content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def asses_completeness(language_code: str, sw: ServiceWorker = Depends(get_sw)): """ make a completion test for language: check fe,be, domains and entries @param language_code: @param sw: @return: """ if language_code not in sw.messages.get_added_languages(): raise ApplicationException(HTTP_404_NOT_FOUND, "Language not yet added") return sw.translation.asses_completion(language_code)
9de6a9130ec34e47782679ac63d80707de5b98ce
3,650,574
def create_intrinsic_node_class(cls): """ Create dynamic sub class """ class intrinsic_class(cls): """Node class created based on the input class""" def is_valid(self): raise TemplateAttributeError('intrisnic class shouldn\'t be directly used') intrinsic_class.__name__ = '%s_intrinsic' % cls.__name__ return intrinsic_class
ddcb0ba5f36981288fd9748f1f533f02f1eb1604
3,650,575
def segment_fish(image): """Attempts to segment the clown fish out of the provided image.""" hsv_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) light_orange = (1, 190, 200) dark_orange = (18, 255, 255) mask = cv2.inRange(hsv_image, light_orange, dark_orange) light_white = (0, 0, 200) dark_white = (145, 60, 255) mask_white = cv2.inRange(hsv_image, light_white, dark_white) final_mask = mask + mask_white result = cv2.bitwise_and(image, image, mask=final_mask) result = cv2.GaussianBlur(result, (7, 7), 0) return result
c9ee166f12e9c344143f677939a82dd1a00a5fb5
3,650,577
def enable_faster_encoder(self, need_build=True, use_fp16=False): """ Compiles fusion encoder operator intergrated FasterTransformer using the method of JIT(Just-In-Time) and replaces the `forward` function of `paddle.nn.TransformerEncoder` and `paddle.nn.TransformerEncoderLayer` objects inherited from `self` to support inference using FasterTransformer. Examples: .. code-block:: python from paddlenlp.ops import enable_faster_encoder, disable_faster_encoder model.eval() model = enable_faster_encoder(model) enc_out = model(src, src_mask) model = disable_faster_encoder(model) """ def init_func(layer): if isinstance(layer, TransformerEncoderLayer): is_usable = True if layer._config['bias_attr'] == False: logger.warning("`False` for paddle.nn.TransformerEncoder's" \ " parameter `bias_attr` is not supported in " \ "FasterTransformer by now. The original forward" \ " will be involved.") is_usable = False if layer._config['activation'] not in ('relu', 'gelu'): logger.warning("Only 'relu' or 'gelu' is supported by now. " \ "The original forward will be involved.") is_usable = False if is_usable: layer.forward = layer._ft_forward elif isinstance(layer, TransformerEncoder): layer.forward = layer._ft_forward if use_fp16: convert_to_fp16(layer) if not self.training: if need_build: try: load("FasterTransformer", verbose=True) except Exception: logger.warning( "Exception occurs when using FasterTransformer. " \ "The original forward will be involved. ") return self for layer in self.children(): layer.apply(init_func) return self
4da1f669cefd291df4bc790dfc68fcbe5ce93f86
3,650,579
def func(*x): """ Compute the function to minimise. Vector reshaped for more readability. """ res = 0 x = np.array(x) x = x.reshape((n, 2)) for i in range(n): for j in range(i+1, n): (x1, y1), (x2, y2) = x[i, :], x[j, :] delta = (x2 - x1)**2 + (y2 - y1)**2 - distances[i, j]**2 res += delta**2 return res
775d4330ca77e04662f1920dd2160631deb30430
3,650,580
import torch def transform_target(target, classes=None): """ Accepts target value either single dimensional torch.Tensor or (int, float) :param target: :param classes: :return: """ if isinstance(target, torch.Tensor): if target.ndim == 1: target = target.item() if target.shape[0] == 1 else target if target.ndim == 0 and classes is None: return round(target.item(), 2) if target.shape[0] == 1 and type(classes) in (list, tuple) and classes: return classes[target] # Multi-label if target.shape[0] > 1 and type(classes) in (list, tuple) and classes: return ",".join([classes[index] for index, value in enumerate(target) if value]) elif isinstance(target, int) and classes: target = classes[target] return target
5e1423b4beac4385fa4f328bfdfeed2859c28f7b
3,650,581
from typing import List from typing import Tuple def merge_all_regions(out_path: str, id_regions: List[Tuple[int, File]]) -> Tuple[int, int, File]: """ Recursively merge a list of region files. """ if len(id_regions) == 1: # Base case 1. [(sample_id, region_file)] = id_regions return (sample_id, sample_id, region_file) elif len(id_regions) == 2: # Base case 2. [(sample1_id, region1_file), (sample2_id, region2_file)] = id_regions else: # Recursive case. k = find_midpoint(len(id_regions)) sample1_id, _, region1_file = merge_all_regions(out_path, id_regions[:k]) _, sample2_id, region2_file = merge_all_regions(out_path, id_regions[k:]) return ( sample1_id, sample2_id, merge_regions(out_path, sample1_id, region1_file, sample2_id, region2_file), )
d9ebbdfec49b6e5702e4c16476a20440185e39ef
3,650,582
def check_for_collision(sprite1: arcade.Sprite, sprite2: arcade.Sprite) -> bool: """Check for collision between two sprites. Used instead of Arcade's default implementation as we need a hack to return False if there is just a one pixel overlap, if it's not multiplayer... """ allowed_overlap = 0 if isinstance(sprite1, player.Player): if isinstance(sprite1.game, game.Game): allowed_overlap = 1 x_collision = ( sprite1.right - allowed_overlap > sprite2.left + allowed_overlap and sprite1.left + allowed_overlap < sprite2.right - allowed_overlap ) if not x_collision: return False return ( sprite1.top - allowed_overlap > sprite2.bottom + allowed_overlap and sprite1.bottom + allowed_overlap < sprite2.top - allowed_overlap )
679de76d880c2e2e9ac34e0d87cc5cdd0211daa9
3,650,584
def modify_color(hsbk, **kwargs): """ Helper function to make new colors from an existing color by modifying it. :param hsbk: The base color :param hue: The new Hue value (optional) :param saturation: The new Saturation value (optional) :param brightness: The new Brightness value (optional) :param kelvin: The new Kelvin value (optional) """ return hsbk._replace(**kwargs)
ecc5118873aaf0e4f63bad512ea61d2eae0f7ead
3,650,585
def train_val_test_split(df, train_p=0.8, val_p=0.1, state=1, shuffle=True): """Wrapper to split data into train, validation, and test sets. Parameters ----------- df: pd.DataFrame, np.ndarray Dataframe containing features (X) and labels (y). train_p: float Percent of data to assign to train set. val_p: float Percent of data to assign to validation set. state: int or None Int will make the split repeatable. None will give a different random split each time. shuffle: bool If True, randomly shuffle the data before splitting. """ test_p = 1 - val_p / (1 - train_p) train, val = train_test_split(df, train_size=train_p, shuffle=shuffle, random_state=state) test = None if not np.isclose(test_p, 0): val, test = train_test_split(val, test_size=test_p, random_state=state) return train, val, test
67b50b172f94ee65981ab124f03e192c7631c49c
3,650,586
def add_logs_to_table_heads(max_logs): """Adds log headers to table data depending on the maximum number of logs from trees within the stand""" master = [] for i in range(2, max_logs + 1): for name in ['Length', 'Grade', 'Defect']: master.append(f'Log {i} {name}') if i < max_logs: master.append('Between Logs Feet') return master
5db494650901bfbb114135da9596b9b453d47568
3,650,587
def stations_at_risk(stations, level): """Returns a list of tuples, (station, risk_level) for all stations with risk above level""" level = risk_level(level) stations = [(i, station_flood_risk(i)) for i in stations] return [i for i in stations if risk_level(i[1]) >= level]
c18ef9af1ac02633f2daed9b88dfe6d72e83481a
3,650,588
def unproxy(proxy): """Return a new copy of the original function of method behind a proxy. The result behaves like the original function in that calling it does not trigger compilation nor execution of any compiled code.""" if isinstance(proxy, types.FunctionType): return _psyco.unproxycode(proxy.func_code) if isinstance(proxy, types.MethodType): f = unproxy(proxy.im_func) return new.instancemethod(f, proxy.im_self, proxy.im_class) raise TypeError, "%s objects cannot be proxies" % type(proxy).__name__
7fad2339a8e012fd95117b73b79a371d4488e439
3,650,590
from typing import Optional def get_measured_attribute(data_model, metric_type: str, source_type: str) -> Optional[str]: """Return the attribute of the entities of a source that are measured in the context of a metric. For example, when using Jira as source for user story points, the points of user stories (the source entities) are summed to arrive at the total number of user story points. """ attribute = ( data_model["sources"].get(source_type, {}).get("entities", {}).get(metric_type, {}).get("measured_attribute") ) return str(attribute) if attribute else attribute
f15379e528b135ca5d9d36f50f06cb95a145b477
3,650,591
def getIntArg(arg, optional=False): """ Similar to "getArg" but return the integer value of the arg. Args: arg (str): arg to get optional (bool): argument to get Returns: int: arg value """ return(int(getArg(arg, optional)))
a30e39b5a90bd6df996bdd8a43faf787aed7128f
3,650,593
from typing import Iterable def get_in_with_default(keys: Iterable, default): """`get_in` function, returning `default` if a key is not there. >>> get_in_with_default(["a", "b", 1], 0)({"a": {"b": [0, 1, 2]}}) 1 >>> get_in_with_default(["a", "c", 1], 0)({"a": {"b": [0, 1, 2]}}) 0 """ getter = get_in(keys) def get_in_with_default(x): try: return getter(x) except (KeyError, IndexError, TypeError): return default return get_in_with_default
dbb5a9753bad224245ffea884e33802930bb8ded
3,650,594
def conv_HSV2BGR(hsv_img): """HSV画像をBGR画像に変換します。 Arguments: hsv_img {numpy.ndarray} -- HSV画像(3ch) Returns: numpy.ndarray -- BGR画像(3ch) """ V = hsv_img[:, :, 2] C = hsv_img[:, :, 1] H_p = hsv_img[:, :, 0] / 60 X = C * (1 - np.abs(H_p % 2 - 1)) Z = np.zeros_like(C) vals = [[Z, X, C], [Z, C, X], [X, C, Z], [C, X, Z], [C, Z, X], [X, Z, C]] bgr_img = np.zeros_like(hsv_img) for i in range(6): idx = (i <= H_p) * (H_p < (i + 1)) bgr_img[:, :, 0][idx] = (V - C)[idx] + vals[i][0][idx] bgr_img[:, :, 1][idx] = (V - C)[idx] + vals[i][1][idx] bgr_img[:, :, 2][idx] = (V - C)[idx] + vals[i][2][idx] return (bgr_img * 255).astype(np.uint8)
