content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import requests def build_response(status=OK, etag='etag', modified='modified', max_age=None): """Make a requests.Response object suitable for testing. Args: status: HTTP status exp-time: cache expire time (set to future for fresh cache, past for stale cache (defaults to stale)) etag: etag cache-control header modified: last-modified cache-control header Returns: A Response instance populated according to the arguments. """ headers = {'last-modified': modified, 'etag': etag, 'Cache-Control': 'max-age={}'.format(max_age)} test_response = requests.Response() test_response.status_code = status test_response.headers = headers return test_response
f9a97da74b7802511180f30dc45e9df5d5e87f51
3,651,849
from typing import List from re import T def split_list(big_list: List[T], delimiter: T) -> List[List[T]]: """Like string.split(foo), except for lists.""" cur_list: List[T] = [] parts: List[List[T]] = [] for item in big_list: if item == delimiter: if cur_list: parts.append(cur_list) cur_list = [] else: cur_list.append(item) if cur_list: parts.append(cur_list) return parts
c56dd88a7376f002ae6b91c3b227c8a16991ca31
3,651,850
def generate_partitions(data): """ Generates a random nested partition for an array of integers :param data: :return: """ if len(data) == 1: return data else: mask1 = np.random.choice(len(data), np.floor(len(data)/2), replace=False) par1 = [data[i] for i in range(len(data)) if i in mask1] par2 = [data[i] for i in range(len(data)) if i not in mask1] return [generate_partitions(par1), generate_partitions(par2)]
164749c135de1cf690bb209a18270a5550cdefc8
3,651,851
def randomRectangularCluster(nRow, nCol, minL, maxL, mask=None): """ Create a random rectangular cluster neutral landscape model with values ranging 0-1. Parameters ---------- nRow : int The number of rows in the array. nCol : int The number of columns in the array. minL: int The minimum possible length of width and height for each random rectangular cluster. maxL: int The maximum possible length of width and height for each random rectangular cluster. mask : array, optional 2D array used as a binary mask to limit the elements with values. Returns ------- out : array 2D array. """ if mask is None: mask = np.ones((nRow, nCol)) # Create an empty array of correct dimensions array = np.zeros((nRow, nCol)) - 1 # Keep applying random clusters until all elements have a value while np.min(array) == -1: width = np.random.choice(range(minL, maxL)) height = np.random.choice(range(minL, maxL)) row = np.random.choice(range(-maxL, nRow)) col = np.random.choice(range(-maxL, nCol)) array[row:row + width, col:col + height] = np.random.random() # Apply mask and rescale 0-1 maskedArray = maskArray(array, mask) rescaledArray = linearRescale01(maskedArray) return(rescaledArray)
b53db06114ac3a465c1e0444bed59aa7403bba83
3,651,853
def add_arc(): """ :return: arc object """ l_hand = GArc(200, 200, 60, 150, x=480, y=270) l_hand.filled = True l_hand.fill_color = "#8eded9" r_hand = GArc(200, 200, -30, 120, x=650, y=300) r_hand.filled = True r_hand.fill_color = "#8eded9" return l_hand, r_hand
667004d534d58ab11e9b41ca42572dc445ffcf7d
3,651,855
def get_data_item_or_add(results_dic, name, n_hid, epochs, horizon, timesteps): """ Return or create a new DataItem in `results_dic` with the corresponding metadata. """ if name not in results_dic: results_dic[name] = [] found = False for item in results_dic[name]: if item.is_metadata(n_hid, epochs, horizon, timesteps): found = True return item if not found: results_dic[name].append( DataItem(n_hid, epochs, horizon, timesteps)) return results_dic[name][-1]
e6c713cd89b7a9816f52be11a4730f1cef60355c
3,651,856
def midcurve_atm_fwd_rate(asset: Asset, expiration_tenor: str, forward_tenor: str, termination_tenor: str, benchmark_type: str = None, floating_rate_tenor: str = None, clearing_house: str = None, location: PricingLocation = None, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day atm forward rate for swaption vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param forward_tenor: relative date representation of swap's start date after option expiry e.g. 2y :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param benchmark_type: benchmark type e.g. LIBOR :param floating_rate_tenor: floating index rate :param clearing_house: Example - "LCH", "EUREX", "JSCC", "CME" :param location: Example - "TKO", "LDN", "NYC" :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swaption implied normal volatility curve """ df = _get_swaption_measure(asset, benchmark_type=benchmark_type, floating_rate_tenor=floating_rate_tenor, effective_date=forward_tenor, expiration_tenor=expiration_tenor, termination_tenor=termination_tenor, clearing_house=clearing_house, source=source, real_time=real_time, start=DataContext.current.start_date, end=DataContext.current.end_date, query_type=QueryType.MIDCURVE_ATM_FWD_RATE, location=location) return _extract_series_from_df(df, QueryType.MIDCURVE_ATM_FWD_RATE)
e77ba9ef705c2eefe0f46431862697b6a840d6fd
3,651,857
def extrode_multiple_urls(urls): """ Return the last (right) url value """ if urls: return urls.split(',')[-1] return urls
34ec560183e73100a62bf40b34108bb39f2b04b4
3,651,858
def build_header(cp: Config) -> str: """Build the email header for a SMTP email message""" header = '\n'.join([ 'From: {}'.format(cp.sender), 'To: {}'.format(''.join(cp.receiver)), 'Subject: {}\n\n'.format(cp.subject) ]) return header
a0c9fdc820d4a454c0384c46775d3e1359710fad
3,651,859
def apex_distance(r0, rc, Rc, uvec): """ Implements equation (E4) of TYH18 """ R0 = rc + Rc * uvec - r0 return np.hypot(*R0)
f88d59727fce25306ae6ef0856941efdbb80a712
3,651,860
def pixel2phase(data): """ converts each channel of images in the data to phase component of its 2-dimensional discrete Fourier transform. :param data: numpy array with shape (nb_images, img_rows, img_cols, nb_channels) :return: numpy array with same shape as data """ channels = data.shape[-1] return fourier(data)[:, :, :, channels:]
1b6b2c513cc20fe9642dd375dd17ee2205692912
3,651,861
def take_last_while(predicate, list): """Returns a new list containing the last n elements of a given list, passing each value to the supplied predicate function, and terminating when the predicate function returns false. Excludes the element that caused the predicate function to fail. The predicate function is passed one argument: (value)""" for i, e in enumerate(reversed(list)): if not predicate(e): return list[-i:] return list
19468c9130e9ab563eebd97c30c0e2c74211e44b
3,651,862
import re from bs4 import BeautifulSoup def get_notes() -> str: """Scrape notes and disclaimers from dashboard.""" # As of 6/5/20, the only disclaimer is "Data update weekdays at 4:30pm" with get_firefox() as driver: notes = [] match = re.compile('disclaimers?', re.IGNORECASE) driver.implicitly_wait(30) driver.get(dashboard_url) soup = BeautifulSoup(driver.page_source, 'html5lib') has_notes = False text = soup.get_text().splitlines() for text_item in text: if match.search(text_item): notes.append(text_item.strip()) has_notes = True if not has_notes: raise FormatError( "This dashboard url has changed. None of the <div> elements contains'Disclaimers' " + dashboard_url) return '\n\n'.join(notes)
7ec0efab1c5ed17c1878ece751bffe82d77f0105
3,651,863
def signup_logout(request): """ Just wrapping the built in """ return logout_view(request, template_name='logged_out.html')
14c403720c396aa8bbb37752ce304bb2804dd46b
3,651,864
def stress_rotation(stress, angle): """ Rotates a stress vector against a given angle. This rotates the stress from local to the global axis sytem. Use a negative angle to rotate from global to local system. The stress vector must be in Voigt notation and engineering stress is used. Parameters ---------- stress : vector The matrix that must be rotated. angle : float The rotation angle in degrees. Returns ------- stress_rot : vector A rotated version of the matrix. """ angle = angle * np.pi/180 # convert to radians m = np.cos(-angle) n = np.sin(-angle) T1_inv = np.matrix([[m**2, n**2, 2*m*n], [n**2, m**2, -2*m*n], [-m*n, m*n, m**2-n**2]]) stress_rot = T1_inv * stress return stress_rot
96ae75ae61fdbee0cf120e6d705cadc265452e7d
3,651,865
def blue_noise(x=None, hue=None, data=None, dodge=False, orient='v', plot_width=None, color='black', palette='tab10', size=3, centralized=False, filename='', scaling=10): """ Renders a *Blue Noise Plot* from the given data. Args: x (str in data): Variables that specify positions on the data-encoding axes. hue (str in data): Optional. Grouping variable that will produce points with different colors. data (pandas.DataFrame): Input data structure. Long-form collection of vectors that can be assigned to named variables. dodge (boolean): Optional. Wether to dodge the categorical classes of the plot. Defaults to False. orient ("v" | "h"): Optional. Orientation of the plot (vertical or horizontal). Defaults to 'v'. color (str): Color to use for markers, in case there is only one class (hue not given). Defaults to 'black'. palette (str): Method for choosing the colors to use when mapping the hue semantic. String values are passed to color_palette(). List or dict values imply categorical mapping, while a colormap object implies numeric mapping. Defaults to 'tab10'. size (float): The marker size in points**2. centralized (boolean): Optional. Where the plot should be centralized or not. Defaults to False. plot_width (float): Optional. Width of the plot. This is a ratio, assuming the encoding axis is between 0 and 1. So, 0.2 for plot_width would give you a plot with is 5 times as wide in the encoding axis as in the non-encoding axis. filename (str): Optional. Filename of the plot to render. scaling (int): Optional. Scaling for the size of plot. Defaults to 10 for a 740 pixel lot (long side). Returns: List[List[[float, float]]] 2D-Array, relaxed points. Here the first dimension of the array encodes the clases in the data. So for a single-class blue noise plot, len(blue_noise_plot) would be 1. Each of these arrays contains arrays with points within this class. """ return __plot(x=x, hue=hue, data=data, dodge=dodge, orient=orient, plot_width=plot_width, color=color, palette=palette, size=size, centralized=centralized, filename=filename, scaling=scaling, method='blue_noise')
