content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def gate_settle(gate): """ Return gate settle times """ return 0
f452a343550c4f7be2133119c89dc386665921c4
3,652,086
def fov_gc(lons, lats): """Field of view great circle. Properties ---------- lons: [float] Field of view longitudes (degE). lats: [float] Field of view latitudes (degN). Return ------ geojson.Feature GeoJSON field of view polygon. """ return geo_polygon(lons, lats, 'Limb', 'Limb field of view', 'blue')
3013648c04e5626c51995288afd6e441d3afef30
3,652,088
import ietf.sync.rfceditor from ietf.doc.templatetags.mail_filters import std_level_prompt def request_publication(request, name): """Request publication by RFC Editor for a document which hasn't been through the IESG ballot process.""" class PublicationForm(forms.Form): subject = forms.CharField(max_length=200, required=True) body = forms.CharField(widget=forms.Textarea, required=True, strip=False) doc = get_object_or_404(Document, type="draft", name=name, stream__in=("iab", "ise", "irtf")) if not is_authorized_in_doc_stream(request.user, doc): permission_denied(request, "You do not have the necessary permissions to view this page.") consensus_event = doc.latest_event(ConsensusDocEvent, type="changed_consensus") m = Message() m.frm = request.user.person.formatted_email() (m.to, m.cc) = gather_address_lists('pubreq_rfced',doc=doc).as_strings() m.by = request.user.person next_state = State.objects.get(used=True, type="draft-stream-%s" % doc.stream.slug, slug="rfc-edit") if request.method == 'POST' and not request.POST.get("reset"): form = PublicationForm(request.POST) if form.is_valid(): events = [] # start by notifying the RFC Editor response, error = ietf.sync.rfceditor.post_approved_draft(settings.RFC_EDITOR_SYNC_NOTIFICATION_URL, doc.name) if error: return render(request, 'doc/draft/rfceditor_post_approved_draft_failed.html', dict(name=doc.name, response=response, error=error)) m.subject = form.cleaned_data["subject"] m.body = form.cleaned_data["body"] m.save() if doc.group.acronym != "none": m.related_groups.set([doc.group]) m.related_docs.set([doc]) send_mail_message(request, m) # IANA copy (m.to, m.cc) = gather_address_lists('pubreq_rfced_iana',doc=doc).as_strings() send_mail_message(request, m, extra=extra_automation_headers(doc)) e = DocEvent(doc=doc, type="requested_publication", rev=doc.rev, by=request.user.person) e.desc = "Sent request for publication to the RFC Editor" e.save() events.append(e) # change state prev_state = doc.get_state(next_state.type_id) if next_state != prev_state: doc.set_state(next_state) e = add_state_change_event(doc, request.user.person, prev_state, next_state) if e: events.append(e) doc.save_with_history(events) return redirect('ietf.doc.views_doc.document_main', name=doc.name) else: if doc.intended_std_level_id in ("std", "ds", "ps", "bcp"): action = "Protocol Action" else: action = "Document Action" subject = "%s: '%s' to %s (%s-%s.txt)" % (action, doc.title, std_level_prompt(doc), doc.name, doc.rev) body = generate_publication_request(request, doc) form = PublicationForm(initial=dict(subject=subject, body=body)) return render(request, 'doc/draft/request_publication.html', dict(form=form, doc=doc, message=m, next_state=next_state, consensus_filled_in=( True if (doc.stream_id and doc.stream_id=='ietf') else (consensus_event != None and consensus_event.consensus != None)), ), )
d6377b08c5eae6740e98a154d991ba268ed37815
3,652,090
def strip_trailing_characters(unstripped_string, tail): """ Strip the tail from a string. :param unstripped_string: The string to strip. Ex: "leading" :param tail: The trail to remove. Ex: "ing" :return: The stripped string. Ex: "lead" """ if unstripped_string.endswith(str(tail)): return unstripped_string[:len(tail)] else: return unstripped_string
dbd09fe9a58b0fb3072a680a9c7ac701257ebfcd
3,652,091
def is_prime(x): """ Prove if number is prime """ if x == 0 or x == 1: return 0 for i in range(2, x//2 +1): if x % i == 0: return 0 return 1
63980c49b9ea05458ecafe874073805df50ce1d0
3,652,092
import pickle def obj_to_str(obj, encoding='utf8') -> str: """ Examples: >>> d = dict(a=1, b=2) >>> assert isinstance(obj_to_str(d), str) """ b = pickle.dumps(obj) return bytes_to_str(b, encoding=encoding)
76c87052596aefcbd15a5135379ff2a3512bed77
3,652,093
def sample_ellipsoid(p0, covmat, size=1): """ Produce an ellipsoid of walkers around an initial parameter value, according to a covariance matrix. :param p0: The initial parameter value. :param covmat: The covariance matrix. Must be symmetric-positive definite or it will raise the exception numpy.linalg.LinAlgError :param size: The number of samples to produce. """ return np.random.multivariate_normal( np.atleast_1d(p0), np.atleast_2d(covmat), size=size )
a09448f29920a7758a549ede80608c8c4dd9892a
3,652,095
def avg_pool_2d(x, size=(2, 2), stride=(2, 2), name='avg_pooling', padding='VALID'): """ Average pooling 2D Wrapper :param x: (tf.tensor) The input to the layer (N,H,W,C). :param size: (tuple) This specifies the size of the filter as well as the stride. :param name: (string) Scope name. :return: The output is the same input but halfed in both width and height (N,H/2,W/2,C). """ size_x, size_y = size stride_x, stride_y = stride return tf.nn.avg_pool(x, ksize=[1, size_x, size_y, 1], strides=[1, stride_x, stride_y, 1], padding=padding, name=name)
b39dfed959f43346c48d13b7e41601999c1b7f8b
3,652,096
from django.contrib.auth import get_user_model def get_username_field() -> str: """Get custom username field. Returns: str: username field. """ user_model = get_user_model() return getattr(user_model, "USERNAME_FIELD", "username")
45dfe6888d8c69e012b98a0edd1b639b7bf56af7
3,652,098
def get_header(yaml_dict): """ Header merely comprises the access token :return: """ headers = {"Authorization": "Bearer {}".format(get_access_token(yaml_dict)), "Content-Type": "application/json"} return headers
fb93b304cdb960f1eec7396a92262fde94699126
3,652,100
def change_filename_extension(filename: str, old_ext: str, new_ext: str) -> str: """ Change extension of a filename (e.g. "data.csv" to "data.json"). :param filename: the old filename (including extension) :param old_ext: the extension of the old filename :param new_ext: the extension to replace the old extension :return: a filename with the new extension """ dbg.dassert( filename.endswith(old_ext), "Extension '%s' doesn't match file '%s'", old_ext, filename, ) # Remove the old extension. new_filename = filename.rstrip(old_ext) # Add the new extension. new_filename = new_filename + new_ext return new_filename
acf9d75383fafaeaf6bf42e46ef8d01080661172
3,652,101
def parseArgPairToBoundaryArray(pair, mesh): """ Parse boundary related pair argument to create a list of [ :gimliapi:`GIMLI::Boundary`, value|callable ]. Parameters ---------- pair: tuple - [marker, arg] - [marker, [callable, *kwargs]] - [marker, [arg_x, arg_y, arg_z]] - [boundary, arg] - ['*', arg] - [node, arg] - [[marker, ...], arg] (REMOVE ME because of bad design) - [[boundary,...], arg] (REMOVE ME because of bad design) - [marker, callable, *kwargs] (REMOVE ME because of bad design) - [[marker, ...], callable, *kwargs] (REMOVE ME because of bad design) arg will be parsed by :py:mod:`pygimli.solver.solver.generateBoundaryValue` and distributed to each boundary. Callable functions will be executed at run time. '*' will be interpreted as all boundary elements with one neighboring cell mesh: :gimliapi:`GIMLI::Mesh` Used to find boundaries by marker. Returns ------- bc: list() [:gimliapi:`GIMLI::Boundary`, value|callable] """ bc = [] bounds = [] if isinstance(pair[1], list): # [marker, [callable, *kwargs]] if callable(pair[1][0]): pair = [pair[0]] + pair[1] if pair[0] == '*': mesh.createNeighborInfos() for b in mesh.boundaries(): if b.leftCell() is not None and b.rightCell() is None: bounds.append(b) elif isinstance(pair[0], int): bounds = mesh.findBoundaryByMarker(pair[0]) elif isinstance(pair[0], pg.core.Node): bc.append(pair) return bc ####### bad Design .. need to remove elif isinstance(pair[0], list): print(pair[0], pair[0][0]) pg.deprecated('bad design') # [[,,..], ] for b in pair[0]: for bi in mesh.boundaries(pg.find(mesh.boundaryMarkers() == b)): bounds.append(bi) elif isinstance(pair[0], pg.core.stdVectorBounds): pg.deprecated('bad design') pg.warn('in use? pair[0], pg.core.stdVectorBounds)')#20200115 bounds = pair[0] elif isinstance(pair[0], pg.core.Boundary): pg.warn('in use? isinstance(pair[0], pg.core.Boundary)')#20200115 bc.append(pair) return bc ####### bad Design .. need to remove for b in bounds: val = None if len(pair) > 2: val = pair[1:] else: val = pair[1] bc.append([b, val]) # print('-'*50) # print(b, pair[1], callable(pair[1])) # print('+'*50) # if callable(pair[1]): # # don't execute the callable here # # we want to call them at runtime # if len(pair) > 2: # val = pair[1:] # else: # val = pair[1] # else: # this will be executed #val = generateBoundaryValue(b, pair[1]) #print('#'*30) return bc