f748c88e9f4b2a3da2ee7d7703b0d3c9615e564b
3,650,595
import torch def remap(tensor, map_x, map_y, align_corners=False): """ Applies a generic geometrical transformation to a tensor. """ if not tensor.shape[-2:] == map_x.shape[-2:] == map_y.shape[-2:]: raise ValueError("Inputs last two dimensions must match.") batch_size, _, height, width = tensor.shape # grid_sample need the grid between -1/1 map_xy = torch.stack([map_x, map_y], dim=-1) map_xy_norm = normalize_pixel_coordinates(map_xy, height, width) # simulate broadcasting since grid_sample does not support it map_xy_norm = map_xy_norm.expand(batch_size, -1, -1, -1) # warp ans return tensor_warped = F.grid_sample(tensor, map_xy_norm, align_corners=align_corners) return tensor_warped
ff88d66b6692548979e45d2a00f6905e2d973c2a
3,650,596
def AutoRegression(df_input, target_column, time_column, epochs_to_forecast=1, epochs_to_test=1, hyper_params_ar={}): """ This function performs regression using feature augmentation and then training XGB with Crossvalidation. Parameters: - df_input (pandas.DataFrame): Input Time Series. - target_column (str): name of the column containing the target feature - time_column (str): name of the column containing the pandas Timestamps - frequency_data (str): string representing the time frequency of record, e.g. "h" (hours), "D" (days), "M" (months) - epochs_to_forecast (int): number of steps for predicting future data - epochs_to_test (int): number of steps corresponding to most recent records to test on - hyper_params_ar: Parameters of AR model Returns: - df_output (pandas.DataFrame): Output DataFrame with forecast """ # create and evaluate an updated autoregressive model # load dataset input_series = df_input[:-(epochs_to_forecast+epochs_to_test)].set_index(time_column, 1)[target_column] # split dataset model = ar_select_order(input_series, **hyper_params_ar) for hyp_param in ["maxlag","glob","ic"]: if hyp_param in hyper_params_ar.keys(): del hyper_params_ar[hyp_param] model = AutoReg(input_series, lags=model.ar_lags, **hyper_params_ar) res = model.fit() print(res.summary()) #start_idx = df_input[:-(epochs_to_forecast+epochs_to_test)][time_column].max() start_idx = df_input[-(epochs_to_forecast+epochs_to_test):][time_column].min() end_idx = df_input[-(epochs_to_forecast+epochs_to_test):][time_column].max() # ============================================================================= # ### for statsmodels< 0.12.0 # #forecast_steps = model.predict(res.params, start=start_idx, end=end_idx, dynamic=True) # forecast = df_input[target_column] * np.nan # forecast[-(epochs_to_forecast+epochs_to_test):] = forecast_steps # df_output = df_input.copy() # df_output["forecast"] = forecast # df_output["forecast_up"] = forecast * 1.1 # df_output["forecast_low"] = forecast * 0.9 # ============================================================================= ### for statsmodels>= 0.12.0 forecast_steps = res.get_prediction(start=start_idx, end=end_idx) forecast_steps_mean = forecast_steps.predicted_mean forecast_steps_low = forecast_steps.conf_int()["lower"] forecast_steps_up = forecast_steps.conf_int()["upper"] forecast = df_input[target_column] * np.nan forecast_low = df_input[target_column] * np.nan forecast_up = df_input[target_column] * np.nan forecast[-(epochs_to_forecast+epochs_to_test):] = forecast_steps_mean forecast_low[-(epochs_to_forecast+epochs_to_test):] = forecast_steps_low forecast_up[-(epochs_to_forecast+epochs_to_test):] = forecast_steps_up df_output = df_input.copy() df_output["forecast"] = forecast df_output["forecast_low"] = forecast_low df_output["forecast_up"] = forecast_up return df_output
704daf914897b7a43971b22d721ec0f1bb919d3e
3,650,597
def VMACD(prices, timeperiod1=12, timeperiod2=26, timeperiod3=9): """ 39. VMACD量指数平滑异同移动平均线 (Vol Moving Average Convergence and Divergence,VMACD) 说明: 量平滑异同移动平均线(VMACD)用于衡量量能的发展趋势,属于量能引趋向指标。 MACD称为指数平滑异同平均线。分析的数学公式都是一样的,只是分析的物理量不同。 VMACD对成交量VOL进行分析计算,而MACD对收盘价CLOSE进行分析计算。 计算方法: SHORT=EMA(VOL,N1) LONG=EMA(VOL,N2) DIFF=SHORT-LONG DEA=EMA(DIFF,M) VMACD=DIFF-DEA 通常N1=12,N2=26,M=9 :param prices: :param timeperiod1: N1 :param timeperiod2: N2 :param timeperiod3: N3 :return: """ assert prices is not None timeperiod = max(timeperiod1, timeperiod2, timeperiod3) _assert_greater_or_equal(len(prices), timeperiod) assert isinstance(timeperiod1, int) assert isinstance(timeperiod2, int) assert isinstance(timeperiod3, int) df_price = prices.copy() df_price = df_price.sort_index(ascending=True) EMA = ta.EMA short = EMA(df_price['volume'].values.astype(float), timeperiod1) long = EMA(df_price['volume'].values.astype(float), timeperiod2) diff = short - long dea = EMA(diff, timeperiod3) vmacd = diff - dea df_price['VMACD'] = vmacd return df_price['VMACD']
5de5f372cb7ef6762b82f30d16465469b2cb6afc
3,650,598
from . import graphics def merge_all_mods(list_of_mods, gfx=None): """Merges the specified list of mods, starting with graphics if set to pre-merge (or if a pack is specified explicitly). Params: list_of_mods a list of the names of mods to merge gfx a graphics pack to be merged in Returns: A list of status ints for each mod given: -1: Unmerged 0: Merge was successful, all well 1: Potential compatibility issues, no merge problems 2: Non-fatal error, overlapping lines or non-existent mod etc 3: Fatal error, not returned (rebuilds to previous, rest unmerged) """ clear_temp() if gfx: add_graphics(gfx) elif will_premerge_gfx(): add_graphics(graphics.current_pack()) ret_list = [] for i, mod in enumerate(list_of_mods): status = merge_a_mod(mod) ret_list.append(status) if status == 3: log.i('Mod {}, in {}, could not be merged.'.format( mod, str(list_of_mods))) merged = merge_all_mods(list_of_mods[:i-1], gfx) return merged + [-1]*len(list_of_mods[i:]) return ret_list
c0b6ed6df7116a0abcb0c2674c8bddabd4a52f82
3,650,600
def pearson_r_p_value(a, b, dim): """ 2-tailed p-value associated with pearson's correlation coefficient. Parameters ---------- a : Dataset, DataArray, GroupBy, Variable, numpy/dask arrays or scalars Mix of labeled and/or unlabeled arrays to which to apply the function. b : Dataset, DataArray, GroupBy, Variable, numpy/dask arrays or scalars Mix of labeled and/or unlabeled arrays to which to apply the function. dim : str The dimension to apply the correlation along. Returns ------- Single value or tuple of Dataset, DataArray, Variable, dask.array.Array or numpy.ndarray, the first type on that list to appear on an input. 2-tailed p-value. See Also -------- scipy.stats.pearsonr xarray.apply_unfunc """ return xr.apply_ufunc(_pearson_r_p_value, a, b, input_core_dims=[[dim], [dim]], kwargs={'axis': -1})
d9236eaf1d7315fd61eba35bdd4cdc4f27cb9890
3,650,601
from datetime import datetime import time def get_ceilometer_usages(date, connection_string): """ Function which talks with openstack """ today = datetime.datetime.combine(date, datetime.datetime.min.time()) yesterday = today - datetime.timedelta(days=1) engine = create_engine(connection_string) connection = engine.connect() query = CEILOMETER_QUERY.format( from_ts=time.mktime(yesterday.timetuple()), to_ts=time.mktime(today.timetuple()) ) return connection.execute(query)
b05e7f2024ebf2e2eb23a914da71b834debb66cc
3,650,602
def fit_kij(kij_bounds, eos, mix, datavle=None, datalle=None, datavlle=None, weights_vle=[1., 1.], weights_lle=[1., 1.], weights_vlle=[1., 1., 1., 1.], minimize_options={}): """ fit_kij: attemps to fit kij to VLE, LLE, VLLE Parameters ---------- kij_bounds : tuple bounds for kij correction eos : function cubic eos to fit kij for qmr mixrule mix: object binary mixture datavle: tuple, optional (Xexp, Yexp, Texp, Pexp) datalle: tuple, optional (Xexp, Wexp, Texp, Pexp) datavlle: tuple, optional (Xexp, Wexp, Yexp, Texp, Pexp) weights_vle: list or array_like, optional weights_vle[0] = weight for Y composition error, default to 1. weights_vle[1] = weight for bubble pressure error, default to 1. weights_lle: list or array_like, optional weights_lle[0] = weight for X (liquid 1) composition error, default to 1. weights_lle[1] = weight for W (liquid 2) composition error, default to 1. weights_vlle: list or array_like, optional weights_vlle[0] = weight for X (liquid 1) composition error, default to 1. weights_vlle[1] = weight for W (liquid 2) composition error, default to 1. weights_vlle[2] = weight for Y (vapor) composition error, default to 1. weights_vlle[3] = weight for equilibrium pressure error, default to 1. minimize_options: dict Dictionary of any additional spefication for scipy minimize_scalar Returns ------- fit : OptimizeResult Result of SciPy minimize """ fit = minimize_scalar(fobj_kij, kij_bounds, args=(eos, mix, datavle, datalle, datavlle, weights_vle, weights_lle, weights_vlle), **minimize_options) return fit
0f2e05a64599b49f70b327e8a69a66647b4c344f
3,650,603
def calc_ac_score(labels_true, labels_pred): """calculate unsupervised accuracy score Parameters ---------- labels_true: labels from ground truth labels_pred: labels form clustering Return ------- ac: accuracy score """ nclass = len(np.unique(labels_true)) labels_size = len(labels_true) mat = labels_size * np.ones((nclass, nclass)) idx = 0 for i in range(labels_size): mat[labels_pred[i], labels_true[i]] -= 1.0 munkres = Munkres() mapping = munkres.compute(mat) ac = 0.0 for i in range(labels_size): val = mapping[labels_pred[i]][1] if val == labels_true[i]: ac += 1.0 ac = ac / labels_size return ac
39ca30d3cdcf683dda04d429146775cffd7c0134
3,650,606
def wave_ode_gamma_neq0(t, X, *f_args): """ Right hand side of the wave equation ODE when gamma > 0 """ C = f_args[0] D = f_args[1] CD = C*D x, y, z = X return np.array([-(1./(1.+y) + CD)*x + C*(1+D*CD)*(z-y), x, CD*(z-y)])
4b2f5f7b5b4e1c932e0758e9be10fcbc5d9fbbb7
3,650,607
from typing import Dict def run_workflow( config: Dict, form_data: ImmutableMultiDict, *args, **kwargs ) -> Dict: """Executes workflow and save info to database; returns unique run id.""" # Validate data and prepare run environment form_data_dict = __immutable_multi_dict_to_nested_dict( multi_dict=form_data ) __validate_run_workflow_request(data=form_data_dict) __check_service_info_compatibility(data=form_data_dict) document = __init_run_document(data=form_data_dict) document = __create_run_environment( config=config, document=document, **kwargs ) # Start workflow run in background __run_workflow( config=config, document=document, **kwargs ) response = {'run_id': document['run_id']} return response
