content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def search_by_pattern(pattern, limit=20): """Perform a search for pattern.""" pattern_ = normalize_pattern(pattern) db = get_db() results = db.execute( """ SELECT json FROM places WHERE document MATCH ? ORDER BY rank DESC LIMIT ?; """, (fts_pattern(pattern_), limit) ).fetchall() return "[{}]".format(','.join([doc['json'] for doc in results]))
467b85c850bb27ac1ed9a6e7fff6bb969a5f84e0
3,650,091
def gcd(a, b): """Greatest common divisor""" return _gcd_internal(abs(a), abs(b))
886d366893a0215ccf0208af56c9c45037ad9549
3,650,092
def exp_create_database(db_name, demo, lang, user_password='admin', login='admin', country_code=None, phone=None): """ Similar to exp_create but blocking.""" _logger.info('Create database `%s`.', db_name) _create_empty_database(db_name) _initialize_db(id, db_name, demo, lang, user_password, login, country_code, phone) return True
b1d956628d864e0aa3998c00fd6a0b7cfb3ba411
3,650,093
def fix_cr(data): """Cosmic ray fixing function. Args: data (:class:`numpy.ndarray`): Input image data. Returns: :class:`numpy.dtype`: Fixed image data. """ m = data.mean(dtype=np.float64) s = data.std(dtype=np.float64) _mask = data > m + 3.*s if _mask.sum()>0: x = np.arange(data.size) f = InterpolatedUnivariateSpline(x[~_mask], data[~_mask], k=3) return f(x) else: return data
40702ccc9400f4ba5f10cad1f376b83eac487876
3,650,094
def iou(box1, box2, iouType='segm'): """Compute the Intersection-Over-Union of two given boxes. or the Intersection-Over box2. Args: box1: array of 4 elements [cx, cy, width, height]. box2: same as above iouType: The kind of intersection it will compute. 'keypoints' is for intersection over box2 area. Returns: iou: a float number in range [0, 1]. iou of the two boxes. """ lr = min(box1[0]+0.5*box1[2], box2[0]+0.5*box2[2]) - \ max(box1[0]-0.5*box1[2], box2[0]-0.5*box2[2]) if lr > 0: tb = min(box1[1]+0.5*box1[3], box2[1]+0.5*box2[3]) - \ max(box1[1]-0.5*box1[3], box2[1]-0.5*box2[3]) if tb > 0: intersection = tb*lr else: intersection = 0 if(iouType == 'keypoints'): box2_area = box2[2] * box2[3] return intersection/box2_area else: union = box1[2]*box1[3]+box2[2]*box2[3]-intersection return intersection/union return 0
42ef4689c977e4ccbdbb987ff3ae63b265d3c42d
3,650,095
def transform_color(color1, color2, skipR=1, skipG=1, skipB=1): """ transform_color(color1, color2, skipR=1, skipG=1, skipB=1) This function takes 2 color1 and color2 RGB color arguments, and then returns a list of colors in-between the color1 and color2 eg- tj.transform_color([0,0,0],[10,10,20]) returns a list:- [[0, 0, 0], [1, 1, 1], [2, 2, 2] ... [9, 9, 9], [10, 10, 10], [10, 10, 11] ... [10, 10, 20]] This function is very useful for creating color fade or color transition effects in pygame. There are 3 optional arguments, which are skip arguments set to 1 by default. """ L = [] if (color1[0] < color2[0]): i = list(range(color1[0], color2[0] + 1, skipR)) else: i = list(range(color2[0], color1[0] + 1, skipR))[::-1] if i == []: i = [color1[0]] if (color1[1] < color2[1]): j = list(range(color1[1], color2[1] + 1, skipG)) else: j = list(range(color2[1], color1[1] + 1, skipG))[::-1] if j == []: j = [color1[1]] if (color1[2] < color2[2]): k = list(range(color1[2], color2[2] + 1, skipB)) else: k = list(range(color2[2], color1[2] + 1, skipB))[::-1] if k == []: k = [color1[2]] x = max(len(i), len(j), len(k)) for m in range(len(i), x): i += [i[-1]] for m in range(len(j), x): j += [j[-1]] for m in range(len(k), x): k += [k[-1]] for m in range(x): l = [i[m], j[m], k[m]] L += [l] return L
5f04daa951c59b0445387b2dc988ab7efb98aff4
3,650,096
def sandwich(func): """Write a decorator that prints UPPER_SLICE and LOWE_SLICE before and after calling the function (func) that is passed in (@wraps is to preserve the original func's docstring) """ @wraps(func) def wrapped(*args, **kwargs): print(UPPER_SLICE) func(*args, **kwargs) print(LOWE_SLICE) return wrapped
167e1a753b7ba1f0d42732e12c5b37e0b0670f1b
3,650,097
def as_dict(bdb_path, compact=True): """Get the state of a minter BerkeleyDB as a dict. Only the fields used by EZID are included. """ with nog.bdb_wrapper.BdbWrapper(bdb_path, dry_run=False) as w: return w.as_dict(compact)
dab02d671c099bd726839dc40167632cab812015
3,650,098
import json def main() -> int: """ Builds/updates aircraft.json codes """ craft = {} for line in AIRCRAFT_PATH.open().readlines(): code, _, name = line.strip().split("\t") if code not in craft: craft[code] = name json.dump(craft, OUTPUT_PATH.open("w")) return 0
e35bc5b5f8be2452d60b73b891bc5756931b18aa
3,650,100
def bootstrap_mean(x, alpha=0.05, b=1000): """ Calculate bootstrap 1-alpha percentile CI of the mean from a sample x Parameters ---------- x : 1d array alpha : float Confidence interval is defined as the b : int The number of bootstrap samples Returns ------- lb, ub : the lower and upper bounds of the confidence interval """ means = np.empty(b) for ii in xrange(b): idx = np.random.randint(0, len(x), len(x)) means[ii] = np.mean(x[idx]) sort_means = np.sort(means) lb_idx = int(b * alpha/2) ub_idx = int(b * (1-(alpha/2))) return sort_means[lb_idx], sort_means[ub_idx]
10b240f97196c7e2922574230a675d7e7c89038e
3,650,101
def _penalize_token(log_probs, token_id, penalty=-1e7): """Penalize token probabilities.""" depth = log_probs.shape[-1] penalty = tf.one_hot([token_id], depth, on_value=tf.cast(penalty, log_probs.dtype)) return log_probs + penalty
af8bf807438ff7ae96be0c5be0ec37fdbf81a5d1
3,650,102
from typing import Iterable def minimize(function, vs, explicit=True, num_correction_pairs=10, tolerance=1e-05, x_tolerance=0, f_relative_tolerance=1e7, initial_inverse_hessian_estimate=None, max_iterations=1000, parallel_iterations=1, optimizer="l-bfgs", trace=False, logger=print): """ Takes a function whose arguments are subclasses of boa.core.AbstractVariable, and performs some form of BFGS on it. :param function: :param vs: Structure of NTFO variables :param explicit: If True, `function` must have the signature `function(*vs)`. If False, `function` must have the signature `function()` :param num_correction_pairs: :param tolerance: :param x_tolerance: :param f_relative_tolerance: :param initial_inverse_hessian_estimate: :param max_iterations: :param parallel_iterations: :param logger: :param trace: :param optimizer: :return: """ if optimizer not in AVAILABLE_OPTIMIZERS: raise OptimizationError(f"Specified optimizer ({optimizer}) must be one of {AVAILABLE_OPTIMIZERS}!") if not isinstance(vs, Iterable): raise OptimizationError(f"Variables passed must be in an iterable structure!") optimizer = AVAILABLE_OPTIMIZERS[optimizer] float64_machine_eps = finfo(float64).eps # Check if the function and the passed arguments are compatible num_function_params = len(signature(function).parameters) num_args = len(vs) if explicit and num_function_params != num_args: raise OptimizationError(f"Optimization target takes {num_function_params} argument(s) " \ f"but {num_args} were given!") # These are chosen to match the parameters of # scipy.optimizer.fmin_l_bfgs_b optimizer_args = {"num_correction_pairs": num_correction_pairs, "tolerance": tolerance, # This is pgtol in scipy "x_tolerance": x_tolerance, # This is eps * factr in scipy "f_relative_tolerance": float64_machine_eps * f_relative_tolerance, "initial_inverse_hessian_estimate": initial_inverse_hessian_estimate, "max_iterations": max_iterations, "parallel_iterations": parallel_iterations} # Get the reparameterization of the reparameterizations = get_reparametrizations(vs) initial_position, bounds, shapes = recursive_flatten(reparameterizations) def unflatten(xs): return _recursive_unflatten(xs, bounds, shapes) # Pull-back of the function to the unconstrained domain: # Reparameterize the function such that instead of taking its original bounded # arguments, it takes the unconstrained ones, and they get forward transformed. def reparameterized_function(*args): new_args = recursive_forward_transform(args, vs) return function(*new_args) def fn_with_grads(x, first_run=False): if explicit: # Get back the original arguments args = unflatten(x) with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(args) value = reparameterized_function(*args) gradients = tape.gradient(value, args) else: # If we're performing implicit optimization, we assign the parameter # values to the watched variables at the start values = unflatten(x) recursive_assign(reparameterizations, values) with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(reparameterizations) value = function() gradients = tape.gradient(value, reparameterizations) if first_run: for grad in gradients: if grad is None: raise OptimizationError("Given function does not depend on some of the given variables!") # We must concatenate the gradients because lbfgs_minimize expects a single vector gradients, _, _ = recursive_flatten(gradients) return value, gradients # Dry run to check if the optimization can be performed fn_with_grads(initial_position, first_run=True) optimizer_results = optimizer(fn_with_grads, initial_position=initial_position, **optimizer_args) if trace: logger(f"Optimizer evaluated the objective {optimizer_results.num_objective_evaluations.numpy()} times!") logger(f"Optimizer terminated after " f"{optimizer_results.num_iterations.numpy()}/{max_iterations} iterations!") logger(f"Optimizer converged: {optimizer_results.converged.numpy()}") logger(f"Optimizer diverged: {optimizer_results.failed.numpy()}") optimum = unflatten(optimizer_results.position) # Assign the results to the variables recursive_assign(reparameterizations, optimum) # Return the loss return optimizer_results.objective_value, optimizer_results.converged, optimizer_results.failed
22659e37afa29fde75ba344e0054207582e44fb3
3,650,104
def variation_reliability(flow, gamma=1): """ Calculates the flow variation reliability Parameters ---------- flow: numpy array flow values gamma: float, optional soft threshold Returns ------- variation reliability map (0 less reliable, 1 reliable) """ #compute central differences gradx = np.gradient(flow[:, :, 0]) grady = np.gradient(flow[:, :, 1]) norm_grad = (gradx[0] ** 2 + gradx[1] ** 2 + grady[0] ** 2 + grady[1] ** 2) / (0.01 * np.sum(flow ** 2, axis=2) + 0.002) norm_grad[norm_grad > 1e2] = 0 return np.exp(-norm_grad / gamma)
cbdc4ab49402239e5e0fd484e5bf7bceaca383d4
3,650,105
def get_means(df: pd.DataFrame, *, matching_sides: bool, matching_roots: bool) -> pd.Series: """ Calculates mean conditional probabilities from a given co-occurrence table with filters restricting for matching sides and roots. Args: df: The co-occurrences. matching_sides: Whether to consider pairs of sites with matching sides. matching_roots: Whether to consider pairs of sites with matching roots. Returns: The mean conditional probabilities. """ return df.query('is_matching_sides == {} and ' '(reference_joint_type {} co_occurring_joint_type)'.format( matching_sides, '==' if matching_roots else '!=')).groupby([ 'reference_joint_type', 'co_occurring_joint_type' ])['conditional_probability'].mean()
e6318fe4d284b134a8b655003b074ec554abca82
3,650,108
