content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def ccf(tdm, tsuid_list_or_dataset, lag_max=None, tsuids_out=False, cut_ts=False):
"""
This function calculates the maximum of the cross correlation function matrix between all ts
in tsuid_list_or_dataset in a serial mode.
The result is normalized (between -1 and 1)
Cross correlation is a correlation between two timeseries whose one is delayed of successive lag
values. Result of CCF is a timeseries (correlation function of the lag between timeseries).
This function keep the maximum value of the CCF function generated and pull it in the matrix for
corresponding timeseries couple.
:returns: a string matrix (whose size is equal to the number of tsuids in tsuid_list_or_dataset
plus one line and one column for headers)
:rtype: np.ndarray
:param tdm: Temporal Data Manager client
:param tsuid_list_or_dataset: list of identifiers of the time series or dataset name
:param lag_max: maximum lag between timeseries (cf. _ccf function for more details)
:param tsuids_out: True to fill headers with tsuids
False to fill headers with functional ids
:param cut_ts: Cut the TS list to the min-length if set to True
:type tdm: TemporalDataMgr
:type tsuid_list_or_dataset: list of str or str
:type lag_max: positive int
:type tsuids_out: boolean
:type cut_ts: boolean
:raises TypeError: if tsuids_out is not a boolean
"""
if type(tsuids_out) is not bool:
raise TypeError("tsuids_out must be a boolean")
# retrieve data from temporal data manager
ts_data_list, tsuid_list = __retrieve_data(
tdm, tsuid_list_or_dataset)
if tsuids_out:
ts_list = tsuid_list
else:
ts_list = __retrieve_func_id(tdm, tsuid_list)
# number and size of time series
ts_nb = len(ts_data_list)
ts_size = len(ts_data_list[0])
if cut_ts:
for ts in ts_data_list:
ts_size = min(len(ts), ts_size)
else:
# check time series have same length
for ts in ts_data_list:
if len(ts) != ts_size:
raise ValueError('time series do not have same length')
# matrix initialization
matrix_corr = np.zeros([ts_nb, ts_nb])
for index1, _ in enumerate(ts_data_list):
matrix_corr[index1, index1] = 1
# Conversion ts1 data from list (keeping only value column) to an array
ts1 = np.asarray(ts_data_list[index1][:ts_size, 1])
for index2 in range(index1 + 1, len(ts_data_list)):
# Conversion ts2 data from list (keeping only value column) to an
# array
ts2 = np.asarray(ts_data_list[index2][:ts_size, 1])
# cross correlation calculation
# keeping the maximum absolute value between cross correlation with
# positive and with negative lag
ccf_fcn = _ccf(ts1, ts2, lag_max)
max_ccf = __get_max_abs_value(ccf_fcn)
# fill matrix with result (max of ccf is commutative)
matrix_corr[index1, index2] = max_ccf
matrix_corr[index2, index1] = max_ccf
# fill final matrix with headers
matrix = __fill_headers_to_final_matrix(matrix_corr, ts_list)
return matrix | be3b5ccae3686fdef2e71eca87bc8131519d0398 | 3,651,616 |
def filter_zoau_installs(zoau_installs, build_info, minimum_zoau_version):
"""Sort and filter potential ZOAU installs based on build date
and version.
Args:
zoau_installs (list[dict]): A list of found ZOAU installation paths.
build_info (list[str]): A list of build info strings
minimum_zoau_version (str): The minimum version of ZOAU to accept.
Returns:
list[dict]: A sorted and filtered list of ZOAU installation paths.
"""
for index, zoau_install in enumerate(zoau_installs):
zoau_install["build"] = build_info[index]
for zoau_install in zoau_installs:
zoau_install["build"] = _get_version_from_build_string(zoau_install.get("build", ""))
zoau_installs.sort(key=lambda x: _version_to_tuple(x.get("build")), reverse=True)
min_version = _version_to_tuple(minimum_zoau_version)
valid_installs = []
for zoau_install in zoau_installs:
if min_version <= _version_to_tuple(
zoau_install.get("build")
):
valid_installs.append(zoau_install)
# account for the fact 1.1.0 may or may not require pip install depending on PTF
if "1.1.0" in zoau_install.get("build", ""):
backup_install = zoau_install.copy()
# set build to none so we do not treat it like a pip 1.1.0 install when testing
backup_install["build"] = ""
valid_installs.append(backup_install)
return valid_installs | 6e6c2de214c75630091b89e55df2e57fd9be12b9 | 3,651,617 |
def make_chain(node, address, privkeys, parent_txid, parent_value, n=0, parent_locking_script=None, fee=DEFAULT_FEE):
"""Build a transaction that spends parent_txid.vout[n] and produces one output with
amount = parent_value with a fee deducted.
Return tuple (CTransaction object, raw hex, nValue, scriptPubKey of the output created).
"""
inputs = [{"txid": parent_txid, "vout": n}]
my_value = parent_value - fee
outputs = {address : my_value}
rawtx = node.createrawtransaction(inputs, outputs)
prevtxs = [{
"txid": parent_txid,
"vout": n,
"scriptPubKey": parent_locking_script,
"amount": parent_value,
}] if parent_locking_script else None
signedtx = node.signrawtransactionwithkey(hexstring=rawtx, privkeys=privkeys, prevtxs=prevtxs)
assert signedtx["complete"]
tx = tx_from_hex(signedtx["hex"])
return (tx, signedtx["hex"], my_value, tx.vout[0].scriptPubKey.hex()) | 07f18e227f13c146c6fba0a9487c73337654a2a3 | 3,651,618 |
from datetime import datetime
def timestamp(date):
"""Get the timestamp of the `date`, python2/3 compatible
:param datetime.datetime date: the utc date.
:return: the timestamp of the date.
:rtype: float
"""
return (date - datetime(1970, 1, 1)).total_seconds() | a708448fb8cb504c2d25afa5bff6208abe1159a4 | 3,651,620 |
def pratt_arrow_risk_aversion(t, c, theta, **params):
"""Assume constant relative risk aversion"""
return theta / c | ccbe6e74a150a4cbd3837ca3ab24bf1074d694c9 | 3,651,621 |
def parse_content_type(content_type):
"""
Parse a content-type and its parameters into values.
RFC 2616 sec 14.17 and 3.7 are pertinent.
**Examples**::
'text/plain; charset=UTF-8' -> ('text/plain', [('charset, 'UTF-8')])
'text/plain; charset=UTF-8; level=1' ->
('text/plain', [('charset, 'UTF-8'), ('level', '1')])
:param content_type: content_type to parse
:returns: a tuple containing (content type, list of k, v parameter tuples)
"""
parm_list = []
if ';' in content_type:
content_type, parms = content_type.split(';', 1)
parms = ';' + parms
for m in _rfc_extension_pattern.findall(parms):
key = m[0].strip()
value = m[1].strip()
parm_list.append((key, value))
return content_type, parm_list | ba7f93853299dafdd4afc342b5ba2ce7c6fdd3e7 | 3,651,622 |
def generate_athena(config):
"""Generate Athena Terraform.
Args:
config (dict): The loaded config from the 'conf/' directory
Returns:
dict: Athena dict to be marshalled to JSON
"""
result = infinitedict()
prefix = config['global']['account']['prefix']
athena_config = config['lambda']['athena_partitioner_config']
data_buckets = athena_partition_buckets_tf(config)
database = athena_config.get('database_name', '{}_streamalert'.format(prefix))
results_bucket_name = athena_query_results_bucket(config)
queue_name = athena_config.get(
'queue_name',
'{}_streamalert_athena_s3_notifications'.format(prefix)
).strip()
logging_bucket, _ = s3_access_logging_bucket(config)
# Set variables for the athena partitioner's IAM permissions
result['module']['athena_partitioner_iam'] = {
'source': './modules/tf_athena',
'account_id': config['global']['account']['aws_account_id'],
'prefix': prefix,
's3_logging_bucket': logging_bucket,
'database_name': database,
'queue_name': queue_name,
'athena_data_buckets': data_buckets,
'results_bucket': results_bucket_name,
'lambda_timeout': athena_config['timeout'],
'kms_key_id': '${aws_kms_key.server_side_encryption.key_id}',
'function_role_id': '${module.athena_partitioner_lambda.role_id}',
'function_name': '${module.athena_partitioner_lambda.function_name}',
'function_alias_arn': '${module.athena_partitioner_lambda.function_alias_arn}',
}
# Set variables for the Lambda module
result['module']['athena_partitioner_lambda'] = generate_lambda(
'{}_streamalert_{}'.format(prefix, ATHENA_PARTITIONER_NAME),
'streamalert.athena_partitioner.main.handler',
athena_config,
config,
tags={
'Subcomponent': 'AthenaPartitioner'
}
)
return result | 4fd3a18e5220e82a04451271f1ea8004978b4c65 | 3,651,624 |
def _angular_rate_to_rotvec_dot_matrix(rotvecs):
"""Compute matrices to transform angular rates to rot. vector derivatives.
The matrices depend on the current attitude represented as a rotation
vector.
Parameters
----------
rotvecs : ndarray, shape (n, 3)
Set of rotation vectors.
Returns
-------
ndarray, shape (n, 3, 3)
"""
norm = np.linalg.norm(rotvecs, axis=1)
k = np.empty_like(norm)
mask = norm > 1e-4
nm = norm[mask]
k[mask] = (1 - 0.5 * nm / np.tan(0.5 * nm)) / nm**2
mask = ~mask
nm = norm[mask]
k[mask] = 1/12 + 1/720 * nm**2
skew = _create_skew_matrix(rotvecs)
result = np.empty((len(rotvecs), 3, 3))
result[:] = np.identity(3)
result[:] += 0.5 * skew
result[:] += k[:, None, None] * np.matmul(skew, skew)
return result | c0d468901ec7dc4d6da7f5eff7b95ac3fc176901 | 3,651,625 |
from typing import Any
def get_all_learners() -> Any:
"""Get all learner configurations which are prepared."""
return {
"learner_types": sorted(
[
possible_dir.name
for possible_dir in LEARNERS_DIR.iterdir()
if possible_dir.is_dir()
]
)
} | d05fd8d9da820061cea29d25002513e778c2b367 | 3,651,626 |
def getdate(targetconnection, ymdstr, default=None):
"""Convert a string of the form 'yyyy-MM-dd' to a Date object.
The returned Date is in the given targetconnection's format.
Arguments:
- targetconnection: a ConnectionWrapper whose underlying module's
Date format is used
- ymdstr: the string to convert
- default: The value to return if the conversion fails
"""
try:
(year, month, day) = ymdstr.split('-')
modref = targetconnection.getunderlyingmodule()
return modref.Date(int(year), int(month), int(day))
except Exception:
return default | 21d27c3ef4e99b28b16681072494ce573e592255 | 3,651,627 |
def thermal_dm(n, u):
"""
return the thermal density matrix for a boson
n: integer
dimension of the Fock space
u: float
reduced temperature, omega/k_B T
"""
nlist = np.arange(n)
diags = exp(- nlist * u)
diags /= np.sum(diags)
rho = lil_matrix(n)
rho.setdiag(diags)
return rho.tocsr() | 80631a0575176e16e8832cb6c136030bcd589c58 | 3,651,628 |
from zope.configuration import xmlconfig, config
def zcml_strings(dir, domain="zope", site_zcml=None):
"""Retrieve all ZCML messages from `dir` that are in the `domain`."""