bfa732ceaef6fbd6865e015b9c28da68932fa2db
3,650,608
from typing import List def insertion_stack(nums: List[int]) -> List[int]: """ A helper function that sort the data in an ascending order Args: nums: The original data Returns: a sorted list in ascending order """ left = [] right = [] for num in nums: while left and left[-1] > num: right.append(left.pop()) left.append(num) while right: left.append(right.pop()) return left
045e28d763ece3dac9e1f60d50a0d51c43b75664
3,650,609
def svn_wc_get_pristine_contents(*args): """svn_wc_get_pristine_contents(char const * path, apr_pool_t result_pool, apr_pool_t scratch_pool) -> svn_error_t""" return _wc.svn_wc_get_pristine_contents(*args)
5a26e358bbd2a4341bdb1c572f98d419f676a725
3,650,610
def create_cache_key(func, key_dict=None, self=None): """Get a cache namespace and key used by the beaker_cache decorator. Example:: from tg import cache from tg.caching import create_cache_key namespace, key = create_cache_key(MyController.some_method) cache.get_cache(namespace).remove(key) """ kls = None imfunc = im_func(func) if imfunc: kls = im_class(func) func = imfunc cache_key = func.__name__ else: cache_key = func.__name__ if key_dict: cache_key += " " + " ".join("%s=%s" % (k, v) for k, v in key_dict.items()) if not kls and self: kls = getattr(self, '__class__', None) if kls: return '%s.%s' % (kls.__module__, kls.__name__), cache_key else: return func.__module__, cache_key
461fc998a7345d646fdaa61fd36f91c3c250d331
3,650,614
def longest_common_substring(s, t): """ Find the longest common substring between the given two strings :param s: source string :type s: str :param t: target string :type t: str :return: the length of the longest common substring :rtype: int """ if s == '' or t == '': return 0 f = [[0 for _ in range(len(t) + 1)] for _ in range(len(s) + 1)] for i in range(len(s)): for j in range(len(t)): if s[i] == t[j]: f[i + 1][j + 1] = f[i][j] + 1 return max(map(max, f))
66aef17a117c6cc96205664f4c603594ca496092
3,650,615
def correct_predictions(output_probabilities, targets): """ Compute the number of predictions that match some target classes in the output of a model. Args: output_probabilities: A tensor of probabilities for different output classes. targets: The indices of the actual target classes. Returns: The number of correct predictions in 'output_probabilities'. """ _, out_classes = output_probabilities.max(dim=1) correct = (out_classes == targets).sum() return out_classes, correct.item()
1bff085d95da7b37bb2232b6ac03b034e2bdb6b9
3,650,616
def resolve_all(anno, task): """Resolve all pending annotations.""" return (x for x in (_first_match(anno, task), _first_match_any(anno)) if x)
ca127999972644ad25741bc48c78d67aaa4adeec
3,650,617
import socket def get_free_port(): """ Find and returns free port number. """ soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) soc.bind(("", 0)) free_port = soc.getsockname()[1] soc.close() return free_port
d1a514a47a906c946fa3a8cb4312e71bc4f7570e
3,650,618
def get_diff_list(small_list, big_list): """ Get the difference set of the two list. :param small_list: The small data list. :param big_list: The bigger data list. :return: diff_list: The difference set list of the two list. """ # big_list有而small_list没有的元素 diff_list = list(set(big_list).difference(set(small_list))) return diff_list
f92d20e6edd1f11ca6436a3ada4a6ba71da37457
3,650,619
def blend_weight_arrays(n_weightsA, n_weightsB, value=1.0, weights_pp=None): """ Blend two 2d weight arrays with a global mult factor, and per point weight values. The incoming weights_pp should be a 1d array, as it's reshaped for the number of influences. Args: n_weightsA (np.array): Weight array to blend towards n_weightsB. n_weightsB (np.array): Target weight array to move n_weightsA towards. value (float): Global mult factor. weights_pp (list/float): Per point weight values. This should be a 1d array. Returns (numpy.ndarray): Blended weights array. """ if n_weightsA.shape != n_weightsB.shape: raise ValueError('Shape of both arrays must match: {}, {}'.format(n_weightsA.shape, n_weightsB.shape)) weights_pp = weights_pp or np.ones(n_weightsA.shape[0]) weights_pp = np.repeat(weights_pp, n_weightsA.shape[1]).reshape(-1, n_weightsA.shape[1]) * value n_weights = np_interp_by_weight(n_weightsA, n_weightsB, weights_pp) return n_weights
f5167730773718952f48a67970d62a197bd92944
3,650,620
def weight_kabsch_dist(x1, x2, weights): """ Compute the Mahalabonis distance between positions x1 and x2 given Kabsch weights (inverse variance) x1 (required) : float64 array with dimensions (n_atoms,3) of one molecular configuration x2 (required) : float64 array with dimensions (n_atoms,3) of another molecular configuration weights (required) : float64 matrix with dimensions (n_atoms, n_atoms) of inverse (n_atoms, n_atoms) covariance """ # zero distance dist = 0.0 # compute distance as sum over indepdent (because covar is n_atoms x n_atoms) dimensions for i in range(3): disp = x1[:,i] - x2[:,i] dist += np.dot(disp,np.dot(weights,disp)) # return value return dist
e03c86875873af3b890fc3cfa799f037c808196e
3,650,621
def calc_color_rarity(color_frequencies: dict) -> float: """ Return rarity value normalized to 64. Value ascending from 0 (most rare) to 64 (most common). """ percentages = calc_pixel_percentages(color_frequencies) weighted_rarity = [PERCENTAGES_NORMALIZED.get(k) * v * 64 for k,v in percentages.items()] return sum(weighted_rarity)
54dd3dde36dc02101b5536630e79d3d39fe18aa8
3,650,622
def exp_map(x, r, tangent_point=None): """ Let \(\mathcal{M}\) be a CCM of radius `r`, and \(T_{p}\mathcal{M}\) the tangent plane of the CCM at point \(p\) (`tangent_point`). This function maps a point `x` on the tangent plane to the CCM, using the Riemannian exponential map. :param x: np.array, point on the tangent plane (intrinsic coordinates); :param r: float, radius of the CCM; :param tangent_point: np.array, origin of the tangent plane on the CCM (extrinsic coordinates); if `None`, defaults to `[0., ..., 0., r]`. :return: the exp-map of x to the CCM (extrinsic coordinates). """ extrinsic_dim = x.shape[-1] + 1 if tangent_point is None: tangent_point = np.zeros((extrinsic_dim,)) tangent_point[-1] = np.abs(r) if isinstance(tangent_point, np.ndarray): if tangent_point.shape != (extrinsic_dim,) and tangent_point.shape != (1, extrinsic_dim): raise ValueError('Expected tangent_point of shape ({0},) or (1, {0}), got {1}'.format(extrinsic_dim, tangent_point.shape)) if tangent_point.ndim == 1: tangent_point = tangent_point[np.newaxis, ...] if not belongs(tangent_point, r)[0]: raise ValueError('Tangent point must belong to manifold {}'.format(tangent_point)) else: raise TypeError('tangent_point must be np.array or None') if r > 0.: return SphericalManifold.exp_map(tangent_point, x) elif r < 0.: return HyperbolicManifold.exp_map(tangent_point, x) else: return x
2544e6f6054c602d5eae438b405b55dc995d190a
3,650,623
def _get_data_column_label_in_name(item_name): """ :param item_name: Name of a group or dataset :return: Data column label or ``None`` :rtype: str on None """ # /1.1/measurement/mca_0 should not be interpreted as the label of a # data column (let's hope no-one ever uses mca_0 as a label) if measurement_mca_group_pattern.match(item_name): return None data_column_match = measurement_data_pattern.match(item_name) if not data_column_match: return None return data_column_match.group(1)
58a50f9b28a8dd3c30eb609bbf61eeaf1b821238
3,650,625
def _auto_backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None, distop_context=None): """ modification is inplaced """ act_no_grad_set = _get_no_grad_set(loss, no_grad_set) assert isinstance(loss, Variable), "The target loss should be an Variable." if callbacks is None: callbacks = [error_clip_callback] else: assert (isinstance(callbacks, list)) assert len(loss.shape) == 1 and loss.shape[0] == 1, \ "The loss.shape should be (1L,), but the current loss.shape is {}. " \ "Maybe that you should call fluid.layers.mean to process the current loss.".format( loss.shape) program = loss.block.program with program_guard(program, startup_program): params_grads = append_backward( loss, parameter_list, act_no_grad_set, callbacks, distop_context=distop_context) return params_grads
f7c08e9677768faf125ccc2a273016312004c225
3,650,626
import re def strip_from_ansi_esc_sequences(text): """ find ANSI escape sequences in text and remove them :param text: str :return: list, should be passed to ListBox """ # esc[ + values + control character # h, l, p commands are complicated, let's ignore them seq_regex = r"\x1b\[[0-9;]*[mKJusDCBAfH]" regex = re.compile(seq_regex) start = 0 response = "" for match in regex.finditer(text): end = match.start() response += text[start:end] start = match.end() response += text[start:len(text)] return response
8597654defffbdde33b844a34e95bf7893a36855
3,650,627
def _concat_columns(args: list): """Dispatch function to concatenate DataFrames with axis=1""" if len(args) == 1: return args[0] else: _lib = cudf if HAS_GPU and isinstance(args[0], cudf.DataFrame) else pd return _lib.concat( [a.reset_index(drop=True) for a in args], axis=1, ) return None
e60a3d5120e50dbd2d1be5632042e702e5780bc6
3,650,628
import re def applyRegexToList(list, regex, separator=' '): """Apply a list of regex to list and return result""" if type(regex) != type(list): regex = [regex] regexList = [re.compile(r) for r in regex] for r in regexList: list = [l for l in list if r.match(l)] list = [l.split(separator) for l in list] return [i[0] for i in list]
eee1edebf361f9516e7b40ba793b0d13ea3070f3
3,650,629
def GetFileName(path: str) -> str: """Get the name of the file from the path :type path: str :rtype: str """ return splitext(basename(path))[0]
4aa3a8b75a1ed926c173f9d978504ca2ed653e20
3,650,631
