content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Tuple def get_byte_range_bounds(byte_range_str: str, total_size: int) -> Tuple[int, int]: """Return the start and end byte of a byte range string.""" byte_range_str = byte_range_str.replace("bytes=", "") segments = byte_range_str.split("-") start_byte = int(segments[0]) # chrome does not send end_byte but safari does # we need to handle this case and generate an end_byte if not provided end_byte = min( int(segments[-1]) if segments[-1] else start_byte + MAX_CHUNK_SIZE, total_size, ) return start_byte, end_byte
f376f5af0771901d9850e06f08ebd32b13243176
3,650,212
def privmsg(recipient, s, prefix='', msg=None): """Returns a PRIVMSG to recipient with the message msg.""" if conf.supybot.protocols.irc.strictRfc(): assert (areReceivers(recipient)), repr(recipient) assert s, 's must not be empty.' if minisix.PY2 and isinstance(s, unicode): s = s.encode('utf8') assert isinstance(s, str) if msg and not prefix: prefix = msg.prefix return IrcMsg(prefix=prefix, command='PRIVMSG', args=(recipient, s), msg=msg)
1ff0087794732a06c7e2151ad6c255ca863ffb37
3,650,213
def char_decoding(value): """ Decode from 'UTF-8' string to unicode. :param value: :return: """ if isinstance(value, bytes): return value.decode('utf-8') # return directly if unicode or exc happens. return value
b8054b4a5012a6e23e2c08b6ff063cf3f71d6863
3,650,214
def inv2(x: np.ndarray) -> np.ndarray: """矩阵求逆""" # np.matrix()废弃 return np.matrix(x).I
9b1b18dc0cbd248c977fd0ae0c35a65b4cd5b797
3,650,215
def clean_remaining_artifacts(image): """ Method still on development. Use at own risk! Remove remaining artifacts from image :param image: Path to Image or 3D Matrix representing RGB image :return: Image """ img, *_ = __image__(image) blur = cv2.GaussianBlur(img, (3, 3), 0) # convert to hsv and get saturation channel sat = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)[:, :, 1] # threshold saturation channel thresh = cv2.threshold(sat, 50, 255, cv2.THRESH_BINARY)[1] # apply morphology close and open to make mask kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9)) morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1) mask = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel, iterations=1) # do OTSU threshold to get melanoma image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) otsu = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] pre_otsu = otsu.copy() otsu = cv2.dilate(otsu, kernel) otsu = cv2.erode(otsu, kernel) inv_otsu = otsu.copy() inv_otsu[otsu == 255] = 0 inv_otsu[otsu == 0] = 255 inpaint = mask - inv_otsu img_result = cv2.inpaint(img, inpaint, 100, cv2.INPAINT_TELEA) return cv2.cvtColor(img_result, cv2.COLOR_BGR2RGB), otsu
54473dcce5eb5764e80304836f0ca16ce4d82a77
3,650,216
def max_simple_dividers(a): """ :param a: число от 1 до 1000 :return: самый большой простой делитель числа """ return max(simple_dividers(a))
3fc2fb51e2940ed07db97285886e7cb30e99d5a0
3,650,217
def to_light_low_sat(img, new_dims, new_scale, interp_order=1 ): """ Turn an image into lightness Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a lightness version of the original image """ img = skimage.img_as_float( img ) img = np.clip(img, 0.2, 0.8) img = resize_image( img, new_dims, interp_order ) img = skimage.color.rgb2lab(img)[:,:,0] img = rescale_image( img, new_scale, current_scale=[0,100]) return np.expand_dims(img,2)
2aca96378551a2a083f1762f30582efe1560f2fb
3,650,218
def get_slug_blacklist(lang=None, variant=None): """ Returns a list of KA slugs to skip when creating the channel. Combines the "global" slug blacklist that applies for all channels, and additional customization for specific languages or curriculum variants. """ SLUG_BLACKLIST = GLOBAL_SLUG_BLACKLIST if variant and (lang, variant) in SLUG_BLACKLIST_PER_LANG: SLUG_BLACKLIST.extend(SLUG_BLACKLIST_PER_LANG[(lang, variant)]) elif lang in SLUG_BLACKLIST_PER_LANG: SLUG_BLACKLIST.extend(SLUG_BLACKLIST_PER_LANG[lang]) else: LOGGER.warning('No slugs for lang=' + lang + ' variant=' + str(variant)) return SLUG_BLACKLIST
e06dd582812ddd8d2d2e929c733dc957abb748d6
3,650,219
def get_level_rise(station): """For a MonitoringStation object (station), returns a the rate of water level rise, specifically the average value over the last 2 days""" #Fetch data (if no data available, return None) times, values = fetch_measure_levels(station.measure_id, timedelta(days=2)) #Only continue if data available, otherwise return None if times and values and (None in times or None in values) == False: #Get polynomial approximation of poly, d0 = polyfit(times, values, p=4) #Find derivative polynomial level_der = np.polyder(poly) #Obtain list of gradients over last 2 days using the derivative polynomial grads = [] for t in times: grads.append(level_der(date.date2num(t) - d0)) #Return average of gradient values return np.average(grads) else: return None
59de80a5bdb5b24711f45395ec9cbc282ad6ad44
3,650,220
def get_mask_indices(path): """Helper function to get raster mask for NYC Returns: list: returns list of tuples (row, column) that represent area of interest """ raster = tiff_to_array(path) indices = [] it = np.nditer(raster, flags=['multi_index']) while not it.finished: if it[0] == 1: r, c = it.multi_index indices.append((r, c)) it.iternext() return indices
ff957ffac0f79635e729f8880457d8aa33379185
3,650,221
def about(isin:str): """ Get company description. Parameters ---------- isin : str Desired company ISIN. ISIN must be of type EQUITY or BOND, see instrument_information() -> instrumentTypeKey Returns ------- TYPE Dict with description. """ params = {'isin': isin} return _data_request('about_the_company', params)
86554c393087670637859d991bd2ae740ea4ff86
3,650,222
def aesEncrypt(message): """ Encrypts a message with a fresh key using AES-GCM. Returns: (key, ciphertext) """ key = get_random_bytes(symmetricKeySizeBytes) cipher = AES.new(key, AES.MODE_GCM) ctext, tag = cipher.encrypt_and_digest(message) # Concatenate (nonce, tag, ctext) and return with key return key, (cipher.nonce + tag + ctext)
06a13bb605f9038d8096f73681932a09022107b1
3,650,223
def getType(o): """There could be only return o.__class__.__name__""" if isinstance(o, LispObj): return o.type return o.__class__.__name__
a3602469d8a7d5f6372c6e74d868a903651f85f7
3,650,227
def failed_revisions_for_case_study( case_study: CaseStudy, result_file_type: MetaReport ) -> tp.List[str]: """ Computes all revisions of this case study that have failed. Args: case_study: to work on result_file_type: report type of the result files Returns: a list of failed revisions """ total_failed_revisions = set( get_failed_revisions(case_study.project_name, result_file_type) ) return [ rev for rev in case_study.revisions if rev[:10] in total_failed_revisions ]
2e9d5ab3818343e7a07fc3ff7242206f4b231e89
3,650,229
def bytes_load(path): """Load bytest from a file.""" with open(path, 'rb') as f: return f.read()
ebbeb4bfcecfb94a1fa1ef8640f4e749bfa0dfcb
3,650,231
def get_relationship_length_fam_mean(data): """Calculate mean length of relationship for families DataDef 43 Arguments: data - data frames to fulfill definiton id Modifies: Nothing Returns: added_members mean_relationship_length - mean relationship length of families """ families = data[1] return families['max_days_since_first_service'].mean()
4d9b76c4dca3e1f09e7dd2684bd96e25792177fd
3,650,232
def convert_hapmap(input_dataframe, recode=False, index_col=0): """ Specifically deals with hapmap and 23anMe Output """ complement = {'G/T': 'C/A', 'C/T': 'G/A', "G/A" : "G/A", "C/A": "C/A", "A/G" : "A/G", "A/C": "A/C"} dataframe = input_dataframe.copy() if recode: recode = dataframe.ix[:, index_col].apply(lambda x: complement[x]) dataframe.ix[:,0] = recode new_dataframe = dataframe.apply(_single_column_allele, axis=1) return new_dataframe
c328cfe41e25f7fd3ff2274861fb6fc89effa181
3,650,233
def to_base64(message): """ Returns the base64 representation of a string or bytes. """ return b64encode(to_bytes(message)).decode('ascii')
d3f091f7dbf04850e8c40bca8e7fb0ec06f2848f
3,650,234
import traceback def create_alerts(): """ Function to create alerts. """ try: # validate post json data content = request.json print(content) if not content: raise ValueError("Empty value") if not 'timestamp' in content or not 'camera_id' in content or not 'class_id' in content: raise KeyError("Invalid dictionary keys") if not isinstance(content.get('timestamp'), int): raise TypeError("Timestamp must be in int64 type") if not isinstance(content.get('camera_id'), int): raise TypeError("Camera_id must be in int32 type") class_id = content.get('class_id') if not isinstance(class_id, list): raise TypeError("Class_id must be an array") for val in class_id: if not isinstance(val, int): raise TypeError("Array class_id values must be in int32 type") except (ValueError, KeyError, TypeError) as e: traceback.print_exc() resp = Response({"Json format error"}, status=400, mimetype='application/json') return resp try: record_created = db.alerts.insert_one(content) return jsonify(id=str(record_created.inserted_id)), 201 except: #traceback.print_exc() return jsonify(error="Internal server error"), 500
ca824f0f356cf2b42e7a598810dc89f7121664ba
3,650,235