8743dacba9ddac1b1e73e676962d850876c5b2f3
3,651,866
def get_repository(auth_user: check_auth, repository_id: hug.types.text): """ GET: /repository/{repository_id} Returns the CLA repository requested by UUID. """ return cla.controllers.repository.get_repository(repository_id)
ad9bb45a4d4526b790abb7f89d72a3deafb2d10f
3,651,867
def _and(mat,other,obj,m): """ Can only be used with '&' operator not with 'and' Multi-column boolean matrices' values are compared with 'and' operator, meaning that 1 false value causes whole row to be reduced to a false value """ if mat.BOOL_MAT: if isinstance(other,obj): if mat.dim!=other.dim: raise ValueError("Dimensions of the matrices don't match") if not other.BOOL_MAT: raise TypeError("Can't compare bool matrix to non-bool matrix") d0,d1 = mat.dim o = other.matrix true,false = mat.DEFAULT_BOOL[True],mat.DEFAULT_BOOL[False] data = [] #Reduce multiple columns into one #Remove rows with false boolean values for i in range(d0): mrow,orow = m[i],o[i] if (false in mrow) or (false in orow): data.append([false]) continue data.append([true]) return obj(dim=[d0,1], data=data, features=mat.features[:1], index=mat.index[:], implicit=True,BOOL_MAT=True,DEFAULT_BOOL={True:true,False:false}) else: d0,d1 = mat.dim true,false = mat.DEFAULT_BOOL[True],mat.DEFAULT_BOOL[False] data = [] if isinstance(other,obj): if mat.dim!=other.dim: raise ValueError("Dimensions of the matrices don't match") if other.BOOL_MAT: raise TypeError("Can't compare non-bool matrix to bool matrix") o = other.matrix for i in range(d0): mrow,orow = m[i],o[i] data.append([true if (bool(mrow[j]) and bool(orow[j])) else false for j in range(d1)]) elif isinstance(other,list): if mat.d1!=len(other): raise ValueError("Length of the list doesn't match matrix's column amount") for i in range(d0): mrow = m[i] data.append([true if (bool(mrow[j]) and bool(other[j])) else false for j in range(d1)]) else: for i in range(d0): mrow = m[i] data.append([true if (bool(mrow[j]) and bool(other)) else false for j in range(d1)]) return obj(dim=[d0,d1], data=data, features=mat.features[:], index=mat.index[:], implicit=True,BOOL_MAT=True,DEFAULT_BOOL={True:true,False:false})
ac4e4d5f205c6aeb068d9fb427839e4e8f85f0ea
3,651,869
def _parcel_profile_helper(pressure, temperature, dewpt): """Help calculate parcel profiles. Returns the temperature and pressure, above, below, and including the LCL. The other calculation functions decide what to do with the pieces. """ # Find the LCL press_lcl, temp_lcl = lcl(pressure[0], temperature, dewpt) press_lcl = press_lcl.to(pressure.units) # Find the dry adiabatic profile, *including* the LCL. We need >= the LCL in case the # LCL is included in the levels. It's slightly redundant in that case, but simplifies # the logic for removing it later. press_lower = concatenate((pressure[pressure >= press_lcl], press_lcl)) temp_lower = dry_lapse(press_lower, temperature) # If the pressure profile doesn't make it to the lcl, we can stop here if _greater_or_close(np.nanmin(pressure.m), press_lcl.m): return (press_lower[:-1], press_lcl, np.array([]) * press_lower.units, temp_lower[:-1], temp_lcl, np.array([]) * temp_lower.units) # Find moist pseudo-adiabatic profile starting at the LCL press_upper = concatenate((press_lcl, pressure[pressure < press_lcl])) temp_upper = moist_lapse(press_upper, temp_lower[-1]).to(temp_lower.units) # Return profile pieces return (press_lower[:-1], press_lcl, press_upper[1:], temp_lower[:-1], temp_lcl, temp_upper[1:])
2e9abd03dbf4617e53ea19ac7a415025567195e8
3,651,871
def best_param_search(low=1, margin=1, func=None): """ Perform a binary search to determine the best parameter value. In this specific context, the best parameter is (the highest) value of the parameter (e.g. batch size) that can be used to run a func(tion) (e.g., training) successfully. Beyond a certain value, the function fails to run for reasons such as out-of-memory. param low: a starting low value to start searching from (defaults to 1). param margin: denotes the margin allowed when choosing the configuration parameter (and the optimal parameter). param func: the function that is required to be run with the configuration parameter. """ assert low > 0 assert margin > 0 assert func is not None # Determine if the function succeeds to run at the starting (low) value. # If not, keep lowering the value of low until the run succeeds. try: print(f"Trying with a parameter value of {low}.") func(low) success = True except Exception: success = False print("Run failed! The starting value of the parameter is itself too high!\n") while not success and low > 0: try: low = low // 2 print(f"Trying with a parameter value of {low}.") func(low) success = True except Exception: print("Run failed! Lowering the parameter value.\n") if not success: print("The function failed to run even at the lowest parameter value !") return # Set coarse limits on low (function succeeds to run) and # high (function does not succeed running). while success: high = 2 * low try: print(f"Trying with a parameter value of {high}.") func(high) low = high except Exception: success = False print("Run failed!\n") print( f"Low and high parameter values set to {low} and {high} respectively." ) # Binary search to find the optimal value of low (within the margin). current_margin = high - low while current_margin > margin: mid = (low + high) // 2 try: print(f"Trying with a parameter value of {mid}.") func(mid) low = mid except Exception: high = mid print("Run failed!\n") print(f"Low and high parameter values set to {low} and {high} respectively.") current_margin = high - low print(f"Setting the parameter value to {low}\n") return low
6392d8c019ebb50a49c46e724e62fd63671a00df
3,651,873
def get_supervised_timeseries_data_set(data, input_steps): """This function transforms a univariate timeseries into a supervised learning problem where the input consists of sequences of length input_steps and the output is the prediction of the next step """ series = pd.Series(data) data_set = pd.DataFrame({'t' : series, 't+1' : series.shift(-1)}) if input_steps > 1: x_values = np.concatenate([data[i:i+input_steps] .reshape(1, input_steps) for i in range(len(series) - input_steps)]) timesteps_df = pd.DataFrame(x_values[:,:-1], index=np.arange(input_steps - 1, input_steps - 1 + len(x_values)), columns = ['t-' + str(input_steps - i) for i in range(1, input_steps)]) data_set = pd.concat([timesteps_df, data_set], axis=1, join='inner') data_set = data_set.dropna() X = data_set.drop('t+1', axis=1) y = data_set.loc[:,'t+1'] return (X, y)
0fce866ea266c15e83e57795f86fcfe4fee4a54e
3,651,875
def load_template_spectra_from_folder(parent_folder, spectrum_identifier, normalization=None): """ Load template spectrum data into a dictionary. This allows templates from different folders to be loaded into different dictionaries. Parameters: ----------- parent_folder : string Name of folder or path spectrum_identifier : string Radioactive source identifier. Ex: '235U' normalization : string or boolean Default = None Accepts: 'normalheight', 'normalarea', None How the dataset should be normalized. Returns: -------- temp_dict : Dictionary containing all template spectra from a folder. """ temp_dict = {} def normalize_spectrum(ID): """ Normalizes the spectrum data. Parameters: ----------- ID : string The ID key for the radioactive source in your spectrum. Returns: -------- temp_dict : Dictionary Contains all normalized datasets. """ temp_spectrum = an.read_spectrum( parent_folder + ID + spectrum_identifier) if np.max(temp_spectrum) == 0: print(ID + ' Contains no values') if normalization is None: return temp_spectrum elif normalization == 'normalheight': return temp_spectrum / np.max(temp_spectrum) elif normalization == 'normalarea': return temp_spectrum / np.sum(temp_spectrum) for i in range(len(an.isotopes) - 3): temp_dict[an.isotopes[i]] = normalize_spectrum( an.isotopes_sources_GADRAS_ID[i]) return temp_dict
466d0eb74de197ddb18e289f072d9451bc7ea2d8
3,651,877
import json def remove_screenshot_from_object(request): """ Removes the screenshot from being associated with a top-level object. :param request: The Django request. :type request: :class:`django.http.HttpRequest` :returns: :class:`django.http.HttpResponse` """ analyst = request.user.username obj = request.POST.get('obj', None) oid = request.POST.get('oid', None) sid = request.POST.get('sid', None) result = delete_screenshot_from_object(obj, oid, sid, analyst) return HttpResponse(json.dumps(result), mimetype="application/json")
36836120c79dc8d825c91370074da09fd2255c6d
3,651,878
import csv import json def read_csv_as_dicts( filename, newline="", delimiter=",", quotechar='"', encoding="utf-8", remove_prefix=True, prefix="dv.", json_cols=CSV_JSON_COLS, false_values=["FALSE"], true_values=["TRUE"], ): """Read in CSV file into a list of :class:`dict`. This offers an easy import functionality of your data from CSV files. See more at `csv <https://docs.python.org/3/library/csv.html>`_. CSV file structure: 1) The header row contains the column names. 2) A row contains one dataset 3) A column contains one specific attribute. Recommendation: Name the column name the way you want the attribute to be named later in your Dataverse object. See the `pyDataverse templates <https://github.com/GDCC/pyDataverse_templates>`_ for this. The created :class:`dict` can later be used for the `set()` function to create Dataverse objects. Parameters ---------- filename : str Filename with full path. newline : str Newline character. delimiter : str Cell delimiter of CSV file. Defaults to ';'. quotechar : str Quote-character of CSV file. Defaults to '"'. encoding : str Character encoding of file. Defaults to 'utf-8'. Returns ------- list List with one :class:`dict` each row. The keys of a :class:`dict` are named after the columen names. """ assert isinstance(filename, str) assert isinstance(newline, str) assert isinstance(delimiter, str) assert isinstance(quotechar, str) assert isinstance(encoding, str) with open(filename, "r", newline=newline, encoding=encoding) as csvfile: reader = csv.DictReader(csvfile, delimiter=delimiter, quotechar=quotechar) data = [] for row in reader: data.append(dict(row)) data_tmp = [] for ds in data: ds_tmp = {} for key, val in ds.items(): if val in false_values: ds_tmp[key] = False ds_tmp[key] = True elif val in true_values: ds_tmp[key] = True else: ds_tmp[key] = val data_tmp.append(ds_tmp) data = data_tmp if remove_prefix: data_tmp = [] for ds in data: ds_tmp = {} for key, val in ds.items(): if key.startswith(prefix): ds_tmp[key[len(prefix) :]] = val else: ds_tmp[key] = val data_tmp.append(ds_tmp) data = data_tmp if len(json_cols) > 0: data_tmp = [] for ds in data: ds_tmp = {} for key, val in ds.items(): if key in json_cols: ds_tmp[key] = json.loads(val) else: ds_tmp[key] = val data_tmp.append(ds_tmp) data = data_tmp return data
