content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def SamAng(Tth,Gangls,Sangl,IFCoup): """Compute sample orientation angles vs laboratory coord. system :param Tth: Signed theta :param Gangls: Sample goniometer angles phi,chi,omega,azmuth :param Sangl: Sample angle zeros om-0, chi-0, phi-0 :param IFCoup: True if omega & 2-theta coupled in CW scan :returns: psi,gam: Sample odf angles dPSdA,dGMdA: Angle zero derivatives """ if IFCoup: GSomeg = sind(Gangls[2]+Tth) GComeg = cosd(Gangls[2]+Tth) else: GSomeg = sind(Gangls[2]) GComeg = cosd(Gangls[2]) GSTth = sind(Tth) GCTth = cosd(Tth) GSazm = sind(Gangls[3]) GCazm = cosd(Gangls[3]) GSchi = sind(Gangls[1]) GCchi = cosd(Gangls[1]) GSphi = sind(Gangls[0]+Sangl[2]) GCphi = cosd(Gangls[0]+Sangl[2]) SSomeg = sind(Sangl[0]) SComeg = cosd(Sangl[0]) SSchi = sind(Sangl[1]) SCchi = cosd(Sangl[1]) AT = -GSTth*GComeg+GCTth*GCazm*GSomeg BT = GSTth*GSomeg+GCTth*GCazm*GComeg CT = -GCTth*GSazm*GSchi DT = -GCTth*GSazm*GCchi BC1 = -AT*GSphi+(CT+BT*GCchi)*GCphi BC2 = DT-BT*GSchi BC3 = AT*GCphi+(CT+BT*GCchi)*GSphi BC = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg psi = acosd(BC) BD = 1.0-BC**2 C = np.where(BD>1.e-6,rpd/np.sqrt(BD),0.) dPSdA = [-C*(-BC1*SSomeg*SCchi-BC2*SSomeg*SSchi-BC3*SComeg), -C*(-BC1*SComeg*SSchi+BC2*SComeg*SCchi), -C*(-BC1*SSomeg-BC3*SComeg*SCchi)] BA = -BC1*SSchi+BC2*SCchi BB = BC1*SSomeg*SCchi+BC2*SSomeg*SSchi+BC3*SComeg gam = atan2d(BB,BA) BD = (BA**2+BB**2)/rpd dBAdO = 0 dBAdC = -BC1*SCchi-BC2*SSchi dBAdF = BC3*SSchi dBBdO = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg dBBdC = -BC1*SSomeg*SSchi+BC2*SSomeg*SCchi dBBdF = BC1*SComeg-BC3*SSomeg*SCchi dGMdA = np.where(BD > 1.e-6,[(BA*dBBdO-BB*dBAdO)/BD,(BA*dBBdC-BB*dBAdC)/BD, \ (BA*dBBdF-BB*dBAdF)/BD],[np.zeros_like(BD),np.zeros_like(BD),np.zeros_like(BD)]) return psi,gam,dPSdA,dGMdA
7b7efb995e9a3a2c659e5392c5c2b5b836b2750f
3,650,696
def debye_C_V(T,thetaD,natoms): """ Returns the heat capacity at constant volume, C_V, of the Debeye model at a given temperature, T, in meV/atom/K. """ C_V = 4*debye_func(thetaD/T)-3*(thetaD/T)/(sp.exp(thetaD/T)-1.) C_V = 3*natoms*BOLTZCONST*C_V return C_V
08e708f9c9ce16ed5c54e6f1bc920dd4be81e31e
3,650,697
def setup(clip=True, flip=True): """ Project specific data import and setup function :param clip: bool - use clipping :param flip: bool - use flipping :return: data as pandas dataframe, List[LAICPMSData obj] """ # calibration # Zn: y = 0.0395 kcps/(µg/g)* x + 1.308 kcps # use inverse calibration function to get conc from counts; transformation m = 1/m and b = -1 * b/m calibration_functions = { 'Zn:64': lambda x: 1/0.0395 * x - 1.308/0.0395, } # data files filenames = ["../data/LA_Data_C1SA1.csv", "../data/LA_Data_C2SA1.csv", "../data/LA_Data_C3SA1.csv", "../data/LA_Data_C4SA1.csv", "../data/LA_Data_C1SB1.csv", "../data/LA_Data_C2SB1.csv", "../data/LA_Data_C3SB1.csv", "../data/LA_Data_C4SB1.csv", "../data/LA_Data_C1SC1.csv", "../data/LA_Data_C2SC1.csv", "../data/LA_Data_C3SC1.csv", "../data/LA_Data_C4SC1.csv"] # short sample names smpl_names = ["A_1", "A_2", "A_3", "A_4", "B_1", "B_2", "B_3", "B_4", "C_1", "C_2", "C_3", "C_4"] # list on how to flip the data to get matching orientations, h = horizontally, v = vertically if flip: flip_list = [ 'h', 'v', 'h', 'h', 'h', 'h', 'v', 'v', 'v', 'h', 'h', 'h' ] else: flip_list = ['no' for i in range(0, len(filenames))] # clip data to windows of defined size # main reason is comparability & tissue folds if clip: #100 px x 150 px clip_list = [ (70,170,30,180), (70,170,30,180), (50,150,30,180), (60,160,50,200), (30,130,30,180), (40,140,30,180), (40,140,30,180), (40,140,30,180), (60,160,20,170), (60,160,20,170), (60,160,20,170), (60,160,20,170), ] else: clip_list = [None for i in range(0, len(filenames))] ms_data = [] data = [] # here the data gets processed into LAICPMSData objects - one per file # data contains all Zn:64 data - masked/segmented based on P:31 content for smpl, filename, clip, flip in zip(smpl_names, filenames, clip_list, flip_list): curr_ms_data = LAICPMSData(filename=filename, clip_data_around_center=clip, flip=flip, pixel_dimensions=(15,15)) # only assign directly if you know what you are doing! curr_ms_data._calibration_functions = calibration_functions ms_data.append(curr_ms_data) data.append(curr_ms_data.get_masked_data(element_list=['Zn:64'], discriminator='P:31', only_on_tissue=True)) data[-1]['sample'] = [smpl for i in range(0, len(data[-1]))] return pd.concat(data, ignore_index=True), ms_data
2f62f124512daff76b59e3e93a2b50de6d5ca0be
3,650,698
def extract_file_type(file_location:str) -> str: """ A function to return the type of file -> file_location: str = location of a file in string... ex : "C:\\abc\\abc\\file.xyz" ---- => str: string of the file type, ex : "xyz" """ if not isinstance(file_location,str): raise TypeError("file_location must be a string") try: return file_location.rsplit(".", 1)[1] except IndexError: raise ValueError(f"Invalid File Location : '{file_location}'")
091930e1cd285822a6be402eb47ce0457e40b0db
3,650,700
def re_subm(pat, repl, string): """ Like re.sub, but returns the replacement _and_ the match object. >>> t, m = re_subm('g(oo+)fball', r'f\\1lish', 'goooooofball') >>> t 'foooooolish' >>> m.groups() ('oooooo',) """ class re_subm_proxy: def __init__(self): self.match = None def __call__(self, match): self.match = match return '' compiled_pat = re_compile(pat) proxy = re_subm_proxy() compiled_pat.sub(proxy.__call__, string) return compiled_pat.sub(repl, string), proxy.match
7ad761906ff43f8e552d9b96cc042490c45830c0
3,650,701
def search_view(request): """Get user's saved keywords from the database if they exist and render search page.""" if request.method == 'GET': try: query = request.dbsession.query(Keyword) user_keywords = query.filter(Association.user_id == request.authenticated_userid, Association.keyword_id == Keyword.keyword) except KeyError: return HTTPFound # except DBAPIError: # raise DBAPIError(DB_ERR_MSG, content_type='text/plain', status=500) keywords = [keyword.keyword for keyword in user_keywords] if len(keywords) < 1: return{'message': 'You do not have any keywords saved. Add one!'} return{'keywords': user_keywords}
5b8208704143d0ce5aaf4c379a5bea8c01d2d4b1
3,650,702
def upload_object( self, key, body, metadata=None, acl=None, content_type="application/json" ): """Upload an arbitrary object to an S3 bucket. Parameters ---------- S3 key : `str` The Object's key identifier. body : `str` or `bytes` Object data metadata : `dict` Header metadata values. These keys will appear in headers as ``x-amz-meta-*``. acl : `str`, optional A pre-canned access control list. See http://boto3.readthedocs.io/en/latest/reference/services/s3.html#bucket Default is `None`, meaning that no ACL is applied to the object. content_type : `str`, optional The object's content type. Default is 'application/json' Returns ------- S3 URI of the uploaded object: `str` The location of the S3 object uploaded in the form: s3://<S3_BUCKET>/<key> Note: ----- Boto3 will check these environment variables for credentials: AWS_ACCESS_KEY_ID The access key for your AWS account. AWS_SECRET_ACCESS_KEY The secret key for your AWS account. """ s3 = boto3.resource("s3") object = s3.Object(S3_BUCKET, key) args = {} if metadata is not None: args["Metadata"] = metadata if acl is not None: args["ACL"] = acl if content_type is not None: args["ContentType"] = content_type self.update_state(state="STARTED") object.put(Body=body, **args) s3_uri = get_s3_uri(key) return s3_uri
3f1425544d8f29fa414995a316869480877464df
3,650,703
def min_ui_count(proteins): """ Counts the minimum number of unique identifier peptides across all proteins in a set input: proteins: list of protein sequences as strings ['protein_seq', ...] output: minimum number of unique identifier peptides across all proteins in a set """ temp = [] for p in peptides_per_protein(unique_identifiers(proteins)): temp.append(len(p[1])) if len(proteins) > len(temp): return 0 else: return min(temp)
b5bc4300ce79bf680896c6902ea721d8e73316aa
3,650,704
def check_normalize_py(method): """A wrapper that wrap a parameter checker to the original function(normalize operation written in Python).""" @wraps(method) def new_method(self, *args, **kwargs): [mean, std], _ = parse_user_args(method, *args, **kwargs) check_normalize_py_param(mean, std) return method(self, *args, **kwargs) return new_method
acee5b58192336499939de722a8ee20778112d14
3,650,705
def GetOS(build_id, builder_name, step_name, partial_match=False): # pylint:disable=unused-argument """Returns the operating system in the step_metadata. Args: build_id (int): Build id of the build. builder_name (str): Builder name of the build. step_name (str): The original step name used to get the step metadata. Returns: The operating system if it exists, otherwise, None. """ step_metadata = GetStepMetadata(build_id, step_name, partial_match) return step_metadata.get('dimensions', {}).get('os') if step_metadata else None
3bdbbabf551d29b0c5bd868dcc56df8fe77109ba
3,650,706
from niftynet.application.label_driven_registration import SUPPORTED_INPUT def __add_registration_args(parser): """ keywords defined for image registration :param parser: :return: """ parser.add_argument( "--label_normalisation", metavar='', help="whether to map unique labels in the training set to " "consecutive integers (the smallest label will be mapped to 0)", type=str2boolean, default=False) parser = add_input_name_args(parser, SUPPORTED_INPUT) return parser
a2b27e27d37e90a83769a86cda2dab12b1966724
3,650,707
from typing import Optional def get_catalog_item(catalog_id: Optional[str] = None, catalog_item_id: Optional[str] = None, location: Optional[str] = None, project: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetCatalogItemResult: """ Gets a specific catalog item. """ __args__ = dict() __args__['catalogId'] = catalog_id __args__['catalogItemId'] = catalog_item_id __args__['location'] = location __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('google-native:recommendationengine/v1beta1:getCatalogItem', __args__, opts=opts, typ=GetCatalogItemResult).value return AwaitableGetCatalogItemResult( category_hierarchies=__ret__.category_hierarchies, description=__ret__.description, item_attributes=__ret__.item_attributes, item_group_id=__ret__.item_group_id, product_metadata=__ret__.product_metadata, tags=__ret__.tags, title=__ret__.title)
b52b48b90d774d00dec62eb4aa34259aa5bbaf2e
3,650,708
def get_ext_suffix() -> str: """Get the extension suffix""" return get_config_vars()["EXT_SUFFIX"]
e66ff0e8de776e7ae9b17a754738376dd0105bfe
3,650,709
def confusion_matrix(y_true, y_pred): """ Args: y_true: pd.Series or array or list, ground truth (correct) labels. y_pred: pd.Series or array or list, predicted labels, as returned by a classifier. Returns: Confusion matrix. """ t = pd.DataFrame({'actual':y_true, 'predict':y_pred}) t = pd.crosstab(t.predict, t.actual) return t