import numpy def load_catalog_npy(catalog_path): """ Load a numpy catalog (extension ".npy") @param catalog_path: str @return record array """ return numpy.load(catalog_path)
912281ad17b043c6912075144e6a2ff3d849a391
3,650,238
def pgd(fname, n_gg=20, n_mm=20, n_kk=20, n_scale=1001): """ :param fname: data file name :param n_gg: outer iterations :param n_mm: intermediate iterations :param n_kk: inner iterations :param n_scale: number of discretized points, arbitrary :return: """ n_buses, Qmax, Qmin, Y, V_mod, P_pq, Q_pq, P_pv, I0_pq, n_pv, n_pq = read_grid_data(fname) SSk, SSp, SSq = init_apparent_powers_decomposition(n_buses, n_scale, P_pq, Q_pq, Qmin, Qmax) VVk, VVp, VVq = init_voltages_decomposition(n_mm, n_buses, n_scale) IIk, IIp, IIq = init_currents_decomposition(n_gg, n_mm, n_buses, n_scale) n_max = n_gg * n_mm * n_kk iter_count = 1 idx_i = 0 idx_v = 1 for gg in range(n_gg): # outer loop: iterate on γ to solve the power flow as such for mm in range(n_mm): # intermediate loop: iterate on i to find the superposition of terms of the I tensor. # define the new C CCk, CCp, CCq, Nc, Nv, n = fun_C(SSk, SSp, SSq, VVk, VVp, VVq, IIk, IIp, IIq, idx_i, idx_v, n_buses, n_scale) # initialize the residues we have to find IIk1 = (np.random.rand(n_buses) - np.random.rand(n_buses)) * 1 # could also try to set IIk1 = VVk1 IIp1 = (np.random.rand(n_buses) - np.random.rand(n_buses)) * 1 IIq1 = (np.random.rand(n_scale) - np.random.rand(n_scale)) * 1 for kk in range(n_kk): # inner loop: iterate on Γ to find the residues. # compute IIk1 (residues on Ik) RHSk = np.zeros(n_buses, dtype=complex) for ii in range(Nc): prodRK = np.dot(IIp1, CCp[ii]) * np.dot(IIq1, CCq[ii]) RHSk += prodRK * CCk[ii] LHSk = np.zeros(n_buses, dtype=complex) for ii in range(Nv): prodLK = np.dot(IIp1, VVp[ii] * IIp1) * np.dot(IIq1, VVq[ii] * IIq1) LHSk += prodLK * VVk[ii] IIk1 = RHSk / LHSk # compute IIp1 (residues on Ip) RHSp = np.zeros(n_buses, dtype=complex) for ii in range(Nc): prodRP = np.dot(IIk1, CCk[ii]) * np.dot(IIq1, CCq[ii]) RHSp += prodRP * CCp[ii] LHSp = np.zeros(n_buses, dtype=complex) for ii in range(Nv): prodLP = np.dot(IIk1, VVk[ii] * IIk1) * np.dot(IIq1, VVq[ii] * IIq1) LHSp += prodLP * VVp[ii] IIp1 = RHSp / LHSp # compute IIq1 (residues on Iq) RHSq = np.zeros(n_scale, dtype=complex) for ii in range(Nc): prodRQ = np.dot(IIk1, CCk[ii]) * np.dot(IIp1, CCp[ii]) RHSq += prodRQ * CCq[ii] LHSq = np.zeros(n_scale, dtype=complex) for ii in range(Nv): prodLQ = np.dot(IIk1, VVk[ii] * IIk1) * np.dot(IIp1, VVp[ii] * IIp1) LHSq += prodLQ * VVq[ii] IIq1 = RHSq / LHSq progress_bar(iter_count, n_max, 50) # display the inner operations iter_count += 1 IIk[idx_i, :] = IIk1 IIp[idx_i, :] = IIp1 IIq[idx_i, :] = IIq1 idx_i += 1 for ii in range(n_mm): VVk[ii, :] = np.conj(sp_linalg.spsolve(Y, IIk[ii])) VVp[ii, :] = IIp[ii] VVq[ii, :] = IIq[ii] # try to add I0 this way: VVk[n_mm, :] = np.conj(sp_linalg.spsolve(Y, I0_pq)) VVp[n_mm, :] = np.ones(n_buses) VVq[n_mm, :] = np.ones(n_scale) idx_v = n_mm + 1 # VVk: size (n_mm + 1, nbus) # VVp: size (n_mm + 1, nbus) # VVq: size (n_mm + 1, n_scale) v_map = build_map(VVk, VVp, VVq) # SSk: size (2, nbus) # SSp: size (2, nbus) # SSq: size (2, n_scale) s_map = build_map(SSk, SSp, SSq) # IIk: size (n_gg * n_mm, nbus) # IIp: size (n_gg * n_mm, nbus) # IIq: size (n_gg * n_mm, n_scale) i_map = build_map(IIk, IIp, IIq) # the size of the maps is nbus, nbus, n_scale return v_map, s_map, i_map
5a00b6992ecf5c4f3b89fcf5151cae71c4a36298
3,650,239
def find_first_empty(rect): """ Scan a rectangle and find first open square @param {Array} rect Board layout (rectangle) @return {tuple} x & y coordinates of the leftmost top blank square """ return _find_first_empty_wrapped(len(rect[0]))(rect)
d266805761cda903733cef7704baff6d38576b04
3,650,240
import re def parseArticle(text: str) -> str: """ Parses and filters an article. It uses the `wikitextparser` and custom logic. """ # clear the image attachments and links text = re.sub("\[\[Податотека:.+\]\][ \n]", '', text) text = wikipedia.filtering.clearCurlyBrackets(text) # replace everything after "Надворешни врски" links_location = re.search("[\=]+[ ]+(Поврзано|Наводи|Надворешни врски)[ ]+[\=]+", text) if links_location != None: text = text[:links_location.span()[0]] # remove headings and break lines text = re.sub("([\=]+.+[\=]+.+\n)|(<br />)", '\n', text) # parse the file using the wikitextparser parsed = wtp.parse(text) return parsed.plain_text()
7a17e31ec960b568debb9c6e7ccb8018bba19218
3,650,241
import torch def exp2(input, *args, **kwargs): """ Computes the base two exponential function of ``input``. Examples:: >>> import torch >>> import treetensor.torch as ttorch >>> ttorch.exp2(ttorch.tensor([-4.0, -1.0, 0, 2.0, 4.8, 8.0])) tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02]) >>> ttorch.exp2(ttorch.tensor({ ... 'a': [-4.0, -1.0, 0, 2.0, 4.8, 8.0], ... 'b': {'x': [[-2.0, 1.2, 0.25], ... [16.0, 3.75, -2.34]]}, ... })) <Tensor 0x7ff90a4c3af0> ├── a --> tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02]) └── b --> <Tensor 0x7ff90a4c3be0> └── x --> tensor([[2.5000e-01, 2.2974e+00, 1.1892e+00], [6.5536e+04, 1.3454e+01, 1.9751e-01]]) """ return torch.exp2(input, *args, **kwargs)
17cbc0917acf19932ec4d3a89de8d78545d02e31
3,650,242
def list_default_storage_policy_of_datastore( datastore, host=None, vcenter=None, username=None, password=None, protocol=None, port=None, verify_ssl=True, ): """ Returns a list of datastores assign the storage policies. datastore Name of the datastore to assign. The datastore needs to be visible to the VMware entity the proxy points to. service_instance Service instance (vim.ServiceInstance) of the vCenter. Default is None. .. code-block:: bash salt '*' vsphere.list_default_storage_policy_of_datastore datastore=ds1 """ log.trace("Listing the default storage policy of datastore '{}'" "".format(datastore)) if salt.utils.platform.is_proxy(): details = __salt__["vmware_info.get_proxy_connection_details"]() else: details = __salt__["vmware_info.get_connection_details"]( host=host, vcenter=vcenter, username=username, password=password, protocol=protocol, port=port, verify_ssl=verify_ssl, ) service_instance = saltext.vmware.utils.vmware.get_service_instance(**details) # Find datastore target_ref = __salt__["vmware_info.get_proxy_target"](service_instance) ds_refs = saltext.vmware.utils.vmware.get_datastores( service_instance, target_ref, datastore_names=[datastore] ) if not ds_refs: raise VMwareObjectRetrievalError("Datastore '{}' was not " "found".format(datastore)) profile_manager = salt.utils.pbm.get_profile_manager(service_instance) policy = salt.utils.pbm.get_default_storage_policy_of_datastore(profile_manager, ds_refs[0]) return saltext.vmware.utils.get_policy_dict(policy)
caf729c258a4ece895d14fdd93ba1f23879453e8
3,650,243
import numpy def action_stats(env, md_action, cont_action): """ Get information on `env`'s action space. Parameters ---------- md_action : bool Whether the `env`'s action space is multidimensional. cont_action : bool Whether the `env`'s action space is continuous. Returns ------- n_actions_per_dim : list of length (action_dim,) The number of possible actions for each dimension of the action space. action_ids : list or None A list of all valid actions within the space. If `cont_action` is True, this value will be None. action_dim : int or None The number of dimensions in a single action. """ if cont_action: action_dim = 1 action_ids = None n_actions_per_dim = [numpy.inf] if md_action: action_dim = env.action_space.shape[0] n_actions_per_dim = [numpy.inf for _ in range(action_dim)] else: if md_action: n_actions_per_dim = [ space.n if hasattr(space, "n") else numpy.inf for space in env.action_space.spaces ] action_ids = ( None if numpy.inf in n_actions_per_dim else list(product(*[range(i) for i in n_actions_per_dim])) ) action_dim = len(n_actions_per_dim) else: action_dim = 1 n_actions_per_dim = [env.action_space.n] action_ids = list(range(n_actions_per_dim[0])) return n_actions_per_dim, action_ids, action_dim
8a08b3fe5be20f274680fe33df9ca02456bb511f
3,650,244
def count(pred: Pred, seq: Seq) -> int: """ Count the number of occurrences in which predicate is true. """ pred = to_callable(pred) return sum(1 for x in seq if pred(x))
09726935174d7590030331da62322da870e216aa
3,650,245
def lambda_k(W, Z, k): """Coulomb function $\lambda_k$ as per Behrens et al. :param W: Total electron energy in units of its rest mass :param Z: Proton number of daughter :param k: absolute value of kappa """ #return 1. gammak = np.sqrt(k**2.0-(ALPHA*Z)**2.0) gamma1 = np.sqrt(1.-(ALPHA*Z)**2.0) R = 1.2e-15*(2.5*Z)**(1./3.)/NATURALLENGTH return generalizedFermiFunction(W, Z, R, k)/generalizedFermiFunction(W, Z, R, 1)*(k+gammak)/(k*(1+gamma1))
9f6a59bd730460c09a3c7f855550254ffb5cdc66
3,650,246
import pprint import json def tryJsonOrPlain(text): """Return json formatted, if possible. Otherwise just return.""" try: return pprint.pformat( json.loads( text ), indent=1 ) except: return text
2431479abf6ab3c17ea63356ec740840d2d18a74
3,650,247
