content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_user(): """ Method that will create an user . Returns: user.id: The id of the created user Raises: If an error occurs it will be displayed in a error message. """ try: new_user = User(name=login_session['username'], email=login_session[ 'email'], picture=login_session['picture']) db_session.add(new_user) db_session.commit() user = db_session.query(User).filter_by(email=login_session['email']).one() return user.id except Exception as e: flash('An error has occurred: {}'.format(str(e)), 'error') return None
e5d555fb955523c6bff811efe308030de257e05a
3,650,328
import numpy def buildStartAndEndWigData(thisbam, LOG_EVERY_N=1000, logger=None): """parses a bam file for 3' and 5' ends and builds these into wig-track data Returns a dictionary of various gathered statistics.""" def formatToWig(wigdata): """ take in the read position data and output in wigTrack format""" this_wigTracks = {} for key in wigdata.keys(): track = wigTrack() track.wigtype = "fixedStep" track.chr = key track.start = 1 track.step = 1 track.position = numpy.arange(len(wigdata[key]))+track.start this_wigTracks[key] = track this_wigTracks[key].data = wigdata[key] this_wigData = wigData() this_wigData.tracks = this_wigTracks return(this_wigData) if type(thisbam) is str: thisbam = pysam.AlignmentFile(thisbam, "rb") all_wigdata={ "fwd":{ "five_prime":{}, "three_prime":{} }, "rev":{ "five_prime":{}, "three_prime":{} } } chromSizes = dict(zip(thisbam.references, thisbam.lengths)) for key in chromSizes.keys(): for strand in all_wigdata.keys(): for end in all_wigdata[strand].keys(): all_wigdata[strand][end][key] = numpy.zeros(chromSizes[key]) counter=0 nlogs=0 for read in thisbam.fetch(): if read.is_reverse: all_wigdata["rev"]["five_prime"][read.reference_name][read.reference_end-1]+=1 all_wigdata["rev"]["three_prime"][read.reference_name][read.reference_start]+=1 else: all_wigdata["fwd"]["five_prime"][read.reference_name][read.reference_start]+=1 all_wigdata["fwd"]["three_prime"][read.reference_name][read.reference_end-1]+=1 counter+=1 if (counter % LOG_EVERY_N)==0: msg = "processed {these} reads...".format(these=(nlogs*LOG_EVERY_N)) if logger is not None: logger.info(msg) else: print(msg) nlogs+=1 msg = "Processed {counted} reads...".format(counted=counter) if logger is not None: logger.info(msg) else: print(msg) msg = "Formatting wig tracks..." if logger is not None: logger.info(msg) else: print(msg) for strand in all_wigdata.keys(): for end in all_wigdata[strand].keys(): all_wigdata[strand][end] = formatToWig(all_wigdata[strand][end]) return(all_wigdata, chromSizes)
f97a2b2c54f1cf2f978a17ef2b74435153ec4369
3,650,329
from pathlib import Path from typing import List from typing import Optional def time_series_h5(timefile: Path, colnames: List[str]) -> Optional[DataFrame]: """Read temporal series HDF5 file. If :data:`colnames` is too long, it will be truncated. If it is too short, additional column names will be deduced from the content of the file. Args: timefile: path of the TimeSeries.h5 file. colnames: names of the variables expected in :data:`timefile` (may be modified). Returns: A :class:`pandas.DataFrame` containing the time series, organized by variables in columns and the time steps in rows. """ if not timefile.is_file(): return None with h5py.File(timefile, 'r') as h5f: dset = h5f['tseries'] _, ncols = dset.shape ncols -= 1 # first is istep h5names = h5f['names'].asstr()[len(colnames) + 1:] _tidy_names(colnames, ncols, h5names) data = dset[()] pdf = pd.DataFrame(data[:, 1:], index=np.int_(data[:, 0]), columns=colnames) # remove duplicated lines in case of restart return pdf.loc[~pdf.index.duplicated(keep='last')]
e28194bcfead5b188ea947efe51fc2bac052bea9
3,650,330
def decode_jwt(token): """decodes a token and returns ID associated (subject) if valid""" try: payload = jwt.decode(token.encode(), current_app.config['SECRET_KEY'], algorithms=['HS256']) return {"isError": False, "payload": payload["sub"]} except jwt.ExpiredSignatureError as e: current_app.logger.error("Token expired.") raise ExpiredTokenError() except jwt.InvalidTokenError as e: current_app.logger.error("Invalid token.") raise InvalidTokenError()
15938fc40d2fb5b60c4ef5ccb3d6f3211fa5952f
3,650,331
def format_point(point: Point) -> str: """Return a str representing a Point object. Args: point: Point obj to represent. Returns: A string representing the Point with ° for grades, ' for minutes and " for seconds. Latitude is written before Longitude. Example Output: 30°21'12", 10°21'22" """ lat = to_sexagesimal(point.latitude) long = to_sexagesimal(point.longitude) return f'[{lat.deg}°{lat.min}\'{lat.sec}\", {long.deg}°{long.min}\'{long.sec}\"]'
435a13d7198e6da99306c58d35249b666a03571c
3,650,332
def families_horizontal_correctors(): """.""" return ['CH']
a3f8de3e0d44ea72d2fb98733050b7a2d598c142
3,650,333
import requests def variable_select_source_data_proxy(request): """ @summary: 获取下拉框源数据的通用接口 @param request: @return: """ url = request.GET.get('url') try: response = requests.get( url=url, verify=False ) except Exception as e: logger.exception('variable select get data from url[url={url}] raise error: {error}'.format(url=url, error=e)) text = _('请求数据异常: {error}').format(error=e) data = [{'text': text, 'value': ''}] return JsonResponse(data, safe=False) try: data = response.json() except Exception: try: content = response.content.decode(response.encoding) logger.exception('variable select get data from url[url={url}] is not a valid JSON: {data}'.format( url=url, data=content[:500]) ) except Exception: logger.exception('variable select get data from url[url={url}] data is not a valid JSON'.format(url=url)) text = _('返回数据格式错误,不是合法 JSON 格式') data = [{'text': text, 'value': ''}] return JsonResponse(data, safe=False)
c8d131d6c7d0e766e0a4dacd1b0086090ee02c4f
3,650,334
async def select_guild_lfg_events(guild_id: int) -> list[asyncpg.Record]: """Gets the lfg messages for a specific guild ordered by the youngest creation date""" select_sql = f""" SELECT id, message_id, creation_time, voice_channel_id FROM lfgmessages WHERE guild_id = $1 ORDER BY creation_time ASC;""" async with (await get_connection_pool()).acquire(timeout=timeout) as connection: return await connection.fetch(select_sql, guild_id)
3a1b98191b75b4ec0bbdb5942a7b5b2d8c8dca48
3,650,335
def ValueToString(descriptor, field_desc, value): """Renders a field value as a PHP literal. Args: descriptor: The descriptor module from the protobuf package, e.g. google.protobuf.descriptor. field_desc: The type descriptor for the field value to be rendered. value: The value of the field to be rendered. Returns: A PHP literal for the provided value. """ if field_desc.label == descriptor.FieldDescriptor.LABEL_REPEATED: if value: return '[%s]' % ', '.join([NonRepeatedValueToString(descriptor, field_desc, s) for s in value]) return '[]' return NonRepeatedValueToString(descriptor, field_desc, value)
e40815ab6e3b55e1a7cb026c33a9c9324da900b4
3,650,336
def __load_txt_resource__(path): """ Loads a txt file template :param path: :return: """ txt_file = open(path, "r") return txt_file
9e3632098c297d1f6407559a86f0d8dc7b68ea75
3,650,339
def parse_cpu_spec(spec): """Parse a CPU set specification. :param spec: cpu set string eg "1-4,^3,6" Each element in the list is either a single CPU number, a range of CPU numbers, or a caret followed by a CPU number to be excluded from a previous range. :returns: a set of CPU indexes """ cpuset_ids = set() cpuset_reject_ids = set() for rule in spec.split(','): rule = rule.strip() # Handle multi ',' if len(rule) < 1: continue # Note the count limit in the .split() call range_parts = rule.split('-', 1) if len(range_parts) > 1: # So, this was a range; start by converting the parts to ints try: start, end = [int(p.strip()) for p in range_parts] except ValueError: raise exception.Invalid(_("Invalid range expression %r") % rule) # Make sure it's a valid range if start > end: raise exception.Invalid(_("Invalid range expression %r") % rule) # Add available CPU ids to set cpuset_ids |= set(range(start, end + 1)) elif rule[0] == '^': # Not a range, the rule is an exclusion rule; convert to int try: cpuset_reject_ids.add(int(rule[1:].strip())) except ValueError: raise exception.Invalid(_("Invalid exclusion " "expression %r") % rule) else: # OK, a single CPU to include; convert to int try: cpuset_ids.add(int(rule)) except ValueError: raise exception.Invalid(_("Invalid inclusion " "expression %r") % rule) # Use sets to handle the exclusion rules for us cpuset_ids -= cpuset_reject_ids return cpuset_ids
fa323a2fc5c27a6645f0abfb3b4878f6ae6390ee
3,650,340
import typing def distance_fit_from_transits() -> typing.List[float]: """ This uses the observers position from full transits and then the runway positions from all the transit lines fitted to a """ ((x_mean, x_std), (y_mean, y_std)) = observer_position_mean_std_from_full_transits() transits = transit_x_axis_distances(x_mean, y_mean) times = [v.time for v in transits] dists = [v.distance for v in transits] popt, pcov = curve_fit( video_utils.polynomial_3, times, dists, ) return popt
57b201b1328528191b4926a66325ca026855f09a
3,650,341
import torch def collate_fn_synthesize(batch): """ Create batch Args : batch(tuple) : List of tuples / (x, c) x : list of (T,) c : list of (T, D) Returns : Tuple of batch / Network inputs x (B, C, T), Network targets (B, T, 1) """ local_conditioning = len(batch[0]) >= 2 if local_conditioning: new_batch = [] for idx in range(len(batch)): x, c = batch[idx] if upsample_conditional_features: assert len(x) % len(c) == 0 and len(x) // len(c) == hop_length new_batch.append((x, c)) batch = new_batch else: pass input_lengths = [len(x[0]) for x in batch] max_input_len = max(input_lengths) # x_batch : [B, T, 1] x_batch = np.array([_pad_2d(x[0].reshape(-1, 1), max_input_len) for x in batch], dtype=np.float32) assert len(x_batch.shape) == 3 y_batch = np.array([_pad(x[0], max_input_len) for x in batch], dtype=np.float32) assert len(y_batch.shape) == 2 if local_conditioning: max_len = max([len(x[1]) for x in batch]) c_batch = np.array([_pad_2d(x[1], max_len) for x in batch], dtype=np.float32) assert len(c_batch.shape) == 3 # (B x C x T') c_batch = torch.tensor(c_batch).transpose(1, 2).contiguous() else: c_batch = None # Convert to channel first i.e., (B, C, T) / C = 1 x_batch = torch.tensor(x_batch).transpose(1, 2).contiguous() # Add extra axis i.e., (B, T, 1) y_batch = torch.tensor(y_batch).unsqueeze(-1).contiguous() input_lengths = torch.tensor(input_lengths) return x_batch, y_batch, c_batch, input_lengths