e4827117dfa3b1b6683f2af51ed90bd6f2edf170
3,652,102
def get_niter(outcarfile): """ Get the number of ionic steps that were run Args: outcarfile (string): full path to OUTCAR file Returns: niter (int): number of ionic iterations """ with open(outcarfile,'r') as rf: for line in rf: if '- Iteration' in line: niter = line.split('(')[0].split('n')[-1].strip() niter = int(niter) return niter
c64a5cc399cabc41a0fc7ca6fee35970c3db0444
3,652,103
def bucket_contvar(ex, ctrl, num_buckets): """ Given ex, which contains a continuous value for a particular control variable, return the bucketed version of that control value. Inputs: ex: message dictionary. Assume it has key ctrl, mapping to the value. ctrl: string. The name of the CT control. num_buckets: int. The number of buckets for this control variable. """ if ctrl not in ex.keys(): raise ValueError( "Control %s not found in example. Available keys in " "this example: %s" % (ctrl, ', '.join(ex.keys())) ) # Get the control variable value ctrl_val = ex[ctrl] # string. the value of the control variable for this example if ctrl == 'avg_nidf': ctrl_val = float(ctrl_val) assert ctrl_val >= 0 assert ctrl_val <= 1 elif ctrl == 'lastuttsim': if ctrl_val == 'None': # bot goes first in conversation assert num_buckets == 11 return 10 # The last bucket is for when the bot goes first else: ctrl_val = float(ctrl_val) assert ctrl_val >= -1 assert ctrl_val <= 1 else: raise ValueError('Unexpected CT ctrl: %s' % ctrl) # Get the bucket lowerbounds bucket_lbs = CONTROL2BUCKETLBS[(ctrl, num_buckets)] # lst len num_buckets of floats if ctrl == 'lastuttsim': # The 'bot goes first' bucket 10 has no lower bound assert len(bucket_lbs) == num_buckets - 1 else: assert len(bucket_lbs) == num_buckets # Determine the correct bucket and return the bucket id return sort_into_bucket(ctrl_val, bucket_lbs)
182f9bd01ec81a18b0555afebc40183982d997e9
3,652,104
def handle_exception(error): """ Flask error handler for Exception Parameters ---------- error : Exception An Exception error Returns ------- string A JSON string of the Exception error response """ response = create_error_response(error) return response, 500
6827d310804a65ff26d6abc036ec60ff94ae4ab7
3,652,105
import re def isphone(value, locale='en-US'): """ Return whether or not given value is valid mobile number according to given locale. Default locale is 'en-US'. If the value is valid mobile number, this function returns ``True``, otherwise ``False``. Supported locales are: ``ar-DZ``, ``ar-SY``, ``ar-SA``, ``en-US``, ``en-CA``, ``cs-CZ``, ``de-DE``, ``da-DK`` ``el-GR``, ``en-AU``, ``en-GB``, ``en-HK``, ``zh-HK``, ``en-IN``, ``en-NG``, ``en-NZ``, ``en-ZA``, ``en-ZM`` ``es-ES``, ``fi-FI``, ``fr-FR``, ``he-IL``, ``hu-HU``, ``id-ID``, ``it-IT``, ``ja-JP``, ``ms-MY``, ``nb-NO`` ``nl-BE``, ``fr-BE``, ``nn-NO``, ``pl-PL``, ``pt-BR``, ``pt-PT``, ``ro-RO``, ``en-PK``, ``ru-RU``, ``sr-RS`` ``tr-TR``, ``vi-VN``, ``zh-CN``, ``zh-TW``, ``bn-BD`` Examples:: >>> isphone('+15673628910', 'en-US') True >>> isphone('+10345672645', 'en-US') False :param value: string to validate mobile number :param locale: locale of mobile number to validate """ phones = { 'ar-DZ': r'^(\+?213|0)(5|6|7)\d{8}$', 'ar-SY': r'^(!?(\+?963)|0)?9\d{8}$', 'ar-SA': r'^(!?(\+?966)|0)?5\d{8}$', 'bn-BD': r'^(\+?88)?(01[56789]\d{2}(\s|\-)?\d{6})$', 'en-US': r'^(\+?1)?[2-9]\d{2}[2-9](?!11)\d{6}$', 'cs-CZ': r'^(\+?420)? ?[1-9][0-9]{2} ?[0-9]{3} ?[0-9]{3}$', 'de-DE': r'^(\+?49[ \.\-])?([\(]{1}[0-9]{1,6}[\)])?([0-9 \.\-\']{3,20})((x|ext|extension)[ ]?[0-9]{1,4})?$', 'da-DK': r'^(\+?45)?(\d{8})$', 'el-GR': r'^(\+?30)?(69\d{8})$', 'en-AU': r'^(\+?61|0)4\d{8}$', 'en-GB': r'^(\+?44|0)7\d{9}$', 'en-HK': r'^(\+?852\-?)?[569]\d{3}\-?\d{4}$', 'en-IN': r'^(\+?91|0)?[789]\d{9}$', 'en-NG': r'^(\+?234|0)?[789]\d{9}$', 'en-NZ': r'^(\+?64|0)2\d{7,9}$', 'en-ZA': r'^(\+?27|0)\d{9}$', 'en-ZM': r'^(\+?26)?09[567]\d{7}$', 'es-ES': r'^(\+?34)?(6\d{1}|7[1234])\d{7}$', 'fi-FI': r'^(\+?358|0)\s?(4(0|1|2|4|5)?|50)\s?(\d\s?){4,8}\d$', 'fr-FR': r'^(\+?33|0)[67]\d{8}$', 'he-IL': r'^(\+972|0)([23489]|5[0248]|77)[1-9]\d{6}', 'hu-HU': r'^(\+?36)(20|30|70)\d{7}$', 'id-ID': r'^(\+?62|0[1-9])[\s|\d]+$', 'it-IT': r'^(\+?39)?\s?3\d{2} ?\d{6,7}$', 'ja-JP': r'^(\+?81|0)\d{1,4}[ \-]?\d{1,4}[ \-]?\d{4}$', 'ms-MY': r'^(\+?6?01){1}(([145]{1}(\-|\s)?\d{7,8})|([236789]{1}(\s|\-)?\d{7}))$', 'nb-NO': r'^(\+?47)?[49]\d{7}$', 'nl-BE': r'^(\+?32|0)4?\d{8}$', 'nn-NO': r'^(\+?47)?[49]\d{7}$', 'pl-PL': r'^(\+?48)? ?[5-8]\d ?\d{3} ?\d{2} ?\d{2}$', 'pt-BR': r'^(\+?55|0)\-?[1-9]{2}\-?[2-9]{1}\d{3,4}\-?\d{4}$', 'pt-PT': r'^(\+?351)?9[1236]\d{7}$', 'ro-RO': r'^(\+?4?0)\s?7\d{2}(\'|\s|\.|\-)?\d{3}(\s|\.|\-)?\d{3}$', 'en-PK': r'^((\+92)|(0092))-{0,1}\d{3}-{0,1}\d{7}$|^\d{11}$|^\d{4}-\d{7}$', 'ru-RU': r'^(\+?7|8)?9\d{9}$', 'sr-RS': r'^(\+3816|06)[- \d]{5,9}$', 'tr-TR': r'^(\+?90|0)?5\d{9}$', 'vi-VN': r'^(\+?84|0)?((1(2([0-9])|6([2-9])|88|99))|(9((?!5)[0-9])))([0-9]{7})$', 'zh-CN': r'^(\+?0?86\-?)?1[345789]\d{9}$', 'zh-TW': r'^(\+?886\-?|0)?9\d{8}$' } phones['en-CA'] = phones['en-US'] phones['fr-BE'] = phones['nl-BE'] phones['zh-HK'] = phones['en-HK'] loc = phones.get(locale) if loc is None: raise ValueError('Please provide a supported locale.') else: loc_pattern = re.compile(loc) return bool(loc_pattern.match(value))
2e3de8fb6aad000c21ea560521f81c4e9bf2e090
3,652,106
def _darken(color): """ Takes a hexidecimal color and makes it a shade darker :param color: The hexidecimal color to darken :return: A darkened version of the hexidecimal color """ # Get the edge color darker = "#" hex1 = color[1:3] hex2 = color[3:5] hex3 = color[5:7] for val in [hex1, hex2, hex3]: if val == "00": darker += "00" else: x = int(val, base=16) x -= int("11", base=16) x = str(hex(x))[2:].upper() darker += x return darker
5b43785572f9685906e73f4bf856cf4d693f6411
3,652,107
from datetime import datetime def commit_datetime(author_time: str, author_tz: str): """ Convert a commit's timestamp to an aware datetime object. Args: author_time: Unix timestamp string author_tz: string in the format +hhmm Returns: datetime.datetime object with tzinfo """ # timezone info looks like +hhmm or -hhmm tz_hours = int(author_tz[:3]) th_minutes = int(author_tz[0] + author_tz[3:]) return datetime.fromtimestamp( int(author_time), timezone(timedelta(hours=tz_hours, minutes=th_minutes)) )
d44f7a693ad3c3a6efe97be3707d14b5514bf65e
3,652,108
def flatten_acfg_list(acfg_list): """ Returns a new config where subconfig params are prefixed by subconfig keys """ flat_acfg_list = [] for acfg in acfg_list: flat_dict = { prefix + '_' + key: val for prefix, subdict in acfg.items() for key, val in subdict.items() } flat_acfg_list.append(flat_dict) return flat_acfg_list
ae586bc49ee31db022f388492acbbf5e8d02b09d
3,652,109
def happy_birthday(name: hug.types.text, age: hug.types.number): """Says happy birthday to a user""" return "Happy {0} Birthday {1}!".format(name, age)
84cf051205db60566bd4fcd07c0d8f31f01c65cb
3,652,110