import aiohttp import websockets import random def create_signaling(args): """ Create a signaling method based on command-line arguments. """ if args.signaling == "apprtc": if aiohttp is None or websockets is None: # pragma: no cover raise Exception("Please install aiohttp and websockets to use appr.tc") if not args.signaling_room: args.signaling_room = "".join( [random.choice("0123456789") for x in range(10)] ) return ApprtcSignaling(args.signaling_room) elif args.signaling == "tcp-socket": return TcpSocketSignaling(args.signaling_host, args.signaling_port) elif args.signaling == "unix-socket": return UnixSocketSignaling(args.signaling_path) else: return CopyAndPasteSignaling()
f9fe4ed35555381468dbf15379ab70a4af289ac9
3,650,248
def get_corpus_gene_adjacency(corpus_id): """Generate a nugget table.""" corpus = get_corpus(corpus_id) data = get_gene_adjacency(corpus) return jsonify(data), 200
9dd86e11eba5e5bc5094d89bd15dd9315df40480
3,650,249
def get_pool_health(pool): """ Get ZFS list info. """ pool_name = pool.split()[0] pool_capacity = pool.split()[6] pool_health = pool.split()[9] return pool_name, pool_capacity, pool_health
1a9dbb8477d8735b225afc2bdd683f550602b36e
3,650,250
def resize_short(img, target_size): """ resize_short """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) resized_width = normwidth(resized_width) resized_height = normwidth(resized_height) resized = cv2.resize(img, (resized_width, resized_height)) return resized
ca9a71dc97a57c5739419c284514466e86dc3fa1
3,650,251
def _scale(aesthetic, name=None, breaks=None, labels=None, limits=None, expand=None, na_value=None, guide=None, trans=None, **other): """ Create a scale (discrete or continuous) :param aesthetic The name of the aesthetic that this scale works with :param name The name of the scale - used as the axis label or the legend title :param breaks A numeric vector of positions (of ticks) :param labels A vector of labels (on ticks) :param limits A numeric vector of length two providing limits of the scale. :param expand A numeric vector of length two giving multiplicative and additive expansion constants. :param na_value Value to use for missing values :param guide Type of legend. Use 'colorbar' for continuous color bar, or 'legend' for discrete values. :param trans Name of built-in transformation. ('identity', 'log10', 'sqrt', 'reverse') :return: """ # flatten the 'other' sub-dictionary args = locals().copy() args.pop('other') return FeatureSpec('scale', **args, **other)
c8d98a52f2b87340e0a1df46b9f36ca811c18d5d
3,650,252
def logsubexp(x, y): """ Helper function to compute the exponential of a difference between two numbers Computes: ``x + np.log1p(-np.exp(y-x))`` Parameters ---------- x, y : float or array_like Inputs """ if np.any(x < y): raise RuntimeError('cannot take log of negative number ' f'{str(x)!s} - {str(y)!s}') return x + np.log1p(-np.exp(y - x))
a0b0434fb2714f3d1dec24b88ce0fa9ff0110bc0
3,650,253
def is_sequence_of_list(items): """Verify that the sequence contains only items of type list. Parameters ---------- items : sequence The items. Returns ------- bool True if all items in the sequence are of type list. False otherwise. Examples -------- >>> is_sequence_of_list([[1], [1], [1]]) True """ return all(isinstance(item, list) for item in items)
e53e5d31e1c4f5649b2f03edf792f810bc398446
3,650,254
def sum_fib_dp(m, n): """ A dynamic programming version. """ if m > n: m, n = n, m large, small = 1, 0 # a running sum for Fibbo m ~ n + 1 running = 0 # dynamically update the two variables for i in range(n): large, small = large + small, large # note that (i + 1) -> small is basically mapping m -> F[m] if m <= i + 1 <= n: running += small return running
5be6e57ddf54d185ca6d17adebd847d0bc2f56fc
3,650,255
def fibo_dyn2(n): """ return the n-th fibonacci number """ if n < 2: return 1 else: a, b = 1, 1 for _ in range(1,n): a, b = b, a+b return b
e8483e672914e20c6e7b892f3dab8fb299bac6fc
3,650,256
import time import math def build_all(box, request_list): """ box is [handle, left, top, bottom] \n request_list is the array about dic \n ****** Attention before running the function, you should be index. After build_all, function will close the windows about train troop """ # get the box of windows left = box[1] top = box[2] positions = init_pos_army() # get the information about request request = request_deal(request_list[0]['str']) num_army = int(request_list[0]['army']['max']) num_spells = int(request_list[0]['spells']['max']) num_devices = int(request_list[0]['device']['max']) num_army_fill_in = int(request_list[0]['army']['fill_in']) num_spells_fill_in = int(request_list[0]['spells']['fill_in']) num_device_fill_in = int(request_list[0]['device']['fill_in']) # open army time.sleep(0.2) Click(left + positions['army'][0], top + positions['army'][1]) # select dragon if request[0] != None: # open train troops time.sleep(0.2) Click(left + positions['train_troops'][0], top + positions['train_troops'][1]) if ( num_army - num_army_fill_in ) >= num_housing_space[request[0]]: for index in range( math.floor( ( num_army - num_army_fill_in ) / num_housing_space[request[0]] ) ): time.sleep(0.2) Click(left + positions[request[0]][0], top + positions[request[0]][1]) # select speed increase if request[1] != None: # open brew spells time.sleep(0.2) Click(left + positions['Brew_spells'][0], top + positions['Brew_spells'][1]) if ( num_spells - num_spells_fill_in ) >= num_housing_space[request[1]]: for index in range( math.floor( ( num_spells - num_spells_fill_in ) / num_housing_space[request[1]] ) ): time.sleep(0.2) Click(left + positions[request[1]][0], top + positions[request[1]][1]) # select device # if request[2] != None: # open brew spells ## # close the army time.sleep(0.2) Click(left + positions['close_army'][0], top + positions['close_army'][1]) print('close the army') return True
59db695f802867e85a5e920f2efa8f652ac12823
3,650,257
def select_results(results): """Select relevant images from results Selects most recent image for location, and results with positive fit index. """ # Select results with positive bestFitIndex results = [x for x in results['items'] if x['bestFitIndex'] > 0] # counter_dict schema: # counter_dict = { # bounds: { # 'dateCreated': date, # 'downloadURL' # } # } counter_dict = {} for result in results: bounds = result_to_bounds(result) # does something already exist with these bounds? existing = counter_dict.get(bounds) # If exists, check if newer if existing is not None: existing_date = existing['dateCreated'] this_date = date_parse(result['dateCreated']) if this_date < existing_date: continue # Doesn't exist yet or is newer, so add to dict counter_dict[bounds] = { 'dateCreated': date_parse(result['dateCreated']), 'downloadURL': result['downloadURL']} return [x['downloadURL'] for x in counter_dict.values()]
85940fe93b33d79ca0a799ca52a9e68439e7e822
3,650,258
def dc_session(virtual_smoothie_env, monkeypatch): """ Mock session manager for deck calibation """ ses = endpoints.SessionManager() monkeypatch.setattr(endpoints, 'session', ses) return ses
06876e5ce2d599086efcb37688f5181f32392068
3,650,259
def is_available(_cache={}): """Return version tuple and None if OmnisciDB server is accessible or recent enough. Otherwise return None and the reason about unavailability. """ if not _cache: omnisci = next(global_omnisci_singleton) try: version = omnisci.version except Exception as msg: _cache['reason'] = 'failed to get OmniSci version: %s' % (msg) else: print(' OmnisciDB version', version) if version[:2] >= (4, 6): _cache['version'] = version else: _cache['reason'] = ( 'expected OmniSci version 4.6 or greater, got %s' % (version,)) return _cache.get('version', ()), _cache.get('reason', '')
0edcbfcd1ecb6a56b4b4a6f55907271c9094b8d8
3,650,260
import copy def pitch_info_from_pitch_string(pitch_str: str) -> PitchInfo: """ Parse a pitch string representation. E.g. C#4, A#5, Gb8 """ parts = tuple((c for c in pitch_str)) size = len(parts) pitch_class = register = accidental = None if size == 1: (pitch_class,) = parts elif size == 2: (pitch_class, register) = parts elif size >= 3: (pitch_class, accidental, register) = parts[:3] accidental = Accidental.SHARP if accidental == '#' \ else Accidental.FLAT if accidental == 'b' \ else Accidental.NATURAL register = int(register) pitch_info = PitchInfo(pitch_class=pitch_class, accidental=accidental) matching_chromatic_pitch_info, _ = next( matching_pitch_info_generator(pitch_info, CHROMATIC_PITCHES_INFO) ) final_pitch_info = copy.deepcopy(matching_chromatic_pitch_info) final_pitch_info.register = register if is_enharmonic_match(pitch_info, matching_chromatic_pitch_info): final_pitch_info.swap_enharmonic() return final_pitch_info
cc1b6c0fe64834fe3fdc5249078e10e8f3af1434
3,650,261
def determine_word_type(tag): """ Determines the word type by checking the tag returned by the nltk.pos_tag(arr[str]) function. Each word in the array is marked with a special tag which can be used to find the correct type of a word. A selection is given in the dictionaries. Args: tag : String tag from the nltk.pos_tag(str) function that classified the particular word with a tag Returns: str: Word type as a string """ types = { "noun" : {"NN", "NNS", "NNPS", "FW"}, "adjective" : {"JJ", "JJR", "JJS"}, "verb" : {"VB", "VBD", "VBG", "VBN", "VBP", "VBZ"}, "adverb" : {"RB", "RBR"} } for type_, set_ in types.iteritems(): if tag in set_: return type_ return "noun"
4505d2cf69f961ecdec4e3c693ea85b916acce96
3,650,262
