150f4433c713159eb7bc8069271f
3,649,978
import time def _strTogYear(v): """Test gYear value @param v: the literal string @return v @raise ValueError: invalid value """ try: time.strptime(v+"-01-01", "%Y-%m-%d") return v except: raise ValueError("Invalid gYear %s" % v)
a65e04c2d3790d3d55bbc8788d6802e1aae1b78c
3,649,979
def aca_full_pivoting(A, epsilon): """ACA with full pivoting as in the lecture Takes in a matrix, and returns the CUR decomposition """ # R0 = A Rk = A.copy() I_list = [] J_list = [] while frobenius_norm(Rk) > epsilon*frobenius_norm(A): i, j = np.unravel_index(np.argmax(np.abs(Rk), axis=None), Rk.shape) I_list.append(i) J_list.append(j) delta = Rk[i, j] u = Rk[:, j] v = Rk[i, :].T / delta Rk = Rk - np.outer(u, v) R = A[I_list, :] U = np.linalg.inv(A[I_list, :][:, J_list]) C = A[:, J_list] return C, U, R
96bcfd4b8cb560904efc4ab6cfac6473d8dafe47
3,649,980
def catch_gpu_memory_error( f ): """ Decorator that calls the function `f` and catches any GPU memory error, during the execution of f. If a memory error occurs, this decorator prints a corresponding message and aborts the simulation (using MPI abort if needed) """ # Redefine the original function by calling it within a try/except def g(*args, **kwargs): try: return f(*args, **kwargs) except OutOfMemoryError as e: handle_cuda_memory_error( e, f.__name__ ) # Decorator: return the new function return(g)
1201236b7d2217fcfc3fcb95905f8f4e2f89af06
3,649,984
def horizontal_tail_planform_raymer(horizontal_stabilizer, wing, l_ht,c_ht): """Adjusts reference area before calling generic wing planform function to compute wing planform values. Assumptions: None Source: Raymer Inputs: horizontal_stabilizer [SUAVE data structure] wing [SUAVE data structure] (should be the main wing) l_ht [m] length from wing mean aerodynamic chord (MAC) to horizontal stabilizer MAC c_ht [-] horizontal tail coefficient (Raymer specific) .5 = Sailplane, .5 = homebuilt, .7 = GA single engine, .8 = GA twin engine .5 = agricultural, .9 = twin turboprop, .7 = flying boat, .7 = jet trainer, .4 = jet fighter, 1. = military cargo/bomber, 1. = jet transport Outputs: horizontal_stabilier.areas.reference [m^2] Other changes to horizontal_stabilizer (see wing_planform) Properties Used: N/A """ horizontal_stabilizer.areas.reference = wing.chords.mean_aerodynamic*c_ht*wing.areas.reference/l_ht wing_planform(horizontal_stabilizer) return 0
860a020e3e2b06943df2689bd54707a051fb30b2
3,649,985
from improved_permissions.roles import ALLOW_MODE def inherit_check(role_s, permission): """ Check if the role class has the following permission in inherit mode. """ role = get_roleclass(role_s) if role.inherit is True: if role.get_inherit_mode() == ALLOW_MODE: return True if permission in role.inherit_allow else False return False if permission in role.inherit_deny else True return False
5dbaa7afee9802ea1eda4cec869dd44395faf0e5
3,649,986
import random def giveHint(indexValue, myBoard): """Return a random matching card given the index of a card and a game board""" validMatches = [] card = myBoard[indexValue] for c in myBoard: if (card[0] == c[0]) and (myBoard.index(c) != indexValue): validMatches.append(myBoard.index(c)) return random.choice(validMatches)
e578f40e7d7e2e17ddac53f9cfdc219e47c861cd
3,649,987
async def make_getmatch_embed(data): """Generate the embed description and other components for a getmatch() command. As with its parent, remember that this currently does not support non team-vs. `data` is expected to be the output of `get_individual_match_data()`. The following `dict` is returned: ``` { "embed_description": str, "footer": str, "embed_color": int (as color hex), } ``` """ scores = data["individual_scores"] team_1_score_strings = [] team_2_score_strings = [] for individual_score in scores: #at first i thought doing this would make the actual score_string more readable #now i'm not very sure player_name = individual_score["user_name"] score_val = individual_score["score"] maxcombo = individual_score["combo"] accuracy = individual_score["accuracy"] count_300 = individual_score["hits"]["300_count"] count_100 = individual_score["hits"]["100_count"] count_50 = individual_score["hits"]["50_count"] count_miss = individual_score["hits"]["miss_count"] accuracy = '{:.2%}'.format(accuracy) score_val = "{:,}".format(score_val) maxcombo = "{:,}".format(maxcombo) score_string = (f'**{player_name}** - {score_val} ({maxcombo}x) ({accuracy} - {count_300}/{count_100}/{count_50}/{count_miss})') team_1_score_strings.append(score_string) if individual_score["team"] == "1" else team_2_score_strings.append(score_string) team_1_score_string = "\n".join(team_1_score_strings) team_2_score_string = "\n".join(team_2_score_strings) winner_string = { "Blue": f"Blue team wins by {'{:,}'.format(data['score_difference'])}!", "Red": f"Red team wins by {'{:,}'.format(data['score_difference'])}!", "Tie": "Tie!"} winner_color = { "Blue": 0x0000FF, "Red": 0xFF0000, "Tie": 0x808080} embed_desc = ( f'**{winner_string[data["winner"]]}**\n\n' f'__Blue Team__ ({"{:,}".format(data["team_1_score"])} points, {"{:,}".format(data["team_1_score_avg"])} average)\n' f'{team_1_score_string}\n\n' f'__Red Team__ ({"{:,}".format(data["team_2_score"])} points, {"{:,}".format(data["team_2_score_avg"])} average)\n' f'{team_2_score_string}') #footer stuff scoring_types = { '0': 'Score', '1': 'Accuracy', '2': 'Combo', '3': 'Score v2'} team_types = { '0': 'Head-to-head', '1': 'Tag Co-op', '2': 'Team VS', '3': 'Tag Team VS'} play_modes = { '0': 'osu!', '1': 'Taiko', '2': 'CTB', '3': 'osu!mania'} embed_footer = (f'Played at {data["start_time"]} UTC | ' f'Win condition: {scoring_types[data["scoring_type"]]} | ' f'{team_types[data["team_type"]]} | ' f'{play_modes[data["play_mode"]]}') final = { "embed_description": embed_desc, "footer": embed_footer, "embed_color": winner_color[data["winner"]], } return final
c37e0d6ee948259e4ad898d3cafb8e13b6452d80
3,649,988
def allreduceCommunicate_op(node, comm): """Make a new instance of AllReduceCommunicateOp and call the instance. Parameters: ---- node : Node The Node to do allreduce Returns: ---- A new Node instance created by Op. """ return AllReduceCommunicateOp(node, comm)
5096a9014ae349e39c2d59de77845221ffdddb10
3,649,989
def reduce_fn(state, values): """tf.data.Dataset-friendly implementation of mean and variance.""" k, n, ex, ex2 = state # If this is the first iteration, we pick the first value to be 'k', # which helps with precision - we assume that k is close to an average # value and calculate mean and variance with respect to that. k = tf.cond(tf.equal(n, 0), lambda: values[0], lambda: k) sum_v = tf.reduce_sum(values, axis=0) sum_v2 = tf.reduce_sum(tf.square(values), axis=0) ones = tf.ones_like(values, dtype=tf.int32) batch_size = tf.reduce_sum(ones, axis=0) batch_size_f = tf.cast(batch_size, tf.float32) ex = 0 + sum_v - tf.multiply(batch_size_f, k) ex2 = 0 + sum_v2 + tf.multiply( batch_size_f, (tf.square(k) - tf.multiply(tf.multiply(2.0, k), sum_v))) return (k, n + batch_size, ex, ex2)
473bb8cae3e898f3a166250fbdb805ad55aaaea9
3,649,990
def winged_edge( face_features: np.ndarray, edge_features: np.ndarray, coedge_features: np.ndarray, coedge_to_next: np.ndarray, coedge_to_mate: np.ndarray, coedge_to_face: np.ndarray, coedge_to_edge: np.ndarray, ): """Create graph according to the `winged edge` configuration.""" coedge_to_prev = np.zeros_like(coedge_to_next) for (from_ix, to_ix) in enumerate(coedge_to_next): coedge_to_prev[to_ix] = from_ix faces_num = face_features.shape[0] edges_num = edge_features.shape[0] coedges_num = coedge_features.shape[0] face_to_node = np.arange(faces_num) edge_to_node = np.arange(edges_num) + faces_num coedge_to_node = np.arange(coedges_num) + (faces_num + edges_num) edges = [] # Faces _f(coedge_to_face, coedge_to_node, face_to_node, edges) _mf(coedge_to_mate, coedge_to_node, coedge_to_face, face_to_node, edges) # Edges _e(coedge_to_edge, coedge_to_node, edge_to_node, edges) _ne(coedge_to_next, coedge_to_node, coedge_to_edge, edges) _pe(coedge_to_prev, coedge_to_node, coedge_to_edge, edges) _mne(coedge_to_next, coedge_to_node, coedge_to_mate, coedge_to_edge, edges) _mpe(coedge_to_prev, coedge_to_node, coedge_to_mate, coedge_to_edge, edges) # CoEdges _i(coedges_num, coedge_to_node, edges) _m(coedge_to_mate, coedge_to_node, edges) _n(coedge_to_next, coedge_to_node, edges) _p(coedge_to_prev, coedge_to_node, edges) _mn(coedge_to_next, coedge_to_node, coedge_to_mate, edges) _mp(coedge_to_prev, coedge_to_node, coedge_to_mate, edges) return _create_graph(face_features, edge_features, coedge_features, edges)
8f023d4e6133b044c435737e49ae768c83f089ca
3,649,991
def dollar_format(dollars): """ Args: dollars (any): A dollar value (Any value that can be turned into a float can be used - int, Decimal, str, etc.) Returns: str: The formatted string """ decimal_dollars = Decimal(dollars) if decimal_dollars < 0: return "-${:,.2f}".format(-decimal_dollars) else: return "${:,.2f}".format(decimal_dollars)
d9f8a9195a92af39df9754e14bae723060c335b1
3,649,992
from typing import Callable from typing import Any def check_aea_project( f: Callable, check_aea_version: bool = True, check_finger_prints: bool = False ) -> Callable: """ Check the consistency of the project as a decorator. - try to load agent configuration file - iterate over all the agent packages and check for consistency. """ def wrapper(*args: Any, **kwargs: Any) -> Callable: _check_aea_project( args, check_aea_version=check_aea_version, check_finger_prints=check_finger_prints, ) return f(*args, **kwargs) return update_wrapper(wrapper, f)
31d909116613be819b61be16160bd72227462853
3,649,993
def find_closest_cross(wire1_path, wire2_path): """ Compare the coordinates of two wire paths to find the crossing point closest (Manhattan Distance) to the origin (0,0). Returns a list of crossing points, the closest crossing point and its distance to the start point """ best_result = -1 crossing_list = [] for i in range(len(wire1_path)): if wire1_path[i] in wire2_path and wire1_path[i] != [0,0]: test_result = abs(wire1_path[i][0]) + abs(wire1_path[i][1]) crossing_list.append(wire1_path[i]) if best_result == -1: best_cross = wire1_path[i][:] best_result = test_result elif test_result < best_result: best_cross = wire1_path[i][:] best_result = test_result return crossing_list, best_cross, best_result
c91c5db3bb09cdfc74c4c71c92bf46274eb8d88c
3,649,994
import re def add_signature_source(service, **_): """ Add a signature source for a given service Variables: service => Service to which we want to add the source to Arguments: None Data Block: { "uri": "http://somesite/file_to_get", # URI to fetch for parsing the rules "name": "signature_file.yar", # Name of the file we will parse the rules as "username": null, # Username used to get to the URI "password": null, # Password used to get to the URI "header": { # Header sent during the request to the URI "X_TOKEN": "SOME RANDOM TOKEN" # Exemple of header }, "private_key": null, # Private key used to get to the URI "pattern": "^*.yar$" # Regex pattern use to get appropriate files from the URI } Result example: {"success": True/False} # if the operation succeeded of not """ try: data = request.json except (ValueError, KeyError): return make_api_response({"success": False}, err="Invalid source object data", status_code=400) # Ensure data source doesn't have spaces in name data['name'] = re.sub('[^0-9a-zA-Z_]+', '', data['name'].replace(" ", "_")) # Ensure private_key (if any) ends with a \n if data.get('private_key', None) and not data['private_key'].endswith("\n"): data['private_key'] += "\n" service_data = STORAGE.get_service_with_delta(service, as_obj=False) if not service_data.get('update_config', {}).get('generates_signatures', False): return make_api_response({"success": False}, err="This service does not generate alerts therefor " "you cannot add a source to get the alerts from.", status_code=400) current_sources = service_data.get('update_config', {}).get('sources', []) for source in current_sources: if source['name'] == data['name']: return make_api_response({"success": False}, err=f"Update source name already exist: {data['name']}", status_code=400) current_sources.append(data) service_delta = STORAGE.service_delta.get(service, as_obj=False) if service_delta.get('update_config') is None: service_delta['update_config'] = {"sources": current_sources} else: service_delta['update_config']['sources'] = current_sources _reset_service_updates(service) # Save the signature success = STORAGE.service_delta.save(service, service_delta) if success: service_event_sender.send(data['name'], { 'operation': Operation.Modified, 'name': data['name'] }) return make_api_response({"success": success})
65526852dee90f077e0c8b52fc53e725043ffc1e
3,649,995
def edit_screen_item(self, request, form): """ Edit a screen. """ layout = ManageScreensLayout(self, request) if form.submitted(request): form.update_model(self) request.message(_('Screen modified.'), 'success') request.app.pages_cache.flush() return redirect(layout.manage_model_link) if not form.errors: form.apply_model(self) return { 'layout': layout, 'form': form, 'title': _( "Screen ${number}", mapping={'number': self.number} ), 'subtitle': _('Edit screen'), 'cancel': layout.manage_model_link }