fdbd1dae9354fc7358595c8a659c80eae19dc812
3,650,711
import torch def encode_boxes(boxes, im_shape, encode=True, dim_position=64, wave_length=1000, normalize=False, quantify=-1): """ modified from PositionalEmbedding in: Args: boxes: [bs, num_nodes, 4] or [num_nodes, 4] im_shape: 2D tensor, [bs, 2] or [2], the size of image is represented as [width, height] encode: bool, whether to encode the box dim_position: int, the dimension for position embedding wave_length: the wave length for the position embedding normalize: bool, whether to normalize the embedded features quantify: int, if it is > 0, it will be used to quantify the position of objects """ batch = boxes.dim() > 2 if not batch: boxes = boxes.unsqueeze(dim=0) im_shape = im_shape.unsqueeze(dim=0) if quantify > 1: boxes = boxes // quantify # in this case, the last 2 dims of input data is num_samples and 4. # we compute the pairwise relative postion embedings for each box if boxes.dim() == 3: # [bs, num_sample, 4] # in this case, the boxes should be tlbr: [x1, y1, x2, y2] device = boxes.device bs, num_sample, pos_dim = boxes.size(0), boxes.size(1), boxes.size(2) # pos_dim should be 4 x_min, y_min, x_max, y_max = torch.chunk(boxes, 4, dim=2) # each has the size [bs, num_sample, 1] # handle some invalid box x_max[x_max<x_min] = x_min[x_max<x_min] y_max[y_max<y_min] = y_min[y_max<y_min] cx_a = (x_min + x_max) * 0.5 # [bs, num_sample_a, 1] cy_a = (y_min + y_max) * 0.5 # [bs, num_sample_a, 1] w_a = (x_max - x_min) + 1. # [bs, num_sample_a, 1] h_a = (y_max - y_min) + 1. # [bs, num_sample_a, 1] cx_b = cx_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] cy_b = cy_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] w_b = w_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] h_b = h_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] delta_x = ((cx_b - cx_a) / w_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] delta_y = ((cy_b - cy_a) / h_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] delta_w = torch.log(w_b / w_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] delta_h = torch.log(h_b / h_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] relative_pos = torch.cat((delta_x, delta_y, delta_w, delta_h), dim=-1) # [bs, num_sample_a, num_sample_b, 4] # if im_shape is not None: im_shape = im_shape.unsqueeze(dim=-1) # [bs, 2, 1] im_width, im_height = torch.chunk(im_shape, 2, dim=1) # each has the size [bs, 1, 1] x = ((cx_b - cx_a) / im_width).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] y = ((cy_b - cy_a) / im_height).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] # w = ((w_b + w_a) / (2 * im_width)).unsqueeze(dim=-1) - 0.5 # [bs, num_sample_a, num_sample_b, 1] # h = ((h_b + h_a) / (2 * im_height)).unsqueeze(dim=-1) - 0.5 # [bs, num_sample_a. num_sample_b, 1] w = ((w_b - w_a) / im_width).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] h = ((h_b - h_a) / im_height).unsqueeze(dim=-1) # [bs, num_sample_a. num_sample_b, 1] relative_pos = torch.cat((relative_pos, x, y, w, h), dim=-1) # [bs, num_sample_a, num_sample_b, 8] if not encode: embedding = relative_pos else: position_mat = relative_pos # [bs, num_sample_a, num_sample_b, 8] pos_dim = position_mat.size(-1) feat_range = torch.arange(dim_position / (2*pos_dim)).to(device) # [self.dim_position / 16] dim_mat = feat_range / (dim_position / (2*pos_dim)) dim_mat = 1. / (torch.pow(wave_length, dim_mat)) # [self.dim_position / 16] dim_mat = dim_mat.view(1, 1, 1, 1, -1) # [1, 1, 1, 1, self.dim_position / 16] # position_mat = position_mat.view(bs, num_sample, num_sample, pos_dim, -1) # [bs, num_sample_a, num_sample_b, 4, 1] position_mat = position_mat.unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 8, 1] position_mat = 100. * position_mat # [bs, num_sample_a, num_sample_b, 8, 1] mul_mat = position_mat * dim_mat # [bs, num_sample_a, num_sample_b, 8, dim_position / 16] mul_mat = mul_mat.view(bs, num_sample, num_sample, -1) # [bs, num_sample_a, num_sample_b, dim_position / 2] sin_mat = torch.sin(mul_mat)# [bs, num_sample_a, num_sample_b, dim_position / 2] cos_mat = torch.cos(mul_mat)# [bs, num_sample_a, num_sample_b, dim_position / 2] embedding = torch.cat((sin_mat, cos_mat), -1)# [bs, num_sample_a, num_sample_b, dim_position] if normalize: embedding = embedding / torch.clamp(torch.norm(embedding, dim=-1, p=2, keepdim=True), 1e-6) else: raise ValueError("Invalid input of boxes.") if not batch: # 2D tensor, [num_boxes, 4] embedding = embedding.squeeze(dim=0) return relative_pos, embedding
7bc8e2d858391c862538626ea7f3dcc291f807f6
3,650,713
from typing import List def plot_t1(times: List[float], contrast: List[float], fname: str = None) -> Figure: """ Plot T1 relaxation figure along with laser delay time intervals :param times: frequencies, unit: ns :param contrast: contrast, range between 0 and 1 :param fname: if assigned, a '.png' file will be saved :return: a matplotlib Figure instance """ fig = plt.figure() plt.plot(times, contrast, 'o-') plt.title('T1 Relaxometry') plt.xlabel('Relaxation time (ns)') plt.ylabel('Contrast $N_{sig}/N_{ref}$') if fname is not None: plt.savefig(fname, dpi=350) return fig
fc5461fd2957b30624156e23693e5cd71788fa92
3,650,715
from pathlib import Path import re def inspect_project(dirpath=None): """Fetch various information about an already-initialized project""" if dirpath is None: dirpath = Path() else: dirpath = Path(dirpath) def exists(*fname): return Path(dirpath, *fname).exists() if not exists("pyproject.toml"): raise InvalidProjectError("Project is missing pyproject.toml file") if not exists("setup.cfg"): raise InvalidProjectError("Project is missing setup.cfg file") if not exists("src"): raise InvalidProjectError("Project does not have src/ layout") cfg = read_configuration(str(dirpath / "setup.cfg")) env = { "name": cfg["metadata"]["name"], "short_description": cfg["metadata"]["description"], "author": cfg["metadata"]["author"], "author_email": cfg["metadata"]["author_email"], "python_requires": util.sort_specifier(cfg["options"]["python_requires"]), "install_requires": cfg["options"].get("install_requires", []), # Until <https://github.com/pypa/setuptools/issues/2575> is fixed, we # have to determine versions via read_version() instead of # read_configuration(). # "version": cfg["metadata"].get("version"), "keywords": cfg["metadata"].get("keywords", []), "supports_pypy3": False, "default_branch": get_default_branch(dirpath), } # if env["version"] is None: # raise InvalidProjectError("Cannot determine project version") if cfg["options"].get("packages"): env["is_flat_module"] = False env["import_name"] = cfg["options"]["packages"][0] env["version"] = read_version( (dirpath / "src" / env["import_name"] / "__init__.py").resolve() ) else: env["is_flat_module"] = True env["import_name"] = cfg["options"]["py_modules"][0] env["version"] = read_version( (dirpath / "src" / (env["import_name"] + ".py")).resolve() ) env["python_versions"] = [] for clsfr in cfg["metadata"]["classifiers"]: m = re.fullmatch(r"Programming Language :: Python :: (\d+\.\d+)", clsfr) if m: env["python_versions"].append(m.group(1)) if clsfr == "Programming Language :: Python :: Implementation :: PyPy": env["supports_pypy3"] = True env["commands"] = {} try: commands = cfg["options"]["entry_points"]["console_scripts"] except KeyError: pass else: for cmd in commands: k, v = re.split(r"\s*=\s*", cmd, maxsplit=1) env["commands"][k] = v m = re.fullmatch( r"https://github.com/([^/]+)/([^/]+)", cfg["metadata"]["url"], ) assert m, "Project URL is not a GitHub URL" env["github_user"] = m.group(1) env["repo_name"] = m.group(2) if "Documentation" in cfg["metadata"]["project_urls"]: m = re.fullmatch( r"https?://([-a-zA-Z0-9]+)\.(?:readthedocs|rtfd)\.io", cfg["metadata"]["project_urls"]["Documentation"], ) assert m, "Documentation URL is not a Read the Docs URL" env["rtfd_name"] = m.group(1) else: env["rtfd_name"] = env["name"] toxcfg = ConfigParser(interpolation=None) toxcfg.read(str(dirpath / "tox.ini")) # No-op when tox.ini doesn't exist env["has_tests"] = toxcfg.has_section("testenv") env["has_doctests"] = False for pyfile in (dirpath / "src").rglob("*.py"): if re.search(r"^\s*>>>\s+", pyfile.read_text(), flags=re.M): env["has_doctests"] = True break env["has_typing"] = exists("src", env["import_name"], "py.typed") env["has_ci"] = exists(".github", "workflows", "test.yml") env["has_docs"] = exists("docs", "index.rst") env["codecov_user"] = env["github_user"] try: with (dirpath / "README.rst").open(encoding="utf-8") as fp: rdme = Readme.parse(fp) except FileNotFoundError: env["has_pypi"] = False else: for badge in rdme.badges: m = re.fullmatch( r"https://codecov\.io/gh/([^/]+)/[^/]+/branch/.+" r"/graph/badge\.svg", badge.href, ) if m: env["codecov_user"] = m.group(1) env["has_pypi"] = any(link["label"] == "PyPI" for link in rdme.header_links) with (dirpath / "LICENSE").open(encoding="utf-8") as fp: for line in fp: m = re.match(r"^Copyright \(c\) (\d[-,\d\s]+\d) \w+", line) if m: env["copyright_years"] = list(intspan(m.group(1))) break else: raise InvalidProjectError("Copyright years not found in LICENSE") env["extra_testenvs"] = parse_extra_testenvs( dirpath / ".github" / "workflows" / "test.yml" ) return env
2b4e503ea801f765997e4dd6b4ad1c6dee28acda
3,650,717
def current_user(request): """ Returning the current user with data use of token """ serializer = UserSerializer(request.user) return Response(serializer.data)
301a3e3caabd2cafebf143bbee7ad81a6957ea3b
3,650,718
import numpy def getPercentileLevels(h, frac=[0.5, 0.65, 0.95, 0.975]): """ Return image levels that corresponds to given percentiles values Uses the cumulative distribution of the sorted image density values Hence this works also for any nd-arrays inputs: h array outputs: res array containing level values keywords: frac sample fractions (percentiles) could be scalar or iterable default: 50%, 65%, 95%, and 97.5% """ if getattr(frac, '__iter__', False): return numpy.asarray( [getPercentileLevels(h, fk) for fk in frac]) assert( (frac >= 0.) & (frac <1.)), "Expecting a sample fraction in 'frac' and got %f" %frac # flatten the array to a 1d list val = h.ravel() # inplace sort val.sort() #reverse order rval = val[::-1] #cumulative values cval = rval.cumsum() #retrieve the largest indice up to the fraction of the sample we want ind = numpy.where(cval <= cval[-1]*float(frac))[0].max() res = rval[ind] del val, cval, ind, rval return res
126d16ab9358d9ec6e72dc653037d9235baef139
3,650,719
def _ParseSparse(data): """Concat sparse tensors together. Args: data: A dict of name -> Tensor. Returns: A single sparse tensor and a 1-D input spec Tensor. Raises: NotImplementedError: Combining dense and sparse tensors is not supported. ValueError: If data contains non-string Tensors. """ for k in sorted(data.keys()): if not isinstance(data[k], sparse_tensor.SparseTensor): raise NotImplementedError( 'Features should be either all sparse or all dense. Use a ' 'feature engineering function to convert some of them.') data_spec = [ constants.DATA_CATEGORICAL if data[data.keys()[0]].dtype == dtypes.string else constants.DATA_FLOAT ] return sparse_ops.sparse_concat(1, data.values()), data_spec