def get_normalized_map_from_google(normalization_type, connection=None, n_header_lines=0): """ get normalized voci or titoli mapping from gdoc spreadsheets :param: normalization_type (t|v) :param: connection - (optional) a connection to the google account (singleton) :param: n_header_lines - (optional) n. of lines to ignore :ret: a dict, containing the consuntivo and preventivo sheets """ # get all gdocs keys gdoc_keys = settings.GDOC_KEYS if normalization_type == 't': gdoc_key = gdoc_keys['titoli_map'] elif normalization_type == 'v': gdoc_key = gdoc_keys['voci_map'] else: raise Exception("normalization_type arg accepts 't' or 'v' as possible values") if connection is None: connection = get_connection() # open the list worksheet list_sheet = None try: list_sheet = connection.open_by_key(gdoc_key) except exceptions.SpreadsheetNotFound: raise Exception("Error: gdoc url not found: {0}".format( gdoc_key )) logger.info("normalized mapping gdoc read. key: {0}".format( gdoc_key )) # put the mapping into the voci_map dict # preventivo and consuntivo sheets are appended in a single list # the first two rows are removed (labels) try: logger.info("reading preventivo ...") voci_map_preventivo = list_sheet.worksheet("preventivo").get_all_values()[n_header_lines:] logger.info("reading consuntivo ...") voci_map_consuntivo = list_sheet.worksheet("consuntivo").get_all_values()[n_header_lines:] except URLError: raise Exception("Connection error to Gdrive") logger.info("done with reading the mapping list.") return { 'preventivo': voci_map_preventivo, 'consuntivo': voci_map_consuntivo, }
61056536cae2da9053f21d2739488c5512546a68
3,650,263
import io def parse_file(fname, is_true=True): """Parse file to get labels.""" labels = [] with io.open(fname, "r", encoding="utf-8", errors="igore") as fin: for line in fin: label = line.strip().split()[0] if is_true: assert label[:9] == "__label__" label = label[9:] labels.append(label) return labels
ea6cbd4b1a272f472f8a75e1cc87a2209e439205
3,650,264
def make_mesh(object_name, object_colour=(0.25, 0.25, 0.25, 1.0), collection="Collection"): """ Create a mesh then return the object reference and the mesh object :param object_name: Name of the object :type object_name: str :param object_colour: RGBA colour of the object, defaults to a shade of grey :type object_colour: (float, float, float, float) :param collection: Where you want the objected to be added, defaults to Collection :type collection: str :return: Object reference and mesh reference """ # Make the block mesh = bpy.data.meshes.new(object_name) # add the new mesh obj = bpy.data.objects.new(mesh.name, mesh) create_emission_node(obj, object_colour) col = bpy.data.collections.get(collection) col.objects.link(obj) bpy.context.view_layer.objects.active = obj return obj, mesh
73fd8d13d471c55258a06feb71eec51ca51f23f9
3,650,266
import optparse def _OptionParser(): """Returns the options parser for run-bisect-perf-regression.py.""" usage = ('%prog [options] [-- chromium-options]\n' 'Used by a try bot to run the bisection script using the parameters' ' provided in the auto_bisect/bisect.cfg file.') parser = optparse.OptionParser(usage=usage) parser.add_option('-w', '--working_directory', type='str', help='A working directory to supply to the bisection ' 'script, which will use it as the location to checkout ' 'a copy of the chromium depot.') parser.add_option('-p', '--path_to_goma', type='str', help='Path to goma directory. If this is supplied, goma ' 'builds will be enabled.') parser.add_option('--path_to_config', type='str', help='Path to the config file to use. If this is supplied, ' 'the bisect script will use this to override the default ' 'config file path. The script will attempt to load it ' 'as a bisect config first, then a perf config.') parser.add_option('--extra_src', type='str', help='Path to extra source file. If this is supplied, ' 'bisect script will use this to override default behavior.') parser.add_option('--dry_run', action="store_true", help='The script will perform the full bisect, but ' 'without syncing, building, or running the performance ' 'tests.') return parser
7485db294d89732c2c5223a3e3fe0b7773444b49
3,650,267
def calc_radiance(wavel, Temp): """ Calculate the blackbody radiance Parameters ---------- wavel: float or array wavelength (meters) Temp: float temperature (K) Returns ------- Llambda: float or arr monochromatic radiance (W/m^2/m/sr) """ Llambda_val = c1 / (wavel**5. * (np.exp(c2 / (wavel * Temp)) - 1)) return Llambda_val
9a957b42e0e92614709f7157765f0185e1dd532a
3,650,268
def _JMS_to_Fierz_III_IV_V(C, qqqq): """From JMS to 4-quark Fierz basis for Classes III, IV and V. `qqqq` should be of the form 'sbuc', 'sdcc', 'ucuu' etc.""" #case dduu classIII = ['sbuc', 'sbcu', 'dbuc', 'dbcu', 'dsuc', 'dscu'] classVdduu = ['sbuu' , 'dbuu', 'dsuu', 'sbcc' , 'dbcc', 'dscc'] if qqqq in classIII + classVdduu: f1 = dflav[qqqq[0]] f2 = dflav[qqqq[1]] f3 = uflav[qqqq[2]] f4 = uflav[qqqq[3]] return { 'F' + qqqq + '1' : C["V1udLL"][f3, f4, f1, f2] - C["V8udLL"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2' : C["V8udLL"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3' : C["V1duLR"][f1, f2, f3, f4] - C["V8duLR"][f1, f2, f3, f4] / (2 * Nc), 'F' + qqqq + '4' : C["V8duLR"][f1, f2, f3, f4] / 2, 'F' + qqqq + '5' : C["S1udRR"][f3, f4, f1, f2] - C["S8udduRR"][f3, f2, f1, f4] / 4 - C["S8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '6' : -C["S1udduRR"][f3, f2, f1, f4] / 2 + C["S8udduRR"][f3, f2, f1, f4] /(4 * Nc) + C["S8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '7' : -C["V8udduLR"][f4, f1, f2, f3].conj(), 'F' + qqqq + '8' : -2 * C["V1udduLR"][f4, f1, f2, f3].conj() + C["V8udduLR"][f4, f1, f2, f3].conj() / Nc, 'F' + qqqq + '9' : -C["S8udduRR"][f3, f2, f1, f4] / 16, 'F' + qqqq + '10' : -C["S1udduRR"][f3, f2, f1, f4] / 8 + C["S8udduRR"][f3, f2, f1, f4] / (16 * Nc), 'F' + qqqq + '1p' : C["V1udRR"][f3, f4, f1, f2] - C["V8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2p' : C["V8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3p' : C["V1udLR"][f3, f4, f1, f2] - C["V8udLR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '4p' : C["V8udLR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '5p' : C["S1udRR"][f4, f3, f2, f1].conj() - C["S8udduRR"][f4, f1, f2, f3].conj() / 4 - C["S8udRR"][f4, f3, f2, f1].conj() / (2 * Nc), 'F' + qqqq + '6p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 2 + C["S8udduRR"][f4, f1, f2, f3].conj()/(4 * Nc) + C["S8udRR"][f4, f3, f2, f1].conj() / 2, 'F' + qqqq + '7p' : -C["V8udduLR"][f3, f2, f1, f4], 'F' + qqqq + '8p' : - 2 * C["V1udduLR"][f3, f2, f1, f4] + C["V8udduLR"][f3, f2, f1, f4] / Nc, 'F' + qqqq + '9p' : -C["S8udduRR"][f4, f1, f2, f3].conj() / 16, 'F' + qqqq + '10p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 8 + C["S8udduRR"][f4, f1, f2, f3].conj() / 16 / Nc } classVuudd = ['ucdd', 'ucss', 'ucbb'] if qqqq in classVuudd: f3 = uflav[qqqq[0]] f4 = uflav[qqqq[1]] f1 = dflav[qqqq[2]] f2 = dflav[qqqq[3]] return { 'F' + qqqq + '1' : C["V1udLL"][f3, f4, f1, f2] - C["V8udLL"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2' : C["V8udLL"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3p' : C["V1duLR"][f1, f2, f3, f4] - C["V8duLR"][f1, f2, f3, f4] / (2 * Nc), 'F' + qqqq + '4p' : C["V8duLR"][f1, f2, f3, f4] / 2, 'F' + qqqq + '5' : C["S1udRR"][f3, f4, f1, f2] - C["S8udduRR"][f3, f2, f1, f4] / 4 - C["S8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '6' : -C["S1udduRR"][f3, f2, f1, f4] / 2 + C["S8udduRR"][f3, f2, f1, f4] /(4 * Nc) + C["S8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '7p' : -C["V8udduLR"][f4, f1, f2, f3].conj(), 'F' + qqqq + '8p' : -2 * C["V1udduLR"][f4, f1, f2, f3].conj() + C["V8udduLR"][f4, f1, f2, f3].conj() / Nc, 'F' + qqqq + '9' : -C["S8udduRR"][f3, f2, f1, f4] / 16, 'F' + qqqq + '10' : -C["S1udduRR"][f3, f2, f1, f4] / 8 + C["S8udduRR"][f3, f2, f1, f4] / (16 * Nc), 'F' + qqqq + '1p' : C["V1udRR"][f3, f4, f1, f2] - C["V8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2p' : C["V8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3' : C["V1udLR"][f3, f4, f1, f2] - C["V8udLR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '4' : C["V8udLR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '5p' : C["S1udRR"][f4, f3, f2, f1].conj() - C["S8udduRR"][f4, f1, f2, f3].conj() / 4 - C["S8udRR"][f4, f3, f2, f1].conj() / (2 * Nc), 'F' + qqqq + '6p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 2 + C["S8udduRR"][f4, f1, f2, f3].conj()/(4 * Nc) + C["S8udRR"][f4, f3, f2, f1].conj() / 2, 'F' + qqqq + '7' : -C["V8udduLR"][f3, f2, f1, f4], 'F' + qqqq + '8' : - 2 * C["V1udduLR"][f3, f2, f1, f4] + C["V8udduLR"][f3, f2, f1, f4] / Nc, 'F' + qqqq + '9p' : -C["S8udduRR"][f4, f1, f2, f3].conj() / 16, 'F' + qqqq + '10p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 8 + C["S8udduRR"][f4, f1, f2, f3].conj() / 16 / Nc } #case dddd classIV = ['sbsd', 'dbds', 'bsbd'] classVdddd = ['sbss', 'dbdd', 'dsdd', 'sbbb', 'dbbb', 'dsss'] classVddddind = ['sbdd', 'dsbb', 'dbss'] if qqqq in classIV + classVdddd + classVddddind: f1 = dflav[qqqq[0]] f2 = dflav[qqqq[1]] f3 = dflav[qqqq[2]] f4 = dflav[qqqq[3]] return { 'F'+ qqqq +'1' : C["VddLL"][f3, f4, f1, f2], 'F'+ qqqq +'2' : C["VddLL"][f1, f4, f3, f2], 'F'+ qqqq +'3' : C["V1ddLR"][f1, f2, f3, f4] - C["V8ddLR"][f1, f2, f3, f4]/(2 * Nc), 'F'+ qqqq +'4' : C["V8ddLR"][f1, f2, f3, f4] / 2, 'F'+ qqqq +'5' : C["S1ddRR"][f3, f4, f1, f2] - C["S8ddRR"][f3, f2, f1,f4] / 4 - C["S8ddRR"][f3, f4, f1, f2] / (2 * Nc), 'F'+ qqqq +'6' : -C["S1ddRR"][f1, f4, f3, f2] / 2 + C["S8ddRR"][f3, f2, f1, f4] / (4 * Nc) + C["S8ddRR"][f3, f4, f1, f2] / 2, 'F'+ qqqq +'7' : -C["V8ddLR"][f1, f4, f3, f2], 'F'+ qqqq +'8' : -2 * C["V1ddLR"][f1, f4, f3, f2] + C["V8ddLR"][f1, f4, f3, f2] / Nc, 'F'+ qqqq +'9' : -C["S8ddRR"][f3, f2, f1, f4] / 16, 'F'+ qqqq +'10' : -C["S1ddRR"][f1, f4, f3, f2] / 8 + C["S8ddRR"][f3, f2, f1, f4] / (16 * Nc), 'F'+ qqqq +'1p' : C["VddRR"][f3, f4, f1, f2], 'F'+ qqqq +'2p' : C["VddRR"][f1, f4, f3, f2], 'F'+ qqqq +'3p' : C["V1ddLR"][f3, f4, f1, f2] - C["V8ddLR"][f3, f4, f1,f2] / (2 * Nc), 'F'+ qqqq +'4p' : C["V8ddLR"][f3, f4, f1, f2] / 2, 'F'+ qqqq +'5p' : C["S1ddRR"][f4, f3, f2, f1].conj() - C["S8ddRR"][f4, f1, f2, f3].conj() / 4 -C["S8ddRR"][f4, f3, f2, f1].conj() / 2 / Nc, 'F'+ qqqq +'6p' : -C["S1ddRR"][f4, f1, f2, f3].conj() / 2 + C["S8ddRR"][f4, f1, f2, f3].conj() / 4 / Nc + C["S8ddRR"][f4, f3, f2, f1].conj() / 2, 'F'+ qqqq +'7p' : -C["V8ddLR"][f3, f2, f1, f4], 'F'+ qqqq +'8p' : -2 * C["V1ddLR"][f3, f2, f1, f4] + C["V8ddLR"][f3, f2, f1, f4] / Nc, 'F'+ qqqq +'9p' : -C["S8ddRR"][f4, f1, f2, f3].conj() / 16, 'F'+ qqqq +'10p' : -C["S1ddRR"][f4, f1, f2, f3].conj() / 8 + C["S8ddRR"][f4, f1, f2, f3].conj() / 16 / Nc } #case uuuu classVuuuu = ['ucuu', 'cucc', 'cuuu', 'uccc'] if qqqq in classVuuuu: f1 = uflav[qqqq[0]] f2 = uflav[qqqq[1]] f3 = uflav[qqqq[2]] f4 = uflav[qqqq[3]] return { 'F' + qqqq + '1' : C["VuuLL"][f3, f4, f1, f2], 'F' + qqqq + '2' : C["VuuLL"][f1, f4, f3, f2], 'F' + qqqq + '3' : C["V1uuLR"][f1, f2, f3, f4] - C["V8uuLR"][f1, f2, f3, f4] / (2 * Nc), 'F' + qqqq + '4' : C["V8uuLR"][f1, f2, f3, f4] / 2, 'F' + qqqq + '5' : C["S1uuRR"][f3, f4, f1, f2] - C["S8uuRR"][f3, f2, f1, f4] / 4 - C["S8uuRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '6' : -C["S1uuRR"][f1, f4, f3, f2] / 2 + C["S8uuRR"][f3, f2, f1, f4] / (4 * Nc) + C["S8uuRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '7' : -C["V8uuLR"][f1, f4, f3, f2], 'F' + qqqq + '8' : -2 * C["V1uuLR"][f1, f4, f3, f2] + C["V8uuLR"][f1, f4, f3, f2] / Nc, 'F' + qqqq + '9' : -C["S8uuRR"][f3, f2, f1, f4] / 16, 'F' + qqqq + '10' : -C["S1uuRR"][f1, f4, f3, f2] / 8 + C["S8uuRR"][f3, f2, f1, f4] / (16 * Nc), 'F'+ qqqq + '1p': C["VuuRR"][f3, f4, f1, f2], 'F' + qqqq + '2p': C["VuuRR"][f1, f3, f4, f2], 'F' + qqqq + '3p' : C["V1uuLR"][f3, f4, f1, f2] - C["V8uuLR"][f3, f4, f1,f2] / (2 * Nc), 'F' + qqqq + '4p' : C["V8uuLR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '5p' : C["S1uuRR"][f4, f3, f2, f1].conj() - C["S8uuRR"][f4, f1, f2, f3].conj() / 4 - C["S8uuRR"][f4, f3, f2, f1].conj() / 2 / Nc, 'F' + qqqq + '6p' : -C["S1uuRR"][f4, f1, f2, f3].conj() / 2 + C["S8uuRR"][f4, f1, f2, f3].conj() / 4 / Nc + C["S8uuRR"][f4, f3, f2, f1].conj() / 2, 'F' + qqqq + '7p' : -C["V8uuLR"][f3, f2, f1, f4], 'F' + qqqq + '8p' : -2 * C["V1uuLR"][f3, f2, f1, f4] + C["V8uuLR"][f3, f2, f1, f4] / Nc, 'F' + qqqq + '9p' : -C["S8uuRR"][f4, f1, f2, f3].conj() / 16, 'F' + qqqq + '10p' : -C["S1uuRR"][f4, f1, f2, f3].conj() / 8 + C["S8uuRR"][f4, f1, f2, f3].conj() / 16 / Nc } else: raise ValueError(f"Case not implemented: {qqqq}")
5629a4e88996bd3ba30bd68cc8758b3d55abd093
3,650,270
from typing import Any def get_parsed_args() -> Any: """Return Porcupine's arguments as returned by :func:`argparse.parse_args`.""" assert _parsed_args is not None return _parsed_args
9e4dc1eadc3c68d8a8e5a5a885fecf7c0ec89856
3,650,271
def get_license_description(license_code): """ Gets the description of the given license code. For example, license code '1002' results in 'Accessory Garage' :param license_code: The license code :return: The license description """ global _cached_license_desc return _cached_license_desc[license_code]
3de38be73d303036872b285c2dd7c0048ba5660f
3,650,272
import pickle import getpass def db_keys_unlock(passphrase) -> bool: """Unlock secret key with pass phrase""" global _secretkeyfile try: with open(_secretkeyfile, "rb") as f: secretkey = pickle.load(f) if not secretkey["locked"]: print("Secret key file is already unlocked") return True if passphrase: usepass = passphrase else: usepass = getpass("Enter pass phrase: ") print("") if usepass: if secretkey["hash"] == blake2b(str.encode(usepass)).hexdigest(): k = Fernet(password_to_key(usepass)) secretkey["secret"] = k.decrypt(str.encode(secretkey["secret"])).decode() secretkey["locked"] = False db_keys_set(secretkey, False) else: print("Pass phrase did not match, secret key remains locked") return False except Exception: print("Error locking secret key content") return False print("Secret key successfully unlocked") return True
4d1af86143384ff6228ad086d92f797b7529c73e
3,650,273
def list_domains(): """ Return a list of the salt_id names of all available Vagrant VMs on this host without regard to the path where they are defined. CLI Example: .. code-block:: bash salt '*' vagrant.list_domains --log-level=info The log shows information about all known Vagrant environments on this machine. This data is cached and may not be completely up-to-date. """ vms = [] cmd = 'vagrant global-status' reply = __salt__['cmd.shell'](cmd) log.info('--->\n%s', reply) for line in reply.split('\n'): # build a list of the text reply tokens = line.strip().split() try: _ = int(tokens[0], 16) # valid id numbers are hexadecimal except (ValueError, IndexError): continue # skip lines without valid id numbers machine = tokens[1] cwd = tokens[-1] name = get_machine_id(machine, cwd) if name: vms.append(name) return vms
af04859c5d6e0cd2edb3d3cec88ebebd777c93d6
3,650,274
def get_old_options(cli, image): """ Returns Dockerfile values for CMD and Entrypoint """ return { 'cmd': dockerapi.inspect_config(cli, image, 'Cmd'), 'entrypoint': dockerapi.inspect_config(cli, image, 'Entrypoint'), }
eed75800ae3afdc99fdcd5c0f5dc36504d5db96c
3,650,275
def line_crops_and_labels(iam: IAM, split: str): """Load IAM line labels and regions, and load line image crops.""" crops = [] labels = [] for filename in iam.form_filenames: if not iam.split_by_id[filename.stem] == split: continue image = util.read_image_pil(filename) image = ImageOps.grayscale(image) image = ImageOps.invert(image) labels += iam.line_strings_by_id[filename.stem] crops += [ image.crop([region[_] for _ in ["x1", "y1", "x2", "y2"]]) for region in iam.line_regions_by_id[filename.stem] ] assert len(crops) == len(labels) return crops, labels
f223ded3c2dc9254985ad450995f8dc598dc5411
3,650,276
def convert(chinese): """converts Chinese numbers to int in: string out: string """ numbers = {'零':0, '一':1, '二':2, '三':3, '四':4, '五':5, '六':6, '七':7, '八':8, '九':9, '壹':1, '贰':2, '叁':3, '肆':4, '伍':5, '陆':6, '柒':7, '捌':8, '玖':9, '两':2, '廿':20, '卅':30, '卌':40, '虚':50, '圆':60, '近':70, '枯':80, '无':90} units = {'个':1, '十':10, '百':100, '千':1000, '万':10000, '亿':100000000,'万亿':1000000000000, '拾':10, '佰':100, '仟':1000} number, pureNumber = 0, True for i in range(len(chinese)): if chinese[i] in units or chinese[i] in ['廿', '卅', '卌', '虚', '圆', '近', '枯', '无']: pureNumber = False break if chinese[i] in numbers: number = number * 10 + numbers[chinese[i]] if pureNumber: return number number = 0 for i in range(len(chinese)): if chinese[i] in numbers or chinese[i] == '十' and (i == 0 or chinese[i - 1] not in numbers or chinese[i - 1] == '零'): base, currentUnit = 10 if chinese[i] == '十' and (i == 0 or chinese[i] == '十' and chinese[i - 1] not in numbers or chinese[i - 1] == '零') else numbers[chinese[i]], '个' for j in range(i + 1, len(chinese)): if chinese[j] in units: if units[chinese[j]] >= units[currentUnit]: base, currentUnit = base * units[chinese[j]], chinese[j] number = number + base return number
cf2ece895698e2d99fde815efa0339687eadda97
3,650,277
def computeZvector(idata, hue, control, features_to_eval): """ :param all_data: dataframe :return: """ all_data = idata.copy() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] m_indexes = list(all_data[hue].unique().astype('str')) query_one = "" for el in control: if el in m_indexes: query_one = query_one + hue + "==\'" + str(el) + "\'|" else: break query_one = query_one[:-1] # remove last character df_q = all_data.query(query_one).copy() eps = 1e-15 # Compute average for each feature, per each treatment avg_vec = pd.DataFrame() for el in m_indexes: data_calc = all_data.query(hue + "==\'" + str(el) + "\'").copy() for col in data_calc.select_dtypes(include=numerics): if col in features_to_eval: avg_vec.loc[el, col] = data_calc[col].mean() # Compute length of vector all_data.loc[:, 'length'] = 0 for feature in features_to_eval: all_data['length'] = all_data['length'] + all_data[feature] ** 2 all_data['length'] = np.sqrt(all_data['length']) # Compute cosine # Dot product of each vector per each mean v*w all_data.loc[:, 'cosine'] = 0 for el in m_indexes: for feature in features_to_eval: all_data.loc[all_data['Gene'] == el, 'cosine'] = all_data.loc[all_data['Gene'] == el, 'cosine'] + \ all_data[all_data['Gene'] == el][feature] * avg_vec.loc[ el, feature] # Norm of avg_vec v_avg_norm = np.sqrt(np.sum(avg_vec ** 2, axis=1)) for el in m_indexes: all_data.loc[all_data['Gene'] == el, 'cosine'] = all_data.loc[all_data['Gene'] == el, 'cosine'] / ( all_data.loc[all_data['Gene'] == el, 'length'] * v_avg_norm[el]) all_data['projection'] = all_data['length'] * all_data['cosine'] return all_data