b784a45eb753d5d84ae3bf18fd4e7a09e891753d
3,650,342
def max_(context, mapping, args, **kwargs): """Return the max of an iterable""" if len(args) != 1: # i18n: "max" is a keyword raise error.ParseError(_("max expects one argument")) iterable = evalwrapped(context, mapping, args[0]) try: return iterable.getmax(context, mapping) except error.ParseError as err: # i18n: "max" is a keyword hint = _("max first argument should be an iterable") raise error.ParseError(bytes(err), hint=hint)
068f77031fb83dc9d88446863e39f38c14a7478d
3,650,343
from typing import Optional from typing import Dict def dict_to_duration(time_dict: Optional[Dict[str, int]]) -> Duration: """Convert a QoS duration profile from YAML into an rclpy Duration.""" if time_dict: try: return Duration(seconds=time_dict['sec'], nanoseconds=time_dict['nsec']) except KeyError: raise ValueError( 'Time overrides must include both seconds (sec) and nanoseconds (nsec).') else: return Duration()
7b20ed1ecbe496f55426562e791e591d8c5104e5
3,650,344
def gen_ex_tracking_df(subj_dir): """Generate subject tracking error data frames from time series CSVs. This method generates tracking error (Jaccard distance, CSA, T, AR) data frames from raw time series CSV data for a single subject. Args: subj_dir (str): path to subject data directory, including final '/' Returns: pandas.DataFrame mean errors (Jaccard distance, CSA, T, AR) pandas.DataFrame standard deviation errors (Jaccard distance, CSA, T, AR) """ df_iou = gen_jd_vals(subj_dir) df_csa = gen_def_err_vals(subj_dir, 'CSA') df_t = gen_def_err_vals(subj_dir, 'T') df_tr = gen_def_err_vals(subj_dir, 'AR') df_iou_mean = df_iou.mean().to_frame() df_csa_mean = df_csa.mean().to_frame() df_t_mean = df_t.mean().to_frame() df_tr_mean = df_tr.mean().to_frame() df_means = df_iou_mean.copy() df_means.rename(columns={0: 'Jaccard Distance'}, inplace=True) df_means['CSA'] = df_csa_mean[0] df_means['T'] = df_t_mean[0] df_means['AR'] = df_tr_mean[0] df_iou_std = df_iou.std().to_frame() df_csa_std = df_csa.std().to_frame() df_t_std = df_t.std().to_frame() df_tr_std = df_tr.std().to_frame() df_stds = df_iou_std.copy() df_stds.rename(columns={0: 'Jaccard Distance'}, inplace=True) df_stds['CSA'] = df_csa_std[0] df_stds['T'] = df_t_std[0] df_stds['AR'] = df_tr_std[0] return df_means, df_stds
259f2533bf8a0d9a03c250fc937c4a99903c8994
3,650,345
def mse(y_true: np.ndarray, y_pred: np.ndarray) -> float: """Compute the MSE (Mean Squared Error).""" return sklearn.metrics.mean_squared_error(y_true, y_pred)
f9c669b04bc6a44bcd983c79dec5d630a6acbd09
3,650,346
import torch def policy_improvement(env, V, gamma): """ Obtain an improved policy based on the values @param env: OpenAI Gym environment @param V: policy values @param gamma: discount factor @return: the policy """ n_state = env.observation_space.n n_action = env.action_space.n policy = torch.zeros(n_state) for state in range(n_state): v_actions = torch.zeros(n_action) for action in range(n_action): for trans_prob, new_state, reward, _ in env.env.P[state][action]: v_actions[action] += trans_prob * (reward + gamma * V[new_state]) policy[state] = torch.argmax(v_actions) return policy
10587e5d4fb08158eff06a4305de6c02fc2d878c
3,650,347
def loudness_zwst_freq(spectrum, freqs, field_type="free"): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- spectrum : numpy.array A RMS frequency spectrum, size (Nfreq, Ntime) freqs : list List of the corresponding frequencies, size (Nfreq,) or (Nfreq, Ntime) field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse") Outputs ------- N : float or numpy.array Calculated loudness [sones], size (Ntime,). N_specific : numpy.ndarray Specific loudness [sones/bark], size (Nbark, Ntime). bark_axis : numpy.array Frequency axis in bark, size (Nbark,). """ if len(spectrum) != len(freqs): raise ValueError('Input spectrum and frequency axis must have the same shape') # Compute third octave band spectrum spec_third, _ = noct_synthesis(spectrum, freqs, fmin=24, fmax=12600) # Compute dB values spec_third = amp2db(spec_third, ref=2e-5) # Compute main loudness Nm = _main_loudness(spec_third, field_type) # # Computation of specific loudness pattern and integration of overall # loudness by attaching slopes towards higher frequencies N, N_specific = _calc_slopes(Nm) # Define Bark axis bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) return N, N_specific, bark_axis
391e33784e355675b68b3e95ade084cbcb86d5b5
3,650,348
def normU(u): """ A function to scale Uranium map. We don't know what this function should be """ return u
e4bd83a26c502e9129d18091e807e17ab3294fd1
3,650,350
def exact_riemann_solution(q_l, q_r, gamma=1.4, phase_plane_curves=False): """Return the exact solution to the Riemann problem with initial states q_l, q_r. The solution is given in terms of a list of states, a list of speeds (each of which may be a pair in case of a rarefaction fan), and a function reval(xi) that gives the solution at a point xi=x/t. The input and output vectors are the conserved quantities. If phase_plane_curves==True, then the appropriate Hugoniot Locus and/or integral curve is returned for the 1- and 3-waves. """ rho_l, u_l, p_l = conservative_to_primitive(*q_l) rho_r, u_r, p_r = conservative_to_primitive(*q_r) # Compute left and right state sound speeds c_l = sound_speed(rho_l, p_l, gamma) c_r = sound_speed(rho_r, p_r, gamma) ws = np.zeros(5) wave_types = ['', 'contact', ''] if rho_l == 0: # 3-rarefaction connecting right state to vacuum p = 0. rho_l_star = 0. rho_r_star = 0. u_vacuum_r = integral_curve_3(0., rho_r, u_r, p_r, gamma) u = u_vacuum_r ws[0] = 0. ws[1] = 0. ws[2] = 0. ws[3] = u_vacuum_r ws[4] = u_r + c_r wave_types = ['contact', 'contact', 'raref'] elif rho_r == 0: # 1-rarefaction connecting left state to vacuum p = 0 rho_l_star = 0. rho_r_star = 0. u_vacuum_l = integral_curve_1(0., rho_l, u_l, p_l, gamma) u = u_vacuum_l ws[0] = u_l - c_l ws[1] = u_vacuum_l ws[2] = 0. ws[3] = 0. ws[4] = 0. wave_types = ['raref', 'contact', 'contact'] elif u_l - u_r + 2*(c_l+c_r)/(gamma-1.) < 0: # Middle states are vacuum p = 0. rho_l_star = 0. rho_r_star = 0. u_vacuum_l = integral_curve_1(0., rho_l, u_l, p_l, gamma) u_vacuum_r = integral_curve_3(0., rho_r, u_r, p_r, gamma) u = 0.5*(u_vacuum_l + u_vacuum_r) ws[0] = u_l - c_l ws[1] = u_vacuum_l ws[2] = u ws[3] = u_vacuum_r ws[4] = u_r + c_r wave_types = ['raref', 'contact', 'raref'] else: # Check whether the 1-wave is a shock or rarefaction def phi_l(p): if p >= p_l: return hugoniot_locus_1(p, rho_l, u_l, p_l, gamma) else: return integral_curve_1(p, rho_l, u_l, p_l, gamma) # Check whether the 1-wave is a shock or rarefaction def phi_r(p): if p >= p_r: return hugoniot_locus_3(p, rho_r, u_r, p_r, gamma) else: return integral_curve_3(p, rho_r, u_r, p_r, gamma) phi = lambda p: phi_l(p)-phi_r(p) exp = (1.-gamma)/(2.*gamma) guess = ((c_l + c_r - (gamma-1.)*(u_r-u_l)/2.)/(c_l*p_l**exp+c_r*p_r**exp))**(-1./exp) # Compute middle state p, u by finding curve intersection p, info, ier, msg = fsolve(phi, guess, full_output=True, xtol=1.e-14) # For strong rarefactions, sometimes fsolve needs help if ier != 1: p, info, ier, msg = fsolve(phi, guess, full_output=True, factor=0.1, xtol=1.e-10) # This should not happen: if ier != 1: print('Warning: fsolve did not converge.') print(msg) u = phi_l(p) ws[2] = u # Find shock and rarefaction speeds if p > p_l: wave_types[0] = 'shock' rho_l_star = rho_l*(1+beta(gamma)*p/p_l)/(p/p_l+beta(gamma)) ws[0] = (rho_l*u_l - rho_l_star*u)/(rho_l - rho_l_star) ws[1] = ws[0] else: wave_types[0] = 'raref' rho_l_star = (p/p_l)**(1./gamma) * rho_l c_l_star = sound_speed(rho_l_star, p, gamma) ws[0] = u_l - c_l ws[1] = u - c_l_star if p > p_r: wave_types[2] = 'shock' rho_r_star = rho_r*(1+beta(gamma)*p/p_r)/(p/p_r+beta(gamma)) ws[4] = (rho_r*u_r - rho_r_star*u)/(rho_r - rho_r_star) ws[3] = ws[4] else: wave_types[2] = 'raref' rho_r_star = (p/p_r)**(1./gamma) * rho_r c_r_star = sound_speed(rho_r_star, p, gamma) ws[3] = u + c_r_star ws[4] = u_r + c_r # Find solution inside rarefaction fans (in primitive variables) def raref1(xi): u1 = ((gamma-1.)*u_l + 2*(c_l + xi))/(gamma+1.) rho1 = (rho_l**gamma*(u1-xi)**2/pospart(gamma*p_l))**(1./(gamma-1.)) p1 = p_l*(rho1/pospart(rho_l))**gamma return rho1, u1, p1 def raref3(xi): u3 = ((gamma-1.)*u_r - 2*(c_r - xi))/(gamma+1.) rho3 = (rho_r**gamma*(xi-u3)**2/pospart(gamma*p_r))**(1./(gamma-1.)) p3 = p_r*(rho3/pospart(rho_r))**gamma return rho3, u3, p3 q_l_star = np.squeeze(np.array(primitive_to_conservative(rho_l_star,u,p))) q_r_star = np.squeeze(np.array(primitive_to_conservative(rho_r_star,u,p))) states = np.column_stack([q_l,q_l_star,q_r_star,q_r]) speeds = [[], ws[2], []] if wave_types[0] in ['shock','contact']: speeds[0] = ws[0] else: speeds[0] = (ws[0],ws[1]) if wave_types[2] in ['shock','contact']: speeds[2] = ws[3] else: speeds[2] = (ws[3],ws[4]) def reval(xi): r"""Returns the Riemann solution in primitive variables for any value of xi = x/t. """ rar1 = raref1(xi) rar3 = raref3(xi) rho_out = (xi<=ws[0] )*rho_l \ + (xi>ws[0])*(xi<=ws[1])*rar1[0] \ + (xi>ws[1])*(xi<=ws[2] )*rho_l_star \ + (xi>ws[2]) *(xi<=ws[3])*rho_r_star \ + (xi>ws[3])*(xi<=ws[4])*rar3[0] \ + (xi>ws[4] )*rho_r u_out = (xi<=ws[0] )*u_l \ + (xi>ws[0])*(xi<=ws[1])*rar1[1] \ + (xi>ws[1])*(xi<=ws[2] )*u \ + (xi>ws[2] )*(xi<=ws[3])*u \ + (xi>ws[3])*(xi<=ws[4])*rar3[1] \ + (xi>ws[4] )*u_r p_out = (xi<=ws[0] )*p_l \ + (xi>ws[0])*(xi<=ws[1])*rar1[2] \ + (xi>ws[1])*(xi<=ws[2] )*p \ + (xi>ws[2] )*(xi<=ws[3])*p \ + (xi>ws[3])*(xi<=ws[4])*rar3[2] \ + (xi>ws[4] )*p_r return primitive_to_conservative(rho_out,u_out,p_out) if phase_plane_curves: if wave_types[0] == 'raref': phi1 = lambda p: integral_curve_1(p, rho_l, u_l, p_l, gamma) elif wave_types[0] == 'shock': phi1 = lambda p: hugoniot_locus_1(p, rho_l, u_l, p_l, gamma) else: phi1 = lambda p: p if wave_types[2] == 'raref': phi3 = lambda p: integral_curve_3(p, rho_r, u_r, p_r, gamma) elif wave_types[2] == 'shock': phi3 = lambda p: hugoniot_locus_3(p, rho_r, u_r, p_r, gamma) else: phi3 = lambda p: p return states, speeds, reval, wave_types, (p, phi1, phi3) else: return states, speeds, reval, wave_types
a5baa391d88a56026cc02a1a1fa841325e712ea0
3,650,351