# Load server-independent site config
context = config.ConfigurationMachine()
xmlconfig.registerCommonDirectives(context)
context.provideFeature("devmode")
context = xmlconfig.file(site_zcml, context=context, execute=False)
return context.i18n_strings.get(domain, {}) | 23c62c50b313f53b25ad151ebccd5808bf7bad59 | 3,651,630 |
def const_p(a: C) -> Projector[C]:
"""
Make a projector that always returns the same still frame
"""
return lambda _: a | d73fb818f0606f9a64cb0076c99ff57c0b3bb042 | 3,651,631 |
import json
def get_s3_bucket(bucket_name, s3):
""""
Takes the s3 and bucket_name and returns s3 bucket
If does not exist, it will create bucket with permissions
"""
bucket_name = bucket_name.lower().replace('/','-')
bucket = s3.Bucket(bucket_name)
exists = True
try:
s3.meta.client.head_bucket(Bucket=bucket_name)
except ClientError as e:
# If a client error is thrown, then check that it was a 404 error.
# If it was a 404 error, then the bucket does not exist.
error_code = int(e.response['Error']['Code'])
if error_code == 404:
exists = False
if exists is False:
s3.create_bucket(Bucket=bucket_name, ACL='public-read')
# We need to set an S3 policy for our bucket to
# allow anyone read access to our bucket and files.
# If we do not set this policy, people will not be
# able to view our S3 static web site.
bucket_policy = s3.BucketPolicy(bucket_name)
policy_payload = {
"Version": "2012-10-17",
"Statement": [{
"Sid": "Allow Public Access to All Objects",
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::%s/*" % (bucket_name)
}]
}
# Add the policy to the bucket
bucket_policy.put(Policy=json.dumps(policy_payload))
# Make our new S3 bucket a static website
bucket_website = s3.BucketWebsite(bucket_name)
# Create the configuration for the website
website_configuration = {
'ErrorDocument': {'Key': 'error.html'},
'IndexDocument': {'Suffix': 'index.html'},
}
bucket_website.put(
WebsiteConfiguration=website_configuration
)
bucket = s3.Bucket(bucket_name)
return bucket | 67e9ede766989894aa86d2af1c766a57c4ed7116 | 3,651,632 |
def rf_render_ascii(tile_col):
"""Render ASCII art of tile"""
return _apply_column_function('rf_render_ascii', tile_col) | d697014f019b303c3c7de0e874e8d321c5d96f7a | 3,651,633 |
import json
def index():
""" Display productpage with normal user and test user buttons"""
global productpage
table = json2html.convert(json = json.dumps(productpage),
table_attributes="class=\"table table-condensed table-bordered table-hover\"")
return render_template('index.html', serviceTable=table) | e27de5745c9e20f8942ea1ae3b07a4afa932b0f3 | 3,651,634 |
def student_classes(id):
"""
Show students registrered to class
* display list of all students (GET)
"""
template = "admin/class_students.html"
if not valid_integer(id):
return (
render_template(
"errors/custom.html", title="400", message="Id must be integer"
),
400,
)
school_class = dict_sql_query(
f"SELECT * FROM school_classes WHERE id={id}", fetchone=True
)
if not school_class:
return (
render_template(
"errors/custom.html", title="400", message="Class does not exist."
),
400,
)
# show students with class defined as this one
students = []
for student in dict_sql_query(
f"SELECT * FROM students WHERE class_id={school_class['id']}"
):
students.append(
{
"student": student,
"activity_name": dict_sql_query(
f"SELECT name FROM activities WHERE id={student['chosen_activity']}",
fetchone=True,
)["name"]
if student["chosen_activity"]
else "Ej valt",
}
)
return render_template(template, school_class=school_class, students=students) | b431a21e39c97cbcc21d161a411cc9f3a3746cc8 | 3,651,635 |
def f_score(overlap_count, gold_count, guess_count, f=1):
"""Compute the f1 score.
:param overlap_count: `int` The number of true positives.
:param gold_count: `int` The number of gold positives (tp + fn)
:param guess_count: `int` The number of predicted positives (tp + fp)
:param f: `int` The beta term to weight precision vs recall.
:returns: `float` The f score
"""
beta_sq = f*f
if guess_count == 0: return 0.0
p = precision(overlap_count, guess_count)
r = recall(overlap_count, gold_count)
if p == 0.0 or r == 0.0:
return 0.0
f = (1. + beta_sq) * (p * r) / (beta_sq * p + r)
return f | 6c7c0e3e58aa7fe4ca74936ce9029b6968ed6ee3 | 3,651,637 |
import math
def phi(n):
"""Calculate phi using euler's product formula."""
assert math.sqrt(n) < primes[-1], "Not enough primes to deal with " + n
# For details, check:
# http://en.wikipedia.org/wiki/Euler's_totient_function#Euler.27s_product_formula
prod = n
for p in primes:
if p > n:
break
if n % p == 0:
prod *= 1 - (1 / p)
return int(prod) | d17f0b5901602a9a530427da2b37d0402ef426ce | 3,651,638 |
import logging
def run_bert_pretrain(strategy, custom_callbacks=None):
"""Runs BERT pre-training."""
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
if not strategy:
raise ValueError('Distribution strategy is not specified.')
# Runs customized training loop.
logging.info('Training using customized training loop TF 2.0 with distributed'
'strategy.')
performance.set_mixed_precision_policy(common_flags.dtype(),
use_experimental_api=False)
# Only when explicit_allreduce = True, post_allreduce_callbacks and
# allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
# longer implicitly allreduce gradients, users manually allreduce gradient and
# pass the allreduced grads_and_vars to apply_gradients().
# With explicit_allreduce = True, clip_by_global_norm is moved to after
# allreduce.
return run_customized_training(
strategy,
bert_config,
FLAGS.init_checkpoint, # Used to initialize only the BERT submodel.
FLAGS.max_seq_length,
FLAGS.max_predictions_per_seq,
FLAGS.model_dir,
FLAGS.num_steps_per_epoch,
FLAGS.steps_per_loop,
FLAGS.num_train_epochs,
FLAGS.learning_rate,
FLAGS.warmup_steps,
FLAGS.end_lr,
FLAGS.optimizer_type,
FLAGS.input_files,
FLAGS.train_batch_size,
FLAGS.use_next_sentence_label,
FLAGS.train_summary_interval,
custom_callbacks=custom_callbacks,
explicit_allreduce=FLAGS.explicit_allreduce,
pre_allreduce_callbacks=[
model_training_utils.clip_by_global_norm_callback
],
allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack) | 16397fb83bb02e2f01c716f97f6f461e4675c319 | 3,651,639 |
import json
def add_mutes(guild_id: int, role_id: int, user_id: int, author_id: int, datetime_to_parse: str):
"""
Add a temporary mute to a user.
NOTE: datetime_to_parse should be a string like: "1 hour 30 minutes"
"""
with open("data/unmutes.json", "r+", newline='\n', encoding='utf-8') as temp_file:
mutes = json.load(temp_file)
new_mute_data = (user_id, role_id, guild_id)
str_dt_obj = parse_times(datetime_to_parse)
# if the script made it this far, this is real we have to store mute data
if str_dt_obj not in mutes:
mutes[str_dt_obj] = []
mutes[str_dt_obj].append(new_mute_data)
mute_index = len(mutes[str_dt_obj]) - 1
if str(guild_id) not in mutes:
mutes[str(guild_id)] = {}
if str(user_id) in mutes[str(guild_id)]:
mutes[str(guild_id)].pop(str(user_id))
if not str(user_id) in mutes[str(guild_id)]:
mutes[str(guild_id)][str(user_id)] = []
mutes[str(guild_id)][str(user_id)] = [str_dt_obj, author_id, mute_index]
json.dump(mutes, open("data/unmutes.json", "w+", newline='\n', encoding='utf-8'))
return str_dt_obj
# Don't worry I can't read this mess either. | 8c762f56217ee940d8803e069f1b3bce47629a2e | 3,651,640 |
def operation_dict(ts_epoch, request_dict):
"""An operation as a dictionary."""
return {
"model": request_dict,
"model_type": "Request",
"args": [request_dict["id"]],
"kwargs": {"extra": "kwargs"},
"target_garden_name": "child",
"source_garden_name": "parent",
"operation_type": "REQUEST_CREATE",
} | e7b63d79c6de73616b39e2713a0ba2da6f9e2a25 | 3,651,641 |
def memory_index(indices, t):
"""Location of an item in the underlying memory."""
memlen, itemsize, ndim, shape, strides, offset = t
p = offset
for i in range(ndim):
p += strides[i] * indices[i]
return p | ed97592aa5444cfd6d6894b042b5b103d2de6afc | 3,651,643 |
def createExpData(f, xVals):
"""Asssumes f is an exponential function of one argument
xVals is an array of suitable arguments for f
Returns array containing results of applying f to the
elements of xVals"""
yVals = []
for i in range(len(xVals)):
yVals.append(f(xVals[i]))
return pylab.array(xVals), pylab.array(yVals) | 79c6575ec07579e792e77b65960992a48837f2e9 | 3,651,644 |
from typing import Tuple
import math
def discrete_one_samp_ks(distribution1: np.array, distribution2: np.array, num_samples: int) -> Tuple[float, bool]:
"""Uses the one-sample Kolmogorov-Smirnov test to determine if the empirical results in
distribution1 come from the distribution represented in distribution2
:param distribution1: empirical distribution (numpy array)
:param distribution2: reference distribution (numpy array)
:param num_samples: number of samples used to generate distribution1
:return: a tuple (D, D<D_{alpha})
"""
cutoff = 1.36 / math.sqrt(num_samples)
ecdf1 = np.array([sum(distribution1[:i + 1]) for i in range(len(distribution1))])
ecdf2 = np.array([sum(distribution2[:i + 1]) for i in range(len(distribution2))])
max_diff = np.absolute(ecdf1 - ecdf2).max()
return max_diff, max_diff < cutoff | 37e85c695f0e33c70566e5462fb55e7882fbcd02 | 3,651,645 |
def _get_product_refs(pkgs):
"""Returns a list of product references as declared in the specified packages list.
Args:
pkgs: A `list` of package declarations (`struct`) as created by
`packages.create()`, `packages.pkg_json()` or `spm_pkg()`.
Returns:
A `list` of product reference (`string`) values.
"""
return [refs.create(ref_types.product, pkg.name, prd) for pkg in pkgs for prd in pkg.products] | f545f261e237dfe447533c89a489abb863b994e8 | 3,651,646 |
def merge_intervals(interval_best_predictors):
"""
Merge intervals with the same best predictor
"""
predictor2intervals = defaultdict(set)
for interval, best_predictor in interval_best_predictors.items():
predictor2intervals[best_predictor].update(interval)
merged_intervals = {best_predictor: max(interval_points) - min(interval_points)
for best_predictor, interval_points in predictor2intervals.items()}
return merged_intervals | 6ebd0b5b26193c5d3885e603ab3bae68d395d6b1 | 3,651,647 |
def build_pixel_sampler(cfg, **default_args):
"""Build pixel sampler for segmentation map."""
return build_module_from_cfg(cfg, PIXEL_SAMPLERS, default_args) | f7d687b80c7bb3cfa266b65691574e40291021d2 | 3,651,648 |
def solution_to_schedule(solution, events, slots):
"""Convert a schedule from solution to schedule form
Parameters
----------
solution : list or tuple
of tuples of event index and slot index for each scheduled item
events : list or tuple
of :py:class:`resources.Event` instances
slots : list or tuple
of :py:class:`resources.Slot` instances
Returns
-------
list
A list of instances of :py:class:`resources.ScheduledItem`
"""
return [
ScheduledItem(
event=events[item[0]],
slot=slots[item[1]]
)
for item in solution
] | 7470849f90e445f8146c561a49646d4bd8bbb886 | 3,651,649 |
def flip_tiles( tiles ):
"""
Initially all tiles are white. Every time, a tile is visited based on the
directions, it is flipped (to black, or to white again).
The directions are represented in (x,y) coordinates starting from reference
tile at (0,0).
Based on the given directions to each tile starting from the reference tile,
the coordinates of the tile is found and added to the set of black tiles. If
the tile is already a black tile, it is flipped and thus removed from the set.
This function returns the set of black tiles.
"""
black_tiles = set()
for directions_to_tile in tiles:
x,y = (0,0)
for direction in directions_to_tile:
x,y = get_coordinates( x,y, direction )
found_tile = (x,y)
if found_tile not in black_tiles:
black_tiles.add( found_tile )
else:
black_tiles.remove( found_tile )
return black_tiles | 91628f0ae4d1713f1fa12dad34d2a3e2f97b663e | 3,651,650 |
def version() -> int:
"""Return the version number of the libpq currently loaded.