456837172860c808c2347d556cb8aaa4fcf59fbb
3,649,996
def get_xyz_t(): """ CIELAB to XYZ の逆関数の中の値を XYZ のぞれぞれについて求める。 """ c, l, h = symbols('c, l, h', real=True) xt = (l + 16) / 116 + (c * cos(h)) / 500 yt = (l + 16) / 116 zt = (l + 16) / 116 - (c * sin(h)) / 200 xyz_t = [xt, yt, zt] return xyz_t, c, l, h
e823744ada693fb525d57f5a616c89677c8ed0a5
3,649,997
async def home(): """ Home page, welcome Returns: Rendered template of homepage """ return await render_template('home.html')
a981c121c64a99359adac620dfa0f58d31a63956
3,649,998
import torch def compute_inverse_interpolation_img(weights, indices, img, b, h_i, w_i): """ weights: [b, h*w] indices: [b, h*w] img: [b, h*w, a, b, c, ...] """ w0, w1, w2, w3 = weights ff_idx, cf_idx, fc_idx, cc_idx = indices k = len(img.size()) - len(w0.size()) img_0 = w0[(...,) + (None,) * k] * img img_1 = w1[(...,) + (None,) * k] * img img_2 = w2[(...,) + (None,) * k] * img img_3 = w3[(...,) + (None,) * k] * img img_out = torch.zeros(b, h_i * w_i, *img.shape[2:]).type_as(img) ff_idx = torch.clamp(ff_idx, min=0, max=h_i * w_i - 1) cf_idx = torch.clamp(cf_idx, min=0, max=h_i * w_i - 1) fc_idx = torch.clamp(fc_idx, min=0, max=h_i * w_i - 1) cc_idx = torch.clamp(cc_idx, min=0, max=h_i * w_i - 1) img_out.scatter_add_(1, ff_idx[(...,) + (None,) * k].expand_as(img_0), img_0) img_out.scatter_add_(1, cf_idx[(...,) + (None,) * k].expand_as(img_1), img_1) img_out.scatter_add_(1, fc_idx[(...,) + (None,) * k].expand_as(img_2), img_2) img_out.scatter_add_(1, cc_idx[(...,) + (None,) * k].expand_as(img_3), img_3) return img_out
6b69aa5ca372a9c8f976512191d4626919d71311
3,649,999
def layer_prepostprocess(previous_value, x, sequence, dropout_rate, norm_type, depth, epsilon, default_name, name=None, dropout_broadcast_dims=None, layer_collection=None): """Apply a sequence of functions to the input or output of a layer. The sequence is specified as a string which may contain the following characters: a: add previous_value n: apply normalization d: apply dropout z: zero add For example, if sequence=="dna", then the output is previous_value + normalize(dropout(x)) Args: previous_value: A Tensor, to be added as a residual connection ('a') x: A Tensor to be transformed. sequence: a string. dropout_rate: a float norm_type: a string (see apply_norm()) depth: an integer (size of last dimension of x). epsilon: a float (parameter for normalization) default_name: a string name: a string dropout_broadcast_dims: an optional list of integers less than 3 specifying in which dimensions to broadcast the dropout decisions. saves memory. layer_collection: A tensorflow_kfac.LayerCollection. Only used by the KFAC optimizer. Default is None. Returns: a Tensor """ with tf.variable_scope(name, default_name=default_name): if sequence == "none": return x for c in sequence: if c == "a": x += previous_value elif c == "z": x = zero_add(previous_value, x) elif c == "n": x = apply_norm( x, norm_type, depth, epsilon, layer_collection=layer_collection) else: assert c == "d", ("Unknown sequence step %s" % c) x = dropout_with_broadcast_dims( x, 1.0 - dropout_rate, broadcast_dims=dropout_broadcast_dims) return x
f983888739fa04d0c086e276997cec3919cf3e24
3,650,000
def build_norm_layer(cfg, num_channels, postfix=''): """ Build normalization layer Args: Returns: layer (fluid.dygrah.Layer): created norm layer """ assert isinstance(cfg, dict) and 'type' in cfg cfg_ = cfg.copy() layer_type = cfg_.pop('type') if layer_type not in norm_cfg: raise KeyError('Unrecognized norm type {}'.format(layer_type)) else: abbr, norm_layer = norm_cfg[layer_type] if norm_layer is None: raise NotImplementedError assert isinstance(postfix, (int, str)) name = abbr + str(postfix) stop_gradient = cfg_.pop('stop_gradient', False) cfg_.setdefault('epsilon', 1e-5) layer = norm_layer(num_channels=num_channels, **cfg_) # for param in layer.parameters(): # param.stop_gradient = stop_gradient return name, layer
d29437854587f7aeaac3b97c2e98d70b56369402
3,650,001
import torchvision def get_split_cifar100_tasks(num_tasks, batch_size): """ Returns data loaders for all tasks of split CIFAR-100 :param num_tasks: :param batch_size: :return: """ datasets = {} # convention: tasks starts from 1 not 0 ! # task_id = 1 (i.e., first task) => start_class = 0, end_class = 4 cifar_transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),]) cifar_train = torchvision.datasets.CIFAR100('./data/', train=True, download=True, transform=cifar_transforms) cifar_test = torchvision.datasets.CIFAR100('./data/', train=False, download=True, transform=cifar_transforms) for task_id in range(1, num_tasks+1): train_loader, test_loader = get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} return datasets
85c06c07682c74554aa11826431e5fdbd7eb84c8
3,650,002
def set_simulation_data( state_energies, T_array, state1_index, state2_index ): """ Create and set SimulationData objects for a pair of specified states """ # Set default UnitData object default_UnitData = UnitData( kb=kB.value_in_unit(unit.kilojoule_per_mole/unit.kelvin), energy_conversion=1, length_conversion=1, volume_conversion=1, temperature_conversion=1, pressure_conversion=1, time_conversion=1, energy_str='KJ/mol', length_str='nm', volume_str='nm^3', temperature_str='K', pressure_str='bar', time_str='ps' ) # State 1 sim_data1 = SimulationData() sim_data1.observables = ObservableData( potential_energy=state_energies[state1_index,:], ) sim_data1.ensemble = EnsembleData( ensemble='NVT', energy=state_energies[state1_index,:], temperature=T_array[state1_index] ) sim_data1.units = default_UnitData # State 2 sim_data2 = SimulationData() sim_data2.observables = ObservableData( potential_energy=state_energies[state2_index,:], ) sim_data2.ensemble = EnsembleData( ensemble='NVT', energy=state_energies[state2_index,:], temperature=T_array[state2_index] ) sim_data2.units = default_UnitData return sim_data1, sim_data2
edff2bd66a359da10f64c175aa125f8749a2064d
3,650,006
def park2_euc(x): """ Comutes the park2 function """ max_val = 5.925698 x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] ret = (2.0/3.0) * np.exp(x1 + x2) - x4*np.sin(x3) + x3 return min(ret, max_val)
96448c502867d360010238526791144fdc1e7581
3,650,007
def num_compositions_jit(m, n): """ Numba jit version of `num_compositions`. Return `0` if the outcome exceeds the maximum value of `np.intp`. """ return comb_jit(n+m-1, m-1)
40562a1ee1564e7b2015f5b8e5d2298a18644493
3,650,008
def fake_get_vim_object(arg): """Stubs out the VMwareAPISession's get_vim_object method.""" return fake_vmware_api.FakeVim()
ee7c7b0331f344b1428e48da38d185dc01bf11d9
3,650,009
import json def get_old_ids(title): """ Returns all the old ids of a particular site given the title of the Wikipedia page """ raw_data = json.loads( readInDataFromURL("https://en.wikipedia.org/w/api.php?action=query&prop=revisions&format=json&rvlimit=100000&titles=" + title) ) old_ids = dict() # initialize for page_id, revisions in data['query']['pages'].items(): print(revisions) # for revision in revisions: # old_ids[revision.] # try: # for extlink in page['extlinks']: # # print to the output file # print('%s\t%s\t%s'%(page_id, name, extlink['*']), file=outputfile) # except: # if options.verbose: # print('Page %s does not have any external links...'%name) # print(data) return old_ids
9e9bc37ac51d7b3a8491fa41db5867943a170e1e
3,650,011
def max_expectation_under_constraint(f: np.ndarray, q: np.ndarray, c: float, eps: float = 1e-2, display: bool = False) -> np.ndarray: """ Solve the following constrained optimisation problem: max_p E_p[f] s.t. KL(q || p) <= c :param f: an array of values f(x), np.array of size n :param q: a discrete distribution q(x), np.array of size n :param c: a threshold for the KL divergence between p and q. :param eps: desired accuracy on the constraint :param display: plot the function :return: the argmax p* """ np.seterr(all="warn") if np.all(q == 0): q = np.ones(q.size) / q.size x_plus = np.where(q > 0) x_zero = np.where(q == 0) p_star = np.zeros(q.shape) lambda_, z = None, 0 q_p = q[x_plus] f_p = f[x_plus] f_star = np.amax(f) theta = partial(theta_func, q_p=q_p, f_p=f_p, c=c) d_theta_dl = partial(d_theta_dl_func, q_p=q_p, f_p=f_p) if f_star > np.amax(f_p): theta_star = theta_func(f_star, q_p=q_p, f_p=f_p, c=c) if theta_star < 0: lambda_ = f_star z = 1 - np.exp(theta_star) p_star[x_zero] = 1.0 * (f[x_zero] == np.amax(f[x_zero])) p_star[x_zero] *= z / p_star[x_zero].sum() if lambda_ is None: if np.isclose(f_p, f_p[0]).all(): return q else: # Binary search seems slightly (10%) faster than newton # lambda_ = binary_search(theta, eps, a=f_star, display=display) lambda_ = newton_iteration(theta, d_theta_dl, eps, x0=f_star + 1, a=f_star, display=display) # numba jit binary search is twice as fast as python version # lambda_ = binary_search_theta(q_p=q_p, f_p=f_p, c=c, eps=eps, a=f_star) beta = (1 - z) / (q_p @ (1 / (lambda_ - f_p))) if beta == 0: x_uni = np.where((q > 0) & (f == f_star)) if np.size(x_uni) > 0: p_star[x_uni] = (1 - z) / np.size(x_uni) else: p_star[x_plus] = beta * q_p / (lambda_ - f_p) return p_star
88a67ae4eece82c08bc683dc015904f2d307c54f
3,650,012
def payload_to_plain(payload=None): """ Converts the myADS results into the plain text message payload :param payload: list of dicts :return: plain text formatted payload """ formatted = u'' for p in payload: formatted += u"{0} ({1}) \n".format(p['name'], p['query_url'].format(p['qtype'], p['id'])) for r in p['results']: first_author = _get_first_author_formatted(r) if type(r.get('title', '')) == list: title = r.get('title')[0] else: title = r.get('title', '') formatted += u"\"{0},\" {1} ({2})\n".format(title, first_author, r['bibcode']) formatted += u"\n" return formatted
53050791335dd8d259bf6b55bd36d3e8bc3f5fb0
3,650,013
import json def get_credentials_from_request(cloud, request): """ Extracts and returns the credentials from the current request for a given cloud. Returns an empty dict if not available. """ if request.META.get('HTTP_CL_CREDENTIALS_ID'): return get_credentials_by_id( cloud, request, request.META.get('HTTP_CL_CREDENTIALS_ID')) # In case a base class instance is sent in, attempt to retrieve the actual # subclass. if type(cloud) is models.Cloud: cloud = models.Cloud.objects.get_subclass(slug=cloud.slug) if isinstance(cloud, models.OpenStack): os_username = request.META.get('HTTP_CL_OS_USERNAME') os_password = request.META.get('HTTP_CL_OS_PASSWORD') if os_username or os_password: os_project_name = request.META.get('HTTP_CL_OS_PROJECT_NAME') os_project_domain_name = request.META.get( 'HTTP_CL_OS_PROJECT_DOMAIN_NAME') os_user_domain_name = request.META.get( 'HTTP_CL_OS_USER_DOMAIN_NAME') d = {'os_username': os_username, 'os_password': os_password} if os_project_name: d['os_project_name'] = os_project_name if os_project_domain_name: d['os_project_domain_name'] = os_project_domain_name if os_user_domain_name: d['os_user_domain_name'] = os_user_domain_name return d else: return {} elif isinstance(cloud, models.AWS): aws_access_key = request.META.get('HTTP_CL_AWS_ACCESS_KEY') aws_secret_key = request.META.get('HTTP_CL_AWS_SECRET_KEY') if aws_access_key or aws_secret_key: return {'aws_access_key': aws_access_key, 'aws_secret_key': aws_secret_key, } else: return {} elif isinstance(cloud, models.Azure): azure_subscription_id = request.META.get( 'HTTP_CL_AZURE_SUBSCRIPTION_ID') azure_client_id = request.META.get('HTTP_CL_AZURE_CLIENT_ID') azure_secret = request.META.get('HTTP_CL_AZURE_SECRET') azure_tenant = request.META.get('HTTP_CL_AZURE_TENANT') azure_resource_group = request.META.get('HTTP_CL_AZURE_RESOURCE_GROUP') azure_storage_account = request.META.get( 'HTTP_CL_AZURE_STORAGE_ACCOUNT') azure_vm_default_username = request.META.get( 'HTTP_CL_AZURE_VM_DEFAULT_USERNAME') if (azure_subscription_id and azure_client_id and azure_secret and azure_tenant): return {'azure_subscription_id': azure_subscription_id, 'azure_client_id': azure_client_id, 'azure_secret': azure_secret, 'azure_tenant': azure_tenant, 'azure_resource_group': azure_resource_group, 'azure_storage_account': azure_storage_account, 'azure_vm_default_username': azure_vm_default_username } else: return {} elif isinstance(cloud, models.GCP): gcp_credentials_json = request.META.get('HTTP_CL_GCP_CREDENTIALS_JSON') if gcp_credentials_json: return json.loads(gcp_credentials_json) else: return {} else: raise Exception("Unrecognised cloud provider: %s" % cloud)
29fa45d17a0473643b2db448dfbe2de7837c4dd7
3,650,014
from functools import reduce def nCr(n, r): """n-choose-r. Thanks for the "compact" solution go to: http://stackoverflow.com/questions/2096573/counting-combinations-and-permutations-efficiently """ return reduce( lambda x, y: x * y[0] / y[1], izip(xrange(n - r + 1, n + 1), xrange(1, r + 1)), 1)
06ab7a4e12a35cf49f7ddf3e75780576d3b8972c
3,650,015