def show_edge_scatter(N, s1, s2, t1, t2, d, dmax=None, fig_ax=None): """Draw the cell-edge contour and the displacement vectors. The contour is drawn using a scatter plot to color-code the displacements.""" if fig_ax is None: fig, ax = plt.subplots() else: fig, ax = fig_ax plt.figure(fig.number) # Evaluate splines at window locations and on fine-resolution grid c1 = splineutils.splevper(t1, s1) c2 = splineutils.splevper(t2, s2) c1p = splev(np.linspace(0, 1, N + 1), s1) c2p = splev(np.linspace(0, 1, N + 1), s2) # Interpolate displacements # d = 0.5 + 0.5 * d / np.max(np.abs(d)) if len(d) < N + 1: d = np.interp(np.linspace(0, 1, N + 1), t1, d, period=1) if dmax is None: dmax = np.max(np.abs(d)) if dmax == 0: dmax = 1 # Plot results # matplotlib.use('PDF') lw = 1 s = 1 # Scaling factor for the vectors ax.plot(c1p[0], c1p[1], "b", zorder=50, lw=lw) ax.plot(c2p[0], c2p[1], "r", zorder=100, lw=lw) # plt.scatter(c1p[0], c1p[1], c=d, cmap='bwr', vmin=-dmax, vmax=dmax, zorder=50, s1=lw) # # plt.colorbar(label='Displacement [pixels]') for j in range(len(t2)): ax.arrow( c1[0][j], c1[1][j], s * (c2[0][j] - c1[0][j]), s * (c2[1][j] - c1[1][j]), color="y", zorder=200, lw=lw, ) # plt.arrow(c1[0][j], c1[1][j], s1 * u[0][j], s1 * u[1][j], color='y', zorder=200, lw=lw) # Show normal to curve ax.arrow( c1[0][0], c1[1][0], s * (c2[0][0] - c1[0][0]), s * (c2[1][0] - c1[1][0]), color="c", zorder=400, lw=lw, ) fig.tight_layout() return fig, ax
d0575ec425828e895f24c3ff8cbf9f472ba62947
3,650,352
def get_A2_const(alpha1, alpha2, lam_c, A1): """Function to compute the constant A2. Args: alpha1 (float): The alpha1 parameter of the WHSCM. alpha2 (float): The alpha2 parameter of the WHSCM. lam_c (float): The switching point between the two exponents of the double power-laws in the WHSCM. A1 (float): The A1 constant of the WHSCM. Returns: A2 (float): The A2 constant of the WHSCM. """ A2 = A1 * (lam_c**(alpha2 - alpha1)) return A2
16fe12e9ef9d72cfe7250cf840e222512409d377
3,650,353
def _parse_seq_tf_example(example, uint8_features, shapes): """Parse tf.Example containing one or two episode steps.""" def to_feature(key, shape): if key in uint8_features: return tf.io.FixedLenSequenceFeature( shape=[], dtype=tf.string, allow_missing=True) else: return tf.io.FixedLenSequenceFeature( shape=shape, dtype=tf.float32, allow_missing=True) feature_map = {} for k, v in shapes.items(): feature_map[k] = to_feature(k, v) parsed = tf.io.parse_single_example(example, features=feature_map) observation = {} restructured = {} for k in parsed.keys(): if 'observation' not in k: restructured[k] = parsed[k] continue if k in uint8_features: observation[k.replace('observation/', '')] = tf.reshape( tf.io.decode_raw(parsed[k], out_type=tf.uint8), (-1,) + shapes[k]) else: observation[k.replace('observation/', '')] = parsed[k] restructured['observation'] = observation restructured['length'] = tf.shape(restructured['action'])[0] return restructured
5e0e4a6d3f26c28eb6e5dfe12e9295eb5b53979c
3,650,355
def unique_list(a_list, unique_func=None, replace=False): """Unique a list like object. - collection: list like object - unique_func: the filter functions to return a hashable sign for unique - replace: the following replace the above with the same sign Return the unique subcollection of collection. Example: data = [(1, 2), (2, 1), (2, 3), (1, 2)] unique_func = lambda x: tuple(sorted(x)) unique(data) -> [(1, 2), (2, 1), (2, 3)] unique(data, unique_func) -> [(1, 2), (2, 3)] unique(data, unique_func, replace=True) -> [(2, 1), (2, 3)] """ unique_func = unique_func or (lambda x: x) result = {} for item in a_list: hashable_sign = unique_func(item) if hashable_sign not in result or replace: result[hashable_sign] = item return list(result.values())
8d7957a8dffc18b82e8a45129ba3634c28dd0d52
3,650,356
def calculate_attitude_angle(eccentricity_ratio): """Calculates the attitude angle based on the eccentricity ratio. Parameters ---------- eccentricity_ratio: float The ratio between the journal displacement, called just eccentricity, and the radial clearance. Returns ------- float Attitude angle Examples -------- >>> from ross.fluid_flow.fluid_flow import fluid_flow_example >>> my_fluid_flow = fluid_flow_example() >>> calculate_attitude_angle(my_fluid_flow.eccentricity_ratio) # doctest: +ELLIPSIS 1.5... """ return np.arctan( (np.pi * (1 - eccentricity_ratio ** 2)**(1/2)) / (4 * eccentricity_ratio) )
24dcb463a0ebdcab8582309bf9ff44fdbfc44686
3,650,357
import torch import pickle def enc_obj2bytes(obj, max_size=4094): """ Encode Python objects to PyTorch byte tensors """ assert max_size <= MAX_SIZE_LIMIT byte_tensor = torch.zeros(max_size, dtype=torch.uint8) obj_enc = pickle.dumps(obj) obj_size = len(obj_enc) if obj_size > max_size: raise Exception( 'objects too large: object size {}, max size {}'.format( obj_size, max_size ) ) byte_tensor[0] = obj_size // 256 byte_tensor[1] = obj_size % 256 byte_tensor[2:2+obj_size] = torch.ByteTensor(list(obj_enc)) return byte_tensor
bca30d1a88db42f66bdd978386a1c4d24c0c790b
3,650,358
def featCompression (feats, deltas, deltas2): """ Returns augmented feature vectors for all cases. """ feats_total = np.zeros (78) for i in range (len (feats)): row_total = np.array ([]) feat_mean = np.mean (np.array (feats[i]), axis = 0) delt_mean = np.mean (np.array (deltas[i]), axis = 0) delt2_mean = np.mean (np.array (deltas2[i]), axis = 0) feat_std = np.std (np.array (feats[i]), axis = 0) delt_std = np.std (np.array (deltas[i]), axis = 0) delt2_std = np.std (np.array (deltas2[i]), axis = 0) row_total = np.hstack ((feat_mean, feat_std, delt_mean, delt_std, \ delt2_mean, delt2_std)) feats_total = np.vstack ((feats_total, row_total)) return feats_total[1:, :]
033b53fec9cf920daadb3ba5bef2fcce7cc11d21
3,650,359
def _array_indexing(array, key, key_dtype, axis): """Index an array or scipy.sparse consistently across NumPy version.""" if np_version < parse_version('1.12') or issparse(array): # Remove the check for NumPy when using >= 1.12 # check if we have an boolean array-likes to make the proper indexing if key_dtype == 'bool': key = np.asarray(key) if isinstance(key, tuple): key = list(key) return array[key] if axis == 0 else array[:, key]
b8c04647ad79ce8ffd973d2b13fe7231854822de
3,650,360
import torch def test_binary(test_data, model, criterion, batch_size, device, generate_batch=None): """Calculate performance of a Pytorch binary classification model Parameters ---------- test_data : torch.utils.data.Dataset Pytorch dataset model: torch.nn.Module Pytorch Model criterion: function Loss function bacth_size : int Number of observations per batch device : str Name of the device used for the model collate_fn : function Function defining required pre-processing steps Returns ------- Float Loss score Float: Accuracy Score """ # Set model to evaluation mode model.eval() test_loss = 0 test_acc = 0 # Create data loader data = DataLoader(test_data, batch_size=batch_size, collate_fn=generate_batch) # Iterate through data by batch of observations for feature, target_class in data: # Load data to specified device feature, target_class = feature.to(device), target_class.to(device).to(torch.float32) # Set no update to gradients with torch.no_grad(): # Make predictions output = model(feature) # Calculate loss for given batch loss = criterion(output, target_class.unsqueeze(1)) # Calculate global loss test_loss += loss.item() # Calculate global accuracy test_acc += (output.argmax(1) == target_class).sum().item() return test_loss / len(test_data), test_acc / len(test_data)
9bc8fefffca3d484abbcac48836fde3ca7b5287a
3,650,362
def linear_imputer(y, missing_values=np.nan, copy=True): """ Replace missing values in y with values from a linear interpolation on their position in the array. Parameters ---------- y: list or `numpy.array` missing_values: number, string, np.nan or None, default=`np.nan` The placeholder for the missing values. All occurrences of `missing_values` will be imputed. copy : bool, default=True If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Returns ------- `numpy.array` : array with `missing_values` imputed """ x = np.arange(len(y)) if missing_values is np.nan: mask_missing = np.isnan(y) else: mask_missing = y == missing_values imputed_values = np.interp(x[mask_missing], x[~mask_missing], y[~mask_missing]) if copy: yy = np.copy(y) yy[mask_missing] = imputed_values return yy else: y[mask_missing] = imputed_values return y
2557e7647e8d7e0246bb15c57605b75bf3d4131b
3,650,363
def gap2d_cx(cx): """Accumulates complexity of gap2d into cx = (h, w, flops, params, acts).""" cx["h"] = 1 cx["w"] = 1 return cx
28f6ba5f166f0b21674dfd507871743243fb4737
3,650,364
import requests def test_is_not_healthy(requests_mock): """ Test is not healthy response """ metadata = Gen3Metadata("https://example.com") def _mock_request(url, **kwargs): assert url.endswith("/_status") mocked_response = MagicMock(requests.Response) mocked_response.status_code = 500 mocked_response.text = "Not Healthy" mocked_response.json.return_value = {} mocked_response.raise_for_status.side_effect = HTTPError("uh oh") return mocked_response requests_mock.side_effect = _mock_request response = metadata.is_healthy() assert not response
9b6fdb7b822ef83e0441bdafa1c87ea07ad901ad
3,650,365
def kernelTrans(X, A, kTup): """ 通过核函数将数据转换更高维的空间 Parameters: X - 数据矩阵 A - 单个数据的向量 kTup - 包含核函数信息的元组 Returns: K - 计算的核K """ m,n = np.shape(X) K = np.mat(np.zeros((m,1))) if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。 elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算 for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = np.exp(K/(-1*kTup[1]**2)) #计算高斯核K else: raise NameError('核函数无法识别') return K #返回计算的核K
da43ab6aeff623b32d3287ad07acdc1ef5ec4bc3
3,650,366
def getBusEquipmentData(bhnd,paraCode): """ Retrieves the handle of all equipment of a given type (paraCode) that is attached to bus []. Args : bhnd : [bus handle] nParaCode : code data (BR_nHandle,GE_nBusHnd...) Returns: [][] = [len(bhnd)] [len(all equipment)] Raises: OlrxAPIException """ # get data res = [] vt = paraCode//100 val1 = setValType(vt,0) for bhnd1 in bhnd: r2 = [] while ( OLXAPI_OK == OlxAPI.GetBusEquipment( bhnd1, c_int(paraCode), byref(val1) ) ) : if vt==VT_STRING: r2.append((val1.value).decode("UTF-8")) else: r2.append(val1.value) res.append(r2) return res
6e0e63846c7b934edbe9de078c7ad8561766e58d
3,650,367