from typing import Dict import math def main( pathname: str, sheetname: str='Sheet1', min_row: int=None, max_row: int=None, min_col: int=None, max_col: int=None, openpyxl_kwargs: Dict=None ): """ main is the main function. It accepts details about a excel sheet and returns an HTML table matching it. Arguments: pathname: A path to the excel sheet sheetname: The name of the sheet to convert min_row: The minimum row to parse in the excel (1-based) max_row: The maximum row to parse in the excel (1-based) min_col: The minimum column to parse in the excel (1-based) max_col: The maximum column to parse in the excel (1-based) openpyxl_kwargs: A dicionary of arguments to pass to openpyxl.load_workbook """ def out_of_range(bounds): '''bounds are of the form (left_col, top_row, right_col, bottom_row)''' return (bounds[0] < (min_col or 0)) or (bounds[1] < (min_row or 0)) openpyxl_kwargs = openpyxl_kwargs or {} # just in case people are mutating openpyxl_kwargs between calls. wb = openpyxl.load_workbook(pathname, **openpyxl_kwargs) ws = wb[sheetname] ws_meta = { 'themes': color_utilities.get_theme_colors(wb), 'merged_cell_ranges': ws.merged_cells.ranges, 'column_widths': {(openpyxl.utils.cell.column_index_from_string(i) - 1): math.ceil(x.width * 7) for i, x in ws.column_dimensions.items()}, # converting excel units to pixels 'default_col_width': ws.sheet_format.defaultColWidth or 64, 'row_heights': {(i - 1): x.height * (4 / 3) for i, x in ws.row_dimensions.items()}, # converting excel units to pixels 'default_row_height': ws.sheet_format.defaultRowHeight or 20, 'min_row': min_row or 1, 'min_col': min_col or 1, 'max_row': min(max_row or ws.max_row, ws.max_row), 'max_col': min(max_col or ws.max_column, ws.max_column), } parsed_sheet = [] candidate_merge_ranges = [x for x in ws.merged_cells.ranges if out_of_range(x.bounds)] for i, row in enumerate(ws.iter_rows(min_row=min_row, max_row=max_row, min_col=min_col, max_col=max_col)): parsed_row = [] for j, cell in enumerate(row): if isinstance(cell, openpyxl.cell.cell.Cell): parsed_row.append(ParsedCell(cell, ws_meta, i, j)) else: for i, candidate_range in enumerate(candidate_merge_ranges): if cell.coordinate in candidate_range: parent_cell = ws.cell(row=candidate_range.bounds[1], column=candidate_range.bounds[0]) parsed_row.append(ParsedCell(parent_cell, ws_meta, i, j)) candidate_merge_ranges.pop(i) break parsed_sheet.append(parsed_row) # it's important to first run background_color and then fix_borders, so that # the border can be deleted on the cell in fix_background_color. Then you # need to run fix_borders so their neighbors can also have their borders # deleted. That's part of the reason we make default_border = False when # running delete_side fix_background_color(parsed_sheet) fix_borders(parsed_sheet, ws_meta) body = to_html(parsed_sheet) return body
b44884bf84909b3bb76553aff247df6a961f3289
3,650,109
def get_go_module_path(package): """assumption: package name starts with <host>/org/repo""" return "/".join(package.split("/")[3:])
1443d59391a36c7b9ba1d72ade9fd51f11cc1cc3
3,650,110
def get_hports(obj, *args, **kwargs): """ get_hports(obj, ...) Get hierarchical references to ports *within* an object. Parameters ---------- obj : object, Iterable - required The object or objects associated with this query. Queries return a collection of objects associated with the provided object or objects that match the query criteria. For example, `sdn.get_instances(netlist, ...)` would return all of the instances *within* the provided definition that match the additional criteria. patterns : str, Iterable - optional, positional or named, default: wildcard The search patterns. Patterns can be a single string or an Iterable collection of strings. Patterns can be absolute or they can contain wildcards or regular expressions. If `patterns` is not provided, then it defaults to a wildcard. recursive : bool - optional, default: False Specify if search should be recursive or not meaning that sub hierarchical pins within an instance are included or not. is_case : bool - optional, named, default: True Specify if patterns should be treated as case sensitive. Only applies to patterns. Does not alter fast lookup behavior (if namespace policy uses case insensitive indexing, this parameter will not prevent a fast lookup from returning a matching object even if the case is not an exact match). is_re: bool - optional, named, default: False Specify if patterns are regular expressions. If `False`, a pattern can still contain `*` and `?` wildcards. A `*` matches zero or more characters. A `?` matches upto a single character. filter : function This is a single input function that can be used to filter out unwanted virtual instances. If not specifed, all matching virtual instances are returned. Otherwise, virtual instances that cause the filter function to evaluate to true are the only items returned. Returns ------- href_ports : generator The hierarchical references to ports associated with a particular object or collection of objects. """ # Check argument list if len(args) == 1 and 'patterns' in kwargs: raise TypeError("get_hports() got multiple values for argument 'patterns'") if len(args) > 1 or any(x not in {'patterns', 'recursive', 'filter', 'is_case', 'is_re'} for x in kwargs): raise TypeError("Unknown usage. Please see help for more information.") # Default values filter_func = kwargs.get('filter', lambda x: True) recursive = kwargs.get('recursive', False) is_case = kwargs.get('is_case', True) is_re = kwargs.get('is_re', False) patterns = args[0] if len(args) == 1 else kwargs.get('patterns', ".*" if is_re else "*") if isinstance(obj, (FirstClassElement, InnerPin, OuterPin, Wire)) is False: try: object_collection = list(iter(obj)) except TypeError: object_collection = [obj] else: object_collection = [obj] if all(isinstance(x, (HRef, FirstClassElement, InnerPin, OuterPin, Wire)) for x in object_collection) is False: raise TypeError("get_hports() supports all netlist related objects and hierarchical references or a " "collection of theses as the object searched, unsupported object provided") if isinstance(patterns, str): patterns = (patterns,) assert isinstance(patterns, (FirstClassElement, InnerPin, OuterPin, Wire)) is False return _get_hports(object_collection, patterns, recursive, is_case, is_re, filter_func)
f4a18a43018c10ef5860e974ed1d3eaf0ab73ac3
3,650,111
def binary_cross_entropy(preds, targets, name=None): """Computes binary cross entropy given `preds`. For brevity, let `x = `, `z = targets`. The logistic loss is loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i])) Args: preds: A `Tensor` of type `float32` or `float64`. targets: A `Tensor` of the same type and shape as `preds`. """ eps = 1e-12 with ops.op_scope([preds, targets], name, "bce_loss") as name: preds = ops.convert_to_tensor(preds, name="preds") targets = ops.convert_to_tensor(targets, name="targets") return tf.reduce_mean(-(targets * tf.log(preds + eps) + (1. - targets) * tf.log(1. - preds + eps)))
b56e8bbaf16c688ebeb8be05b15a8c63745def3d
3,650,113
from typing import Optional def get_organization(name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetOrganizationResult: """ Use this data source to retrieve basic information about a GitHub Organization. ## Example Usage ```python import pulumi import pulumi_github as github test = github.get_organization(name="github") ``` :param str name: The name of the organization account """ __args__ = dict() __args__['name'] = name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('github:index/getOrganization:getOrganization', __args__, opts=opts, typ=GetOrganizationResult).value return AwaitableGetOrganizationResult( description=__ret__.description, id=__ret__.id, login=__ret__.login, members=__ret__.members, name=__ret__.name, node_id=__ret__.node_id, plan=__ret__.plan, repositories=__ret__.repositories)
f534525be6bc7bc7e6e3c80be9b94543b327a8e7
3,650,114
import array def numerator_LGG(mfld_dim: int, ambient_dim: array, vol: array, epsilon: array, prob: float) -> array: # our theory """ Theoretical M * epsilon^2 / K, our formula Parameters ---------- mfld_dim K, dimensionality of manifold ambient_dim N, dimensionality of ambient space vol V, volume of manifold epsilon allowed distortion prob allowed failure probability """ onev = np.ones_like(epsilon) Me_K = (np.log(vol / prob) / mfld_dim + 0.5 * np.log(27. / mfld_dim) + np.log(ambient_dim / 4.) + 1.5 * onev) return 16 * Me_K
b8f22f269cfb5a42ebb60118e6715c812d18ef73
3,650,115
from typing import OrderedDict def group_nodes(node_list, tree_height): """ Groups a list of nodes. """ dict = OrderedDict() for node in node_list: nodelist = _make_node_list(GroupNode(node), tree_height) if nodelist.get_name() not in dict: dict[nodelist.get_name()] = nodelist else: dict[nodelist.get_name()].merge(nodelist) return list(dict.values())
50dc5f0356bed740e8b88e8bc05df01057fab29d
3,650,116
def power_over_line_rule_pos_rule(m, i, j, t): """ If decision variable m.var_x[i, j, t] is set to TRUE, the positive power over the line var_power_over_line is limited by power_line_limit :param m: complete pyomo model :type m: pyomo model :param i: startnode index of set_edge :type i: int :param j: endnode index of set_edge :type j: int :param t: type index of set_linetypes :type t: int :returns: - **pyomo equality function**: pyomo rule :rtype: function """ power_line_limit = m.var_x[i, j, t] \ * (m.dict_line_tech[t]['I_max_A'] * V_BASE * 10 ** 3) \ / (S_BASE * 10 ** 6) return m.var_power_over_line[i, j, t] <= power_line_limit
c4d5a70f4cc2a67a45f11b3072fcb98c9f54e4e2
3,650,117
def join_tiles(tiles): """Reconstructs the image from tiles.""" return np.concatenate(np.concatenate(tiles, 1), 1)
559b88d8bdd42662961669050d29b6583dfbc706
3,650,118
def solve2(lines, max_total): """Solve the problem for Part 2.""" points = parse_points(lines) xmin = min([p[0] for p in points]) xmax = max([p[0] for p in points]) ymin = min([p[1] for p in points]) ymax = max([p[1] for p in points]) size = 0 for x in range(xmin, xmax+1): for y in range(ymin, ymax+1): total = sum([dist((x, y), p) for p in points]) if total < max_total: size += 1 return size
1e743f736f92f60df960d4946f89ae222054d4aa
3,650,120
import random import json def main(): """ 関数の実行を行う関数。 Return: """ def shuffle_dict(d): """ 辞書(のキー)の順番をランダムにする Args: d: 順番をランダムにしたい辞書。 Return: dの順番をランダムにしたもの """ keys = list(d.keys()) random.shuffle(keys) return dict([(key, d[key]) for key in keys]) """ input_node_dict: 全ノードについての情報を辞書にまとめたもの。dict() key: ノードの名前。 value: リスト 第1要素: keyのノードが指すノードの集合。set() 第2要素: keyのノードのリンク先URL。str() """ input_node_dict = {"a": [set(), "example.html"], "b": [{"a"}, "example.html"], "c": [{"b", "e"}, "example.html"], "d": [{"c", "a"}, "example.html"], "e": [{"a"}, "example.html"], "f": [{"e", "b", "a"}, "example.html"], "g": [{"e"}, "example.html"], "h": [{"g", "f"}, "example.html"], "i": [{"a"}, "example.html"], "j": [{"i"}, "example.html"], "k": [{"j", "m"}, "example.html"], "l": [{"i", "a"}, "example.html"], "m": [{"i"}, "example.html"], "n": [{"j", "m"}, "example.html"], "o": [{"m", "l"}, "example.html"], "p": [{"n", "k"}, "example.html"], "q": [{"k", "o", "i"}, "example.html"], } node_list = create_node_list(shuffle_dict(input_node_dict)) remove_redundant_dependency(node_list) assign_top_node(node_list) assign_x_sequentially(node_list) cut_edges_higher_than_1(node_list) assign_x_sequentially(node_list) sort_nodes_by_xcenter(node_list, downward=True) sort_nodes_by_xcenter(node_list, downward=False) node_attributes = node_list2node_dict(node_list) # 有向グラフGraphの作成 graph = nx.DiGraph() create_dependency_graph(node_list, graph) # nodes_attrsを用いて各ノードの属性値を設定 nx.set_node_attributes(graph, node_attributes) # グラフの描画 nx.draw_networkx(graph) # cytoscape.jsの記述形式(JSON)でグラフを記述 graph_json = nx.cytoscape_data(graph, attrs=None) with open('demo_sample.json', 'w') as f: f.write(json.dumps(graph_json))
eca402495d47c8d856568c2271f3de92b1ca2d4f
3,650,121