from pythia.pyre.inventory import facility from pylith.bc.DirichletTimeDependent import DirichletTimeDependent def bcFactory(name): """Factory for boundary condition items. """ return facility(name, family="boundary_condition", factory=DirichletTimeDependent)
65bb203b901c1648ee504bfd5bfd0956e9f849d4
3,650,016
def decode(value): """Decode utf-8 value to string. Args: value: String to decode Returns: result: decoded value """ # Initialize key variables result = value # Start decode if value is not None: if isinstance(value, bytes) is True: result = value.decode('utf-8') # Return return result
9704678f6ff96de3b711758922c28f5ecbd11bc7
3,650,017
def sequence_rec_sqrt(x_init, iter, dtype=int): """ Mathematical sequence: x_n = x_{n-1} * sqrt(n) :param x_init: initial values of the sequence :param iter: iteration until the sequence should be evaluated :param dtype: data type to cast to (either int of float) :return: element at the given iteration and array of the whole sequence """ # exponential growth def iter_function(x_seq, i, x_init): return x_seq[i - 1, :] * np.sqrt(i + 1) # i+1 because sqrt(1) = 1 return sequence(x_init, iter, iter_function, dtype)
a7e695ee605caad5cef7881a2eeafbee8a25bf15
3,650,018
def convert_string_to_type(string_value, schema_type): """ Attempts to convert a string value into a schema type. This method may evaluate code in order to do the conversion and is therefore not safe! """ # assume that the value is a string unless otherwise stated. if schema_type == "float": evaluated_value = float(string_value) elif schema_type == "int": evaluated_value = int(string_value) elif schema_type == "bool": if string_value == "False": evaluated_value = False elif string_value == "True": evaluated_value = True else: raise TankError("Invalid boolean value %s! Valid values are True and False" % string_value) elif schema_type == "list": evaluated_value = eval(string_value) elif schema_type == "dict": evaluated_value = eval(string_value) else: # assume string-like evaluated_value = string_value return evaluated_value
4d99470f7094a36567851bb23c1edd49686149cf
3,650,019
def get_local_coordinate_system(time_dep_orientation: bool, time_dep_coordinates: bool): """ Get a local coordinate system. Parameters ---------- time_dep_orientation : If True, the coordinate system has a time dependent orientation. time_dep_coordinates : If True, the coordinate system has a time dependent coordinates. Returns ------- weldx.transformations.LocalCoordinateSystem: A local coordinate system """ if not time_dep_coordinates: coords = Q_(np.asarray([2.0, 5.0, 1.0]), "mm") else: coords = Q_( np.asarray( [[2.0, 5.0, 1.0], [1.0, -4.0, 1.2], [0.3, 4.4, 4.2], [1.1, 2.3, 0.2]] ), "mm", ) if not time_dep_orientation: orientation = tf.rotation_matrix_z(np.pi / 3) else: orientation = tf.rotation_matrix_z(np.pi / 2 * np.array([1, 2, 3, 4])) if not time_dep_orientation and not time_dep_coordinates: return tf.LocalCoordinateSystem(orientation=orientation, coordinates=coords) time = pd.DatetimeIndex(["2000-01-01", "2000-01-02", "2000-01-03", "2000-01-04"]) return tf.LocalCoordinateSystem( orientation=orientation, coordinates=coords, time=time )
daa8259e92a31884d798915522d4e538f316fc91
3,650,021
def _get_tooltip(tooltip_col, gpd): """Show everything or columns in the list.""" if tooltip_col is not None: tooltip = folium.GeoJsonTooltip(fields=tooltip_col) else: tooltip = tooltip_col return tooltip
8a2dc564ef65aa0eaf8a9e85457876ad0e6989ec
3,650,022
def encryption(message: str, key: int) -> str: """Return the ciphertext by xor the message with a repeating key""" return b"".join( [bytes([message[i] ^ key[i % len(key)]]) for i in range(len(message))] )
674e4a27491a9f6c918f2129276349ba426cd676
3,650,023
def data_fun(times): """Generate time-staggered sinusoids at harmonics of 10Hz""" global n n_samp = len(times) window = np.zeros(n_samp) start, stop = [int(ii * float(n_samp) / (2 * n_dipoles)) for ii in (2 * n, 2 * n + 1)] window[start:stop] = 1. n += 1 data = 1e-7 * np.sin(2. * np.pi * 10. * times) data *= window return data
edbdf5e059b8f4c3559386497961a1c65133a80b
3,650,024
def var(x, axis=None, ddof=0, keepdims=False): """ Computes the variance along the specified axis. The variance is the average of the squared deviations from the mean, i.e., :math:`var = mean(abs(x - x.mean())**2)`. Returns the variance, which is computed for the flattened array by default, otherwise over the specified axis. Note: Numpy arguments `dtype`, `out` and `where` are not supported. Args: x (Tensor): A Tensor to be calculated. axis (Union[None, int, tuple(int)]): Axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. Default: `None`. ddof (int): Means Delta Degrees of Freedom. Default: 0. The divisor used in calculations is :math:`N - ddof`, where :math:`N` represents the number of elements. keepdims (bool): If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the var method of sub-classes of tensor, however any non-default value will be. If the sub-class’ method does not implement keepdims any exceptions will be raised. Default: `False`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Returns: Standard deviation tensor. Examples: >>> import mindspore.numpy as np >>> input_x = np.array([1., 2., 3., 4.]) >>> output = np.var(input_x) >>> print(output) 1.25 """ x = _to_tensor(x) return x.var(axis, ddof, keepdims)
b39bf29caf4f47882fb3be900c2924a90b25a880
3,650,025
def check_inputs(supplied_inputs): """Check that the inputs are of some correct type and returned as AttributeDict.""" inputs = None if supplied_inputs is None: inputs = AttributeDict() else: if isinstance(supplied_inputs, DataFactory('dict')): inputs = AttributeDict(supplied_inputs.get_dict()) elif isinstance(supplied_inputs, dict): inputs = AttributeDict(supplied_inputs) elif isinstance(supplied_inputs, AttributeDict): inputs = supplied_inputs else: raise ValueError(f'The supplied type {type(inputs)} of inputs is not supported. Supply a dict, Dict or an AttributeDict.') return inputs
a5369767c23a96b44da2bff2c0ac49456e3452f1
3,650,026
def _parse_none(arg, fn=None): """Parse arguments with support for conversion to None. Args: arg (str): Argument to potentially convert. fn (func): Function to apply to the argument if not converted to None. Returns: Any: Arguments that are "none" or "0" are converted to None; otherwise, returns the original value. """ if arg.lower() in ("none", "0"): return None return arg if fn is None else fn(arg)
4ebd283eb9e2218e523ba185c4500c9879d5719d
3,650,027
def generate_constraint(category_id, user): """ generate the proper basic data structure to express a constraint based on the category string """ return {'year': category_id}
f55151a5b4b17bbf6eb697e1b1489ee4897f5db0
3,650,028
def get_RIB_IN_capacity(cvg_api, multipath, start_value, step_value, route_type, port_speed,): """ Args: cvg_api (pytest fixture): snappi API temp_tg_port (pytest fixture): Ports mapping info of T0 testbed multipath: ecmp value for BGP config start_value: Start value of the number of BGP routes step_value: Step value of the number of BGP routes to be incremented route_type: IPv4 or IPv6 routes port_speed: speed of the port used in test """ def tgen_capacity(routes): conv_config = cvg_api.convergence_config() config = conv_config.config for i in range(1, 3): config.ports.port(name='Test_Port_%d' % i, location=temp_tg_port[i-1]['location']) c_lag = config.lags.lag(name="lag%d" % i)[-1] lp = c_lag.ports.port(port_name='Test_Port_%d' % i)[-1] lp.ethernet.name = 'lag_eth_%d' % i if len(str(hex(i).split('0x')[1])) == 1: m = '0'+hex(i).split('0x')[1] else: m = hex(i).split('0x')[1] lp.protocol.lacp.actor_system_id = "00:10:00:00:00:%s" % m lp.ethernet.name = "lag_Ethernet %s" % i lp.ethernet.mac = "00:10:01:00:00:%s" % m config.devices.device(name='Topology %d' % i) config.options.port_options.location_preemption = True layer1 = config.layer1.layer1()[-1] layer1.name = 'port settings' layer1.port_names = [port.name for port in config.ports] layer1.ieee_media_defaults = False layer1.auto_negotiation.rs_fec = True layer1.auto_negotiation.link_training = False layer1.speed = port_speed layer1.auto_negotiate = False def create_v4_topo(): eth = config.devices[0].ethernets.add() eth.port_name = config.lags[0].name eth.name = 'Ethernet 1' eth.mac = "00:00:00:00:00:01" ipv4 = eth.ipv4_addresses.add() ipv4.name = 'IPv4 1' ipv4.address = temp_tg_port[0]['ip'] ipv4.gateway = temp_tg_port[0]['peer_ip'] ipv4.prefix = int(temp_tg_port[0]['prefix']) rx_flow_name = [] for i in range(2, 3): if len(str(hex(i).split('0x')[1])) == 1: m = '0'+hex(i).split('0x')[1] else: m = hex(i).split('0x')[1] ethernet_stack = config.devices[i-1].ethernets.add() ethernet_stack.port_name = config.lags[i-1].name ethernet_stack.name = 'Ethernet %d' % i ethernet_stack.mac = "00:00:00:00:00:%s" % m ipv4_stack = ethernet_stack.ipv4_addresses.add() ipv4_stack.name = 'IPv4 %d' % i ipv4_stack.address = temp_tg_port[i-1]['ip'] ipv4_stack.gateway = temp_tg_port[i-1]['peer_ip'] ipv4_stack.prefix = int(temp_tg_port[i-1]['prefix']) bgpv4 = config.devices[i-1].bgp bgpv4.router_id = temp_tg_port[i-1]['peer_ip'] bgpv4_int = bgpv4.ipv4_interfaces.add() bgpv4_int.ipv4_name = ipv4_stack.name bgpv4_peer = bgpv4_int.peers.add() bgpv4_peer.name = 'BGP %d' % i bgpv4_peer.as_type = BGP_TYPE bgpv4_peer.peer_address = temp_tg_port[i-1]['peer_ip'] bgpv4_peer.as_number = int(TGEN_AS_NUM) route_range = bgpv4_peer.v4_routes.add(name="Network_Group%d" % i) #snappi object named Network Group 2 not found in internal db route_range.addresses.add(address='200.1.0.1', prefix=32, count=number_of_routes) as_path = route_range.as_path as_path_segment = as_path.segments.add() as_path_segment.type = as_path_segment.AS_SEQ as_path_segment.as_numbers = aspaths rx_flow_name.append(route_range.name) return rx_flow_name def create_v6_topo(): eth = config.devices[0].ethernets.add() eth.port_name = config.lags[0].name eth.name = 'Ethernet 1' eth.mac = "00:00:00:00:00:01" ipv6 = eth.ipv6_addresses.add() ipv6.name = 'IPv6 1' ipv6.address = temp_tg_port[0]['ipv6'] ipv6.gateway = temp_tg_port[0]['peer_ipv6'] ipv6.prefix = int(temp_tg_port[0]['ipv6_prefix']) rx_flow_name = [] for i in range(2, 3): if len(str(hex(i).split('0x')[1])) == 1: m = '0'+hex(i).split('0x')[1] else: m = hex(i).split('0x')[1] ethernet_stack = config.devices[i-1].ethernets.add() ethernet_stack.port_name = config.lags[i-1].name ethernet_stack.name = 'Ethernet %d' % i ethernet_stack.mac = "00:00:00:00:00:%s" % m ipv6_stack = ethernet_stack.ipv6_addresses.add() ipv6_stack.name = 'IPv6 %d' % i ipv6_stack.address = temp_tg_port[i-1]['ipv6'] ipv6_stack.gateway = temp_tg_port[i-1]['peer_ipv6'] ipv6_stack.prefix = int(temp_tg_port[i-1]['ipv6_prefix']) bgpv6 = config.devices[i-1].bgp bgpv6.router_id = temp_tg_port[i-1]['peer_ip'] bgpv6_int = bgpv6.ipv6_interfaces.add() bgpv6_int.ipv6_name = ipv6_stack.name bgpv6_peer = bgpv6_int.peers.add() bgpv6_peer.name = 'BGP+_%d' % i bgpv6_peer.as_type = BGP_TYPE bgpv6_peer.peer_address = temp_tg_port[i-1]['peer_ipv6'] bgpv6_peer.as_number = int(TGEN_AS_NUM) route_range = bgpv6_peer.v6_routes.add(name="Network Group %d" % i) route_range.addresses.add(address='3000::1', prefix=64, count=number_of_routes) as_path = route_range.as_path as_path_segment = as_path.segments.add() as_path_segment.type = as_path_segment.AS_SEQ as_path_segment.as_numbers = aspaths rx_flow_name.append(route_range.name) return rx_flow_name conv_config.rx_rate_threshold = 90/(multipath) if route_type == 'IPv4': rx_flows = create_v4_topo() flow = config.flows.flow(name='IPv4_Traffic_%d' % routes)[-1] elif route_type == 'IPv6': rx_flows = create_v6_topo() flow = config.flows.flow(name='IPv6_Traffic_%d' % routes)[-1] else: raise Exception('Invalid route type given') flow.tx_rx.device.tx_names = [config.devices[0].name] flow.tx_rx.device.rx_names = rx_flows flow.size.fixed = 1024 flow.rate.percentage = 100 flow.metrics.enable = True flow.metrics.loss = True return conv_config def run_traffic(routes): logger.info('|-------------------- RIB-IN Capacity test, No.of Routes : {} ----|'.format(routes)) conv_config = tgen_capacity(routes) cvg_api.set_config(conv_config) """ Starting Protocols """ logger.info("Starting all protocols ...") cs = cvg_api.convergence_state() cs.protocol.state = cs.protocol.START cvg_api.set_state(cs) wait(TIMEOUT, "For Protocols To start") """ Starting Traffic """ logger.info('Starting Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.START cvg_api.set_state(cs) wait(TIMEOUT, "For Traffic To start") try: for j in range(start_value, 100000000000, step_value): tx_frate, rx_frate = [], [] run_traffic(j) flow_stats = get_flow_stats(cvg_api) logger.info('Loss% : {}'.format(flow_stats[0].loss)) for flow in flow_stats: tx_frate.append(flow.frames_tx_rate) rx_frate.append(flow.frames_rx_rate) logger.info("Tx Frame Rate : {}".format(tx_frate)) logger.info("Rx Frame Rate : {}".format(rx_frate)) if float(flow_stats[0].loss) > 0.001: if j == start_value: raise Exception('Traffic Loss Encountered in first iteration, reduce the start value and run the test') logger.info('Loss greater than 0.001 occured') logger.info('Reducing the routes and running test') b = j-step_value logger.info('Stopping Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Traffic To stop") break logger.info('Stopping Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Traffic To stop") l = [] l.append(b+int(step_value/8)) l.append(b+int(step_value/4)) l.append(b+int(step_value/2)) l.append(b+step_value-int(step_value/4)) l.append(b+step_value-int(step_value/8)) for i in range(0,len(l)): run_traffic(l[i]) flow_stats = get_flow_stats(cvg_api) logger.info('Loss% : {}'.format(flow_stats[0].loss)) if float(flow_stats[0].loss) <= 0.001: max_routes = start_value pass else: max_routes = l[i]-int(step_value/8) break logger.info('Stopping Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Traffic To stop") """ Stopping Protocols """ logger.info("Stopping all protocols ...") cs = cvg_api.convergence_state() cs.protocol.state = cs.protocol.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Protocols To STOP") except Exception as e: logger.info(e) finally: columns = ['Test Name', 'Maximum no. of Routes'] logger.info("\n%s" % tabulate([['RIB-IN Capacity Test',max_routes]], headers=columns, tablefmt="psql"))