The number is in the same format of `~psycopg.ConnectionInfo.server_version`.
Certain features might not be available if the libpq library used is too old.
"""
return impl.PQlibVersion() | cc8360372787d08f3852cb8d908db780fe3c9573 | 3,651,651 |
import scipy
def feature_predictors_from_ensemble(features, verbose=False):
"""generates a dictionary of the form
{"offset":offset_predictor, "sigma":sigma_predictor, ...}
where the predictors are generated from the center and spread statistics
of the feature ensemble.
features: list
the feature objects
"""
lparams = np.asarray([f.profile.get_parameters() for f in features])
cent_wvs = np.asarray([f.wv for f in features])
rel_norms = np.asarray([f.relative_continuum for f in features])
delta_wvs = np.asarray([np.mean(scipy.gradient(f.data_sample.wv)) for f in features])
dwv_over_wv = delta_wvs/cent_wvs
med_inv_r = np.median(dwv_over_wv)
sig_over_wv = lparams[:, 1]/cent_wvs
sig_med = np.median(sig_over_wv)
sig_mad = np.median(np.abs(sig_over_wv-sig_med))
if verbose:
print("sigma median", sig_med, "sigma mad", sig_mad)
vel_offs = lparams[:, 0]/cent_wvs
vel_med = np.median(vel_offs)
vel_mad = np.median(np.abs(vel_offs - vel_med))
if verbose:
print("velocity median", vel_med, "velocity mad", vel_mad)
gam_med = np.median(np.abs(lparams[:, 2]))
gam_mad = np.median(np.abs(lparams[:, 2]-gam_med))
if verbose:
print("gamma median", gam_med, "gamma mad", gam_mad)
rel_med = np.median(rel_norms)
rel_mad = np.median(np.abs(rel_norms-rel_med))
if verbose:
print("rel_norm median", gam_med, "rel_norm mad", gam_mad)
predictors = {}
offset_predictor = WavelengthScaledGaussianPredictor(vel_med, 1.4*vel_mad)
sigma_predictor = WavelengthScaledGaussianPredictor(sig_med, 1.4*sig_mad + 0.5*med_inv_r)
gamma_predictor = GaussianPredictor(gam_med, 1.4*gam_mad+0.1*np.median(delta_wvs))
rel_norm_predictor = GaussianPredictor(1.0, 0.01)
predictors["offset"] = offset_predictor
predictors["sigma"] = sigma_predictor
predictors["gamma"] = gamma_predictor
predictors["rel_norm"] = rel_norm_predictor
return predictors | ea26d0640fa6dd8b948c8620b266519137805979 | 3,651,652 |
import requests
def remoteLoggingConfig(host, args, session):
"""
Called by the logging function. Configures remote logging (rsyslog).
@param host: string, the hostname or IP address of the bmc
@param args: contains additional arguments used by the logging sub command
@param session: the active session to use
@param args.json: boolean, if this flag is set to true, the output will be provided in json format for programmatic consumption
"""
url="https://"+host+"/xyz/openbmc_project/logging/config/remote"
try:
res = session.put(url + '/attr/Port', headers=jsonHeader, json = {"data": args.port}, verify=False, timeout=baseTimeout)
res = session.put(url + '/attr/Address', headers=jsonHeader, json = {"data": args.address}, verify=False, timeout=baseTimeout)
except(requests.exceptions.Timeout):
return(connectionErrHandler(args.json, "Timeout", None))
return res.text | 04417970f671f79af0157d82ea048b5c4f8f957d | 3,651,653 |
import numpy as np
from typing import Union
import pathlib
def _merge_3d_t1w(filename: Union[str, PathLike]) -> pathlib.Path:
"""
Merges T1w images that have been split into two volumes
Parameters
----------
filename : str or pathlib.Path
Path to T1w image that needs to be merged
Returns
-------
filename : pathlib.Path
Path to merged T1w image
"""
filename = pathlib.Path(filename).resolve()
img = nib.load(str(filename))
if not (len(img.shape) == 4 and img.shape[-1] > 1):
return
# split data along fourth dimension and then concatenate along third
imdata = img.get_data()
cat = [d.squeeze() for d in np.split(imdata, imdata.shape[-1], axis=-1)]
imdata = np.concatenate(cat, axis=-1)
new_img = img.__class__(imdata, img.affine, img.header)
nib.save(new_img, filename)
return filename | f1eae741c270553ee18c6f4cc2eb2484215617db | 3,651,654 |
def get_partial_results(case_name, list_of_variables):
""" Get a dictionary with the variable names and the time series for `list_of_variables`
"""
reader = get_results(case_name)
d = dict()
read_time = True
for v in list_of_variables:
if read_time:
d['time'] = reader.values(v)[0]
read_time = False
d[v] = reader.values(v)[1]
return d | 43954296a11bea2c8a04f2e65a709c56ea14d00a | 3,651,655 |
def take_with_time(self, duration, scheduler=None):
"""Takes elements for the specified duration from the start of the
observable source sequence, using the specified scheduler to run timers.
Example:
res = source.take_with_time(5000, [optional scheduler])
Description:
This operator accumulates a queue with a length enough to store elements
received during the initial duration window. As more elements are
received, elements older than the specified duration are taken from the
queue and produced on the result sequence. This causes elements to be
delayed with duration.
Keyword arguments:
duration -- {Number} Duration for taking elements from the start of the
sequence.
scheduler -- {Scheduler} Scheduler to run the timer on. If not
specified, defaults to rx.Scheduler.timeout.
Returns {Observable} An observable sequence with the elements taken
during the specified duration from the start of the source sequence.
"""
source = self
scheduler = scheduler or timeout_scheduler
def subscribe(observer):
def action(scheduler, state):
observer.on_completed()
disposable = scheduler.schedule_relative(duration, action)
return CompositeDisposable(disposable, source.subscribe(observer))
return AnonymousObservable(subscribe) | d96ce7ae892fe6700b9f14cccbb01e3aa45b9b76 | 3,651,656 |
def add_label(hdf5_filename, key, peak, label):
"""
Function that adds a label to a peak dataset in the hdf5 file.It
has to be iterated over every single peak.
Parameters:
hdf5_filename (string): filename of experimental file
key (string): key within `hdf5_filename` of experimental file
peak (string): string name of 'Peak_0#" associated with the peak list
containing tuples of the x_data (wavenumber) and
y_data (counts) values of the peaks.
label (string): string name of an individual label from internal
function unknown_peak_assignment
that is used in lineidplot.
Returns:
df (DataFrame): DataFrame which contains the peak fitted data and peak descriptors
of each classified peak based on the fed-in known spectra.
"""
#Handling errors in inputs.
if not isinstance(hdf5_filename, str):
raise TypeError("""Passed value of `hdf5_filename` is not a string!
Instead, it is: """ + str(type(hdf5_filename)))
if not hdf5_filename.split('/')[-1].split('.')[-1] == 'hdf5':
raise TypeError("""`hdf5_filename` is not type = .hdf5!
Instead, it is: """ + hdf5_filename.split('/')[-1].split('.')[-1])
if not isinstance(key, str):
raise TypeError("""Passed value of `key` is not a str!
Instead, it is: """ + str(type(key)))
if not isinstance(peak, str):
raise TypeError("""Passed value of `peak` is not a string!
Instead, it is: """ + str(type(peak)))
if not isinstance(label, str):
raise TypeError("""Passed value of `label` is not a string!
Instead, it is: """ + str(type(label)))
# open hdf5 file as read/write
hdf5 = h5py.File(hdf5_filename, 'r+')
# extract existing data from peak dataset
peak_data = list(hdf5['{}/{}'.format(key, peak)][0])[:7]
# print(peak_data)
# make a new tuple that contains the orginal data as well as the label
label_tuple = (label,)
data = tuple(peak_data) +label_tuple
# delete the old dataset so the new one can be saved
del hdf5['{}/{}'.format(key, peak)]
# define a custom datatype that allows for a string as the the last tuple element
my_datatype = np.dtype([('fraction', np.float),
('center', np.float),
('sigma', np.float),
('amplitude', np.float),
('fwhm', np.float),
('height', np.float),
('area under the curve', np.float),
('label', h5py.special_dtype(vlen=str))])
# recreate the old dataset in the hdf5 file
dataset = hdf5.create_dataset('{}/{}'.format(key, peak),
(1,), dtype=my_datatype)
# apply custom dtype to data tuple
# print(dataset)
# print(data)
# print(my_datatype)
data_array = np.array(data, dtype=my_datatype)
# write new values to the blank dataset
dataset[...] = data_array
# print(dataset)
hdf5.close()
df = pd.DataFrame(data = data)
return df | b903d59ae8e18adf2942227fc6b4c0e207dbde78 | 3,651,657 |
def _infer_color_variable_kind(color_variable, data):
"""Determine whether color_variable is array, pandas dataframe, callable,
or scikit-learn (fit-)transformer."""
if hasattr(color_variable, "dtype") or hasattr(color_variable, "dtypes"):
if len(color_variable) != len(data):
raise ValueError(
"color_variable and data must have the same length.")
color_variable_kind = "scalars"
elif hasattr(color_variable, "transform"):
color_variable_kind = "transformer"
elif hasattr(color_variable, "fit_transform"):
color_variable_kind = "fit_transformer"
elif callable(color_variable):
color_variable_kind = "callable"
elif color_variable is None:
color_variable_kind = "none"
else: # Assume color_variable is a selection of columns
color_variable_kind = "else"
return color_variable_kind | a1a21c6df4328331754f9fb960e64cf8bfe09be7 | 3,651,658 |
import random
def Dense(name, out_dim, W_init=stax.glorot(), b_init=stax.randn()):
"""Layer constructor function for a dense (fully-connected) layer."""
def init_fun(rng, example_input):
input_shape = example_input.shape
k1, k2 = random.split(rng)
W, b = W_init(k1, (out_dim, input_shape[-1])), b_init(k2, (out_dim,))
return W, b
def apply_fun(params, inputs):
W, b = params
return np.dot(W, inputs) + b
return core.Layer(name, init_fun, apply_fun).bind | a2b20961ff3fd23e0cd87f200d1c575d9788e076 | 3,651,660 |
from datetime import datetime
def datetime_to_epoch(date_time: datetime) -> int:
"""Convert a datetime object to an epoch integer (seconds)."""
return int(date_time.timestamp()) | 73767c663d66464420594e90a438687c9363b884 | 3,651,661 |
def parse_arguments():
"""
Merge the scar.conf parameters, the cmd parameters and the yaml
file parameters in a single dictionary.
The precedence of parameters is CMD >> YAML >> SCAR.CONF
That is, the CMD parameter will override any other configuration,
and the YAML parameters will override the SCAR.CONF settings
"""
config_args = ConfigFileParser().get_properties()
func_call, cmd_args = CommandParser().parse_arguments()
if 'conf_file' in cmd_args['scar'] and cmd_args['scar']['conf_file']:
yaml_args = FileUtils.load_yaml(cmd_args['scar']['conf_file'])
# YAML >> SCAR.CONF
merged_args = fdl.merge_conf(config_args, yaml_args)
merged_args = fdl.merge_cmd_yaml(cmd_args, merged_args)
else:
# CMD >> SCAR.CONF
merged_args = fdl.merge_conf(config_args, cmd_args)
#self.cloud_provider.parse_arguments(merged_args)
FileUtils.create_tmp_config_file(merged_args)
return func_call | a34525ed55514db2133c5c39d273ea48af8f8c54 | 3,651,662 |
from typing import BinaryIO
def check_signature(stream: BinaryIO) -> str:
"""
Check signature of the model file and return characters used by the model.
The characters returned are sorted in lexicographical order.