def _format_d10_singlecell(row): """ Format the D10 input data for a single cell (corresponds to a single row in the input csv file). """ nlayers = int(row['nlayer']) if nlayers == 0: # This means this cell cannot be run in HELP. return None try: title = str(int(row['cid'])) except ValueError: title = str(row['cid']) iu10 = 2 ipre = 0 irun = 1 osno = 0 # initial snow water area = 6.25 # area projected on horizontal plane frunof = 100 runof = float(row['CN']) d10dat = [] # READ (10, 5070) TITLE # 5070 FORMAT(A60) d10dat.append(['{0:<60}'.format(title)]) # READ (10, 5080) IU10, IPRE, OSNO, AREA, FRUNOF, IRUN # 5080 FORMAT(I2,I2,2F10.0,F6.0,I2) d10dat.append(['{0:>2}'.format(iu10) + '{0:>2}'.format(ipre) + '{0:>10.0f}'.format(osno) + '{0:>10.0f}'.format(area) + '{0:>6.0f}'.format(frunof) + '{0:>2}'.format(irun)]) # IF (IRUN .EQ. 1) READ (10, 5090) CN2 # 5090 FORMAT(F7.0) d10dat.append(['{0:>7.0f}'.format(runof)]) # Format the layer properties. for i in range(nlayers): lay = str(i+1) layer = int(row['lay_type'+lay]) thick = max(float(row['thick'+lay]), MINTHICK) isoil = 0 poro = float(row['poro'+lay]) fc = float(row['fc'+lay]) wp = float(row['wp'+lay]) sw = '' rc = float(row['ksat'+lay]) xleng = float(row['dist_dr'+lay]) slope = float(row['slope'+lay]) # Check that all values are valid for the layer. check = [val == -9999 for val in (thick, poro, fc, wp, rc, xleng, slope)] if any(check): return None # READ (10, 5120) LAYER (J), THICK (J), ISOIL (J), # PORO (J), FC (J), WP (J), SW (J), RC (J) # 5120 FORMAT(I2,F7.0,I4,4F6.0,F16.0) d10dat.append(['{0:>2}'.format(layer) + '{0:>7.0f}'.format(thick) + '{0:>4}'.format(isoil) + '{0:>6.3f}'.format(poro) + '{0:>6.3f}'.format(fc) + '{0:>6.3f}'.format(wp) + '{0:>6}'.format(sw) + '{0:>16.14f}'.format(rc)]) recir = subin = phole = defec = ipq = trans = '' layr = 0 # READ (10, 5130) XLENG (J), SLOPE (J), RECIR (J), LAYR (J), # SUBIN (J), PHOLE (J), DEFEC (J), IPQ (J), TRANS (J) # 5130 FORMAT(F7.0,2F6.0,I3,F13.0,2F7.0,I2,G14.6) d10dat.append(['{0:>7.0f}'.format(xleng) + '{0:>6.2f}'.format(slope) + '{0:>6}'.format(recir) + '{0:>3}'.format(layr) + '{0:>13}'.format(subin) + '{0:>7}'.format(phole) + '{0:>7}'.format(defec) + '{0:>2}'.format(ipq) + '{0:>14}'.format(trans)]) return d10dat
567fa7e8582174d6aa1b3ce77441039ecae8c6cf
3,652,111
def logical_and(x, y, out=None, name=None): """ :alias_main: paddle.logical_and :alias: paddle.logical_and,paddle.tensor.logical_and,paddle.tensor.logic.logical_and :old_api: paddle.fluid.layers.logical_and logical_and Operator It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor. Each element of Out is calculated by .. math:: Out = X \land Y Args: x(${x_type}): ${x_comment} y(${y_type}): ${y_comment} out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output. name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: ${out_type}: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np # Graph organizing x = fluid.layers.data(name='x', shape=[2], dtype='bool') y = fluid.layers.data(name='y', shape=[2], dtype='bool') res = fluid.layers.logical_and(x=x, y=y) # The comment lists another available method. # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0) # fluid.layers.logical_and(x=x, y=y, out=res) # Create an executor using CPU as an example exe = fluid.Executor(fluid.CPUPlace()) # Execute x_i = np.array([[1, 0], [0, 1]]).astype(np.bool) y_i = np.array([[1, 1], [0, 0]]).astype(np.bool) res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res]) print(res_val) # [[True, False], [False, False]] """ return _logical_op( op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)
df0f111f7acb6aafa47cf2a99e6bc45c91e77e08
3,652,112
def _create_tileZeros(): """ Create a function mapping to the Scala implementation.""" def _(cols, rows, cellType = 'float64'): jfcn = RFContext.active().lookup('tile_zeros') return Column(jfcn(cols, rows, cellType)) _.__name__ = 'tile_zeros' _.__doc__ = "Create column of constant tiles of zero" _.__module__ = THIS_MODULE return _
94dc69bddf1359a2c4645e17a2546920f0c05925
3,652,113
import pkgutil def load_modules(): """ Dynamically loads all the modules in the modules folder and sorts them by the PRIORITY key. If no PRIORITY is defined for a given module, a priority of 0 is assumed. """ # logger = logging.getLogger(__name__) locations = [marvin.support.path.PLUGIN_PATH] modules = [] for finder, name, ispkg in pkgutil.walk_packages(locations): try: loader = finder.find_module(name) mod = loader.load_module(name) except: Log.warn("Skipped loading module '{0}' due to an error.", name) else: # if hasattr(mod, 'WORDS'): modules.append(mod) # else: # Log.warn("Skipped loading module '{0}' because it misses " + # "the WORDS constant.", name) modules.sort(key=lambda mod: mod.PRIORITY if hasattr(mod, 'PRIORITY') else 0, reverse=True) return modules
b8232e1663da6b062750cc1261bac229ea945539
3,652,114
def property_fragment(): """Builds and returns a random Property init fragment.""" return _build_property_fragment()
0db4483c98f2495ad6826818759e54f32a8778c4
3,652,116
def create_person_node(author): """ Parameters ---------- author : dict author field of JSON file. Returns ------- ID : str Document _id from 'Person' collection. """ given = author.get('given', '') family = author.get('family', '') ID = search_person(given, family) if ID == 0: collec = db.collection('Person') para = {'URI': given+'_'+family, 'type': subject_type_author, 'sameas': '', 'given': given, 'family': family} metadata = collec.insert(para) ID = metadata['_id'] memo_name_ID.update({str((given, family)): ID}) print(ID, "created") return ID else: return ID
bfb7f8f0061ad337257c9e43b5907520b79eb59b
3,652,117
def create_date_list(startDt='2020-11-01', endDt='2020-12-01'): """ Create a date list ranging from start to end dates. Date output format = yyyy_mm :startDt = beginning date for the range :endDt = end date for the range To run the current method requires a minimum one month difference between dates FUTURE: Could provide more of the common date movements e.g. (M, Q, Y), and have these added to the functionality with a keyword parameter """ dates = pd.date_range(startDt, endDt, freq='1M') - pd.offsets.MonthBegin(1) listDates = [str(x.year)+"_"+str(x.month).zfill(2) for x in dates] return listDates
34b4105876e4e1977716bb307cd9536eb37482fb
3,652,118
import torch def batch_distance_metrics_from_coords(coords, mask): """ Given coordinates of neighboring atoms, compute bond distances and 2-hop distances in local neighborhood """ d_mat_mask = mask.unsqueeze(1) * mask.unsqueeze(2) if coords.dim() == 4: two_dop_d_mat = torch.square(coords.unsqueeze(1) - coords.unsqueeze(2) + 1e-10).sum(dim=-1).sqrt() * d_mat_mask.unsqueeze(-1) one_hop_ds = torch.linalg.norm(torch.zeros_like(coords[0]).unsqueeze(0) - coords, dim=-1) elif coords.dim() == 5: two_dop_d_mat = torch.square(coords.unsqueeze(2) - coords.unsqueeze(3) + 1e-10).sum(dim=-1).sqrt() * d_mat_mask.unsqueeze(-1).unsqueeze(1) one_hop_ds = torch.linalg.norm(torch.zeros_like(coords[0]).unsqueeze(0) - coords, dim=-1) return one_hop_ds, two_dop_d_mat
e8322310806debbdb4d2f3699eca4355cc9e3ed6
3,652,120
def ComputeHash256(buf: bytes) -> bytes: """ComputeHash256 Compute a cryptographically strong 256 bit hash of the input byte slice.""" return ComputeHash256Array(buf)
1597d4ea67a4e74970576a1336a8687640aaca25
3,652,121
def acf_std(x, maxlag=None, periodogram=True, confidence=0.6826895, simplified=True, acf_cached=None): """Computes the approximate standard deviation of the autocorrelation coefficients. Parameters ---------- x : ndarray Input data. maxlag : {None, int} optional Maximum lag beyond which the ACF coefficient can be considered as null. periodogram : {True, False} Whether to use a periodogram-like estimate of the ACF or not. confidence : {0.6826895, float} optional Confidence level. The default value returns the standard deviation. simplified : {True, False} optional Whether to use a simplified or more complex approximation. acf_cached : {ndarray} optional Pre-computed acf coefficients. Notes ----- When simplified is True, the standard error is computed as: \begin{equation} var[r_k] &\appr \frac{1}{N} \left\{ 1 + 2 \sum_{j=1}^{+q}{ r_{j}^2 } \right\ \end{equation} Otherwise, it is computed as: \begin{equation} \begin{split} var[r_k] &\approx \frac{1}{N} \sum_{j=-\infty}^{+\infty}{ \left\{ r_{j}^2 + r_{j+k} r_{j-k} - 4 r_{k} r_{j} r_{j-k} + 2 r_{j}^2 r_{k}^2 \right\} \\ \frac{1}{N} \sum_{j=-\infty}^{+\infty}{ \left\{ r_{j}^2 [ 1 + 2 r_{k}^2] + r_{j+k} r_{j-k} - 4 r_{k} r_{j} r_{j-k} \right\} \end{split} \end{equation} References ---------- Hippel & McLeod 1994: Time series modeling. """ if acf_cached is None: acfx = acf(x,periodogram) else: acfx = acf_cached n = x.size r_i = acfx[:n] rr_i = (r_i)**2 # Artifically set the ACF coefficients to 0 beyond lag maxlag if maxlag > 0: rr_i[maxlag:] = 0 # Compute the variance of the ACF coeffs if simplified: var_i = 1 + 2*rr_i.cumsum() else: var_i = (1 + 2 * rr_i) * rr_i.sum() cov_ = np.correlate(r_i,r_i,'full')[n-1:] var_i[:n//2] = cov_[::2] var_i -= (4*r_i*cov_) var_i /= float(n) var_i[0] = 0 #.... std_i = np.sqrt(var_i) std_i = np.concatenate([std_i, std_i[n-1:0:-1]]) #.... if confidence < 0.5: confidence = 1.-confidence thresh = norm.isf((1.-confidence)/2.) std_i *= thresh return std_i