import re from functools import reduce def collapse(individual_refs): """Collapse references like [C1,C2,C3,C7,C10,C11,C12,C13] into 'C1-C3, C7, C10-C13'. Args: individual_refs (string): Uncollapsed references. Returns: string: Collapsed references. """ parts = [] for ref in individual_refs: mtch = re.match(r"(?P<part_prefix>\D+)(?P<number>.+)", ref) if mtch is not None: part_prefix = mtch.group("part_prefix") number = mtch.group("number") try: number = int(mtch.group("number")) except ValueError: pass parts.append((part_prefix, number)) parts.sort() def toRef(part): return "{}{}".format(part[0], part[1]) def make_groups(accumulator, part): prev = None if len(accumulator) > 0: group = accumulator[-1] if len(group) > 0: prev = group[-1] if (prev != None) and (prev[0] == part[0]) and isinstance(prev[1], int) and ((prev[1] + 1) == part[1]): group.append(part) accumulator[-1] = group else: accumulator.append([part]) return accumulator groups = reduce(make_groups, parts, []) groups = map(lambda g: tuple(map(toRef, g)), groups) collapsed = "" for group in groups: if (len(collapsed) > 1) and (collapsed[-2] != ","): collapsed += ", " if len(group) > 2: collapsed += group[0] + "-" + group[-1] else: collapsed += ", ".join(group) return collapsed
f4225586d30960cae74123806b8d44ff6f007584
3,650,632
def generate_fig_univariate_categorical( df_all: pd.DataFrame, col: str, hue: str, nb_cat_max: int = 7, ) -> plt.Figure: """ Returns a matplotlib figure containing the distribution of a categorical feature. If the feature is categorical and contains too many categories, the smallest categories are grouped into a new 'Other' category so that the graph remains readable. Parameters ---------- df_all : pd.DataFrame The input dataframe that contains the column of interest col : str The column of interest hue : str The column used to distinguish the values (ex. 'train' and 'test') nb_cat_max : int The number max of categories to be displayed. If the number of categories is greater than nb_cat_max then groups smallest categories into a new 'Other' category Returns ------- matplotlib.pyplot.Figure """ df_cat = df_all.groupby([col, hue]).agg({col: 'count'})\ .rename(columns={col: "count"}).reset_index() df_cat['Percent'] = df_cat['count'] * 100 / df_cat.groupby(hue)['count'].transform('sum') if pd.api.types.is_numeric_dtype(df_cat[col].dtype): df_cat = df_cat.sort_values(col, ascending=True) df_cat[col] = df_cat[col].astype(str) nb_cat = df_cat.groupby([col]).agg({'count': 'sum'}).reset_index()[col].nunique() if nb_cat > nb_cat_max: df_cat = _merge_small_categories(df_cat=df_cat, col=col, hue=hue, nb_cat_max=nb_cat_max) fig, ax = plt.subplots(figsize=(7, 4)) sns.barplot(data=df_cat, x='Percent', y=col, hue=hue, palette=dict_color_palette, ax=ax) for p in ax.patches: ax.annotate("{:.1f}%".format(np.nan_to_num(p.get_width(), nan=0)), xy=(p.get_width(), p.get_y() + p.get_height() / 2), xytext=(5, 0), textcoords='offset points', ha="left", va="center") # Shrink current axis by 20% box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) # Put a legend to the right of the current axis ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # Removes plot borders ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) new_labels = [truncate_str(i.get_text(), maxlen=45) for i in ax.yaxis.get_ticklabels()] ax.yaxis.set_ticklabels(new_labels) return fig
9e6f9b8739b1907f67c864ceaf177f9f1007d35b
3,650,634
def pt_sharp(x, Ps, Ts, window_half, method='diff'): """ Calculate the sharpness of extrema Parameters ---------- x : array-like 1d voltage time series Ps : array-like 1d time points of oscillatory peaks Ts : array-like 1d time points of oscillatory troughs window_half : int Number of samples in each direction around extrema to use for sharpness estimation Returns ------- Psharps : array-like 1d sharpness of peaks Tsharps : array-like 1d sharpness of troughs """ # Assure input has the same number of peaks and troughs if len(Ts) != len(Ps): raise ValueError('Length of peaks and troughs arrays must be equal') # Calculate the sharpness of each peak P = len(Ps) Psharps = np.zeros(P) for e in range(P): if method == 'deriv': Edata = x[Ps[e]-window_half: Ps[e]+window_half+1] Psharps[e] = np.mean(np.abs(np.diff(Edata))) elif method == 'diff': Psharps[e] = np.mean((x[Ps[e]]-x[Ps[e]-window_half],x[Ps[e]]-x[Ps[e]+window_half])) T = len(Ts) Tsharps = np.zeros(T) for e in range(T): if method == 'deriv': Edata = x[Ts[e]-window_half: Ts[e]+window_half+1] Tsharps[e] = np.mean(np.abs(np.diff(Edata))) elif method == 'diff': Tsharps[e] = np.mean((x[Ts[e]-window_half]-x[Ts[e]],x[Ts[e]+window_half]-x[Ts[e]])) return Psharps, Tsharps
6d06b9343c71115fc660a298569794933267bd51
3,650,635
from datetime import datetime def convert_date(string, report_date, bad_dates_rep, bad_dates_for): """ Converts date string in format dd/mm/yyyy to format dd-Mmm-yyyy """ x = string.split('/') try: date = datetime.datetime(int(x[2]),int(x[1]),int(x[0])) date_str = date.strftime("%Y-%m-%d") return(date_str) # Print out cases that do not match input date convention except (IndexError, ValueError) as errors: bad_dates_rep.append(report_date) bad_dates_for.append(string) return(string) pass
f84db7bc2edc070a4c6b9c475458081701bca1eb
3,650,637
def render_raw(request, paste, data): """Renders RAW content.""" return HttpResponse(paste.content, content_type="text/plain")
2ec6fdb719e831988a4384e3690d2bec0faad405
3,650,638
def node_avg(): """get the avg of the node stats""" node_raw = ["average", 0, 0, 0] for node in node_stats(): node_raw[1] += float(node[1]) node_raw[2] += float(node[2]) node_raw[3] += float(node[3]) num = len(node_stats()) node_avg = ["average", "{:.2f}".format(node_raw[1]/num), "{:.2f}".format(node_raw[2]/num), "{:.2f}".format(node_raw[3]/num)] return node_avg
985e1f848945d8952ec224a0dd56a02e84b2ea57
3,650,639
from typing import Union def decrypt_vault_password(key: bytes, password: Union[str, bytes]) -> Union[str, bool]: """Decrypt and return the given vault password. :param key: The key to be used during the decryption :param password: The password to decrypt """ if isinstance(password, str): password = password.encode("utf-8") f = Fernet(key) try: return f.decrypt(password).decode() except InvalidToken: return False
3311b6dc7a9fba4152545ff3ca89881e9ceebb94
3,650,640
from typing import Optional def get_gv_rng_if_none(rng: Optional[rnd.Generator]) -> rnd.Generator: """get gym-gridverse module rng if input is None""" return get_gv_rng() if rng is None else rng
008bf9d22fb6c9f07816e62c2174c60839a5353f
3,650,642
def fill_name(f): """ Attempts to generate an unique id and a parent from a BioPython SeqRecord. Mutates the feature dictionary passed in as parameter. """ global UNIQUE # Get the type ftype = f['type'] # Get gene name gene_name = first(f, "gene") # Will attempt to fill in the uid from attributes. uid = '' # Deal with known types. if ftype == 'gene': name = gene_name or first(f, "locus_tag") uid = name elif ftype == 'CDS': count = get_next_count(ftype=ftype, label=gene_name) prot = first(f, "protein_id") or f"{gene_name}-CDS-{count}" uid = f"{prot}" name = prot elif ftype == 'mRNA': count = get_next_count(ftype=ftype, label=gene_name) uid = first(f, "transcript_id") or f"{gene_name}-mRNA-{count}" name = uid elif ftype == "exon": name = gene_name else: name = first(f, "organism") or first(f, "transcript_id") or None uid = first(f, "transcript_id") # Set the unique identifier. f['id'] = uid or f"{ftype}-{next(COUNTER)}" # Set the feature name. f['name'] = name or ftype return f
d2351eb509d72b6b2ef34b7c0b01c339acd52677
3,650,643
def run_single_softmax_experiment(beta, alpha): """Run experiment with agent using softmax update rule.""" print('Running a contextual bandit experiment') cb = ContextualBandit() ca = ContextualAgent(cb, beta=beta, alpha=alpha) trials = 360 for _ in range(trials): ca.run() df = DataFrame(ca.log, columns=('context', 'action', 'reward', 'Q(c,23)', 'Q(c,14)', 'Q(c,8)', 'Q(c,3)')) # fn = 'softmax_experiment.csv' # df.to_csv(fn, index=False) # print('Sequence written in', fn) # globals().update(locals()) # return df
953c07ae1cdc25782f24206a0ce02bf4fc15202b
3,650,644
def available(name): """ Returns ``True`` if the specified service is available, otherwise returns ``False``. We look up the name with the svcs command to get back the FMRI This allows users to use simpler service names CLI Example: .. code-block:: bash salt '*' service.available net-snmp """ cmd = "/usr/bin/svcs -H -o FMRI {0}".format(name) name = __salt__["cmd.run"](cmd, python_shell=False) return name in get_all()
371980f44a348faf83ab32b9d50583fc8e9bae41
3,650,645
def coincidence_rate(text): """ Return the coincidence rate of the given text Args: text (string): the text to get measured Returns: the coincidence rate """ ko = 0 # measure the frequency of each letter in the cipher text for letter in _VOCAB: count = text.count(letter) ko = ko + (count * (count - 1)) return ko / (len(text) * (len(text) - 1))
ca1ca3d8b746ea40ba07af1cb96a194bf14c1d98
3,650,646
import numpy def convert_bytes_to_ints(in_bytes, num): """Convert a byte array into an integer array. The number of bytes forming an integer is defined by num :param in_bytes: the input bytes :param num: the number of bytes per int :return the integer array""" dt = numpy.dtype('>i' + str(num)) return numpy.frombuffer(in_bytes, dt)
38b97fb9d5ecc5b55caf7c9409e4ab4a406a21d7
3,650,647
def search_spec(spec, search_key, recurse_key): """ Recursively scans spec structure and returns a list of values keyed with 'search_key' or and empty list. Assumes values are either list or str. """ value = [] if search_key in spec and spec[search_key]: if isinstance(spec[search_key], str): value.append(spec[search_key]) else: value += spec[search_key] if recurse_key in spec and spec[recurse_key]: for child_spec in spec[recurse_key]: value += search_spec(child_spec, search_key, recurse_key) return sorted(value)
9d89aacc200e205b0e6cbe49592abfd37158836a
3,650,648
import test def before_class(home=None, **kwargs): """Like @test but indicates this should run before other class methods. All of the arguments sent to @test work with this decorator as well. """ kwargs.update({'run_before_class':True}) return test(home=home, **kwargs)
3b36e448ec76a2c513a1f87dd29b8027b0693780
3,650,649