9860442770c52b2ee029531cb18e3dbf8429bfb1
3,650,720
def get_spectra2(X, E_in, p_dict, outputs=None): """ Calls get_Efield() to get Electric field, then use Jones matrices to calculate experimentally useful quantities. Alias for the get_spectra2 method in libs.spectra. Inputs: detuning_range [ numpy 1D array ] The independent variable and defines the detuning points over which to calculate. Values in MHz E_in [ numpy 1/2D array ] Defines the input electric field vector in the xyz basis. The z-axis is always the direction of propagation (independent of the magnetic field axis), and therefore the electric field should be a plane wave in the x,y plane. The array passed to this method should be in one of two formats: (1) A 1D array of (Ex,Ey,Ez) which is the input electric field for all detuning values; or (2) A 2D array with dimensions (3,len(detuning_range)) - i.e. each detuning has a different electric field associated with it - which will happen on propagation through a birefringent/dichroic medium p_dict [ dictionary ] Dictionary containing all parameters (the order of parameters is therefore not important) Dictionary keys: Key DataType Unit Description --- --------- ---- ----------- Elem str -- The chosen alkali element. Dline str -- Specifies which D-line transition to calculate for (D1 or D2) # Experimental parameters Bfield float Gauss Magnitude of the applied magnetic field T float Celsius Temperature used to calculate atomic number density GammaBuf float MHz Extra lorentzian broadening (usually from buffer gas but can be any extra homogeneous broadening) shift float MHz A global frequency shift of the atomic resonance frequencies DoppTemp float Celsius Temperature linked to the Doppler width (used for independent Doppler width and number density) Constrain bool -- If True, overides the DoppTemp value and sets it to T # Elemental abundancies, where applicable rb85frac float % percentage of rubidium-85 atoms K40frac float % percentage of potassium-40 atoms K41frac float % percentage of potassium-41 atoms lcell float m length of the vapour cell theta0 float degrees Linear polarisation angle w.r.t. to the x-axis Pol float % Percentage of probe beam that drives sigma minus (50% = linear polarisation) NOTE: If keys are missing from p_dict, default values contained in p_dict_defaults will be loaded. outputs: an iterable (list,tuple...) of strings that defines which spectra are returned, and in which order. If not specified, defaults to None, in which case a default set of outputs is returned, which are: S0, S1, S2, S3, Ix, Iy, I_P45, I_M45, alphaPlus, alphaMinus, alphaZ Returns: A list of output arrays as defined by the 'outputs' keyword argument. Example usage: To calculate the room temperature absorption of a 75 mm long Cs reference cell in an applied magnetic field of 100 G aligned along the direction of propagation (Faraday geometry), between -10 and +10 GHz, with an input electric field aligned along the x-axis: detuning_range = np.linspace(-10,10,1000)*1e3 # GHz to MHz conversion E_in = np.array([1,0,0]) p_dict = {'Elem':'Cs', 'Dline':'D2', 'Bfield':100, 'T':21, 'lcell':75e-3} [Transmission] = calculate(detuning_range,E_in,p_dict,outputs=['S0']) """ # get some parameters from p dictionary # need in try/except or equiv. if 'Elem' in list(p_dict.keys()): Elem = p_dict['Elem'] else: Elem = p_dict_defaults['Elem'] if 'Dline' in list(p_dict.keys()): Dline = p_dict['Dline'] else: Dline = p_dict_defaults['Dline'] if 'shift' in list(p_dict.keys()): shift = p_dict['shift'] else: shift = p_dict_defaults['shift'] if 'lcell' in list(p_dict.keys()): lcell = p_dict['lcell'] else: lcell = p_dict_defaults['lcell'] if 'theta0' in list(p_dict.keys()): theta0 = p_dict['theta0'] else: theta0 = p_dict_defaults['theta0'] if 'Pol' in list(p_dict.keys()): Pol = p_dict['Pol'] else: Pol = p_dict_defaults['Pol'] # get wavenumber exec('transition = AC.'+Elem+Dline+'Transition') wavenumber = transition.wavevectorMagnitude # Calculate Susceptibility ChiPlus, ChiMinus, ChiZ = calc_chi(X, p_dict) Chi = [ChiPlus, ChiMinus, ChiZ] # Complex refractive index nPlus = sqrt(1.0+ChiPlus) #Complex refractive index driving sigma plus transitions nMinus = sqrt(1.0+ChiMinus) #Complex refractive index driving sigma minus transitions nZ = sqrt(1.0+ChiZ) # Complex index driving pi transitions # convert (if necessary) detuning axis X to np array if type(X) in (int, float, int): X = np.array([X]) else: X = np.array(X) # Calculate E_field E_out, R = get_Efield(X, E_in, Chi, p_dict) #print 'Output E field (Z): \n', E_out[2] ## Apply Jones matrices # Transmission - total intensity - just E_out**2 / E_in**2 E_in = np.array(E_in) if E_in.shape == (3,): E_in = np.array([np.ones(len(X))*E_in[0],np.ones(len(X))*E_in[1],np.ones(len(X))*E_in[2]]) # normalised by input intensity I_in = (E_in * E_in.conjugate()).sum(axis=0) S0 = (E_out * E_out.conjugate()).sum(axis=0) / I_in Iz = (E_out[2] * E_out[2].conjugate()).real / I_in Transmission = S0 ## Some quantities from Faraday geometry don't make sense when B and k not aligned, but leave them here for historical reasons TransLeft = exp(-2.0*nPlus.imag*wavenumber*lcell) TransRight = exp(-2.0*nMinus.imag*wavenumber*lcell) # Faraday rotation angle (including incident linear polarisation angle) phiPlus = wavenumber*nPlus.real*lcell phiMinus = wavenumber*nMinus.real*lcell phi = (phiMinus-phiPlus)/2.0 ## #Stokes parameters #S1# Ex = np.array(JM.HorizPol_xy * E_out[:2]) Ix = (Ex * Ex.conjugate()).sum(axis=0) / I_in Ey = np.array(JM.VertPol_xy * E_out[:2]) Iy = (Ey * Ey.conjugate()).sum(axis=0) / I_in S1 = Ix - Iy #S2# E_P45 = np.array(JM.LPol_P45_xy * E_out[:2]) E_M45 = np.array(JM.LPol_M45_xy * E_out[:2]) I_P45 = (E_P45 * E_P45.conjugate()).sum(axis=0) / I_in I_M45 = (E_M45 * E_M45.conjugate()).sum(axis=0) / I_in S2 = I_P45 - I_M45 #S3# # change to circular basis E_out_lrz = BC.xyz_to_lrz(E_out) El = np.array(JM.CPol_L_lr * E_out_lrz[:2]) Er = np.array(JM.CPol_R_lr * E_out_lrz[:2]) Il = (El * El.conjugate()).sum(axis=0) / I_in Ir = (Er * Er.conjugate()).sum(axis=0) / I_in S3 = Ir - Il Ir = Ir.real Il = Il.real Ix = Ix.real Iy = Iy.real ## (Real part) refractive indices #nMinus = nPlus.real #nPlus = nMinus.real ## Absorption coefficients - again not a physically relevant quantity anymore since propagation is not as simple as k * Im(Chi) * L in a non-Faraday geometry alphaPlus = 2.0*nMinus.imag*wavenumber alphaMinus = 2.0*nPlus.imag*wavenumber alphaZ = 2.0*nZ.imag*wavenumber # Refractive/Group indices for left/right/z also no longer make any sense #d = (array(X)-shift) #Linear detuning #dnWRTv = derivative(d,nMinus.real) #GIPlus = nMinus.real + (X + transition.v0*1.0e-6)*dnWRTv #dnWRTv = derivative(d,nPlus.real) #GIMinus = nPlus.real + (X + transition.v0*1.0e-6)*dnWRTv if (outputs == None) or ('All' in outputs): # Default - return 'all' outputs (as used by GUI) return S0.real,S1.real,S2.real,S3.real,Ix.real,Iy.real,I_P45.real,I_M45.real,alphaPlus,alphaMinus,alphaZ else: # Return the variable names mentioned in the outputs list of strings # the strings in outputs must exactly match the local variable names here! return [locals()[output_str] for output_str in outputs]
e55c9a428876e6cb41f92775d46f6c9411913e7d
3,650,721
import operator def calculate_seat_district(district_deputy_number, parties, votes): """ Calculate seats for each party in list of parties for a district Params: - district_deputy_number: the number of seats for this district - parties: list of parties - votes: list of votes for each party in this district Assume that parties and votes parameters have the same size Return: - A tuple represents number of seats for each party. This tuple has same size with parameter 'parties' """ party_count = len(parties) # Each party has been initially allocated 0 seat # Initialize a list with initial value is 0 # For example, if party_count = 5 # seats will be seats = [0, 0, 0, 0, 0] seats = [0] * party_count # N value for each party # N= V/(s + 1) # Init N as a copy of votes list N = votes[:] while sum(seats) < district_deputy_number: # Get the maximum value in list of N value and the index of that maximum value # Note: this below line uses the Python's builtin operator max_index, max_value = max(enumerate(N), key=operator.itemgetter(1)) # Update the seats list # increase the seat of the party that has maximum by 1 seats[max_index] += 1 # Update the lagest N with new value # using the formal: N= V/(s + 1) N[max_index] = votes[max_index] / (seats[max_index] + 1) # return as tuple # Note: It can be returned as list, however, the tuple is better because it's immutable return tuple(seats)
035a167c623d14857dcefe01e4304523959857a6
3,650,724
import unittest def dispatch(): """Run all dispatch tests""" suite = ServiceTestSuite() suite.addTest(unittest.makeSuite(TestCase, 'test_dispatch')) return suite
c0d5235bcc22429f8ed36756c4f531f014316d04
3,650,725
import torch def get_mask(height, width, grid_size = 10): """ Get the location based on the image size corresponding to relu_4_2 and relu_5_1 layer for a desired grid size. """ print(height, width) x_jump = int(width/grid_size) y_jump = int(height/grid_size) x_idx = np.linspace(int(x_jump/2),int(width - x_jump/2), grid_size, dtype = np.int32) y_idx = np.linspace(int(y_jump/2), int(height - y_jump/2), grid_size, dtype = np.int32) f_mask = torch.zeros((height//(2**4),width//2**4)).byte() u_mask = torch.zeros((height//(2**3),width//2**3)).byte() for i in x_idx: for j in y_idx: f_mask[j//(2**4),i//(2**4)] = 1 u_mask[j//(2**3),i//(2**3)] = 1 return(u_mask, f_mask)
a63b1bf2944309f3e5720d06bb5906a059e09ea7
3,650,726
def arrivalTimes2TimeTraceBH(arrivalTimes, binLength): """ Convert a list of arrivalTimes to an intensity time trace I(t) =========================================================================== Input Meaning --------------------------------------------------------------------------- arrivalTimes Variable with the arrivalTimes for each detector element [of ns] binLength Duration of each bin [in ns] =========================================================================== Output Meaning --------------------------------------------------------------------------- data Vector with intensity trace vs time in bins of binLength =========================================================================== """ # calculate for each photon in which bin it should be photonBins = np.int64(arrivalTimes / binLength) # number of photon bins Nbins = np.max(photonBins) + 1 # create output vector data = np.zeros(Nbins, 'int16') for i in range(len(photonBins)): data[photonBins[i]] += 1 return data