"""
uzmodel_tag = stream.read(8)
if uzmodel_tag != b'UZMODEL ':
raise IOError('invalid uzmodel_tag')
uzmodel_version = read_int(stream)
if uzmodel_version == 1:
ssv = 0
elif uzmodel_version == 2:
ssv = read_int(stream)
else:
raise IOError('invalid uzmodel_version')
if ssv == 0:
chars = ''.join(map(chr, chain(STD, AFT, EXA, EXB, SPC)))
elif ssv == 1:
chars = ''.join(map(chr, chain(STD, AFT, EXA, EXB)))
else:
raise ValueError('invalid ssv')
bmarkov_tag = stream.read(8)
if bmarkov_tag != b'BMARKOV ':
raise IOError('invalid bmarkov_tag')
bmarkov_version = read_int(stream)
if bmarkov_version != 0:
raise IOError('invalid bmarkov_version')
return chars | 3a8d2e646a2ffe08a471f5447d8e790aefd6fc68 | 3,651,663 |
def Validate(expected_schema, datum):
"""Determines if a python datum is an instance of a schema.
Args:
expected_schema: Schema to validate against.
datum: Datum to validate.
Returns:
True if the datum is an instance of the schema.
"""
schema_type = expected_schema.type
if schema_type == 'null':
return datum is None
elif schema_type == 'boolean':
return isinstance(datum, bool)
elif schema_type == 'string':
return isinstance(datum, str)
elif schema_type == 'bytes':
return isinstance(datum, bytes)
elif schema_type == 'int':
return (isinstance(datum, int)
and (INT_MIN_VALUE <= datum <= INT_MAX_VALUE))
elif schema_type == 'long':
return (isinstance(datum, int)
and (LONG_MIN_VALUE <= datum <= LONG_MAX_VALUE))
elif schema_type in ['float', 'double']:
return (isinstance(datum, int) or isinstance(datum, float))
elif schema_type == 'fixed':
return isinstance(datum, bytes) and (len(datum) == expected_schema.size)
elif schema_type == 'enum':
return datum in expected_schema.symbols
elif schema_type == 'array':
return (isinstance(datum, list)
and all(Validate(expected_schema.items, item) for item in datum))
elif schema_type == 'map':
return (isinstance(datum, dict)
and all(isinstance(key, str) for key in datum.keys())
and all(Validate(expected_schema.values, value)
for value in datum.values()))
elif schema_type in ['union', 'error_union']:
return any(Validate(union_branch, datum)
for union_branch in expected_schema.schemas)
elif schema_type in ['record', 'error', 'request']:
return (isinstance(datum, dict)
and all(Validate(field.type, datum.get(field.name))
for field in expected_schema.fields))
else:
raise AvroTypeException('Unknown Avro schema type: %r' % schema_type) | 22ed46f2d82f9c4ea53fdd707553d54958a20814 | 3,651,664 |
def get_main_play_action(action: PlayerAction) -> PlayerAction:
"""
Gets the main play, e.g., FLYOUT or SINGLE
:param action:
:return:
"""
print("Searching for main play")
# find out if the string contains any of the allowed actions
for i in PlayerActionEnum:
if i.value in action.action_text:
print(f"\tFound {i.value}!")
action.action_type = i
action.action_text = action.action_text.replace(i.value, '')
break
return action | ec85c305509b5f6f88eb157e7a110dbed7ad0ab4 | 3,651,665 |
from functools import reduce
def inet_aton(s):
"""Convert a dotted-quad to an int."""
try:
addr = list(map(int, s.split('.')))
addr = reduce(lambda a,b: a+b, [addr[i] << (3-i)*8 for i in range(4)])
except (ValueError, IndexError):
raise ValueError('illegal IP: {0}'.format(s))
return addr | abc16c14e416f55c9ae469b4b9c1958df265433c | 3,651,666 |
def helper():
"""I'm useful helper"""
data = {
"31 Dec 2019": "Wuhan Municipal Health Commission, China, reported a cluster of cases of pneumonia in Wuhan, Hubei Province. A novel coronavirus was eventually identified.",
"1 January 2020": "WHO had set up the IMST (Incident Management Support Team) across the three levels of the organization: headquarters, regional headquarters and country level, putting the organization on an emergency footing for dealing with the outbreak.",
"4 January 2020": "WHO reported on social media that there was a cluster of pneumonia cases – with no deaths – in Wuhan, Hubei province."
}
return data | 1f0f58505ce4179d56b2bf6e4cb29e42cdd7cfc9 | 3,651,668 |
def canonicalize_specification(expr, syn_ctx, theory):
"""Performs a bunch of operations:
1. Checks that the expr is "well-bound" to the syn_ctx object.
2. Checks that the specification has the single-invocation property.
3. Gathers the set of synth functions (should be only one).
4. Gathers the variables used in the specification.
5. Converts the specification to CNF (as part of the single-invocation test)
6. Given that the spec is single invocation, rewrites the CNF spec (preserving and sat)
by introducing new variables that correspond to a uniform way of invoking the
(single) synth function
Returns a tuple containing:
1. A list of 'variable_info' objects corresponding to the variables used in the spec
2. A list of synth functions (should be a singleton list)
3. A list of clauses corresponding to the CNF specification
4. A list of NEGATED clauses
5. A list containing the set of formal parameters that all appearances of the synth
functions are invoked with.
"""
check_expr_binding_to_context(expr, syn_ctx)
clauses, cnf_expr = to_cnf(expr, theory, syn_ctx)
synth_function_set = gather_synth_functions(expr)
synth_function_list = list(synth_function_set)
num_funs = len(synth_function_list)
orig_variable_set = gather_variables(expr)
orig_variable_list = [x.variable_info for x in orig_variable_set]
orig_variable_list.sort(key=lambda x: x.variable_name)
# check single invocation/separability properties
if (not check_single_invocation_property(clauses, syn_ctx)):
raise basetypes.ArgumentError('Spec:\n%s\nis not single-invocation!' %
exprs.expression_to_string(expr))
(intro_clauses, intro_vars) = _intro_new_universal_vars(clauses, syn_ctx,
synth_function_list[0])
# ensure that the intro_vars at the head of the list
# Arjun: Why? Most likely not necessary
variable_list = [x.variable_info for x in intro_vars] + orig_variable_list
num_vars = len(variable_list)
for i in range(num_vars):
variable_list[i].variable_eval_offset = i
num_funs = len(synth_function_list)
for i in range(num_funs):
synth_function_list[i].synth_function_id = i
if len(intro_clauses) == 1:
canon_spec = intro_clauses[0]
else:
canon_spec = syn_ctx.make_function_expr('and', *intro_clauses)
canon_clauses = []
for ic in intro_clauses:
if exprs.is_application_of(ic, 'or'):
disjuncts = ic.children
else:
disjuncts = [ic]
canon_clauses.append(disjuncts)
return (variable_list, synth_function_list, canon_spec,
canon_clauses, intro_vars) | 99613fb5cc78b53ca094ffb46cc927f05d5f74d4 | 3,651,669 |
def human_time(seconds, granularity=2):
"""Returns a human readable time string like "1 day, 2 hours"."""
result = []
for name, count in _INTERVALS:
value = seconds // count
if value:
seconds -= value * count
if value == 1:
name = name.rstrip("s")
result.append("{} {}".format(int(value), name))
else:
# Add a blank if we're in the middle of other values
if len(result) > 0:
result.append(None)
if not result:
if seconds < 1.0:
return "%.2f seconds" % seconds
else:
if seconds == 1:
return "1 second"
else:
return "%d seconds" % seconds
return ", ".join([x for x in result[:granularity] if x is not None]) | 25d184982e5c0c2939814938f09a72ab2d46d270 | 3,651,670 |
def cmorlet_wavelet(x, fs, freq_vct, n=6, normalization=True):
"""Perform the continuous wavelet (CWT) tranform using the complex Morlet wavelet.
Parameters
----------
x : 1D array with shape (n_samples) or
2D array with shape (n_samples, n_channels)
fs : Sampling frequency
in Hz
freq_vct : 1D array
with frequencies to compute the CWT (Default = [1 : 1 : fs/2] )
n : Number of cicles inside the Gaussian curve
(Default 6)
normalization : Scale each wavelet to have energy equal to 1
(Default True)
Returns
-------
wcoef : Complex wavelet coefficients
2D array with shape [n_samples, n_freqs] if `x` is 1D array
3D array with shape [n_samples, n_freqs, n_channels] if `x` is 2D array
wfam : 2D array with shape [n_wavelet_samples, n_freqs] where each column
corresponds to the a member of the wavelet family
"""
# input 'x' as 2D matrix [samples, columns]
try:
x.shape[1]
except IndexError:
x = x[:, np.newaxis]
# number of samples and number of channels
n_samples, n_channels = x.shape
# number of wavelets
n_freqs = len(freq_vct)
# number of samples for Wavetet family
# This is equal to the number of samples needed to represent 2*n cycles
# of a sine with frequency = fres(1)[Hz], sampled at fs [Hz].
# This is done to ensure that every wavelet in the wavalet family will be
# close to 0 in the negative and positive edges
n_samples_wav = np.round( (2*n/freq_vct[0])*fs )
# The wavelet will be symmetrical around 0
if np.mod(n_samples_wav,2) == 0: # even samples
n_samples_wav = n_samples_wav + 1
# create time vector for Wavelet family
half = np.floor(n_samples_wav/2)
time = np.arange(-half, half+1)/fs
# initialize Wavelet family matrix
wfam = np.zeros([len(time), n_freqs], dtype=complex)
# for each frequency defined in FREQ, create its respective Wavelet
for iwav in range(n_freqs):
s = n/(2*np.pi*freq_vct[iwav])
gaussian_win = np.exp((-time**2)/(2*s**2))
sinwave = np.exp(2*np.pi*1j*freq_vct[iwav]*time)
if normalization:
# each wavelet has unit energy sum(abs(wavelet).^2)) = 1
A = 1. / ((s**2) * np.pi) ** (1./4)
else:
A = 1.
# Complex Morlet wavelet
wfam[:, iwav] = A * sinwave * gaussian_win
wcoef = np.zeros((n_samples, n_freqs, n_channels), dtype=complex)
if n_channels == 1:
# one channel
tmp = conv_m(x, wfam, 'same')
wcoef[:, :, 0] = tmp
else:
# convolution between signal X and the each Wavelt in the Wavelet family
for i_channel in range(n_channels):
x_tmp = x[:, i_channel]
tmp = conv_m(x_tmp, wfam, 'same')
wcoef[:, :, i_channel] = tmp
return wcoef, wfam | 13a5e2b16c2641b8fabf997679f4d8f6724d32a9 | 3,651,671 |
from typing import Tuple
from typing import Union
from typing import List
def add_fake_planet(
stack: np.ndarray,
parang: np.ndarray,
psf_template: np.ndarray,
polar_position: Tuple[Quantity, Quantity],
magnitude: float,
extra_scaling: float,
dit_stack: float,
dit_psf_template: float,
return_planet_positions: bool = False,
interpolation: str = 'bilinear',
) -> Union[np.ndarray, Tuple[np.ndarray, List[Tuple[float, float]]]]:
"""
Add a fake planet to the given ``stack`` which, when derotating and
merging the stack, will show up at the given ``position``.
This function can also be used to *remove* planets from a stack by
setting the ``psf_scaling`` to a negative number.
If you simply want to use this function to generate a fake signal
stack, set ``stack`` to all zeros, the ``magnitude`` to zero, both
the ``dit_stack`` and ``dit_psf_template`` to 1 (or any other
non-zero number), and use the `extra_scaling` factor to linearly
control the "brightness" of the injected planet.
This function is essentially a simplified port of the corresponding
PynPoint function :py:func:`pynpoint.util.analysis.fake_planet()`.
Args:
stack: A 3D numpy array of shape `(n_frames, width, height)`
which contains the stack of images / frames into which we
want to inject a fake planet.
parang: A 1D numpy array of shape `(n_frames,)` that contains
the respective parallactic angle for every frame in `stack`.
psf_template: A 2D numpy array that contains the (centered) PSF
template which will be used for the fake planet.