from typing import List from typing import Counter import click def build_and_register( client: "prefect.Client", flows: "List[FlowLike]", project_id: str, labels: List[str] = None, force: bool = False, ) -> Counter: """Build and register all flows. Args: - client (prefect.Client): the prefect client to use - flows (List[FlowLike]): the flows to register - project_id (str): the project id in which to register the flows - labels (List[str], optional): Any extra labels to set on all flows - force (bool, optional): If false (default), an idempotency key will be used to avoid unnecessary register calls. Returns: - Counter: stats about the number of successful, failed, and skipped flows. """ # Finish preparing flows to ensure a stable hash later prepare_flows(flows, labels) # Group flows by storage instance. storage_to_flows = defaultdict(list) for flow in flows: storage = flow.storage if isinstance(flow, prefect.Flow) else None storage_to_flows[storage].append(flow) # Register each flow, building storage as needed. # Stats on success/fail/skip rates are kept for later display stats = Counter(registered=0, errored=0, skipped=0) for storage, flows in storage_to_flows.items(): # Build storage if needed if storage is not None: click.echo(f" Building `{type(storage).__name__}` storage...") try: storage.build() except Exception as exc: click.secho(" Error building storage:", fg="red") log_exception(exc, indent=6) red_error = click.style("Error", fg="red") for flow in flows: click.echo(f" Registering {flow.name!r}... {red_error}") stats["errored"] += 1 continue for flow in flows: click.echo(f" Registering {flow.name!r}...", nl=False) try: if isinstance(flow, box.Box): serialized_flow = flow else: serialized_flow = flow.serialize(build=False) flow_id, flow_version, is_new = register_serialized_flow( client=client, serialized_flow=serialized_flow, project_id=project_id, force=force, ) except Exception as exc: click.secho(" Error", fg="red") log_exception(exc, indent=4) stats["errored"] += 1 else: if is_new: click.secho(" Done", fg="green") click.echo(f" └── ID: {flow_id}") click.echo(f" └── Version: {flow_version}") stats["registered"] += 1 else: click.secho(" Skipped", fg="yellow") stats["skipped"] += 1 return stats
7e4634578b44b7b5a1743fa0cfab21c6c551930b
3,650,368
def creer_element_xml(nom_elem,params): """ Créer un élément de la relation qui va donner un des attributs. Par exemple, pour ajouter le code FANTOIR pour une relation, il faut que le code XML soit <tag k='ref:FR:FANTOIR' v='9300500058T' />" Pour cela, il faut le nom de l'élément (ici tag) et un dictionnaire de paramètres nommé param qui associe chaque clé à une valeur (ici {'k':'ref:FR:FANTOIR', 'v'='9300500058T'} :param nom_elem: :type nom_elem: str :param params: :type params: dict :return: élément XML désiré :rtype: xml.etree.ElementTree.Element """ # Initialisation de l'objet XML elem = ET.Element(nom_elem) ajouter_atrributs_element_xml(elem, params) return elem
a4cd29b82531c7bc01864ae79de87643afeb8276
3,650,371
def get_display(): """Getter function for the display keys Returns: list: list of dictionary keys """ return data.keys()
dcc8957faf30db15282d2e67025cd6d5fd07e9dd
3,650,372
def calculate_class_probabilities(summaries, row) -> dict(): """ Calculate the probability of a value using the Gaussian Probability Density Function from inputs: summaries: prepared summaries of dataset row: a row in the dataset for predicting its label (a row of X_test) This function uses the statistics calculated from training data to calculate probabilities for the testing dataset (new data). Probabilities are calculated separately for each class. First, we calculate the probability that a new X vector from the testing dataset belongs to the first class. Then, we calculate the probabilities that it belongs to the second class, and so on for all the classes identified in the training dataset. The probability that a new X vector from the testing dataset belongs to a class is calculated as follows: P(class|data) = P(X|class) * P(class) Note we have simplified the Bayes theorem by removing the division as we do not strictly need a number between 0 and 1 to predict the class the new data belongs to as we will be simply taking the maximum result from the above equation for each class. It returns a dictionary where each key is the class label and the values are the probabibilities of that row belonging to each class on the dataset. """ # total number of training records calculated from the counts stored in the summary statistics # note that the count column has the same value for all rows, and hence picking up item [0] will suffice total_rows = sum([summaries[label]['count'][0] for label in summaries]) probabilities = dict() for class_value, class_summaries in summaries.items(): probabilities[class_value] = summaries[class_value]['count'][0]/float(total_rows) for i in range(len(class_summaries)-1): mean, stdev, _ = class_summaries.iloc[i] # probabilities are multiplied together as they accumulate. probabilities[class_value] *= calculate_probability(row[i], mean, stdev) # normalize probabilities so that they sum 1 max_prob = probabilities[max(probabilities, key=probabilities.get)] min_prob = probabilities[min(probabilities, key=probabilities.get)] for class_value, probability in probabilities.items(): if (max_val - min_val) > 0: probabilities[class_value] = (probability - min_val) / (max_val - min_val) else: probabilities[class_value] = float(0.0) sum_prob = sum(probabilities.values()) for class_value, probability in probabilities.items(): if sum_prob > 0: probabilities[class_value] = probability / sum_prob return probabilities
ffdff84e27fe5e76d66176d5d1c862f16b1ee494
3,650,373
from typing import Sequence from typing import Any def find(sequence: Sequence, target_element: Any) -> int: """Find the index of the first occurrence of target_element in sequence. Args: sequence: A sequence which to search through target_element: An element to search in the sequence Returns: The index of target_element's first occurrence, -1 if it was not found or the sequence is empty """ if not sequence: return -1 try: return sequence.index(target_element) except ValueError: return -1
20edfae45baafa218d8d7f37e0409e6f4868b75d
3,650,375
def read_time_data(fname, unit): """ Read time data (csv) from file and load into Numpy array """ data = np.loadtxt(fname, delimiter=',') t = data[:,0] x = data[:,1]*unit f = interp1d(t, x, kind='linear', bounds_error=False, fill_value=x[0]) return f
588c3bc472aa05eb0ead983405f22ecdf260687c
3,650,376
from pathlib import Path from typing import List from typing import Dict import json def read_nli_data(p: Path) -> List[Dict]: """Read dataset which has been converted to nli form""" with open(p) as f: data = json.load(f) return data
2218d8dc06e3b9adfe89cb780a9ef4e7cb111d14
3,650,378
def stanley_control(state, cx, cy, cyaw, last_target_idx): """ Stanley steering control. :param state: (State object) :param cx: ([float]) :param cy: ([float]) :param cyaw: ([float]) :param last_target_idx: (int) :return: (float, int) """ current_target_idx, error_front_axle = calc_target_index(state, cx, cy) if last_target_idx >= current_target_idx: current_target_idx = last_target_idx # theta_e corrects the heading error theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw) # theta_d corrects the cross track error theta_d = np.arctan2(k * error_front_axle, state.v) # Steering control delta = theta_e + theta_d return delta, current_target_idx
bef2d7d075a6ef637d1423d6c85cdde3ac4d9d70
3,650,379
def get_predictions(my_map, reviews, restaurants): """ Get the topic predictions for all restaurants. Parameters: my_map - the Map object representation of the current city reviews - a dictionary of reviews with restaurant ids for keys restaurants - a list of restaurants of the current city Returns: A tuple of a dictionary of restaurant ids to topic distributions and the lda model """ predictor = LDAPredictor() lda = predictor.lda restaurant_ids_to_topics = {} for restaurant in restaurants: business_id = restaurant["business_id"] review = reviews[business_id] prediction = predictor.predict_topics(review) restaurant_ids_to_topics[business_id] = make_topic_array_from_tuple_list(prediction, NUM_TOPICS) #topic array of weights for each topic index normalized_restaurant_ids_to_topics = normalize_predictions(restaurant_ids_to_topics, restaurants) return normalized_restaurant_ids_to_topics, lda
ef900b9d3526a12f64951e9d7b6f4eb80db9f6f4
3,650,380
def decode_token(token, secret_key): """ 解密websocket token :param token: :param secret_key: :return: """ info = jwt.decode(token, secret_key, algorithms=['HS256']) return info
5807ce3428435eb0c15dd464164627fb342e46d6
3,650,381
import requests def getPatternID(pattern_url): """asssumes pattern_url is a string, representing the URL of a ravelry pattern e.g.https://www.ravelry.com/patterns/library/velvet-cache-cou returns an int, the pattern ID """ permalink = pattern_url[41:] with requests.Session() as a_session: auth_name = "read-046277a3027f680ebe3fa030e755eb34" auth_pass = "O+mL0KzfjgQ1eLA7K8FO9s28QPvr6QuiL+pOvFHZ" a_session.auth = (auth_name, auth_pass) ravelry_adapter = HTTPAdapter(max_retries=3) a_session.mount('https://ravelry.com', ravelry_adapter) base_request = "https://api.ravelry.com/patterns/search.json?query=" pattern = a_session.get(base_request+permalink) if pattern.status_code != 200: raise RuntimeError("Ravelry not responding as expected.\ Please check your internet connection or try again later") pattern_id = pattern.json()['patterns'][0]['id'] return pattern_id
0624457bad8753a9d15f8339c381ec233a207098
3,650,382
def make_multibonacci_modulo(history_length, limit): """Creates a function that generates the Multibonacci sequence modulo n.""" def sequence_fn(seq): return np.sum(seq[-history_length:]) % limit return sequence_fn
358876a91fec23853bde843c7222cd837b45ada3
3,650,383
def _get_key(arguments): """ Determine the config key based on the arguments. :param arguments: A dictionary of arguments already processed through this file's docstring with docopt :return: The datastore path for the config key. """ # Get the base path. if arguments.get("felix"): base = CONFIG_PATH elif arguments.get("node"): base = BGP_HOST_PATH % {"hostname": hostname} else: base = BGP_GLOBAL_PATH # Determine the actual name of the field. Look this up from the config # data, otherwise just use the name. config_data = _get_config_data(arguments) name = arguments["<NAME>"] if name in config_data: name, _ = config_data[name] return base + name