def scheme_load(*args): """Load a Scheme source file. ARGS should be of the form (SYM, ENV) or (SYM, QUIET, ENV). The file named SYM is loaded in environment ENV, with verbosity determined by QUIET (default true).""" if not (2 <= len(args) <= 3): expressions = args[:-1] raise SchemeError('"load" given incorrect number of arguments: ' '{0}'.format(len(expressions))) sym = args[0] quiet = args[1] if len(args) > 2 else True env = args[-1] if (scheme_stringp(sym)): sym = eval(sym) check_type(sym, scheme_symbolp, 0, "load") with scheme_open(sym) as infile: lines = infile.readlines() args = (lines, None) if quiet else (lines,) def next_line(): return buffer_lines(*args) read_eval_print_loop(next_line, env, quiet=quiet) return okay
d41bb38e60d5e82022c0857629937774c6b180d5
3,650,122
import torch from typing import Optional from typing import Tuple def mask2idx( mask: torch.Tensor, max_length: Optional[int] = None, padding_value: int = 0, ) -> Tuple[torch.Tensor, torch.Tensor]: """ E.g. input a tensor [[T T F F], [T T T F], [F F F T]] with padding value -1, return [[0, 1, -1], [0, 1, 2], [3, -1, -1]] :param mask: Mask tensor. Boolean. Not necessarily to be 2D. :param max_length: If provided, will truncate. :param padding_value: Padding value. Default to 0. :return: Index tensor. """ shape_prefix, mask_length = mask.shape[:-1], mask.shape[-1] flat_mask = mask.flatten(0, -2) index_list = [torch.arange(mask_length, device=mask.device)[one_mask] for one_mask in flat_mask.unbind(0)] index_tensor = pad_sequence(index_list, batch_first=True, padding_value=padding_value) if max_length is not None: index_tensor = index_tensor[:, :max_length] index_tensor = index_tensor.reshape(*shape_prefix, -1) return index_tensor, mask.sum(-1)
b0900aadd14c9eff8af4fcf8e9043127d2a3562c
3,650,123
def generate_paths(data, path=''): """Iterate the json schema file and generate a list of all of the XPath-like expression for each primitive value. An asterisk * represents an array of items.""" paths = [] if isinstance(data, dict): if len(data) == 0: paths.append(f'{path}') else: for key, val in data.items(): if key == 'type': if isinstance(val, list): types = set(val) else: types = {val} if types.isdisjoint({'object', 'array'}): paths.append(f'{path}') elif key == 'properties': paths.extend(generate_paths(val, path)) else: if key == 'items': key = '*' paths.extend(generate_paths(val, f'{path}/{key}')) return paths
367f244b44c254b077907ff8b219186bd820fccd
3,650,124
def enable_heater_shaker_python_api() -> bool: """Get whether to use the Heater-Shaker python API.""" return advs.get_setting_with_env_overload("enableHeaterShakerPAPI")
f849413c072034a15f0242e4b65dd36753a8d6f1
3,650,128
def solidityKeccak(abi_types, values): """ Executes keccak256 exactly as Solidity does. Takes list of abi_types as inputs -- `[uint24, int8[], bool]` and list of corresponding values -- `[20, [-1, 5, 0], True]` """ if len(abi_types) != len(values): raise ValueError( "Length mismatch between provided abi types and values. Got " "{0} types and {1} values.".format(len(abi_types), len(values)) ) normalized_values = map_abi_data([abi_ens_resolver], abi_types, values) hex_string = add_0x_prefix(''.join( remove_0x_prefix(hex_encode_abi_type(abi_type, value)) for abi_type, value in zip(abi_types, normalized_values) )) return keccak(hexstr=hex_string)
2e31d05404b204a233694f14e808c78e96e67aed
3,650,129
def run_fib_recursive_mathy_cached(n): """Return Fibonacci sequence with length "n" using "fib_recursive_mathy_cached". Args: n: The length of the sequence to return. Returns: A list containing the Fibonacci sequence. """ return [fib_recursive_mathy_cached(i + 1) for i in range(n)]
7cdd01ab747bccbd95dbb886e680c9214c2f883d
3,650,131
def binning(LLRs_per_window,info,num_of_bins): """ Genomic windows are distributed into bins. The LLRs in a genomic windows are regarded as samples of a random variable. Within each bin, we calculate the mean and population standard deviation of the mean of random variables. The boundaries of the bins as well as the mean LLR and the standard-error per bin are returned. """ #K,M,V = tuple(LLR_stat.keys()), *zip(*LLR_stat.values()) list_of_windows = [*LLRs_per_window.keys()] bins = bin_genomic_windows(list_of_windows, info['chr_id'], num_of_bins) X = [*bins] LLR_matrix = [*LLRs_per_window.values()] Y, E = [], [] for C in bins.values(): if C: mean, std = mean_and_std_of_mean_of_rnd_var(LLR_matrix[C[0]:C[1]]) else: mean, std = None, None Y.append(mean) E.append(std) return X,Y,E
bc872aa9d32545a91d9854d83ba2efb238cbfc02
3,650,132
from typing import Optional from typing import List def conj(node: BaseNode, name: Optional[Text] = None, axis_names: Optional[List[Text]] = None) -> BaseNode: """Conjugate a `node`. Args: node: A `BaseNode`. name: Optional name to give the new node. axis_names: Optional list of names for the axis. Returns: A new node. The complex conjugate of `node`. Raises: AttributeError: If `node` has no `backend` attribute. """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) backend = node.backend if not axis_names: axis_names = node.axis_names return Node( backend.conj(node.tensor), name=name, axis_names=axis_names, backend=backend)
9baffa5ad00289b0f44ad4953dc12931eccb8ed9
3,650,133
from typing import Union import torch def f1( predictions: Union[list, np.array, torch.Tensor], labels: Union[list, np.array, torch.Tensor], ): """Calculate F1 score for binary classification.""" return f1_score(y_true=labels, y_pred=predictions)
e35fa02281351a2c2003982fc6450aa4d8e5561b
3,650,134
def length(v, squared=False, out=None, dtype=None): """Get the length of a vector. Parameters ---------- v : array_like Vector to normalize, can be Nx2, Nx3, or Nx4. If a 2D array is specified, rows are treated as separate vectors. squared : bool, optional If ``True`` the squared length is returned. The default is ``False``. out : ndarray, optional Optional output array. Must be same `shape` and `dtype` as the expected output if `out` was not specified. dtype : dtype or str, optional Data type for computations can either be 'float32' or 'float64'. If `out` is specified, the data type of `out` is used and this argument is ignored. If `out` is not provided, 'float64' is used by default. Returns ------- float or ndarray Length of vector `v`. """ if out is None: dtype = np.float64 if dtype is None else np.dtype(dtype).type else: dtype = np.dtype(out.dtype).type v = np.asarray(v, dtype=dtype) if v.ndim == 2: assert v.shape[1] <= 4 toReturn = np.zeros((v.shape[0],), dtype=dtype) if out is None else out v2d, vr = np.atleast_2d(v, toReturn) # 2d view of array if squared: vr[:, :] = np.sum(np.square(v2d), axis=1) else: vr[:, :] = np.sqrt(np.sum(np.square(v2d), axis=1)) elif v.ndim == 1: assert v.shape[0] <= 4 if squared: toReturn = np.sum(np.square(v)) else: toReturn = np.sqrt(np.sum(np.square(v))) else: raise ValueError("Input arguments have invalid dimensions.") return toReturn
16caea4730b7dfd7cfcc71d253ee1fc7691fe05d
3,650,135
def generateUniqueId(): """ Generates a unique ID each time it is invoked. Returns ------- string uniqueId Examples -------- >>> from arch.api import session >>> session.generateUniqueId() """ return RuntimeInstance.SESSION.generateUniqueId()
f5dd066c1f9e6670b1e0949c890d5abc9931142a
3,650,136
def order_rep(dumper, data): """ YAML Dumper to represent OrderedDict """ return dumper.represent_mapping(u'tag:yaml.org,2002:map', data.items(), flow_style=False)
6b455d49cd5702324f4b1e825dabb4af90734730
3,650,137
def match_format( format_this: spec.BinaryInteger, like_this: spec.BinaryInteger, match_pad: bool = False, ) -> spec.BinaryInteger: """ will only match left pads, because pad size cannot be reliably determined """ output_format = get_binary_format(like_this) output = convert(data=format_this, output_format=output_format) if match_pad: padded_size = get_binary_n_bytes(like_this) output = add_binary_pad(output, padded_size=padded_size) return output
0a9638cbe5e522b1c7dc9ee316e559f9238b9abe
3,650,138
def parse_nonterm_6_elems(expr_list, idx): """ Try to parse a non-terminal node from six elements of {expr_list}, starting from {idx}. Return the new expression list on success, None on error. """ (it_a, it_b, it_c, it_d, it_e, it_f) = expr_list[idx : idx + 6] # Match against and_n. if ( isinstance(it_a, Node) and it_a.p.has_all("Bdu") and it_b == OP_NOTIF and isinstance(it_c, Node) and it_c.t == NodeType.JUST_0 and it_d == OP_ELSE and isinstance(it_e, Node) and it_e.p.has_any("BKV") and it_f == OP_ENDIF ): node = Node().construct_and_n(it_a, it_e) expr_list[idx : idx + 6] = [node] return expr_list # Match against andor. if ( isinstance(it_a, Node) and it_a.p.has_all("Bdu") and it_b == OP_NOTIF and isinstance(it_c, Node) and it_c.p.has_any("BKV") and it_d == OP_ELSE and isinstance(it_e, Node) and it_e.p.has_any("BKV") and it_f == OP_ENDIF ): node = Node().construct_andor(it_a, it_e, it_c) expr_list[idx : idx + 6] = [node] return expr_list
1c82d6b0654cf15c5aafec2c08e92c86cb5a4543
3,650,139
def make1d(u, v, num_cols=224): """Make a 2D image index linear. """ return (u * num_cols + v).astype("int")
1f37c7ae06071ce641561eadc1d0a42a0b74508d
3,650,140
def xkcd(scale=1, length=100, randomness=2): """ Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode. This will only have effect on things drawn after this function is called. For best results, the "Humor Sans" font should be installed: it is not included with Matplotlib. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line. length : float, optional The length of the wiggle along the line. randomness : float, optional The scale factor by which the length is shrunken or expanded. Notes ----- This function works by a number of rcParams, so it will probably override others you have set before. If you want the effects of this function to be temporary, it can be used as a context manager, for example:: with plt.xkcd(): # This figure will be in XKCD-style fig1 = plt.figure() # ... # This figure will be in regular style fig2 = plt.figure() """ return _xkcd(scale, length, randomness)
1ce7aed60b2b67febb1658e98f14434005f3434a
3,650,141
def team_size(data): """ Computes team size of each paper by taking the number of authors in 'authors' Input: - df: dataframe (dataset); or just the 'authors' column [pandas dataframe] Output: - team: vector of team_size for each paper of the given dataset [pandas series] with team_size [int] """ team = pd.Series([len(i) for i in data['authors']]) # teamsize return team
76a5aafe90cf63fb0506525e566ca7759d0e27ce
3,650,142
from datetime import datetime def header_to_date(header): """ return the initial date based on the header of an ascii file""" try: starttime = datetime.strptime(header[2], '%Y%m%d_%H%M') except ValueError: try: starttime = datetime.strptime( header[2] + '_' + header[3], '%Y%m%d_%H' ) except ValueError: print("Warning: could not retrieve starttime from header,\ setting to default value ") starttime = datetime(1970, 1, 1) return starttime
3e2757ae39a2a9008a5f0fb8cd8fe031770c83ad
3,650,143
def PhenylAlanineCenterNormal(residue): """ Phenylalanine """ PHE_ATOMS = ["CG", "CD1", "CD2", "CE1", "CE2", "CZ"] return RingCenterNormal(residue, PHE_ATOMS)
4d96c7fe14bd411749136cf1569f32bd1c01679d
3,650,144
def diamBiasK(diam, B, Kexcess, RshellRstar=2.5): """ diameter bias (>1) due to the presence of a shell only works for scalar diam, B and Kexcess validity: Kexcess>0 and Kexcess<0.1 and B*diam <~ 500 return 1 if Kexcess <= 0 """ global __biasData, KLUDGE d = np.abs(__biasData['Rshell/Rstar']-RshellRstar) j0 = np.argsort(d)[0] j1 = np.argsort(d)[1] if Kexcess>0 and diam*B/2.2<__biasData['Bdw'][-1]: tmp = [np.interp(diam*B/2.2, __biasData['Bdw'], __biasData['bias'][j0,k,:]) for k in range(__biasData['bias'].shape[1]) ] r0 = np.interp(np.log10(KLUDGE*Kexcess), np.log10(__biasData['fr'][j0,:]), tmp) tmp = [np.interp(diam*B/2.2, __biasData['Bdw'], __biasData['bias'][j1,k,:]) for k in range(__biasData['bias'].shape[1]) ] r1 = np.interp(np.log10(KLUDGE*Kexcess), np.log10(__biasData['fr'][j0,:]), tmp) return r0 + (r1-r0)*(RshellRstar-__biasData['Rshell/Rstar'][j0])/\ (__biasData['Rshell/Rstar'][j1]-__biasData['Rshell/Rstar'][j0]) else: return 1