0db7d8471bb5b918c66a57ace1b84871012448a4
3,650,727
from datetime import datetime import pytz def datetime_to_ts(dt): """ convert naive or aware datetime instance to timestamp in second Args: dt(datetime): datetime instance Returns: int: timestamp in second. """ epoch_dt = datetime.datetime.fromtimestamp(0, tz=pytz.utc) if not hasattr(dt, 'tzinfo') or dt.tzinfo is None: local_tz = tzlocal.get_localzone() dt = local_tz.localize(dt) delta = dt - epoch_dt ts = delta.total_seconds() return ts
4fd3f0e0a4a051980a6bfe3e21a3ceb4ceca6b7e
3,650,728
def load_csv(source_filepath, start_date = None, end_date = None, timestamp_index = 0, column_map = {"bidopen": "bidopen", "bidclose": "bidclose", "bidhigh": "bidhigh", "bidlow": "bidlow", "askopen": "askopen", "askclose": "askclose", "askhigh": "askhigh", "asklow": "asklow", "volume": "tickqty"}): """Loads a csv price data file Args: source_filepath (string): the full or relative filepath for csv input file start_date (string): optional filter for price data end_date (string): optional filter for price data timestamp_index (int): column index for the start of bar timestamp column_map (dict): maps the csv file columns (value) to the predefined column names (key) Returns: Pandas.DataFrame: returns the price data """ #read the csv file df = pd.read_csv(source_filepath, sep=",", index_col=timestamp_index, parse_dates=True) #convert the columns to the correct data type df["askopen"] = df[column_map["askopen"]].astype('float32') df["askclose"] = df[column_map["askclose"]].astype('float32') df["askhigh"] = df[column_map["askhigh"]].astype('float32') df["asklow"] = df[column_map["asklow"]].astype('float32') df["bidopen"] = df[column_map["bidopen"]].astype('float32') df["bidclose"] = df[column_map["bidclose"]].astype('float32') df["bidhigh"] = df[column_map["bidhigh"]].astype('float32') df["bidlow"] = df[column_map["bidlow"]].astype('float32') df["volume"] = df[column_map["volume"]].astype('int32') #reorder the columns in the correct order cols = ["askopen", "askclose", "askhigh", "asklow", "bidopen", "bidclose", "bidhigh", "bidlow", "volume"] df = df[cols] #filter on dates if required if start_date is not None: df = df[df.index >= start_date] if end_date is not None: df = df[df.index <= end_date] return df
c5256dddcea94854c30c6b95d96557cb81003e80
3,650,729
def create_kernel(dim0, dim1): """Create a two-dimensional LPF kernel, with a half-Hamming window along the first dimension and a Gaussian along the second. Parameters ---------- dim0 : int Half-Hamming window length. dim1 : int Gaussian window length. Returns ------- kernel : np.ndarray The 2d LPF kernel. """ dim0_weights = np.hamming(dim0 * 2 + 1)[:dim0] dim1_weights = gaussian(dim1, dim1 * 0.25, True) kernel = dim0_weights[:, np.newaxis] * dim1_weights[np.newaxis, :] return kernel / kernel.sum()
f19cd7a840fd1562b0c95f614415d3471e1cb4d4
3,650,730
def generate_fractal_noise_3d( shape, res, octaves=1, persistence=0.5, lacunarity=2, tileable=(False, False, False), interpolant=interpolant ): """Generate a 3D numpy array of fractal noise. Args: shape: The shape of the generated array (tuple of three ints). This must be a multiple of lacunarity**(octaves-1)*res. res: The number of periods of noise to generate along each axis (tuple of three ints). Note shape must be a multiple of (lacunarity**(octaves-1)*res). octaves: The number of octaves in the noise. Defaults to 1. persistence: The scaling factor between two octaves. lacunarity: The frequency factor between two octaves. tileable: If the noise should be tileable along each axis (tuple of three bools). Defaults to (False, False, False). interpolant: The, interpolation function, defaults to t*t*t*(t*(t*6 - 15) + 10). Returns: A numpy array of fractal noise and of shape shape generated by combining several octaves of perlin noise. Raises: ValueError: If shape is not a multiple of (lacunarity**(octaves-1)*res). """ noise = cp.zeros(shape) frequency = 1 amplitude = 1 for _ in range(octaves): noise += amplitude * generate_perlin_noise_3d( shape, (frequency*res[0], frequency*res[1], frequency*res[2]), tileable, interpolant ) frequency *= lacunarity amplitude *= persistence return noise
3c20dd9c7de6e53d074926bdf87278f92f5162f4
3,650,731
def getDeltaBetweenPosition(data_outVTK, wall_outVTK, cord_choice, x_p0, x_p1, Npts, Uinf=None, Rhoinf=None): """ Compute the boundary layer thickness for *Npts* equally distributed between the 2 position defined thanks to *x_p0*, *x_p1* and *cord_choice*. See the documentation of the function getDeltaAtPosition() for more information. Parameters ---------- data_outVTK : VTK output object from a VTK reader This field data MUST fulfill 2 conditions: - contain the field "U_AVG", - represent a 2D field data, as we want to extract a 1D velocity profile from it. wall_outVTK : VTK output object from a VTK reader This field is supposed to describe a curve with 1D cell type, like in getLineTangentialVector() cord_choice : integer, 0, 1 or 2 Gives the axis that is going to be used to define the point where the velocity profile is extracted. Convention : - 0 = x axis - 1 = y axis - 2 = z axis x_p0, x_p1 : float between 0 and 1 gives the bound of the line where to compute the BL thickness. Npts: integer Number of points where to compute delta wanted. Uinf : float (optional) Free stream velocity Rhoinf : float (optional) Free stream density Returns ------- pos : vector of tuple(3) the coordinates of the points where delta have been computed. delta : vector of floats The BL thickness at the *Npts* different points. deltaS : vector of floats The compressible BL displacement thickness at the *Npts* different points. theta : vector of floats The compressible BL momentum thickness at the *Npts* different points. """ # function display print '---- DAEPy::getDeltaBetweenPosition ----' delta = np.zeros(Npts) deltaS = np.zeros(Npts) theta = np.zeros(Npts) pos = np.zeros((Npts, 3)) for i in range(Npts): x_p_temp = x_p0 + (x_p1-x_p0)/(Npts-1)*i [pos[i,:], delta[i], deltaS[i], theta[i]] = getDeltaAtPosition(data_outVTK, wall_outVTK, cord_choice, x_p_temp, Uinf, Rhoinf) return [pos, delta, deltaS, theta]
a765dbecf1d34c8693c73ecc5250d22bf04793fa
3,650,732
def get_clean_url(url): """ Get a url without the language part, if i18n urls are defined :param url: a string with the url to clean :return: a string with the cleaned url """ url = url.strip('/') url = '/' if not url else url return '/'.join(url.split('/')[1:])
9e5d396086d6cc5169c26f6d1645dafd23a3b8d7
3,650,733
def get_fields_from_url(): """Returns a list of fields defined in the url as expected by the RESTful standard""" return request.args.get('fields', '').split(",")
7e6833f10f8b32a71667402ca3f1c9f5b8648b56
3,650,734
import collections def get_triples_processed(dcids, limit=_MAX_LIMIT): """ Generate the GetTriple query and send the request. The response is processed into as triples strings. This API is used by the pv tree tool. """ url = API_ROOT + API_ENDPOINTS['get_triples'] payload = send_request(url, req_json={'dcids': dcids, 'limit': limit}) # Create a map from dcid to list of triples. results = collections.defaultdict(list) for dcid in dcids: # Make sure each dcid is mapped to an empty list. results[dcid] # Add triples as appropriate for t in payload[dcid]: if 'objectId' in t: results[dcid].append( (t['subjectId'], t['predicate'], t['objectId'])) elif 'objectValue' in t: results[dcid].append( (t['subjectId'], t['predicate'], t['objectValue'])) return dict(results)
de143106e4f6efad89a223b5e83146bd2de170d0
3,650,735
from datetime import datetime def cid_to_date(cid): """Converts a cid to date string YYYY-MM-DD Parameters ---------- cid : int A cid as it is generated by the function ``utils.create_cid()`` Returns ------- str A string formated date (e.g. YYYY-MM-DD, 2018-10-01) """ return datetime.utcfromtimestamp( cid/10000000.0 ).strftime("%Y-%m-%d")
ab919f9cfd5c56f6fb6b65cbae8731687fc42faf
3,650,736
import requests import html def get_listings(max_pages=10): """Returns the listings from the first max_pages of craigslist.""" page = requests.get(URL) tree = html.fromstring(page.content) listing_xpath = '//li[@class="result-row"]' listings = tree.xpath(listing_xpath) # Get total number of listings default_lpp = 120 # Default number of listings on each page num_listings = int(tree.xpath('//span[@class="totalcount"]/text()')[0]) total_pages = ceil(num_listings / default_lpp) # Get next pages for i in range(min(max_pages - 1, total_pages)): next_page = requests.get(URL + "&s=%s" % (default_lpp * i)) next_tree = html.fromstring(page.content) next_listings = tree.xpath(listing_xpath) listings.extend(next_listings) return listings
a01aadf7e1701735fe3757b92da09c6a12848c73
3,650,737
import random def remove_edge_stochastic_function(G, parameter, prob_func, prob_func_kws={}, random_seed=None, copy=True): """ Recieves a Graph and p. p is function of a defined parameter Returns a degraded Graph """ if random_seed is not None: random.seed(random_seed) if copy: G_ = G.copy() else: G_ = G lst = [G.edges[n][parameter] for n in G.edges] vmax, vmin = max(lst), min(lst) prob_func_kws['vmax'] = vmax prob_func_kws['vmin'] = vmin lst=None for edge in list(G.edges): p = prob_func(G.edges[edge][parameter], **prob_func_kws) if random.random()<=p: G_.remove_edge(*edge) return(G_)
e4f49a6e512f7ad0e86c0138bf76affa330ba7a5
3,650,738
def get_sh_type(sh_type): """Get the section header type.""" if sh_type == 0: return 'SHT_NULL' elif sh_type == 1: return 'SHT_PROGBITS' elif sh_type == 2: return 'SHT_SYMTAB' elif sh_type == 3: return 'SHT_STRTAB' elif sh_type == 4: return 'SHT_RELA' elif sh_type == 5: return 'SHT_HASH' elif sh_type == 6: return 'SHT_DYNAMIC' elif sh_type == 7: return 'SHT_NOTE' elif sh_type == 8: return 'SHT_NOBITS' elif sh_type == 9: return 'SHT_REL' elif sh_type == 10: return 'SHT_SHLIB' elif sh_type == 11: return 'SHT_DYNSYM' elif sh_type == 14: return 'SHT_INIT_ARRAY' elif sh_type == 15: return 'SHT_FINI_ARRAY' elif sh_type == 16: return 'SHT_PREINIT_ARRAY' elif sh_type == 17: return 'SHT_GROUP' elif sh_type == 18: return 'SHT_SYMTAB_SHNDX' elif sh_type == 19: return 'SHT_NUM' elif sh_type == 1610612736: return 'SHT_LOOS' else: print('Unable to match {} to a sh_type.'.format(sh_type)) raise ValueError
0d95e651cc817f48178e45373b822be2eb32fbaf
3,650,739
def show_warn_message(text:str, *args:str) -> str: """ Show a warning message. """ return _base("showWarningMessage", text, *args)
2b1851aade6ff8952c27b1f63d687ae0e95ce4c2
3,650,740