bf15b684120445adf7e6ba8ae18befd64ad6a99f
3,651,879
def get_interface_breakout_param(dut,**kwargs): """ Author: Naveen Nag email : [email protected] :param dut: :param interface: :param fields: :return: interface breakout speed Usage: port.get_interface_breakout_param(dut1, 'Ethernet4') :return - ['4x10G', 'Completed'] """ param_breakout = [] if 'interface' not in kwargs : st.error("Mandatory argument \'interface\' is missing") return False if 'Eth' in kwargs['interface']: st.log('Physical interface name is provided, mapping it to a port group') res1 = get_interface_breakout_mode(dut, kwargs['interface'], 'port') if res1: kwargs['interface'] = 'port ' + res1[0]['port'] else: st.error('Invalid interface, cannot get the status') return False output = st.show(dut, "show interface breakout {}".format(kwargs['interface']), type='klish') if len(output) == 0: st.error("Provided interface is not a breakout port") return False else: param_breakout.append(str(output[0]['breakout_mode'].strip('G'))) param_breakout.append(output[0]['status']) return param_breakout
43286c8dbc29fef096d34c567f3f7c4ff2a06691
3,651,882
def home(): """Home view""" if flask.session.get('userid'): leaderboard_players = rankedlist( member=db.web.session.query( models.Member).get( flask.session['userid'])) member = db.web.session.query( models.Member).get( flask.session.get('userid')) else: leaderboard_players = rankedlist( member=db.web.session.query( models.Member).filter_by( rank=3).first()) member = None news = db.web.session.query(models.NewsArticle).order_by( desc("date")) return render_template('content_home.html', news=news, member=member, leaderboard_players=leaderboard_players)
89211f6b79eae71b757201a2d8b234000a3e42bf
3,651,884
def is_number(string): """ Tests if a string is valid float. """ try: float(string) return True except ValueError: return False
1c46820de59b932ec565af55c565d175eef58c3c
3,651,885
def inputs(filename, batch_size, n_read_threads = 3, num_epochs = None, image_width = 200, image_height=290): """ reads the paired images for comparison input: name of the file to load from, parameters of the loading process output: the two images and the label (a logit classifier for 2 class - yes or no) """ with tf.device('/cpu:0'): #we need to load using the CPU or it allocated a stupid amount of memory x1, x2, y_ = pc.input_pipeline([filename], batch_size, n_read_threads, num_epochs=num_epochs, imgwidth = image_width, imgheight = image_height) return x1, x2, y_
1b22a3f5b28513a2f65312981205b2df40acd2b3
3,651,887
def abs_p_diff(predict_table, categA='sandwich', categB='sushi'): """Calculates the absolute distance between two category predictions :param predict_table: as returned by `predict_table` :param categA: the first of two categories to compare :param categB: the second of two categoreis to compare :returns: series with the absolute difference between the predictions :rtype: pandas Series """ return abs(predict_table['p_%s' % categA] - predict_table['p_%s' % categB])
235bfc7df29ac4a2b67baff9dfa3ee62204a9aed
3,651,889
def _is_target_feature(column_names, column_mapping): """Assert that a feature only contains target columns if it contains any.""" column_names_set = set(column_names) column_types = set(column['type'] for column_name, column in column_mapping.iteritems() if column_name in column_names_set) if 'target' in column_types: assert len(column_types) == 1, ( 'Features with target columns can only contain target columns.' 'Found column_types: %s for columns %s' % (column_types, column_names)) return True else: return False
098af45938c616dd0ff2483a27131f15ba50797b
3,651,890
def _default_mono_text_dataset_hparams(): """Returns hyperparameters of a mono text dataset with default values. See :meth:`texar.MonoTextData.default_hparams` for details. """ return { "files": [], "compression_type": None, "vocab_file": "", "embedding_init": Embedding.default_hparams(), "delimiter": " ", "max_seq_length": None, "length_filter_mode": "truncate", "pad_to_max_seq_length": False, "bos_token": SpecialTokens.BOS, "eos_token": SpecialTokens.EOS, "other_transformations": [], "variable_utterance": False, "utterance_delimiter": "|||", "max_utterance_cnt": 5, "data_name": None, "@no_typecheck": ["files"] }
bfd015cc93bd974b6486cf07cf72f1dfb7443b61
3,651,892
def validate_engine_mode(engine_mode): """ Validate database EngineMode for DBCluster Property: DBCluster.EngineMode """ VALID_DB_ENGINE_MODES = ( "provisioned", "serverless", "parallelquery", "global", "multimaster", ) if engine_mode not in VALID_DB_ENGINE_MODES: raise ValueError( "DBCluster EngineMode must be one of: %s" % ", ".join(VALID_DB_ENGINE_MODES) ) return engine_mode
69f7952a998b6ca593106c92710909104e21f55f
3,651,893
from datetime import datetime def run_command(cmd, log_method=log.info): """Subprocess wrapper for capturing output of processes to logs """ if isinstance(cmd, str): cmd = cmd.split(" ") start = datetime.utcnow() log_method("Starting run_command for: {}".format(" ".join([str(x) for x in cmd]))) p = sp.Popen(cmd, bufsize=0, stdout=sp.PIPE, stderr=sp.STDOUT) ret_val = None while True: line = p.stdout.readline() ret_val = p.poll() if not line and ret_val != None: break log_method(line.decode()) log_method("Completed run_command in {} for: {}".format((datetime.utcnow() - start).total_seconds(), " ".join(cmd))) return ret_val
8366c9306810d927daf82b473db86dc67b0d84c6
3,651,895
def jar(state: State, fail: Fail): """ Store a function by a name """ (identifier, (code, rest)) = state.infinite_stack() if identifier.tag != "atom": fail(f"{identifier} is not an atom") if code.tag not in ["code", "native"]: fail(f"{code} is not code") if code.tag == "code": code = code.with_name(identifier.value) return state.with_stack(rest).set_name(identifier.value, code)
5f60a30ff7bed1a453bfe6ff354dc34a6fabee4f
3,651,896
import requests import json def get_daily_activity(p_sap_date: str) -> dict: """ Returns activities on the given date """ fiori_url = config.CONSTANTS["ECZ_DAHA_DAILY_URL"] + "?date=" + p_sap_date resp = requests.get( fiori_url, auth=HTTPBasicAuth( config.CONSTANTS["ECZ_DAHA_USER"], config.CONSTANTS["ECZ_DAHA_PASS"])) resp_as_dict = json.loads(resp.text) return resp_as_dict
68da0af50b0fc828d6eae3d1685911f039bd9732
3,651,898
import random from typing import Optional def load_example_abc(title: Optional[str] = None) -> str: """Load a random example ABC if `title` not provided. Case ignored in the title. """ if title is None: k = random.choice(list(examples)) else: k = title.lower() abc = examples.get(k) if abc is None: example_list = "\n".join(f" {t!r}" for t in examples) raise ValueError("invalid tune title. Valid options are:\n" f"{example_list}") return abc
d1deba6a03814da68c5d47a7018a6768059fef62
3,651,899
from typing import Dict def get_last_confirmed() -> Dict: """ This function get the last day saved on mongodb and show us the confirmed cases and the accumulated. - The country is the only needed path parameter. """ date = db.find({}, {"date": 1, "_id": 0}).sort("date", -1).limit(1) date = list(date) pipeline = [ {"$match": {"date": {"$eq": date[0]["date"]}}}, { "$project": { "cases": 1, "cases_accumulated": 1, "date": {"$dateToString": {"format": "%Y-%m-%d", "date": "$date"}}, } }, { "$group": { "_id": "$date", "cases_accumulated": {"$sum": "$cases_accumulated"}, "cases": {"$sum": "$cases"}, } }, {"$project": {"date": "$_id", "cases": 1, "cases_accumulated": 1, "_id": 0}}, ] result = db.aggregate(pipeline) return loads(json_util.dumps(list(result)[0]))
af2cf9ea3da1d361bf1347c389c2c9a6f095629e
3,651,901
def _newNode( cls, named ): """Construct new instance of cls, set proper color, and add to objects""" if not scene.visible: scene.visible = 1 if not [k for k in ('color','red','green','blue') if k in named]: named['color'] = scene.foreground if 'display' in named: target = named['display'] del named['display'] # XXX fix when have backref added else: target = scene if not target.visible: target.visible = 1 node = cls(**named) objs = target.objects objs.append( node ) target.objects = objs return node
7b81b4ec5c1a540f7159dd532c87cc2ebd3c7150
3,651,902
def MplJs(): """ Serves the generated matplotlib javascript file. The content is dynamically generated based on which toolbar functions the user has defined. Call `FigureManagerWebAgg` to get its content. """ js_content = FigureManagerWebAgg.get_javascript() resp = make_response(js_content, 200) resp.headers['Content-Type'] = 'application/javascript' return resp
d7b34b86d75f1375f6788a40245e7d04cb3ce6d9
3,651,903
def VVSS2021_fig4_plot(data, model, sizes=fig_sizes, cmaps=colormaps): """ Create and save a plot of the results from the linear regression reaction time model :param data: the data frame :param model: the fitted reaction time model :param cmaps: a dictionary of colormaps :param sizes: a dictionary of sizes :return: Nothind """ fig, axs = plt.subplots(1, 1, figsize=(sizes['width'], sizes['height'])) sampleIDs = [1, 2, 3, 4, 5, 6] t_cm_discrete = cmaps['t_cm'](np.linspace(0, 1, len(sampleIDs))) for col, c in zip(sampleIDs, t_cm_discrete): tw = 'sampleProbHit_0{}'.format(col) pred_rt = model.coefs.loc['(Intercept)', 'Estimate'] + model.coefs.loc[tw, 'Estimate'] * data.loc[:, tw] axs.plot(data[tw], pred_rt, label='sample {}'.format(col), color=c, linewidth=5) axs.legend(loc=(1, 0)) axs.set_ylabel('response time [s]') axs.set_xlabel('normalized p[H]') fig.savefig(path_figs + "Fig4_lmRTs.pdf", bbox_inches='tight') return None