import math def hellinger_distance_poisson_variants(a_means, b_means, n_samples, sample_distances): """ a - The coverage vec for a variant over n_samples b - The coverage vec for a variant over n_samples returns average hellinger distance of multiple poisson distributions """ # generate distirbutions for each sample # and calculate divergence between them # Get the means for each contig h_geom_mean = [] both_present = [] for i in range(0, n_samples): # Use this indexing method as zip does not seem to work so well in njit # Add tiny value to each to avoid division by zero a_mean = a_means[i] + 1e-6 b_mean = b_means[i] + 1e-6 if a_mean > 1e-6 and b_mean > 1e-6: both_present.append(i) if a_mean > 1e-6 or b_mean > 1e-6: # First component of hellinger distance h1 = math.exp(-0.5 * ((np.sqrt(a_mean) - np.sqrt(b_mean))**2)) h_geom_mean.append(1 - h1) if len(h_geom_mean) >= 1: # convert to log space to avoid overflow errors d = np.log(np.array(h_geom_mean)) # return the geometric mean d = np.exp(d.sum() / len(d)) geom_sim = geom_sim_calc(both_present, sample_distances) d = d ** (1/geom_sim) else: d = 1 return d
555365ea295ef2ff1e18e5c26b6b56b1c939035a
3,650,651
def min_threshold(x, thresh, fallback): """Returns x or `fallback` if it doesn't meet the threshold. Note, if you want to turn a hyper "off" below, set it to "outside the threshold", rather than 0. """ return x if (x and x > thresh) else fallback
e92c17aafb8a7c102152d9f31d0a317b285a0ae6
3,650,652
def get_command(command, meta): """Construct the command.""" bits = [] # command to run bits.append(command) # connection params bits.extend(connect_bits(meta)) # database name if command == 'mysqladmin': # these commands shouldn't take a database name return bits if command == 'pg_restore': bits.append('--dbname') if command == 'mysql': bits.append('--database') bits.append(meta['path'][1:]) return bits
0c80072fa70e7943bb7693ad5eb2d24d7078b1cc
3,650,653
def get_common_count(list1, list2): """ Get count of common between two lists :param list1: list :param list2: list :return: number """ return len(list(set(list1).intersection(list2)))
c149b49e36e81237b775b0de0f19153b5bcf2f99
3,650,654
def text_present(nbwidget, text="Test"): """Check if a text is present in the notebook.""" if WEBENGINE: def callback(data): global html html = data nbwidget.dom.toHtml(callback) try: return text in html except NameError: return False else: return text in nbwidget.dom.toHtml()
f61f90c6fbbe5251c4839cc3ef82ed1298640345
3,650,655
def multiFilm(layers, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=defaultCharFluor, bf=defaultBremFluor, xtraParams=defaultXtraParams): """multiFilm(layers, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=defaultCharFluor, bf=defaultBremFluor, xtraParams={}): Monte Carlo simulate a spectrum from a multilayer thin film. Layers is a iterable list of \ [material,thickness]. Note the materials must have associated densities.""" tmp = u"MC simulation of a multilayer film [%s] at %0.1f keV%s%s" % (",".join("%0.0f nm of %s" % (1.0e9 * layer[1], layer[0]) for layer in layers), e0, (" + CSF" if sf else ""), (" + BSF" if bf else "")) return base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildFilm, {"Layers": layers }, xtraParams)
ae586a6860ece7e21f46e221398a462619d16acd
3,650,656
def value_iteration(R, P, gamma, epsilon=1e-6): """ Value iteration for discounted problems. Parameters ---------- R : numpy.ndarray array of shape (S, A) contaning the rewards, where S is the number of states and A is the number of actions P : numpy.ndarray array of shape (S, A, S) such that P[s,a,ns] is the probability of arriving at ns by taking action a in state s. gamma : double discount factor epsilon : double precision Returns -------- tuple (Q, V, n_it) containing the epsilon-optimal Q and V functions, of shapes (S, A) and (S,), respectively, and n_it, the number of iterations """ S, A = R.shape Q = np.zeros((S, A)) Q_aux = np.full((S, A), np.inf) n_it = 0 while np.abs(Q - Q_aux).max() > epsilon: Q_aux = Q Q = bellman_operator(Q, R, P, gamma) n_it += 1 V = np.zeros(S) # numba does not support np.max(Q, axis=1) for ss in range(S): V[ss] = Q[ss, :].max() return Q, V, n_it
4f8286d7519577f77f86b239c14e948eed513a6a
3,650,657
def mock_api_response(response_config={}): """Create a mock response from the Github API.""" headers = { 'ETag': 'W/"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"', 'Cache-Control': 'public, max-age=60, s-maxage=60', 'Content-Type': 'application/json; charset=utf-8' } api_response = MagicMock(spec=Response) api_response.content_type = 'application/json' for k, v in response_config.iteritems(): if k == 'headers': headers.update(v) setattr(api_response, k, v) # Request headers are case insensitive dicts, # so we need to turn our mock headers into one. api_response.headers = CaseInsensitiveDict(headers) return api_response
f79af84cb51ffa063c1db2b70dce99ae61da871a
3,650,658
import tqdm import json def load_jsonl(file_path): """ Load file.jsonl .""" data_list = [] with open(file_path, mode='r', encoding='utf-8') as fi: for idx, line in enumerate(tqdm(fi)): jsonl = json.loads(line) data_list.append(jsonl) return data_list
58bd0dbfa59d08036aa83e62aab47acd2c40ba6e
3,650,661
from io import StringIO from datetime import datetime def aurora_forecast(): """ Get the latest Aurora Forecast from http://swpc.noaa.gov. Returns ------- img : numpy array The pixels of the image in a numpy array. img_proj : cartopy CRS The rectangular coordinate system of the image. img_extent : tuple of floats The extent of the image ``(x0, y0, x1, y1)`` referenced in the ``img_proj`` coordinate system. origin : str The origin of the image to be passed through to matplotlib's imshow. dt : datetime Time of forecast validity. """ # GitHub gist to download the example data from #url = ('https://gist.githubusercontent.com/belteshassar/' # 'c7ea9e02a3e3934a9ddc/raw/aurora-nowcast-map.txt') # To plot the current forecast instead, uncomment the following line url = 'http://services.swpc.noaa.gov/text/aurora-nowcast-map.txt' response_text = StringIO(urlopen(url).read().decode('utf-8')) img = np.loadtxt(response_text) # Read forecast date and time response_text.seek(0) for line in response_text: if line.startswith('Product Valid At:', 2): dt = datetime.strptime(line[-17:-1], '%Y-%m-%d %H:%M') img_proj = ccrs.PlateCarree() img_extent = (-180, 180, -90, 90) return img, img_proj, img_extent, 'lower', dt
04ee88aee75f7ac86063c9a57f4e5155378f9085
3,650,662
def get_number_trips(grouped_counts): """ Gets the frequency of number of trips the customers make Args: grouped_counts (Pandas.DataFrame): The grouped dataframe returned from a get_trips method call Returns: Pandas.DataFrame: the dataframe containing the frequencies for each number of trips """ return frequency(grouped_counts.groupby('cust_id').count(), 0)
4045f10e95fe597e626883c586cc832aa34157c3
3,650,663
import re def process_text(text, max_features=200, stopwords=None): """Splits a long text into words, eliminates the stopwords and returns (words, counts) which is necessary for make_wordcloud(). Parameters ---------- text : string The text to be processed. max_features : number (default=200) The maximum number of words. stopwords : set of strings The words that will be eliminated. Notes ----- There are better ways to do word tokenization, but I don't want to include all those things. """ if stopwords is None: stopwords = STOPWORDS d = {} flags = re.UNICODE if type(text) is unicode else 0 for word in re.findall(r"\w[\w']*", text, flags=flags): if word.isdigit(): continue word_lower = word.lower() if word_lower in stopwords: continue # Look in lowercase dict. if word_lower in d: d2 = d[word_lower] else: d2 = {} d[word_lower] = d2 # Look in any case dict. d2[word] = d2.get(word, 0) + 1 d3 = {} for d2 in d.values(): # Get the most popular case. first = max(d2.iteritems(), key=item1)[0] d3[first] = sum(d2.values()) # merge plurals into the singular count (simple cases only) for key in d3.keys(): if key.endswith('s'): key_singular = key[:-1] if key_singular in d3: val_plural = d3[key] val_singular = d3[key_singular] d3[key_singular] = val_singular + val_plural del d3[key] words = sorted(d3.iteritems(), key=item1, reverse=True) words = words[:max_features] maximum = float(max(d3.values())) for i, (word, count) in enumerate(words): words[i] = word, count/maximum return words
531c8eea539136701289eea5cd462476ba7fefac
3,650,664
def update_graph_map(n): """Update the graph rail network mapbox map. Returns: go.Figure: Scattermapbox of rail network graph """ return get_graph_map()
826b12616e9c08b05cecef8d44017a1599ed8f98
3,650,665
def get_party_leads_sql_string_for_state(party_id, state_id): """ :type party_id: integer """ str = """ select lr.candidate_id, c.fullname as winning_candidate, lr.constituency_id, cons.name as constituency, lr.party_id, lr.max_votes, (lr.max_votes-sr.votes) as lead, sr.candidate_id, loosing_candidate.fullname as runner_up, loosing_party.name as runner_up_party, sr.party_id, ltr.party_id from latest_results lr inner join latest_runners_up as sr on sr.constituency_id = lr.constituency_id inner join candidate c on c.id = lr.candidate_id inner join constituency cons on cons.id = lr.constituency_id inner join party loosing_party on loosing_party.id = sr.party_id inner join candidate loosing_candidate on loosing_candidate.id = sr.candidate_id inner join last_time_winners ltr on ltr.constituency_id=lr.constituency_id where lr.party_id = %s and cons.state_id = %s and lr.status = 'COUNTING' order by lead DESC""" % (party_id, state_id) return str;
de1e200cf8651626fff04c2011b3ada12b8b08a7
3,650,666