d80e6a9fe754cb8558598c72ab2f076fab329750
3,650,278
def getjflag(job): """Returns flag if job in finished state""" return 1 if job['jobstatus'] in ('finished', 'failed', 'cancelled', 'closed') else 0
bf0c0a85cb1af954d25f4350e55b9e3604cf7c79
3,650,279
import copy def json_parse(ddict): """ https://github.com/arita37/mlmodels/blob/dev/mlmodels/dataset/test_json/test_functions.json https://github.com/arita37/mlmodels/blob/dev/mlmodels/dataset/json/benchmark_timeseries/gluonts_m5.json "deepar": { "model_pars": { "model_uri" : "model_gluon.gluonts_model", "model_name" : "deepar", "model_pars" : { "prediction_length": 12, "freq": "D", "distr_output" : {"uri" : "gluonts.distribution.neg_binomial:NegativeBinomialOutput"}, "distr_output" : "uri::gluonts.distribution.neg_binomial:NegativeBinomialOutput", """ js = ddict js2 = copy.deepcopy(js) def parse2(d2): if "uri" in d2: # Be careful not to include heavy compute return json_to_object(d2) else: return json_norm(d2) for k, val in js.items(): if isinstance(val, dict): js2[k] = parse2(val) elif "uri::" in val: # Shortcut when nor argument js2[k] = json_to_object({"uri": val.split("uri::")[-1]}) else: js2[k] = json_norm_val(val) return js2
30b037531ac129a2a597b146c935fe344566a547
3,650,280
def read_viz_icons(style='icomoon', fname='infinity.png'): """ Read specific icon from specific style Parameters ---------- style : str Current icon style. Default is icomoon. fname : str Filename of icon. This should be found in folder HOME/.dipy/style/. Default is infinity.png. Returns -------- path : str Complete path of icon. """ folder = pjoin(dipy_home, 'icons', style) return pjoin(folder, fname)
8d97ebb450b94dce5c4feb3f631cd9deebcdb1c1
3,650,281
def mock_config_entry() -> MockConfigEntry: """Return the default mocked config entry.""" return MockConfigEntry( title="12345", domain=DOMAIN, data={CONF_API_KEY: "tskey-MOCK", CONF_SYSTEM_ID: 12345}, unique_id="12345", )
cb2a5b8d7e84d1b825e79a9b4e3aebc8f8c60783
3,650,282
import datasets def get_mnist_loader(batch_size, train, perm=0., Nparts=1, part=0, seed=0, taskid=0, pre_processed=True, **loader_kwargs): """Builds and returns Dataloader for MNIST and SVHN dataset.""" transform = transforms.Compose([ transforms.Grayscale(), transforms.ToTensor(), transforms.Normalize((0.0,), (1.0,)), transforms.Lambda(lambda x: x.view([28,28]))]) dataset = datasets.MNIST(root='./data', download=True, transform=transform, train = train) if perm>0: permute_dataset(dataset, perm, seed=seed) if Nparts>1: partition_dataset(dataset, Nparts,part) if pre_processed: dataset = preprocess_dataset(dataset) DL = DataLoaderPreProcessed else: DL = DataLoader loader = DL(dataset=dataset, batch_size=batch_size, shuffle=train, **loader_kwargs) loader.taskid = taskid loader.name = 'MNIST_{}'.format(taskid,part) loader.short_name = 'MNIST' return loader
2181ffa0abd4f1357ec7cc8cdf52b0eb86a2d13c
3,650,283
def read_data(filename): """ Reads orbital map file into a list """ data = [] f = open(filename, 'r') for line in f: data += line.strip().split('\n') f.close() return data
7c2f5669735e39352b0b655425a70993baae32ef
3,650,284
from typing import Union def _form_factor_pipi( self, s: Union[float, npt.NDArray[np.float64]], imode: int = 1 ) -> Union[complex, npt.NDArray[np.complex128]]: """ Compute the pi-pi-V form factor. Parameters ---------- s: Union[float,npt.NDArray[np.float64] Square of the center-of-mass energy in MeV. imode: Optional[int] Iso-spin channel. Default is 1. Returns ------- ff: Union[complex,npt.NDArray[np.complex128]] Form factor from pi-pi-V. """ return __ff_pipi( s * 1e-6, # Convert to GeV self._ff_pipi_params, self._gvuu, self._gvdd, )
92438400debb52bff6480791631e2b60043c758f
3,650,285
import re import click def string_to_epoch(s): """ Convert argument string to epoch if possible If argument looks like int + s,h,md (ie, 30d), we'll pass as-is since pushshift can accept this. Per docs, pushshift supports: Epoch value or Integer + "s,m,h,d" (i.e. 30d for 30 days) :param s: str :return: int | str """ if s is not None: s = s.strip() if re.search('^[0-9]+[smhd]$', s): return s try: s = dp.parse(s).timestamp() s = int(s) except ValueError: raise click.BadParameter("could not convert argument to " "a datetime: {}".format(s)) return s
b45db1d589cbe71eec5f11d53d2851dee258da8f
3,650,287
import array def spline_filter(Iin, lmbda=5.0): """Smoothing spline (cubic) filtering of a rank-2 array. Filter an input data set, `Iin`, using a (cubic) smoothing spline of fall-off `lmbda`. """ intype = Iin.dtype.char hcol = array([1.0,4.0,1.0],'f')/6.0 if intype in ['F','D']: Iin = Iin.astype('F') ckr = cspline2d(Iin.real,lmbda) cki = cspline2d(Iin.imag,lmbda) outr = sepfir2d(ckr,hcol,hcol) outi = sepfir2d(cki,hcol,hcol) out = (outr + 1j*outi).astype(intype) elif intype in ['f','d']: ckr = cspline2d(Iin,lmbda) out = sepfir2d(ckr, hcol, hcol) out = out.astype(intype) else: raise TypeError("Invalid data type for Iin") return out
ee606bdceaf974671ccf36b9d498204613c12f51
3,650,288
def _construct_aline_collections(alines, dtix=None): """construct arbitrary line collections Parameters ---------- alines : sequence sequences of segments, which are sequences of lines, which are sequences of two or more points ( date[time], price ) or (x,y) date[time] may be (a) pandas.to_datetime parseable string, (b) pandas Timestamp, or (c) python datetime.datetime or datetime.date alines may also be a dict, containing the following keys: 'alines' : the same as defined above: sequence of price, or dates, or segments 'colors' : colors for the above alines 'linestyle' : line types for the above alines 'linewidths' : line types for the above alines dtix: date index for the x-axis, used for converting the dates when x-values are 'evenly spaced integers' (as when skipping non-trading days) Returns ------- ret : list lines collections """ if alines is None: return None if isinstance(alines,dict): aconfig = _process_kwargs(alines, _valid_lines_kwargs()) alines = aconfig['alines'] else: aconfig = _process_kwargs({}, _valid_lines_kwargs()) #print('aconfig=',aconfig) #print('alines=',alines) alines = _alines_validator(alines, returnStandardizedValue=True) if alines is None: raise ValueError('Unable to standardize alines value: '+str(alines)) alines = _convert_segment_dates(alines,dtix) lw = aconfig['linewidths'] co = aconfig['colors'] ls = aconfig['linestyle'] al = aconfig['alpha'] lcollection = LineCollection(alines,colors=co,linewidths=lw,linestyles=ls,antialiaseds=(0,),alpha=al) return lcollection
863fd8c6e8d0b1a39c5a79bca7a0eaa5b2204aea
3,650,289
def is_mergeable(*ts_or_tsn): """Check if all objects(FermionTensor or FermionTensorNetwork) are part of the same FermionSpace """ if isinstance(ts_or_tsn, (FermionTensor, FermionTensorNetwork)): return True fs_lst = [] site_lst = [] for obj in ts_or_tsn: if isinstance(obj, FermionTensor): if obj.fermion_owner is None: return False hashval, fsobj, tid = obj.fermion_owner fs_lst.append(hashval) site_lst.append(fsobj()[tid][1]) elif isinstance(obj, FermionTensorNetwork): fs_lst.append(hash(obj.fermion_space)) site_lst.extend(obj.filled_sites) else: raise TypeError("unable to find fermionspace") return all([fs==fs_lst[0] for fs in fs_lst]) and len(set(site_lst)) == len(site_lst)
de5f4fc47874e328bcdd078e2bdf8d6f53d6d4e6
3,650,290
def query_for_account(account_rec, region): """ Performs the public ip query for the given account :param account: Account number to query :param session: Initial session :param region: Region to query :param ip_data: Initial list. Appended to and returned :return: update ip_data list """ ip_data = [] session = boto3.session.Session(region_name=region) assume = rolesession.assume_crossact_audit_role( session, account_rec['accountNum'], region) if assume: for ip_addr in assume.client('ec2').describe_addresses()['Addresses']: ip_data.append( dict(PublicIP=(ip_addr.get('PublicIp')), InstanceId=(ip_addr.get('InstanceId')), # Prevents a crash PrivateIP=(ip_addr.get('PrivateIpAddress')), NetworkInterface=(ip_addr.get('NetworkInterfaceId')), AccountNum=account_rec['accountNum'], AccountAlias=(account_rec['alias']))) for instance in assume.resource('ec2').instances.filter(): if instance.public_ip_address: ip_data.append( dict(InstanceId=(instance.instance_id), PublicIP=(instance.public_ip_address), PrivateIP=(instance.private_ip_address), AccountNum=account_rec['accountNum'], AccountAlias=(account_rec['alias']))) else: pass return ip_data
61055939990175c6e2cb850ede7d448a261ccdff
3,650,292
from typing import List def filter_list_of_dicts(list_of_dicts: list, **filters) -> List[dict]: """Filter a list of dicts by any given key-value pair. Support simple logical operators like: '<,>,<=,>=,!'. Supports filtering by providing a list value i.e. openJobsCount=[0, 1, 2]. """ for key, value in filters.items(): filter_function = make_dict_filter(key, value) list_of_dicts = list(filter(filter_function, list_of_dicts)) return list_of_dicts
f926b7c478400d3804d048ced823003e48fd5ef1
3,650,293