47e63763073c454f1c44cf6e4c590b8b7a985f43
3,651,904
def stat(noten): """ Berechne Mittelwert, Median, min, max, oberes und unteres Quantil """ minimum = round(min(noten), 2) maximum = round(max(noten), 2) _median = median(noten) _mittelwert = mittelwert(noten) [unteres_quartil, oberes_quartil] = quartile(noten) return [minimum, unteres_quartil, _median, _mittelwert, oberes_quartil, maximum]
89d00c9b91b142366a4ca927298931a2f22bc715
3,651,905
def translation_activate_block(function=None, language=None): """ Activate language only for one method or function """ def _translation_activate_block(function): def _decorator(*args, **kwargs): tmp_language = translation.get_language() try: translation.activate(language or settings.LANGUAGE_CODE) return function(*args, **kwargs) finally: translation.activate(tmp_language) return wraps(function)(_decorator) if function: return _translation_activate_block(function) else: return _translation_activate_block
8615b02e4e3aa0560be0734f8e6564755f5e5e9b
3,651,906
def _loaded_schema_collections(schema_file_relative_dir) -> SchemaCollectionManager: """A loaded ``SchemaCollectionManager`` object, but this should never be modified. This object manages ``Schema`` objects corresponding to ``tests/{datasets,formats,licenses}.yaml``. Note that these are not necessarily the same as the ones used in other schema fixtures, so please do not assume that it is equal to other schema fixtures. One purpose of this fixture is to reduce repeated call in the test to the same function when ``loaded_schemata`` is used. The other purpose is to provide other session-scoped fixtures access to the loaded schemata, because session-scoped fixtures can't load function-scoped fixtures. """ return SchemaCollectionManager(datasets=DatasetSchemaCollection(schema_file_relative_dir / 'datasets.yaml'), formats=FormatSchemaCollection(schema_file_relative_dir / 'formats.yaml'), licenses=LicenseSchemaCollection(schema_file_relative_dir / 'licenses.yaml'))
ba5d03c8ad1c622391247ef505ccad21476c17d2
3,651,907
import uuid def dag(name=None, child_tasks=None, edges=None, target=None): """ Create a DAG task Args: name (str): Name for the task child_tasks (list [Task]): Child tasks within this dag edges (list [tuple (Ref, Ref)]): List of tuples of ref(Task). Each element denotes an edge from first task to the second. target (Ref): Target entity reference Returns: (Task): DAG task """ dag_edges = [] for edge in edges or []: if len(edge) != 2: raise ValueError("DAG edges require a tuple of two task references") for task_ref in edge: if not getattr(task_ref, "__kind__") == "app_ref": raise ValueError("{} is not a valid task reference".format(task_ref)) from_ref = edge[0] to_ref = edge[1] dag_edges.append({"from_task_reference": from_ref, "to_task_reference": to_ref}) # This follows UI naming convention for runbooks name = name or str(uuid.uuid4())[:8] + "_dag" kwargs = { "name": name, "child_tasks_local_reference_list": [ task.get_ref() for task in child_tasks or [] ], "attrs": {"edges": dag_edges}, "type": "DAG", } if target: kwargs["target_any_local_reference"] = target return _task_create(**kwargs)
ce12e46141ab030297303b4d55585475eb74f2cf
3,651,908
async def async_validate_pdf_signature( embedded_sig: EmbeddedPdfSignature, signer_validation_context: ValidationContext = None, ts_validation_context: ValidationContext = None, ac_validation_context: ValidationContext = None, diff_policy: DiffPolicy = None, key_usage_settings: KeyUsageConstraints = None, skip_diff: bool = False) -> PdfSignatureStatus: """ .. versionadded:: 0.9.0 .. versionchanged: 0.11.0 Added ``ac_validation_context`` param. Validate a PDF signature. :param embedded_sig: Embedded signature to evaluate. :param signer_validation_context: Validation context to use to validate the signature's chain of trust. :param ts_validation_context: Validation context to use to validate the timestamp's chain of trust (defaults to ``signer_validation_context``). :param ac_validation_context: Validation context to use to validate attribute certificates. If not supplied, no AC validation will be performed. .. note:: :rfc:`5755` requires attribute authority trust roots to be specified explicitly; hence why there's no default. :param diff_policy: Policy to evaluate potential incremental updates that were appended to the signed revision of the document. Defaults to :const:`~pyhanko.sign.diff_analysis.DEFAULT_DIFF_POLICY`. :param key_usage_settings: A :class:`.KeyUsageConstraints` object specifying which key usages must or must not be present in the signer's certificate. :param skip_diff: If ``True``, skip the difference analysis step entirely. :return: The status of the PDF signature in question. """ sig_object = embedded_sig.sig_object if embedded_sig.sig_object_type != '/Sig': raise SignatureValidationError("Signature object type must be /Sig") # check whether the subfilter type is one we support subfilter_str = sig_object.get('/SubFilter', None) _validate_subfilter( subfilter_str, (SigSeedSubFilter.ADOBE_PKCS7_DETACHED, SigSeedSubFilter.PADES), "%s is not a recognized SubFilter type in signatures." ) if ts_validation_context is None: ts_validation_context = signer_validation_context embedded_sig.compute_integrity_info( diff_policy=diff_policy, skip_diff=skip_diff ) status_kwargs = embedded_sig.summarise_integrity_info() ts_status_kwargs = await collect_timing_info( embedded_sig.signer_info, ts_validation_context, raw_digest=embedded_sig.external_digest ) status_kwargs.update(ts_status_kwargs) if 'signer_reported_dt' not in status_kwargs: # maybe the PDF signature dictionary declares /M signer_reported_dt = embedded_sig.self_reported_timestamp if signer_reported_dt is not None: status_kwargs['signer_reported_dt'] = signer_reported_dt status_kwargs = await cms_basic_validation( embedded_sig.signed_data, status_cls=PdfSignatureStatus, raw_digest=embedded_sig.external_digest, validation_context=signer_validation_context, status_kwargs=status_kwargs, key_usage_settings=key_usage_settings ) tst_validity = status_kwargs.get('timestamp_validity', None) timestamp_found = ( tst_validity is not None and tst_validity.valid and tst_validity.trusted ) sv_update = report_seed_value_validation( embedded_sig, status_kwargs['validation_path'], timestamp_found ) status_kwargs.update(sv_update) if ac_validation_context is not None: ac_validation_context.certificate_registry.register_multiple( embedded_sig.other_embedded_certs ) status_kwargs.update( await collect_signer_attr_status( sd_attr_certificates=embedded_sig.embedded_attr_certs, signer_cert=embedded_sig.signer_cert, validation_context=ac_validation_context, sd_signed_attrs=embedded_sig.signer_info['signed_attrs'] ) ) return PdfSignatureStatus(**status_kwargs)
fb4a8ae244d80c672ddc35c94d75953ab2d7d119
3,651,909
import inspect def get_one_to_many_foreign_key_column_name(model, name): """ Returns the constituent column names for the foreign key on the remote table of the one-to-many relationship specified by name. Args: model (class or object): The given model class or model instance. name (string): The name of the attribute on `model` which is a one-to-many relationship. Return: list: One-to-many foreign key column names as a list of strings. """ if not inspect.isclass(model): return get_one_to_many_foreign_key_column_name(model.__class__, name) attr = getattr(model, name, None) if not attr: # Unknown attribute. return [] remote_columns = getattr(attr.property, 'remote_side', None) if not remote_columns: # This is not a one-to-many relationship. return [] remote_tables = set(c.table.name for c in remote_columns) if len(remote_tables) > 1: # This is a many-to-many relationship with a cross reference table. return [] foreign_key_column_names = [] for remote_column in remote_columns: if getattr(remote_column, 'foreign_keys', False): foreign_key_column_names.append(remote_column.name) else: remote_model = get_model_by_table(model, remote_column.table) if remote_model: # Quasi foreign keys don't actually have foreign_keys set, # but they need to be treated as though they did. foreign_keys = getattr(remote_model, 'quasi_foreign_keys', []) if remote_column.name in foreign_keys: foreign_key_column_names.append(remote_column.name) return foreign_key_column_names
f829de2cbb29034f033f3c124837ac888f7526eb
3,651,910
from typing import List def formula(formula: str, formula_param: str, cols: List[str]) -> Aggregation: """ Create a user defined formula aggregation. Args: formula (str): the user defined formula to apply to each group formula_param (str): the parameter name within the formula cols (List[str]): the columns to aggregate on, can be renaming expressions, i.e. "new_col = col" Returns: an aggregation """ return Aggregation(j_aggregation=_JAggregation.AggFormula(formula, formula_param, *cols))
86247179aa3252bf24500c53b2cf7c20eb9afe62
3,651,913
def num_false_positives(df): """Total number of false positives (false-alarms).""" return df.noraw.Type.isin(['FP']).sum()
6aa339b86d15072c6a6910a43e70281575da5d36
3,651,914
import ctypes def repmot(instr, marker, value, repcase, lenout=None): """ Replace a marker with the text representation of an ordinal number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/repmot_c.html :param instr: Input string. :type instr: str :param marker: Marker to be replaced. :type marker: str :param value: Replacement value. :type value: int :param repcase: Case of replacement text. :type repcase: str :param lenout: Optional available space in output string. :type lenout: int :return: Output string. :rtype: str """ if lenout is None: lenout = ctypes.c_int(len(instr) + len(marker) + 15) instr = stypes.stringToCharP(instr) marker = stypes.stringToCharP(marker) value = ctypes.c_int(value) repcase = ctypes.c_char(repcase.encode(encoding='UTF-8')) out = stypes.stringToCharP(lenout) libspice.repmot_c(instr, marker, value, repcase, lenout, out) return stypes.toPythonString(out)
1be758f8c594805ae08c4b2e62014809e62039ad
3,651,915