b68dd68a013ed2289ae60ab49a347858ce447964
3,650,384
def prepare_data_from_stooq(df, to_prediction = False, return_days = 5): """ Prepares data for X, y format from pandas dataframe downloaded from stooq. Y is created as closing price in return_days - opening price Keyword arguments: df -- data frame contaning data from stooq return_days -- number of day frame in which to calculate y. """ if 'Wolumen' in df.columns: df = df.drop(['Data', 'Wolumen', 'LOP'], axis=1) else: df = df.drop('Data', axis = 1) y = df['Zamkniecie'].shift(-return_days) - df['Otwarcie'] if not to_prediction: df = df.iloc[:-return_days,:] y = y[:-return_days]/df['Otwarcie'] return df.values, y
4b5bc45529b70ed1e8517a1d91fb5a6c2ff0b504
3,650,385
def represents_int_above_0(s: str) -> bool: """Returns value evaluating if a string is an integer > 0. Args: s: A string to check if it wil be a float. Returns: True if it converts to float, False otherwise. """ try: val = int(s) if val > 0: return True else: return False except ValueError: return False
e39c4afeff8f29b86ef2a80be0af475223654449
3,650,386
def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet18-5c106cde.pth')) return model
89b71b447890e8986493abc90cca6e2ac2f0eca8
3,650,387
def sydney(): """Import most recent Sydney dataset""" d = { 'zip':'Sydney_geol_100k_shape', 'snap':-1, } return(d)
f79a5002ef548769096d3aeb1ad2c7d77ac5ce68
3,650,388
def format_non_date(value): """Return non-date value as string.""" return_value = None if value: return_value = value return return_value
9a7a13d7d28a14f5e92920cfef7146f9259315ec
3,650,390
def get_loss(loss_str): """Get loss type from config""" def _get_one_loss(cur_loss_str): if hasattr(keras_losses, cur_loss_str): loss_cls = getattr(keras_losses, cur_loss_str) elif hasattr(custom_losses, cur_loss_str): loss_cls = getattr(custom_losses, cur_loss_str) else: raise ValueError('%s is not a valid loss' % cur_loss_str) return loss_cls if not isinstance(loss_str, list): loss_cls = _get_one_loss(loss_str) return loss_cls else: loss_cls_list = [] for cur_loss in loss_str: loss_cls = _get_one_loss(cur_loss) loss_cls_list.append(loss_cls) return loss_cls_list
4c5714b7e8ca0becf43922a9624d9a4dccc4ac28
3,650,391
from functools import cmp_to_key def _hashable_policy(policy, policy_list): """ Takes a policy and returns a list, the contents of which are all hashable and sorted. Example input policy: {'Version': '2012-10-17', 'Statement': [{'Action': 's3:PutObjectAcl', 'Sid': 'AddCannedAcl2', 'Resource': 'arn:aws:s3:::test_policy/*', 'Effect': 'Allow', 'Principal': {'AWS': ['arn:aws:iam::XXXXXXXXXXXX:user/username1', 'arn:aws:iam::XXXXXXXXXXXX:user/username2']} }]} Returned value: [('Statement', ((('Action', (u's3:PutObjectAcl',)), ('Effect', (u'Allow',)), ('Principal', ('AWS', ((u'arn:aws:iam::XXXXXXXXXXXX:user/username1',), (u'arn:aws:iam::XXXXXXXXXXXX:user/username2',)))), ('Resource', (u'arn:aws:s3:::test_policy/*',)), ('Sid', (u'AddCannedAcl2',)))), ('Version', (u'2012-10-17',)))] """ # Amazon will automatically convert bool and int to strings for us if isinstance(policy, bool): return tuple([str(policy).lower()]) elif isinstance(policy, int): return tuple([str(policy)]) if isinstance(policy, list): for each in policy: tupleified = _hashable_policy(each, []) if isinstance(tupleified, list): tupleified = tuple(tupleified) policy_list.append(tupleified) elif isinstance(policy, string_types) or isinstance(policy, binary_type): policy = to_text(policy) # convert root account ARNs to just account IDs if policy.startswith('arn:aws:iam::') and policy.endswith(':root'): policy = policy.split(':')[4] return [policy] elif isinstance(policy, dict): sorted_keys = list(policy.keys()) sorted_keys.sort() for key in sorted_keys: element = policy[key] # Special case defined in # https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html if key in ["NotPrincipal", "Principal"] and policy[key] == "*": element = {"AWS": "*"} tupleified = _hashable_policy(element, []) if isinstance(tupleified, list): tupleified = tuple(tupleified) policy_list.append((key, tupleified)) # ensure we aren't returning deeply nested structures of length 1 if len(policy_list) == 1 and isinstance(policy_list[0], tuple): policy_list = policy_list[0] if isinstance(policy_list, list): policy_list.sort(key=cmp_to_key(_py3cmp)) return policy_list
beb5b527f38d7d1a9cecf81918a3291c0c9960ad
3,650,392
def LF_CD_NO_VERB(c): """ This label function is designed to fire if a given sentence doesn't contain a verb. Helps cut out some of the titles hidden in Pubtator abstracts """ if len([x for x in nltk.pos_tag(word_tokenize(c.get_parent().text)) if "VB" in x[1]]) == 0: if "correlates with" in c.get_parent().text: return 0 return -1 return 0
aa36b8a4cd00194fd1d786a7d3619ea46da0e1ab
3,650,393
from typing import Tuple def has_file_allowed_extension(filename: PATH_TYPE, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return str(filename).lower().endswith(extensions)
2f0d5698ecdb10533b303a637fdc03747ef8060c
3,650,394
def get_account_html(netid, timestamp=None): """ The Libraries object has a method for getting information about a user's library account """ return _get_resource(netid, timestamp=timestamp, style='html')
7c917f6778e42a1166d4a33819c2e51378933226
3,650,395
import functools import math def gcd_multiple(*args) -> int: """Return greatest common divisor of integers in args""" return functools.reduce(math.gcd, args)
c686b9495cd45ff047f091e31a79bedcd61f8842
3,650,396
from typing import Counter def chars_to_family(chars): """Takes a list of characters and constructs a family from them. So, A1B2 would be created from ['B', 'A', 'B'] for example.""" counter = Counter(chars) return "".join(sorted([char + str(n) for char, n in counter.items()]))
e78de779599f332045a98edde2aa0a0edc5a653b
3,650,397
import configparser def get_config_properties(config_file="config.properties", sections_to_fetch = None): """ Returns the list of properties as a dict of key/value pairs in the file config.properties. :param config_file: filename (string). :param section: name of section to fetch properties from (if specified); all sections are returned by default (iterable). :return: A flat (no sections) Python dictionary of properties. """ cf = configparser.ConfigParser() try: cf.read(config_file) except Exception as e: print("[ERROR] exception {} reading configurations from file {}".format(e, config_file)) properties = {} for section in cf.sections(): # only include args section if requested if (not sections_to_fetch or (section in sections_to_fetch)): for item in cf.items(section): properties[item[0]] = item[1] return properties
627d21327560595bb4c2905c98604926f03ca655
3,650,398
import base64 import secrets import time def process_speke(): """Processes an incoming request from MediaLive, which is using SPEKE A key is created and stored in DynamoDB.""" input_request = request.get_data() # Parse request tree = ET.fromstring(input_request) content_id = tree.get("id") kid = tree[0][0].get("kid") iv = tree[0][0].get("explicitIV") or "" keyPeriod = tree[2][0].get("id") index = tree[2][0].get("index") # Create key key = base64.b64encode(secrets.token_bytes(16)).decode("ascii") # Expire key tomorrow expiry = round(time.time()) + 24 * 60 * 60 # Create the pssh systems = [] for drmsystem in tree[1]: if drmsystem.get("systemId") == CLEARKEY_SYSTEM_ID: pssh = psshgen.genClearkeyPssh([kid]) systems.append( f"""<!-- ClearKey --> <cpix:DRMSystem kid="{kid}" systemId="{CLEARKEY_SYSTEM_ID}"> <cpix:PSSH>{pssh}</cpix:PSSH> </cpix:DRMSystem>""" ) # Save key info in dynamo dynamo.put_item( TableName=TABLE, Item={ "content_id": {"S": content_id}, "kid": {"S": kid}, "iv": {"S": iv}, "keyPeriod": {"S": keyPeriod}, "index": {"S": index}, "key": {"S": key}, "expiry": {"N": str(expiry)}, }, ) if iv: iv = f'explicitIV="{iv}"' # Craft response response = f"""<cpix:CPIX xmlns:cpix="urn:dashif:org:cpix" xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc" xmlns:speke="urn:aws:amazon:com:speke" id="{content_id}"> <cpix:ContentKeyList> <cpix:ContentKey {iv} kid="{kid}"> <cpix:Data> <pskc:Secret> <pskc:PlainValue>{key}</pskc:PlainValue> </pskc:Secret> </cpix:Data> </cpix:ContentKey> </cpix:ContentKeyList> <cpix:DRMSystemList> {''.join(systems)} </cpix:DRMSystemList> <cpix:ContentKeyPeriodList> <cpix:ContentKeyPeriod id="{keyPeriod}" index="{index}" /> </cpix:ContentKeyPeriodList> <cpix:ContentKeyUsageRuleList> <cpix:ContentKeyUsageRule kid="{kid}"> <cpix:KeyPeriodFilter periodId="{keyPeriod}" /> </cpix:ContentKeyUsageRule> </cpix:ContentKeyUsageRuleList> </cpix:CPIX>""" return response
3caa1c0390ea699feab2f138942b6773933fbada
3,650,399
from typing import Dict def merge(source: Dict, destination: Dict) -> Dict: """ Deep merge two dictionaries Parameters ---------- source: Dict[Any, Any] Dictionary to merge from destination: Dict[Any, Any] Dictionary to merge to Returns ------- Dict[Any, Any] New dictionary with fields in destination overwritten with values from source """ new_dict = {**destination} for key, value in source.items(): if isinstance(value, dict): # get node or create one node = new_dict.get(key, {}) new_dict[key] = merge(value, node) else: new_dict[key] = value return new_dict
4ffba933fe1ea939ecaa9f16452b74a4b3859f40
3,650,400
async def async_api_adjust_volume_step(hass, config, directive, context): """Process an adjust volume step request.""" # media_player volume up/down service does not support specifying steps # each component handles it differently e.g. via config. # For now we use the volumeSteps returned to figure out if we # should step up/down volume_step = directive.payload['volumeSteps'] entity = directive.entity data = { ATTR_ENTITY_ID: entity.entity_id, } if volume_step > 0: await hass.services.async_call( entity.domain, SERVICE_VOLUME_UP, data, blocking=False, context=context) elif volume_step < 0: await hass.services.async_call( entity.domain, SERVICE_VOLUME_DOWN, data, blocking=False, context=context) return directive.response()
85625118d4185842dd0398ec5dd0adbb951b5d67
3,650,401