6754ee70c64b2028cd5b72d3331e65bb64ea53b4
3,650,148
def interpolate_poses_from_samples(time_stamped_poses, samples): """ Interpolate time stamped poses at the time stamps provided in samples. The poses are expected in the following format: [timestamp [s], x [m], y [m], z [m], qx, qy, qz, qw] We apply linear interpolation to the position and use SLERP for the quaternion interpolation. """ # Extract the quaternions from the poses. quaternions = [] for pose in time_stamped_poses[:, 1:]: quaternions.append(Quaternion(q=pose[3:])) # interpolate the quaternions. quaternions_interp = resample_quaternions_from_samples( time_stamped_poses[:, 0], quaternions, samples) # Interpolate the position and assemble the full aligned pose vector. num_poses = samples.shape[0] aligned_poses = np.zeros((num_poses, time_stamped_poses.shape[1])) aligned_poses[:, 0] = samples[:] for i in [1, 2, 3]: aligned_poses[:, i] = np.interp( samples, np.asarray(time_stamped_poses[:, 0]).ravel(), np.asarray(time_stamped_poses[:, i]).ravel()) for i in range(0, num_poses): aligned_poses[i, 4:8] = quaternions_interp[i].q return aligned_poses.copy()
3131fe895a53b7d6c262930c635ce8cfa1c277f2
3,650,149
def test_add_client(case, client_name, client=None, client_id=None, duplicate_client=None, check_errors=False, log_checker=None): """ UC MEMBER_47 main test method. Tries to add a new client to a security server and check logs if ssh_host is set. :param case: MainController object :param client_name: str - existing client name :param client: dict|None - existing client and new subsystem data; this or client_id is required :param client_id: str|None - existing client and new subsystem data as string; this or client is required :param duplicate_client: dict|None - if set, existing client subsystem data (used for checking error messages) :param check_errors: bool - True to check for error scenarios, False otherwise :param unregistered_member: dict|None - if set, used for checking for correct messages when the member is unregistered :param ssh_host: str|None - if set, Central Server SSH host for checking the audit.log; if None, no log check :param ssh_user: str|None - CS SSH username, needed if cs_ssh_host is set :param ssh_pass: str|None - CS SSH password, needed if cs_ssh_host is set :param client_unregistered: bool|None - if True, client will always be confirmed (skip a few tests) :return: """ self = case def create_registration_request(): # UC MEMBER_47 1 - select to add a security server client self.log('MEMBER_47 1 - select to add a security server client') current_log_lines = None self.logdata = [] if client is None: client_data = xroad.split_xroad_subsystem(client_id) else: client_data = client client_data['name'] = client_name if log_checker: current_log_lines = log_checker.get_line_count() check_values = [] # Create a list of erroneous and/or testing values to be entered as client check_value_errors = [ [['', client_data['class'], ''], 'Missing parameter: {0}', False], [['', client_data['class'], client_data['subsystem']], 'Missing parameter: {0}', False], # [[client_data['code'], client_data['class'], ''], 'Missing parameter: {2}', False], [[256 * 'A', client_data['class'], client_data['subsystem']], "Parameter '{0}' input exceeds 255 characters", False], [[client_data['code'], client_data['class'], 256 * 'A'], "Parameter '{2}' input exceeds 255 characters", False], [[256 * 'A', client_data['class'], 256 * 'A'], "Parameter '{0}' input exceeds 255 characters", False], [[' {0} '.format(client_data['code']), client_data['class'], ' {0} '.format(client_data['subsystem'])], CLIENT_ALREADY_EXISTS_ERROR, True] ] # UC MEMBER_47 2, 3 - insert the X-Road identifier of the client and parse the user input self.log('MEMBER_47 2, 3, 4 - insert the X-Road identifier of the client and parse the user input') if check_errors: # UC MEMBER_47 3a - check for erroneous inputs / parse user input check_values += check_value_errors self.log('MEMBER_47 3a - check for erroneous inputs') if duplicate_client: # UC MEMBER_47 4 - verify that a client does not already exist self.log('MEMBER_47 4a - verify that the client does not already exist') check_values += [[['{0}'.format(duplicate_client['code']), duplicate_client['class'], '{0}'.format(duplicate_client['subsystem'])], 'Client already exists', False]] # Try adding the client with different parameters (delete all added clients) add_clients(self, check_values, instance=client_data['instance'], delete=False) if current_log_lines: # UC MEMBER_47 3a, 4a, 7 - Check logs for entries self.log('MEMBER_47 3a, 4a, 7 - checking logs for: {0}'.format(self.logdata)) logs_found = log_checker.check_log(self.logdata, from_line=current_log_lines + 1) self.is_true(logs_found, msg='Some log entries were missing. Expected: "{0}", found: "{1}"'.format(self.logdata, log_checker.log_output)) return create_registration_request
0b15ee41c8a61c0602e89e59a6343e67c6dc712f
3,650,150
from typing import List def get_data_unit_labels(data_unit: DataUnit) -> List[Attributes]: """ Extract important information from data_unit. That is, get only bounding_boxes and associated classifications. Args: data_unit: The data unit to extract information from. Returns: list of pairs of objects and associated answers for the particular data unit. """ res = [] for obj in data_unit.objects: # Classifications (are both on the object_answer.classifications and on the object. # Store all nested classification info. obj_answer = obj.object_answer classes = [ ClassificationInfo( ontology_id=obj.ontology_object.id, value=obj.value, name=obj.name ) ] queue = obj_answer.classifications while len(queue) > 0: c = queue.pop(0) # Skip text for now. if ( not hasattr(c.ontology_object, "type") or c.ontology_object.type == "text" ): continue classes.append( ClassificationInfo( ontology_id=c.ontology_object.id, value=c.value, name=c.name ) ) if ( c.answers is not None and isinstance(c.answers, list) and len(c.answers) > 0 ): queue.extend(c.answers) elif c.answers is not None: raise ValueError( f"I didn't expect to see this. What to do in this situation?\n{c.answers}" ) # Bounding box and polygon bbox = obj.bounding_box if hasattr(obj, "bounding_box") else None polygon = obj.polygon if hasattr(obj, "polygon") else None res.append(Attributes(bbox=bbox, polygon=polygon, classes=classes, du=obj)) return res
36577b13713258fe1542c9bfc377a469ed5d6fd6
3,650,151
def calc_4points_bezier_path(svec, syaw, spitch, evec, eyaw, epitch, offset, n_points=100): """ Compute control points and path given start and end position. :param sx: (float) x-coordinate of the starting point :param sy: (float) y-coordinate of the starting point :param syaw: (float) yaw angle at start :param ex: (float) x-coordinate of the ending point :param ey: (float) y-coordinate of the ending point :param eyaw: (float) yaw angle at the end :param offset: (float) :return: (numpy array, numpy array) """ #dist = np.linalg.norm(svec - evec) / offset dist = offset control_points = np.array( (svec, svec + dist*np.array([np.cos(syaw)*np.cos(spitch), np.sin(syaw)*np.cos(spitch), np.sin(spitch)]), evec - dist*np.array([np.cos(eyaw)*np.cos(epitch), np.sin(eyaw)*np.cos(epitch), np.sin(epitch)]), evec)) path = calc_bezier_path(control_points, n_points=100) return path, control_points
455225b10c034895c32329bc14ce6dc384f5e0b3
3,650,152
import copy def permutationwithparity(n): """Returns a list of all permutation of n integers, with its first element being the parity""" if (n == 1): result = [[1,1]] return result else: result = permutationwithparity(n-1) newresult = [] for shorterpermutation in result: for position in range(1,n+1): parity = shorterpermutation[0] for swaps in range(n-position): parity = - parity newpermutation = copy.deepcopy(shorterpermutation) newpermutation.insert(position,n) newpermutation[0] = parity newresult.append(newpermutation) return newresult
218b728c2118a8cca98c019dff036e0ae2593974
3,650,153
from typing import List import torch import logging def _train_model(model: BertForValueExtraction, optimizer, scheduler, train_data_loader, val_data_loader) -> List[int]: """ Main method to train & evaluate model. :param model: BertForValueExtraction object :param optimizer: optimizer :param scheduler: scheduler :param train_data_loader: training DataLoader object :param val_data_loader: validation DataLoader object :return: List[int] - validation predictions """ val_predictions = [] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logging.info(f"Using device: {device}") for epoch_number in trange(EPOCHS, desc="Epoch"): # put the model into training mode. model.train() # reset the total loss for this epoch. total_loss = 0 # training loop train_true_labels, train_predictions = [], [] for step, batch in enumerate(train_data_loader): # add batch to gpu if available batch = tuple(t.to(device) for t in batch) b_input_ids, b_token_type_ids, b_labels = batch # always clear any previously calculated gradients before performing a backward pass model.zero_grad() # forward pass # This will return the loss (together with the model output) because we have provided the `labels` outputs = model(b_input_ids, token_type_ids=b_token_type_ids, labels=b_labels) # get the loss loss = outputs[0] # move logits and labels to CPU logits = outputs[1].detach().cpu().numpy() b_labels = b_labels.to("cpu").numpy() train_predictions.extend(logits.argmax(1)) train_true_labels.extend(b_labels) # perform a backward pass to calculate the gradients loss.backward() # track train loss total_loss += loss.item() # clip the norm of the gradient # this is to help prevent the "exploding gradients" problem torch.nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=MAX_GRAD_NORM) # update parameters optimizer.step() # Update the learning rate scheduler.step() # calculate the average loss over the training data. avg_train_loss = total_loss / len(train_data_loader) logging.info(f"Average train loss on epoch {epoch_number}: {avg_train_loss}") accuracy = accuracy_score(train_predictions, train_true_labels)[0] logging.info(f"Train Accuracy on epoch {epoch_number + 1}: {accuracy}") # Put the model into evaluation mode model.eval() # reset the validation loss for this epoch eval_loss, eval_accuracy = 0, 0 val_predictions, true_labels = [], [] for batch in val_data_loader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_token_type_ids, b_labels = batch # telling the model not to compute or store gradients, saving memory and speeding up validation with torch.no_grad(): # forward pass, calculate logit predictions # this will return the logits rather than the loss because we have not provided labels outputs = model(b_input_ids, token_type_ids=b_token_type_ids, labels=b_labels) # move logits and labels to CPU logits = outputs[1].detach().cpu().numpy() b_labels = b_labels.to("cpu").numpy() # calculate the accuracy for this batch of test sentences eval_loss += outputs[0].mean().item() val_predictions.extend(logits.argmax(1)) true_labels.extend(b_labels) eval_loss = eval_loss / len(val_data_loader) logging.info(f"Validation loss on epoch {epoch_number + 1}: {eval_loss}") accuracy = accuracy_score(val_predictions, true_labels)[0] logging.info(f"Validation Accuracy on epoch {epoch_number + 1}: {accuracy}") logging.info("\n") return [val_prediction.tolist()[0] for val_prediction in val_predictions]
fbf5a588d9da24f72c0955c767f454297d91e74d
3,650,154