def read_gmpe_file(resid_file, period): """ Reads the gmpe residuals file and returns all the data """ gmpe_data = [] # Read residuals file and get information we need input_file = open(resid_file, 'r') # Look over header and figure out which column contains the period # we need to plot header = input_file.readline() header = header.strip() items = header.split() index = -1 for idx, item in enumerate(items): try: val = float(item) if val == period: # Found period, save index index = idx break except: pass if index < 0: # If we don't have this period, nothing to do print("Residuals file %s does not have data for period %f" % (resid_file, period)) # Close input file input_file.close() # Return empty sets return gmpe_data # Read the rest of the file # Index #2 has station name # Index #7 has distance for line in input_file: items = line.split() stat = items[2] dist = items[7] value = items[index] gmpe_data.append((stat, dist, value)) # Done reading the file input_file.close() return gmpe_data
c7cb325f6c40cc23ae8fa017a6ef924fa7df2c4e
3,650,741
def get_types(name=None): """Retrieves the list of device types in the system. Note that we actually use the "GET device-families" endpoint, as this returns a complete list in one request. """ all_types = [] all_families = get_families(name=None, includeTypes=True) for family in all_families: all_types.extend(family["types"]) return all_types
dad6ff4fd938aa63e8c42dbf0e70ede0786bd458
3,650,743
import json def read_socket(sock, buf_len, echo=True): """ Read data from socket and return it in JSON format """ reply = sock.recv(buf_len).decode() try: ret = json.loads(reply) except json.JSONDecodeError: print("Error in reply: ", reply) sock.close() raise if echo: print(json.dumps(ret)) return ret
07d7100ed8c1c9d22307ce293e10b2a0cd5849c6
3,650,744
def temperature_source_function( rho, district, norm, density: xr.DataArray, etemp: xr.DataArray, itemp: xr.DataArray, density_source: xr.DataArray, source_strength, source_centre=0.3, source_width=0.3, ): """ Smooth-step core power injection, mimicking Ohmic power deposition The temperature source takes into account the power from the density source, to give a constant-power source """ core_source = core_temperature_source_function( rho, district, norm, source_strength, source_centre, source_width ) total_source = xr.DataArray( core_source / density - density_source * (etemp + itemp) / density ).assign_attrs(norm=norm.Te0 / norm.tau_0) core_source = xr.DataArray(core_source / density).assign_attrs( norm=norm.Te0 / norm.tau_0 ) annular_sink = xr.DataArray( -density_source * (etemp + itemp) / density ).assign_attrs(norm=norm.Te0 / norm.tau_0) return total_source, core_source, annular_sink
ba7836ce3f9d2e523dca4a6bf33999a116f20920
3,650,745
from pathlib import Path import requests def mock_dbt_cloud_response( monkeypatch: MonkeyPatch, dbt_manifest_file: Path, dbt_run_results_file: Path, ) -> None: """ Mock the dbt cloud response. Parameters ---------- monkeypatch : MonkeyPatch The monkey patch fixture. dbt_manifest_file : Path The path to the manifest file. dbt_run_results_file : Path The path to the run results file. """ def get(url: str, headers: dict | None = None): """Mock the requests.get method.""" response = requests.Response() if "manifest.json" in url: file = dbt_manifest_file elif "run_results.json" in url: file = dbt_run_results_file else: raise ValueError(f"Unrecognized url: {url}") with file.open("rb") as f: response._content = f.read() response.status_code = requests.codes.ok return response monkeypatch.setattr(requests, "get", get)
1ae3a38c36a2f1468287ed587ee7495e40ceee74
3,650,746
async def model_copy(request, model_id): """ route for copy item per row """ request_params = {elem: request.form[elem][0] for elem in request.form} base_obj_id = utils.extract_obj_id_from_query(request_params["_id"]) try: new_obj_key = await create_object_copy( model_id, base_obj_id, cfg.models[model_id] ) message = f"Object with {base_obj_id} key was copied as {new_obj_key}" flash_message = (message, "success") log_history_event(request, message, new_obj_key) except asyncpg.exceptions.UniqueViolationError as e: flash_message = ( f"Duplicate in Unique column Error during copy: {e.args}. \n" f"Try to rename existed id or add manual.", "error", ) except asyncpg.exceptions.ForeignKeyViolationError as e: flash_message = (e.args, "error") return await model_view_table(request, model_id, flash_message)
2fd7ed81d10d40cd58c859e3b60de315404d9f4d
3,650,747
def load_pr(fname): """Loads predicted tracks in tabular format.""" try: data = np.loadtxt(fname, delimiter=',', dtype=np.float64, ndmin=2) except (ValueError, IndexError): # Try using whitespace delim (default). data = np.loadtxt(fname, delimiter=None, dtype=np.float64, ndmin=2) # If category is not -1, then filter by pedestrian. _, num_cols = data.shape if CATEGORY_COLUMN < num_cols and not np.all(data[:, CATEGORY_COLUMN] == -1): data = data[data[:, CATEGORY_COLUMN] == POSITIVE_CATEGORY, :] return data
63fd8422adb170ccc2e97d32b9be04efe86fa72d
3,650,748
def build_affine(rotation, scale, origin): """ Compute affine matrix given rotation, scaling, and origin. Parameters ---------- rotation : np.array rotation scale : np.array scale factor Returns ------- aff : np.array [4x4] affine matrix """ aff = np.zeros((4, 4)) aff[0:3, 0:3] = rotation aff[:, 3] = np.append(origin, 1).T aff[0:3, 0:3] = np.dot(aff[0:3, 0:3], np.diag(scale)) return aff
927016b37f3c1ea2c7b3720cb7b31f246784258a
3,650,749
from operator import concat def sample_per_group(data, group_by, ratio = None, n = None): """ :type data: DataFrame :type group_by: list of str :type ratio: float :type num_rows: int :return: """ # group the data data = data.copy() """ :type data: DataFrame """ data['__order1'] = data.index grouped = data.groupby(by = group_by) training_sets = [] test_sets = [] for name, group in grouped: if n is None: num_rows = round(group.shape[0] * ratio) else: num_rows = round(min(n, group.shape[0])) shuffled = shuffle(data=group).reset_index(drop=True) new_training_set = shuffled.iloc[:num_rows, ] if num_rows>group.shape[0]: # if all of the data ends up in training set, test set should be empty instead of an error new_test_set = shuffled[shuffled.index!=shuffled.index] else: new_test_set = shuffled.iloc[(num_rows + 1):, ] training_sets.append(new_training_set) test_sets.append(new_test_set) training = concat(training_sets) """ :type training: DataFrame """ test = concat(test_sets) """ :type test: DataFrame """ training.reset_index(drop=True, inplace=True) test.reset_index(drop=True, inplace=True) training.index = training['__order1'].values test.index = test['__order1'].values training.sort_index(inplace=True) test.sort_index(inplace=True) training.drop(axis=1, labels = '__order1', inplace=True) test.drop(axis=1, labels='__order1', inplace=True) return training, test
ca92f79263f428aeafb07ac9efb4db65145a3113
3,650,750
def get_base64_column(metadata_df: pd.DataFrame) -> pd.DataFrame: """ Get accession json base64 str :return: """ # Get accession json object as base64 string metadata_df['accession_json_base64_str'] = metadata_df[METADATA_PAYLOAD_COLUMNS].\ apply(lambda x: b64encode(bytes(x.to_json(), encoding='utf-8')).decode("ascii"), axis="columns") return metadata_df
a68f9d735a4ac1612cb4fea2e83cac903e8111c8
3,650,751
def bible_studies_view(request): """Bible studies view.""" auth = False try: auth = request.cookies['auth_tkt'] auth_tools = request.dbsession.query( MyModel ).filter(MyModel.category == 'admin').all() except KeyError: auth_tools = [] query = request.dbsession.query(MyModel) content = query.filter(MyModel.page == 'ministries').all() main_menu = query.filter(MyModel.subcategory == 'base').all() submenu = [item for item in content if item.title == 'menu_place_holder'] topimg = [item for item in content if item.category == 'topimg'] main = [item for item in content if item.category == 'bible_studies'] return { 'auth': auth, 'main_menu': main_menu, 'submenu': submenu, 'topimg': topimg[0], 'main': main, 'auth_tools': auth_tools, }
c69a5291cbcb8267c0606fef2cae620878cca97b
3,650,752
def get_num_channels(inputs): """ Get number of channels in one tensor. """ return inputs.shape[1]
6fb42e60714dc81f03b29ad87b73b41027056472
3,650,753
def single_face_marker(): """ Face marker with a single value. """ return np.zeros((2, 3)).astype(int)
2d126b031a1809a8d95df00ccada79ba6191fa61
3,650,754
def skew(arr, angle, dx=None, dy=None, fwd=True, fill_min=True): """ Skew the origin of successive lines by a specified angle A skew with angle of 30 degrees causes the following transformation: +-----------+ +---------------+ | | |000/ /| | input | |00/ output /0| | image | |0/ image /00| | | |/ /000| +-----------+ +---------------+ Calling skew with fwd=False will return the output image back to the input image. Skew angle must be between -45 and 45 degrees Arguments: arr: array to skew angle: angle between -45 and 45 to skew by dx: spacing of the array in the x (sample) direction (if dx=dy, or dx or dy not supplied, spacing is ignored) dy: spacing of the array in the y (line) direction fwd: add skew to image if True, unskew image if False fill_min: While IPW skew says it fills with zeros, the output image is filled with the minimum value Returns: skewed array """ if angle == 0: return arr if angle > 45 or angle < -45: raise ValueError('skew angle must be between -45 and 45 degrees') if dx is None or dy is None: dx = 1.0 dy = 1.0 nlines, nsamps = arr.shape if angle >= 0.0: negflag = False else: negflag = True angle = -angle # unequal dx/dy equivalent to changing skew angle slope = np.tan(angle * np.pi / 180.0) * (dy/dx) max_skew = int((nlines - 1) * slope + 0.5) o_nsamps = nsamps if fwd: o_nsamps += max_skew else: o_nsamps -= max_skew b = np.zeros((nlines, o_nsamps)) if fill_min: b += np.min(arr) # if skewing, first fill output array with original array if fwd: b[0:nlines, 0:nsamps] = arr o = np.arange(nlines) # positive skew angle means shifts decrease with increasing row index if not negflag: o = nlines - o - 1 offset = (o * slope + 0.5).astype(int) if not fwd: # offset values are negative shifts if unskewing offset *= -1 if fwd: b = custom_roll(b, offset) else: # assignment indexing added to ensure array shape match b[:, :] = custom_roll(arr, offset)[:, :o_nsamps] """ for line in range(nlines): o = line if negflag else nlines - line - 1 offset = int(o * slope + 0.5) if fwd: b[line, offset:offset+nsamps] = arr[line, :] else: b[line, :] = arr[line, offset:offset+o_nsamps] """ return b
e25bb8632c6e86c84ab5e5a5bae56fd6f24e7c0d
3,650,755
def websocket_call(configuration, _method, url, **kwargs): """An internal function to be called in api-client when a websocket connection is required. method, url, and kwargs are the parameters of apiClient.request method.""" url = get_websocket_url(url, kwargs.get("query_params")) headers = kwargs.get("headers") _request_timeout = kwargs.get("_request_timeout", 60) _preload_content = kwargs.get("_preload_content", True) capture_all = kwargs.get("capture_all", True) try: client = WSClient(configuration, url, headers, capture_all) if not _preload_content: return client client.run_forever(timeout=_request_timeout) return WSResponse('%s' % ''.join(client.read_all())) except (Exception, KeyboardInterrupt, SystemExit) as e: raise ApiException(status=0, reason=str(e))