e13c85d9e6ebdbfba84e20a81324da8156e7c934
3,650,029
from typing import List from typing import Set def ladder_length(beginWord: str, endWord: str, wordList: List[str]) -> int: """ 双端交替迫近目标层,根据一层数量最多节点确定为目标层 :param beginWord: :param endWord: :param wordList: :return: >>> ladder_length('hit', 'cog', ["hot","dot","dog","lot","log","cog"]) 5 >>> ladder_length('hit', 'cog', ["hot","dot","dog","lot","log"]) 0 >>> ladder_length("hit","cog",["hot","dot","dog","lot","log"]) """ if not beginWord or not endWord or endWord not in wordList: return 0 all_chars: List[str] = [chr(i) for i in range(ord('a'), ord('z') + 1)] curr_word_set: Set[str] = {beginWord} # 当前层的节点 end_word_set: Set[str] = {endWord} # 目标层的节点 word_set: Set[str] = set(wordList) # 加速单词是否在字典中的判断 level: int = 1 while curr_word_set: # 避免同层节点临接 level += 1 for cw in curr_word_set: # beginWord不重复出现在wordList(word_set) if cw != beginWord: word_set.remove(cw) tmp_set: Set[str] = set() for curr_word in curr_word_set: for i, w in enumerate(curr_word): for letter in all_chars: if w == letter: continue changed: str = curr_word[:i] + letter + curr_word[i + 1:] if changed in end_word_set: return level if changed in word_set: tmp_set.add(changed) # 让层节点最多的层作为目标层 if len(tmp_set) <= len(end_word_set): curr_word_set = tmp_set else: # 逆转方向 curr_word_set = end_word_set end_word_set = tmp_set return 0
020f3ffd2e009b682a47ff9aad8d1d6025c29f37
3,650,031
def setup_option(request): """Создаем объект для удобство работы с переменными в тестовых методах """ setup_parameters = {} if request.config.getoption('--site_url'): setup_parameters['site_url'] = request.config.getoption('--site_url') return setup_parameters
49908ee8e1422cc4fd05c6d93a96c00d734cf6d1
3,650,032
import time import torch def train_one_epoch(img_input,model,optimizer,writer,epoch,args): """ Finish 1.train for one epoch 2.print process, total loss, data time in terminal 3.save loss, lr, output img in tensorboard Note 1.you can change the save frequency """ loss_train = 0 model.train() length = len(img_input) print("iteration:",length) train_time = time.time() begin = time.time() '''loss control''' loss_for_control = torch.zeros([6,args.paf_num+args.heatmap_num]) weight_con = torch.ones([1,args.paf_num+args.heatmap_num]) weight_con = weight_con.cuda() '''start training''' for each_batch, (img, target_heatmap, target_paf) in enumerate(img_input): data_time = time.time() - begin img = img.cuda() target_heatmap = target_heatmap.cuda() target_paf = target_paf.cuda() # heat_mask = heat_mask.cuda() # paf_mask = paf_mask.cuda() _, saved_for_loss = model(img) #loss = CMUnet_loss.get_loss(saved_for_loss,target_heatmap,target_paf,args,weight_con) loss = resnet_loss.get_loss(saved_for_loss,target_heatmap,target_paf,args,weight_con) # for i in range(args.paf_stage): # for j in range(args.paf_num): # loss_for_control[i][j] += loss['stage_{0}_{1}'.format(i,j)] # for i in range(len(saved_for_loss)-args.paf_stage): # for j in range(args.heatmap_num): # loss_for_control[i][j] += loss['stage_{0}_{1}'.format(i,j)] optimizer.zero_grad() loss["final"].backward() optimizer.step() loss_train += loss["final"] if each_batch % args.print_fre == 0: print_to_terminal(epoch,each_batch,length,loss,loss_train,data_time) #print_to_terminal(epoch,each_batch,length,loss,loss_train,data_time) #writer.add_scalar("train_loss_iterations", loss_train, each_batch + epoch * length) begin = time.time() '''for short test''' # if each_batch == 5: # break #weight_con = Online_weight_control(loss_for_control) loss_train /= length train_time = time.time() - train_time print('total training time:',train_time) return loss_train
b26e2933dd3575e45c33ba6bf801f5a92fc72ab7
3,650,033
def get_unique_tokens(texts): """ Returns a set of unique tokens. >>> get_unique_tokens(['oeffentl', 'ist', 'oeffentl']) {'oeffentl', 'ist'} """ unique_tokens = set() for text in texts: for token in text: unique_tokens.add(token) return unique_tokens
f9c174b264082b65a328fd9edf9421e7ff7808a2
3,650,034
def _symmetric_difference(provided: dict, chosen: dict) -> dict: """ Returns the fields that are not in common between provided and chosen JSON schema. :param provided: the JSON schema to removed the chosen schema from. :param chosen: the JSON schema to remove from the provided schema. :return: a JSON schema with the chosen JSON schema removed. """ remove_keys = [] for k, vp in provided.items(): vc = chosen.get(k) if vc is not None: if isinstance(vp, dict): vc = chosen.get(k, {}) assert isinstance(vc, dict), type_not_matching_str provided[k] = _symmetric_difference(vp, vc) elif isinstance(vp, list): vc = chosen.get(k, []) assert isinstance(vc, list), type_not_matching_str provided[k] = [i for i in vp if i not in vc] # quadratic performance, optimize else: remove_keys.append(k) for k in remove_keys: provided.pop(k) return provided
5900c6de35c0665ab2c0ec10c4df4dc87b75483a
3,650,035
def moved_in(nn_orig, nn_proj, i, k): """Determine points that are neighbours in the projection space, but were not neighbours in the original space. nn_orig neighbourhood matrix for original data nn_proj neighbourhood matrix for projection data i index of the point considered k size of the neighbourhood considered Return a list of indices for points which are 'moved in' to point i """ pp = list(nn_proj[i, 1:k + 1]) oo = list(nn_orig[i, 1:k + 1]) for j in oo: if (j in oo) and (j in pp): pp.remove(j) return pp
b63a9b0f53554032fc920aeaf6d3d76b93dd8ab3
3,650,037
import re def _get_lines_changed(line_summary): """ Parse the line diff summary into a list of numbers representing line numbers added or changed :param line_summary: the summary from a git diff of lines that have changed (ex: @@ -1,40 +1,23 @@) :return: a list of integers indicating which lines changed for that summary """ lines = re.search(r"\@\@.*?\+(.+?) \@\@", line_summary).group(1) if "," in lines: start, count = [int(x) for x in lines.split(",")] return list(range(start, start + count)) return [int(lines)]
01d1b51ef480a0d7dcdc916fe68aac08ce81d23f
3,650,038
def tj_agri_sup(): """ Real Name: b'Tj Agri Sup' Original Eqn: b'MIN(Tj Agri Dem *Agri Tajan Dam Coef, (Tj Outflow-Tj Dom Sup-Tj Env Sup-Tj Ind Sup))' Units: b'' Limits: (None, None) Type: component b'' """ return np.minimum(tj_agri_dem() * agri_tajan_dam_coef(), (tj_outflow() - tj_dom_sup() - tj_env_sup() - tj_ind_sup()))
07c6029dc062f20756b3f72289640a29526c41bf
3,650,039
def correlation_coefficient(y_true, y_pred): """The CC, is the Pearson’s correlation coefficient and treats the saliency and ground truth density maps, as random variables measuring the linear relationship between them.Values are first divided by their sum for each image to yield a distribution that adds to 1. Args: y_true (tensor, float32): A 4d tensor that holds the ground truth saliency maps with values between 0 and 255. y_pred (tensor, float32): A 4d tensor that holds the predicted saliency maps with values between 0 and 1. Returns: tensor, float32: A 0D tensor that holds the averaged error. """ sum_y_true = tf.reduce_sum(y_true, axis=[1, 2, 3], keep_dims=True) sum_y_pred = tf.reduce_sum(y_pred, axis=[1, 2, 3], keep_dims=True) y_true /= (sum_y_true + 1e-7) y_pred /= (sum_y_pred + 1e-7) N = shape_r_out * shape_c_out sum_prod = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3]) sum_x = tf.reduce_sum(y_true, axis=[1, 2, 3]) sum_y = tf.reduce_sum(y_pred * y_pred, axis=[1, 2, 3]) sum_x_square = tf.reduce_sum(tf.square(y_true), axis=[1, 2, 3]) sum_y_square = tf.reduce_sum(tf.square(y_pred), axis=[1, 2, 3]) num = sum_prod - ((sum_x * sum_y) / N) den = tf.sqrt((sum_x_square - tf.square(sum_x) / N) * (sum_y_square - tf.square(sum_y) / N)) return -tf.reduce_mean(num / den)
9d0f7825219a5957edfbf464ca9b62182b81bb3c
3,650,040
def init_args(): """Init command line args used for configuration.""" parser = init_main_args() return parser.parse_args()
c2939b8d6fbefa7a6b792d13c98a805a3e53785f
3,650,041
import warnings def _fit_binary(estimator, X, y, classes=None, **kwargs): """Fit a single binary estimator with kwargs.""" unique_y = np.unique(y) if len(unique_y) == 1: if classes is not None: if y[0] == -1: c = 0 else: c = y[0] warnings.warn("Label %s is present in all training examples." % str(classes[c])) estimator = _ConstantPredictor().fit(X, unique_y) else: estimator = clone(estimator) estimator.fit(X, y, **kwargs) return estimator
24e37aa50cada6cce4ab52c1be85cace3ad4c417
3,650,042
import csv def data_index(person, dim): """ Output sequence of eye gaze (x, y) positions from the dataset for a person and a dimension of that person (task, session, etc) Index starts at 0. The vectors are [x, y, flag], flag being if it's null """ session = "S1" if dim % 2 == 0 else "S2" # S1_Balura_Game S1_Fixations S1_Horizontal_Saccades S1_Random_Saccades S1_Reading S1_Video_1 S1_Video_2 for exc in exceptions: person += (exc-1 <= person) num = str(person+1).rjust(3, "0") #global info, tasks, tasks_code dir = "data/Round_1/id_1" + num + "/" + session + "/" + session + tasks[dim//2] + \ "/S_1" + num + "_" + session + "_" + tasks_code[dim//2] + \ ".csv" pos = [] mask = [] with open(dir) as csvfile: spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|') vecs = [] pads = [] for i, row in enumerate(spamreader): if i < 1: continue row = ''.join(row).split(",") if (i-1) % config['Hz'] == 0 and (i-1) != 0: vecs = np.stack(vecs) pads = np.stack(pads) pos.append(vecs) mask.append(pads) vecs = [] pads = [] if (i-1) % (config['Hz'] // config['second_split']) == 0: flag = (row[1] == 'NaN' or row[2] == 'NaN') arr = np.array([0, 0, flag]) if flag else np.array([float(row[1]), float(row[2]), flag]) vecs.append(arr) arr2 = np.array([0]*(info.feature_size-1)+[info.feature_size]) if flag else np.ones(info.feature_size) # the info.feature_size instead of 1 is to rescale and give it equal "weight" pads.append(arr2) pos=np.stack(pos) mask=np.stack(mask) return pos, mask, [tasks[dim//2]]
e8b37aaeb2c228f0749aece26609fb04e0d4a226
3,650,043