def mass_at_two_by_counting_mod_power(self, k): """ Computes the local mass at `p=2` assuming that it's stable `(mod 2^k)`. Note: This is **way** too slow to be useful, even when k=1!!! TO DO: Remove this routine, or try to compile it! INPUT: k -- an integer >= 1 OUTPUT: a rational number EXAMPLE:: sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1]) sage: Q.mass_at_two_by_counting_mod_power(1) 4 """ R = IntegerModRing(2**k) Q1 = self.base_change_to(R) n = self.dim() MS = MatrixSpace(R, n) ct = sum([1 for x in mrange([2**k] * (n**2)) if Q1(MS(x)) == Q1]) ## Count the solutions mod 2^k two_mass = ZZ(1)/2 * (ZZ(ct) / ZZ(2)**(k*n*(n-1)/2)) return two_mass
35f85dd32e3c81a4921c5d5a87ab4cdc13e8ae46
3,650,155
import logging def get_paginiation_data(first_pagination_url, family, cazy_home, args, session): """Parse the first paginiation page and retrieve URLs to all pagination page for the Family. :param first_pagination_url: str, URL to the fist page of the family :param family: Family class instance, represents a unique CAZy family :param cazy_home: str, URL to CAZy home page :param args: cmd-line args parser :param session: open SQL database session Return dict of error messages if errors arise OR list of URLs to paginiation pages, and the total number of proteins in the family. """ logger = logging.getLogger(__name__) # retrieve a list of all page urls of protein tables for the CAZy family first_pagination_page, error_message = get_page( first_pagination_url, args, max_tries=args.retries, ) if first_pagination_page is None: logger.warning( f"Could not connect to {first_pagination_url} after {args.retries} attempts\n" f"The following error was raised:\n{error_message}\nTherefore, could not " "retrieve all pagination pages URLs, therefore, cannot scrape proteins from " f"{family.name}" ) return( { "url": ( f"{first_pagination_url}\t{family.cazy_class}\t" f"Failed to connect to first pagination page for {family.name}, therefore " f"could not retrieve URLs to all paginiation pages\t{error_message}" ), "format": None, }, None, ) # Get the URLS to all pages of proteins and the total number of proteins in the (sub)family protein_page_urls, total_proteins = get_paginiation_page_urls( first_pagination_url, first_pagination_page, cazy_home, family.name, ) if total_proteins == 'Deleted family!': # add family to the database logger.warning( f'{family.name} listed as "Deleted family" in CAZy.\nAdding family name to the database' ) sql_interface.add_deleted_cazy_family(family.name, session) return( { "url": None, "format": ( f"{first_pagination_url}\t{family.cazy_class}\t{family.name} listed as " "'Deleted family' in CAZy.\tAdded family name to the database" ), }, None ) elif total_proteins == 'Empty family': # add family to the database logger.warning( f'{family.name} is an empty family, but not listed "Deleted family" in CAZy.\n' 'Adding family name to the database' ) sql_interface.add_deleted_cazy_family(family.name, session) return( { "url": None, "format": ( f"{first_pagination_url}\t{family.cazy_class}\t{family.name} is empty in CAZy, " "but not listed as Deleted fam.\tAdded family name to the database" ), }, None ) elif total_proteins == 'Failed Retrieval': # add family to the database logger.warning( f"Could not retrieve total protiens count for {family.name}, appears to be empty\n" "but not listed 'Deleted family' in CAZy.\nAdding family name to the database" ) sql_interface.add_deleted_cazy_family(family.name, session) return( { "url": None, "format": ( f"{first_pagination_url}\t{family.cazy_class}\t{family.name} Could not " "retrieve total protiens count\tAdded family name to the database" ), }, None ) elif len(protein_page_urls) == 0: logger.warning(f"No protein page URLs found for {family.name}: {first_pagination_url}") return( { "url": None, "format": ( f"{first_pagination_url}\t{family.cazy_class}\tFailed to retrieve URLs to " f"protein table pages for {family.name}\tNo specific error message availble." ), }, None ) else: return protein_page_urls, total_proteins
89cdd6e0d333cc69f0b92c202b6f0d4257849382
3,650,156
def gravitationalPotentialEnergy(mass, gravity, y): """1 J = 1 N*m = 1 Kg*m**2/s**2 Variables: m=mass g=gravity constant y=height Usage: Energy stored by springs""" U = mass*gravity*y return U
f4fcfc9e7ddac8b246b2200e3886b79f6706936e
3,650,157
def to_list(obj): """List Converter Takes any object and converts it to a `list`. If the object is already a `list` it is just returned, If the object is None an empty `list` is returned, Else a `list` is created with the object as it's first element. Args: obj (any object): the object to be converted Returns: A list containing the given object """ if isinstance(obj, list): return obj elif isinstance(obj, tuple): return list(obj) elif obj is None: return [] else: return [obj, ]
3ca373867ea3c30edcf7267bba69ef2ee3c7722e
3,650,159
from molsysmt.basic import select, extract def remove(molecular_system, selection=None, frame_indices=None, to_form=None, syntaxis='MolSysMT'): """remove(item, selection=None, frame_indices=None, syntaxis='MolSysMT') Remove atoms or frames from the molecular model. Paragraph with detailed explanation. Parameters ---------- item: molecular model Molecular model in any of the supported forms by MolSysMT. (See: XXX) selection: str, list, tuple or np.ndarray, default=None Atoms selection over which this method applies. The selection can be given by a list, tuple or numpy array of integers (0-based), or by means of a string following any of the selection syntaxis parsable by MolSysMT (see: :func:`molsysmt.select`). frame_indices: str, list, tuple or np.ndarray, default=None XXX syntaxis: str, default='MolSysMT' Syntaxis used in the argument `selection` (in case it is a string). The current options supported by MolSysMt can be found in section XXX (see: :func:`molsysmt.select`). Returns ------- item: molecular model The result is a new molecular model with the same form as the input item. Examples -------- Remove chains 0 and 1 from the pdb: 1B3T. >>> import molsysmt as m3t >>> system = m3t.load('pdb:1B3T') Check the number of chains >>> m3t.get(system, n_chains=True) 8 Remove chains 0 and 1 >>> new_system = m3t.remove(system, 'chainid 0 1') Check the number of chains of the new molecular model >>> m3t.get(new_system, n_chains=True) 6 See Also -------- :func:`molsysmt.select` Notes ----- There is a specific method to remove solvent atoms: molsysmt.remove_solvent and another one to remove hydrogens: molsysmt.remove_hydrogens. """ molecular_system = digest_molecular_system(molecular_system) frame_indices = digest_frame_indices(frame_indices) atom_indices_to_be_kept = 'all' frame_indices_to_be_kept = 'all' if selection is not None: atom_indices_to_be_removed = select(molecular_system, selection=selection, syntaxis=syntaxis) atom_indices_to_be_kept = complementary_atom_indices(molecular_system, atom_indices_to_be_removed) if frame_indices is not None: frame_indices_to_be_kept = complementary_frame_indices(molecular_system, frame_indices) tmp_item = extract(molecular_system, selection=atom_indices_to_be_kept, frame_indices=frame_indices_to_be_kept, to_form=to_form) tmp_item = digest_output(tmp_item) return tmp_item
a2232e6226f76df6760eef59aab0f31edf7a75ec
3,650,160
def macd_cross_func_pd(data): """ 神一样的指标:MACD """ if (ST.VERBOSE in data.columns): print('Phase macd_cross_func', QA_util_timestamp_to_str()) MACD = QA.QA_indicator_MACD(data) MACD_CROSS = pd.DataFrame(columns=[ST.MACD_CROSS, FLD.MACD_CROSS_JX_BEFORE, FLD.MACD_CROSS_SX_BEFORE, FLD.NEGATIVE_LOWER_PRICE, FLD.NEGATIVE_LOWER_PRICE_BEFORE, FLD.LOWER_SETTLE_PRICE, FLD.LOWER_SETTLE_PRICE_BEFORE, FLD.HIGHER_SETTLE_PRICE, FLD.HIGHER_SETTLE_PRICE_BEFORE], index=data.index) MACD_CROSS = MACD_CROSS.assign(DIF=MACD[FLD.DIF]) MACD_CROSS = MACD_CROSS.assign(DEA=MACD[FLD.DEA]) MACD_CROSS = MACD_CROSS.assign(MACD=MACD[FLD.MACD]) MACD_CROSS = MACD_CROSS.assign(ZERO=0) # 新版考虑合并指标,将 DELTA 重命名为 MACD_DELTA MACD_CROSS = MACD_CROSS.assign(MACD_DELTA=MACD[FLD.MACD].diff()) MACD_CROSS[FLD.MACD_CROSS_JX_BEFORE] = CROSS(MACD_CROSS[FLD.DIF], MACD_CROSS[FLD.DEA]) MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE] = CROSS(MACD_CROSS[FLD.DEA], MACD_CROSS[FLD.DIF]) MACD_CROSS[ST.MACD_CROSS] = np.where(MACD_CROSS[FLD.MACD_CROSS_JX_BEFORE] == 1, 1, np.where(MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE] == 1, -1, 0)) MACD_CROSS[FLD.DEA_CROSS_JX_BEFORE] = Timeline_duration(CROSS(MACD_CROSS[FLD.DEA], MACD_CROSS[FLD.ZERO]).values) MACD_CROSS[FLD.DIF_CROSS_JX_BEFORE] = Timeline_duration(CROSS(MACD_CROSS[FLD.DIF], MACD_CROSS[FLD.ZERO]).values) MACD_CROSS[FLD.DEA_CROSS_SX_BEFORE] = Timeline_duration(CROSS(MACD_CROSS[FLD.ZERO], MACD_CROSS[FLD.DEA]).values) MACD_CROSS[FLD.MACD_CROSS_JX_BEFORE] = Timeline_duration(MACD_CROSS[FLD.MACD_CROSS_JX_BEFORE].values) MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE] = Timeline_duration(MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE].values) MACD_CROSS[FLD.DEA_SLOPE] = talib.LINEARREG_SLOPE(MACD[FLD.DEA], timeperiod=14) MACD_CROSS['MACD_TIDE_MEDIAN'] = int(min(MACD_CROSS[FLD.MACD_CROSS_JX_BEFORE].median(), MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE].median())) MACD_CROSS[FLD.DEA_SLOPE_UB] = MACD_CROSS[FLD.DEA_SLOPE].abs().rolling(MACD_CROSS['MACD_TIDE_MEDIAN'].max()).median() negative_lower_price_state = (MACD_CROSS[FLD.MACD] < 0) & \ (MACD_CROSS[FLD.DEA] < 0) & \ (MACD_CROSS[FLD.MACD] < MACD_CROSS[FLD.DEA]) negative_lower_price_state = (negative_lower_price_state == True) | \ (MACD_CROSS[FLD.MACD] < 0) & \ (((MACD_CROSS[FLD.DEA] < 0) & \ ((MACD_CROSS[FLD.DEA_CROSS_SX_BEFORE] > 6) | \ (MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE] > 12))) | \ ((MACD_CROSS[FLD.DIF] < 0) & \ (MACD_CROSS[FLD.MACD_CROSS_SX_BEFORE] > 12))) & \ (MACD_CROSS[FLD.MACD] < MACD_CROSS[FLD.DEA]) & \ (abs(MACD_CROSS[FLD.MACD]) > abs(MACD_CROSS[FLD.DEA])) MACD_CROSS[FLD.NEGATIVE_LOWER_PRICE] = negative_lower_price_state.apply(int) MACD_CROSS[FLD.NEGATIVE_LOWER_PRICE_BEFORE] = Timeline_duration(MACD_CROSS[FLD.NEGATIVE_LOWER_PRICE].values) lower_settle_price_state = ~(negative_lower_price_state == True) & \ (MACD_CROSS[FLD.DEA] < 0) & \ (MACD_CROSS[FLD.MACD_DELTA] > 0) MACD_CROSS[FLD.LOWER_SETTLE_PRICE] = lower_settle_price_state.apply(int) MACD_CROSS[FLD.LOWER_SETTLE_PRICE_BEFORE] = Timeline_duration(MACD_CROSS[FLD.LOWER_SETTLE_PRICE].values) higher_settle_price_state = (MACD_CROSS[FLD.DEA] > 0) & \ (MACD_CROSS[FLD.MACD] > MACD_CROSS[FLD.DEA]) MACD_CROSS[FLD.HIGHER_SETTLE_PRICE] = higher_settle_price_state.apply(int) MACD_CROSS[FLD.HIGHER_SETTLE_PRICE_BEFORE] = Timeline_duration(MACD_CROSS[FLD.HIGHER_SETTLE_PRICE].values) return MACD_CROSS
d7c970efc931a3f1f2c25e51cf8e55e630eb37ad
3,650,161
import json def jsonp_response(data, callback="f", status=200, serializer=None): """ Returns an HttpResponse object containing JSON serialized data, wrapped in a JSONP callback. The mime-type is set to application/x-javascript, and the charset to UTF-8. """ val = json.dumps(data, default=serializer) ret = "{callback}('{val}');".format(callback=callback, val=val) return HttpResponse(ret, status=status, content_type='application/x-javascript; charset=UTF-8')
3ac71358043184b84b2f1f610a852b0b587d158d
3,650,162