import requests import json import math import time def goods_images(goods_url): """ 获得商品晒图 Parameters: goods_url - str 商品链接 Returns: image_urls - list 图片链接 """ image_urls = [] productId = goods_url.split('/')[-1].split('.')[0] # 评论url comment_url = 'https://sclub.jd.com/comment/productPageComments.action' comment_params = {'productId':productId, 'score':'0', 'sortType':'5', 'page':'0', 'pageSize':'10', 'isShadowSku':'0', 'fold':'1'} comment_headers = {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.167 Safari/537.36', 'Referer':goods_url, 'Host': 'sclub.jd.com'} comment_req = requests.get(url=comment_url, params=comment_params, headers=comment_headers, verify=False) html = json.loads(comment_req.text) # 获得晒图个数 imageListCount = html['imageListCount'] # 计算晒图页数,向上取整 pages = math.ceil(imageListCount / 10) for page in range(1, pages+1): # 获取晒图图片url club_url = 'https://club.jd.com/discussion/getProductPageImageCommentList.action' now = time.time() now_str = str(now).split('.') now = now_str[0] + now_str[-1][:3] club_params = {'productId':productId, 'isShadowSku':'0', 'page':page, 'pageSize':'10', '_':now} club_headers = comment_headers club_req = requests.get(url=club_url, params=club_params, headers=club_headers, verify=False) html = json.loads(club_req.text) for img in html['imgComments']['imgList']: image_urls.append(img['imageUrl']) # 去重 image_urls = list(set(image_urls)) # 链接合成 image_urls = list(map(lambda x: 'http:'+x, image_urls)) return image_urls
8ed59e295ebd08788f0083be9941ecd8b09f1d84
3,650,667
def delete_index_list(base_list, index_list): """ 根据index_list删除base_list中指定元素 :param base_list: :param index_list: :return: """ if base_list and index_list: return [base_list[i] for i in range(len(base_list)) if (i not in index_list)]
0dd8960d0efc168df42cabb92147f078da362e5e
3,650,668
def not_found(): """Page not found.""" return make_response( render_template("404.html"), 404 )
3bc56677f760937f1767e0465e4dbd0a11eb41d0
3,650,669
def _traverseAgg(e, visitor=lambda n, v: None): """ Traverse a parse-tree, visit each node if visit functions return a value, replace current node """ res = [] if isinstance(e, (list, ParseResults, tuple)): res = [_traverseAgg(x, visitor) for x in e] elif isinstance(e, CompValue): for k, val in e.iteritems(): if val != None: res.append(_traverseAgg(val, visitor)) return visitor(e, res)
c436dbb548c6a1b7bc6ddc8ea8770cb953e76a72
3,650,670
def roll(image, delta): """Roll an image sideways (A more detailed explanation goes here.) """ xsize, ysize = image.size delta = delta % xsize if delta == 0: print("the delta was 0!") return image part1 = image.crop((0, 0, delta, ysize)) part2 = image.crop((delta, 0, xsize, ysize)) image.paste(part2, (0, 0, xsize-delta, ysize)) image.paste(part1, (xsize-delta, 0, xsize, ysize)) return image
b9ccd9659eedfefa5002f064a23c768d36dfdc0a
3,650,671
def make_long_format(path_list, args): """Output list of strings in informative line-by-line format like ls -l Args: path_list (list of (str, zipfile.Zipinfo)): tuples, one per file component of zipfile, with relative file path and zipinfo args (argparse.Namespace): user arguments to script, esp. switches Returns: list of str: list of lines to be printed out one at a time """ path_str_list = [] if args.human_readable: # by design of human-readable formatting max_size_str_len = 4 else: # find longest length of size str to determine width of string field max_size_str_len = 0 for path in path_list: # find longest size string of all paths in pathlist size_str_len = len(format_file_size(path[1].file_size, args)) if size_str_len > max_size_str_len: max_size_str_len = size_str_len for path in path_list: # extra_data = path[1].extra # os_creator = path[1].create_system # 3-unix if path[1].is_dir(): dir_str = "d" else: dir_str = "-" perm_octal = get_zip_perms(path[1]) perm_str = perm_octal2str(perm_octal) + " " size_str = format_file_size(path[1].file_size, args, max_size_str_len) size_str += " " date_str = get_zip_mtime(path[1]) path_str = color_classify(path, args) path_str_list.append(dir_str + perm_str + size_str + date_str + path_str) return path_str_list
68a30c16409c98e92a31b21a911cbca7ca9ef7c4
3,650,672
import unicodedata import re def is_name_a_title(name, content): """Determine whether the name property represents an explicit title. Typically when parsing an h-entry, we check whether p-name == e-content (value). If they are non-equal, then p-name likely represents a title. However, occasionally we come across an h-entry that does not provide an explicit p-name. In this case, the name is automatically generated by converting the entire h-entry content to plain text. This definitely does not represent a title, and looks very bad when displayed as such. To handle this case, we broaden the equality check to see if content is a subset of name. We also strip out non-alphanumeric characters just to make the check a little more forgiving. :param str name: the p-name property that may represent a title :param str content: the plain-text version of an e-content property :return: True if the name likely represents a separate, explicit title """ def normalize(s): if not isinstance(s, string_type): s = s.decode('utf-8') s = unicodedata.normalize('NFKD', s) s = s.lower() s = re.sub('[^a-z0-9]', '', s) return s if not content: return True if not name: return False return normalize(content) not in normalize(name)
2a8d3191920fba0d92670a3d520bfdf6836dbe69
3,650,673
from datetime import datetime import traceback def insertTweet(details, insertDuplicates=True): """ Adds tweet to database @param details {Dict} contains tweet details @param insertDuplicates {Boolean} optional, if true it will insert even if already exists """ try: if not insertDuplicates: tweet_results = get_tweet_by_id(details['itemid']) if tweet_results != None: logger.info(tweet_results) return False tweet = Tweet( twitter_handle=details['handle'], tweet_time=datetime.datetime.utcfromtimestamp(details['time']), tweet_text=details['text'], data_type=details['type'], data_id=details['itemid'], retweets=details['retweets'], favorites=details['favorites'], status=1 ) session.add(tweet) session.commit() addTweetToHandler(tweet,details['handle']) return True except Exception as e: traceback.print_exc() traceback.print_stack() print("ERROR OCCURED WHEN INSERTING TWEET") print(e) session.rollback() return False
e11aba2fecd3d2e0a8f21f25ea1f920512949bdc
3,650,674
from typing import OrderedDict def return_embeddings(embedding: str, vocabulary_size: int, embedding_dim: int, worddicts: OrderedDict) -> np.ndarray: """Create array of word embeddings.""" word_embeddings = np.zeros((vocabulary_size, dim_word)) with open(embedding, 'r') as f: for line in f: words=line.split() word = words[0] vector = words[1:] len_vec = len(vector) if(len_vec>300): diff = len_vec-300 word = word.join(vector[:diff]) vector = vector[diff:] if word in worddicts and worddicts[word] < vocabulary_size: vector = [float(x) for x in vector] word_embeddings[worddicts[word], :] = vector[0:300] return word_embeddings
86379e2cc9c343733464bea207dc3f41b4dd7601
3,650,676
import sympy def symLink(twist, dist, angle, offset): """ Transform matrix of this link with DH parameters. (Use symbols) """ twist = twist * sympy.pi / 180 T1 = sympy.Matrix([ [1, 0, 0, dist], [0, sympy.cos(twist), -sympy.sin(twist), 0], [0, sympy.sin(twist), sympy.cos(twist), 0], [0, 0, 0, 1]]) # T1[sympy.abs(T1) < 1e-3] = 0 T2 = sympy.Matrix([ [sympy.cos(angle), -sympy.sin(angle), 0, 0], [sympy.sin(angle), sympy.cos(angle), 0, 0], [0, 0, 1, offset], [0, 0, 0, 1]]) return T1 * T2
a6e2ac09866f2b54ffb33da681ba9d19e74e57f0
3,650,677
import aiohttp from typing import Tuple from typing import Dict from typing import Any from typing import Sequence async def _parse_action_body(service: UpnpServerService, request: aiohttp.web.Request) -> Tuple[str, Dict[str, Any]]: """Parse action body.""" # Parse call. soap = request.headers.get("SOAPAction", "").strip('"') try: _, action_name = soap.split("#") data = await request.text() root_el: ET.Element = DET.fromstring(data) body_els: Sequence[ET.Element] = root_el.find("s:Body", NAMESPACES) rpc_el = body_els[0] except Exception as exc: raise aiohttp.web.HTTPBadRequest(reason="InvalidSoap") from exc if action_name not in service.actions: raise aiohttp.web.HTTPBadRequest(reason="InvalidAction") kwargs: Dict[str, Any] = {} action = service.action(action_name) for arg in rpc_el: action_arg = action.argument(arg.tag, direction="in") if action_arg is None: raise aiohttp.web.HTTPBadRequest(reason="InvalidArg") state_var = action_arg.related_state_variable kwargs[arg.tag] = state_var.coerce_python(arg.text) return action_name, kwargs
d5f390d956d726ffca0d37891815b8ccf488a826
3,650,678
import json def get_tc_json(): """Get the json for this testcase.""" try: with open(GLOBAL_INPUT_JSON_PATH) as json_file: tc = json.load(json_file) except Exception: return_error('Could not custom_validator_input.json') return tc
de19278f5edb415d40e383d2ad08dfc6e968cb81
3,650,679
def dualgauss(x, x1, x2, w1, w2, a1, a2, c=0): """ Sum of two Gaussian distributions. For curve fitting. Parameters ---------- x: np.array Axis x1: float Center of 1st Gaussian curve x2: float Center of 2nd Gaussian curve w1: float Width of 1st Gaussian curve w2: float Width of 2nd Gaussian curve a1: float Amplitude of 1st Gaussian curve a2: float Amplitude of 2nd Gaussian curve c: float, optional Offset, defaults to 0 """ return a1*np.exp(-0.5*((x-x1)/w1)**2)+a2*np.exp(-0.5*((x-x2)/w2)**2) + c
d60d63ad0776aa6d5babfe5e963503f18dca0c3e
3,650,680