def getStatic(): """ These are "static" params for a smoother application flow and fine tuning of some params Not all functions are implemented yet Returns the necessary Params to run this application """ VISU_PAR = { # ============================================================================= # More general Params # ============================================================================= # does not consider samples which are longer than this value in [s] "delteSampleAbove[s]": 5, # flag for extractring/considering long Samples "extractLongs" : False, # does not consider samples which are longer than this value in [s] "toShort[s]": 0.003, # flag for extractring/considering too short Samples "extractShort" : False, # this might indicate a loop !! "bpmConfidence" : 1, # flag for extractring/considering potential Loops "extractLoops" : False, #compress all features to a range from (0,..,1) ->getFeatureStack() "compress": True, # invert all negative feature values with a total negative correlation ->getPandasCorrelation() "invNegative" : True, # ============================================================================= # Application Modes # ============================================================================= # scriptMode := ("clustering", "get_N_Closest", "analyseWithGT", "optimizer") # "clustering" := group samples into 'n Cluster' not regarding their GT # "get_N_Closest" := select N most similar samples to a reference sample not regarding their GT # requires path of a JSON file which contains the features of one sample (compareFilePath) # requires a number (N) (n_mostSimilar) # "analyseWithGT" := analyse a set of features and evaluate with GT-Labels # it is still possible to cluster within this option and save a landmap and restructure files # "optimizer" := trys a new subset of features and save the new subset, Needs GTs # # the hiearchy of the application mode is: analyseWithGT (when true, most params below are usefull) # clustering (There will be no option to select features compared to GT) # get_N_Closest There will be no option to select features compared to GT) # -> The best Features calculated and saved will be used ->(getBestFile,getBestFeatureSelektion) "scriptMode" : "get_N_Closest", #for get_N_Closest -> This should only contain one file and only the features for one Sample, "compareFilePath" : "../json_data/singleFile/Dirt-SamplesSingle2020-10-06.17:26:55.json", "n_mostSimilar": 25, # path to json files "dirName" : "../json_data/", # saved Features of a sample-library "fileName": "Dirt-Samples2020-09-14.20:53:18.json", # ============================================================================= # Feature selection and Feature subset creation modes # ============================================================================= # A fixed set of Features to select by (the names my vary from old JSON-Files to new ones) "predefinedFeatures" : False, # You can select Features by yourself if you want. It will refers to the predefined featrues # the default set can be generated from the Dirst-samples with suboptimalSearchs default values. "defineYoureOwnFeatureSet" : ['Har-Log_-FACM_10', 'MFCC-4', 'MFCC-7', 'Har-RecChr_-FACM_12','TriChr_Centroid', 'ZeroCrossingRate', 'MFCC-8'], # "defineYoureOwnFeatureSet" : ["Har-TriChr_-FACM_12", "MFCC-10"], # Select all features with correlation > suboptimalSearch.second to GT-Labels # And discard all features with cross correlation > suboptimalSearch.third "suboptimalSearch" : (True,0.3, 0.8), # Only take the nBest Features from suboptimaSearch (-1 := all) "nBest" : 7, # Consider all Features or take an approach of above. "calcAllFeatures": False, #("HillClimber", "Random") optimize features with a) hillclimber b) totaly random # maxxHill is the maximum iterationof the hillclimber/ max repeat for Random # probHill is the probability for each individual feature to get selected # modeHill := ("small", "big", "medium") affects HillClimber # small -> small steps (1-2 changes at a time) # big -> every permutation has equal probability # bigChoice -> bigger steps than "small" but not everything possibe like "big" "optimizer" : "HillClimber", "maxHill" : 500, "probHill": 0.0000001, "modeHill" : "medium", # amount of cluster to consider with Hierarch "nCluster" : 40, # (Hierarch/OPTICS/AffinityPropagation/SpectralClustering) 1st is hierarchial clustering, 2nd is Density based->getClusteringLabels() "clusterAlgo" : "Hierarch", # The mode for hierarchichal clustering. ward = minimum variance, average = minimum of average, complete = maximum of each cluster, single = minimum of each cluster "hierarchMode" : "average", # ============================================================================= # Output Params (save files to folder | draw landmap) # ============================================================================= # save folder for copying all audio files "saveFolder" : '../estimateSongs/', # restructure all files within their new assigned cluster Group/ # if mode is n_mostSimilar, it is an folder which contains the n_mostSimilar samples "copyFilesToFolder" : True, # draw a distance landmap with graphviz. "graphviz": False, # graphvizMode := ("clusterBased", "oneFilePerCluster", "minimalSpan") : # "minimalSpan" = draw one big landmap without clusters as minimal span tree (not recommended for all Files) # "clusterBased" = draw seperate clusters in one big landmap | # "oneFilePerCluster" = generate one landmap file per cluster) "graphvizMode" : "minimalSpan" } # Same Params for Spectral Clustering. This approach be will not be taken further SpectralClusterParam = {"assign_labels":"kmeans", #{‘kmeans’, ‘discretize’} default kmeans, "eigen_solver": "amg", } VISU_PAR = {**VISU_PAR, **SpectralClusterParam} return VISU_PAR
f82ed9c4156b8199be924fc1ed62398fcbad9e0c
3,650,044
def current_device(): """Return the index of the current active device. Returns ------- int The index of device. """ return dragon.cuda.GetDevice()
453b81673e198ddd3a5870843d16b9cc395802d4
3,650,045
import time async def access_logger(app, handler): """Simple logging middleware to report info about each request/response. """ async def logging_handler(request): start_time = time.time() request_name = hex(int(start_time * 10000))[-6:] client_ip, _ = request.transport.get_extra_info( 'peername', ('UNKNOWN', None)) # log request LOGGER.info( 'Request %s: "%s %s" from %s', request_name, request.method, request.rel_url, client_ip) def log_response(response): # pylint: disable=protected-access content_length = response._headers.get('Content-Length', 'UNKNOWN') if content_length == 'UNKNOWN': LOGGER.info( 'Response %s: %s status, %s size, in %.3fs', request_name, response._status, content_length, time.time() - start_time) else: LOGGER.info( 'Response %s: %s status, %sB size, in %.3fs', request_name, response._status, content_length, time.time() - start_time) try: response = await handler(request) log_response(response) return response except web.HTTPError as e: log_response(e) raise e return logging_handler
55d4ac318a65d6f4256467f7909b5a6ee2115a6d
3,650,046
from typing import Tuple def main(source: str) -> Tuple[astroid.Module, TypeInferer]: """Parse a string representing source text, and perform a typecheck. Return the astroid Module node (with the type_constraints attribute set on all nodes in the tree) and TypeInferer object. """ module = astroid.parse(source) type_inferer = TypeInferer() type_inferer.environment_transformer().visit(module) type_inferer.type_inference_transformer().visit(module) return module, type_inferer
f8e9b9a0ac9ff4334cce9ca7c888d3ff11570661
3,650,047
def to_literal_scalar(a_str): """Helper function to enforce literal scalar block (ruamel.yaml).""" return ruamel.yaml.scalarstring.LiteralScalarString(a_str)
7cdb3d37bad184b7c6e68b374d1b6fd7e4c744c4
3,650,048
from typing import Optional def get_first_free_address(subnet_id: Optional[int] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetFirstFreeAddressResult: """ Use this data source to access information about an existing resource. """ __args__ = dict() __args__['subnetId'] = subnet_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('phpipam:index/getFirstFreeAddress:getFirstFreeAddress', __args__, opts=opts, typ=GetFirstFreeAddressResult).value return AwaitableGetFirstFreeAddressResult( id=__ret__.id, ip_address=__ret__.ip_address, subnet_id=__ret__.subnet_id)
ea4a599a7f3ac65e296cce4c8fc3a764202bba26
3,650,049
def pagenav(object_list, base_url, order_by, reverse, cur_month, is_paginated, paginator): """Display page navigation for given list of objects""" return {'object_list': object_list, 'base_url': base_url, 'order_by': order_by, 'reverse': reverse, 'cur_month': cur_month, 'is_paginated': is_paginated, 'paginator': paginator}
eb61fb76dd32b8d0b3e264e77ce912766d3e38da
3,650,050
def read_input(path: str): """ Read game board file from path. Return list of str. >>> read_input("skyscrapers1.txt") ['***21**', '412453*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***'] """ with open(path, 'r') as f: game_lst = f.readlines() for idx, line in enumerate(game_lst): game_lst[idx] = line.strip('\n') return game_lst
a4bf08525ca3fe4b0b1efab1901830b4d7c45f05
3,650,051
def run_tweeter(): """ Captures image and sends tweet """ capture_image_and_tweet() return schedule.CancelJob
2cf3895270e5f5f64ecb2e943548f0a290c35b02
3,650,052
import time from functools import reduce from operator import add def get_retro_results( outdir, recos_basedir, events_basedir, recompute_estimate=False, overwrite=False, ): """Extract all rectro reco results from a reco directory tree, merging with original event information from correspoding source events directory tree. Results are populated to a Pandas DataFrame, saved to disk, and this is returned to the user. Parameters ---------- outdir : string recos_basedir : string events_basedir : string recompute_estimate : bool, optional overwrite : bool, optional """ t0 = time.time() outdir = abspath(expand(outdir)) if not isdir(outdir): mkdir(outdir) outfile_path = join(outdir, 'reconstructed_events.feather') if not overwrite and isfile(outfile_path): raise IOError('Output file path already exists at "{}"'.format(outfile_path)) cluster = LocalCluster(threads_per_worker=1, diagnostics_port=None) client = Client(cluster) try: # Walk directory hierarchy futures = [] for reco_dirpath, _, files in walk(recos_basedir, followlinks=True): is_leafdir = False for f in files: if f[-3:] == 'pkl' and f[:3] in ('slc', 'evt'): is_leafdir = True break if not is_leafdir: continue rel_dirpath = relpath(path=reco_dirpath, start=recos_basedir) if events_basedir is not None: event_dirpath = join(events_basedir, rel_dirpath) if not isdir(event_dirpath): raise IOError('Event directory does not exist: "{}"' .format(event_dirpath)) abs_reco_dirpath = abspath(reco_dirpath) filenum = basename(abs_reco_dirpath) flavdir = basename(dirname(abs_reco_dirpath)) futures.append( client.submit( extract_from_leaf_dir, recodir=reco_dirpath, eventdir=event_dirpath, flavdir=flavdir, filenum=filenum, recompute_estimate=recompute_estimate, ) ) results = [f.result() for f in as_completed(futures)] finally: cluster.close() client.close() del client del cluster # Convert to a single list containing all events all_events = reduce(add, results, []) # Convert to pandas DataFrame all_events = pd.DataFrame(all_events) # Save to disk all_events.to_feather(outfile_path) print('\nAll_events saved to "{}"\n'.format(outfile_path)) nevents = len(all_events) dt = time.time() - t0 print('\nTook {:.3f} s to extract {} events'.format(dt, nevents)) return all_events
e3753b86ed4efa60057f1e3a0c70c34193447718
3,650,053
import copy def split_surface_v(obj, t, **kwargs): """ Splits the surface at the input parametric coordinate on the v-direction. This method splits the surface into two pieces at the given parametric coordinate on the v-direction, generates two different surface objects and returns them. It does not modify the input surface. :param obj: surface :type obj: BSpline.Surface or NURBS.Surface :param t: parametric coordinate on the v-direction :type t: float :return: a list of surface as the split pieces of the initial surface :rtype: Multi.MultiSurface """ # Validate input if not isinstance(obj, Abstract.Surface): raise TypeError("Input shape must be an instance of any Surface class") if t == 0.0 or t == 1.0: raise ValueError("Cannot split on the corner points") utilities.check_uv(t) # Keyword arguments span_func = kwargs.get('find_span_func', helpers.find_span_linear) # Find multiplicity of the knot ks = span_func(obj.degree_v, obj.knotvector_v, obj.ctrlpts_size_v, t) - obj.degree_v + 1 s = helpers.find_multiplicity(t, obj.knotvector_v) r = obj.degree_v - s # Create backups of the original surface temp_obj = copy.deepcopy(obj) # Split the original surface temp_obj.insert_knot(v=t, rv=r, check_r=False) # Knot vectors knot_span = span_func(temp_obj.degree_v, temp_obj.knotvector_v, temp_obj.ctrlpts_size_v, t) + 1 surf1_kv = list(temp_obj.knotvector_v[0:knot_span]) surf1_kv.append(t) surf2_kv = list(temp_obj.knotvector_v[knot_span:]) for _ in range(0, temp_obj.degree_v + 1): surf2_kv.insert(0, t) # Control points surf1_ctrlpts = [] for v_row in temp_obj.ctrlpts2d: temp = v_row[0:ks + r] surf1_ctrlpts.append(temp) surf2_ctrlpts = [] for v_row in temp_obj.ctrlpts2d: temp = v_row[ks + r - 1:] surf2_ctrlpts.append(temp) # Create a new surface for the first half surf1 = temp_obj.__class__() surf1.degree_u = temp_obj.degree_u surf1.degree_v = temp_obj.degree_v surf1.ctrlpts2d = surf1_ctrlpts surf1.knotvector_v = surf1_kv surf1.knotvector_u = temp_obj.knotvector_u # Create another surface fot the second half surf2 = temp_obj.__class__() surf2.degree_u = temp_obj.degree_u surf2.degree_v = temp_obj.degree_v surf2.ctrlpts2d = surf2_ctrlpts surf2.knotvector_v = surf2_kv surf2.knotvector_u = temp_obj.knotvector_u # Create a MultiSurface ret_val = Multi.MultiSurface() ret_val.add(surf1) ret_val.add(surf2) # Return the new surfaces return ret_val
6603fb5e4c45fa60817168d776ac005475bd37a5
3,650,054
from typing import OrderedDict def oidc_userprofile_test(request): """ OIDC-style userinfo """ user = request.user profile, g_o_c = UserProfile.objects.get_or_create(user=user) data = OrderedDict() data['sub'] = user.username data['name'] = "%s %s" % (user.first_name, user.last_name) data['nickname'] = profile.nickname data['given_name'] = user.first_name data['family_name'] = user.last_name data['email'] = user.email data['email_verified'] = profile.email_verified data['phone_number'] = profile.mobile_phone_number data['phone_verified'] = profile.phone_verified data['picture'] = profile.picture_url data['gender'] = profile.gender data['birthdate'] = str(profile.birth_date) data['patient'] = get_fhir_id(user) data['iat'] = user.date_joined data['call_member'] = settings.CALL_MEMBER data['call_member_plural'] = settings.CALL_MEMBER data['call_organization'] = settings.CALL_ORGANIZATION data['call_organization_plural'] = settings.CALL_ORGANIZATION_PLURAL data['ial'] = profile.identity_assurance_level return JsonResponse(data)