import collections def enhance_bonds(bond_dataframe, structure_dict): """Enhance the bonds dataframe by including derived information. Args: bond_dataframe: Pandas dataframe read from train.csv or test.csv. structure_dict: Output of :func:`make_structure_dict`, after running :func:`enhance_structure_dict`. Returns: pandas.DataFrame: Same dataframe, modified in-place, with derived information added. """ bond_dataframe.sort_values(['molecule_name', 'atom_index_0', 'atom_index_1'], inplace=True) assert int(bond_dataframe.groupby("molecule_name").count().max()[0]) <= MAX_BOND_COUNT new_columns = collections.defaultdict(list) for index, row in bond_dataframe.iterrows(): molecule_name, iatom0, iatom1 = row['molecule_name'], row['atom_index_0'], row['atom_index_1'] if 'predict' not in structure_dict[molecule_name]: structure_dict[molecule_name]['predict'] = structure_dict[molecule_name]['bond_orders'] * 0 structure_dict[molecule_name]['predict'][iatom0, iatom1] = 1 structure_dict[molecule_name]['predict'][iatom1, iatom0] = 1 long_symbols = [structure_dict[molecule_name]['long_symbols'][x] for x in [iatom0, iatom1]] # labeled_type if all([x[0] == 'H' for x in long_symbols]): lt = row['type'] elif not any([x[0] == 'H' for x in long_symbols]): raise ValueError("No hydrogen found in {}".format(row)) else: ls = [x for x in long_symbols if x[0] != 'H'][0] lt = row["type"] + ls[1:].replace('.0', '') if lt in classification_corrections: lt = classification_corrections[lt] if lt in small_longtypes: lt = lt.split('_')[0] new_columns["labeled_type"].append(lt) # sublabeled type new_columns["sublabel_type"].append(row['type'] + '-' + '-'.join(sorted(long_symbols))) # bond order new_columns["bond_order"].append(structure_dict[molecule_name]['bond_orders'][iatom0, iatom1]) new_columns["predict"].append(1) for key in new_columns: bond_dataframe[key] = new_columns[key] return bond_dataframe
46836576b6bec8e1ca9f5685185d0f379b9e63f6
3,650,163
import numbers def _tofloat(value): """Convert a parameter to float or float array""" if isiterable(value): try: value = np.asanyarray(value, dtype=np.float) except (TypeError, ValueError): # catch arrays with strings or user errors like different # types of parameters in a parameter set raise InputParameterError( "Parameter of {0} could not be converted to " "float".format(type(value))) elif isinstance(value, Quantity): # Quantities are fine as is pass elif isinstance(value, np.ndarray): # A scalar/dimensionless array value = float(value.item()) elif isinstance(value, (numbers.Number, np.number)): value = float(value) elif isinstance(value, bool): raise InputParameterError( "Expected parameter to be of numerical type, not boolean") else: raise InputParameterError( "Don't know how to convert parameter of {0} to " "float".format(type(value))) return value
796b03699cb3b1e201436b6eb61df0636318de14
3,650,164
import time import functools def sp2mgc(sp, order=20, alpha=0.35, gamma=-0.41, miniter=2, maxiter=30, criteria=0.001, otype=0, verbose=False): """ Accepts 1D or 2D one-sided spectrum (complex or real valued). If 2D, assumes time is axis 0. Returns mel generalized cepstral coefficients. Based on r9y9 Julia code https://github.com/r9y9/MelGeneralizedCepstrums.jl """ if len(sp.shape) == 1: sp = np.concatenate((sp, sp[:, 1:][:, ::-1]), axis=0) return _sp2mgc(sp, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=verbose) else: sp = np.concatenate((sp, sp[:, 1:][:, ::-1]), axis=1) # Slooow, use multiprocessing to speed up a bit # http://blog.shenwei.me/python-multiprocessing-pool-difference-between-map-apply-map_async-apply_async/ # http://stackoverflow.com/questions/5666576/show-the-progress-of-a-python-multiprocessing-pool-map-call c = [(i + 1, sp.shape[0], sp[i]) for i in range(sp.shape[0])] p = Pool() start = time.time() if verbose: print("Starting conversion of %i frames" % sp.shape[0]) print("This may take some time...") # takes ~360s for 630 frames, 1 process itr = p.map_async(functools.partial(_sp_convert, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=False), c, callback=_sp_collect_result) sz = len(c) // itr._chunksize if (sz * itr._chunksize) != len(c): sz += 1 last_remaining = None while True: remaining = itr._number_left if verbose: if remaining != last_remaining: last_remaining = remaining print("%i chunks of %i complete" % (sz - remaining, sz)) if itr.ready(): break time.sleep(.5) """ # takes ~455s for 630 frames itr = p.imap_unordered(functools.partial(_sp_convert, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=False), c) res = [] # print ~every 5% mod = int(len(c)) // 20 if mod < 1: mod = 1 for i, res_i in enumerate(itr, 1): res.append(res_i) if i % mod == 0 or i == 1: print("%i of %i complete" % (i, len(c))) """ p.close() p.join() stop = time.time() if verbose: print("Processed %i frames in %s seconds" % (sp.shape[0], stop - start)) # map_async result comes in chunks flat = [a_i for a in _sp_convert_results for a_i in a] final = [o[1] for o in sorted(flat, key=lambda x: x[0])] for i in range(len(_sp_convert_results)): _sp_convert_results.pop() return np.array(final)
01e380ddf10c56c3c4b9d09726ac98aef58715ca
3,650,165
def has_prefix(sub_s): """ :param sub_s: (str) A substring that is constructed by neighboring letters on a 4x4 square grid :return: (bool) If there is any words with prefix stored in sub_s """ for key, val in word_dic.items(): if key.startswith(sub_s): return True else: pass return False
b52937578d62d464df3131374a5dc0bdca735807
3,650,166
def _package_data(vec_f_image, vec_f_imageBscan3d, downscale_size, downscale_size_bscan, crop_size, num_octa, str_angiography, str_structure, str_bscan, vec_str_layer, vec_str_layer_bscan3d, str_bscan_layer, dict_layer_order, dict_layer_order_bscan3d): """ Organizes the angiography, OCT and b-scan images into a list of cubes for a single subject and also returns which eye it is. Difference from function below: contains logic that deal with cases where there are two eyes :param vec_f_image: list of absolute paths to individual images from a single subject :param vec_f_imageBscan3d: list of absolute paths to individual bscan images from a single subject :param downscale_size: desired final size of the loaded images, e.g. (256, 256) :param downscale_size_bscan: desired final size of the loaded bscan images, e.g. (256, 256) :param crop_size: desired number of pixels to exclude from analysis for bscan images, e.g. [50, 60] :param num_octa: number of OCTA images per patient, e.g. 5 :param str_angiography: identifier for angiography images in the filename :param str_structure: identifier for structural OCT images in the filename :param str_bscan: identifier for b-scan OCT images in the filename :param vec_str_layer: list of strings that contain the relevant layers to be used for training :param vec_str_layer_bscan3d: list of strings that contain the relevant bscan images to be used for training :param str_bscan_layer: string that contains the type of b-scan images to be used in filename, e.g. Flow :param dict_layer_order: dictionary that contains the order in which the different layers will be organized :param dict_layer_order_bscan3d: dictionary that contains the order in which the bscans cubes will be organized :return: return a list in the form [packed_images, str_eye]. If both eyes are available, then each variable would be a list of cubes and strings; if only one eye is available, packed_images would be a cube and str_eye would be OD/OS; if nothing is available then both are None """ # Test if the dataset has data from both eyes if any("/OD/" in s for s in vec_f_image) & any("/OS/" in s for s in vec_f_image): vec_f_image_OD = [s for s in vec_f_image if "/OD/" in s] vec_f_image_OS = [s for s in vec_f_image if "/OS/" in s] vec_f_imageBscan3d_OD = [s for s in vec_f_imageBscan3d if "/OD/" in s] vec_f_imageBscan3d_OS = [s for s in vec_f_imageBscan3d if "/OS/" in s] x_curr_OD = _form_cubes(vec_f_image_OD, vec_f_imageBscan3d_OD, num_octa, downscale_size, downscale_size_bscan, crop_size, str_angiography, str_structure, str_bscan, vec_str_layer, vec_str_layer_bscan3d, str_bscan_layer, dict_layer_order, dict_layer_order_bscan3d) x_curr_OS = _form_cubes(vec_f_image_OS, vec_f_imageBscan3d_OS, num_octa, downscale_size, downscale_size_bscan, crop_size, str_angiography, str_structure, str_bscan, vec_str_layer, vec_str_layer_bscan3d, str_bscan_layer, dict_layer_order, dict_layer_order_bscan3d) # Figure out if any of the single eye data is none if x_curr_OD is not None and x_curr_OS is not None: packed_x_curr = [x_curr_OD, x_curr_OS] str_eye = ['OD', 'OS'] elif x_curr_OD is None and x_curr_OS is not None: packed_x_curr = x_curr_OS str_eye = 'OS' elif x_curr_OD is not None and x_curr_OS is None: packed_x_curr = x_curr_OD str_eye = 'OD' else: packed_x_curr = None str_eye = None else: x_curr = _form_cubes(vec_f_image, vec_f_imageBscan3d, num_octa, downscale_size, downscale_size_bscan, crop_size, str_angiography, str_structure, str_bscan, vec_str_layer, vec_str_layer_bscan3d, str_bscan_layer, dict_layer_order, dict_layer_order_bscan3d) packed_x_curr = x_curr if any("_OD_" in s for s in vec_f_image): str_eye = 'OD' elif any("_OS_" in s for s in vec_f_image): str_eye = 'OS' else: str_eye = None return packed_x_curr, str_eye
dfe9ed58bd25715948cfb09f069c76d2f844df3c
3,650,167
def apply_padding_by_last(list_of_lists): """ The same as applying pad_into_lists followed by carry_previous_over_none but takes a list of lists instead of events Args: lists_of_lists: list of lists with possibly different lengths Returns: lists of lists padded to the same length by the last element in each list """ padded_lists = pad_into_lists( [enumerate(vals) for vals in list_of_lists], lambda x: x[0] ) return [ # remove the index [e[1] if e is not None else e for e in carry_previous_over_none(padded)] for padded in padded_lists ]
83316fedb46230665fc543d4a3961cb72692023b
3,650,168
def combine_patterns( *patterns: str, seperator: Expression = None, combine_all=False ) -> str: """ Intelligently combine following input patterns. Parameters ---------- patterns : The patterns to combine. seperator : The seperator to use. If None, the default seperator :data:`WORD_SEPARATOR` is used. combine_all : If True, the start matches any of the input patterns. If False, the start matches the first pattern only, followed by any combination of all other patterns including the first pattern. Returns ------- str The combined pattern. """ if seperator is None: seperator = WORD_SEPARATOR start_group = non_capturing_group(*[str(p) for p in patterns]) pattern = wrap_pattern( (start_group if combine_all else patterns[0]) + non_capturing_group(seperator + start_group) + "*" ) return pattern
1bcd703a183b72d88a8bfa7f1680754e0e3ee35e
3,650,169
from datetime import datetime async def utc_timediff(t1, t2): """ Calculate the absolute difference between two UTC time strings Parameters ---------- t1, t2 : str """ time1 = datetime.datetime.strptime(t1, timefmt) time2 = datetime.datetime.strptime(t2, timefmt) timedelt = time1 - time2 return abs(timedelt.total_seconds())
ba0b406048467029f6d05d72898b534dd6309e45
3,650,170
def function(): """ >>> function() 'decorated function' """ return 'function'
46b892fb70b5672909d87efcf76ffd3f96f9cf7f
3,650,171
def load_stopwords(file_path): """ :param file_path: Stop word file path :return: Stop word list """ stopwords = [line.strip() for line in open(file_path, 'r', encoding='utf-8').readlines()] return stopwords
9cb6578b5cbc608bc72da7c4f363b4f84d0adbb7
3,650,172
def hello(): """Return a friendly HTTP greeting.""" return 'abc'
9acda65833bec5976c3e2f0ffa77df8a2a7537bf
3,650,173
def show_ip_ospf_route( enode, _shell='vtysh', _shell_args={ 'matches': None, 'newline': True, 'timeout': None, 'connection': None } ): """ Show ospf detail. This function runs the following vtysh command: :: # show ip ospf route :param dict kwargs: arguments to pass to the send_command of the vtysh shell. :param str _shell: shell to be selected :param dict _shell_args: low-level shell API arguments :return: A dictionary as returned by :func:`topology_lib_vtysh.parser.parse_show_ip_ospf_route` """ cmd = [ 'show ip ospf route' ] shell = enode.get_shell(_shell) shell.send_command( (' '.join(cmd)).format(**locals()), **_shell_args ) result = shell.get_response( connection=_shell_args.get('connection', None) ) return parse_show_ip_ospf_route(result)