def construct_pos_line(elem, coor, tags): """ Do the opposite of the parse_pos_line """ line = "{elem} {x:.10f} {y:.10f} {z:.10f} {tags}" return line.format(elem=elem, x=coor[0], y=coor[1], z=coor[2], tags=tags)
21ca509131c85a2c7bc24d00a28e7d4ea580a49a
3,650,294
def compute_pcs(predicts, labels, label_mapper, dataset): """ compute correctly predicted full spans. If cues and scopes are predicted jointly, convert cue labels to I/O labels depending on the annotation scheme for the considered dataset :param predicts: :param labels: :return: """ def trim_and_convert(predict, label, label_mapper, dataset): temp_1 = [] temp_2 = [] for j, m in enumerate(predict): if label_mapper[label[j]] != 'X' and label_mapper[label[j]] != 'CLS' and label_mapper[label[j]] != 'SEP': temp_1.append(label_mapper[label[j]]) temp_2.append(label_mapper[m]) if 'joint' in dataset: if cue_in_scope[dataset] is True: replacement= 'I' else: replacement = 'O' for j, m in enumerate(temp_1): if m == 'C': temp_1[j] = replacement for j, m in enumerate(temp_2): if m == 'C': temp_2[j] = replacement return temp_2, temp_1 tp = 0. for predict, label in zip(predicts, labels): predict, label = trim_and_convert(predict, label, label_mapper,dataset) if predict == label: tp += 1 return tp/len(predicts)
5f046c1599617ad7620ea9a618f85f02dd93e28c
3,650,295
def pentomino(): """ Main pentomino routine @return {string} solution as rectangles separated by a blank line """ return _stringify( _pent_wrapper1(tree_main_builder())(rect_gen_boards()))
07e448efdbfe5cb43ce943f33f24a7887878001f
3,650,296
def do_login(request, username, password): """ Check credentials and log in """ if request.access.verify_user(username, password): request.response.headers.extend(remember(request, username)) return {"next": request.app_url()} else: return HTTPForbidden()
f7c076c6f4a6ac51bf5a3ea39116166002ce1833
3,650,297
from tokenize import Token import re def _interpolate(format1): """ Takes a format1 string and returns a list of 2-tuples of the form (boolean, string) where boolean says whether string should be evaled or not. from <http://lfw.org/python/Itpl.py> (public domain, Ka-Ping Yee) """ def matchorfail(text, pos): tokenprog = re.compile(Token) match = tokenprog.match(text, pos) if match is None: raise _ItplError(text, pos) return match, match.end() namechars = "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; chunks = [] pos = 0 while 1: dollar = format1.find("$", pos) if dollar < 0: break nextchar = format1[dollar + 1] if nextchar == "{": chunks.append((0, format1[pos:dollar])) pos, level = dollar + 2, 1 while level: match, pos = matchorfail(format1, pos) tstart, tend = match.regs[3] token = format1[tstart:tend] if token == "{": level = level + 1 elif token == "}": level = level - 1 chunks.append((1, format1[dollar + 2:pos - 1])) elif nextchar in namechars: chunks.append((0, format1[pos:dollar])) match, pos = matchorfail(format1, dollar + 1) while pos < len(format1): if format1[pos] == "." and \ pos + 1 < len(format1) and format1[pos + 1] in namechars: match, pos = matchorfail(format1, pos + 1) elif format1[pos] in "([": pos, level = pos + 1, 1 while level: match, pos = matchorfail(format1, pos) tstart, tend = match.regs[3] token = format1[tstart:tend] if token[0] in "([": level = level + 1 elif token[0] in ")]": level = level - 1 else: break chunks.append((1, format1[dollar + 1:pos])) else: chunks.append((0, format1[pos:dollar + 1])) pos = dollar + 1 + (nextchar == "$") if pos < len(format1): chunks.append((0, format1[pos:])) return chunks
9af06b91f0ad2e15fd7479ac2e1dedc5443b6e34
3,650,298
def approxIndex(iterable, item, threshold): """Same as the python index() function but with a threshold from wich values are considerated equal.""" for i, iterableItem in rev_enumerate(iterable): if abs(iterableItem - item) < threshold: return i return None
45ec7b816674231a5efa8a559e9f9416a81987f5
3,650,299
import random def delete_important_words(word_list, replace=''): """ randomly detele an important word in the query or replace (not in QUERY_SMALL_CHANGE_SETS) """ # replace can be [MASK] important_word_list = set(word_list) - set(QUERY_SMALL_CHANGE_SETS) target = random.sample(important_word_list, 1)[0] if replace: new_word_list = [item if item!=target else item.replace(target, replace) for item in word_list] else: new_word_list = [item for item in word_list if item!=target] return new_word_list
336518cb1c52f896fc9878e1c11b3f0e72c4f36a
3,650,300
import numpy as np def prot(vsini, st_rad): """ Function to convert stellar rotation velocity vsini in km/s to rotation period in days. Parameters: ---------- vsini: Rotation velocity of star in km/s. st_rad: Stellar radius in units of solar radii Returns ------ Prot: Period of rotation of the star in days. """ vsini=np.array(vsini) prot=(2*np.pi*st_rad*rsun)/(vsini*24*60*60) return prot
db2ef4648c5142a996e4a700aee0c7df0f02a394
3,650,301
def dialog_sleep(): """Return the time to sleep as set by the --exopy-sleep option. """ return DIALOG_SLEEP
cc40ffa09c83bd095f685b3b1d237545b8d7dd34
3,650,302
def required_overtime (db, user, frm) : """ If required_overtime flag is set for overtime_period of dynamic user record at frm, we return the overtime_period belonging to this dyn user record. Otherwise return None. """ dyn = get_user_dynamic (db, user, frm) if dyn and dyn.overtime_period : otp = db.overtime_period.getnode (dyn.overtime_period) if otp.required_overtime : return otp return None
052e1289a0d7110100b3a1ea0ad90fa7bd000cce
3,650,303
def get_best_fit_member(*args): """ get_best_fit_member(sptr, offset) -> member_t Get member that is most likely referenced by the specified offset. Useful for offsets > sizeof(struct). @param sptr (C++: const struc_t *) @param offset (C++: asize_t) """ return _ida_struct.get_best_fit_member(*args)
7d4032d5cedb789d495e658eda939c36591f3506
3,650,304
def convert_time(time): """Convert given time to srt format.""" stime = '%(hours)02d:%(minutes)02d:%(seconds)02d,%(milliseconds)03d' % \ {'hours': time / 3600, 'minutes': (time % 3600) / 60, 'seconds': time % 60, 'milliseconds': (time % 1) * 1000} return stime
948e6567c8bc17ccb5f98cf8c8eaf8fe6e8d0bec
3,650,305
def Returns1(target_bitrate, result): """Score function that returns a constant value.""" # pylint: disable=W0613 return 1.0
727e58e0d6d596cf4833ca3ca1cbcec6b9eedced
3,650,306
def test_abstract_guessing(): """Test abstract guessing property.""" class _CustomPsychometric(DiscriminationMethod): def psychometric_function(self, d): return 0.5 with pytest.raises(TypeError, match="abstract method"): _CustomPsychometric()
996f6fb4d6b819e15fb3a931c0dc2a1f211e3d58
3,650,307
import re def remove_repeats(msg): """ This function removes repeated characters from text. :param/return msg: String """ # twitter specific repeats msg = re.sub(r"(.)\1{2,}", r"\1\1\1", msg) # characters repeated 3 or more times # laughs msg = re.sub(r"(ja|Ja)(ja|Ja)+(j)?", r"jaja", msg) # spanish msg = re.sub(r"(rs|Rs)(Rs|rs)+(r)?", r"rsrs", msg) # portugese msg = re.sub(r"(ha|Ha)(Ha|ha)+(h)?", r"haha", msg) # english return msg
590ab42f74deaa9f8dc1eb9c8b11d81622db2e6d
3,650,308
def _legend_main_get(project, row): """ forma la leyenda de la serie principal del gráfico input project: es el tag project del proyecto seleccionado en fichero XYplus_parameters.f_xml -en XYplus_main.py- row: es fila activa devuelta por select_master) de donde se extrae el título del gráfico return un str con la leyenda del punto principal del gráfico """ legend_master = project.find('graph/legend_master').text.strip() columns_master = project.findall('graph/legend_master/column') if len(columns_master) == 0: return legend_master subs = [row[int(col1.text)-1] for col1 in columns_master] return legend_master.format(*subs)
3938d723bd44a67313b86f956464fd186ef25386
3,650,309
def ordinal_mapper(fh, coords, idmap, fmt=None, n=1000000, th=0.8, prefix=False): """Read an alignment file and match reads and genes in an ordinal system. Parameters ---------- fh : file handle Alignment file to parse. coords : dict of list Gene coordinates table. idmap : dict of list Gene identifiers. fmt : str, optional Alignment file format. n : int, optional Number of lines per chunk. th : float Minimum threshold of overlap length : alignment length for a match. prefix : bool Prefix gene IDs with nucleotide IDs. See Also -------- align.plain_mapper Yields ------ tuple of str Query queue. dict of set of str Subject(s) queue. """ # determine file format fmt, head = (fmt, []) if fmt else infer_align_format(fh) # assign parser for given format parser = assign_parser(fmt, ext=True) # cached list of query Ids for reverse look-up # gene Ids are unique, but read Ids can have duplicates (i.e., one read is # mapped to multiple loci on a genome), therefore an incremental integer # here replaces the original read Id as its identifer rids = [] rid_append = rids.append # cached map of read to coordinates locmap = defaultdict(list) def flush(): """Match reads in current chunk with genes from all nucleotides. Returns ------- tuple of str Query queue. dict of set of str Subject(s) queue. """ # master read-to-gene(s) map res = defaultdict(set) # iterate over nucleotides for nucl, locs in locmap.items(): # it's possible that no gene was annotated on the nucleotide try: glocs = coords[nucl] except