aeae1962615ac9894b1b555814851c33efa85b45
3,650,055
def split_idx( idx,a,b): """ Shuffle and split a list of indexes into training and test data with a fixed random seed for reproducibility run: index of the current split (zero based) nruns: number of splits (> run) idx: list of indices to split """ rs = np.random.RandomState() rs.shuffle(idx) start = int(a / 10. * len(idx)) end = int((b+a) / 10. * len(idx)) train_idx = idx[0:start] test_idx = idx[start:end] val_idx = idx[end:] return train_idx, val_idx, test_idx # return train_idx, test_idx
e5c9850a0bbcdb187d12dff4cd9df6c9faddfacc
3,650,056
def scale(val, src, dst): """ Scale the given value from the scale of src to the scale of dst. val: float or int src: tuple dst: tuple example: print(scale(99, (0.0, 99.0), (-1.0, +1.0))) """ return (float(val - src[0]) / (src[1] - src[0])) * (dst[1] - dst[0]) + dst[0]
26cfaccaeea861ccecb36697838710c0ab706520
3,650,057
def add(c1, c2): """Add two encrypted counters""" a1, b1 = c1 a2, b2 = c2 return (a1 + a2, b1 + b2)
d3e519524fac558622f692a46ffb8fed9899176f
3,650,058
async def wait_all_tasks_blocked(cushion=0.0): """Block until there are no runnable tasks. This is useful in testing code when you want to give other tasks a chance to "settle down". The calling task is blocked, and doesn't wake up until all other tasks are also blocked for at least ``cushion`` seconds. (Setting a non-zero ``cushion`` is intended to handle cases like two tasks talking to each other over a local socket, where we want to ignore the potential brief moment between a send and receive when all tasks are blocked.) Note that ``cushion`` is measured in *real* time, not the Trio clock time. If there are multiple tasks blocked in :func:`wait_all_tasks_blocked`, then the one with the shortest ``cushion`` is the one woken (and this task becoming unblocked resets the timers for the remaining tasks). If there are multiple tasks that have exactly the same ``cushion``, then all are woken. You should also consider :class:`trio.testing.Sequencer`, which provides a more explicit way to control execution ordering within a test, and will often produce more readable tests. Example: Here's an example of one way to test that Trio's locks are fair: we take the lock in the parent, start a child, wait for the child to be blocked waiting for the lock (!), and then check that we can't release and immediately re-acquire the lock:: async def lock_taker(lock): await lock.acquire() lock.release() async def test_lock_fairness(): lock = trio.Lock() await lock.acquire() async with trio.open_nursery() as nursery: nursery.start_soon(lock_taker, lock) # child hasn't run yet, we have the lock assert lock.locked() assert lock._owner is trio.lowlevel.current_task() await trio.testing.wait_all_tasks_blocked() # now the child has run and is blocked on lock.acquire(), we # still have the lock assert lock.locked() assert lock._owner is trio.lowlevel.current_task() lock.release() try: # The child has a prior claim, so we can't have it lock.acquire_nowait() except trio.WouldBlock: assert lock._owner is not trio.lowlevel.current_task() print("PASS") else: print("FAIL") """ locals()[LOCALS_KEY_KI_PROTECTION_ENABLED] = True try: return await GLOBAL_RUN_CONTEXT.runner.wait_all_tasks_blocked(cushion) except AttributeError: raise RuntimeError("must be called from async context")
35b144f4a214cb1f02bb1448f78a54ed93ac66aa
3,650,059
def get_chisq_grid(data, type, forecast=False, errors=None): """ Generates 2d meshgrid for chisq values of a given type (i.e. BBN, CMB etc) """ masses = np.unique(data['mass']) omegabs = np.unique(data['OmegaB']) MASS, OMEGAB = np.meshgrid(masses, omegabs) OMEGABDAT = data['OmegaB'].reshape(len(masses), -1).T YP = data['Yp'].reshape(len(masses), -1).T DH = data['D/H'].reshape(len(masses), -1).T NEFF = data['Neff'].reshape(len(masses), -1).T return chisq(YP, DH, OMEGABDAT, NEFF, type, forecast, errors)
3ea6fcf16d6c506733f5164e8808c5d5dce6c969
3,650,060
import ctypes def spectrl2(units, location, datetime, weather, orientation, atmospheric_conditions, albedo): """ Calculate solar spectrum by calling functions exported by :data:`SPECTRL2DLL`. :param units: set ``units`` = 1 for W/m\ :sup:`2`/micron :type units: int :param location: latitude, longitude and UTC-timezone :type location: float :param datetime: year, month, day, hour, minute and second :type datetime: int :param weather: ambient-pressure [mB] and ambient-temperature [C] :type weather: float :param orientation: tilt and aspect [degrees] :type orientation: float :param atmospheric_conditions: alpha, assym, ozone, tau500 and watvap :type atmospheric_conditions: float :param albedo: 6 wavelengths and 6 reflectivities :type albedo: float :returns: spectral decomposition, x-coordinate :rtype: float :raises: :exc:`~solar_utils.exceptions.SPECTRL2_Error`, :exc:`~solar_utils.exceptions.SOLPOS_Error` Returns the diffuse, direct, extraterrestrial and global spectral components on the tilted surface in as a function of x-coordinate specified by units. ===== =============================================================== units output units ===== =============================================================== 1 irradiance (W/sq m/micron) per wavelength (microns) 2 photon flux (10.0E+16 /sq cm/s/micron) per wavelength (microns) 3 photon flux density (10.0E+16 /sq cm/s/eV) per energy (eV) ===== =============================================================== See `NREL SPECTRL2 Documentation <http://rredc.nrel.gov/solar/models/spectral/spectrl2/documentation.html>`_ for more detail. .. seealso:: :func:`solposAM` **Examples:** >>> units = 1 >>> location = [33.65, -84.43, -5.0] >>> datetime = [1999, 7, 22, 9, 45, 37] >>> weather = [1006.0, 27.0] >>> orientation = [33.65, 135.0] >>> atmospheric_conditions = [1.14, 0.65, -1.0, 0.2, 1.36] >>> albedo = [0.3, 0.7, 0.8, 1.3, 2.5, 4.0] + ([0.2] * 6) >>> (specdif, specdir, specetr, specglo, specx) = spectrl2(units, location, datetime, weather, orientation, atmospheric_conditions, albedo) """ # load the DLL ctypes.cdll.LoadLibrary(SOLPOSAMDLL) # requires 'solpos.dll' spectrl2_dll = ctypes.cdll.LoadLibrary(SPECTRL2DLL) _spectrl2 = spectrl2_dll.spectrl2 # cast Python types as ctypes _location = (ctypes.c_float * 3)(*location) _datetime = (ctypes.c_int * 6)(*datetime) _weather = (ctypes.c_float * 2)(*weather) _orientation = (ctypes.c_float * 2)(*orientation) _atmospheric_conditions = (ctypes.c_float * 5)(*atmospheric_conditions) _albedo = (ctypes.c_float * 12)(*albedo) # allocate space for results specdif = (ctypes.c_float * 122)() specdir = (ctypes.c_float * 122)() specetr = (ctypes.c_float * 122)() specglo = (ctypes.c_float * 122)() specx = (ctypes.c_float * 122)() angles = (ctypes.c_float * 2)() airmass = (ctypes.c_float * 2)() settings = (ctypes.c_int * 2)() shadowband = (ctypes.c_float * 3)() # call DLL err_code = _spectrl2( units, _location, _datetime, _weather, _orientation, _atmospheric_conditions, _albedo, specdif, specdir, specetr, specglo, specx, angles, airmass, settings, shadowband ) # return results if successful, otherwise raise exception if err_code == 0: return specdif, specdir, specetr, specglo, specx elif err_code < 0: data = {'units': units, 'tau500': atmospheric_conditions[3], 'watvap': atmospheric_conditions[4], 'assym': atmospheric_conditions[1]} raise SPECTRL2_Error(err_code, data) else: # convert err_code to bits _code = _int2bits(err_code) data = {'location': location, 'datetime': datetime, 'weather': weather, 'angles': angles, 'airmass': airmass, 'settings': settings, 'orientation': orientation, 'shadowband': shadowband} raise SOLPOS_Error(_code, data)
aa8bd3878bc3f230d89e1d9545621a43e2d2fa6c
3,650,062
def setup_transition_list(): """ Creates and returns a list of Transition() objects to represent state transitions for an unbiased random walk. Parameters ---------- (none) Returns ------- xn_list : list of Transition objects List of objects that encode information about the link-state transitions. Notes ----- State 0 represents fluid and state 1 represents a particle (such as a sediment grain, tea leaf, or solute molecule). The states and transitions are as follows: Pair state Transition to Process Rate (cells/s) ========== ============= ======= ============== 0 (0-0) (none) - - 1 (0-1) 2 (1-0) left/down motion 10.0 2 (1-0) 1 (0-1) right/up motion 10.0 3 (1-1) (none) - - """ # Create an empty transition list xn_list = [] # Append two transitions to the list. # Note that the arguments to the Transition() object constructor are: # - Tuple representing starting pair state # (left/bottom cell, right/top cell, orientation) # - Tuple representing new pair state # (left/bottom cell, right/top cell, orientation) # - Transition rate (cells per time step, in this case 1 sec) # - Name for transition xn_list.append(Transition((0, 1, 0), (1, 0, 0), 10.0, "left/down motion")) xn_list.append(Transition((1, 0, 0), (0, 1, 0), 10.0, "right/up motion")) return xn_list
702c7a7083546797578e5463841c7b59548dcca2
3,650,063
def error_message(error, text): """ Gives default or custom text for the error. -------------------- Inputs <datatype>: - error <Error Object>: The error code - text <string>: Custom error text if error has no message Returns <datatype>: - error description <string>: The custom error description or default """ try: return error.description['message'] except TypeError: return text
466fec2d2abefc9f05a3f0adf569fba1c63ea4c1
3,650,064
def maskguard(maskarray, niter=1, xyonly=False, vonly=False): """ Pad a mask by specified number of pixels in all three dimensions. Parameters ---------- maskarray : `~numpy.ndarray` The 3-D mask array with 1s for valid pixels and 0s otherwise. niter : int, optional Number of iterations for expanding mask by binary dilation. Default: 1 xyonly : boolean, optional Whether to expand only in the two sky coordinates Default: False vonly : boolean, optional Whether to expand only in the spectral coordinate Default: False (ignored if xyonly==True) Returns ------- maskarray : `~numpy.ndarray` A copy of the input maskarray after padding. """ s = ndimage.generate_binary_structure(3, 1) if xyonly: s[0,:] = False s[2,:] = False elif vonly: s[1]=s[0] maskarray = ndimage.binary_dilation(maskarray, structure=s, iterations=niter) return maskarray
098964878e313b08c73f1a3c1a66a2b7f1664090
3,650,065
def validdest(repo, old, new): """Is the new bookmark destination a valid update from the old one""" repo = repo.unfiltered() if old == new: # Old == new -> nothing to update. return False elif not old: # old is nullrev, anything is valid. # (new != nullrev has been excluded by the previous check) return True elif repo.obsstore: return new.node() in obsolete.foreground(repo, [old.node()]) else: # still an independent clause as it is lazier (and therefore faster) return old.descendant(new)
8206b1ec130582864979ea9fb617c60b6175deff
3,650,066
def no_rbac_suffix_in_test_filename(filename): """Check that RBAC filenames end with "_rbac" suffix. P101 """ if "patrole_tempest_plugin/tests/api" in filename: if filename.endswith('rbac_base.py'): return if not filename.endswith('_rbac.py'): return 0, "RBAC test filenames must end in _rbac suffix"
6ebfcede8b6e30f24f5ecc1f9d3f0985bd4c44fa
3,650,067
def import_results(results_file, valid_codes=None, session=None): """Take a iterable which yields result lines and add them to the database. If session is None, the global db.session is used. If valid_codes is non-None, it is a set containing the party codes which are allowed in this database. If None, this set is queried from the database. .. note:: This can take a relatively long time when adding several hundred results. Should this become a bottleneck, there are some optimisation opportunities. """ session = session if session is not None else db.session valid_codes = ( valid_codes if valid_codes is not None else _query_valid_party_codes(session) ) diagnostics = [] # This is a relatively straightforward but sub-optimal way to implement a # bulk insert. The main issue is that the DB is queried once per result to # see if the constituency exists. It would be preferable to do a single # query over all of the given constituency names to determine which ones are # present. This would make the flow of this function less obvious. For the # moment, leave the sub-optimal implementation but should we need to # re-visit this function as we deal with greater numbers of results the # strategy above should be tried. for line_idx, line in enumerate(results_file): try: add_constituency_result_line( line, valid_codes=valid_codes, session=session) except ValueError as e: diagnostics.append(Diagnostic( line, e.args[0] % e.args[1:], line_idx + 1 )) # Log the fact that this import happened log('\n'.join([ 'Imported {} result line(s), {} diagnostic(s)'.format( line_idx+1, len(diagnostics)), ] + [str(d) for d in diagnostics])) return diagnostics