0f80ef7a46211002141ea489459df6be78aeeb28
3,650,174
from typing import get_origin def attrs_classes( verb, typ, ctx, pre_hook="__json_pre_decode__", post_hook="__json_post_encode__", check="__json_check__", ): """ Handle an ``@attr.s`` or ``@dataclass`` decorated class. This rule also implements several hooks to handle complex cases, especially to manage backwards compatibility. Hooks should be resilient against invalid data, and should not mutate their inputs. `__json_pre_decode__` is used by decoders constructed by `RuleSet.json_to_python`. It will be called before decoding with the JSON object and may adjust them to fit the expected structure, which must be a `dict` with the necessary fields. The checker generated by `inspect_json` will also call `__json_pre_decode__` before inspecting the value generated. `__json_post_encode__` is used by encoders constructed by `RuleSet.python_to_json`. It will be called after encoding with the JSON object and may adjust it as necessary. `__json_check__` may be used to completely override the `inspect_json` check generated for this class. """ if verb not in _SUPPORTED_VERBS: return if is_generic(typ): typ_args = get_argument_map(typ) typ = get_origin(typ) else: typ_args = None inner_map = build_attribute_map(verb, typ, ctx, typ_args) if inner_map is None: return if verb == INSP_PY: return partial(check_isinst, typ=typ) if verb == JSON2PY: pre_hook_method = getattr(typ, pre_hook, identity) return partial( convert_dict_to_attrs, pre_hook=pre_hook_method, inner_map=inner_map, con=typ, ) elif verb == PY2JSON: post_hook = post_hook if hasattr(typ, post_hook) else None return partial(convert_attrs_to_dict, post_hook=post_hook, inner_map=inner_map) elif verb == INSP_JSON: check = getattr(typ, check, None) if check: return check pre_hook_method = getattr(typ, pre_hook, identity) return partial(check_dict, inner_map=inner_map, pre_hook=pre_hook_method) elif verb == PATTERN: return pat.Object.exact( (pat.String.exact(attr.name), attr.inner or pat.Unkown) for attr in inner_map if attr.is_required )
9db1f0a9ddefe1fb32d52331e158e8e2565b2697
3,650,175
import torch def delta(pricer, *, create_graph: bool = False, **kwargs) -> torch.Tensor: """Computes and returns the delta of a derivative. Args: pricer (callable): Pricing formula of a derivative. create_graph (bool): If True, graph of the derivative will be constructed, allowing to compute higher order derivative products. Default: False. **kwargs: Other parameters passed to `pricer`. Returns: torch.Tensor: The greek of a derivative. Examples: >>> pricer = lambda spot, expiry: spot * expiry >>> spot = torch.tensor([1.0, 2.0, 3.0]) >>> expiry = torch.tensor([2.0, 3.0, 4.0]) >>> delta(pricer, spot=spot, expiry=expiry) tensor([2., 3., 4.]) """ if kwargs.get("strike") is None and kwargs.get("spot") is None: # Since delta does not depend on strike, # assign an arbitrary value (1.0) to strike if not given. kwargs["strike"] = torch.tensor(1.0) spot = _parse_spot(**kwargs).requires_grad_() kwargs["spot"] = spot if "moneyness" in kwargs: # lest moneyness is used to compute price and grad wrt spot cannot be computed kwargs["moneyness"] = None if "log_moneyness" in kwargs: # lest moneyness is used to compute price and grad wrt spot cannot be computed kwargs["log_moneyness"] = None price = pricer(**kwargs) return torch.autograd.grad( price, inputs=spot, grad_outputs=torch.ones_like(price), create_graph=create_graph, )[0]
88216117ba58afd68c88515210ad927a581eaf54
3,650,176
def formula_search(min_texts, max_texts, min_entries, max_entries): """Filter search results""" result = Cf.query.filter( Cf.n_entries >= (min_entries or MIN), Cf.n_entries <= (max_entries or MAX), Cf.unique_text >= (min_texts or MIN), Cf.unique_text <= (max_texts or MAX) ).group_by( Cf.short_ngram_id ).order_by(Cf.verb_text).all() return formula_search_to_dict(result)
938cc7ea25c2fe1bcd240ad4b60e517295eebe7b
3,650,177
from datetime import datetime import uuid def versioneer(): """ Function used to generate a new version string when saving a new Service bundle. User can also override this function to get a customized version format """ date_string = datetime.now().strftime("%Y%m%d") random_hash = uuid.uuid4().hex[:6].upper() # Example output: '20191009_D246ED' return date_string + "_" + random_hash
7c5123d28e3bee45f2c9f7d519e830cf80e9fea8
3,650,178
import http def request_url(method, url): """Request the specific url and return data""" try: r = http.request(method, url) if r.status == 200: return r.data.decode('utf-8') else: raise Exception("Fail to {} data from {}".format(method, url)) except Exception as e: logger.error(str(e), exc_info=True) raise e
9d25df49c9996364a9cb0195b90454378aefa5fd
3,650,179
def _ifail(repo, mynode, orig, fcd, fco, fca, toolconf, labels=None): """ Rather than attempting to merge files that were modified on both branches, it marks them as unresolved. The resolve command must be used to resolve these conflicts.""" # for change/delete conflicts write out the changed version, then fail if fcd.isabsent(): _underlyingfctxifabsent(fcd).write(fco.data(), fco.flags()) return 1, False
4d90ff7296fa9042392c7ffe28034fbbf804614f
3,650,180
from typing import Callable def __noise_with_pdf(im_arr: np.ndarray, pdf: Callable, **kwargs) -> np.ndarray: """Apply noise to given image array using pdf function that generates random values.""" util.check_input(im_arr) im_arr = im_arr/255.0 noise = pdf(**kwargs, size=im_arr.shape) out_im = im_arr + noise out_im = np.clip(out_im, 0.0, 1.0) return (out_im*255.0).astype(np.uint8)
d1b9f612f4490ac526c2a952c54ee03cbedc2139
3,650,181
def train_test_split(df, frac): """ Create a Train/Test split function for a dataframe and return both the Training and Testing sets. Frac refers to the percent of data you would like to set aside for training. """ frac = round(len(df)*frac) train = df[:frac] test = df[frac:] return train, test
8e233e017a261141f57f7b2bff9a527e275d2ed9
3,650,183
def load_special_config(config_filename, special_type, image_type='extent'): """Loads the google earth ("google"), science on a sphere ("sos"), or any other special type of image config. """ cfg = load_config(config_filename) # Promote the image type's keys cfg = _merge_keys(cfg, cfg[image_type]) cfg = _prune_keys(cfg, image_type) # Promote the special key cfg = _merge_keys(cfg, cfg[special_type]) cfg = _substitute_colortable(cfg) return cfg
b3a38d4ea9e39e42685604b4f01c7dcfa8ee2cdd
3,650,184
def softmax_strategy_cim(attrs, inputs, out_type, target): """softmax cim strategy""" strategy = _op.OpStrategy() strategy.add_implementation( wrap_compute_softmax(topi.nn.softmax), wrap_topi_schedule(topi.cim.schedule_softmax), name="softmax.cim", ) return strategy
11c5e581d9ad2814068558bc9faf24f57f5acba3
3,650,185
def get_statements_by_hash(hash_list, ev_limit=100, best_first=True, tries=2): """Get fully formed statements from a list of hashes. Parameters ---------- hash_list : list[int or str] A list of statement hashes. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 100. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. """ if not isinstance(hash_list, list): raise ValueError("The `hash_list` input is a list, not %s." % type(hash_list)) if not hash_list: return [] if isinstance(hash_list[0], str): hash_list = [int(h) for h in hash_list] if not all([isinstance(h, int) for h in hash_list]): raise ValueError("Hashes must be ints or strings that can be " "converted into ints.") resp = submit_statement_request('post', 'from_hashes', ev_limit=ev_limit, data={'hashes': hash_list}, best_first=best_first, tries=tries) return stmts_from_json(resp.json()['statements'].values())
26924f7d05b35b6655eb69989a32677edf1eedbf
3,650,186
def _is_in(val_set): """Check if a value is included in a set of values""" def inner(val, val_set): if val not in val_set: if isinstance(val_set, xrange): acceptable = "[%d-%d]" % (val_set[0], val_set[-1]) else: acceptable = "{%s}" % ", ".join(val_set) raise ValueError("Acceptable values are: %s" % acceptable) return partial(inner, val_set=val_set)
462afc33c73ae78bd62fa446f652a30492150643
3,650,187
def onebyone(transform, loglikelihood, parameter_names, prior, start = 0.5, ftol=0.1, disp=0, nsteps=40000, parallel=False, find_uncertainties=False, **args): """ **Convex optimization based on Brent's method** A strict assumption of one optimum between the parameter limits is used. The bounds are narrowed until it is found, i.e. the likelihood function is flat within the bounds. * If optimum outside bracket, expands bracket until contained. * Thus guaranteed to return local optimum. * Supports parallelization (multiple parameters are treated independently) * Supports finding ML uncertainties (Delta-Chi^2=1) Very useful for 1-3d problems. Otherwise useful, reproducible/deterministic algorithm for finding the minimum in well-behaved likelihoods, where the parameters are weakly independent, or to find a good starting point. Optimizes each parameter in order, assuming they are largely independent. For 1-dimensional algorithm used, see :func:`jbopt.opt_grid` :param ftol: difference in values at which the function can be considered flat :param compute_errors: compute standard deviation of gaussian around optimum """ def minfunc(cube): cube = numpy.array(cube) if (cube <= 1e-10).any() or (cube >= 1-1e-10).any(): return 1e100 params = transform(cube) l = loglikelihood(params) p = prior(params) if numpy.isinf(p) and p < 0: print ' prior rejection' return -1e300 if numpy.isnan(l): return -1e300 return -l - p if parallel: func = opt_grid_parallel else: func = opt_grid n_params = len(parameter_names) start = start + numpy.zeros(n_params) ret = func(start, minfunc, [(1e-10, 1-1e-10)] * n_params, ftol=ftol, disp=disp, compute_errors=find_uncertainties) if find_uncertainties: c0 = ret[0] p0 = transform(c0) stdev = numpy.zeros(n_params) lower = numpy.zeros(n_params) upper = numpy.zeros(n_params) for i, (lo, hi) in enumerate(ret[1]): c1 = numpy.copy(c0) c1[i] = lo c2 = numpy.copy(c0) c2[i] = hi p1 = transform(c1) p2 = transform(c2) stdev[i] = numpy.abs(p2[i] - p1[i]) / 2 lower[i] = min(p2[i], p1[i]) upper[i] = max(p2[i], p1[i]) return dict(start=ret[0], maximum=p0, stdev=stdev, upper=upper, lower=lower, method='opt_grid') else: return dict(start=ret, maximum=transform(ret), method='opt_grid')
86a12d7d7b738cc8ab7d8e65e3765e6b81f825b4
3,650,189
def test_data(): """Test data object for the main PlantCV module.""" return TestData()
f8b2dc49d460ddadcd74c89da1159274660ecdfb
3,650,191
def make_cmap(infile): """Call correct cmap function depending on file.""" cornames = ["coherence-cog.tif", "phsig.cor.geo.vrt", "topophase.cor.geo.vrt"] phsnames = ["unwrapped-phase-cog.tif", "filt_topophase.unw.geo.vrt"] if infile in cornames: cpt = make_coherence_cmap() elif infile in phsnames: cpt = make_wrapped_phase_cmap() else: # amplitude cmap cpt = make_amplitude_cmap() return cpt
cd6408e1f8718b7073d1c5baa4e5a20ab8553720
3,650,193
def tail_correction(r, V, r_switch): """Apply a tail correction to a potential making it go to zero smoothly. Parameters ---------- r : np.ndarray, shape=(n_points,), dtype=float The radius values at which the potential is given. V : np.ndarray, shape=r.shape, dtype=float The potential values at each radius value. r_switch : float, optional, default=pot_r[-1] - 5 * dr The radius after which a tail correction is applied. References ---------- .. [1] https://codeblue.umich.edu/hoomd-blue/doc/classhoomd__script_1_1pair_1_1pair.html """ r_cut = r[-1] idx_r_switch, r_switch = find_nearest(r, r_switch) S_r = np.ones_like(r) r = r[idx_r_switch:] S_r[idx_r_switch:] = ( (r_cut ** 2 - r ** 2) ** 2 * (r_cut ** 2 + 2 * r ** 2 - 3 * r_switch ** 2) / (r_cut ** 2 - r_switch ** 2) ** 3 ) return V * S_r