def emulatte_RESOLVE( thicks, resistivity, freqs, nfreq, spans, height, vca_index=None, add_noise=False, noise_ave=None, noise_std=None ): """ return : ndarray [ Re(HCP1), Re(HCP2), Re(HCP3), (Re(VCX)), Re(HCP4), Re(HCP5), Im(HCP1), Im(HCP2), Im(HCP3), (Im(VCX)), Im(HCP4), Im(HCP5), ] """ #フォワード計算 tc = [0, 0, -height] hankel_filter = 'werthmuller201' moment = 1 displacement_current = False res = np.append(2e14, resistivity) model = fwd.model(thicks) model.set_properties(res=res) fields = [] primary_fields = [] # HCP, VCA応答の計算 for i in range(nfreq): f = np.array([freqs[i]]) rc = [-spans[i], 0, -height] # VCAあり if (nfreq == 6) and (i == vca_index): hmdx = fwd.transmitter("HMDx", f, moment=moment) model.locate(hmdx, tc, rc) resp = model.emulate(hankel_filter=hankel_filter) resp = resp['h_x'][0] primary_field = moment / (2 * np.pi * spans[i] ** 3) # VCAなし else: vmd = fwd.transmitter("VMD", f, moment=moment) model.locate(vmd, tc, rc) resp = model.emulate(hankel_filter=hankel_filter) resp = resp['h_z'][0] primary_field = - moment / (4 * np.pi * spans[i] ** 3) fields.append(resp) primary_fields.append(primary_field) fields = np.array(fields) primary_fields = np.array(primary_fields) #1次磁場、2次磁場をppmに変換 inph_total_field = np.real(fields) quad_secondary_field = np.imag(fields) inph_secondary_field = inph_total_field - primary_fields real_ppm = abs(inph_secondary_field / primary_fields) * 1e6 imag_ppm = abs(quad_secondary_field / primary_fields) * 1e6 # bookpurnongのそれぞれの周波数のノイズレベル Christensen(2009) # ノイズ付加 add = np.random.choice([True, False], p=[0.7, 0.3]) if (add_noise & add): noise = [nlv for nlv in zip(noise_ave, noise_std)] for index, nlv in enumerate(noise): inphnoise = np.random.normal(nlv[0], nlv[1]) quadnoise = np.random.normal(nlv[0], nlv[1]) real_ppm[index] = real_ppm[index] + inphnoise imag_ppm[index] = imag_ppm[index] + quadnoise resp = np.hstack([real_ppm, imag_ppm]) return resp
0cdd44d9d3d53c1813ed25f230e29adec36fca5e
3,651,917
import csv from pathlib import Path def metadata_dict_chex_mimic(metadata_location): """Reads whole csv to find image_name, creates dict with nonempty bboxes Output: Bboxes dictionary with key the img_name and values the bboxes themselves.""" bboxes = {} with open(metadata_location) as f_obj: reader = csv.reader(f_obj, delimiter=',') next(reader) # skip header for line in reader: _, img_name, x, y, w, h = [int(entry) if entry.isnumeric() else entry for entry in line] if h != 0 and w != 0: # only append nonempty bboxes img_name = str(Path(img_name)) # compatibility between different OS bboxes.setdefault(img_name, []) # these two lines allow safe placing of multiple values for key bboxes[img_name].append([x, y, w, h]) return bboxes
716358d1eb5a77c177a41076bb630108d7ffc934
3,651,918
def create_feature_df(cnv_dict, feature_type, labels, csv=False): """Creates a pandas Dataframe containing cnvs as rows and features as columns""" # get features for each CNV cnv_features = [] if csv: for chrom in cnv_dict: for cnv in cnv_dict[chrom]: if cnv.tads: cnv_features.append( np.append([cnv.chr, cnv.start, cnv.end], cnv.annotate(feature_type))) feature_df = pd.DataFrame(data=cnv_features, columns=[ 'CHR', 'START', 'END'] + labels) else: for chrom in cnv_dict: for cnv in cnv_dict[chrom]: if cnv.tads: cnv_features.append(cnv.annotate(feature_type)) feature_df = pd.DataFrame(data=cnv_features, columns=labels) return feature_df
76af71f73ee09a7cbfbafed3ad447b20a98e0da5
3,651,919
import xml def simulationcell_from_axes(axes, bconds='p p p', rckc=15.): """ construct the <simulationcell> xml element from axes Args: axes (np.array): lattice vectors bconds (str, optional): boundary conditions in x,y,z directions. p for periodic, n for non-periodic, default to 'p p p' rckc: long-range cutoff paramter rc*kc, default to 15 Return: etree.Element: representing <simulationcell> """ def pad_line(line): # allow content to be selected by double clicked return ' ' + line + ' ' # write primitive lattice vectors lat_node = etree.Element('parameter', attrib={ 'name': 'lattice', 'units': 'bohr' }) lat_node.text = xml.arr2text(axes) # write boundary conditions bconds_node = etree.Element('parameter', {'name': 'bconds'}) bconds_node.text = pad_line(bconds) # write long-range cutoff parameter lr_node = etree.Element('parameter', {'name': 'LR_dim_cutoff'}) lr_node.text = pad_line(str(rckc)) # build <simulationcell> sc_node = etree.Element('simulationcell') sc_node.append(lat_node) sc_node.append(bconds_node) sc_node.append(lr_node) return sc_node
c3cdc77f9cce7ef09418459832c60b6570d7e11c
3,651,920
def diff_seq(seq1, seq0): """Returns the difference of two sequences: seq1 - seq0. Args: seq1: The left operand. seq0: The right operand. Returns: The difference of the two sequences. """ return (seq1 - seq0) % MAX_SEQ
cd1632357d6ff61fcd2a32ba71a6a6be2454521d
3,651,921
def method_menu(): """Method menu items 1. Add a new method 2. Duplicate selected method 3. Remove selected method ------------------------------ 4. Clear methods """ message_method = "You are about to delete all methods. Do you want to continue?" method_items = [ menu_item(icon_text("fas fa-plus-circle", "Add a new method"), id="add_method"), menu_item( icon_text("fas fa-clone", "Duplicate selection"), id="duplicate_method" ), menu_item( icon_text("fas fa-minus-circle", "Remove selection"), id="remove_method" ), menu_item(divider=True), menu_item("Clear all methods", id="clear-methods"), menu_item(divider=True), menu_item("Measurement", header=True), menu_item( dcc.Upload( icon_text("fas fa-paperclip", "Add to selection"), id="add-measurement-for-method", ) ), menu_item( icon_text("fas fa-times-circle", "Remove from selection"), id="remove-measurement-from-method", ), dcc.ConfirmDialog(id="confirm-clear-methods", message=message_method), ] # Callbacks for the add, duplicate, and remove methods _ = [ app.clientside_callback( f"""function() {{ document.getElementById("{t}-method-button").click(); throw window.dash_clientside.PreventUpdate; }}""", Output(f"{t}-method-button", "n_clicks"), Input(f"{t}_method", "n_clicks"), prevent_initial_call=True, ) for t in TARGET ] # Callbacks for the clear all methods app.clientside_callback( """function(n) { if (n == null) throw window.dash_clientside.PreventUpdate; return true; }""", Output("confirm-clear-methods", "displayed"), Input("clear-methods", "n_clicks"), prevent_initial_call=True, ) return create_submenu(label="Method", children=method_items, right=False)
d22a820a249728650b49f75ccfcdc254f3a84e76
3,651,922
def shapeanalysis_OuterWire(*args): """ * Returns the outer wire on the face <Face>. This is replacement of the method BRepTools::OuterWire until it works badly. Returns the first wire oriented as outer according to FClass2d_Classifier. If none, last wire is returned. :param face: :type face: TopoDS_Face & :rtype: TopoDS_Wire """ return _ShapeAnalysis.shapeanalysis_OuterWire(*args)
7fa38d16cdfe40f802dea7d93666870e82d5cf26
3,651,923
def is_numeric(val: str) -> bool: """Check whether an unparsed string is a numeric value""" if val in MISSING_VALUES: return True try: float(val) except Exception: return False else: return True
72d6095c32f3bd89c0ae8bda22dc4b9a6461468b
3,651,924
def expand_options(sent, as_strings=True): """ ['1', '(', '2', '|', '3, ')'] -> [['1', '2'], ['1', '3']] For example: Will it (rain|pour) (today|tomorrow|)? ----> Will it rain today? Will it rain tomorrow? Will it rain? Will it pour today? Will it pour tomorrow? Will it pour? Args: sent (list<str>): List of sentence in sentence Returns: list<list<str>>: Multiple possible sentences from original """ return expand_parentheses(sent, as_strings)
2b07ac0cfee7339b11016f68792500bf855df019
3,651,926
def gcd_recursive_by_divrem(m, n): """ Computes the greatest common divisor of two numbers by recursively getting remainder from division. :param int m: First number. :param int n: Second number. :returns: GCD as a number. """ if n == 0: return m return gcd_recursive_by_divrem(n, m % n)
bd25d9cea4813e523ea6bb9bd85c24bf43dd2744
3,651,927
def repeat(atoms, coord): """ Repeat atoms (:class:`AtomArray` or :class:`AtomArrayStack`) multiple times in the same model with different coordinates. Parameters ---------- atoms : AtomArray, shape=(n,) or AtomArrayStack, shape=(m,n) The atoms to be repeated. coord : ndarray, dtype=float, shape=(k,n,3) or shape=(k,m,n,3) The coordinates to be used fr the repeated atoms. The length of first dimension determines the number of repeats. If `atoms` is an :class:`AtomArray` 3 dimensions, otherwise 4 dimensions are required. Returns ------- repeated: AtomArray, shape=(n*k,) or AtomArrayStack, shape=(m,n*k) The repeated atoms. Whether an :class:`AtomArray` or an :class:`AtomArrayStack` is returned depends on the input `atoms`. Examples -------- >>> atoms = array([ ... Atom([1,2,3], res_id=1, atom_name="N"), ... Atom([4,5,6], res_id=1, atom_name="CA"), ... Atom([7,8,9], res_id=1, atom_name="C") ... ]) >>> print(atoms) 1 N 1.000 2.000 3.000 1 CA 4.000 5.000 6.000 1 C 7.000 8.000 9.000 >>> repeat_coord = np.array([ ... [[0,0,0], [1,1,1], [2,2,2]], ... [[3,3,3], [4,4,4], [5,5,5]] ... ]) >>> print(repeat(atoms, repeat_coord)) 1 N 0.000 0.000 0.000 1 CA 1.000 1.000 1.000 1 C 2.000 2.000 2.000 1 N 3.000 3.000 3.000 1 CA 4.000 4.000 4.000 1 C 5.000 5.000 5.000 """ if isinstance(atoms, AtomArray) and coord.ndim != 3: raise ValueError( f"Expected 3 dimensions for the coordinate array, got {coord.ndim}" ) elif isinstance(atoms, AtomArrayStack) and coord.ndim != 4: raise ValueError( f"Expected 4 dimensions for the coordinate array, got {coord.ndim}" ) repetitions = len(coord) orig_length = atoms.array_length() new_length = orig_length * repetitions if isinstance(atoms, AtomArray): if coord.ndim != 3: raise ValueError( f"Expected 3 dimensions for the coordinate array, " f"but got {coord.ndim}" ) repeated = AtomArray(new_length) repeated.coord = coord.reshape((new_length, 3)) elif isinstance(atoms, AtomArrayStack): if coord.ndim != 4: raise ValueError( f"Expected 4 dimensions for the coordinate array, " f"but got {coord.ndim}" ) repeated = AtomArrayStack(atoms.stack_depth(), new_length) repeated.coord = coord.reshape((atoms.stack_depth(), new_length, 3)) else: raise TypeError( f"Expected 'AtomArray' or 'AtomArrayStack', " f"but got {type(atoms).__name__}" ) for category in atoms.get_annotation_categories(): annot = np.tile(atoms.get_annotation(category), repetitions) repeated.set_annotation(category, annot) if atoms.bonds is not None: bonds = atoms.bonds for _ in range(repetitions-1): bonds += atoms.bonds repeated.bonds = bonds if atoms.box is not None: repeated.box = atoms.box.copy() return repeated