add109d9caa80b74cb28754792033577e7b70ef3
3,650,756
def compute_metrics(feats, pids, camids, num_query): """ Compute CMC and mAP metrics """ # query qf = feats[:num_query] q_pids = np.asarray(pids[:num_query]) q_camids = np.asarray(camids[:num_query]) # gallery gf = feats[num_query:] g_pids = np.asarray(pids[num_query:]) g_camids = np.asarray(camids[num_query:]) m, n = qf.shape[0], gf.shape[0] distmat = np.power(qf, 2).sum(axis=1, keepdims=True).repeat(n, axis=1) + \ np.power(gf, 2).sum(axis=1, keepdims=True).repeat(m, axis=1).T distmat = 1 * distmat - 2 * np.dot(qf, gf.transpose()) cmc, m_ap = eval_func(distmat, q_pids, g_pids, q_camids, g_camids) return cmc, m_ap
4bd35b6e4c7ede5a54685822feeb6264e3fd7275
3,650,757
from datetime import datetime def parse_date(string_date: str) -> datetime.datetime: """ Parses input string of format 'MMM-yyyy' to datetime. :param str string_date: Date in string format 'MMM-yyyy' :return: datetime.datetime: parsed datetime """ return datetime.datetime.strptime(string_date, '%b-%Y')
2d2b3b5332ca354e1600a25495dadd1dced31479
3,650,758
import math def round_vzeros(v,d=10) : """Returns input vector with rounded to zero components which precision less than requested number of digits. """ prec = pow(10,-d) vx = v[0] if math.fabs(v[0]) > prec else 0.0 vy = v[1] if math.fabs(v[1]) > prec else 0.0 vz = v[2] if math.fabs(v[2]) > prec else 0.0 return vx,vy,vz
aa16175bf1176383ef255460767502104be2566e
3,650,759
def euclidean_distance_loss(params, params_prev): """ Euclidean distance loss https://en.wikipedia.org/wiki/Euclidean_distance :param params: the current model parameters :param params_prev: previous model parameters :return: float """ return K.sqrt(K.sum(K.square(params - params_prev), axis=-1))
5c5366a7c60faa783ab55f85d758b7d40ff5627f
3,650,760
import re import shlex def read_cloudflare_api_file(prog, file, state): """Read the input file for Cloudflare login details. Args: prog (State): modified if errors encountered in opening or reading the file. file (str): the file to read. state (ConfigState): to record config file syntax errors. Returns: list(str): returns a list of Cloudflare login parameters (email and key) where a line in the file 'X = Y' is converted to: 'X:Y'. No checks on the input to any parameters (i.e. 'Y') are done here: only the list is constructed. If ANY errors are encountered, 'None' is returned. """ try: with open(str(file), "r") as f: raw = f.read().splitlines() except FileNotFoundError as ex: prog.log.error( "cloudflare API file '{}' not found".format(ex.filename)) return None except OSError as ex: prog.log.error( "reading cloudflare API file '{}' failed: {}".format( ex.filename, ex.strerror.lower())) return None allowed_params = {'dns_cloudflare_email': 'email', 'dns_cloudflare_api_key': 'key'} errors = False ret = [] linepos = 0 for l in raw: linepos += 1 match = re.match(r'^\s*(#.*)?$', l) if match: continue match = re.match( r'\s*(?P<param>\w+)\s*=\s*(?P<input>[^#]*)(\s*|\s#.*)$', l) if match: param = match.group('param') try: inputs = shlex.split(match.group('input')) except ValueError: state.add_error(prog, "cloudflare API file '{}' has malformed expression on line {}".format(file, linepos)) errors = True continue if param in allowed_params: if len(inputs) != 1: state.add_error(prog, "cloudflare API file '{}': malformed '{}' command on line {}".format(file, param, linepos)) errors = True continue ret += [ '{}:{}'.format(allowed_params[param], inputs[0]) ] continue state.add_error(prog, "cloudflare API file '{}': unrecognized command on line {}: '{}'".format(file, linepos, param)) errors = True continue state.add_error(prog, "cloudflare API file '{}' has malformed expression on line {}".format(file, linepos)) errors = True if errors: return None return ret
39d5fe28f348e9e3285f55cff22f025a86f41715
3,650,761
import hmac def hash_msg(key, msg): """Return SHA1 hash from key and msg""" return b64encode(hmac.new(key, msg, sha1).digest())
88ad5f5a2a2cad8657440b72d086c541d357ed05
3,650,762
def insert_pattern(base, pattern, offset=None): #optional! """ Takes a base simulation field and places a given pattern with an offset onto it. When offset is None, the object is placed into the middle Parameters ---------- base : numpy.ndarray The base simulation field. Can already hold objects. pattern : numpy.ndarray The pattern to be placed. Should fit onto the simulation field offset : (offset_x, offset_y), optional offset in the x and y directions, from the middle. The default is None. Raises ------ ValueError Error is raised, if the pattern does not fit onto the simulation field. Returns ------- field : TYPE The simulation field with the pattern placed. """ #pass pattern = np.array(pattern) new_field_config = base if offset == None: offset = (0,0) #neue pos mit offset pos = (np.int(new_field_config.shape[0] / 2) + offset[0], np.int(new_field_config.shape[1] / 2 + offset[1])) #überschreibe new_field_coinfig mit pattern an gewünschter pos new_field_config[pos[0]:pos[0] + pattern.shape[0], pos[1]:pos[1] + pattern.shape[1]] = pattern return new_field_config
ba72d5c37f9ba06cd5bd3b3803147b873bc2c742
3,650,763
def get_specific_label_dfs(raw_df, label_loc): """ Purpose: Split the instances of data in raw_df based on specific labels/classes and load them to a dictionary structured -> label : Pandas Dataframe Params: 1. raw_df (Pandas Dataframe): - The df containing data 2. label_loc (String): - The location where the output labels are stored in 1. raw_df Returns: A dictionary structured -> label : Pandas Dataframe """ labels = list(raw_df[label_loc].unique()) # a list of dataframes storing only instances of data belonging to one specific class/label label_dataframes = {} for label in labels: label_dataframes[label] = raw_df.loc[raw_df[label_loc] == label] return label_dataframes
756f03f845da64f6fd5534fb786966edb8610a13
3,650,764
def run(_): """ Meant for running/parallelizing training data preparation :param _: Not used :return: Runs prep() function """ return prep()
05f2c78a681d1c432ad6b55e8b43bea44fc6242c
3,650,765
def cached_property_named(name, kls=_internal_jit_attr, use_cls_setattr=False): """ variation of `cached_property`, just with the ability to explicitly set the attribute name Primarily of use for when the functor it's wrapping has a generic name ( `functools.partial` instances for example). Example Usage: >>> from snakeoil.klass import cached_property_named >>> class foo: ... ... @cached_property_named("attr") ... def attr(self): ... print("invoked") ... return 1 >>> >>> obj = foo() >>> print(obj.attr) invoked 1 >>> print(obj.attr) 1 """ return post_curry(kls, name, use_singleton=False, use_cls_setattr=False)
b132cf46f07ac6aa6e6806c81b4e4a4e75ff9b4a
3,650,766
def remix(tracks, n_tracks=50, n_steps=60): """Return new tracks generated by remixing given tracks""" time_step = int( np.round(next(dt for dt in sorted(tracks["Time"].diff()) if dt > 0) * 60) ) print( "Generating {} steps from {} steps {}s apart.".format( n_tracks * n_steps, len(tracks), time_step ) ) velocities_only = tracks[tracks["Turning Angle"].isnull()]["Velocity"].dropna() velo_and_turn = tracks[tracks["Plane Angle"].isnull()][ ["Velocity", "Turning Angle"] ].dropna() remaining_data = tracks[["Velocity", "Turning Angle", "Plane Angle"]].dropna() new_tracks = pd.DataFrame() for i in range(n_tracks): track_data = velo_and_turn.sample() track_data = track_data.append( remaining_data.sample(n_steps - 2, replace=True) ) track_data = track_data.append( pd.DataFrame( { "Velocity": velocities_only.sample() } ) ) new_track = silly_steps(track_data, time_step) new_track["Track_ID"] = i new_tracks = new_tracks.append(new_track) if "Condition" in tracks.columns: new_tracks["Condition"] = tracks["Condition"].iloc[0] + " Remixed" else: new_tracks["Condition"] = "Remixed" return new_tracks.reset_index()
0546af43785231fbe9c813dd54cdbbd2cbd12874
3,650,767
from datetime import datetime import logging def prohibition_served_recently(**args) -> tuple: """ Returns TRUE if the prohibition was served within the previous 3 days; otherwise returns FALSE """ date_served_string = args.get('date_of_service') config = args.get('config') delay_days = int(config.DAYS_TO_DELAY_FOR_VIPS_DATA_ENTRY) # Note: we have to rely on the date_served as submitted by the user -- not the date in VIPS # Check to see if enough time has elapsed to enter the prohibition into VIPS today = args.get('today_date') date_served = helper.localize_timezone(datetime.strptime(date_served_string, '%Y-%m-%d')) very_recently_served = (today - date_served).days < delay_days if very_recently_served: return True, args error = 'prohibition not served within the past {} days'.format(delay_days) args['error_string'] = error logging.info(error) print("date_served: {}, very_recently_served: {}".format(date_served, very_recently_served)) return False, args
fbdc32a37fd9c7cc975927309181b1ee46a4b4f2
3,650,768
import json def project_api(request): """ 创建项目接口 """ if not request.user.has_perm('home_application.can_add_project'): return render(request, '403.html') if request.method == 'POST': groupId=request.POST.get('group-id','') projectName=request.POST.get('project-name','') domain=request.POST.get('domain','') domainId=request.POST.get('domain-id',1) if domainId == '1': main_domain='.a.com.cn' elif domainId == '2': main_domain='.b.com' else: main_domain='' new_domain=domain+main_domain kwargs={ 'groupId':groupId, 'projectName':projectName, 'domain':new_domain, } try: create_project=QuerySet(**kwargs).creat_project() msg={'resultCode':u'200','data':create_project,'info': u'创建成功'} except Exception: msg={'resultCode':'60001','data':'','info': u'数据库操作异常,注意不要重复'} return HttpResponse(json.dumps(msg)) msg={'resultCode':u'60003','data':u'','info':u'不支持的请求'} return HttpResponse(json.dumps(msg))
1850bf158638c7fcd8c9816fd0832818d67e27d7
3,650,769