50934031776cfd4d92ef7a05ca2e63c215518352
3,650,194
def process_input(input_string): """ >>> for i in range (0, 5): ... parent_node = Node(None) ... parent_node.random_tree(4) ... new_node = process_input(parent_node.get_test_string()) ... parent_node.compute_meta_value() - new_node.compute_meta_value() 0 0 0 0 0 >>> :param input_string: The string from the file that represents the license tree. :return: The tree of Nodes """ node = Node.node_factory(input_string) return node
3cea94806034ebd3d95fdc7b5c8844d79698a684
3,650,195
def equiv_alpha(x,y): """check if two closed terms are equivalent module alpha conversion. for now, we assume the terms are closed """ if x == y: return True if il.is_lambda(x) and il.is_lambda(y): return x.body == il.substitute(y.body,zip(x.variables,y.variables)) return False pass
27cd246e217403320bd16580029eb1d7c0122e33
3,650,197
def delete(isamAppliance, file_id, check_mode=False, force=False): """ Clearing a common log file """ ret_obj = {'warnings': ''} try: ret_obj = get(isamAppliance, file_id, start=1, size=1) delete_required = True # Exception thrown if the file is empty # Check for Docker warnings = ret_obj['warnings'] if warnings and 'Docker' in warnings[0]: return isamAppliance.create_return_object(warnings=ret_obj['warnings']) except: delete_required = False if force is True or delete_required is True: if check_mode is True: return isamAppliance.create_return_object(changed=True, warnings=ret_obj['warnings']) else: return isamAppliance.invoke_delete( "Clearing a common log file", "{0}/{1}".format(uri, file_id), requires_model=requires_model) return isamAppliance.create_return_object(warnings=ret_obj['warnings'])
7f27555eb33e489a59e1d9d1a7127713afd25d2f
3,650,198
def filter_imgs(df, properties = [], values = []): """Filters pandas dataframe according to properties and a range of values Input: df - Pandas dataframe properties - Array of column names to be filtered values - Array of tuples containing bounds for each filter Output: df - Filtered dataframe """ for i, val in enumerate(properties): df = df.loc[(df[val] > values[i][0]) & (df[val] < values[i][1])] return df
cdc5c8bfef10fae60f48cee743df049581a0df04
3,650,199
def conjugate_term(term: tuple) -> tuple: """Returns the sorted hermitian conjugate of the term.""" conj_term = [conjugate_field(field) for field in term] return tuple(sorted(conj_term))
d21834ff5c2abe5ff6ec85304db962d809b07637
3,650,200
def create_notify_policy_if_not_exists(project, user, level=NotifyLevel.involved): """ Given a project and user, create notification policy for it. """ model_cls = apps.get_model("notifications", "NotifyPolicy") try: result = model_cls.objects.get_or_create(project=project, user=user, defaults={"notify_level": level}) return result[0] except IntegrityError as e: raise exc.IntegrityError(_("Notify exists for specified user and project")) from e
3d2eec3e3a5f12a4cbba3c3c111608f38133cf94
3,650,201
def parse_table(soup, start_gen, end_gen): """ - Finds the PKMN names in the soup object and puts them into a list. - Establishes a gen range. - Gets rid of repeated entries (formes, e.g. Deoxys) using an OrderedSet. - Joins the list with commas. - Handles both Nidorans having 'unmappable' characters in their names (u2642 and u2640). params: soup (BeautifulSoup object), start_gen (int), end_gen (int) returns: pkmn_string (string) """ pokes = [] for cell in soup.find_all("td", attrs={'style': None}): for name in cell.find_all("a"): pokes.append(name.string) start_index = pokes.index(GEN_STARTS_WITH[start_gen]) end_index = pokes.index(GEN_ENDS_WITH[end_gen]) + 1 # Doesn't have to be ordered, just personal preference. unique_list = OrderedSet(pokes[start_index:end_index]) if start_gen != end_gen: print(f"{len(unique_list)} Pokémon from gen {start_gen} to {end_gen} were fetched.") else: print(f"{len(unique_list)} Pokémon from gen {start_gen} were fetched.") pkmn_string = ', '.join(unique_list) for key, value in NIDORAN_CASE.items(): # Handling of Nidoran male/female symbols. pkmn_string = pkmn_string.replace(key, value) return pkmn_string
1bb1ce6135f162e532b02e2d95eabd675540878d
3,650,202
import torch def get_expert_parallel_src_rank(): """Calculate the global rank corresponding to a local rank zero in the expert parallel group.""" global_rank = torch.distributed.get_rank() local_world_size = get_expert_parallel_world_size() return (global_rank // local_world_size) * local_world_size
0022f953707f26f9a3b3b021422ebc16e1d14213
3,650,203
from typing import Dict from typing import Any from typing import Optional def _add_extra_kwargs( kwargs: Dict[str, Any], extra_kwargs: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: """ Safely add additional keyword arguments to an existing dictionary Parameters ---------- kwargs : dict Keyword argument dictionary extra_kwargs : dict, default None Keyword argument dictionary to add Returns ------- dict Keyword dictionary with added keyword arguments Notes ----- There is no checking for duplicate keys """ if extra_kwargs is None: return kwargs else: kwargs_copy = kwargs.copy() kwargs_copy.update(extra_kwargs) return kwargs_copy
cfc4c17f608c0b7fe1ae3046dc220d385c890caa
3,650,204
import random import math def Hiker(n,xLst,yLst,dist): """ Hiker is a function to generate lists of x and y coordinates of n steps for a random walk of n steps along with distance between the first and last point """ x0=0 y0=0 x=x0 y=y0 xLst[1] = x0 yLst[1] = y0 for i in range (n-1): rnum = random.random() if rnum <= 0.19: y=y+1 x=x elif rnum <= 0.43: y=y+1 x=x+1 elif rnum <= 0.60: y=y x=x+1 elif rnum <= 0.70: y = y-1 x= x+1 elif rnum <= 0.72: y = y-1 x = x elif rnum <= 0.75: y = y-1 x = x-1 elif rnum <= 0.85: y = y x = x-1 elif rnum <= 1.00: y = y+1 x = x-1 xLst[i+1] = x yLst[i+1] = y dist = math.sqrt ((x-x0)^2 + (y-y0)^2) return (xLst,yLst,dist)
abe341c8ecdc579de2b72f5af1ace3f07dd40dc3
3,650,205
def extractdata(csvName='US_SP_Restructured.csv'): """ Parameters ---------- :string csvName: Name of csv file. e.g. 'US_SP_Restructured.csv' """ df = pd.read_csv(csvName) df['index'] = df.index # extract alternative specific variables cost = pd.melt(df, id_vars=['quest', 'index'], value_vars=['Car_Cost', 'CarRental_Cost', 'Bus_Cost', 'Plane_Cost', 'Train_Cost', 'TrH_Cost'], value_name='cost') tt = pd.melt(df, id_vars=['quest', 'index'], value_vars=['Car_TT', 'CarRental_TT', 'Bus_TT', 'Plane_TT', 'Train_TT', 'TrH_TT'], value_name='tt') relib = pd.melt(df, id_vars=['quest', 'index'], value_vars=['CarRelib', 'CarRentalRelib', 'BusRelib', 'PlaneRelib', 'TrainRelib', 'TrHRelib'], value_name='reliability') # extract generic variables data_RP = df[[ 'quest', 'index', 'DrvLicens', 'PblcTrst', 'Ag1825', 'Ag2545', 'Ag4565', 'Ag65M', 'Male', 'Fulltime', 'PrtTime', 'Unemplyd', 'Edu_Highschl', 'Edu_BSc', 'Edu_MscPhD', 'HH_Veh0', 'HH_Veh1', 'HH_Veh2M', 'HH_Adult1', 'HH_Adult2', 'HH_Adult3M', 'HH_Chld0', 'HH_Chld1', 'HH_Chld2M', 'HH_Inc020K', 'HH_Inc2060K', 'HH_Inc60KM', 'HH_Sngl', 'HH_SnglParent', 'HH_AllAddults', 'HH_Nuclear', 'P_Chld', 'BusCrwd', 'CarMorning', 'CarAfternoon', 'CarEve', 'O_MTL_US_max', 'O_Odr_US_max', 'D_Bstn_max', 'D_NYC_max', 'D_Maine_max', 'Tp_Onewy_max', 'Tp_2way_max', 'Tp_h06_max', 'Tp_h69_max', 'Tp_h915_max', 'Tp_h1519_max', 'Tp_h1924_max', 'Tp_h1524_max', 'Tp_Y2016_max', 'Tp_Y2017_max', 'Tp_Wntr_max', 'Tp_Sprng_max', 'Tp_Sumr_max', 'Tp_Fall_max', 'Tp_CarDrv_max', 'Tp_CarPsngr_max', 'Tp_CarShrRnt_max', 'Tp_Train_max', 'Tp_Bus_max', 'Tp_Plane_max', 'Tp_ModOdr_max', 'Tp_WrkSkl_max', 'Tp_Leisr_max', 'Tp_Shpng_max', 'Tp_ActOdr_max', 'Tp_NHotel1_max', 'Tp_NHotel2_max', 'Tp_NHotel3M_max', 'Tp_FreqMonthlMulti_max', 'Tp_FreqYearMulti_max', 'Tp_FreqYear1_max', 'Envrn_Car', 'Envrn_Train', 'Envrn_Bus', 'Envrn_Plane', 'Safe_Car', 'Safe_Train', 'Safe_Bus', 'Safe_Plane', 'Comf_Car', 'Comf_Train', 'Comf_Bus', 'Comf_Plane', 'Import_Cost', 'Import_TT', 'Import_Relib', 'Import_StartTime', 'Import_Freq', 'Import_Onboard', 'Import_Crwding' ]] # extract alternatives data_choice = df[['quest', 'index', 'New_SP_Choice']] # extract availability data_avail = df[['quest', 'index', 'AV_Car', 'AV_CarRental', 'AV_Bus', 'AV_Plane', 'AV_Train', 'AV_TrH']] # extract indicators data_ind = df[['quest', 'index', 'Envrn_Car', 'Envrn_Train', 'Envrn_Bus', 'Envrn_Plane', 'Safe_Car', 'Safe_Train', 'Safe_Bus', 'Safe_Plane', 'Comf_Car', 'Comf_Train', 'Comf_Bus', 'Comf_Plane']] data_choice = data_choice.sort_values(['quest', 'index']) cost = cost.sort_values(['quest', 'index', 'variable']) tt = tt.sort_values(['quest', 'index', 'variable']) relib = relib.sort_values(['quest', 'index', 'variable']) data_RP = data_RP.sort_values(['quest', 'index']) data_avail = data_avail.sort_values(['quest', 'index']) data_ind = data_ind.sort_values(['quest', 'index']) # make a copy and merge alternative specific variables data_SP = cost data_SP['tt'] = tt['tt'] data_SP['relib'] = relib['reliability'] data_SP['choice'] = data_SP['variable'].str.split('_', expand=True)[0] data_SP = data_SP.reset_index(drop=True) # check if everything is in order print(data_SP.head(6)) # extract data arrays dataset_y = data_choice[['New_SP_Choice']] dataset_x_ng = data_SP[['cost', 'tt', 'relib']] dataset_x_g = data_RP[[ 'DrvLicens', 'PblcTrst', 'Ag1825', 'Ag2545', 'Ag4565', 'Ag65M', 'Male', 'Fulltime', # 'PrtTime', 'Unemplyd', 'Edu_Highschl', 'Edu_BSc', 'Edu_MscPhD', 'HH_Veh0', 'HH_Veh1', 'HH_Veh2M', # 'HH_Adult1', 'HH_Adult2', 'HH_Adult3M', 'HH_Chld0', 'HH_Chld1', 'HH_Chld2M', 'HH_Inc020K', 'HH_Inc2060K', 'HH_Inc60KM', # 'HH_Sngl', 'HH_SnglParent', 'HH_AllAddults', # 'HH_Nuclear', # 'P_Chld', # 'O_MTL_US_max', 'O_Odr_US_max', # 'D_Bstn_max', 'D_NYC_max', 'D_Maine_max', # 'Tp_Onewy_max', 'Tp_2way_max', # 'Tp_h06_max', 'Tp_h69_max', 'Tp_h915_max', # 'Tp_h1519_max', 'Tp_h1924_max', 'Tp_h1524_max', # 'Tp_Y2016_max', 'Tp_Y2017_max', # 'Tp_Wntr_max', 'Tp_Sprng_max', 'Tp_Sumr_max', 'Tp_Fall_max', # 'Tp_CarDrv_max', 'Tp_CarPsngr_max', 'Tp_CarShrRnt_max', # 'Tp_Train_max', 'Tp_Bus_max', 'Tp_Plane_max', 'Tp_ModOdr_max', # 'Tp_WrkSkl_max', 'Tp_Leisr_max', 'Tp_Shpng_max', # 'Tp_ActOdr_max', # 'Tp_NHotel1_max', 'Tp_NHotel2_max', 'Tp_NHotel3M_max', # 'Tp_FreqMonthlMulti_max', 'Tp_FreqYearMulti_max', # 'Tp_FreqYear1_max', ]] dataset_avail = data_avail[['AV_Bus', 'AV_CarRental', 'AV_Car', 'AV_Plane', 'AV_TrH', 'AV_Train']] dataset_ind = data_ind[['Envrn_Car', 'Envrn_Train', 'Envrn_Bus', 'Envrn_Plane', 'Safe_Car', 'Safe_Train', 'Safe_Bus', 'Safe_Plane', 'Comf_Car', 'Comf_Train', 'Comf_Bus', 'Comf_Plane']] n = df.shape[0] y = dataset_y.values.reshape(n,) x_ng = dataset_x_ng.values.reshape(n, 6, -1)/100. x_g = dataset_x_g.values avail = dataset_avail.values ind = dataset_ind.values return x_ng, x_g, y, avail, ind
e0a3f405da0e31e252b6110f84f81363c692d66a
3,650,206
def has_field(entry: EntryType, field: str) -> bool: """Check if a given entry has non empty field""" return has_data(get_field(entry, field))
e13d973fde62e36764871fd3b565552ff46b359b
3,650,207
def open_file(app_id, file_name, mode): # type: (int, str, int) -> str """ Call to open_file. :param app_id: Application identifier. :param file_name: File name reference. :param mode: Open mode. :return: The real file name. """ return _COMPSs.open_file(app_id, file_name, mode)
7c38d219d4a867e72d90b873412ec7d5e5aad78a
3,650,209
def correct_repeat_line(): """ Matches repeat spec above """ return "2|1|2|3|4|5|6|7"
b9c1e48c5043a042b9f6a6253cba6ae8ce1ca32c
3,650,211