e7faea1b78418b6fdb599612fdc72fe20fe45bc6
3,650,068
def fit_lens_data_with_tracer(lens_data, tracer, padded_tracer=None): """Fit lens data with a model tracer, automatically determining the type of fit based on the \ properties of the galaxies in the tracer. Parameters ----------- lens_data : lens_data.LensData or lens_data.LensDataHyper The lens-images that is fitted. tracer : ray_tracing.AbstractTracerNonStack The tracer, which describes the ray-tracing and strong lens configuration. padded_tracer : ray_tracing.Tracer or None A tracer with an identical strong lens configuration to the tracer above, but using the lens data's \ padded grid_stack such that unmasked model-images can be computed. """ if tracer.has_light_profile and not tracer.has_pixelization: return LensProfileFit(lens_data=lens_data, tracer=tracer, padded_tracer=padded_tracer) elif not tracer.has_light_profile and tracer.has_pixelization: return LensInversionFit(lens_data=lens_data, tracer=tracer) elif tracer.has_light_profile and tracer.has_pixelization: return LensProfileInversionFit(lens_data=lens_data, tracer=tracer, padded_tracer=padded_tracer) else: raise exc.FittingException('The fit routine did not call a Fit class - check the ' 'properties of the tracer')
c94454462e4e9fd770eebf39a9574daa0e6a9025
3,650,069
def sround(a, *ndigits): """Termwise round(a) for an iterable. An optional second argument is supported, and passed through to the built-in ``round`` function. As with the built-in, rounding is correct taking into account the float representation, which is base-2. https://docs.python.org/3/library/functions.html#round """ op = _make_termwise_stream_unop(round, ndigits[0]) if ndigits else _round return op(a)
ee75d82fa3bdfb50afb279cce87d6d6ec6120adf
3,650,070
def part_b(lines): """ For each valid line consider the stack of opening characters that didn't get closed. Compute a score for each line per the question, then return the median value of these scores. """ scores = [] for line in lines: is_line_valid, stack = assess_line(line) if is_line_valid: scores.append(score_completion(stack)) scores.sort() return scores[len(scores) // 2]
e745a3be40f5a83f0e8ce3de4c647bd5984e7511
3,650,071
def _get_activation( spec): """Get a rematlib Layer corresponding to a given activation function.""" if spec == mobile_search_space_v3.RELU: result = layers.ReLU() elif spec == mobile_search_space_v3.RELU6: result = layers.ReLU6() elif spec == mobile_search_space_v3.SWISH6: result = layers.Swish6() elif spec == mobile_search_space_v3.SIGMOID: result = layers.Sigmoid() else: raise ValueError('Unrecognized activation function: {}'.format(spec)) return result
d2e67564eb366128b6dfe9f0c1c919ceb0e949ac
3,650,072
def RT2tq(poses, square=False): """ !!NOT TESETED!! :param poses: N x 3 x 4, (R|T) :return: (N, 7) """ N,_,_ = poses.shape R = poses[:,:,:3] T = poses[:,:,3:] # Nx3x1 q = quaternion.as_float_array(quaternion.from_rotation_matrix(R)) #Nx4 t= T.squeeze(-1) tq = np.concatenate([t,q], axis=-1) return tq
5241aa7110df8074fe203b1cbe33cb7bf509c2f3
3,650,074
import json def make_callback(subscription_path, project_id): """Return a callback closure""" def callback(message): """Handle Pub/Sub resurrection message. Ignore (and ACK) messages that are not well-formed. Try handle any other message, ACKing it eventually (always). """ logger.info('Handling message from subscription "%s"', subscription_path) # parse the message, ACK on failure to avoid duplicate deliveries try: instance_desc = json.loads(message.data) except: logger.exception('Failed parsing JSON message - ignoring it\n%s', message) else: resurrect_instance(project_id, instance_desc) finally: logger.info('ACKing message\n%s', message) message.ack() return callback
ac16d67ee9e7b89d69b79702e4121b1983df2bb8
3,650,075
def data_to_bytes(data, encoding): """\ Converts the provided data into bytes. If the data is already a byte sequence, it will be left unchanged. This function tries to use the provided `encoding` (if not ``None``) or the default encoding (ISO/IEC 8859-1). It uses UTF-8 as fallback. Returns the (byte) data, the data length and the encoding of the data. :param data: The data to encode :type data: str or bytes :param encoding: str or ``None`` :rtype: tuple: data, data length, encoding """ if isinstance(data, bytes): return data, len(data), encoding or consts.DEFAULT_BYTE_ENCODING data = str(data) if encoding is not None: # Use the provided encoding; could raise an exception by intention data = data.encode(encoding) else: try: # Try to use the default byte encoding encoding = consts.DEFAULT_BYTE_ENCODING data = data.encode(encoding) except UnicodeError: try: # Try Kanji / Shift_JIS encoding = consts.KANJI_ENCODING data = data.encode(encoding) except UnicodeError: # Use UTF-8 encoding = 'utf-8' data = data.encode(encoding) return data, len(data), encoding
78d0813075c24d2a85412648fa45d720227ae853
3,650,077
def get_session_store(state: State = Depends(get_app_state)) -> SessionStore: """Get a singleton SessionStore to keep track of created sessions.""" session_store = getattr(state, _SESSION_STORE_KEY, None) if session_store is None: session_store = SessionStore() setattr(state, _SESSION_STORE_KEY, session_store) return session_store
4204371079babbfdc15327bb62b3c1c306e27f39
3,650,078
def extractCurrentlyTLingBuniMi(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None if item['title'].startswith('[BNM]'): return buildReleaseMessageWithType(item, 'Bu ni Mi wo Sasagete Hyaku to Yonen. Elf de Yarinaosu Musha Shugyou', vol, chp, frag=frag, postfix=postfix) if item['title'].startswith('[DD]'): return buildReleaseMessageWithType(item, 'Doll Dungeon', vol, chp, frag=frag, postfix=postfix) if item['title'].startswith('[HCLS]'): return buildReleaseMessageWithType(item, 'High Comprehension Low Strength', vol, chp, frag=frag, postfix=postfix) tagmap = [ ('Abyss Domination', 'Abyss Domination', 'translated'), ('Nine Yang Sword Saint', 'Nine Yang Sword Saint', 'translated'), ('Mysterious World Beast God', 'Mysterious World Beast God', 'translated'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
9b91a6a2329cb4e2572f181b16ddc6b2f0fb3553
3,650,080
from dif import dif_stats def dif_stats(filename, # [<'my/file.txt',...> => name of scored data file] student_id = 'Student_ID', # [<'Student_ID', ...> => student id column label] group = ['Sex', {'focal':0, 'ref':1}], # [<e.g.'Sex', {'focal':'female', 'ref':'male'}]> => column label with assignment to focal and reference] raw_score = 'RawScore', # [<'RawScore',...> => raw score column label] items = 'All', # [<'All', ['item1', 'item3',...]> => items for which to get stats] stats = 'All', # [<'All', [see list in docs]> => desired statistics] strata = ('all_scores', 4), # [(<'all_scores', int>, int) => number of raw score strata, with backup if insufficient] getrows = None, # [<None, {'Get':_,'Labels':_,'Rows':_}> => select rows using extract() syntax] getcols = None, # [<None, {'Get':_,'Labels':_,'Cols':_}> => select cols using extract() syntax] delimiter = '\t', # [<',', '\t'> => column delimiter] ): """Calculate DIF stats for each in a range of items. Returns ------- dif() returns an item by statistic Damon object with a column containing number of score categories. Display results using: >>> print tabulate(dif(...).whole, 'firstrow') Comments -------- "dif" (DIF) stands for "differential item functioning" and reflects the degree to which items have different difficulties for two groups of persons, a "focal" and a "reference" group, after adjusting for the ability of each person. It is used to flag items that "play favorites" with student groups, e.g., that are easy for girls and hard for boys even though the two groups otherwise have similar ability. There are a profusion of DIF statistics, organized mainly by whether they are intended for dichotomous or polytomous items. The Rasch model has its own way of estimating DIF (not included in this function) which yields similar results. dif() supports three categories of DIF statistics plus related variances, z-scores, chi-squares and so on. Any number of combinations of these statistics have been proposed for flagging DIF items. 'MH' => Mantel-Haenszel, for dichotomous data 'M' => Mantel, for dichotomous and polytomous data 'SMD' => standardized mean difference, usually for polytomous Formulas are pulled from Zwick & Thayer (1996) and Wood (2011). A commonly used statistic is the 'Flag' statistic, which gives a code for whether an item should be flagged. ETS's a, b, c DIF flags are reported numerically as 0, 1, 2. See discussion below. The dif_stats() function applies only to unidimensional data. Multidimensional DIF can be evaluated in Damon to a limited degree using the "stability" statistic in conjunction with coord()'s seed parameters. dif() requires a student-by-item data file or array with a group membership column and a column of student raw scores. Thus, column headers should contain a student id column, a group column, a raw score column, and a series of item columns. Any other columns in your dataset should be filtered out using the getcols parameter. References ---------- Zwick, R., Thayer, D. (Autumn, 1996). "Evaluating the Magnitude of Differential Item Functioning in Polytomous Items". Journal of Educational and Behavioral Statistics, Vol. 21, No. 3, pp 187-201. http://www.jstor.org/stable/1165267 Wood, S. W. (2011). "Differential item functioning procedures for polytomous items when examinee sample sizes are small." doctoral PhD diss, University of Iowa, 2011. http://ir.uiowa.edu/etd/1110. Parameters ---------- "filename" is the string name of a person x item file containing integer scores of how each student did on each item, a column containing test-level raw scores for each student, and a column assigning each student to a group. All non-numerical cells are treated as missing. All numerical scores are treated as valid. Numerical scores must be integers whose minimum value is zero. Data must be tabular and field-delimited. filename = '/path/to/my_file.txt' => file is 'my_file.txt' ----------- "student_id' is the header label of the column containing unique student identifiers. student_id = 'Student_ID' => Student identifiers are in the column labels 'Student_ID'. ----------- "group" contains the header label of the group column and assigns one group to be "focal" and the other to be the "reference". group = ['Sex', {'focal':'female', 'ref':'male'}] => Student gender identifiers are in the column labeled 'Sex'. Students labeled "female" will be the focal group. Students labeled "male" will be the reference group. Note: As is typical with DIF statistics, while there can be more than two groups, only two are compared at a time. ----------- "raw_score" is the header label of the raw score column. raw_score = 'RawScore' => Test-level student raw scores are in the column labeled 'RawScore' ----------- "items" is the list of items for which DIF statistics should be calculated. items = 'All' => Calculate DIF for all items in the dataset. items = ['item1', 'item5'] => Calculate DIF for only items 1 and 5. ----------- "stats" is the list of DIF stats to be calculated for each item. If a given statistic cannot be calculated for a given item, the cell is left blank. stats = 'All' => Calculate all possible DIF statistics for all items (see list below). stats = ['MH_d-dif', 'MH_z', 'M_z', 'SMD_z'] => Calculate just the Mantel-Haenszel delta-DIF (defined by ETS), the Mantel-Haenszel z statistic (both for dichotomous items), the Mantel z-statistic (for dichotomous and polytomous items), and the standardized mean difference z-statistic. List of available DIF-related statistics ("MH" means Mantel- Haenszel, "M" means Mantel, "SMD" means standardized mean difference. Mantel-Haenszel (dichotomous data) 'MH_alpha' => odds ratio, dich, 0 -> +inf 'MH_dif' => log-odds ratio, dich, -inf -> +inf 'MH_d-dif' => delta-DIF = -2.35*log-odds, dich, -inf -> +inf, negative implies bias toward reference group. (d-dif > 1.5 implies DIF) 'MH_var' => variance of MH_dif (SE = sqrt(var)) 'MH_d-var' => variance of MH_d-dif 'MH_z' => absolute z-statistic (dif/sqrt(var)), z > 2.0 => p < 0.05 'MH_pval' => p-value associated with z, pval < 0.05 => significance 'MH_chisq' => chi-square = z^2. chisq > 3.84 => p < 0.05 'MH_chisq_pval' => p-value associated with chisq, pval < 0.05 => significance Mantel (dichotomous and polytomous data) 'M_dif' => observed - expected frequencies 'M_var' => variance of M_diff (SE = sqrt(var)) 'M_z' => signed z-statistic, dif/sqrt(var), z > 2.0 => p < 0.05 'M_pval' => p-value associated with z, pval < 0.05 => significance 'M_chisq' => chi-square = z^2. chisq > 3.84 => p < 0.05 'M_chisq_pval' => p-value associated with chisq, pval < 0.05 => significance Standardized mean difference (mainly for polytomous data) 'SMD_dif' => difference between reference and focal groups 'SMD_var' => variance of SMD_dif (SE = sqrt(var)) 'SMD_z' => signed z-statistic, dif/sqrt(var), z > 2.0 => p < 0.05 'SMD_pval' => p-value associated with z, pval < 0.05 => significance 'SMD_chisq' => chi-square = z^2. chisq > 3.84 => p < 0.05 'SMD_chisq_pval'=> p-value associated with chisq, pval < 0.05 => significance Other stats 'SD' => standard deviation of person scores for that item 'SMD/SD' => absolute SMD/SD > 0.25 implies DIF if SMD_chisq_pval < 0.05 'Flag' => flag a DIF item based on the rules described below. 