7720f0f07f901cb3dfbb59a9fdc01afcfb7caf6d
3,652,122
def traverse_map(map, x_step, y_step): """ iterates over a "map" (array of strings) starting at the top left until reaching the bottom of the map. every iteration advances position by <x_step,y_step> and checks if a tree is hit returns: the total number of Trees hit rtype: int """ trees_hit = 0 map_depth = len(map) y_steps = range(0,map_depth,y_step) for j,step in enumerate(y_steps): trees_hit += 1 if tree_in_path(map[step],j*x_step) else 0 return trees_hit
42a21c070d25bfc962fa76f94a90417238057986
3,652,123
from typing import Optional def q_to_res(Q: float) -> Optional[float]: """ :param Q: Q factor :return: res, or None if Q < 0.25 """ res = 1 - 1.25 / (Q + 1) if res < 0.0: return None return res
98380be0c8fbd3bfd694d7851f35488d74cdd862
3,652,124
import logging def list_document_classifier(): """[Lists Document Classifiers for Text Classification on AWS] Raises: error: [description] Returns: [list]: [List of Document Classifiers] """ try: logging.info(f"List Document Classifiers") return client.list_document_classifiers() except Exception as error: logging.error(f"{error=}") raise error
4efb390fa3ebcd4b1f163db5afdad66d8fdc2cf4
3,652,125
def id_str_to_bytes(id_str: str) -> bytes: """Convert a 40 characters hash into a byte array. The conversion results in 160 bits of information (20-bytes array). Notice that this operation is reversible (using `id_bytes_to_str`). Args: id_str: Hash string containing 40 characters. Returns: bytes: The ID converted to bytes. """ return int(id_str, 16).to_bytes(20, byteorder='big')
cd6a702343f1267e17710305f9aed70613feacb3
3,652,126
def transform(data): """Transform words and tags to ids """ new_data = [] unknown_word_count = 0 total_word_count = 0 for words, tags in data: word_ids = [word_to_ix.get(w, word_to_ix[UNK]) for w in words] tag_ids = [tag_to_ix.get(t) for t in tags] new_data.append((word_ids, tag_ids)) # count total_word_count += len(words) for w in words: if w not in word_to_ix: unknown_word_count += 1 unknown_proportion = unknown_word_count / total_word_count return new_data, unknown_proportion
6a9f99521bfe157a16ad9dd4d933a46e25878205
3,652,127
from typing import Optional def textarea(): """ Returns a textarea parser. Example:: ...[5] The number defines the number of rows. """ rows = number_enclosed_in('[]')('rows') textarea = Suppress('...') + Optional(rows) textarea.setParseAction(tag(type='textarea')) return textarea
915d1da239c11a35674ac0f05581afd2fecbd92d
3,652,128
from typing import Optional def get_agent(agent_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAgentResult: """ This data source provides details about a specific Agent resource in Oracle Cloud Infrastructure Database Migration service. Display the ODMS Agent configuration. ## Example Usage ```python import pulumi import pulumi_oci as oci test_agent = oci.databasemigration.get_agent(agent_id=oci_database_migration_agent["test_agent"]["id"]) ``` :param str agent_id: The OCID of the agent """ __args__ = dict() __args__['agentId'] = agent_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:databasemigration/getAgent:getAgent', __args__, opts=opts, typ=GetAgentResult).value return AwaitableGetAgentResult( agent_id=__ret__.agent_id, compartment_id=__ret__.compartment_id, defined_tags=__ret__.defined_tags, display_name=__ret__.display_name, freeform_tags=__ret__.freeform_tags, id=__ret__.id, lifecycle_details=__ret__.lifecycle_details, public_key=__ret__.public_key, state=__ret__.state, stream_id=__ret__.stream_id, system_tags=__ret__.system_tags, time_created=__ret__.time_created, time_updated=__ret__.time_updated, version=__ret__.version)
5c364a4572811e46e8ade0c210ce6f7a3d4a025f
3,652,129
def darknet(): """Darknet-53 classifier. """ inputs = Input(shape=(416, 416, 3)) x = darknet_base(inputs) x = GlobalAveragePooling2D()(x) x = Dense(1000, activation='softmax')(x) model = Model(inputs, x) return model
fd4dc9d0b5e5f6dba1939084669d09f13456133f
3,652,130
def create_process_chain_entry(input_object, python_file_url, udf_runtime, udf_version, output_object): """Create a Actinia command of the process chain that uses t.rast.udf :param strds_name: The name of the strds :param python_file_url: The URL to the python file that defines the UDF :param output_name: The name of the output raster layer :return: A Actinia process chain description """ # rn = randint(0, 1000000) pc = {"id": "t_rast_udf", "module": "t.rast.udf", "inputs": [{"import_descr": {"source": python_file_url, "type": "file"}, "param": "pyfile", "value": "$file::my_py_func"}, {"param": "input", "value": input_object.grass_name()}, {"param": "output", "value": output_object.grass_name()}]} return pc
78a76275a2f1dba30627f1a52acd88d2ce851ccc
3,652,131
import requests def add_user_to_authorization_domain(auth_domain_name, email, permission): """Add group with given permissions to authorization domain.""" # request URL for addUserToGroup uri = f"https://api.firecloud.org/api/groups/{auth_domain_name}/{permission}/{email}" # Get access token and and add to headers for requests. # -H "accept: */*" -H "Authorization: Bearer [token]" headers = {"Authorization": "Bearer " + get_access_token(), "accept": "*/*"} # capture response from API and parse out status code response = requests.put(uri, headers=headers) status_code = response.status_code if status_code != 204: # AD update with member fail print(f"WARNING: Failed to update Authorization Domain, {auth_domain_name}, with group: {email}.") print("Check output file for error details.") return False, response.text # AD update with member success print(f"Successfully updated Authorization Domain, {auth_domain_name}, with group: {email}.") return True, None
ac774e5d065c5dd5bb1994333c8893290c129162
3,652,132
import re def error_032_link_two_pipes(text): """Fix some cases and return (new_text, replacements_count) tuple.""" (text, ignored) = ignore(text, r"\[\[\s*:?\s*{}.*?\]\]".format(IMAGE)) (text, count1) = re.subn(r"\[\[([^|\[\]\n]+)\|\|([^|\[\]\n]+)\]\]", "[[\\1|\\2]]", text) (text, count2) = re.subn(r"\[\[([^|\[\]\n]+)\|([^|\[\]\n]+)\|\]\]", "[[\\1|\\2]]", text) text = deignore(text, ignored) return (text, count1 + count2)
071a56e8f87fcbbbd423f9754c16b57dd7a90b01
3,652,133
import random def define_answer(defined_answer): """ ランダムに「正解」を生成する 1桁ずつ、0~15までの乱数を引いて決めていく count桁目の乱数(digit_kari)を引いた時、count-1桁目までの数字と重複がないかをチェック。  重複がなければ、引いた乱数(digit_kari)をans_list[count]に保存。  重複してたらその桁の乱数を引き直す。 """ global ans_str #,ans_list if type(defined_answer) == str and len(defined_answer) == 5: ans_str = defined_answer return defined_answer else: ans_list = [0, 0, 0, 0, 0] ans_str = "" digit_kari = 0 count = 0 check = 0 while count < 5: if count == 0: ans_list[count] = random.randint(0,15) count += 1 else: digit_kari = random.randint(0,15) for j in range(count): if ans_list[j] == digit_kari: check = -1 if check == 0: ans_list[count] = digit_kari count += 1 else: check = 0 for i in range(5): ans_str += str(hex(ans_list[i]))[2] print("answer:"+ans_str) #あらかじめ答えを知りたいときのみ有効化する return ans_str
fa19b2e28864d4c09458582d6dea80b81b3426f6
3,652,134
def truncate_dataset_position(filename, joint_type="w", threshold=0.01, directory="./2_smoothed/"): """ Truncates dataset **with raw position data** from last zero value before maximum velocity to following zero value. :param filename: Input filename of position dataset :param joint_type: Chooses which joint type is used to truncate the whole dataset (w, e, gh) :param threshold: factor for maximum velocity, every value below threshold*v_max is set to zero. Threshold=0 uses original dataset. :param directory: directory of files :return: new truncated dataset as dataframe, indexes stay the same """ dataset = open_dataset_pandas(filename, directory=directory) dataset_velocity = generate_velocity_dataframe(filename, directory) [index_left, index_right] = \ find_nearest_minima_from_maximum(dataset_velocity, joint_type=joint_type, threshold=threshold) truncated_dataset = dataset.truncate(before=index_left, after=index_right) if len(truncated_dataset) > 150 and threshold < 0.3: return truncate_dataset_position(filename, joint_type=joint_type, threshold=threshold+0.01, directory=directory) print(f"{filename};{threshold};{len(truncated_dataset)}") truncated_dataset = truncated_dataset.reset_index(drop=True) return truncated_dataset, threshold