import warnings import io def load_img(path, grayscale=False, color_mode='rgb', target_size=None, interpolation='nearest'): """Loads an image into PIL format. # Arguments path: Path to image file. grayscale: DEPRECATED use `color_mode="grayscale"`. color_mode: The desired image format. One of "grayscale", "rgb", "rgba". "grayscale" supports 8-bit images and 32-bit signed integer images. Default: "rgb". target_size: Either `None` (default to original size) or tuple of ints `(img_height, img_width)`. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported. If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also supported. Default: "nearest". # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if interpolation method is not supported. """ if grayscale is True: warnings.warn('grayscale is deprecated. Please use ' 'color_mode = "grayscale"') color_mode = 'grayscale' if pil_image is None: raise ImportError('Could not import PIL.Image. ' 'The use of `load_img` requires PIL.') with open(path, 'rb') as f: img = pil_image.open(io.BytesIO(f.read())) if color_mode == 'grayscale': # if image is not already an 8-bit, 16-bit or 32-bit grayscale image # convert it to an 8-bit grayscale image. if img.mode not in ('L', 'I;16', 'I'): img = img.convert('L') elif color_mode == 'rgba': if img.mode != 'RGBA': img = img.convert('RGBA') elif color_mode == 'rgb': if img.mode != 'RGB': img = img.convert('RGB') else: raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"') if target_size is not None: width_height_tuple = (target_size[1], target_size[0]) if img.size != width_height_tuple: if interpolation not in _PIL_INTERPOLATION_METHODS: raise ValueError( 'Invalid interpolation method {} specified. Supported ' 'methods are {}'.format( interpolation, ", ".join(_PIL_INTERPOLATION_METHODS.keys()))) resample = _PIL_INTERPOLATION_METHODS[interpolation] img = img.resize(width_height_tuple, resample) return img
61709400c2bd6379864f2399c2c04c29e0b61b92
3,650,403
import logging import platform def check_compatible_system_and_kernel_and_prepare_profile(args): """ Checks if we can do local profiling, that for now is only available via Linux based platforms and kernel versions >=4.9 Args: args: """ res = True logging.info("Enabled profilers: {}".format(args.profilers)) logging.info("Checking if system is capable of running those profilers") if "Linux" not in platform.system(): logging.error( "Platform needs to be Linux based. Current platform: {}".format( platform.system() ) ) res = False # check for release >= 4.9 release = platform.release() logging.info("Detected platform release: {}".format(release)) major_minor = release.split(".")[:2] system_kernel_major_v = major_minor[0] system_kernel_minor_v = major_minor[1] if float(system_kernel_major_v) < 4: logging.error( "kernel version needs to be >= 4.9. Detected version: {}".format(release) ) res = False if float(system_kernel_major_v) == 4 and float(system_kernel_minor_v) < 9: logging.error( "kernel version needs to be >= 4.9. Detected version: {}".format(release) ) res = False # a map between profiler name and profiler object wrapper res, profilers_map = get_profilers_map(args.profilers.split(",")) return res, profilers_map
35da3151109ef13c7966ede991b871dca45f4d0b
3,650,404
import logging import time import re def recv_bgpmon_updates(host, port, queue): """ Receive and parse the BGP update XML stream of bgpmon """ logging.info ("CALL recv_bgpmon_updates (%s:%d)", host, port) # open connection sock = _init_bgpmon_sock(host,port) data = "" stream = "" # receive data logging.info(" + receiving XML update stream ...") while(True): data = sock.recv(1024) if not data: sock.close() time.sleep(60) sock = _init_bgpmon_sock(host,port) continue stream += data stream = str.replace(stream, "<xml>", "") while (re.search('</BGP_MONITOR_MESSAGE>', stream)): messages = stream.split('</BGP_MONITOR_MESSAGE>') msg = messages[0] + '</BGP_MONITOR_MESSAGE>' stream = '</BGP_MONITOR_MESSAGE>'.join(messages[1:]) result = parse_bgp_message(msg) if result: queue.put(result) return True
6cf8e008b2b47437e80b863eab6f7c1fd4a54e18
3,650,407
import ast def is_string_expr(expr: ast.AST) -> bool: """Check that the expression is a string literal.""" return ( isinstance(expr, ast.Expr) and isinstance(expr.value, ast.Constant) and isinstance(expr.value.value, str) )
f61418b5671c5e11c1e90fce8d90c583659d40e3
3,650,408
import numba def events_to_img( xs: np.ndarray, ys: np.ndarray, tots: np.ndarray, cluster_ids: np.ndarray, x_img: np.ndarray, y_img: np.ndarray, minimum_event_num: int = 30, extinguish_dist: float = 1.41422, # sqrt(2) = 1.41421356237 ) -> np.ndarray: """ Converting given events into a flatten image array defined by given image pixel positions @param xs: event x position, must be float @param ys: event y position, must be float @param tots: event time of threshold (as intensity), must be float @param cluster_ids: ID labels @param x_img: pixel position of the target image (see np.meshgrid) @param y_img: pixel position of the target image (see np.meshgrid) @param minimum_event_num: minimum number of events needed to be included @param extinguish_dist: signal impact ends outside this range @returns: the image converted from given events using weighted centroid method """ # preparation unique_cids = np.unique(cluster_ids) img_shape = x_img.shape x_img = x_img.flatten() y_img = y_img.flatten() img = x_img * 0.0 for i in numba.prange(unique_cids.shape[0]): cid = unique_cids[i] idx = np.where(cluster_ids == cid)[0] # skip cluster with too few events if idx.shape[0] < minimum_event_num: continue # compute the centroid position and weighted equivalent intensity wgts = tots[idx] / np.sum(tots[idx]) xc = np.dot(wgts, xs[idx]) yc = np.dot(wgts, ys[idx]) # ic = np.dot(wgts, tots[idx]) # propogate the signal to the image idx = np.where( np.logical_and( np.logical_and( x_img >= xc - extinguish_dist, x_img < xc + extinguish_dist, ), np.logical_and( y_img >= yc - extinguish_dist, y_img < yc + extinguish_dist, ), ))[0] wgts = (x_img[idx] - xc)**2 + (y_img[idx] - yc)**2 wgts = 1.0 / wgts wgts = wgts / np.sum(wgts) img[idx] += wgts # return the results return img.reshape(img_shape)
ced70fc290157a4168c8e9ebd589263bbc410c6f
3,650,409
def generate_ar(n_series, n_samples, random_state=0): """Generate a linear auto-regressive series. This simple model is defined as:: X(t) = 0.4 * X(t - 1) - 0.6 * X(t - 4) + 0.5 * N(0, 1) The task is to predict the current value using all the previous values. Parameters ---------- n_series : int Number of time series to generate. n_samples : int Number of samples in each time series. random_state : int, default 0 Seed to use in the random generator. Returns ------- X, Y : ndarray, shape (n_series, 1, n_stamps, 1) Input and output sequences, `Y` is just delayed by 1 sample version of `X`. """ n_init = 4 n_discard = 20 X = np.zeros((n_series, n_init + n_discard + n_samples + 1)) rng = np.random.RandomState(random_state) X[:, n_init] = rng.randn(n_series) for i in range(n_init + 1, X.shape[1]): X[:, i] = (0.4 * X[:, i - 1] - 0.6 * X[:, i - 4] + 0.1 * rng.randn(n_series)) Y = X[:, n_init + n_discard + 1:, None] X = X[:, n_init + n_discard: -1, None] return X, Y
a02b2bb242ecc0eb6cf3d5d23d0982c56d81b617
3,650,411
import re def get_raw_code(file_path): """ Removes empty lines, leading and trailing whitespaces, single and multi line comments :param file_path: path to .java file :return: list with raw code """ raw_code = [] multi_line_comment = False with open(file_path, "r") as f: for row in f: # remove leading and trailing whitespaces line = row.strip() # remove '/* comments */' line = re.sub(r''' ^ # start of string /\* # "/*" string .* # any character (except line break) zero or more times \*/ # "*/" string \s* # zero or many whitespaces ''', '', line, 0, re.VERBOSE) # remove '//comments' line = re.sub(r''' ^ # start of string // # "//" string .* # any character (except line break) zero or more times $ # end of string ''', '', line, 0, re.VERBOSE) # ignore empty lines if line != '': # skip multi-line comments (/*) if re.search(r''' ^ # start of string /\* # "/*" string .* # any character (except line break) zero or more times ''', line, re.VERBOSE): multi_line_comment = True continue # check if multi-line comment was closed (*/) elif re.search(r''' .* # any character (except line break) zero or more times \*/ # "*/" string $ # end of string ''', line, re.VERBOSE): multi_line_comment = False line = re.sub(r''' .* # any character (except line break) zero or more times \*/ # "*/" string \s* # zero or many whitespaces ''', '', line, 0, re.VERBOSE) if line == '': continue # add line if it's not multi-line comment if not multi_line_comment: raw_code.append(line) return raw_code
6654a0423f024eaea3067c557984c3aa5e9494da
3,650,413
from typing import Pattern import re def _yaml_comment_regex() -> Pattern: """ From https://yaml-multiline.info/, it states that `#` cannot appear *after* a space or a newline, otherwise it will be a syntax error (for multiline strings that don't use a block scalar). This applies to single lines as well: for example, `a#b` will be treated as a single value, but `a #b` will only capture `a`, leaving `#b` as a comment. For lines that *do* use a block scalar, the YAML parser will throw a syntax error if there is additional text on the same line as the block scalar. Comments however, are fine. e.g. key: | # this is ok blah key: | but this is not blah Given that we've made it to this stage, we can assume the YAML file is syntactically correct. Therefore, if we add whitespace before the comment character, we can know that everything else *after* the comment character is a comment for a given line. """ return re.compile(r'(\s+#[\S ]*)')
3b5739f460c3d2c66f802dd46e061d2d07030525
3,650,415
def to_list(name: str) -> "Expr": """ Aggregate to list """ return col(name).list()
2265c14d13ef92bb5481dc2eee17915288cf95e8
3,650,416
import re def format_ipc_dimension(number: float, decimal_places: int = 2) -> str: """ Format a dimension (e.g. lead span or height) according to IPC rules. """ formatted = '{:.2f}'.format(number) stripped = re.sub(r'^0\.', '', formatted) return stripped.replace('.', '')
60001f99b5f107faba19c664f90ee2e9fb61fe68
3,650,417