b4f86bad25061807370d0f1eacdb0637eb8a19cc
3,651,928
def get_mzi_delta_length(m, neff=2.4, wavelength=1.55): """ m*wavelength = neff * delta_length """ return m * wavelength / neff
5bcd4b9b217c79a06b48856f7801060787f12e52
3,651,929
def yagzag2radec(yag, zag, q): """ Given ACA Y-ang, Z-ang and pointing quaternion determine RA, Dec. The input ``yag`` and ``zag`` values can be 1-d arrays in which case the output ``ra`` and ``dec`` will be corresponding arrays of the same length. :param yag: ACA Y angle (degrees) :param zag: ACA Z angle (degrees) :param q: Quaternion :rtype: list ra, dec (degrees) """ try: one = np.ones(len(yag)) except TypeError: one = 1.0 d_aca = np.array([one, tan(radians(yag)), tan(radians(zag))]) d_aca *= 1.0 / np.sum(d_aca**2) eci = np.dot(q.transform, d_aca) return eci2radec(eci)
e7266f5c0dd0763238c3f12fafebea19c080022d
3,651,930
from tensorflow.keras.preprocessing.image import load_img from typing import Union def load_image( path: str, color_mode="rgb", target_size: Union[None, ImageSize] = None, normalize=False, ) -> np.ndarray: """Load an RGB image from the given path, optionally resizing it. :param path: Path to the image :param color_mode: "rgb", "bgr" or "grayscale" :param target_size: Target size of the image (width, height). :param normalize: Normalize values to [0.0, [1.0] """ pil_color_mode = color_mode if pil_color_mode == "bgr": pil_color_mode = "rgb" pil = load_img(path, color_mode=pil_color_mode, target_size=target_size) image = np.array(pil) if color_mode == "bgr": image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if normalize: image = image / 255.0 return image
9b80d39561e3ccdae778675e011ab5c52c04db4f
3,651,931
def deit_base_patch16_384(): """ DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ cfg = ViTConfig( name="deit_base_patch16_384", url="", input_size=(384, 384), patch_size=16, embed_dim=768, nb_blocks=12, nb_heads=12, crop_pct=1.0, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, ) return ViT, cfg
720968c8a95de30c836631fd5505c8029eaf46c0
3,651,932
def update_output( event_id, event_dividers, light_dividers, filename, geometry, do_plot_tracks, do_plot_opids, figure, ): """Update 3D event display end event id""" fig = go.Figure(figure) if event_dividers is None: return no_update, no_update, no_update, no_update, no_update try: fig.data = [] fig.add_traces( draw_event( filename, GEOMETRIES[geometry], event_dividers, light_dividers, event_id, do_plot_tracks, do_plot_opids, ) ) except IndexError as err: print("IndexError", err) return fig, {"display": "none"}, True, no_update, no_update except KeyError as err: print("KeyError", err) return fig, {"display": "none"}, True, "Select a geometry first", no_update url_filename = filename.replace(DOCKER_MOUNTED_FOLDER, "") return ( fig, {"height": "85vh"}, False, no_update, f"https://larnddisplay.lbl.gov/{url_filename}?geom={geometry}#{event_id}", )
370f7a165ddaf870d4806564d8b86f4d5c4e90b5
3,651,933
import requests def get_containerports(marathon_url, app_id): """ Get containerports if we have portmapping. marathon_url : [string] the URL of the marathon service app_id : [string] ID of the running marathon app Method : GET Return : list of ports """ api_endpoint = '/v2/apps/' headers = {'Content-Type': 'application/json'} url = marathon_url + api_endpoint + app_id print(url) r = requests.get(url, headers=headers) print(r.status_code) containerports = [] for portmapping in r.json()['app']['container']['docker']['portMappings']: containerports.append(portmapping['containerPort']) return containerports
eb22656e58b2b7156015b84c63755cb4f4348502
3,651,934
def backward_algorithm(O, HMM_model): """HMM Backward Algorithm. Args: O: (o1, o2, ..., oT), observations HMM_model: (pi, A, B), (init state prob, transition prob, emitting prob) Return: prob: the probability of HMM_model generating O. """ pi, A, B = HMM_model T = len(O) N = len(pi) prob = 0.0 # Begin Assignment # 后向概率矩阵 betas = np.zeros((N, T)) for i in range(N): betas[i][0] = 1 for t in range(1, T): for i in range(N): for j in range(N): betas[i][t] += A[i][j]*B[j][O[T-t]]*betas[j][t-1] for i in range(N): prob += pi[i]*B[i][O[0]]*betas[i][-1] # End Assignment return prob
da958ddd8d8943546030ba4306b7f632061d96bc
3,651,935
def scan_codes(code_type, image): """Get *code_type* codes from a PIL Image *code_type* can be any of zbar supported code type [#zbar_symbologies]_: - **EAN/UPC**: EAN-13 (`ean13`), UPC-A (`upca`), EAN-8 (`ean8`) and UPC-E (`upce`) - **Linear barcode**: Code 128 (`code128`), Code 93 (`code93`), Code 39 (`code39`), Interleaved 2 of 5 (`i25`), DataBar (`databar`) and DataBar Expanded (`databar-exp`) - **2D**: QR Code (`qrcode`) - **Undocumented**: `ean5`, `ean2`, `composite`, `isbn13`, `isbn10`, `codabar`, `pdf417` .. [#zbar_symbologies] http://zbar.sourceforge.net/iphone/userguide/symbologies.html Args: code_type (str): Code type to search image (PIL.Image.Image): Image to scan returns: A list of *code_type* code values or None """ assert Image.isImageType(image) converted_image = image.convert('L') # Convert image to gray scale (8 bits per pixel). raw = converted_image.tobytes() # Get image data. width, height = converted_image.size # Get image size. return zbar_code_scanner('{0}.enable'.format(code_type).encode(), raw, width, height)
02c70551138ffc5dc386e753d7532c28466de97e
3,651,936
def get_summoner_masteries(summoner_ids): """ https://developer.riotgames.com/api/methods#!/1017/3450 Args: summoner_ids (int | list<int>): the summoner ID(s) to get mastery pages for Returns: dict<str, MasteryPages>: the requested summoners' mastery pages """ # Can only have 40 summoners max if it's a list if isinstance(summoner_ids, list) and len(summoner_ids) > 40: raise ValueError("Can only get masteries for up to 40 summoners at once.") id_string = ",".join(str(x) for x in summoner_ids) if isinstance(summoner_ids, list) else str(summoner_ids) # Get JSON response request = "{version}/summoner/{ids}/masteries".format(version=cassiopeia.dto.requests.api_versions["summoner"], ids=id_string) response = cassiopeia.dto.requests.get(request) # Convert response to Dto type for id_, masteries in response.items(): response[id_] = cassiopeia.type.dto.summoner.MasteryPages(masteries) return response
55b9395cd452e444f049d05af0718ca847f346d0
3,651,937
def make_pod_spec( name, image_spec, image_pull_policy, image_pull_secret, port, cmd, node_selector, run_as_uid, fs_gid, env, working_dir, volumes, volume_mounts, labels, cpu_limit, cpu_guarantee, mem_limit, mem_guarantee, lifecycle_hooks, init_containers, ): """ Make a k8s pod specification for running a user notebook. Parameters: - name: Name of pod. Must be unique within the namespace the object is going to be created in. Must be a valid DNS label. - image_spec: Image specification - usually a image name and tag in the form of image_name:tag. Same thing you would use with docker commandline arguments - image_pull_policy: Image pull policy - one of 'Always', 'IfNotPresent' or 'Never'. Decides when kubernetes will check for a newer version of image and pull it when running a pod. - image_pull_secret: Image pull secret - Default is None -- set to your secret name to pull from private docker registry. - port: Port the notebook server is going to be listening on - cmd: The command used to execute the singleuser server. - node_selector: Dictionary Selector to match nodes where to launch the Pods - run_as_uid: The UID used to run single-user pods. The default is to run as the user specified in the Dockerfile, if this is set to None. - fs_gid The gid that will own any fresh volumes mounted into this pod, if using volume types that support this (such as GCE). This should be a group that the uid the process is running as should be a member of, so that it can read / write to the volumes mounted. - env: Dictionary of environment variables. - volumes: List of dictionaries containing the volumes of various types this pod will be using. See k8s documentation about volumes on how to specify these - volume_mounts: List of dictionaries mapping paths in the container and the volume( specified in volumes) that should be mounted on them. See the k8s documentaiton for more details - working_dir: String specifying the working directory for the notebook container - labels: Labels to add to the spawned pod. - cpu_limit: Float specifying the max number of CPU cores the user's pod is allowed to use. - cpu_guarentee: Float specifying the max number of CPU cores the user's pod is guaranteed to have access to, by the scheduler. - mem_limit: String specifying the max amount of RAM the user's pod is allowed to use. String instead of float/int since common suffixes are allowed - mem_guarantee: String specifying the max amount of RAM the user's pod is guaranteed to have access to. String ins loat/int since common suffixes are allowed - lifecycle_hooks: Dictionary of lifecycle hooks - init_containers: List of initialization containers belonging to the pod. """ api_client = ApiClient() pod = V1Pod() pod.kind = "Pod" pod.api_version = "v1" pod.metadata = V1ObjectMeta() pod.metadata.name = name pod.metadata.labels = labels.copy() pod.spec = V1PodSpec() security_context = V1PodSecurityContext() if fs_gid is not None: security_context.fs_group = int(fs_gid) if run_as_uid is not None: security_context.run_as_user = int(run_as_uid) pod.spec.security_context = security_context if image_pull_secret is not None: pod.spec.image_pull_secrets = [] image_secret = V1LocalObjectReference() image_secret.name = image_pull_secret pod.spec.image_pull_secrets.append(image_secret) if node_selector: pod.spec.node_selector = node_selector pod.spec.containers = [] notebook_container = V1Container() notebook_container.name = "notebook" notebook_container.image = image_spec notebook_container.working_dir = working_dir notebook_container.ports = [] port_ = V1ContainerPort() port_.name = "notebook-port" port_.container_port = port notebook_container.ports.append(port_) notebook_container.env = [V1EnvVar(k, v) for k, v in env.items()] notebook_container.args = cmd notebook_container.image_pull_policy = image_pull_policy notebook_container.lifecycle = lifecycle_hooks notebook_container.resources = V1ResourceRequirements() notebook_container.resources.requests = {} if cpu_guarantee: notebook_container.resources.requests['cpu'] = cpu_guarantee if mem_guarantee: notebook_container.resources.requests['memory'] = mem_guarantee notebook_container.resources.limits = {} if cpu_limit: notebook_container.resources.limits['cpu'] = cpu_limit if mem_limit: notebook_container.resources.limits['memory'] = mem_limit notebook_container.volume_mounts = volume_mounts pod.spec.containers.append(notebook_container) pod.spec.init_containers = init_containers pod.spec.volumes = volumes return api_client.sanitize_for_serialization(pod)