266a02a35f6f07e488629513f7252e16007d38cb
3,652,136
def quadric_errors_representative(bucket): """ Quadric errors representative function. :param bucket: bucket to calculate representative from. :type bucket: Bucket :return: bucket's representative vertex coordinates :rtype: tuple(float, float, float) """ A = np.zeros((3, 3)) b = np.zeros((3, 1)) faces_set = set() faces = [] for vertex in bucket.original_vertices: # type: Polyhedron_3_Vertex_handle circulator = vertex.vertex_begin() # type: Polyhedron_3_Halfedge_around_vertex_circulator for i in range(vertex.vertex_degree()): he = circulator.next() # type: Polyhedron_3_Halfedge_handle if he.is_border(): continue f = he.facet() facet_circulator = f.facet_begin() # type: Polyhedron_3_Halfedge_around_facet_circulator vertices = [] for j in range(3): facet_he = facet_circulator.next() # type: Polyhedron_3_Halfedge_handle vertices.append(tuple([float(x) for x in str(facet_he.vertex().point()).split()])) triangle_already_added = False n = len(vertices) for permutation in [[vertices[i - j] for i in range(n)] for j in range(n)]: if tuple(permutation) in faces_set: triangle_already_added = True break faces_set.add(tuple(permutation)) if triangle_already_added: continue face = [] for v in vertices: face.append(v) faces.append(face) for face in faces: p1 = np.array(face[0]) p2 = np.array(face[1]) p3 = np.array(face[2]) normal = np.reshape(np.cross((p2 - p1), (p3 - p1)), (3, 1)) normal_norm = norm(normal) normal /= normal_norm normal_t = normal.transpose() dist = np.dot(normal_t, p1) A += np.dot(normal, normal_t) b += dist * normal pinv_A = pinv(A) representative = np.dot(pinv_A, b) return tuple([representative[0][0], representative[1][0], representative[2][0]])
d613c8cdf7acb5add81d879e52a3c127d3731980
3,652,137
import time def getMonthTicks(start, end, increment, offset=0): """ Create a set of matplotlib compatible ticks and tick labels for every `increment` month in the range [start, end], beginning at the month of start + `offset` months. """ xLabels = [] xTicks = [] y, m, d = helpers.yearmonthday(start) def normalize(y, m): if m > 12: m -= 12 y += 1 elif m < 0: m += 12 y -= 1 return y, m def nextyearmonth(y, m): m += increment return normalize(y, m) y, m = normalize(y, m+offset) tick = helpers.mktime(y, m) end = end + C.DAY*120 # Make a few extra months worth. while True: xTicks.append(tick) xLabels.append(time.strftime("%b '%y", time.gmtime(tick))) y, m = nextyearmonth(y, m) tick = helpers.mktime(y, m) if tick > end: break return xTicks, xLabels
398c8542b5cce3614b1efd9306b05c6ce1f6f185
3,652,138
def entropy_layer(inp, theta, num_samples, sample_init, sample_const, train_vect): """ Entropy PersLay WARNING: this function assumes that padding values are zero """ bp_inp = tf.einsum("ijk,kl->ijl", inp, tf.constant(np.array([[1.,-1.],[0.,1.]], dtype=np.float32))) sp = tf.get_variable("s", shape=[1, 1, num_samples], initializer=sample_init, trainable=train_vect) if not sample_const else tf.get_variable("s", initializer=sample_init) L, X, Y = bp_inp[:, :, 1:2], bp_inp[:, :, 0:1], bp_inp[:, :, 0:1] + bp_inp[:, :, 1:2] LN = tf.multiply(L, 1. / tf.expand_dims(tf.matmul(L[:,:,0], tf.ones([L.shape[1],1])), -1)) entropy_terms = tf.where(LN > 0., -tf.multiply(LN, tf.log(LN)), LN) return tf.multiply(entropy_terms, 1. / ( 1. + tf.exp( -theta * (.5*(Y-X) - tf.abs(sp - .5*(Y+X))) ) ))
d9f1155e576f382abfc467ed8704219a5017260d
3,652,139
def set_version_code(data): """ Utility function to set new versionCode """ match = version_code_pattern.search(data) if not match: raise ValueError('Version code not found') version_code = int(match.group('value')) next_version_code = '\g<key> {}'.format(version_code + 1) return version_code_pattern.sub(next_version_code, data)
f94392a06cbb4cda852ad83c8afcd3bae0603b52
3,652,140
import logging from datetime import datetime def add_resource(label, device_type, address, userid, password, rackid='', rack_location='', ssh_key=None, offline=False): """ Add device to the list of devices in the configuration managed Args: label: label for device device_type: type of device from device enumeration address: IP address of device userid: string with device userid password: string with device password (or password for ssh key) rackid: string identify rack id, if not specified will default to management rack rack:_location string identifying rack location ssh_key: ssh key string offline: Add the resource even if it can't be contacted Returns: RC: integer return code Message: string with message associated with return code """ _method_ = 'resource_mgr.add_resource' label = label.strip() address = address.strip() session = persistent_mgr.create_database_session() if not offline: ipv4, hostname = _check_address(address) else: ipv4 = address hostname = "" # adding default hostname for cases where dns doesn't resolve the address # we need *some* hostname to use on Nagios configuration if hostname == "": hostname = address rc, message = validate_address(ipv4) if rc != 0: return rc, message rc, message = validate_label(label) if rc != 0: return rc, message if not offline: (validate_ret, device_type, mtm, serialnum, version, architecture) = validate( ipv4, userid, password, device_type, ssh_key) if validate_ret != 0: logging.error( "%s::failed to add device, validate device(%s) return value(%d).", _method_, label, validate_ret) error_message = None if validate_ret == 1: error_message = _("Failed to connect the device.") elif validate_ret == 2: error_message = _("The userid/password combination is not valid.") elif validate_ret == 3: error_message = _("No plugin capable of managing device was found.") elif validate_ret == 109: error_message = _("Connect timeout.") return validate_ret, error_message else: if _check_device_exist_by_props(session, device_type, mtm, serialnum): logging.error("%s::failed to add device, device(machine-type-model=%s, " "serial-number=%s) is already managed.", _method_, mtm, serialnum) error_message = _("The device is not added, a device with the same serial number " "and machine type model is found in the configuration file.") return 110, error_message # figure out the rack ID to add the device under if rackid: rack = persistent_mgr.get_rack_by_id(session, rackid) else: # don't have a rack id. find first the rack and assign it there try: racks_info = persistent_mgr.get_all_racks(session) rack = racks_info[0] except IndexError: # No rack exist, create one rack = Rack() rack.label = "Default" persistent_mgr.add_racks(session, [rack]) device_info = Resource() device_info.rack = rack device_info.eia_location = rack_location device_info.machine_type_model = mtm device_info.serial_number = serialnum device_info.address = ipv4 device_info.hostname = hostname device_info.userid = userid if password and not ssh_key: device_info.password = persistent_mgr.encrypt_data(password) device_info.label = label device_info.resource_type = device_type device_info.version = version device_info.architecture = architecture device_info.status = constants.access_status.SUCCESS.value device_info.statusTime = datetime.utcnow() # we are adding the device after validation, set validated. device_info.validated = True hooks = _load_inventory_device_plugins() hook_name = 'unknown' # keeps pylint happy try: for hook_name, hook_plugin in hooks.items(): hook_plugin.add_device_pre_save(device_info) except Exception as e: logging.exception(e) message = _("Before device was added. Error in plugin (%s): %s") % (hook_name, e) return 102, message persistent_mgr.add_devices(session, [device_info]) if ssh_key: key_info = Key() key_info.resource = device_info key_info.type = "RSA" key_info.value = ssh_key if password: key_info.password = persistent_mgr.encrypt_data(password) persistent_mgr.add_ssh_keys(session, [key_info]) try: for hook_name, hook_plugin in hooks.items(): hook_plugin.add_device_post_save(device_info) except Exception as e: logging.exception(e) message = _("After device was added. Error in plugin (%s): %s") % (hook_name, e) if not message: message = _("Added device successfully.") session.close() return 0, message