def impute_missing_values(model, observed_time_series, parameter_samples, include_observation_noise=False): """Runs posterior inference to impute the missing values in a time series. This method computes the posterior marginals `p(latent state | observations)`, given the time series at observed timesteps (a missingness mask should be specified using `tfp.sts.MaskedTimeSeries`). It pushes this posterior back through the observation model to impute a predictive distribution on the observed time series. At unobserved steps, this is an imputed value; at other steps it is interpreted as the model's estimate of the underlying noise-free series. Args: model: `tfp.sts.Sum` instance defining an additive STS model. observed_time_series: `float` `Tensor` of shape `concat([sample_shape, model.batch_shape, [num_timesteps, 1]])` where `sample_shape` corresponds to i.i.d. observations, and the trailing `[1]` dimension may (optionally) be omitted if `num_timesteps > 1`. May optionally be an instance of `tfp.sts.MaskedTimeSeries` including a mask `Tensor` to encode the locations of missing observations. parameter_samples: Python `list` of `Tensors` representing posterior samples of model parameters, with shapes `[concat([ [num_posterior_draws], param.prior.batch_shape, param.prior.event_shape]) for param in model.parameters]`. This may optionally also be a map (Python `dict`) of parameter names to `Tensor` values. include_observation_noise: If `False`, the imputed uncertainties represent the model's estimate of the noise-free time series at each timestep. If `True`, they represent the model's estimate of the range of values that could be *observed* at each timestep, including any i.i.d. observation noise. Default value: `False`. Returns: imputed_series_dist: a `tfd.MixtureSameFamily` instance with event shape [num_timesteps] and batch shape `concat([sample_shape, model.batch_shape])`, with `num_posterior_draws` mixture components. #### Example To specify a time series with missing values, use `tfp.sts.MaskedTimeSeries`: ```python time_series_with_nans = [-1., 1., np.nan, 2.4, np.nan, 5] observed_time_series = tfp.sts.MaskedTimeSeries( time_series=time_series_with_nans, is_missing=tf.math.is_nan(time_series_with_nans)) ``` Masked time series can be passed to `tfp.sts` methods in place of a `observed_time_series` `Tensor`: ```python # Build model using observed time series to set heuristic priors. linear_trend_model = tfp.sts.LocalLinearTrend( observed_time_series=observed_time_series) model = tfp.sts.Sum([linear_trend_model], observed_time_series=observed_time_series) # Fit model to data parameter_samples, _ = tfp.sts.fit_with_hmc(model, observed_time_series) ``` After fitting a model, `impute_missing_values` will return a distribution ```python # Impute missing values imputed_series_distribution = tfp.sts.impute_missing_values( model, observed_time_series) print('imputed means and stddevs: ', imputed_series_distribution.mean(), imputed_series_distribution.stddev()) ``` """ with tf.name_scope('impute_missing_values'): [ observed_time_series, mask ] = sts_util.canonicalize_observed_time_series_with_mask( observed_time_series) # Run smoothing over the training timesteps to extract the # predictive means and variances. num_timesteps = dist_util.prefer_static_value( tf.shape(input=observed_time_series))[-2] lgssm = model.make_state_space_model( num_timesteps=num_timesteps, param_vals=parameter_samples) posterior_means, posterior_covs = lgssm.posterior_marginals( observed_time_series, mask=mask) observation_means, observation_covs = lgssm.latents_to_observations( latent_means=posterior_means, latent_covs=posterior_covs) if not include_observation_noise: # Extract just the variance of observation noise by pushing forward # zero-variance latents. _, observation_noise_covs = lgssm.latents_to_observations( latent_means=posterior_means, latent_covs=tf.zeros_like(posterior_covs)) # Subtract out the observation noise that was added in the original # pushforward. Note that this could cause numerical issues if the # observation noise is very large. If this becomes an issue we could # avoid the subtraction by plumbing `include_observation_noise` through # `lgssm.latents_to_observations`. observation_covs -= observation_noise_covs # Squeeze dims to convert from LGSSM's event shape `[num_timesteps, 1]` # to a scalar time series. return sts_util.mix_over_posterior_draws( means=observation_means[..., 0], variances=observation_covs[..., 0, 0])
622546c31a10527aa0429c300e059aee69f2bb96
3,650,770
def grad_z(y, z, axis=0): """ Compute the vertical gradient "z" can be an array same size as y, or vector along the first axis of "y" Takes the derivative along the dimension specified by axis(=0) """ Nz = z.shape[0] # Reshape the y variable y = y.swapaxes(0, axis) #assert y.shape[0] == Nz z = z.swapaxes(0, axis) #assert z.shape == (Nz,) or z.shape == y.shape dy_dz = np.zeros_like(y) # Second-order accurate for mid-points ymid = 0.5*(y[1:,...]+y[0:-1,...]) zmid = 0.5*(z[1:,...]+z[0:-1,...]) dzmid = zmid[1:,...] - zmid[0:-1,...] dzmidi = 1./dzmid dy_dz[1:-1, ...] = (ymid[1:,...] - ymid[0:-1,...])*\ dzmidi[:,...] # First-order accurate for top and bottom cells dy_dz[0,...] = (y[1,...] - y[0,...])*dzmidi[0,...] dy_dz[-1,...] = (y[-1,...] - y[-2,...])*dzmidi[-1,...] return dy_dz.swapaxes(axis, 0)
8558110580476a509735ebdc8db011806c4266fa
3,650,771
def wang_ryzin_reg(h, Xi, x): """ A version for the Wang-Ryzin kernel for nonparametric regression. Suggested by Li and Racine in [1] ch.4 """ return h ** abs(Xi - x)
f87c15df408c9307c82a7bc0ab7bb700cac71f41
3,650,772
def get_all_input_values(corpus_weights): """ Returns all relevant input values """ azerty = get_azerty() letters = get_letters() characters = get_characters() keyslots = get_keyslots() similarity_c_c = get_character_similarities() similarity_c_l = get_character_letter_similarities() distance_level_0, distance_level_1 = get_distances() # read in single probabilities p_single, p_bigram = get_probabilities(corpus_weights) ergonomics = get_ergonomics() performance = get_performance() return azerty, \ characters, \ keyslots, \ letters, \ p_single, p_bigram, \ performance, \ similarity_c_c, similarity_c_l, \ distance_level_0, distance_level_1, \ ergonomics
f7b1054f34a11cde66c0506f1fb38d663ffc3645
3,650,773
def bulk_rename(doctype, rows=None, via_console = False): """Bulk rename documents :param doctype: DocType to be renamed :param rows: list of documents as `((oldname, newname), ..)`""" if not rows: frappe.throw(_("Please select a valid csv file with data")) if not via_console: max_rows = 500 if len(rows) > max_rows: frappe.throw(_("Maximum {0} rows allowed").format(max_rows)) rename_log = [] for row in rows: # if row has some content if len(row) > 1 and row[0] and row[1]: try: if rename_doc(doctype, row[0], row[1], rebuild_search=False): msg = _("Successful: {0} to {1}").format(row[0], row[1]) frappe.db.commit() else: msg = _("Ignored: {0} to {1}").format(row[0], row[1]) except Exception as e: msg = _("** Failed: {0} to {1}: {2}").format(row[0], row[1], repr(e)) frappe.db.rollback() if via_console: print(msg) else: rename_log.append(msg) frappe.enqueue('frappe.utils.global_search.rebuild_for_doctype', doctype=doctype) if not via_console: return rename_log
c495a70ff7becf076c42ded40ab6c4497e047c9c
3,650,774
def mag_to_flux_AB(mag, mag_err): """Calculate flux in erg s-1 cm-2 Hz-1.""" flux = 10 ** (-.4 * (mag + 48.6)) flux_err = abs(-.4 * flux * sp.log(10) * mag_err) return flux, flux_err
1d56802fe2803d3ed2fa50c3e6ce06ebcb3add01
3,650,775
def django_admin_navtree(request, context): """show menu""" if request and request.user.is_staff: coop_cms_navtrees = context.get('coop_cms_navtrees', None) or [] tree_class = get_navtree_class() admin_tree_name = "{0}_{1}".format(get_model_app(tree_class), get_model_name(tree_class)) if len(coop_cms_navtrees) == 1: tree = coop_cms_navtrees[0] url = reverse('admin:{0}_change'.format(admin_tree_name), args=[tree.id]) label = _('Navigation tree') else: url = reverse('admin:{0}_changelist'.format(admin_tree_name)) label = _('Navigation trees') return make_link( url, label, 'leaf', classes=['icon', 'alert_on_click'] )
5ba3f27c09146e72cb4893529985e818295f63c0
3,650,776
from typing import Counter def get_pos_tags(student_comment: str) -> pd.DataFrame: """Get the POS (part of speech) tags for each of the words in the student comments Keyword arguments student_comment -- a spacy.tokens.doc.Doc object """ # Count how many of each pos tags are in each comment pos_tags = student_comment.apply(lambda x: Counter([token.pos_ for token in x])) # Expand the list column into several columns pos_tags_df = pos_tags.apply(pd.Series).fillna(0) return pos_tags_df
f04cc91a7a41d65a69ee6ef8d730b98f2ad2ed6c
3,650,777
def get_axis(array, axis, slice_num): """Returns a fixed axis""" slice_list = [slice(None)] * array.ndim slice_list[axis] = slice_num slice_data = array[tuple(slice_list)].T # transpose for proper orientation return slice_data
558d4f8f8725c752c225e6958881fc18eeeab35e
3,650,779
import pandas as pd def expand_name_df(df,old_col,new_col): """Takes a dataframe df with an API JSON object with nested elements in old_col, extracts the name, and saves it in a new dataframe column called new_col Parameters ---------- df : dataframe old_col : str new_col : str Returns ------- df : dataframe """ def expand_name(nested_name): """Takes an API JSON object with nested elements and extracts the name Parameters ---------- nested_name : JSON API object Returns ------- object_name : str """ if pd.isnull(nested_name): object_name = 'Likely Missing' else: object_name = nested_name['name'] return object_name df[new_col] = df[old_col].apply(expand_name) return df
d39209f71719afa0301e15d95f31d98b7949f6b3
3,650,781
def image_rpms_remove_if_exists(rpmlist): """ `image.rpms_remove_if_exists(["baz"])` removes `baz.rpm` if exists. Note that removals may only be applied against the parent layer -- if your current layer includes features both removing and installing the same package, this will cause a build failure. """ return _build_rpm_feature( rpmlist, "remove_if_exists", needs_version_set = False, )
b0de424627b5010e8d6d351280418425cde7981a
3,650,782
import itertools def expand_set(mySet): """ pass in a set of genome coords, and it will 'expand' the indels within the set by adding +/- 3 bp copies for each one """ returnSet = [] for entry in mySet: l0 = [] l1 = [] try: sub0 = entry.split('-')[0] # split on `-` sub1 = entry.split('-')[1] # this guy is good sub00 = sub0.split(':')[1] # split on :, need to get rid of chrom chrom = sub0.split(':')[0] if sub00 != sub1: # got an indel sub00_1 = int(sub00) + 1 sub00_2 = int(sub00) + 2 sub00_3 = int(sub00) + 3 sub00_4 = int(sub00) - 1 sub00_5 = int(sub00) - 2 sub00_6 = int(sub00) - 3 l0.extend((sub00_1, sub00_2, sub00_3, sub00_4, sub00_5, sub00_6)) try: sub1_1 = int(sub1) + 1 sub1_2 = int(sub1) + 2 sub1_3 = int(sub1) + 3 sub1_4 = int(sub1) - 1 sub1_5 = int(sub1) - 2 sub1_6 = int(sub1) - 3 l1.extend((sub1_1, sub1_2, sub1_3, sub1_4, sub1_5, sub1_6)) except ValueError: continue coord_combos = list(itertools.product(l0, l1)) for pair in coord_combos: toAdd = chrom + ':' + str(pair[0]) + '-' + str(pair[1]) returnSet.append(toAdd) else: returnSet.append(entry) except IndexError: continue return returnSet
4ccbff705654b5f5b89c59bb13df9fad6cba42db
3,650,783
def trapezoid(t, depth, bigT, littleT): """Trapezoid shape for model INPUT: t - [float] vector of independent values to evaluate trapezoid model depth - [float] depth of trapezoid bigT - [float] full trapezoid duration littleT - [float] 'ingress/egress' duration OUTPUT: output - [float] vector of trapezoid model values """ output = np.full_like(t, 1.0) t = np.abs(t) output = np.where(t <= bigT/2.0 - littleT/2.0, 1.0 - depth, output) output = np.where(np.logical_and(t > bigT/2.0 - littleT/2.0, \ t < bigT/2.0 + littleT/2.0), \ 1.0 - depth + ((depth/littleT)* \ (t-bigT/2.0 + littleT/2.0)), output) return output