0be1782f91ab4de7a0baf0291eb3fcf9c1fc57a4
3,651,938
def preprocess(text, remove_punct=False, remove_num=True): """ preprocess text into clean text for tokenization """ # 1. normalize text = normalize_unicode(text) # 2. to lower text = text.lower() # 3. space text = spacing_punctuation(text) text = spacing_number(text) # (optional) if remove_punct: text = remove_punctuation(text) # 4. de-contract text = decontracted(text) # 5. handle number if remove_num: text = remove_number(text) else: text = clean_number(text) # 6. remove space text = remove_space(text) return text
289ed6c3032840191ea792b01cb4b3a17535ddf2
3,651,939
def verify_ptp_calibration_states( device, states, domain, max_time=15, check_interval=5 ): """ Verify ptp parent values in show ptp parent command Args: device (`obj`): Device object states ('str): PTP calibration state domain ('str): PTP domain max_time (int): Maximum wait time for the trigger, in second. Default: 15 check_interval (int): Wait time between iterations when looping is needed, in second. Default: 5 Returns: True False """ timeout = Timeout(max_time, check_interval) while timeout.iterate(): out = None try: out = device.parse("show ptp brief | ex FA") except SchemaEmptyParserError: pass if out: result = True else: result = False if result: return True timeout.sleep() return False
648e9753b418365d8469ce17bc709ad67d814bf6
3,651,940
def get_auth_use_case(): """Get use case instance.""" return auth_use_case
a01595d40d2693ff2b4023a8d7938b4af7734ca3
3,651,941
def pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1.0e-6, nstart=None, weight='weight', dangling=None): """Returns the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. Parameters ---------- G : graph A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. alpha : float, optional Damping parameter for PageRank, default=0.85. personalization: dict, optional The "personalization vector" consisting of a dictionary with a key some subset of graph nodes and personalization value each of those. At least one personalization value must be non-zero. If not specfiied, a nodes personalization value will be zero. By default, a uniform distribution is used. max_iter : integer, optional Maximum number of iterations in power method eigenvalue solver. tol : float, optional Error tolerance used to check convergence in power method solver. nstart : dictionary, optional Starting value of PageRank iteration for each node. weight : key, optional Edge data key to use as weight. If None weights are set to 1. dangling: dict, optional The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns ------- pagerank : dictionary Dictionary of nodes with PageRank as value Examples -------- >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank(G, alpha=0.9) Notes ----- The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after an error tolerance of ``len(G) * tol`` has been reached. If the number of iterations exceed `max_iter`, a :exc:`networkx.exception.PowerIterationFailedConvergence` exception is raised. The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges. See Also -------- pagerank_numpy, pagerank_scipy, google_matrix Raises ------ PowerIterationFailedConvergence If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. References ---------- .. [1] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html .. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf """ if len(G) == 0: return {} if not G.is_directed(): D = G.to_directed() else: D = G # Create a copy in (right) stochastic form W = nx.stochastic_graph(D, weight=weight) N = W.number_of_nodes() # Choose fixed starting vector if not given if nstart is None: x = dict.fromkeys(W, 1.0 / N) else: # Normalized nstart vector s = float(sum(nstart.values())) x = dict((k, v / s) for k, v in nstart.items()) if personalization is None: # Assign uniform personalization vector if not given p = dict.fromkeys(W, 1.0 / N) else: s = float(sum(personalization.values())) p = dict((k, v / s) for k, v in personalization.items()) if dangling is None: # Use personalization vector if dangling vector not specified dangling_weights = p else: s = float(sum(dangling.values())) dangling_weights = dict((k, v / s) for k, v in dangling.items()) dangling_nodes = [n for n in W if W.out_degree(n, weight=weight) == 0.0] # power iteration: make up to max_iter iterations for _ in range(max_iter): xlast = x x = dict.fromkeys(xlast.keys(), 0) danglesum = alpha * sum(xlast[n] for n in dangling_nodes) for n in x: # this matrix multiply looks odd because it is # doing a left multiply x^T=xlast^T*W for nbr in W[n]: x[nbr] += alpha * xlast[n] * W[n][nbr][weight] x[n] += danglesum * dangling_weights.get(n, 0) + (1.0 - alpha) * p.get(n, 0) # check convergence, l1 norm err = sum([abs(x[n] - xlast[n]) for n in x]) if err < N * tol: return x raise nx.PowerIterationFailedConvergence(max_iter)
1d6e758275a3caf33049e5c042b7bde8f4cff17d
3,651,943
from pathlib import Path import zlib import tqdm def fetch_file(name, chunksize=16 * 1024): """ Fetch a datafile from a compressed/gzipped URL source. Parameters ---------- name : :class:`str` Name of the file to fetch. chunksize : :class:`int` Number of bytes to read in a chunk. """ fp, url, compressed = [ (Path(k), url, compressed) for (k, (url, compressed)) in MANIFEST.items() if name.lower() in Path(k).name.lower() ][0] if "1drv" in url: url = get_onedrive_directlink( url ) # allow direct access to file object for 1drv # construct relative path from this file local_target = (Path(__file__).parent / fp).resolve() if not local_target.exists(): if not local_target.parent.exists(): local_target.parent.mkdir(parents=True) if compressed: dec = zlib.decompressobj( 32 + zlib.MAX_WBITS ) # offset 32 to skip the header decompress = dec.decompress else: decompress = lambda x: x with urlopen(url) as response: pbar = tqdm.tqdm( total=int(response.headers["content-length"]), unit="b", unit_scale=True, unit_divisor=1024, desc=str(fp.name), ) CHUNKSIZE = 16 * 1024 with open(local_target, "wb") as f: while True: chunk = response.read(chunksize) if chunk: rv = decompress(chunk) f.write(rv) pbar.update(len(chunk)) else: break return fp
f22eb09220135b542bb3b0e599abe896664dffa3
3,651,944
def create_include(workflow_stat): """ Generates the html script include content. @param workflow_stat the WorkflowInfo object reference """ include_str = """ <script type='text/javascript' src='bc_action.js'> </script> <script type='text/javascript' src='bc_""" + workflow_stat.wf_uuid +"""_data.js'> </script> """ return include_str
24151952c9dd5bc4034916dae90a3760fc06ca44
3,651,945
import random def choose_sample_from_group( group: general.ParameterListType, ) -> general.ParameterValuesType: """ Choose single sample from group DataFrame. """ # Make continous index from 0 indexes = [idx for idx in range(len(group))] assert len(indexes) > 0 # Choose from indexes choice = random.choices(population=indexes, k=1)[0] # Get the dict at choice index chosen_dict = group[choice] assert isinstance(chosen_dict, dict) return chosen_dict
27f1c8a9ca4640b881f5bdd3faca0db4b1b882da
3,651,946
def path_available(filepath): # type: (str) -> bool """Return true if filepath is available""" parent_directory = dirname(filepath) if not exists(parent_directory): raise ParentDirectoryDoesNotExist(parent_directory, filepath) return not exists(filepath)
efd506d2028f2c55e88dfc618395620571205773
3,651,947
from typing import Dict from typing import Any from typing import Callable def memory_item_to_resource(urn: URN, items: Dict[str, Any] = None, loader: Callable = None) -> CloudWandererResource: """Convert a resource and its attributes to a CloudWandererResource. Arguments: urn (URN): The URN of the resource. items (dict): The dictionary of items stored under this URN. (Secondary Attributs, BaseResource) loader (Callable): The method which can be used to fulfil the :meth:`CloudWandererResource.load` """ items = items or {} attributes = [ attribute for item_type, attribute in items.items() if item_type not in ["SubresourceUrns", "BaseResource", "ParentUrn"] ] base_resource: Dict[str, Any] = next( iter(resource for item_type, resource in items.items() if item_type == "BaseResource"), {} ) return CloudWandererResource( urn=urn, subresource_urns=items.get("SubresourceUrns"), resource_data=base_resource, secondary_attributes=attributes, loader=loader, )
0bf680574f2ef3038d9d29c656a657e4e7a172ec
3,651,948
def sample_user(email='[email protected]', password='testpass'): """Create a sample user""" return get_user_model().objects.create_user(email, password)
deb5c45287a8ff546e2631c4409d10015b550e5c
3,651,949
import PIL import random def ShearX(img: Image, magnitude: float) -> Image: """Shear the image on x-axis.""" return img.transform( img.size, PIL.Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0), PIL.Image.BICUBIC, fillcolor=FILLCOLOR, )
9d534cfc8f7cc5497356b8e07115d42f666aac5d
3,651,950
import numpy def read_onsets(onsets_path: PathLike) -> numpy.array: """ Read a text file containing onsets. Return it as a list of floats. """ with open(onsets_path, "r") as io: lines = io.readlines() onsets = numpy.array([float(line) for line in lines]) return onsets
cbfa38ce0a5e2ea4d6c465251ee8c3e6ec47d04f
3,651,952