b94dc65fdf864e4f5226d6793702355a9cbe1e46
3,652,141
def kegg_df_to_smiles(kegg_df, column_name): """ Args: kegg_df : pandas dataframe with SID numbers in the third column Returns: kegg_df : modified with a fourth column containing CID and fifth column containing SMILES unsuccessful_list : list of SIDs for which no CID or SMILES were found """ res = [] cid_list = [] unsuccessful_list = [] for i in range(len(kegg_df)): # cell index of desired SID sid = kegg_df.loc[i, column_name] try: smile_result = sid_to_smiles(sid)[0] res.append(smile_result) cid_result = sid_to_smiles(sid)[1] cid_list.append(cid_result) except BaseException: res.append('none') cid_list.append('none') unsuccessful_list.append(sid) pass kegg_df.insert(0, column='CID', value=cid_list) # Change this 2 to the number where the smiles column should be kegg_df.insert(1, column='SMILES', value=res) # kegg_df.to_csv(r'../datasets/df_cleaned_kegg_with_smiles.csv') return kegg_df, unsuccessful_list
09c4f3af98bb287348c20fe0fe7e3ce0eb63e6fa
3,652,142
import sqlite3 async def get_user(user_id: int) -> User: """Gets user settings. Returns ------- User object Raises ------ sqlite3.Error if something happened within the database. exceptions.NoDataFoundError if no user was found. LookupError if something goes wrong reading the dict. Also logs all errors to the database. """ table = 'settings_user' function_name = 'get_user' sql = 'SELECT * FROM settings_user where user_id=?' try: cur = ARCHMAGE_DB.cursor() cur.row_factory = sqlite3.Row cur.execute(sql, (user_id,)) record = cur.fetchone() except sqlite3.Error as error: await log_error( INTERNAL_ERROR_SQLITE3.format(error=error, table=table, function=function_name, sql=sql) ) raise if not record: raise exceptions.NoDataFoundError('User not in database') try: user_settings = User( user_id = record['user_id'], target_enchant = record['target_enchant'], ) except Exception as error: await log_error( INTERNAL_ERROR_LOOKUP.format(error=error, table=table, function=function_name, record=record) ) raise LookupError return user_settings
e754113b0d2b4791c6660f9b4e7122144f1638b6
3,652,143
def _valid_optimizer_args(cfg_user, logger): """ Validates the "optimizer" parameters of a json configuration file used for training. The function returns False if an error has occurred and True if all settings have passed the check. :param cfg_user: EasyDict, json configuration file imported as dictionary :param logger: logger instance :return: boolean, True if no errors have been detected, False otherwise """ error = False if 'optimizer' in cfg_user: if not all_keys_known(cfg_user.optimizer, arguments.OPTIMIZER_KEYS, logger): error = True if 'name' not in cfg_user.optimizer: logger.error(f"The optimizer is not specified. Choose among {arguments.OPTIMIZERS} to specify 'name'.\n") error = True else: if cfg_user.optimizer.name not in arguments.OPTIMIZERS: logger.error(f"Unknown optimizer '{cfg_user.optimizer.name}'. Choose among {arguments.OPTIMIZERS} " "to specify 'name'.\n") error = True if 'learning_rate' in cfg_user.optimizer and cfg_user.optimizer.learning_rate <= 0: logger.error("Invalid value for the argument 'learning_rate': " f"{cfg_user.optimizer.learning_rate}. Specify a positive number.\n") error = True if 'weight_decay' in cfg_user.optimizer and cfg_user.optimizer.weight_decay <= 0: logger.error("Invalid value for the argument 'weight_decay': " f"{cfg_user.optimizer.weight_decay}. Specify a positive number.\n") error = True if error: logger.info('\n') else: logger.info('Settings check: ok.\n\n') return not error
126d66cc04d7bafc5ef91a9d365cdca34d0fd36a
3,652,144
def delete_host_network(host_id, host_network_id): """Delete host network.""" data = _get_request_data() return utils.make_json_response( 200, host_api.del_host_network( host_id, host_network_id, user=current_user, **data ) )
047ffb411e8dfbde1a818ba31874280dfa113aa0
3,652,145
def rrms_error(y: np.array, y_hat: np.array) -> float: """ Computes the RRMS error of an estimation. :param y: true parameters as numpy array :param y_hat: estimated parameters as numpy array :return: Frobenius norm of the relative estimation error, as percentage """ return fro_error(y, y_hat) / np.linalg.norm(y, ('fro' if len(y.shape) > 1 else 2)) * 100
0b534c5b8047bd77a1873a604f3896eb597d7267
3,652,146
import locale def create(): """Creates new quiz and stores information about it in database.""" if request.method == "GET": return render_template("quizzes/create.html") error = None questions = [] quiz_name = None if isinstance(request.json, dict): for quiz in request.json: quiz_name = quiz for question_text in request.json[quiz_name]: question_options = request.json[quiz_name][question_text] questions.append(Question(text=question_text, options=question_options)) else: error = locale.error_wrong_data new_quiz = Quiz(author_id=g.user["id"], name=quiz_name, questions=questions) errors = new_quiz.validate() if error or errors: error_msg = "\n".join(filter(None, [error, *errors])) return jsonify(error=error_msg) else: db = get_db() new_quiz.add_to_db() db.commit() return jsonify(result="success", url=redirect(url_for("quizzes.index")).headers["Location"])
002915c6e8c766053623bf70ab66225ddfdc0883
3,652,147
from typing import Dict def get_teams_from_account(client: FrameioClient) -> Dict: """ Builds a list of teams for the account. Note: the API offers two strategies to fetch an account's teams, `'get_teams`` and `get_all_teams`. Using `get_teams`, we'll pull only the teams owned by the account_id, disregarding teams the user belongs to but does not own. More info: https://docs.frame.io/docs/directory-lists-and-file-trees#2-fetch-the-accounts-teams """ acct = client.users.get_me() acct_id = acct["account_id"] team_name_kv = dict() for team in client.teams.list(acct_id): team_name_kv[team["id"]] = team["name"] return team_name_kv
ebbc73e2aad3f6a0833dad469a8b952cc8eef21b
3,652,148
def verify_mfib_vrf_hardware_rate( device, vrf, num_of_igmp_groups, var, rate_pps, max_time=60, check_interval=10): """Verify mfib vrf hardware rate Args: device ('obj'): Device object neighbors (`list`): neighbors to be verified max_time (`int`, optional): Max time, default: 30 check_interval (`int`, optional): Check interval, default: 10 """ res = True timeout = Timeout(max_time, check_interval) while timeout.iterate(): try: output=device.parse("show ip mfib vrf {vrf} active".format(vrf=vrf)) except SubCommandFailure as e: timeout.sleep() continue ip_list,hd_rt=[],0 ##Verify wether the ips learnet have expected harware rate or not for ip in output.q.get_values('groups'): hd_rt=output.q.contains(ip).get_values('hw_rate_utilized')[0] rate1 = int(rate_pps)/int(num_of_igmp_groups) max_r = int(rate1)+int(var) min_r = int(rate1)-int(var) if hd_rt>= min_r and hd_rt<=max_r: ip_list.append(ip) else: log.error("The ip {ip} has unexpected hardware rate {hd_rt}, while expected should be between {min_r} and {max_r}".format(ip=ip, hd_rt=hd_rt, min_r=min_r, max_r=max_r)) res = False if res: ips=",".join(ip_list) log.info("ip {ip_list} have expected hardware rate {hd_rt}".format(ip_list=ips,hd_rt=hd_rt)) return True timeout.sleep() return res
402c178acff9d58fec01e96efc08d205a5ff9c5e
3,652,149
import math def sieve(n): """ Returns a list with all prime numbers up to n. >>> sieve(50) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] >>> sieve(25) [2, 3, 5, 7, 11, 13, 17, 19, 23] >>> sieve(10) [2, 3, 5, 7] >>> sieve(9) [2, 3, 5, 7] >>> sieve(2) [2] >>> sieve(1) [] """ l = [True] * (n + 1) # noqa: E741 prime = [] start = 2 end = int(math.sqrt(n)) while start <= end: # If start is a prime if l[start] is True: prime.append(start) # Set multiples of start be False for i in range(start * start, n + 1, start): if l[i] is True: l[i] = False start += 1 for j in range(end + 1, n + 1): if l[j] is True: prime.append(j) return prime
f6c930c604839ba1872bd3168c76b353606ee8ee
3,652,150
def is_trueish(expression: str) -> bool: """True if string and "True", "Yes", "On" (ignorecase), False otherwise""" expression = str(expression).strip().lower() return expression in {'true', 'yes', 'on'}
7d958c068281deb68de7665dc1eeb07acf5e941f
3,652,151