def pdg_format3( value , error1 , error2 , error3 , latex = False , mode = 'total' ) : """Round value/error accoridng to PDG prescription and format it for print @see http://pdg.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf @see section 5.3 of doi:10.1088/0954-3899/33/1/001 Quote: The basic rule states that - if the three highest order digits of the error lie between 100 and 354, we round to two significant digits. - If they lie between 355 and 949, we round to one significant digit. - Finally, if they lie between 950 and 999, we round up to 1000 and keep two significant digits. In all cases, the central value is given with a precision that matches that of the error. >>> value, error1, error2 = ... >>> print ' Rounded value/error is %s ' % pdg_format2 ( value , error1 , error2 , True ) """ error = ref_error ( mode , error1 , error2 , error3 ) val , err , q , ecase = pdg_round__ ( value , error ) if ecase <= 0 or ( not isfinite ( error1 ) ) or ( not isfinite ( error2 ) ) or ( not isfinite ( error3 ) ) : if not isfinite ( val ) : return ( '%+g \\pm %-g \\pm %-g \\pm %-g ' % ( val , error1 , error2 , error3 ) ) if latex else \ ( '%+g +/- %-g +/- %-g +/- %-g' % ( val , error1 , error2 , error3 ) ) else : qv , bv = _frexp10_ ( val ) if 0 != bv : scale = 1.0 / 10**bv if latex : return '(%+.2f \\pm %-s \\pm %-s)\\times 10^{%d}' % ( qv , error1 * scale , error2 * scale , error3 * scale , bv ) else : return ' %+.2f +/- %-s +/ %-s +/- %-s )*10^{%d} ' % ( qv , error1 * scale , error2 * scale , error3 * scale , bv ) else : if latex : return ' %+.2f \\pm %-s \\pm %-s \\pm %-s ' % ( qv , error1 , error2 , error3 ) else : return ' %+.2f +/- %-s +/- %-s +/- %-s ' % ( qv , error1 , error2 , error3 ) qe , be = _frexp10_ ( error ) a , b = divmod ( be , 3 ) if 1 == ecase : err1 = round_N ( error1 , 2 ) if isclose ( error1 , error , 1.e-2 ) else err err2 = round_N ( error2 , 2 ) if isclose ( error2 , error , 1.e-2 ) else err err3 = round_N ( error3 , 2 ) if isclose ( error3 , error , 1.e-2 ) else err if 0 == b : nd = 1 elif 1 == b : nd = 3 a += 1 elif 2 == b : a += 1 nd = 2 elif 2 == ecase : err1 = round_N ( error1 , 1 ) if isclose ( error1 , error , 1.e-2 ) else err err2 = round_N ( error2 , 1 ) if isclose ( error2 , error , 1.e-2 ) else err err3 = round_N ( error3 , 1 ) if isclose ( error3 , error , 1.e-2 ) else err if 0 == b : nd = 0 if 2 == a % 3 : nd = 3 a = a + 1 elif 1 == b : nd = 2 a += 1 elif 2 == b : nd = 1 a += 1 elif 3 == ecase : err1 = round_N ( error1 , 2 ) if isclose ( error1 , error , 1.e-2 ) else err err2 = round_N ( error2 , 2 ) if isclose ( error2 , error , 1.e-2 ) else err err3 = round_N ( error3 , 2 ) if isclose ( error3 , error , 1.e-2 ) else err if 0 == b : nd = 0 if 2 == a % 3 : nd = 3 a = a + 1 elif 1 == b : nd = 2 a += 1 elif 2 == b : nd = 1 a += 1 if 0 == a : if latex: fmt = '(%%+.%df \\pm %%.%df \\pm %%.%df \\pm %%.%df)' % ( nd , nd , nd , nd ) else : fmt = ' %%+.%df +/- %%.%df +/- %%.%df +/- %%.%df ' % ( nd , nd , nd . nd ) return fmt % ( val , err ) if latex: fmt = '(%%+.%df \\pm %%.%df \\pm %%.%df \\pm %%.%df)\\times 10^{%%d}' % ( nd , nd , nd , nd ) else : fmt = '(%%+.%df +/- %%.%df +/- %%.%df +/- %%.%df)*10^{%%d}' % ( nd , nd , nd , nd ) scale = 1.0/10**(3*a) return fmt % ( val * scale , err1 * scale , err2 * scale , err3 * scale , 3 * a )
9d75007e19d60caac14a2a830800e7db215c0de6
3,650,681
from datetime import datetime def getChinaHoliday(t): """找出距离输入日期最近的中国节日,输出距离的天数""" date_time = datetime.datetime.strptime(t, '%d %B %Y') y = date_time.year # 中国阳历节日 sh = [ (y, 1, 1), # 元旦 (y, 4, 5), # 清明 (y, 5, 1), # 五一劳动节 (y, 10, 1) # 国庆节 ] # 中国阴历节日 lh = [ (y, 1, 1), # 大年初一(春节) (y, 5, 5), # 端午节 (y, 8, 15) # 中秋节 ] res = 365 for h in sh: hd = datetime.datetime(h[0], h[1], h[2], 0, 0, 0) ds = (date_time-hd).days if abs(ds) < res: # 距离输入的日期最近的阳历节日 res = abs(ds) for h in lh: ld = lunardate.LunarDate(h[0], h[1], h[2], 0).toSolarDate() hd = datetime.datetime(ld.year, ld.month, ld.day, 0, 0, 0) ds = (date_time-hd).days if abs(ds) < res: # 距离输入的日期最近的阴历节日 res = abs(ds) # print t,res return res pass
bc9520f56135d86cf196bfe30bde0ea645377f45
3,650,682
def parse_mimetype(mimetype): """Parses a MIME type into its components. :param str mimetype: MIME type :returns: 4 element tuple for MIME type, subtype, suffix and parameters :rtype: tuple Example: >>> parse_mimetype('text/html; charset=utf-8') ('text', 'html', '', {'charset': 'utf-8'}) """ if not mimetype: return '', '', '', {} parts = mimetype.split(';') params = [] for item in parts[1:]: if not item: continue key, value = item.split('=', 1) if '=' in item else (item, '') params.append((key.lower().strip(), value.strip(' "'))) params = dict(params) fulltype = parts[0].strip().lower() if fulltype == '*': fulltype = '*/*' mtype, stype = fulltype.split('/', 1) \ if '/' in fulltype else (fulltype, '') stype, suffix = stype.split('+', 1) if '+' in stype else (stype, '') return mtype, stype, suffix, params
a9abfde73528e6f76cca633efe3d4c881dccef82
3,650,683
def terraform_state_bucket(config): """Get the bucket name to be used for the remote Terraform state Args: config (dict): The loaded config from the 'conf/' directory Returns: string: The bucket name to be used for the remote Terraform state """ # If a bucket name is specified for the remote Terraform state, we can assume the bucket # should NOT be created default_name = DEFAULT_TERRAFORM_STATE_BUCKET_SUFFIX.format( config['global']['account']['prefix'] ) if 'terraform' not in config['global']: return default_name, True # Use the default name and create the bucket bucket_name = config['global']['terraform'].get( 'bucket_name', default_name ) return bucket_name, bucket_name == default_name
443ae393896d180f3e419db7a6b7e346dca0655c
3,650,684
def get_binary_matrix(gene_expr, libraries): """ Get binary matrix with genes as rows and pathways as columns. If a gene is found in a given pathway, it is given a value of 1. Else, 0. Only the list of genes in common between that found in the gene set libraries and the current dataset are used. """ function_to_genes = {} set_genes = set() for lib in libraries: f2g, genes = gene_set_dictionaries(lib) function_to_genes.update(f2g) set_genes = set_genes | set(genes) common_genes = list(set_genes & set(gene_expr)) binary_matrix = gs_binary_matrix(function_to_genes, set_genes).loc[common_genes] return binary_matrix
53f39909efc1dfb083cba734a01f77d181f4c36c
3,650,685
def get_tip_downvotes(tips_id): """ GET function for retrieving all User objects that have downvoted a tip """ tip = Tips.objects.get(id=tips_id) tips_downvotes = (tip.to_mongo())["downvotes"] tips_downvotes_list = [ User.objects.get(id=str(user)).to_mongo() for user in tips_downvotes ] response = {"users": tips_downvotes_list} return create_response(data=response)
b528be2bd74169a4baff14ecb473ef12d8554be9
3,650,686
from typing import List from typing import Dict def get_placements( big_graph: nx.Graph, small_graph: nx.Graph, max_placements=100_000 ) -> List[Dict]: """Get 'placements' mapping small_graph nodes onto those of `big_graph`. This function considers monomorphisms with a restriction: we restrict only to unique set of `big_graph` qubits. Some monomorphisms may be basically the same mapping just rotated/flipped which we purposefully exclude. This could exclude meaningful differences like using the same qubits but having the edges assigned differently, but it prevents the number of placements from blowing up. Args: big_graph: The parent, super-graph. We often consider the case where this is a nx.Graph representation of a Device whose nodes are `cirq.Qid`s like `GridQubit`s. small_graph: The subgraph. We often consider the case where this is a NamedTopology graph. max_placements: Raise a value error if there are more than this many placement possibilities. It is possible to use `big_graph`, `small_graph` combinations that result in an intractable number of placements. Raises: ValueError: if the number of placements exceeds `max_placements`. Returns: A list of placement dictionaries. Each dictionary maps the nodes in `small_graph` to nodes in `big_graph` with a monomorphic relationship. That's to say: if an edge exists in `small_graph` between two nodes, it will exist in `big_graph` between the mapped nodes. """ matcher = nx.algorithms.isomorphism.GraphMatcher(big_graph, small_graph) # de-duplicate rotations, see docstring. dedupe = {} for big_to_small_map in matcher.subgraph_monomorphisms_iter(): dedupe[frozenset(big_to_small_map.keys())] = big_to_small_map if len(dedupe) > max_placements: # coverage: ignore raise ValueError( f"We found more than {max_placements} placements. Please use a " f"more constraining `big_graph` or a more constrained `small_graph`." ) small_to_bigs = [] for big in sorted(dedupe.keys()): big_to_small_map = dedupe[big] small_to_big_map = {v: k for k, v in big_to_small_map.items()} small_to_bigs.append(small_to_big_map) return small_to_bigs
fad71c888639ba29c0b0d2d61ddeff2a2c1d8653
3,650,687
import inspect import six def _filter_baseanalysis_kwargs(function, kwargs): """ create two dictionaries with kwargs separated for function and AnalysisBase Parameters ---------- function : callable function to be called kwargs : dict keyword argument dictionary Returns ------- base_args : dict dictionary of AnalysisBase kwargs kwargs : dict kwargs without AnalysisBase kwargs Raises ------ ValueError : if ``function`` has the same kwargs as ``BaseAnalysis`` """ base_argspec = inspect.getargspec(AnalysisBase.__init__) n_base_defaults = len(base_argspec.defaults) base_kwargs = {name: val for name, val in zip(base_argspec.args[-n_base_defaults:], base_argspec.defaults)} argspec = inspect.getargspec(function) for base_kw in six.iterkeys(base_kwargs): if base_kw in argspec.args: raise ValueError( "argument name '{}' clashes with AnalysisBase argument." "Now allowed are: {}".format(base_kw, list(base_kwargs.keys()))) base_args = {} for argname, default in six.iteritems(base_kwargs): base_args[argname] = kwargs.pop(argname, default) return base_args, kwargs
a674c640618ebba3d2c29fec0458773344c84be6
3,650,690
def torch_to_flax(torch_params, get_flax_keys): """Convert PyTorch parameters to nested dictionaries""" def add_to_params(params_dict, nested_keys, param, is_conv=False): if len(nested_keys) == 1: key, = nested_keys params_dict[key] = np.transpose(param, (2, 3, 1, 0)) if is_conv else np.transpose(param) else: assert len(nested_keys) > 1 first_key = nested_keys[0] if first_key not in params_dict: params_dict[first_key] = {} add_to_params(params_dict[first_key], nested_keys[1:], param, ('conv' in first_key and \ nested_keys[-1] != 'bias')) def add_to_state(state_dict, keys, param): key_str = '' for k in keys[:-1]: key_str += f"/{k}" if key_str not in state_dict: state_dict[key_str] = {} state_dict[key_str][keys[-1]] = param flax_params, flax_state = {}, {} for key, tensor in torch_params.items(): if flax_keys[-1] is None: continue flax_keys = get_flax_keys(key.split('.')) if flax_keys[-1] == 'mean' or flax_keys[-1] == 'var': add_to_state(flax_state, flax_keys, tensor.detach().numpy()) else: add_to_params(flax_params, flax_keys, tensor.detach().numpy()) return flax_params, flax_state
fd87617e3e0db491ff313218883961a1c2aa9d0f
3,650,691