def mean_test(data, muy0, alternative = 'equal', alpha = 0.95): """ This function is used to create a confidence interval of two.sided hypothesis Input: data (1D array): the sample of the whole column that you want to evaluate confidence (float) : confidence_level, must be in (0, 1) Output: the dictionary that contains the info of - Confidence_Interval (tupple) - T_statistics (float) - Two-sided p-value. """ # convert datapoint to float a = 1.0 * np.array(data) confidence = np.round(1 - alpha, 3) # Number of observations n = len(a) # Compute mean and standard_errors m, se = np.mean(a), stats.sem(a) # result of testing T_stat = ((m - muy0) / se)*np.sqrt(n) # compute the interval_radius if alternative in ['equal', "two.side"]: h = se * stats.t.ppf((1 + confidence) / 2., n-1) conf_itv = (float(m - h), float(m + h)) alt = "true mean (muy) is not equal to muy0 = {}".format(muy0) cnls = "true mean (muy) = muy0 = {}".format(muy0) p_val = 2*min(stats.t.cdf(T_stat, n-1), 1 - stats.t.cdf(T_stat, n-1)) elif alternative == 'greater': h = se * stats.t.ppf(1 - confidence, n-1) conf_itv = (float(m - h), '+inf') alt = "true mean (muy) > muy0 = {}".format(muy0) cnls = "true mean (muy) <= muy0 = {}".format(muy0) p_val = 1 - stats.t.cdf(T_stat, n-1) elif alternative == 'less': h = se * stats.t.ppf(1 - confidence, n-1) conf_itv = ('-inf', float(m + h)) alt = "true mean (muy) < muy0 = {}".format(muy0) cnls = "true mean (muy) >= muy0 = {}".format(muy0) p_val = stats.t.cdf(T_stat, n-1) # conclusion if p_val < alpha: kl = 'reject the hypothesis, {}'.format(alt) else: kl = 'can not reject the null hypothesis, so the {}'.format(cnls) # save all the output-results dic_data = pd.DataFrame( { 'alpha / confidence_level': [{'significance level':alpha, 'confidence_level': 1- alpha}], 'Confidence_Interval': [conf_itv], 'T_statistic': T_stat, 'sample_mean': m, 'alternative_hypothesis': alt, 'p_value': p_val, 'conclusion': "For confidence_level = {}%, we {}".format(100*confidence, kl) } ) return dic_data
9a798eeed1ba2debfe42dbb08ed33c8a1f463fd3
3,650,418
def __build_command(command, name, background=None, enable=None): """ Constuct args for systemctl command. Args: command: The systemctl command name: The unit name or name pattern background: True to have systemctl perform the command in the background enable: True to enable/disable, False to start/stop only, None for default. Returns: The name with type suffix """ args = ['--quiet'] if background: args.append('--no-block') if ((enable or name.startswith('appscale-')) and not enable==False and command in ('start', 'stop')): args.append('--now') args.append('--runtime') if command == 'start': args.append('enable') else: args.append('disable') else: args.append(command) args.append(__expand_name(name)) return args
5f47c19bb24d05b66d02c6d93ed1bf90144afb63
3,650,419
import requests def dockerFetchLatestVersion(image_name: str) -> list[str]: """ Fetches the latest version of a docker image from hub.docker.com :param image_name: image to search for :return: list of version suggestions for the image or 'not found' if error was returned """ base_url = "https://hub.docker.com/v2/repositories/library" request = f"{base_url}/{image_name}/tags" params = { "ordering": "last_updated", "name": "." } version_list = [] response = requests.get(request, params=params) if response.status_code == requests.codes.ok: json = response.json() version_list = list( map(lambda i: i["name"], json["results"]) )[:5] if len(version_list) == 0: version_list = [NOT_FOUND] else: del params["name"] response = requests.get(request, params=params) if response.status_code == requests.codes.ok: json = response.json() version_list += list( map(lambda i: i["name"], json["results"]) )[:5] return sorted(sorted(list(set(version_list)), reverse=True), key=lambda it: _isfloat(it), reverse=True)
5907dfe92b627c272132f97be9019d735aabd570
3,650,420
import torch import torchvision def _dataset( dataset_type: str, transform: str, train: bool = True ) -> torch.utils.data.Dataset: """ Dataset: mnist: MNIST cifar10: CIFAR-10 cifar100: CIFAR-100 Transform: default: the default transform for each data set simclr: the transform introduced in SimCLR """ try: transform = _get_transform(dataset_type, transform, train) except KeyError: raise DatasetNotIncludeError(f"Dataset {dataset_type} or transform {transform} is not included.\n" \ f"Refer to the following: {_dataset.__doc__}") if dataset_type == "mnist": dataset = torchvision.datasets.MNIST( root=ROOT, train=train, download=False, transform=transform ) elif dataset_type == "fashionmnist": dataset = torchvision.datasets.FashionMNIST( root=ROOT, train=train, download=False, transform=transform ) elif dataset_type == "cifar10": dataset = torchvision.datasets.CIFAR10( root=ROOT, train=train, download=False, transform=transform ) elif dataset_type == "cifar100": dataset = torchvision.datasets.CIFAR100( root=ROOT, train=train, download=False, transform=transform ) return dataset
cdfeefefede97db0a8d8ad6c3f4620855004062c
3,650,421
def inferCustomerClasses(param_file, evidence_dir, year): """ This function uses the variable elimination algorithm from libpgm to infer the customer class of each AnswerID, given the evidence presented in the socio-demographic survey responses. It returns a tuple of the dataframe with the probability distribution over all classes for each AnswerID and the BN object. """ bn = loadbn(param_file) evidence, a_id = readEvidence(year, evidence_dir) query = {"customer_class":''} cols = bn.Vdata.get('customer_class')['vals'] result = pd.DataFrame(columns=cols) #create empty dataframe in which to store inferred probabilities count = 0 #set counter for e in evidence: bn = loadbn(param_file) fn = TableCPDFactorization(bn) try: inf = fn.condprobve(query, e) classprobs = list(inf.vals) result.loc[count] = classprobs count += 1 except: result.loc[count] = [None] * len(cols) count += 1 result['AnswerID'] = a_id result.set_index(keys='AnswerID',inplace=True) return result
212906aacc2bc3d607e1589742591834953de14e
3,650,422
def MidiSegInfo(segment): """ Midi file info saved in config file for speed """ class segInfo: iMsPerTick = 0 bpm = 4 ppqn = 480 total_ticks = 0 iLengthInMs = 0 iTracks = 0 trackList = [] ver = "1.5" ret = segInfo() savedVer = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Ver") savedDateTime = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "DateTime") dateTime = FileDateTime(segment.filename) if ver != savedVer or dateTime != savedDateTime: mi = GetMidiInfo(segment.filename) if mi.err == 0: IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Ver", ver) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "DateTime", str(dateTime)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "PPQN", str(mi.ppqn)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "BPM", str(mi.beats_per_measure)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "totalTicks", str(mi.totalTicks)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "maxTracks", str(mi.maxTracks)) iLengthInMs = GetMidiFileLength(segment.filename) * 1000 IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "LengthInMs", str(iLengthInMs)) if iLengthInMs > 0: IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "MsPerTick", str(iLengthInMs / mi.totalTicks)) #have to write out the tracklist in format that can be saved in INI file tl = [] for track in mi.trackList: tl.append((track.track, track.channel, track.name)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Tracks", tl) trackList = [] tl = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Tracks", 'list', []) for t in tl: trackList.append(trackGrid(t[0], t[1], t[2],False)) iTracks = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "maxTracks", 'int', 0) iMsPerTick = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "MsPerTick", 'float', 0) bpm = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "BPM", 'int', 0) ppqn = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "PPQN", 'int', 480) if iMsPerTick == 0 or bpm == 0 or ppqn == 0: return ret tb = TimeBase(ppqn, bpm) total_ticks = tb.ConvertStrTimeToTicks(segment.length) if total_ticks == 0: total_ticks = tb.MbtDifference(tb.ConvertStrTimeToTuple(segment.start), tb.ConvertStrTimeToTuple(segment.end)) if total_ticks == 0: return ret ret.iTracks = iTracks ret.iMsPerTick = iMsPerTick ret.bpm = bpm ret.ppqn = ppqn ret.total_ticks = total_ticks ret.iLengthInMs = total_ticks * iMsPerTick ret.trackList = trackList return ret
7d48b699ed52239cf08e57b217f5dd62f3c64a84
3,650,423
def num_in_row(board, row, num): """True if num is already in the row, False otherwise""" return num in board[row]
ca9ab9de4514740e25e0c55f3613d03b2844cdb8
3,650,424
import urllib def load_mnist(dataset="mnist.pkl.gz"): """ dataset: string, the path to dataset (MNIST) """ data_dir, data_file = os.path.split(dataset) # download MNIST if not found if not os.path.isfile(dataset): origin = ( 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' ) print 'Downloading MNIST from %s' % origin assert urllib.urlretrieve(origin, dataset) print "Loading Data ..." with gzip.open(dataset, 'rb') as handle: train_set, valid_set, test_set = cPickle.load(handle) rval = [(train_set[0],to_categorical(train_set[1])), (valid_set[0],to_categorical(valid_set[1])), (test_set[0], to_categorical(test_set[1]))] #train_X, train_y = shared_data(train_set[0]),shared_data_int32(to_categorical(train_set[1])) #valid_X, valid_y = shared_data(valid_set[0]),shared_data_int32(to_categorical(valid_set[1])) #test_X, test_y = shared_data(test_set[0]),shared_data_int32(to_categorical(test_set[1])) # #rval = [(train_X, train_y), (valid_X, valid_y), (test_X, test_y)] return rval
2e499431bed7a8c1c775b04d6272153564d9c99f
3,650,425
def factorial_3(n, acc=1): """ Replace all recursive tail calls f(x=x1, y=y1, ...) with (x, y, ...) = (x1, y1, ...); continue """ while True: if n < 2: return 1 * acc (n, acc) = (n - 1, acc * n) continue break
e067cf4564056bf488e56fe58bbd5b998b0175f3
3,650,427
def autocorr(x, axis=0, fast=False): """ Estimate the autocorrelation function of a time series using the FFT. :param x: The time series. If multidimensional, set the time axis using the ``axis`` keyword argument and the function will be computed for every other axis. :param axis: (optional) The time axis of ``x``. Assumed to be the first axis if not specified. :param fast: (optional) If ``True``, only use the largest ``2^n`` entries for efficiency. (default: False) """ x = np.atleast_1d(x) m = [slice(None), ] * len(x.shape) # For computational efficiency, crop the chain to the largest power of # two if requested. if fast: n = int(2**np.floor(np.log2(x.shape[axis]))) m[axis] = slice(0, n) x = x else: n = x.shape[axis] # Compute the FFT and then (from that) the auto-correlation function. f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis) m[axis] = slice(0, n) acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real m[axis] = 0 return acf / acf[m]