def u_onequbit_h(qc: qiskit.QuantumCircuit, thetas, wire: int): """Return a simple series of 1 qubit - gate which is measured in X-basis Args: - qc (QuantumCircuit): Init circuit - thetas (Numpy array): Parameters - wire (Int): position that the gate carries on Returns: - QuantumCircuit: The circuit which have added gates """ if isinstance(wire, int) != True: wire = (wire['wire']) qc.rz(thetas[0], wire) qc.rx(thetas[1], wire) qc.rz(thetas[2], wire) qc.h(wire) return qc
3bcb5e9bb61abe8eb0d150ba539f2b21d4089589
3,652,152
def get_manager() -> ArchiveManager: """ Returns the object storage manager for the archive subsys :return: """ global _manager_singleton if _manager_singleton is None: raise Exception("Not initialized. Call init_archive_manager") return _manager_singleton
c43edc20af5b3e9a18442cfbb4bdefa7e7442d1d
3,652,153
def require_password_and_profile_via_email( strategy, backend, user=None, flow=None, current_partial=None, *args, **kwargs ): # pylint: disable=unused-argument """ Sets a new user's password and profile Args: strategy (social_django.strategy.DjangoStrategy): the strategy used to authenticate backend (social_core.backends.base.BaseAuth): the backend being used to authenticate user (User): the current user flow (str): the type of flow (login or register) current_partial (Partial): the partial for the step in the pipeline Raises: RequirePasswordAndProfileException: if the user hasn't set password or name """ if backend.name != EmailAuth.name or flow != SocialAuthState.FLOW_REGISTER: return {} data = strategy.request_data() profile = user.profile with transaction.atomic(): if "name" in data: profile = profile_api.ensure_profile(user, {"name": data["name"]}) if "password" in data: user.set_password(data["password"]) user.save() if not user.password or not profile.name: raise RequirePasswordAndProfileException(backend, current_partial) return {"user": user, "profile": profile or user.profile}
63d7d6e61696e5a48d297b8911f1b48cc5c82e5e
3,652,154
import copy def plot_feat_barplot(feat_data: pd.DataFrame, top_x_feats: int = 15, plot_features: dict = None ): """Plots local feature explanations Parameters ---------- feat_data: pd.DataFrame Feature explanations top_x_feats: int The number of feature to display. plot_features: dict Dict containing mapping between model features and display features """ feat_data = copy.deepcopy(feat_data) if plot_features: plot_features['Pruned Events'] = 'Pruned Events' feat_data['Feature'] = feat_data['Feature'].apply(lambda x: plot_features[x]) feat_data['sort_col'] = feat_data['Shapley Value'].apply(lambda x: abs(x)) if top_x_feats is not None and feat_data.shape[0] > top_x_feats: sorted_df = feat_data.sort_values('sort_col', ascending=False) cutoff_contribution = abs(sorted_df.iloc[4]['Shapley Value']) feat_data = feat_data[np.logical_or(feat_data['Explanation'] >= cutoff_contribution, feat_data['Explanation'] <= -cutoff_contribution)] a = alt.Chart(feat_data).mark_bar(size=15, thickness=1).encode( y=alt.Y("Feature", axis=alt.Axis(title="Feature", labelFontSize=15, titleFontSize=15, titleX=-61), sort=alt.SortField(field='sort_col', order='descending')), x=alt.X('Shapley Value', axis=alt.Axis(grid=True, title="Shapley Value", labelFontSize=15, titleFontSize=15), scale=alt.Scale(domain=[-0.1, 0.4])), ) line = alt.Chart(pd.DataFrame({'x': [0]})).mark_rule( color='#798184').encode(x='x') feature_plot = (a + line).properties( width=190, height=225 ) return feature_plot
4fd976f4846163a97690143da18a8e235d1b940c
3,652,155
async def post_ir_remote_key(device_id: str, remote_id: str, payload: dict) -> dict: # fmt: off """ Trigger key / code on the remote bound to IR device. There are 2 types of keys on Tuya IR devices: * native - out of the box keys, provided with remotes for different brands * custom - DIY keys learned by the IR device Body for "custom" key (e.g. DIY): { "type": "custom", "code": "<value>" } Body for "native" key: { "type": "custom", "key": "<value>" } :param device_id: Unique id of the Tuya device (in Tuya's API it is called 'infrared_id') :param remote_id: Unique remote id bound to the IR device, returned by 'get_ir_device_remotes'. :param payload: Request body in JSON format :return: Dictionary with HTTP response """ # fmt: on url = _url_format(id=device_id, endpoint="remotes", url=IR_URL) # {"code" : <value>} for "custom", {"key": <value>} for "native" if payload.get("type", "native") == "custom": lc_url = f"{url}/{remote_id}/learning-codes" response = _request(url=lc_url, payload=payload) else: k_url = f"{url}/{remote_id}/command" response = _request(url=k_url, payload=payload) return response
9c0fb945076c49564fa65f48971e0df0b2131794
3,652,156
import requests import traceback def login(): """ The function for the front-end client to log in. Use the following command to test: $ curl -d '{"custom_id":"id"}' -H "Content-Type: application/json" -X POST http://0.0.0.0:5000/login/ Parameters ---------- google_id_token : str The token obtained from the Google Sign-In API. client_id : str The client ID string returned by the Google Analytics tracker or created by the front-end client. Returns ------- user_token : str The encoded JWT that stores user information. """ client_id = None request_json = request.get_json() if request_json is not None: if "google_id_token" in request_json: # google_id_token is obtained from the Google Sign-In API google_id_token = request_json["google_id_token"] # Verify the google_id_token using Google Sign-In API try: id_info = id_token.verify_oauth2_token(google_id_token, requests.Request(), config.GOOGLE_SIGNIN_CLIENT_ID) # Token is valid client_id = "google.%s" % id_info["sub"] except ValueError: traceback.print_exc() e = InvalidUsage("Invalid Google ID token.", status_code=401) return handle_invalid_usage(e) except: traceback.print_exc() e = InvalidUsage(traceback.format_exc(), status_code=401) return handle_invalid_usage(e) else: if "client_id" in request_json: # obtained from the Google Analytics tracker or created by the front-end client client_id = request_json["client_id"] # Get user id by client id, and issued an user jwt if client_id is None: e = InvalidUsage("Must have either 'google_id_token' or 'client_id'.", status_code=400) return handle_invalid_usage(e) else: user_token = get_user_token_by_client_id(client_id) if user_token is None: e = InvalidUsage("Permission denied.", status_code=403) return handle_invalid_usage(e) else: return_json = {"user_token": user_token} return jsonify(return_json)
a8de77d1f9f2c64fca6927c2d5fd29fa4133b31b
3,652,157
def listThingTypes(): """ Return a list of C{unicode} strings each of which gives the name of a type which can be created with the create command. """ return sorted([type.type for type in getPlugins(IThingType, imaginary.plugins)])
31a98e58d2fd70cc7a1449e2e50946decbf98244
3,652,158
import json def _parse_boolean(value): """ :param value: The string to parse :type value: str :returns: The parsed value :rtype: bool """ try: boolean = json.loads(value) if boolean is None or isinstance(boolean, bool): return boolean else: raise DCOSException( 'Unable to parse {!r} as a boolean'.format(value)) except ValueError as error: logger.exception('Error parsing value as a JSON boolean') msg = 'Unable to parse {!r} as a boolean: {}'.format(value, error) raise DCOSException(msg)
60dcd4ed8663823fdf4df5c27e032c6693a11cc8
3,652,159
import torch import time def train(args, model, train_data_loader, dev_data_loader, accuracy, device): """ Train the current model Keyword arguments: args: arguments model: model to be trained train_data_loader: pytorch build-in data loader output for training examples dev_data_loader: pytorch build-in data loader output for dev examples accuracy: previous best accuracy device: cpu of gpu """ model.train() optimizer = torch.optim.Adamax(model.parameters()) criterion = nn.CrossEntropyLoss() print_loss_total = 0 epoch_loss_total = 0 start = time.time() #### modify the following code to complete the training funtion for idx, batch in enumerate(train_data_loader): question_text = batch['text'].to(device) question_len = batch['len'] labels = batch['labels'] #### Your code here clip_grad_norm_(model.parameters(), args.grad_clipping) print_loss_total += loss.data.numpy() epoch_loss_total += loss.data.numpy() if idx % args.checkpoint == 0 and idx > 0: print_loss_avg = print_loss_total / args.checkpoint print('number of steps: %d, loss: %.5f time: %.5f' % (idx, print_loss_avg, time.time()- start)) print_loss_total = 0 curr_accuracy = evaluate(dev_data_loader, model, device) if accuracy < curr_accuracy: torch.save(model, args.save_model) accuracy = curr_accuracy return accuracy