This should *not* be normalized to `(0, 1]` if we want to
work with actual astrophysical magnitudes for the contrast.
polar_position: A tuple `(separation, angle)` which specifies
the position at which the planet will show up after
de-rotating with ``parang``. ``separation`` needs to be a
``Quantity`` that can be converted to pixel; `angle` needs
to be a ``Quantity`` that can be converted to radian.
Additionally, ``angle`` should be using *astronomical* polar
coordinates, that is, 0 degrees will be "up" (= North), not
"right".
This function will internally add 90° to the angles to
convert them to mathematical pilar coordinates.
magnitude: The magnitude difference used to scale the PSF.
Note: This is the contrast ratio in *magnitudes*, meaning
that increasing this value by a factor of 5 will result in
a planet that is 100 times brighter. In case you want to
keep things linear, set this value to 0 and only use the
``psf_scaling`` parameter.
extra_scaling: An additional scaling factor that is used for
the PSF template.
This number is simply multiplied with the PSF template,
meaning that it changes the brightness linearly, not on a
logarithmic scale. For example, you could use `-1` to add a
*negative* planet to remove an actual planet in the data.
This can also be used to incorporate an additional dimming
factor due to a neutral density (ND) filter.
dit_stack: The detector integration time of the frames in the
``stack`` (in seconds). Necessary to compute the correct
scaling factor for the planet that we inject.
dit_psf_template: The detector integration time of the
``psf_template`` (in seconds). Necessary to compute the
correct scaling factor for the planet that we inject.
return_planet_positions: Whether to return the (Cartesian)
positions at which the fake planet was injected, as a
2D numpy array of shape `(n_frames, 2)`.
interpolation: ``interpolation`` argument that is passed to
:py:func:`scipy.ndimage.shift` that is used internally.
Returns:
A 3D numpy array of shape `(n_frames, width, height)` which
contains the original ``stack`` into which a fake planet has
been injected, as well as a list of tuples `(x, y)` that, for
each frame, contain the position at which the fake planet has
been added.
If desired (i.e., if ``return_planet_positions`` is ``True``),
the function also returns a 2D numpy array of shape
`(n_frames, 2)` containing the Cartesian positions at which the
fake planet has been injected.
"""
# Make sure that the stack and the parallactic angles are compatible
check_consistent_size(stack, parang)
# Define shortcut for the number of frames and the frame_size
n_frames, frame_size = stack.shape[0], (stack.shape[1], stack.shape[2])
# Split the target planet position into separation and angles, convert
# the quantities to pixels / convert to mathematical polar coordinates
rho = polar_position[0].to('pixel').value
phi = np.radians(polar_position[1].to('degree').value + 90 - parang)
# Convert `magnitude` from logarithmic contrast to linear flux ratio
flux_ratio = 10.0 ** (-magnitude / 2.5)
# Compute scaling factor that is due to the different integration times
# for the science images and the PSF template
dit_scaling = dit_stack / dit_psf_template
# Combine all scaling factors and scale the PSF template
scaling_factor = flux_ratio * dit_scaling * extra_scaling
psf_scaled = scaling_factor * np.copy(psf_template)
# Make sure that the PSF has a compatible shape, that is, either crop or
# pad the PSF template to the same spatial shape as the `stack`.
psf_scaled = crop_or_pad(psf_scaled, frame_size)
# Compute the shift for each frame
x_shift = rho * np.cos(phi)
y_shift = rho * np.sin(phi)
# Initialize the "pure signal" stack (can use empty() here, because all
# values will be overwritten and allocation should be slightly faster)
signal_stack = np.empty_like(stack)
# For each frame, move the scaled PSF template to the correct position
# Note: We use mode='constant' instead of 'reflect' here (unlike PynPoint)
# because the latter just does not seem to make a lot of sense?
for i in range(n_frames):
signal_stack[i] = shift_image(
image=psf_scaled,
offset=(float(x_shift[i]), float(y_shift[i])),
interpolation=interpolation,
mode='constant',
)
# Add the planet stack to the original input stack
output_stack = stack + signal_stack
# Either return only the output stack, or the output stack and
# the planet positions
if return_planet_positions:
center = get_center(frame_size)
planet_positions = np.column_stack(
(x_shift + center[0], y_shift + center[1])
)
return output_stack, planet_positions
return np.array(output_stack) | f5897585934fe9609a4d6cc0f032285194a59f19 | 3,651,673 |
def _BD_from_Av_for_dereddening(line_lambdas, line_fluxes, A_v):
"""
Find the de-reddened Balmer decrement (BD) that would arise from "removing"
an extinction of A_v (magnitudes) from the line_fluxes.
line_lambdas, line_fluxes: As in the function "deredden".
A_v: The extinction (magnitudes), as a scalar or array of extinction values.
Returns the Balmer decrement dereddened_BD (F_Halpha / F_Hbeta), as a float
or array of floats with the same shape as A_v.
"""
assert np.all(np.asarray(A_v) >= 0)
initial_BD = _find_BD(line_lambdas, line_fluxes)
# Calculate the Balmer decrement (BD) that would result from "removing" an
# extinction of A_v, using an inverted form of Equation A14 in Vogt13.
dereddened_BD = initial_BD / 10**(A_v / 8.55)
return dereddened_BD | 280255db3669b8ee585afbcb685dc97dfbedc5c0 | 3,651,675 |
def otherEnd(contours, top, limit):
"""
top与end太近了,找另一个顶部的点,与top距离最远
"""
tt = (0, 9999)
for li in contours:
for pp in li:
p = pp[0]
if limit(p[0]) and top[1] - p[1] < 15 and abs(top[0] - p[0]) > 50 and p[1] < tt[1]:
tt = p
return tt | 4f938d33ba28c1999603cd60381ed6d9aec23815 | 3,651,676 |
from matador.workflows.castep.common import castep_prerelax
def castep_phonon_prerelax(computer, calc_doc, seed):
""" Run a singleshot geometry optimisation before an SCF-style calculation.
This is typically used to ensure phonon calculations start successfully.
The phonon calculation will then be restarted from the .check file produced here.
Parameters:
computer (:obj:`ComputeTask`): the object that will be calling CASTEP.
calc_doc (dict): the structure to run on.
seed (str): root filename of structure.
"""
LOG.info('Performing CASTEP phonon pre-relax...')
required = ["write_checkpoint"]
forbidden = ['phonon_fine_kpoint_list',
'phonon_fine_kpoint_path',
'phonon_fine_kpoint_mp_spacing',
'phonon_fine_kpoint_path_spacing']
return castep_prerelax(
computer,
calc_doc,
seed,
required_keys=required,
forbidden_keys=forbidden
) | 4687e6cdf7150c8721329c7ea1b007e47ee3cd7e | 3,651,678 |
def get_external_links(soup):
"""Retrieve the different links from a `Lyric Wiki` page.
The links returned can be found in the `External Links` page section,
and usually references to other platforms (like Last.fm, Amazon, iTunes etc.).
Args:
soup (bs4.element.Tag): connection to the `Lyric Wiki` page.
Returns:
dict
Examples::
>>> # Import packages
>>> import bs4 # for web scrapping
>>> import urllib.request # to connect
>>> # Set Up: connect to a lyric wiki page
>>> USER = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7'
>>> HEADERS = {'User-Agent': USER}
>>> URL = 'https://lyrics.fandom.com/wiki/London_Grammar:Who_Am_I'
>>> req = urllib.request.Request(URL, headers=HEADERS)
>>> page = urllib.request.urlopen(req)
>>> soup = bs4.BeautifulSoup(page, 'lxml')
>>> # Retrieve links from the page
>>> get_external_links(soup)
{'Amazon': ['https://www.amazon.com/exec/obidos/redirect?link_code=ur2&tag=wikia-20&camp=1789&creative=9325&path=https%3A%2F%2Fwww.amazon.com%2Fdp%2FB00J0QJ84E'],
'Last.fm': ['https://www.last.fm/music/London+Grammar',
'https://www.last.fm/music/London+Grammar/If+You+Wait'],
'iTunes': ['https://itunes.apple.com/us/album/695805771'],
'AllMusic': ['https://www.allmusic.com/album/mw0002559862'],
'Discogs': ['http://www.discogs.com/master/595953'],
'MusicBrainz': ['https://musicbrainz.org/release-group/dbf36a9a-df02-41c4-8fa9-5afe599960b0'],
'Spotify': ['https://open.spotify.com/album/0YTj3vyjZmlfp16S2XGo50']}
"""
# Only add links from this set. Other are not relevant.
links_keys = ['Amazon', 'Last.fm', 'iTunes', 'AllMusic', 'Discogs', 'MusicBrainz', 'Spotify', 'Bandcamp',
'Wikipedia', 'Pandora', 'Hype Machine']
links = {}
# Scrape links from a page
for external_tag in scrape_external_links(soup):
# Get the respective kink / href
for link_a in external_tag.findAll('a', attrs={'class', 'external text'}):
# Add it to a dict
key = external_tag.text.split(':')[0].strip()
if key in links_keys:
links.setdefault(key, [])
links[key].append(link_a.get('href'))
return links | 9d1f654176cfe5ccdc849448b5cf1720dba4e6c5 | 3,651,679 |
def gcc():
"""Return the current container, that is the widget holding the figure and all the control widgets, buttons etc."""
gcf() # make sure we have something..
return current.container | d32b9c53694ad258976757b15cc0982431b06e8e | 3,651,680 |
def preprocessing(string):
"""helper function to remove punctuation froms string"""
string = string.replace(',', ' ').replace('.', ' ')
string = string.replace('(', '').replace(')', '')
words = string.split(' ')
return words | 17f41a566c3661ab6ffb842ac6d610425fc779d1 | 3,651,681 |
def add_input_arguments(argument_parser_object):
"""Adds input args for this script to `argparse.ArgumentParser` object.
:param argument_parser_object: `argparse.ArgumentParser` object, which may
or may not already contain input args.
:return: argument_parser_object: Same as input object, but with new input
args added.
"""
argument_parser_object.add_argument(
'--' + TRACKING_DIR_INPUT_ARG, type=str, required=False,
default=DEFAULT_TRACKING_DIR_NAME, help=TRACKING_DIR_HELP_STRING)
argument_parser_object.add_argument(
'--' + TRACKING_SCALE_INPUT_ARG, type=int, required=False,
default=echo_top_tracking.DUMMY_TRACKING_SCALE_METRES2,
help=TRACKING_SCALE_HELP_STRING)
argument_parser_object.add_argument(
'--' + GRIDRAD_DIR_INPUT_ARG, type=str, required=False,
default=DEFAULT_GRIDRAD_DIR_NAME, help=GRIDRAD_DIR_HELP_STRING)
argument_parser_object.add_argument(
'--' + OUTPUT_DIR_INPUT_ARG, type=str, required=False,
default=DEFAULT_OUTPUT_DIR_NAME, help=OUTPUT_DIR_HELP_STRING)
return argument_parser_object | 7e4b407aff10148c9843ba33410c233a32acc36d | 3,651,682 |
def fullUnitSphere(res):
"""Generates a unit sphere in the same way as :func:`unitSphere`, but
returns all vertices, instead of the unique vertices and an index array.
:arg res: Resolution - the number of angles to sample.
:returns: A ``numpy.float32`` array of size ``(4 * (res - 1)**2, 3)``
containing the ``(x, y, z)`` vertices which can be used to draw
a unit sphere (using the ``GL_QUADS`` primitive type).