KeyError: continue # get reference to gene identifiers gids = idmap[nucl] # append prefix if needed pfx = nucl + '_' if prefix else '' # execute ordinal algorithm when reads are many # 8 (5+ reads) is an empirically determined cutoff if len(locs) > 8: # merge and sort coordinates # question is to add unsorted read coordinates into pre-sorted # gene coordinates # Python's Timsort algorithm is efficient for this task queue = sorted(chain(glocs, locs)) # map reads to genes using the core algorithm for read, gene in match_read_gene(queue): # add read-gene pairs to the master map res[rids[read]].add(pfx + gids[gene]) # execute naive algorithm when reads are few else: for read, gene in match_read_gene_quart(glocs, locs): res[rids[read]].add(pfx + gids[gene]) # return matching read Ids and gene Ids return res.keys(), res.values() this = None # current query Id target = n # target line number at end of current chunk # parse alignment file for i, row in enumerate(parser(chain(iter(head), fh))): query, subject, _, length, beg, end = row[:6] # skip if length is not available or zero if not length: continue # when query Id changes and chunk limits has been reached if query != this and i >= target: # flush: match currently cached reads with genes and yield yield flush() # re-initiate read Ids, length map and location map rids = [] rid_append = rids.append locmap = defaultdict(list) # next target line number target = i + n # append read Id, alignment length and location idx = len(rids) rid_append(query) # effective length = length * th # -int(-x // 1) is equivalent to math.ceil(x) but faster # this value must be >= 1 locmap[subject].extend(( (beg << 48) + (-int(-length * th // 1) << 31) + idx, (end << 48) + idx)) this = query # final flush yield flush()
955c411e608fdb3cf55d0c52350b38061f87cd3a
3,650,311
def file_lines(filename): """ >>> file_lines('test/foo.txt') ['foo', 'bar'] """ return text_file(filename).split()
b121ba549606adeac244b063ff679192951c2ff8
3,650,312
def repr_should_be_defined(obj): """Checks the obj.__repr__() method is properly defined""" obj_repr = repr(obj) assert isinstance(obj_repr, str) assert obj_repr == obj.__repr__() assert obj_repr.startswith("<") assert obj_repr.endswith(">") return obj_repr
28537f4f48b402a2eba290d8ece9b765eeb9fdc3
3,650,313
def indexName(): """Index start page.""" return render_template('index.html')
0340e708a82052a98e6e9e92bfde2eb04128d354
3,650,317
def translate_http_code(): """Print given code :return: """ return make_http_code_translation(app)
c9b501b57323aeb765be47af134dd2de1c1d084e
3,650,318
import warnings def parmap(f, X, nprocs=1): """ parmap_fun() and parmap() are adapted from klaus se's post on stackoverflow. https://stackoverflow.com/a/16071616/4638182 parmap allows map on lambda and class static functions. Fall back to serial map when nprocs=1. """ if nprocs < 1: raise ValueError("nprocs should be >= 1. nprocs: {}".format(nprocs)) nprocs = min(int(nprocs), mp.cpu_count()) # exception handling f # simply ignore all exceptions. If exception occurs in parallel queue, the # process with exception will get stuck and not be able to process # following requests. def ehf(x): try: res = f(x) except Exception as e: res = e return res # fall back on serial if nprocs == 1: return list(map(ehf, X)) q_in = mp.Queue(1) q_out = mp.Queue() proc = [mp.Process(target=_parmap_fun, args=(ehf, q_in, q_out)) for _ in range(nprocs)] for p in proc: p.daemon = True p.start() sent = [q_in.put((i, x)) for i, x in enumerate(X)] [q_in.put((None, None)) for _ in range(nprocs)] res = [q_out.get() for _ in range(len(sent))] [p.join() for p in proc] # maintain the order of X ordered_res = [x for i, x in sorted(res)] for i, x in enumerate(ordered_res): if isinstance(x, Exception): warnings.warn("{} encountered in parmap {}th arg {}".format( x, i, X[i])) return ordered_res
66a498966979ca00c9a7eedfc1113a07b9076245
3,650,320
def is_char_token(c: str) -> bool: """Return true for single character tokens.""" return c in ["+", "-", "*", "/", "(", ")"]
3d5691c8c1b9a592987cdba6dd4809cf2c410ee8
3,650,321
import numpy def _float_arr_to_int_arr(float_arr): """Try to cast array to int64. Return original array if data is not representable.""" int_arr = float_arr.astype(numpy.int64) if numpy.any(int_arr != float_arr): # we either have a float that is too large or NaN return float_arr else: return int_arr
73643757b84ec28ed721608a2176b292d6e90837
3,650,322
def latest(scores: Scores) -> int: """The last added score.""" return scores[-1]
393c1d9a4b1852318d622a58803fff3286db98af
3,650,323
def get_dp_2m(wrfin, timeidx=0, method="cat", squeeze=True, cache=None, meta=True, _key=None, units="degC"): """Return the 2m dewpoint temperature. This functions extracts the necessary variables from the NetCDF file object in order to perform the calculation. Args: wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \ iterable): WRF-ARW NetCDF data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile` or an iterable sequence of the aforementioned types. timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The desired time index. This value can be a positive integer, negative integer, or :data:`wrf.ALL_TIMES` (an alias for None) to return all times in the file or sequence. The default is 0. method (:obj:`str`, optional): The aggregation method to use for sequences. Must be either 'cat' or 'join'. 'cat' combines the data along the Time dimension. 'join' creates a new dimension for the file index. The default is 'cat'. squeeze (:obj:`bool`, optional): Set to False to prevent dimensions with a size of 1 from being automatically removed from the shape of the output. Default is True. cache (:obj:`dict`, optional): A dictionary of (varname, ndarray) that can be used to supply pre-extracted NetCDF variables to the computational routines. It is primarily used for internal purposes, but can also be used to improve performance by eliminating the need to repeatedly extract the same variables used in multiple diagnostics calculations, particularly when using large sequences of files. Default is None. meta (:obj:`bool`, optional): Set to False to disable metadata and return :class:`numpy.ndarray` instead of :class:`xarray.DataArray`. Default is True. _key (:obj:`int`, optional): A caching key. This is used for internal purposes only. Default is None. units (:obj:`str`): The desired units. Refer to the :meth:`getvar` product table for a list of available units for 'td2'. Default is 'degC'. Returns: :class:`xarray.DataArray` or :class:`numpy.ndarray`: The 2m dewpoint temperature. If xarray is enabled and the *meta* parameter is True, then the result will be a :class:`xarray.DataArray` object. Otherwise, the result will be a :class:`numpy.ndarray` object with no metadata. """ varnames=("PSFC", "Q2") ncvars = extract_vars(wrfin, timeidx, varnames, method, squeeze, cache, meta=False, _key=_key) # Algorithm requires hPa psfc = .01*(ncvars["PSFC"]) # Copy needed for the mmap nonsense of scipy.io.netcdf, which seems to # break with every release q2 = ncvars["Q2"].copy() q2[q2 < 0] = 0 td = _td(psfc, q2) return td
e16a5a3951312254eb852a5e03987aab32a91373
3,650,324
def fit_uncertainty(points, lower_wave, upper_wave, log_center_wave, filter_size): """Performs fitting many times to get an estimate of the uncertainty """ mock_points = [] for i in range(1, 100): # First, fit the points coeff = np.polyfit(np.log10(points['rest_wavelength']), np.random.normal(points['f_lambda'], points['err_f_lambda']), deg=2) # , w=(1/points['err_f_lambda']) # Get the polynomial fit_func = np.poly1d(coeff) # x-range over which we fit fit_wavelengths = np.arange( np.log10(lower_wave), np.log10(upper_wave), 0.001) # Values of the points we fit fit_points = fit_func(fit_wavelengths) # Indexes of the values that lie in the mock filter fit_idx = np.logical_and(fit_wavelengths > (log_center_wave - filter_size), fit_wavelengths < (log_center_wave + filter_size)) # Average the values in the mock filter to get the mock point mock_sed_point = np.mean(fit_points[fit_idx]) mock_points.append(mock_sed_point) # PERCENTILE ERROR HERE? mock_sed_point, l_err, u_err = np.percentile(mock_points, [50, 15.7, 84.3]) return mock_sed_point, u_err - mock_sed_point, mock_sed_point - l_err
cca5193e55d7aeef710a08fb16df8c896bbeef90
3,650,325
def from_dateutil_rruleset(rruleset): """ Convert a `dateutil.rrule.rruleset` instance to a `Recurrence` instance. :Returns: A `Recurrence` instance. """ rrules = [from_dateutil_rrule(rrule) for rrule in rruleset._rrule] exrules = [from_dateutil_rrule(exrule) for exrule in rruleset._exrule] rdates = rruleset._rdate exdates = rruleset._exdate dts = [r._dtstart for r in rruleset._rrule] + rruleset._rdate if len(dts) > 0: dts.sort() dtstart = dts[0] else: dtstart = None return Recurrence(dtstart, rrules, exrules, rdates, exdates)
cd5ab771eebbf6f68ce70a8d100ad071561541de
3,650,326
import re def error_038_italic_tag(text): """Fix the error and return (new_text, replacements_count) tuple.""" backup = text (text, count) = re.subn(r"<(i|em)>([^\n<>]+)</\1>", "''\\2''", text, flags=re.I) if re.search(r"</?(?:i|em)>", text, flags=re.I): return (backup, 0) else: return (text, count)
b0c2b571ade01cd483a3ffdc6f5c2bbb873cd13c
3,650,327