18021c6aff07931d6086d394a77f5ab8ce460f78
3,650,784
import re def clean_username(username=''): """ Simple helper method to ensure a username is compatible with our system requirements. """ return ('_').join(re.findall(r'[a-zA-Z0-9\-]+', username))[:USERNAME_MAX_LENGTH]
98e563eaa04ce98b4f4d71b0b6229ca62324011a
3,650,785
import ast def hy_compile(tree, module_name, root=ast.Module, get_expr=False): """ Compile a HyObject tree into a Python AST Module. If `get_expr` is True, return a tuple (module, last_expression), where `last_expression` is the. """ body = [] expr = None if not isinstance(tree, HyObject): tree = wrap_value(tree) if not isinstance(tree, HyObject): raise HyCompileError("`tree` must be a HyObject or capable of " "being promoted to one") spoof_positions(tree) compiler = HyASTCompiler(module_name) result = compiler.compile(tree) expr = result.force_expr if not get_expr: result += result.expr_as_stmt() module_docstring = None if (PY37 and result.stmts and isinstance(result.stmts[0], ast.Expr) and isinstance(result.stmts[0].value, ast.Str)): module_docstring = result.stmts.pop(0).value.s body = compiler.imports_as_stmts(tree) + result.stmts ret = root(body=body, docstring=( None if module_docstring is None else module_docstring)) if get_expr: expr = ast.Expression(body=expr) ret = (ret, expr) return ret
0aea27067aae9d517ada9a7936b2ad29506346a5
3,650,786
def user_dss_clients(dss_clients, dss_target): """ Fixture that narrows down the dss clients to only the ones that are relevant considering the curent DSS target. Args: dss_clients (fixture): All the instanciated dss client for each user and dss targets dss_target (fixture): The considered DSS target for the test to be executed Returns: A dict of dss client instances for the current DSS target and each of its specified users. """ return dss_clients[dss_target]
7d418b49b68d7349a089046837f3c8351c0dcc67
3,650,788
def build_log(x: np.ndarray) -> np.ndarray: """ Logarithmic expansion. :param x: features :return: augmented features """ expanded = np.ones((x.shape[0], 1)) expanded = np.hstack((expanded, np.nan_to_num(np.log(x)))) return expanded
7d46b9e7ca4dd7af99da97e3d1faa67f18894fe5
3,650,789
def all_multibert_finetune_glue(m:Manager, task_name:str='MRPC')->BertGlue: """ Finetune milti-lingual base-BERT on GLUE dataset Ref. https://github.com/google-research/bert/blob/master/multilingual.md """ refbert=all_fetch_multibert(m) refglue=all_fetchglue(m) vocab=mklens(refbert).bert_vocab.refpath glueref=glue_tfrecords(m, task_name, bert_vocab=vocab, lower_case=mklens(refbert).cased.val==False, refdataset=refglue) return bert_finetune_glue(m,refbert,glueref)
18785c804e9539922cc8fdae2517e2c9221f5d13
3,650,790
from typing import Union import hashlib def hash_eth2(data: Union[bytes, bytearray]) -> Hash32: """ Return SHA-256 hashed result. Note: this API is currently under active research/development so is subject to change without a major version bump. Note: it's a placeholder and we aim to migrate to a S[T/N]ARK-friendly hash function in a future Ethereum 2.0 deployment phase. """ return Hash32(hashlib.sha256(data).digest())
fa43689abac95e54e984f67c623c2242d19bb52c
3,650,791
import zipfile def read_data(data_dir="../main/datasets/", data_file=DATA_FILE): """Returns the data, in order infos, items, orders""" with zipfile.ZipFile(data_dir+DATA_FILE) as z: dfs = [] for name in ["infos", "items", "orders"]: dfs.append(pd.read_csv(z.open(f"1.0v/{name}.csv"), sep="|")) return dfs
c85f730bfd10fe2f3830ed9d29443b2f99c8deb6
3,650,792
def get_sprints(root_project_id, rally_number=None): """Get list of sprint projects. Args: root_project_id: Synapse Project ID with admin annotations, including the sprint table ID. rally_number: An integer rally number. If None, return sprints from all rallies. Returns: A Pandas data frame of sprint information from the Sprint Synapse table. """ syn = Synapse().client() root_project = syn.get(root_project_id) table_id = root_project.annotations.sprintTableId[0] tbl = syn.tableQuery("select * from %s" % (table_id, )) data_frame = tbl.asDataFrame() if rally_number: data_frame = data_frame[data_frame.rally == rally_number] return data_frame
530ea32640ccfa44b3493eef470a226631e3dd34
3,650,793
def out_of_bounds(maze: Array, x: int, y: int): """ Return true if x, y is out of bounds """ w, h = maze.shape is_x_out = (x < 0) + (x >= w) is_y_out = (y < 0) + (y >= h) return is_x_out + is_y_out
e1572dedc76ad979d5053b966b313a31cf22b257
3,650,795
import json def cache_set(apollo_client, name, val): """ 保存数据到redis :return: """ r = redis_handler(apollo_client) try: res = r.set(name=name, value=json.dumps(val)) except Exception as e: logger.error("Storage {} to cache failed!{}".format(name, e.__str__())) return None else: logger.info("{} values {}".format(name, val)) return res
d849ab7d0d65a445530dc61d427571d2bdd97a76
3,650,796
def guess_pyramid(data): """If shape of arrays along first axis is strictly decreasing. """ # If the data has ndim and is not one-dimensional then cannot be pyramid if hasattr(data, 'ndim') and data.ndim > 1: return False size = np.array([np.prod(d.shape, dtype=np.uint64) for d in data]) if len(size) > 1: return np.all(size[:-1] > size[1:]) else: return False
f63dffe0c0ac5b36b752a7aeaa8baf4b4cc8480a
3,650,797
def create_menu(menu_items, parent=None): """ Create the navigation nodes based on a passed list of dicts """ nodes = [] for menu_dict in menu_items: try: label = menu_dict['label'] except KeyError: raise ImproperlyConfigured( "No label specified for menu item in dashboard") children = menu_dict.get('children', []) if children: node = Node(label=label, icon=menu_dict.get('icon', None), access_fn=menu_dict.get('access_fn', None)) create_menu(children, parent=node) else: node = Node(label=label, icon=menu_dict.get('icon', None), url_name=menu_dict.get('url_name', None), url_kwargs=menu_dict.get('url_kwargs', None), url_args=menu_dict.get('url_args', None), access_fn=menu_dict.get('access_fn', None)) if parent is None: nodes.append(node) else: parent.add_child(node) return nodes
0f54399e2101d6e3e4eff094041c92ea7d8eb069
3,650,798
def get_tg_ids(db): """Obtain a list of recognized Telegram user IDs. Args: db: Database connector Returns: Query results for later iteration """ return db.query(QUERY_TG_IDS)
0b4a2fccbd42024f53a970d2e1cf52481480230d
3,650,799
import json def solve_with_log(board, out_fname): """Wrapper for solve: write log to out_fname""" log = [] ret = solve(board, log) with open(out_fname, 'w') as f: f.write(json.dumps({'model': log}, indent=4)) return ret
c550980f252df724d68f9eb22159463e361997bc
3,650,800
def discrepancy(sample, bounds=None): """Discrepancy. Compute the centered discrepancy on a given sample. It is a measure of the uniformity of the points in the parameter space. The lower the value is, the better the coverage of the parameter space is. Parameters ---------- sample : array_like (n_samples, k_vars) The sample to compute the discrepancy from. bounds : tuple or array_like ([min, k_vars], [max, k_vars]) Desired range of transformed data. The transformation apply the bounds on the sample and not the theoretical space, unit cube. Thus min and max values of the sample will coincide with the bounds. Returns ------- discrepancy : float Centered discrepancy. References ---------- [1] Fang et al. "Design and modeling for computer experiments", Computer Science and Data Analysis Series Science and Data Analysis Series, 2006. """ sample = np.asarray(sample) n_sample, dim = sample.shape # Sample scaling from bounds to unit hypercube if bounds is not None: min_ = bounds.min(axis=0) max_ = bounds.max(axis=0) sample = (sample - min_) / (max_ - min_) abs_ = abs(sample - 0.5) disc1 = np.sum(np.prod(1 + 0.5 * abs_ - 0.5 * abs_ ** 2, axis=1)) prod_arr = 1 for i in range(dim): s0 = sample[:, i] prod_arr *= (1 + 0.5 * abs(s0[:, None] - 0.5) + 0.5 * abs(s0 - 0.5) - 0.5 * abs(s0[:, None] - s0)) disc2 = prod_arr.sum() c2 = ((13.0 / 12.0) ** dim - 2.0 / n_sample * disc1 + 1.0 / (n_sample ** 2) * disc2) return c2
f54cf5efa3cf12410d5522971983d41ea767767f
3,650,801
def rz(psi, r): """ Wrapper for ERFA function ``eraRz``. Parameters ---------- psi : double array r : double array Returns ------- r : double array Notes ----- The ERFA documentation is below. - - - - - - e r a R z - - - - - - Rotate an r-matrix about the z-axis. Given: psi double angle (radians) Given and returned: r double[3][3] r-matrix, rotated Notes: 1) Calling this function with positive psi incorporates in the supplied r-matrix r an additional rotation, about the z-axis, anticlockwise as seen looking towards the origin from positive z. 2) The additional rotation can be represented by this matrix: ( + cos(psi) + sin(psi) 0 ) ( ) ( - sin(psi) + cos(psi) 0 ) ( ) ( 0 0 1 ) Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ r = ufunc.rz(psi, r, r) return r
1ea4e9322ba187e91d3b976d74d416ae99a74ee6
3,650,802
import locale def _get_ticklabels(band_type, kHz, separator): """ Return a list with all tick labels for octave or third octave bands cases. """ if separator is None: separator = locale.localeconv()['decimal_point'] if band_type == 'octave': if kHz is True: ticklabels = TICKS_OCTAVE_KHZ else: ticklabels = TICKS_OCTAVE else: if kHz is True: ticklabels = TICKS_THIRD_OCTAVE_KHZ else: ticklabels = TICKS_THIRD_OCTAVE ticklabels = _set_separator(ticklabels, separator) return ticklabels
95ebdc670a23fdb8561a431e863901df6734fdb9
3,650,803
def SpearmanP(predicted, observed): """abstracts out p from stats.spearmanr""" if np.isnan(np.min(predicted)) or np.isnan(np.min(observed)): return np.asarray([np.nan]) coef, p = stats.spearmanr(np.squeeze(predicted).astype(float), np.squeeze(observed).astype(float)) return p
41986483ea3d466d94af5c86cedee62165d81d98
3,650,804
def get_zebra_route_type_by_name(route_type='BGP'): """ Returns the constant value for Zebra route type named "ZEBRA_ROUTE_*" from its name. See "ZEBRA_ROUTE_*" constants in "ryu.lib.packet.zebra" module. :param route_type: Route type name (e.g., Kernel, BGP). :return: Constant value for Zebra route type. """ return getattr(zebra, "ZEBRA_ROUTE_%s" % route_type.upper())
8cdc3a8384f71c4c04172a8c37f51e3789929e42
3,650,805
def preprocess(arr): """Preprocess image array with simple normalization. Arguments: ---------- arr (np.array): image array Returns: -------- arr (np.array): preprocessed image array """ arr = arr / 255.0 arr = arr * 2.0 - 1.0 return arr
3bccf2f4433c4da62954db4f25f5e9bfabc03c3a
3,650,806
def remove_const(type): """removes const from the type definition If type is not const type, it will be returned as is """ nake_type = remove_alias(type) if not is_const(nake_type): return type else: return nake_type.base
b00d7cca79222d5ac2b6a12019b73a8169df96b7
3,650,807