"""
u = np.linspace(-np.pi / 2, np.pi / 2, res, dtype=np.float32)
v = np.linspace(-np.pi, np.pi, res, dtype=np.float32)
cosu = np.cos(u)
cosv = np.cos(v)
sinu = np.sin(u)
sinv = np.sin(v)
vertices = np.zeros(((res - 1) * (res - 1) * 4, 3), dtype=np.float32)
cucv = np.outer(cosu[:-1], cosv[:-1]).flatten()
cusv = np.outer(cosu[:-1], sinv[:-1]).flatten()
cu1cv = np.outer(cosu[1:], cosv[:-1]).flatten()
cu1sv = np.outer(cosu[1:], sinv[:-1]).flatten()
cu1cv1 = np.outer(cosu[1:], cosv[1:]) .flatten()
cu1sv1 = np.outer(cosu[1:], sinv[1:]) .flatten()
cucv1 = np.outer(cosu[:-1], cosv[1:]) .flatten()
cusv1 = np.outer(cosu[:-1], sinv[1:]) .flatten()
su = np.repeat(sinu[:-1], res - 1)
s1u = np.repeat(sinu[1:], res - 1)
vertices.T[:, ::4] = [cucv, cusv, su]
vertices.T[:, 1::4] = [cu1cv, cu1sv, s1u]
vertices.T[:, 2::4] = [cu1cv1, cu1sv1, s1u]
vertices.T[:, 3::4] = [cucv1, cusv1, su]
return vertices | 65d83a83b17087934847ab7db8200a67c79294d4 | 3,651,683 |
def prompt_for_word_removal(words_to_ignore=None):
"""
Prompts the user for words that should be ignored in kewword extraction.
Parameters
----------
words_to_ignore : str or list
Words that should not be included in the output.
Returns
-------
ignore words, words_added : list, bool
A new list of words to ignore and a boolean indicating if words have been added.
"""
if isinstance(words_to_ignore, str):
words_to_ignore = [words_to_ignore]
words_to_ignore = [w.replace("'", "") for w in words_to_ignore]
words_added = False # whether to run the models again
more_words = True
while more_words:
more_words = input("\nShould words be removed [y/n]? ")
if more_words == "y":
new_words_to_ignore = input("Type or copy word(s) to be removed: ")
# Remove commas if the user has used them to separate words,
# as well as apostraphes.
new_words_to_ignore = [
char for char in new_words_to_ignore if char not in [",", "'"]
]
new_words_to_ignore = "".join(new_words_to_ignore)
if " " in new_words_to_ignore:
new_words_to_ignore = new_words_to_ignore.split(" ")
elif isinstance(new_words_to_ignore, str):
new_words_to_ignore = [new_words_to_ignore]
words_to_ignore += new_words_to_ignore
words_added = True # we need to run the models again
more_words = False
elif more_words == "n":
more_words = False
else:
print("Invalid input")
return words_to_ignore, words_added | 65615f3fe5f0391f44d60e7e9a2990d8fea35bc0 | 3,651,684 |
import time
def wait_for_image_property(identifier, property, cmp_func,
wait=20,
maxtries=10):
"""Wait for an image to have a given property.
Raises TimeoutError on failure.
:param identifier: the image identifier
:param property: the name of the property
:param cmp_func: predicate function accepting current value of the property
:param wait: time (in seconds) between polls
:param maxtries: maximum number of attempts
:returns: True
"""
logger.info('Waiting for {identifier} to be {property} using {cmp_func}'
.format(**locals()))
for _ in xrange(maxtries):
output = image_show(identifier)
current = openstack_parse_show(output, 'status')
if cmp_func(current):
return True
else:
time.sleep(wait)
msg = 'Timeout while waiting for image {identifier} {property} using {fn}'\
.format(identifier=identifier, property=property, fn=cmp_func)
logger.info(msg)
raise TimeoutError(msg) | 27ad96fceb931a73deddb49fb40975dd295ebd36 | 3,651,685 |
def mock_requests_get_json_twice(mocker: MockerFixture) -> MagicMock:
"""Mock two pages of results returned from the parliament open data API."""
mock: MagicMock = mocker.patch("requests.get")
mock.return_value.__enter__.return_value.json.side_effect = [
{
"columnNames": ["column1", "column2"],
"rowData": [["Lorem ipsum", "dolor sit amet"]],
"hasMore": True,
},
{
"columnNames": ["column1", "column2"],
"rowData": [["eripuit principes intellegam", "eos id"]],
"hasMore": False,
},
]
return mock | 1c546963b5a2503c8d65d87ee373c2d2c5981b2a | 3,651,687 |
def _get_rating_accuracy_stats(population, ratings):
"""
Calculate how accurate our ratings were.
:param population:
:param ratings:
:return:
"""
num_overestimates = 0
num_underestimates = 0
num_correct = 0
for employee, rating in zip(population, ratings):
if rating < employee:
num_underestimates += 1
elif rating > employee:
num_overestimates += 1
else:
num_correct += 1
return num_underestimates, num_correct, num_overestimates | 6fefd6faf465a304acc692b465f575cc4c3a62e3 | 3,651,688 |
import hashlib
def genb58seed(entropy=None):
"""
Generate a random Family Seed for Ripple. (Private Key)
entropy = String of any random data. Please ensure high entropy.
## Note: ecdsa library's randrange() uses os.urandom() to get its entropy.
## This should be secure enough... but just in case, I added the ability
## to include your own entropy in addition.
"""
if entropy == None:
entropy = int2data(ecdsa.util.randrange(2 ** 128), 16)
else:
entropy = hashlib.sha256(entropy + int2data(ecdsa.util.randrange(2 ** 128), 16)).digest()[:16]
b58seed = data_to_address(entropy, 33)
return b58seed | 1bfbbbff5abffa2bac0fd2accf9480387ff2e8bb | 3,651,689 |
def convert_nhwc_to_nchw(data: np.array) -> np.array:
"""Convert data to NCHW."""
return np.transpose(data, [0, 3, 1, 2]) | 5ca229d9dfcb388d3f3a487b51719eaa0dd8fdb6 | 3,651,690 |
def get_mfcc_features(wave_data: pd.Series, n_mfcc):
"""
mfcc_feature
"""
x = wave_data.apply(lambda d: (d-np.mean(d))/(np.std(d)))
# x = wave_data
x, max_length = utils.padding_to_max(x)
features = []
for i in range(x.shape[0]):
t1 = mfcc(x[i], sr=16000, n_mfcc=n_mfcc)
t2 = utils.diff(t1, axis=0)
t3 = utils.diff(t1, axis=0, delta=2)
t = np.concatenate([t1.T, t2.T, t3.T], axis=1).flatten()
features.append(t)
return np.array(features) | 2f5fa5a4f752c4d5af963bd390868f98e886c0d9 | 3,651,691 |
def download_instance_func(instance_id):
"""Download a DICOM Instance as DCM"""
file_bytes = client.orthanc.download_instance_dicom(instance_id)
return flask.send_file(BytesIO(file_bytes), mimetype='application/dicom', as_attachment=True, attachment_filename=f'{instance_id}.dcm') | bbd506904096da9d73f3c0f33dd30ba869551025 | 3,651,692 |
def generate_random_initial_params(n_qubits, n_layers=1, topology='all', min_val=0., max_val=1., n_par=0, seed=None):
"""Generate random parameters for the QCBM circuit (iontrap ansatz).
Args:
n_qubits (int): number of qubits in the circuit.
n_layers (int): number of entangling layers in the circuit. If n_layers=-1, you can specify a custom number of parameters (see below).
topology (str): describes topology of qubits connectivity.
min_val (float): minimum parameter value.
max_val (float): maximum parameter value.
n_par (int): specifies number of parameters to be generated in case of incomplete layers (i.e. n_layers=-1).
seed (int): initialize random generator
Returns:
numpy.array: the generated parameters, stored in a 1D array.
"""
gen = np.random.RandomState(seed)
assert(topology == 'all')
n_params_layer_zero = 2*n_qubits
n_params_per_layer = int((n_qubits*(n_qubits-1))/2)
if n_layers==-1:
n_params=n_par
else:
assert(n_layers>0)
if n_par!=0:
raise ValueError("If n_layers is specified, n_par is automatically computed.")
n_params = n_params_layer_zero+n_layers*n_params_per_layer
params = gen.uniform(min_val, max_val, n_params)
return(params) | f3beaa9b36b704d8289c91c46895247275a69ef1 | 3,651,693 |
def number_of_friends(user):
"""How many friends does this user have?"""
user_id = user["id"]
friend_ids = friendships[user_id]
return len(friend_ids) | 3f17dfb1e2c3829c650727d36a34a24885d4d77d | 3,651,694 |
def get_serializer_class(format=None):
"""Convenience function returns serializer or raises SerializerNotFound."""
if not format:
serializer = BaseSerializer()
elif format == 'json-ld':
serializer = JsonLDSerializer()
elif format == 'json':
serializer = JsonSerializer()
else:
raise SerializerNotFound(format)
return serializer | 7660ba2f7861773d6a4e8d5796facbbe96259503 | 3,651,695 |
from typing import Optional
from typing import Any
def get_or_create_mpc_section(
mp_controls: "MpConfigControls", section: str, subkey: Optional[str] = None # type: ignore
) -> Any:
"""
Return (and create if it doesn't exist) a settings section.
Parameters
----------
mp_controls : MpConfigControls
The MP Config database.
section : str
The section name (top level settings item)
subkey : Optional[str], optional
Optional subkey to create, by default None
Returns
-------
Any
The settings at that section[subkey] location.
"""
curr_section = mp_controls.get_value(section)
if curr_section is None:
mp_controls.set_value(section, {})
curr_section = mp_controls.get_value(section)
if subkey and subkey not in curr_section:
mp_controls.set_value(f"{section}.{subkey}", {})
return mp_controls.get_value(f"{section}.{subkey}")
return mp_controls.get_value(section) | 60b741f35e0a1c9fe924b472217e0e3b62a1d31e | 3,651,696 |
import csv
def get_sql_table_headers(csv_dict_reader: csv.DictReader) -> str:
""" This takes in a csv dictionary reader type, and returns a list of the headings needed to make a table """
column_names = []
for row in csv_dict_reader:
for column in row:
column_names.append('{} {} '.format(column, get_sql_type(row[column])))
return column_names | b874ca3992eac45ed1708434a5adfd28fd96c1cd | 3,651,697 |
from unittest.mock import call
def greater_than(val1, val2):
"""Perform inequality check on two unsigned 32-bit numbers (val1 > val2)"""
myStr = flip_string(val1) + flip_string(val2)
call(MATH_32BIT_GREATER_THAN,myStr)
return ord(myStr[0]) == 1 | b9bba2aa776dc71320df736c654a5c0163827dff | 3,651,698 |
from re import I
def upsampling_2x_blocks(n_speakers, speaker_dim, target_channels, dropout):
"""Return a list of Layers that upsamples the input by 2 times in time dimension.
Args:
n_speakers (int): number of speakers of the Conv1DGLU layers used.
speaker_dim (int): speaker embedding size of the Conv1DGLU layers used.
target_channels (int): channels of the input and the output.(the list of layers does not change the number of channels.)
dropout (float): dropout probability.
Returns:
List[Layer]: upsampling layers.
"""
upsampling_convolutions = [
Conv1DTranspose(
target_channels,
target_channels,
2,
stride=2,
param_attr=I.Normal(scale=np.sqrt(1. / (2 * target_channels)))),
Conv1DGLU(
n_speakers,
speaker_dim,
target_channels,
target_channels,
3,
dilation=1,
std_mul=1.,
dropout=dropout), Conv1DGLU(
n_speakers,
speaker_dim,
target_channels,
target_channels,
3,
dilation=3,
std_mul=4.,
dropout=dropout)
]
return upsampling_convolutions | e2a31c4ef7c392d86e5cf6ac96891b1a57a3692e | 3,651,699 |
def actor_path(data, actor_id_1, goal_test_function):
"""
Creates the shortest possible path from the given actor ID to
any actor that satisfies the goal test function.
Returns a a list containing actor IDs.
If no actors satisfy the goal condition, returns None.
"""
agenda = {actor_id_1,}
seen = {actor_id_1,}
relations = {}
map_of_actors = mapped_actors(data)
while agenda:
# Get the children of the parent
next_agenda = set()
for i in agenda:
for j in map_of_actors[i]:
if j not in seen and j not in agenda:
next_agenda.add(j)
# Map child to parent
relations[j] = i
# If actor satisfies function condition, return constructed path
for id_ in agenda:
if goal_test_function(id_):
final_path = construct_path(relations, id_, actor_id_1)
return final_path
for next_ in agenda:
if next_ not in seen:
seen.add(next_)
# Update agenda to next bacon number/layer
agenda = next_agenda
# No path exists
return None | 8e41d7075b3ade8f75481959f9aa376a096aaa1c | 3,651,700 |
def M_to_E(M, ecc):
"""Eccentric anomaly from mean anomaly.