'Counts' => Count valid scores for each item, overall and by group. As mentioned, all statistics that are dependent on sample size (e.g., z, chi-square) will show larger values as sample size increases and their standard errors go to zero. Therefore, DIF decisions should be based on other considerations. One useful rule suggested by Zwick, Thayer, and Mazzeo and used by ETS is as follows. Flag DIF: for dichotomous items: Flag = 2 if: 'MH_d-dif' is greater than 1.5 and significantly greater than 1.0. Flag = 0 if: 'MH_d-dif' is less than 1.0 or the p-value is greater than 0.05. Flag = 1, otherwise. These correspond to ETS a, b, c DIF flags: 'a'=>0, 'b'=>1, 'c'=>2 for polytomous items: Flag = 2 if: 'SMD/SD' is greater than 0.25 and 'M_chisq_pval' is less than 0.05. Flag = 0, otherwise. There is no flag = 1 here. (Note: Zwick refers to this as a Mantel-Haenszel chi-square p-value but the formula resembles the polytomous Mantel chi-square p-value, which is what is used here.) ----------- "strata" is the number of ability strata or levels into which to divide student test raw scores for purposes of matching students of similar abilities. If the number of strata do not divide evenly into the number of potential raw scores, the remainder are stuck in the lowest stratum. "strata" requires a backup strata specification in case the primary specification leads to a count of one or less for a given item: strata = (primary, backup) Examples: strata = ('all_scores', 4) => Let each possible raw score be its own stratum. This is desirable so long as the sample of persons is large enough that all cells in the resulting stratum x score table have fairly large counts. If 'all_scores' yields insufficient data for a given item, use a stratum of 4 for that item. strata = (20, 10) => Divide the raw scores into 20 strata and match students who belong to the same stratum. If this leads to insufficient data, use 10 for that item. Some DIF programs allow no more than five or so stratification levels in order to avoid insufficient counts. This degrades the DIF statistics a little, but not generally enough to be a problem. ----------- "getrows" controls the rows that are loaded from the datafile, making it possible to filter out unneeded rows, e.g., to get a student subsample. The syntax is drawn from Damon's extract() method and can be a bit fancy. To get a full description of what you can do with getrows, see: >>> help(core.Damon.extract) Simple examples: getrows = None => Retain all rows as they are. Non-intuitively, this really means "get all rows". getrows = {'Get':'AllExcept','Labels':'key','Rows':['row_x', 'row_y']} => Extract all rows except those labeled 'row_x' and 'row_y'. getrows = {'Get':'NoneExcept','Labels':'index','Rows':[range(1, 20, 2)]} => Extract only row 1 up to, but not including, row 20. 2 is a step parameter, and means get every other row within the range. Counting starts from 0. The 'index' parameter means 'Rows' refers to positions, not 'keys'. ----------- "getcols" controls the columns that are loaded from the datafile, making it possible to filter out unneeded columns, e.g., data columns that are not items or the student raw score. The syntax is drawn from Damon's extract() method and can be a bit fancy. To get a full description of what you can do with getcols, see: >>> help(core.Damon.extract) Simple examples: getcols = None => Retain all columns as they are. Non-intuitively, this really means "get all columns". getcols = {'Get':'AllExcept','Labels':'key','Cols':['col_x', 'col_y']} => Extract all columns except those labeled 'col_x' and 'col_y'. getcols = {'Get':'NoneExcept','Labels':'index','Cols':[range(2, 41)]} => Extract only columns 2 up to, but not including, 41. Counting starts from 0. Note the 'index' parameter. ----------- "delimiter" is the character used to delimit columns in the dataset. delimiter = ',' => File is comma-delimited. delimiter = '\t' => File is tab-delimited. Examples -------- [under construction] Paste Function -------------- dif_stats(filename, # [<'my/file.txt',...> => name of scored data file] student_id = 'Student_ID', # [<'Student_ID', ...> => student id column label] group = ['Sex', {'focal':0, 'ref':1}], # [<e.g.'Sex', {'focal':'female', 'ref':'male'}]> => column label with assignment to focal and reference] raw_score = 'RawScore', # [<'RawScore',...> => raw score column label] items = 'All', # [<'All', ['item1', 'item3',...]> => items for which to get stats] stats = 'All', # [<'All', [see list in docs]> => desired statistics] strata = ('all_scores', 4), # [(<'all_scores', int>, int) => number of raw score strata, with backup if insufficient] getrows = None, # [<None, {'Get':_,'Labels':_,'Rows':_}> => select rows using extract() syntax] getcols = None, # [<None, {'Get':_,'Labels':_,'Cols':_}> => select cols using extract() syntax] delimiter = '\t', # [<',', '\t'> => column delimiter] ) """ args = locals() return dif_stats(**args)
0ed6b94e63d5eacc40aeaf4f2181012ef8aacc22
3,650,081
def delete_all_devices_for_user(): """ delete all active devices for the given user """ try: username = get_jwt_identity() with session_scope() as session: user = user_service.get_user(username, session) device_count = user.devices.count() if device_count == 0: resp = { "status": "error", "msg": "no devices found for '%s'" % username } return make_response(jsonify(resp), status.HTTP_404_NOT_FOUND) LOGGER.info("Deleting all devices for '%s'" % username) for device in user.devices: device_service.delete_device(user.username, device.device_id, session) LOGGER.info("Deleted " + device.device_name + ", with device id = " + device.device_id + "!") LOGGER.info("Deleted all devices for '%s'" % username) resp = { "status": "success", "msg": "deleted %d devices for '%s'" % (device_count, username) } return make_response(jsonify(resp), status.HTTP_200_OK) except Exception as e: resp = { "status": "error", "msg": "%s" % str(e) } return make_response(jsonify(resp), status.HTTP_500_INTERNAL_SERVER_ERROR)
2ac4c0f40e72dc54ca78a109ead9d09f15481b92
3,650,082
def _GetNormalizationTuple(url): """Parse a URL into a components tuple. Parse a URL into 6 components: <scheme>://<netloc>/<path>;<params>?<query>#<fragment> Args: url:A URL string. Returns: A 6-tuple: (scheme, netloc, path, params, query, fragment). """ url = encoding_util.EncodeToAscii(url) up = urlparse(url, 'http') authority = up[1] path = up[2] if not authority: end_index = path.find('/') if end_index == -1: end_index = len(path) authority = path[:end_index] path = path[end_index:] path = path.rstrip('/') # Ignore trailing slashes on the path. return (up[0], authority, path, up[3], up[4], up[5])
cbc8dad95202a9a17f75dac754b6ec00e3efcdfd
3,650,083
def gCallback(dataset, geneid, colors): """Callback to set initial value of green slider from dict. Positional arguments: dataset -- Currently selected dataset. geneid -- Not needed, only to register input. colors -- Dictionary containing the color values. """ colorsDict = colors try: colorVal = colorsDict[dataset][4:-1].split(',')[1] return int(colorVal) except KeyError: return 0
5a97fd16ea362b3b53f33f52a449c4dccc617e44
3,650,084
def intForcesMoments(sliceZnes,method, direction): """ Loops over the sliceZnes and performs an integration of Forces and moments for each slice (Scalar integrals, variables are depending on the method). Returns a ([dir, dirNormalized,fxNr,fyNr,fzNr,mxNr,myNr,mzNr]*Nslices array) """ #direction, norm_direction, fx,fy,fz,mx,my,mz forcesMoments=np.zeros((8,len(sliceZnes))) ds = sliceZnes[0].dataset fr = ds.frame #Retrieves Forces and Moments variables xAxisNr=ds.variable(direction).index if method == "Pressure": fxNr=ds.variable('px').index+1 fyNr=ds.variable('py').index+1 fzNr=ds.variable('pz').index+1 else: fxNr=ds.variable('taux').index+1 fyNr=ds.variable('tauy').index+1 fzNr=ds.variable('tauz').index+1 mxNr=ds.variable('mx').index+1 myNr=ds.variable('my').index+1 mzNr=ds.variable('mz').index+1 #Populates the returned array with the direction and integrated values for i,slc in enumerate(sliceZnes): forcesMoments[(0,i)]= slc.values(xAxisNr)[0] for j,v in enumerate([fxNr,fyNr,fzNr,mxNr,myNr,mzNr]): intCmde=("Integrate ["+"{}".format(slc.index + 1)+"] VariableOption='Scalar'"\ + " XOrigin=0 YOrigin=0 ZOrigin=0"\ +" ScalarVar=" + "{}".format(v)\ + " Absolute='F' ExcludeBlanked='F' XVariable=1 YVariable=2 ZVariable=3 "\ + "IntegrateOver='Cells' IntegrateBy='Zones'"\ + "IRange={MIN =1 MAX = 0 SKIP = 1}"\ + " JRange={MIN =1 MAX = 0 SKIP = 1}"\ + " KRange={MIN =1 MAX = 0 SKIP = 1}"\ + " PlotResults='F' PlotAs='Result' TimeMin=0 TimeMax=0") tp.macro.execute_extended_command(command_processor_id='CFDAnalyzer4', command=intCmde) forcesMoments[(j+2,i)]=fr.aux_data['CFDA.INTEGRATION_TOTAL'] #Normalized direction: forcesMoments[1]=(forcesMoments[0]-forcesMoments[0].min())/(forcesMoments[0].max()-forcesMoments[0].min()) return (forcesMoments)
16e0a3adc3a3b171fd02b07f241ed8623b16c7e3
3,650,085
from typing import List def _other_members(other_members: List[parser.MemberInfo], title: str): """Returns "other_members" rendered to markdown. `other_members` is used for anything that is not a class, function, module, or method. Args: other_members: A list of `MemberInfo` objects. title: Title of the table. Returns: A markdown string """ items = [] for other_member in other_members: description = [other_member.doc.brief] for doc_part in other_member.doc.docstring_parts: if isinstance(doc_part, parser.TitleBlock): # Use list_view here because description will be part of a table. description.append(str(doc_part)) else: description.append(doc_part) items.append( parser.ITEMS_TEMPLATE.format( name=other_member.short_name, anchor=f'<a id="{other_member.short_name}"></a>', description='\n'.join(description), )) return '\n' + parser.TABLE_TEMPLATE.format( title=title, text='', items=''.join(items)) + '\n'
77c02e8532dd01bab0b9ea0f9d14634dc3523cd2
3,650,086
def full_url(parser, token): """Spits out the full URL""" url_node = url(parser, token) f = url_node.render url_node.render = lambda context: _get_host_from_context(context) + f(context) return url_node
d54e9cf5acee1b6283f3166e9479e8c9e8bb5047
3,650,087
def Chi2CoupleDiffFunc(nzbins, nzcorrs, ntheta, mask, data1, xi_obs_1, xi_theo_1, data2, xi_obs_2, xi_theo_2, inDir_cov12, file_name_cov12): """ Estimate chi^2 for difference between two data vectors Note: this assumes two data vectors have two separated covariance matrices the cross-correlation between two data vectors is also desired the masks for two data vector need to be identical """ # load the full covariance matrix: covmat_block_1 = io_cs.LoadCovarianceFunc(data1, nzbins, nzcorrs, xi_theo_1) covmat_block_2 = io_cs.LoadCovarianceFunc(data2, nzbins, nzcorrs, xi_theo_2) covmat_block_12 = io_cs.LoadCrossCovarianceFunc(inDir_cov12, file_name_cov12, ntheta, nzbins, nzcorrs, xi_theo_1, xi_theo_2) # build a combined cov-mat covmat = covmat_block_1 + covmat_block_2 - covmat_block_12 - covmat_block_12.transpose() # trim covariance matrix to chosen scales: mask_indices = np.where(mask == 1)[0] covmat = covmat[np.ix_(mask_indices, mask_indices)] # precompute Cholesky transform for chi^2 calculation: # don't invert that matrix... # use the Cholesky decomposition instead: cholesky_transform = cholesky(covmat, lower=True) vec = (xi_theo_1[mask_indices] - xi_obs_1[mask_indices]) - (xi_theo_2[mask_indices] - xi_obs_2[mask_indices]) yt = solve_triangular(cholesky_transform, vec, lower=True) chi2 = yt.dot(yt) return chi2, len(vec)
c0cd8a683447b0572a93914e633fb8f770c3a6fd
3,650,088
def minimax(just_mapping, mapping): """ Scale the mapping to minimize the maximum error from just intonation. """ least_error = float("inf") best_mapping = mapping for i in range(len(just_mapping)): for j in range(i+1, len(just_mapping)): candidate = mapping / (mapping[i] + mapping[j]) * (just_mapping[i] + just_mapping[j]) error = abs(just_mapping - candidate).max() if error < least_error: least_error = error best_mapping = candidate return best_mapping
b2226de7a916e3075327cd30c64e7412e186027d
3,650,089
from datetime import datetime def app_used_today(): """Check the session and the backend database for a record of app use from the last 24 hours.""" now = UTC.localize(datetime.datetime.utcnow()) last_app_use = get_last_app_use_date() day_length_in_seconds = 60 * 60 * 24 if last_app_use and (last_app_use.timestamp() + day_length_in_seconds) > now.timestamp(): return True return False
290bb4b87e74f5134effeb37da36cedcca05c4aa
3,650,090