from typing import Union from pathlib import Path from typing import Optional def subset_shape( ds: Union[xarray.DataArray, xarray.Dataset], shape: Union[str, Path, gpd.GeoDataFrame], raster_crs: Optional[Union[str, int]] = None, shape_crs: Optional[Union[str, int]] = None, buffer: Optional[Union[int, float]] = None, start_date: Optional[str] = None, end_date: Optional[str] = None, first_level: Optional[Union[float, int]] = None, last_level: Optional[Union[float, int]] = None, ) -> Union[xarray.DataArray, xarray.Dataset]: """Subset a DataArray or Dataset spatially (and temporally) using a vector shape and date selection. Return a subset of a DataArray or Dataset for grid points falling within the area of a Polygon and/or MultiPolygon shape, or grid points along the path of a LineString and/or MultiLineString. If the shape consists of several disjoint polygons, the output is cut to the smallest bbox including all polygons. Parameters ---------- ds : Union[xarray.DataArray, xarray.Dataset] Input values. shape : Union[str, Path, gpd.GeoDataFrame] Path to shape file, or directly a geodataframe. Supports formats compatible with geopandas. raster_crs : Optional[Union[str, int]] EPSG number or PROJ4 string. shape_crs : Optional[Union[str, int]] EPSG number or PROJ4 string. buffer : Optional[Union[int, float]] Buffer the shape in order to select a larger region stemming from it. Units are based on the shape degrees/metres. start_date : Optional[str] Start date of the subset. Date string format -- can be year ("%Y"), year-month ("%Y-%m") or year-month-day("%Y-%m-%d"). Defaults to first day of input data-array. end_date : Optional[str] End date of the subset. Date string format -- can be year ("%Y"), year-month ("%Y-%m") or year-month-day("%Y-%m-%d"). Defaults to last day of input data-array. first_level : Optional[Union[int, float]] First level of the subset. Can be either an integer or float. Defaults to first level of input data-array. last_level : Optional[Union[int, float]] Last level of the subset. Can be either an integer or float. Defaults to last level of input data-array. Returns ------- Union[xarray.DataArray, xarray.Dataset] A subset of `ds` Notes ----- If no CRS is found in the shape provided (e.g. RFC-7946 GeoJSON, https://en.wikipedia.org/wiki/GeoJSON), assumes a decimal degree datum (CRS84). Be advised that EPSG:4326 and OGC:CRS84 are not identical as axis order of lat and long differs between the two (for more information, see: https://github.com/OSGeo/gdal/issues/2035). Examples -------- >>> import xarray as xr # doctest: +SKIP >>> from clisops.core.subset import subset_shape # doctest: +SKIP >>> pr = xr.open_dataset(path_to_pr_file).pr # doctest: +SKIP ... # Subset data array by shape >>> prSub = subset_shape(pr, shape=path_to_shape_file) # doctest: +SKIP ... # Subset data array by shape and single year >>> prSub = subset_shape(pr, shape=path_to_shape_file, start_date='1990-01-01', end_date='1990-12-31') # doctest: +SKIP ... # Subset multiple variables in a single dataset >>> ds = xr.open_mfdataset([path_to_tasmin_file, path_to_tasmax_file]) # doctest: +SKIP >>> dsSub = subset_shape(ds, shape=path_to_shape_file) # doctest: +SKIP """ wgs84 = CRS(4326) # PROJ4 definition for WGS84 with longitudes ranged between -180/+180. wgs84_wrapped = CRS.from_string( "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs lon_wrap=180" ) if isinstance(ds, xarray.DataArray): ds_copy = ds._to_temp_dataset() else: ds_copy = ds.copy() if isinstance(shape, gpd.GeoDataFrame): poly = shape.copy() else: poly = gpd.GeoDataFrame.from_file(shape) if buffer is not None: poly.geometry = poly.buffer(buffer) # Get the shape's bounding box. minx, miny, maxx, maxy = poly.total_bounds lon_bnds = (minx, maxx) lat_bnds = (miny, maxy) # If polygon doesn't cross prime meridian, subset bbox first to reduce processing time # Only case not implemented is when lon_bnds cross the 0 deg meridian but dataset grid has all positive lons try: ds_copy = subset_bbox(ds_copy, lon_bnds=lon_bnds, lat_bnds=lat_bnds) except ValueError as e: raise ValueError( "No grid cell centroids found within provided polygon bounding box. " 'Try using the "buffer" option to create an expanded area.' ) from e except NotImplementedError: pass lon = get_lon(ds_copy) lat = get_lat(ds_copy) if start_date or end_date: ds_copy = subset_time(ds_copy, start_date=start_date, end_date=end_date) if first_level or last_level: ds_copy = subset_level(ds_copy, first_level=first_level, last_level=last_level) # Determine whether CRS types are the same between shape and raster if shape_crs is not None: try: shape_crs = CRS.from_user_input(shape_crs) except ValueError: raise else: try: shape_crs = CRS(poly.crs) except CRSError: poly.crs = wgs84 shape_crs = wgs84 wrap_lons = False if raster_crs is not None: try: raster_crs = CRS.from_user_input(raster_crs) except ValueError: raise else: if np.min(lat_bnds) < -90 or np.max(lat_bnds) > 90: raise ValueError("Latitudes exceed domain of WGS84 coordinate system.") if np.min(lon_bnds) < -180 or np.max(lon_bnds) > 180: raise ValueError("Longitudes exceed domain of WGS84 coordinate system.") try: # Extract CF-compliant CRS_WKT from crs variable. raster_crs = CRS.from_cf(ds_copy.crs.attrs) except AttributeError as e: # This is guessing that lons are wrapped around at 180+ but without much information, this might not be true if np.min(lon) >= -180 and np.max(lon) <= 180: raster_crs = wgs84 elif np.min(lon) >= 0 and np.max(lon) <= 360: wrap_lons = True raster_crs = wgs84_wrapped else: raise CRSError( "Raster CRS is not known and does not resemble WGS84." ) from e _check_crs_compatibility(shape_crs=shape_crs, raster_crs=raster_crs) mask_2d = create_mask(x_dim=lon, y_dim=lat, poly=poly, wrap_lons=wrap_lons).clip( 1, 1 ) # 1 on the shapes, NaN elsewhere. # We simply want to remove the 0s from the zeroth shape, for our outer mask trick below. if np.all(mask_2d.isnull()): raise ValueError( f"No grid cell centroids found within provided polygon bounds ({poly.bounds}). " 'Try using the "buffer" option to create an expanded areas or verify polygon.' ) sp_dims = set(mask_2d.dims) # Spatial dimensions # Find the outer mask. When subsetting unconnected shapes, # we dont want to drop the inner NaN regions, it may cause problems downstream. inner_mask = xarray.full_like(mask_2d, True, dtype=bool) for dim in sp_dims: # For each dimension, propagate shape indexes in either directions # Then sum on the other dimension. You get a step function going from 0 to X. # The non-zero part that left and right have in common is the "inner" zone. left = mask_2d.bfill(dim).sum(sp_dims - {dim}) right = mask_2d.ffill(dim).sum(sp_dims - {dim}) # True in the inner zone, False in the outer inner_mask = inner_mask & (left != 0) & (right != 0) # inner_mask including the shapes inner_mask = mask_2d.notnull() | inner_mask # loop through variables for v in ds_copy.data_vars: if set.issubset(sp_dims, set(ds_copy[v].dims)): # 1st mask values outside shape, then drop values outside inner_mask ds_copy[v] = ds_copy[v].where(mask_2d.notnull()) # Remove grid points outside the inner mask # Then extract the coords. # Using a where(inner_mask) on ds_copy triggers warnings with dask, sel seems safer. mask_2d = mask_2d.where(inner_mask, drop=True) for dim in sp_dims: ds_copy = ds_copy.sel({dim: mask_2d[dim]}) # Add a CRS definition using CF conventions and as a global attribute in CRS_WKT for reference purposes ds_copy.attrs["crs"] = raster_crs.to_string() ds_copy["crs"] = 1 ds_copy["crs"].attrs.update(raster_crs.to_cf()) for v in ds_copy.variables: if {lat.name, lon.name}.issubset(set(ds_copy[v].dims)): ds_copy[v].attrs["grid_mapping"] = "crs" if isinstance(ds, xarray.DataArray): return ds._from_temp_dataset(ds_copy) return ds_copy
2d751cd4a9300645cb9bc7b1b353dc29da388f96
3,650,692
def plot_record_static( record, save=True, scale=1000, select_kw={}, x_prop='wavenumber', **kwargs ): """Figure of Static data from a record. High level function. record: Record to get data from save: Boolean, Save figure scale: Scale y axis. select_kw: dict passed to select method Returns fig and ax. """ fig, ax = plt.subplots(num='{}_static'.format(record.name)) fig.clf() select_kw.setdefault('delay_mean', True) select_kw.setdefault('frame_med', True) select_kw.setdefault('prop', 'unpumped') data = record.select(**select_kw) plot_spec(record.select(x_prop), scale*data, **kwargs) plt.title("{}".format(record.lname)) fname = 'figures/{}_static.pdf'.format(record.name) print(fname) if save: plt.savefig(fname) print("saved") return fig, ax
4a25068f7df9450870af81fb2507f6262db61b42
3,650,693
def logmelspectrogram(wave: np.ndarray, conf: ConfMelspec) -> np.ndarray: """Convert a waveform to a scaled mel-frequency log-amplitude spectrogram. Args: wave::ndarray[Time,] - waveform conf - Configuration Returns::(Time, Mel_freq) - mel-frequency log(Bel)-amplitude spectrogram """ # mel-frequency linear-amplitude spectrogram :: [Freq=n_mels, T_mel] mel_freq_amp_spec = librosa.feature.melspectrogram( y=wave, sr=conf.sampling_rate, n_fft=conf.n_fft, hop_length=conf.hop_length, n_mels=conf.n_mels, fmin=conf.fmin, fmax=conf.fmax, # norm=, power=1, pad_mode="reflect", ) # [-inf, `min_db`, `ref_db`, +inf] dB(ref=1,power) => [`min_db_rel`/20, `min_db_rel`/20, 0, +inf] min_db = conf.ref_db + conf.min_db_rel ref, amin = db_to_linear(conf.ref_db), db_to_linear(min_db) # `power_to_db` hack for linear-amplitude spec to log-amplitude spec conversion mel_freq_log_amp_spec = librosa.power_to_db(mel_freq_amp_spec, ref=ref, amin=amin, top_db=None) mel_freq_log_amp_spec_bel = mel_freq_log_amp_spec/10. mel_freq_log_amp_spec_bel = mel_freq_log_amp_spec_bel.T return mel_freq_log_amp_spec_bel
d4849092495b097b8efb292826eb020c8775157c
3,650,694
def get_trainer_config(env_config, train_policies, num_workers=9, framework="tf2"): """Build configuration for 1 run.""" # trainer config config = { "env": env_name, "env_config": env_config, "num_workers": num_workers, # "multiagent": {"policy_mapping_fn": lambda x: x, "policies": policies, # "policies_to_train": train_policies}, "framework": framework, "train_batch_size": 512, 'batch_mode': 'truncate_episodes', "callbacks": TraceMallocCallback, "lr": 0.0, "num_gpus": 1, } return config
4452d0e037b4bc49a5b027d4f0f6dd2993eceac2
3,650,695