def format_specific_efficacy(method, type_1: str, type_2: str = None): """ Format the efficacy string specifically for defense or attack. """ effective, ineffective, useless = format_damage(method, type_1, type_2) type_name = format_type(type_1, type_2) s = "**{}** \N{EN DASH} **{}**\n".format(type_name, "DEFENSE" if method is defense_method else "ATTACK") if effective: s += "Super effective: `{}`\n".format(", ".join(effective)) if ineffective: s += "Not very effective: `{}`\n".format(", ".join(ineffective)) if useless: s += "No effect: `{}`\n".format(", ".join(useless)) return s
095f943cda0dfdf1803ae38b16c6b9d7f8fd3e1f
3,651,953
def getSuffixes(algorithm, seqType) : """ Get the suffixes for the right algorithm with the right sequence type """ suffixes = {} suffixes['LAST'] = {} suffixes['BLAST'] = {} suffixes['BLAST']['nucl'] = ['nhr', 'nsq', 'nin'] suffixes['BLAST']['prot'] = ['phr', 'psq', 'pin'] suffixes['LAST']['nucl'] = [ 'des', 'sds', 'suf', 'bck', 'prj', 'ssp', 'tis' ] suffixes['LAST']['prot'] = [ 'des', 'sds', 'suf', 'bck', 'prj', 'ssp', 'tis' ] if not algorithm in suffixes: return None if not seqType in suffixes[algorithm]: return None return suffixes[algorithm][seqType]
9ab699a71be73381c4dff555f0ef19201589e82f
3,651,955
import tempfile from robocorp_code.path_operations import get_user from robocorp_code.path_operations import make_numbered_dir_with_cleanup from robocorp_code.path_operations import LOCK_TIMEOUT from typing import Optional from pathlib import Path def make_numbered_in_temp( keep: int = 10, lock_timeout: float = -1, tmpdir: Optional[Path] = None, register=None, ) -> Path: """ Helper to create a numbered directory in the temp dir with automatic disposal of old contents. """ user = get_user() or "unknown" temproot = tmpdir if tmpdir else Path(tempfile.gettempdir()) rootdir = temproot / f"robocorp-code-{user}" rootdir.mkdir(exist_ok=True) return make_numbered_dir_with_cleanup( prefix="rcc-", root=rootdir, keep=keep, lock_timeout=lock_timeout if lock_timeout > 0 else LOCK_TIMEOUT, register=register, )
9ba3d08d933d961099d5169afc25c152177857b3
3,651,956
def handle_server_api(output, kwargs): """ Special handler for API-call 'set_config' [servers] """ name = kwargs.get('keyword') if not name: name = kwargs.get('name') if name: server = config.get_config('servers', name) if server: server.set_dict(kwargs) old_name = name else: config.ConfigServer(name, kwargs) old_name = None Downloader.do.update_server(old_name, name) return name
0c4396619c1aee1151642de3edeb4b28d76acb9c
3,651,957
def compare_names(namepartsA, namepartsB): """Takes two name-parts lists (as lists of words) and returns a score.""" complement = set(namepartsA) ^ set(namepartsB) intersection = set(namepartsA) & set(namepartsB) score = float(len(intersection))/(len(intersection)+len(complement)) return score
87cbceaaa0acce0b83b5faf66cbe909ad52382eb
3,651,958
def Normal_VaR(return_matrix, theta,Horizon): #500 datas needed """ Compute the Value-at-Risk and Conditional Value-at-Risk Parameters ---------- risk_returns : np.ndarray theta : np.float64 Horizon : np.int16 Returns ---------- np.ndarray,np.ndarray VaR , CVaR """ mean_forecast,var_forecast,conditional_volatility = Arch_data(return_matrix , Horizon ) excess_innovations = Extract_Excess_Innovations(return_matrix , mean_forecast , conditional_volatility ) mu,scale = Dist_parameters(excess_innovations) VaR,CVaR = Var_CVaR_extractor(mean_forecast,var_forecast,scale,mu,theta) return VaR,CVaR
a2b911d647c942724dc30480bb90db7c83e200bb
3,651,959
def oscillator_amplitude(state, ders, period, floquet, zero_phase_lc, phase_warmup_periods=5, thr=0.0, dt=0.005): """calculates the isostable amplitude of the oscillator from dynamical equations :param state: state of the system :param ders: a list of state variable derivatives :param period: oscillator period :param floquet: floquet exponent :param zero_phase_lc: zero phase limit cycle state :param phase_warmup_periods: how many periods to wait for evaluating the asymptotic phase shift (default 5) :param thr: threshold determining zero phase (default 0.0) :param dt: time step (default 0.005) :return: isostable amplitude of state""" # get phase phase = oscillator_phase(state, ders, period, phase_warmup_periods, thr=thr, dt=dt) # calculate time to evolve to zero isochron time = (1-phase/(2*pi))*period # evolve to 0 isochron state = integrate_period(state, ders, time, dt) # amplitude sign if(inside_limit_cycle(state, ders, period)): sign = -1 else: sign = 1 return 0.5*sign*distance(state,zero_phase_lc)*exp(floquet*time)
b6a55d9965eea712be2f49dbbc1f186d268f82bf
3,651,960
def commonprefix(a, b): """Find longest common prefix of `a` and `b`.""" pos = 0 length = min(len(a), len(b)) while pos < length and a[pos] == b[pos]: pos += 1 return pos, b
75e2f9ac6c3d0c38986cba5f8409ddc87fe8edbe
3,651,961
def parse_datetime(strtime): """ Parse a string date, time & tz into a datetime object: 2003-03-20 05:00:00-07 """ offset = int(strtime[-3:]) date_time = dt.strptime(strtime[:-4], '%Y-%m-%d %H:%M:%S') offset = timedelta(hours=offset) return (date_time + offset).replace(tzinfo=utc)
c7537ed913a4d0b20a71b7253725231c32c9f60b
3,651,962
from typing import List from typing import cast from typing import Iterable def traverse_depth_first(base: AnyDependency) -> List[AnyDependency]: """Performs a depth first traversal of the dependency tree. """ def _traverse_tree_2(base: AnyDependency) -> List[AnyDependency]: queue: List[AnyDependency] = [] current_idx = 0 queue.append(base) while len(queue) != current_idx: node = queue[current_idx] if not isinstance(node, UnresolvedDependency): queue.extend(cast(Iterable, node.dependencies)) current_idx += 1 return queue deps = _traverse_tree_2(base) return deps
1172f3b97110cc41c68631d3e6a91a0ea8d20627
3,651,963
def update_config( client, key, *, value=None, remove=False, global_only=False, commit_message=None ): """Add, update, or remove configuration values.""" section, section_key = _split_section_and_key(key) if remove: value = client.remove_value( section, section_key, global_only=global_only ) if value is None: raise errors.ParameterError('Key "{}" not found.'.format(key)) else: client.set_value(section, section_key, value, global_only=global_only) return value
59f71b2608ddcfb38cdf1845720d782b7858607f
3,651,964
from datetime import datetime def parse_time(t): """ parse a date time string, or a negative number as the number of seconds ago. returns unix timestamp in MS """ try: tint = int(t) if tint <= 0: return int(nowms() + (tint * 1000)) except ValueError: pass #the parsed date may or may not have a tz; if it does not, localize it. parsed = dtparse(t) if not parsed.tzinfo: parsed = parsed.replace(tzinfo=tzlocal()) #Get the millisec by subtracting epoch in the same tz, then x 1000 return int((parsed - datetime.fromtimestamp(0, parsed.tzinfo)).total_seconds() * 1000)
68189b1d0aa2f73152a77a1a790fc6a291e5ff25
3,651,965
def _get_duration(tmin: np.datetime64, tmax: np.datetime64) -> str: """ Determine the duration of the given datetimes. See also: `ISO 8601 Durations <https://en.wikipedia.org/wiki/ISO_8601#Durations>`_ :param tmin: Time minimum :param tmax: Time maximum :return: Temporal resolution formatted as an ISO 8601:2004 duration string """ delta = tmax - tmin day = np.timedelta64(1, 'D') days = (delta.astype('timedelta64[D]') / day) + 1 return 'P{}D'.format(int(days))
e56c399402a1325bc519443ea4caea57be2806e7
3,651,966
import math def get_polyend_circle_angles(a, b, isLeft): """ theta0 = pi/2 + betta, theta1 = 2 * pi + betta; betta = pi/2 - alpha; alpha = atan(a) """ if a is None and b is None: return None, None alpha = math.pi / 2.0 if a is None else math.atan(a) betta = math.pi / 2.0 - alpha shift = 0.0 if isLeft else math.pi theta0 = betta + shift theta1 = theta0 + math.pi return theta0, theta1
9547ba4ea9f74cba3d52d90bb24dc8c4b246fbff
3,651,967
import re def get_search_cache_key(prefix, *args): """ Generate suitable key to cache twitter tag context """ key = '%s_%s' % (prefix, '_'.join([str(arg) for arg in args if arg])) not_allowed = re.compile('[^%s]' % ''.join([chr(i) for i in range(33, 128)])) key = not_allowed.sub('', key) return key
f3ff5baa13e4e84deb5c13cd8d5b618ba75c8699
3,651,969
def main(argv=None): """Run pragma-no-mutate filter with specified command line arguments. """ return PragmaNoMutateFilter().main(argv)
f268a010b454fe28307e8e304dca3d57fe1e635a
3,651,970
import math def independence_single_value(values, sigma=0.70): """ This calculates the independence of the models for a given metric where the metric is single valued, e.g. the slope of a gradient. ------Input------ values (list) : The single values for each model. sigma (float) : The value of sigma_s -----Returns----- S (np.array 2D) : The inter model similarity W (np.array 1D) : The weight per model from the similarity calculation """ sigma_s = sigma # Can first calculate inter model distances S and D S = np.zeros((len(values), len(values))) # Weightings W dims=num_models W = np.zeros((len(values), 1)) for i, model_i in enumerate(values): i_data = model_i for j, model_j in enumerate(values): if i != j: j_data = model_j s = math.exp(-((i_data - j_data) ** 2).sum() / (1 * sigma_s ** 2)) S[i, j] = s for ii in range(len(values)): w = 1 / (1 + np.nansum(S[ii], 0)) W[ii] = w W /= np.nansum(W) return S, W
0802966fed4d9cb5b9e2d525d10593534c5c51a0
3,651,971
def extract_fingerprints(atoms, i_jbond_dict, radius): """Extract the r-radius subgraphs (i.e., fingerprints) from a molecular graph using Weisfeiler-Lehman algorithm.""" if (len(atoms) == 1) or (radius == 0): fingerprints = [fingerprint_dict[a] for a in atoms] else: nodes = atoms i_jedge_dict = i_jbond_dict for _ in range(radius): """Update each node ID considering its neighboring nodes and edges (i.e., r-radius subgraphs or fingerprints).""" fingerprints = [] for i, j_edge in i_jedge_dict.items(): neighbors = [(nodes[j], edge) for j, edge in j_edge] fingerprint = (nodes[i], tuple(sorted(neighbors))) fingerprints.append(fingerprint_dict[fingerprint]) nodes = fingerprints """Also update each edge ID considering two nodes on its both sides.""" _i_jedge_dict = defaultdict(lambda: []) for i, j_edge in i_jedge_dict.items(): for j, edge in j_edge: both_side = tuple(sorted((nodes[i], nodes[j]))) edge = edge_dict[(both_side, edge)] _i_jedge_dict[i].append((j, edge)) i_jedge_dict = _i_jedge_dict return np.array(fingerprints)
beaa457e0eb514ca7fbfaca846378a0d23c2b94c
3,651,972