e2e4105bd0a4aed3431af6acf4f3669bb3340825
3,650,428
import re import dateutil def parse_date(filename_html): """Parse a file, and return the date associated with it. filename_html -- Name of file to parse. """ match = re.search(r"\d{4}-\d{2}-\d{2}", filename_html) if not match: return None match_date = match.group() file_date = dateutil.parser.parse(match_date).date() return file_date
2ee45c3f70b75fc2d26b9c00861dbb1e7586d4af
3,650,429
def mod(a1, a2): """ Function to give the remainder """ return a1 % a2
f5c03a952aed373e43933bafe37dbc75e796b74d
3,650,431
def select_theme_dirs(): """ Load theme templates, if applicable """ if settings.THEME_DIR: return ["themes/" + settings.THEME_DIR + "/templates", "templates"] else: return ["templates"]
df74bc751f701be63276b5481ac222e64ba914e7
3,650,432
def encode_string(s): """ Simple utility function to make sure a string is proper to be used in a SQL query EXAMPLE: That's my boy! -> N'That''s my boy!' """ res = "N'"+s.replace("'","''")+"'" res = res.replace("\\''","''") res = res.replace("\''","''") return res
814822b9aa15def24f98b2b280ab899a3f7ea617
3,650,433
def email_manage(request, email_pk, action): """Set the requested email address as the primary. Can only be requested by the owner of the email address.""" email_address = get_object_or_404(EmailAddress, pk=email_pk) if not email_address.user == request.user and not request.user.is_staff: messages.error(request, "You are not authorized to manage this email address") # if not email_address.is_verified(): # messages.error(request, "Email '%s' needs to be verified first." % email_address.email) if action == "set_primary": email_address.set_primary() messages.success(request, "'%s' is now marked as your primary email address." % email_address.email) elif action == "delete": email_address.delete() messages.success(request, "'%s' has been removed." % email_address.email) if 'HTTP_REFERER' in request.META: return redirect(request.META['HTTP_REFERER']) else: return redirect(reverse('member:profile:view', kwargs={'username': email_address.user.username}))
7a533fe34fdc13b737025c01bb0bb15dcbeae0f2
3,650,434
def get_container_service_api_version(): """Get zun-api-version with format: 'container X.Y'""" return 'container ' + CONTAINER_SERVICE_MICROVERSION
c6f83640b50132e24ce96889688afcda49ba6b1c
3,650,435
from django.utils.cache import get_cache_key from django.core.cache import cache def invalidate_view_cache(view_name, args=[], namespace=None, key_prefix=None): """ This function allows you to invalidate any view-level cache. view_name: view function you wish to invalidate or it's named url pattern args: any arguments passed to the view function namepace: if an application namespace is used, pass that key prefix: for the @cache_page decorator for the function (if any) """ # create a fake request object request = HttpRequest() # Loookup the request path: if namespace: view_name = namespace + ":" + view_name request.path = reverse(view_name, args=args) # get cache key, expire if the cached item exists: key = get_cache_key(request, key_prefix=key_prefix) if key: if cache.get(key): cache.set(key, None, 0) return True return False
2622e6ee48cb7565014660858104edba5b20b9eb
3,650,437
def compute_ray_features_segm_2d(seg_binary, position, angle_step=5., smooth_coef=0, edge='up'): """ compute ray features vector , shift them to be starting from larges and smooth_coef them by gauss filter (from given point the close distance to boundary) :param ndarray seg_binary: np.array<height, width> :param tuple(int,int) position: integer position in the segmentation :param float angle_step: angular step for ray features :param str edge: pointing to the up of down edge of an boundary :param int smooth_coef: smoothing the final ray features :return list(float): ray distances .. seealso:: :func:`imsegm.descriptors.compute_ray_features_segm_2d_vectors` .. note:: for more examples, see unittests >>> seg_empty = np.zeros((100, 150), dtype=bool) >>> compute_ray_features_segm_2d(seg_empty, (50, 75), 90) # doctest: +ELLIPSIS array([-1., -1., -1., -1.]...) >>> from skimage import draw >>> seg = np.ones((100, 150), dtype=bool) >>> x, y = draw.circle(50, 75, 40, shape=seg.shape) >>> seg[x, y] = False >>> np.round(compute_ray_features_segm_2d(seg, (50, 75), 45)) # doctest: +ELLIPSIS array([ 40., 41., 40., 41., 40., 41., 40., 41.]...) >>> np.round(compute_ray_features_segm_2d(seg, (60, 40), 30, smooth_coef=1)).tolist() [66.0, 52.0, 32.0, 16.0, 8.0, 5.0, 5.0, 8.0, 16.0, 33.0, 53.0, 67.0] >>> ray_fts = compute_ray_features_segm_2d(seg, (40, 60), 20) >>> np.round(ray_fts).tolist() # doctest: +NORMALIZE_WHITESPACE [54.0, 57.0, 59.0, 55.0, 51.0, 44.0, 38.0, 31.0, 27.0, 24.0, 22.0, 22.0, 23.0, 26.0, 29.0, 35.0, 42.0, 49.0] """ assert seg_binary.ndim == len(position), \ 'Segmentation dim of %r and position (%i) does not match' \ % (seg_binary.ndim, len(position)) seg_binary = seg_binary.astype(bool) position = tuple(map(int, position)) fn_compute = cython_ray_features_seg2d if USE_CYTHON else numpy_ray_features_seg2d ray_dist = fn_compute(seg_binary, position, angle_step, edge) if smooth_coef is not None and smooth_coef > 0: ray_dist = gaussian_filter1d(ray_dist, smooth_coef) return ray_dist
18b830fe6ac83cf7282be39d368ad7c1261a890c
3,650,438
def visualize_bbox(img, bbox, class_name, color=(255, 0, 0) , thickness=2): """Visualizes a single bounding box on the image""" BOX_COLOR = (255, 0, 0) # Red TEXT_COLOR = (255, 255, 255) # White x_min, y_min, x_max, y_max = bbox cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness) ((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.35, 1) cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1) cv2.putText( img, text=class_name, org=(x_min, y_min - int(0.3 * text_height)), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.35, color=TEXT_COLOR, lineType=cv2.LINE_AA, ) return img
147335c2e87b57f0bd0ba0840e9dae9f713b513f
3,650,439
import json def mock_light(): """Mock UniFi Protect Camera device.""" data = json.loads(load_fixture("sample_light.json", integration=DOMAIN)) return Light.from_unifi_dict(**data)
ba83ae80ddb39ec9f9b6f30b77eabee39f998b39
3,650,440
def randomize_bulge_i(N, M, bp='G', target='none', ligand='theo'): """ Replace the upper stem with the aptamer and randomize the bulge to connect it to the lower stem. This is a variant of the rb library with two small differences. First, the nucleotides flanking the aptamer are not randomized and are instead guaranteed to base pair. The default base pair is GC. However, note that to be consistent with rb, this base pair is considered part of the linker, and is included in the N and M arguments. So rbi/4/8 only randomizes 10 positions. Second, the library is based off the Dang scaffold. Most extended upper stem is replaced with the aptamer, but the CG base pair in the lower stem remains. Parameters ---------- N: int The length of the linker on the 5' side of the aptamer. This length includes a non-randomized base pair immediately adjacent to the aptamer. M: int The length of the linker on the 3' side of the aptamer. This length includes a non-randomized base pair immediately adjacent to the aptamer. bp: 'ACGU' Not implemented, but this would be a good interface for changing the static base pair. Right now to base pair is hard-coded to be GC. """ sgrna = on(target=target) sgrna['bulge/5'].attachment_sites = 0, sgrna['bulge/3'].attachment_sites = 4, sgrna.attach( random_insert(ligand, N, M, flags='g'), 'bulge/5', 0, 'bulge/3', 4, ) return sgrna
aff8aa9e6ba276bb9d867f24c58c44e0e3c849f6
3,650,441
import logging def parse_identifier(db, identifier): """Parse the identifier and return an Identifier object representing it. :param db: Database session :type db: sqlalchemy.orm.session.Session :param identifier: String containing the identifier :type identifier: str :return: Identifier object :rtype: Optional[core.model.identifier.Identifier] """ parsed_identifier = None try: result = Identifier.parse_urn(db, identifier) if result is not None: parsed_identifier, _ = result except Exception: logging.error( f"An unexpected exception occurred during parsing identifier {identifier}" ) return parsed_identifier
390fc8d44014d2cdb17fc641dab9914ba13bc95e
3,650,443
import textwrap def wrap_name(dirname, figsize): """Wrap name to fit in subfig.""" fontsize = plt.rcParams["font.size"] # 1/120 = inches/(fontsize*character) num_chars = int(figsize / fontsize * 72) return textwrap.fill(dirname, num_chars)
7fb7430a01781c7c53637ae4a94c72c057faddab
3,650,444
def resolve_shape(tensor, rank=None, scope=None): """Fully resolves the shape of a Tensor. Use as much as possible the shape components already known during graph creation and resolve the remaining ones during runtime. Args: tensor: Input tensor whose shape we query. rank: The rank of the tensor, provided that we know it. scope: Optional name scope. Returns: shape: The full shape of the tensor. """ with tf.name_scope(scope, 'resolve_shape', [tensor]): if rank is not None: shape = tensor.get_shape().with_rank(rank).as_list() else: shape = tensor.get_shape().as_list() if None in shape: shape_dynamic = tf.shape(tensor) for i in range(len(shape)): if shape[i] is None: shape[i] = shape_dynamic[i] return shape
cc1c3a0bd2b5a35580dd94b6c45a2a36cc151e5a
3,650,445
def gradient_clip(gradients, max_gradient_norm): """Clipping gradients of a model.""" clipped_gradients, gradient_norm = tf.clip_by_global_norm( gradients, max_gradient_norm) gradient_norm_summary = [tf.summary.scalar("grad_norm", gradient_norm)] gradient_norm_summary.append( tf.summary.scalar("clipped_gradient", tf.global_norm(clipped_gradients))) return clipped_gradients, gradient_norm_summary
416f9560ad612ab364cd03de39851a559012d26b
3,650,446
def list_species(category_id): """ List all the species for the specified category :return: A list of Species instances """ with Session.begin() as session: species = session.query(Species)\ .filter(Species.categoryId == category_id)\ .order_by(db.asc(Species.name))\ .all() return species
c49283fdde11456ffc6e4eff4b5043d547fa9908
3,650,448