.. versionadded:: 0.4.0
Parameters
----------
M : float
Mean anomaly (rad).
ecc : float
Eccentricity.
Returns
-------
E : float
Eccentric anomaly.
"""
with u.set_enabled_equivalencies(u.dimensionless_angles()):
E = optimize.newton(_kepler_equation, M, _kepler_equation_prime,
args=(M, ecc))
return E | 071f33a294edf6627ad77caa256de48e94afad76 | 3,651,702 |
def encrypt(plaintext, a, b):
"""
加密函数:E(x) = (ax + b)(mod m) m为编码系统中的字母数,一般为26
:param plaintext:
:param a:
:param b:
:return:
"""
cipher = ""
for i in plaintext:
if not i.isalpha():
cipher += i
else:
n = "A" if i.isupper() else "a"
cipher += chr((a * (ord(i) - ord(n)) + b) % 26 + ord(n))
return cipher | 0cbb57250d8d7a18740e19875f79127b8057ab06 | 3,651,704 |
def _url_as_filename(url: str) -> str:
"""Return a version of the url optimized for local development.
If the url is a `file://` url, it will return the remaining part
of the url so it can be used as a local file path. For example,
'file:///logs/example.txt' will be converted to
'/logs/example.txt'.
Parameters
----------
url: str The url to check and optaimize.
Returns
-------
str: The url converted to a filename.
"""
return url.replace('file://', '') | d1aef7a08221c7788f8a7f77351ccb6e6af9416b | 3,651,707 |
from typing import Dict
def hard_max(node: NodeWrapper,
params: Dict[str, np.ndarray],
xmap: Dict[str, XLayer]):
""" ONNX Hardmax to XLayer AnyOp conversion function
Input tensor shape: N dims
Output tensor shape: 2D
"""
logger.info("ONNX Hardmax -> XLayer AnyOp")
assert len(node.get_outputs()) == 1
name = node.get_outputs()[0]
bottoms = node.get_inputs()
node_attrs = node.get_attributes()
iX = xmap[bottoms[0]]
d = len(iX.shapes)
axis = int(node_attrs['axis']) if 'axis' in node_attrs else 1
if axis < 0:
axis = d + axis
in_shape = iX.shapes.tolist()
dim_0 = int(np.prod(in_shape[:axis]))
dim_1 = int(np.prod(in_shape[axis:]))
X = px.ops.any_op(
op_name=px.stringify(name),
in_xlayers=[iX],
any_shape=[dim_0, dim_1],
onnx_id=name
)
return [X] | 5f412e98836cd377d40a759ab0487aa81cc4f3dc | 3,651,708 |
from typing import AnyStr
from typing import List
def sol_files_by_directory(target_path: AnyStr) -> List:
"""Gathers all the .sol files inside the target path
including sub-directories and returns them as a List.
Non .sol files are ignored.
:param target_path: The directory to look for .sol files
:return:
"""
return files_by_directory(target_path, ".sol") | e41ad3da26ffa1d3c528f34362ac1aeeadeb2b3c | 3,651,709 |
def _call(sig, *inputs, **kwargs):
"""Adds a node calling a function.
This adds a `call` op to the default graph that calls the function
of signature `sig`, passing the tensors in `inputs` as arguments.
It returns the outputs of the call, which are one or more tensors.
`sig` is OpDefArg.a `_DefinedFunction` object.
You can pass an optional keyword parameter `name=string` to name the
added operation.
You can pass an optional keyword parameter `noinline=True|False` to
instruct the runtime not to inline the function body into the call
site.
Args:
sig: OpDefArg. The signature of the function.
*inputs: arguments to the function.
**kwargs: Optional keyword arguments. Can only contain 'name' or
'noinline'.
Returns:
A 2-element tuple. First element: a Tensor if the function returns a single
value; a list of Tensors if the function returns multiple value; the
Operation if the function returns no values. Second element: the Operation.
Raises:
ValueError: if the arguments are invalid.
"""
if len(inputs) != len(sig.input_arg):
raise ValueError("Expected number of arguments: %d, received: %d" % (len(
sig.input_arg), len(inputs)))
name = kwargs.pop("name", None)
g = ops.get_default_graph()
func_name = sig.name
if name is None:
name = func_name
attrs = _parse_kwargs_as_attrs(func_name, **kwargs)
output_types = [dtypes.DType(x.type) for x in sig.output_arg]
op = g._create_op_internal( # pylint: disable=protected-access
func_name, list(inputs), output_types, name=name, attrs=attrs, op_def=sig)
if op.outputs:
if len(op.outputs) == 1:
ret = op.outputs[0]
else:
ret = tuple(op.outputs)
else:
ret = op
return ret, op | 6fd65281118e33bbcd9d567a7c528d85976e75e7 | 3,651,710 |
import torch
def cov(x, rowvar=False, bias=False, ddof=None, aweights=None):
"""Estimates covariance matrix like numpy.cov"""
# ensure at least 2D
if x.dim() == 1:
x = x.view(-1, 1)
# treat each column as a data point, each row as a variable
if rowvar and x.shape[0] != 1:
x = x.t()
if ddof is None:
if bias == 0:
ddof = 1
else:
ddof = 0
w = aweights
if w is not None:
if not torch.is_tensor(w):
w = torch.tensor(w, dtype=torch.float)
w_sum = torch.sum(w)
avg = torch.sum(x * (w/w_sum)[:,None], 0)
else:
avg = torch.mean(x, 0)
# Determine the normalization
if w is None:
fact = x.shape[0] - ddof
elif ddof == 0:
fact = w_sum
elif aweights is None:
fact = w_sum - ddof
else:
fact = w_sum - ddof * torch.sum(w * w) / w_sum
xm = x.sub(avg.expand_as(x))
if w is None:
X_T = xm.t()
else:
X_T = torch.mm(torch.diag(w), xm).t()
c = torch.mm(X_T, xm)
c = c / fact
return c.squeeze() | 6b5666a3e7fa6fe0c0e115286e10d2e756ba8ee9 | 3,651,712 |
def threadsafe_generator(f):
"""A decorator that takes a generator function and makes it thread-safe.
Args:
f(function): Generator function
Returns:
None
"""
def g(*args, **kwargs):
"""
Args:
*args(list): List of non-key worded,variable length arguments.
**kwargs(dict): List of key-worded,variable length arguments.
Returns:
function: The thread-safe function.
"""
return threadsafe_iter_3(f(*args, **kwargs))
return g | 6a3e53984c85c951e5ffefa2ed238af86d8fc3e3 | 3,651,713 |
def load_many_problems(file, collection):
"""Given a ZIP file containing several ZIP files (each one a problem),
insert the problems into collection"""
problems = list()
try:
with ZipFile(file) as zfile:
for filename in zfile.infolist():
with zfile.open(filename) as curr_file:
problem = load_problem_from_file(curr_file)
problem.collection = collection
problem.author = collection.author
problems.append(problem)
except ZipFileParsingException as excp:
raise ZipFileParsingException('{}: {}'.format(filename.filename, excp)) from excp
except Exception as excp:
raise ZipFileParsingException("{}: {}".format(type(excp), excp)) from excp
return problems | 08d60f5c7905397254715f80e74019f3496d84e5 | 3,651,714 |
def CheckStructuralModelsValid(rootGroup, xyzGridSize=None, verbose=False):
"""
**CheckStricturalModelsValid** - Checks for valid structural model group data
given a netCDF root node
Parameters
----------
rootGroup: netCDF4.Group
The root group node of a Loop Project File
xyzGridSize: [int,int,int] or None
The 3D grid shape to test data in this node to adhere to
verbose: bool
A flag to indicate a higher level of console logging (more if True)
Returns
-------
bool
True if valid structural model data in project file, False otherwise.
"""
valid = True
if "StructuralModels" in rootGroup.groups:
if verbose: print(" Structural Models Group Present")
smGroup = rootGroup.groups.get("StructuralModels")
# if verbose: print(smGroup)
if "easting" in smGroup.ncattrs() and "northing" in smGroup.ncattrs() and "depth" in smGroup.ncattrs():
if xyzGridSize != None:
# Check gridSize from extents matches models sizes
smGridSize = [smGroup.dimensions["easting"].size,smGroup.dimensions["northing"].size,smGroup.dimensions["depth"].size]
if smGridSize != xyzGridSize:
print("(INVALID) Extents grid size and Structural Models Grid Size do NOT match")
print("(INVALID) Extents Grid Size : ", xyzGridSize)
print("(INVALID) Structural Models Grid Size : ", smGridSize)
valid = False
else:
if verbose: print(" Structural Models grid size adheres to extents")
else:
if verbose: print("No structural models extents in project file")
else:
if verbose: print("No Structural Models Group Present")
return valid | d11ce42b041b8be7516f827883a37b40f6f98477 | 3,651,715 |
def get_load_balancers():
"""
Return all load balancers.
:return: List of load balancers.
:rtype: list
"""
return elbv2_client.describe_load_balancers()["LoadBalancers"] | b535f47ce94106a4c7ebe3d84ccfba7c57f22ba9 | 3,651,716 |
def file_preview(request):
"""
Live preview of restructuredtext payload - currently not wired up
"""
f = File(
heading=request.POST['heading'],
content=request.POST['content'],
)
rendered_base = render_to_string('projects/doc_file.rst.html', {'file': f})
rendered = restructuredtext(rendered_base)
json_response = simplejson.dumps({'payload': rendered})
return HttpResponse(json_response, mimetype='text/javascript') | e83570b7b31b4a2d526f1699f8b65c5623d6f7ee | 3,651,718 |
def makeMask(n):
"""
return a mask of n bits as a long integer
"""
return (long(2) << n - 1) - 1 | c0fe084ec9d6be1519115563cce3c0d3649947c6 | 3,651,719 |
def link_name_to_index(model):
""" Generate a dictionary for link names and their indicies in the
model. """
return {
link.name : index for index, link in enumerate(model.links)
} | ba0e768b1160218908b6ecf3b186a73c75a69894 | 3,651,720 |
import json
def photos_page():
"""
Example view demonstrating rendering a simple HTML page.
"""
context = make_context()
with open('data/featured.json') as f:
context['featured'] = json.load(f)
return make_response(render_template('photos.html', **context)) | dfb172e01f659be163c7dffdb13cc5cbaa28ab10 | 3,651,722 |
import json
def get_user_by_id(current_user, uid):
""" Получение одного пользователя по id в json"""
try:
user_schema = CmsUsersSchema(exclude=['password'])
user = CmsUsers.query.get(uid)
udata = user_schema.dump(user)
response = Response(
response=json.dumps(udata.data),
status=200,
mimetype='application/json'
)
except Exception:
response = server_error(request.args.get("dbg"))
return response | 9f91319020fb0b386d506b4365c2912af3ed5874 | 3,651,723 |
def update_bond_lists_mpi(bond_matrix, comm, size, rank):
"""
update_bond_lists(bond_matrix)
Return atom indicies of angular terms
"""
N = bond_matrix.shape[0]
"Get indicies of bonded beads"
bond_index_full = np.argwhere(bond_matrix)
"Create index lists for referring to in 2D arrays"
indices_full = create_index(bond_index_full)
angle_indices = []
angle_bond_indices = []
"Count number of unique bonds"
count = np.unique(bond_index_full.T[0]).shape[0]
"""
"Find indicies of ends of fibrils"
fib_end_check = np.argwhere(np.sum(bond_matrix, axis=1) <= 1)
n_fib_end = fib_end_check.shape[0]
fib_end_check_ind = np.tile(fib_end_check, n_fib_end)
fib_end_check_ind = np.stack((fib_end_check_ind, fib_end_check_ind.T), axis=2)
fib_end_check_ind = create_index(fib_end_check_ind[np.where(~np.eye(n_fib_end,dtype=bool))])
fib_end = np.zeros(bond_matrix.shape)
fib_end[fib_end_check_ind] += 1
"""
for n in range(N):
slice_full = np.argwhere(bond_index_full.T[0] == n)
if slice_full.shape[0] > 1:
angle_indices.append(np.unique(bond_index_full[slice_full].flatten()))
angle_bond_indices.append(bond_index_full[slice_full][::-1])
bond_indices = np.nonzero(np.array_split(bond_matrix, size)[rank])
angle_indices = np.array_split(angle_indices, size)[rank]
angle_bond_indices = create_index(np.array_split(angle_bond_indices, size)[rank].reshape((2 * len(angle_indices), 2)))
return bond_indices, angle_indices, angle_bond_indices | 60fd4e5ee7418d182f0c29b0d69e0f148a5a40ee | 3,651,724 |
from ibis.omniscidb.compiler import to_sql
def compile(expr: ibis.Expr, params=None):
"""Compile a given expression.
Note you can also call expr.compile().
Parameters
----------
expr : ibis.Expr
params : dict
Returns
-------
compiled : string
"""
return to_sql(expr, dialect.make_context(params=params)) | 01bfe1be13b9a78adba04ca37a08aadbf551c827 | 3,651,726 |
def get_border(border, size):
"""
Get border
"""
i = 1
while size - border // i <= border // i: # size > 2 * (border // i)
i *= 2
return border // i | 45233f53cdf6f0edb5b4a9262b61f2a70ac42661 | 3,651,727 |
def load_normalized_data(file_path, log1p=True):
"""load normalized data
1. Load filtered data for both FACS and droplet
2. Size factor normalization to counts per 10 thousand
3. log(x+1) transform
4. Combine the data
Args:
file_path (str): file path.
Returns:
adata_combine (AnnData): Combined data for FACS and droplet
"""
# Load filtered data
# adata_facs = read_h5ad(f'{file_path}/facs_filtered.h5ad')
adata_facs = read_h5ad(f'{file_path}/facs_filtered_reannotated-except-for-marrow-lung-kidney.h5ad')
adata_droplet = read_h5ad(f'{file_path}/droplet_filtered.h5ad')
# Size factor normalization
sc.pp.normalize_per_cell(adata_facs, counts_per_cell_after=1e4)
sc.pp.normalize_per_cell(adata_droplet, counts_per_cell_after=1e4)
# log(x+1) transform
if log1p:
sc.pp.log1p(adata_facs)
sc.pp.log1p(adata_droplet)
# Combine the data
ind_select = adata_facs.obs['age'].isin(['3m', '18m', '24m'])
adata_facs = adata_facs[ind_select,]
adata_combine = AnnData.concatenate(adata_facs, adata_droplet, batch_key='b_method',
batch_categories = ['facs','droplet'])
return adata_combine | 3c180c1f2ba1e118678331795eb42b7132686ed6 | 3,651,728 |
def from_copy_number(
model: cobra.Model,
index: pd.Series,
cell_copies: pd.Series,
stdev: pd.Series,
vol: float,
dens: float,
water: float,
) -> cobra.Model:
"""Convert `cell_copies` to mmol/gDW and apply them to `model`.
Parameters
----------
model: cobra.Model
cobra or geckopy Model (will be converted to geckopy.Model). It is NOT
modified inplace.
index: pd.Series
uniprot IDs
cell_copies: pd.Series
cell copies/ cell per proteins
stdev: pd.Series
standard deviation of the cell copies
vol: float
cell volume
dens: float
cell density
water: float
water content fraction (0-1)
Returns
-------
geckopy.Model
with the proteomics constraints applied
"""
df = pd.DataFrame({"cell_copies": cell_copies, "CV": stdev})
# from molecules/cell to mmol/gDW
df["copies_upper"] = df["cell_copies"] + 0.5 * df["CV"] / 100 * df["cell_copies"]
df["mmol_per_cell"] = df["copies_upper"] / 6.022e21
proteomics = df["mmol_per_cell"] / (vol * dens * water)
proteomics.index = index
return from_mmol_gDW(model, proteomics) | 858d563ad0f4ae16e83b36db3908895671809431 | 3,651,729 |
import re
def _get_values(attribute, text):
"""Match attribute in text and return all matches.
:returns: List of matches.
"""
regex = '{}\s+=\s+"(.*)";'.format(attribute)
regex = re.compile(regex)
values = regex.findall(text)
return values | 59a0fdb7a39221e5f728f512ba0aa814506bbc37 | 3,651,731 |
def time_axis(tpp=20e-9, length=20_000) -> np.ndarray:
"""Return the time axis used in experiments.
"""
ts = tpp * np.arange(length)
ten_percent_point = np.floor(length / 10) * tpp
ts -= ten_percent_point
ts *= 1e6 # convert from seconds to microseconds
return ts | 6cd18bcbfa6949fe98e720312b07cfa20fde940a | 3,651,732 |
from cyder.core.ctnr.models import CtnrUser
def _has_perm(user, ctnr, action, obj=None, obj_class=None):
"""
Checks whether a user (``request.user``) has permission to act on a
given object (``obj``) within the current session CTNR. Permissions will
depend on whether the object is within the user's current CTNR and
the user's permissions level within that CTNR. Plebs are people that don't
have any permissions except for dynamic registrations.
Guests of a CTNR have view access to all objects within the current CTNR.
Users have full access to objects within the current CTNR, except
for exceptional types of objects (domains, SOAs) and the CTNR itself.
CTNR admins are like users except they can modify the CTNR itself
and assign permissions to other users.
Cyder admins are CTNR admins to every CTNR. Though the object has to
be within the CURRENT CTNR for permissions to be granted, for purposes
of encapsulation.
Superusers (Uber-admins/Elders) have complete access to everything
including the ability to create top-level domains, SOAs, and global DHCP
objects.
Plebs are not assigned to any CTNR.
CTNR Guests have level 0 to a CTNR.
CTNR Users have level 1 to a CTNR.
CTNR Admins have level 2 to a CTNR.
Cyder Admins have level 2 to the 'global' CTNR (``pk=1``).
Superusers are Django superusers.
:param request: A django request object.
:type request: :class:`request`
:param obj: The object being tested for permission.
:type obj: :class:`object`
:param action: ``0`` (view), ``1`` (create), ``2`` (update), ``3`` (delete)
:type action: :class: `int`
An example of checking whether a user has 'create' permission on a
:class:`Domain` object.
>>> perm = request.user.get_profile().has_perm(request, \'create\',
... obj_class=Domain)
>>> perm = request.user.get_profile().has_perm(request, \'update\',
... obj=domain)
"""
user_level = None
if user.is_superuser:
return True
ctnr_level = -1
assert LEVEL_ADMIN > LEVEL_USER > LEVEL_GUEST > ctnr_level
if obj:
ctnr = None
ctnrs = None
if hasattr(obj, "get_ctnrs"):
try:
ctnrs = obj.get_ctnrs()
except TypeError:
pass
if ctnrs is not None:
for c in ctnrs:
try:
level = CtnrUser.objects.get(ctnr=c, user=user).level
except CtnrUser.DoesNotExist:
continue
if level > ctnr_level:
ctnr_level = level
ctnr = c
if ctnr_level == LEVEL_ADMIN:
break
elif ctnr and user and not obj:
try:
ctnr_level = CtnrUser.objects.get(ctnr=ctnr, user=user).level
except CtnrUser.DoesNotExist:
pass
if obj and ctnr and not ctnr.check_contains_obj(obj):
return False
# Get user level.
is_ctnr_admin = ctnr_level == LEVEL_ADMIN
is_ctnr_user = ctnr_level == LEVEL_USER
is_ctnr_guest = ctnr_level == LEVEL_GUEST
try:
cyder_level = CtnrUser.objects.get(ctnr=1, user=user).level
except CtnrUser.DoesNotExist:
cyder_level = -1
is_cyder_admin = cyder_level == LEVEL_ADMIN
is_cyder_guest = CtnrUser.objects.filter(user=user).exists()
if is_cyder_admin:
user_level = 'cyder_admin'
elif is_ctnr_admin:
user_level = 'ctnr_admin'
elif is_ctnr_user:
user_level = 'ctnr_user'
elif is_ctnr_guest:
user_level = 'ctnr_guest'
elif is_cyder_guest:
user_level = 'cyder_guest'
else:
user_level = 'pleb'
# Dispatch to appropriate permissions handler.
if obj:
obj_type = obj.__class__.__name__
elif obj_class:
if isinstance(obj_class, basestring):
obj_type = str(obj_class)
else:
obj_type = obj_class.__name__
else:
return False
if (obj_type and obj_type.endswith('AV')
and obj_type != 'WorkgroupAV'):
obj_type = obj_type[:-len('AV')]
handling_functions = {
# Administrative.
'Ctnr': has_administrative_perm,
'User': has_administrative_perm,
'UserProfile': has_administrative_perm,
'CtnrUser': has_ctnr_user_perm,
'CtnrObject': has_ctnr_object_perm,
'SOA': has_soa_perm,
'Domain': has_domain_perm,
# Domain records.
'AddressRecord': has_domain_record_perm,
'CNAME': has_domain_record_perm,
'MX': has_domain_record_perm,
'Nameserver': has_name_server_perm,
'SRV': has_domain_record_perm,
'SSHFP': has_domain_record_perm,
'TXT': has_domain_record_perm,
'PTR': has_reverse_domain_record_perm,
# DHCP.
'Network': has_network_perm,
'Range': has_range_perm,
'Site': has_site_perm,
'System': has_system_perm,
'Vlan': has_vlan_perm,
'Vrf': has_vrf_perm,
'Workgroup': has_workgroup_perm,
'StaticInterface': has_static_registration_perm,
'DynamicInterface': has_dynamic_registration_perm,
'Supernet': has_supernet_perm,
'WorkgroupAV': has_workgroupav_perm,
'Token': has_token_perm
}
handling_function = handling_functions.get(obj_type, None)
if not handling_function:
if '_' in obj_type:
obj_type = obj_type.replace('_', '')
if 'Intr' in obj_type:
obj_type = obj_type.replace('Intr', 'interface')
for key in handling_functions.keys():
if obj_type.lower() == key.lower():
handling_function = handling_functions[key]
if handling_function:
return handling_function(user_level, obj, ctnr, action)
else:
raise Exception('No handling function for {0}'.format(obj_type)) | 998119c3aa9b50fcdd9fdec1f734374f04fe51c6 | 3,651,733 |
def read_chunk(file: File, size: int=400) -> bytes:
""" Reads first [size] chunks from file, size defaults to 400 """
file = _path.join(file.root, file.name) # get full path of file
with open(file, 'rb') as file:
# read chunk size
chunk = file.read(size)
return chunk | dfa1fd576fe14c5551470fb76a674dccd136e200 | 3,651,734 |
def parse_input(file_path):
"""
Turn an input file of newline-separate bitrate samples into
input and label arrays. An input file line should look like this:
4983 1008073 1591538 704983 1008073 1008073 704983
Adjacent duplicate entries will be removed and lines with less than
two samples will be filtered out.
@return a tuple of the x, x sequence length, and y arrays parsed
from the input file
"""
bitrate_inputs = []
inputs_length = []
bitrate_labels = []
with open(file_path, 'r') as file:
for line in file:
samples = map(lambda x: [float(x) * bps_to_MBps], line.strip().split(' '))[0:MAX_SAMPLES + 1]
if (len(samples) < 2):
# skip lines without enough samples
continue
bitrate_labels.append(samples.pop())
inputs_length.append(len(samples))
samples += [[-1] for i in range(MAX_SAMPLES - len(samples))]
bitrate_inputs += [samples]
return bitrate_inputs, inputs_length, bitrate_labels | 1e1aada5b8da01d362f7deb0b2145209bb55bcc0 | 3,651,735 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.