fa5953bc4fc8554b1d0164eae96c1fd9ce949068
3,652,160
def get_category_embeddings(word_table, embeds): """Calculate embeddings from word labels for each category.""" category_words = read_categories_as_json() word_ids = word_table.lookup(tf.constant(category_words)) glove_embeds = tf.nn.embedding_lookup(embeds, word_ids) # Calculate category embedding by summing word vectors in each category # tf.reduce_sum is used as the category embedding will be normalized later category_embeds = tf.reduce_sum(glove_embeds, axis=1) expand_category_embeds = tf.expand_dims(category_embeds, axis=1) return expand_category_embeds
23fbb867ec1390c49b0a217968d44f2abe189e57
3,652,161
import re import requests def find_download_links(soup, title, language): """Examine all download links per law document and create respective filepaths.""" vbfile = soup.find("div", "vbFile") fulltext = soup.find("div", "fulltext") # check if file attachment elements exist if vbfile is not None: attach = vbfile.select("ul li a") metadata_list = [] # collect metadata for link and download_path # some laws have multiple doc links, so we want to alter the saved doc's filename to prevent overwriting multiple = len(attach) > 1 if multiple: title += "__" i = 1 # loop through every available file attachment for a in attach: # ignore "Xem nhanh"/Quick View links as they're invalid if "iFrame" in a["href"]: continue # all other links are javascript fpath = re.findall(r"([^']*)" , a["href"])[6] url = BASE_URL + fpath doc = requests.get(url) ext = re.split("\.", fpath)[-1] # some laws have multiple doc links, so we alter the saved doc's filename to prevent overwriting if multiple: title = title[:-1] + str(i) i += 1 fname = create_filename(title, language, ext) with open(fname, "wb") as f: for chunk in doc.iter_content(1024 * 1024): f.write(chunk) print("downloaded", ext, "for", title) metadata_list.append({"link": url, "download_path": fname, "language": language}) # alternative for "download_path": [fname.index("data"):] return metadata_list # if file attachment elements don't exist, scrape the text off the page and save as txt elif fulltext is not None: doc = fulltext.get_text() fname = create_filename(title, language, "txt") with open(fname, "w", encoding = "utf-8") as f: f.write(doc) print("downloaded txt for", title) return [{"download_path": fname, "language": language}] # alternative for "download_path": [fname.index("data"):] # if neither exists, don't save law document else: return None
22c017c20ab2a3cfa9cfeb1e43ec2a24e9ff0cc7
3,652,162
import random def fake_feature_date(days=365): """Generate fake feature_date.""" start_date = date.today() random_number_of_days = random.randrange(days) _date = start_date + timedelta(days=random_number_of_days) return _date.strftime("%Y-%m-%d")
f9706d353eef0f531ab74b585cf966349faf4003
3,652,163
def export_graph(checkpoint_path, output_nodes): """ Export a graph stored in a checkpoint as a *.pb file. :param checkpoint_path: The checkpoint path which should be frozen. :param output_nodes: The output nodes you care about as a list of strings (their names). :return: """ if not tf.gfile.Exists(checkpoint_path): raise AssertionError( "Export directory doesn't exists. Please specify an export " "directory: %s" % checkpoint_path) if not output_nodes: print("You need to supply the name of a node to --output_node_names.") return -1 # We retrieve our checkpoint fullpath checkpoint = tf.train.get_checkpoint_state(checkpoint_path) input_checkpoint = checkpoint.model_checkpoint_path # We precise the file fullname of our freezed graph output_graph = checkpoint_path + "/frozen_model.pb" # We clear devices to allow TensorFlow to control on which device it will load operations clear_devices = True # We start a session using a temporary fresh Graph with tf.Session(graph=tf.Graph()) as sess: # We import the meta graph in the current default Graph saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) # We restore the weights saver.restore(sess, input_checkpoint) # We use a built-in TF helper to export variables to constants output_graph_def = tf.graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes output_nodes # The output node names are used to select the useful nodes ) # Finally we serialize and dump the output graph to the filesystem with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString()) print("%d ops in the final graph." % len(output_graph_def.node)) return output_graph_def
b83b832c0b0bea9afc0e84843061bd8091e63fc8
3,652,165
def GetTrackingBranch(git_repo, branch=None, for_checkout=True, fallback=True, manifest=None, for_push=False): """Gets the appropriate push branch for the specified directory. This function works on both repo projects and regular git checkouts. Assumptions: 1. We assume the manifest defined upstream is desirable. 2. No manifest? Assume tracking if configured is accurate. 3. If none of the above apply, you get 'origin', 'master' or None, depending on fallback. Args: git_repo: Git repository to operate upon. branch: Find the tracking branch for this branch. Defaults to the current branch for |git_repo|. for_checkout: Whether to return localized refspecs, or the remotes view of it. fallback: If true and no remote/branch could be discerned, return 'origin', 'master'. If False, you get None. Note that depending on the remote, the remote may differ if for_push is True or set to False. for_push: Controls whether the remote and refspec returned is explicitly for pushing. manifest: A Manifest instance if one is available, else a ManifestCheckout is created and used. Returns: A RemoteRef, or None. """ result = GetTrackingBranchViaManifest(git_repo, for_checkout=for_checkout, manifest=manifest, for_push=for_push) if result is not None: return result if branch is None: branch = GetCurrentBranch(git_repo) if branch: result = GetTrackingBranchViaGitConfig(git_repo, branch, for_checkout=for_checkout) if result is not None: if (result.ref.startswith('refs/heads/') or result.ref.startswith('refs/remotes/')): return result if not fallback: return None if for_checkout: return RemoteRef('origin', 'refs/remotes/origin/master') return RemoteRef('origin', 'master')
0bb9bb99e03cebc800a0f60f89a8de5178fdffdc
3,652,166
def inception_crop(image, **kw): """Perform an "inception crop", without resize.""" begin, size, _ = tf.image.sample_distorted_bounding_box( tf.shape(image), tf.zeros([0, 0, 4], tf.float32), use_image_if_no_bounding_boxes=True, **kw) crop = tf.slice(image, begin, size) # Unfortunately, the above operation loses the depth-dimension. So we need # to Restore it the manual way. crop.set_shape([None, None, image.shape[-1]]) return crop
c5d8dd420055ad82e64bc61204fb6218c7621489
3,652,167
import json import logging def _clear_port_access_clients_limit_v1(port_name, **kwargs): """ Perform GET and PUT calls to clear a port's limit of maximum allowed number of authorized clients. :param port_name: Alphanumeric name of Port :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: True if successful, False otherwise """ port_name_percents = common_ops._replace_special_characters(port_name) port_data = port.get_port(port_name_percents, depth=0, selector="configuration", **kwargs) port_data.pop('port_access_clients_limit', None) port_data.pop('name', None) port_data.pop('origin', None) port_data.pop('vrf', None) target_url = kwargs["url"] + "system/ports/%s" % port_name_percents put_data = json.dumps(port_data, sort_keys=True, indent=4) response = kwargs["s"].put(target_url, data=put_data, verify=False) if not common_ops._response_ok(response, "PUT"): logging.warning("FAIL: Removing maximum allowable clients limit on Port '%s' failed with status code %d: %s" % (port_name, response.status_code, response.text)) return False else: logging.info("SUCCESS: Removing maximum allowable clients limit on Port '%s' succeeded" % port_name) return True
46827c7a7ac70dba971e6fc04e9d101a8ca9e8b6
3,652,168
from typing import cast def cvGetHistValue_1D(hist, i1): """Returns pointer to histogram bin""" return cast(cvPtr1D(hist.bins, i1), c_float_p)
6b1a453696d8d1fbeda54900c1319e56a9133118
3,652,169
import re def contains_order_by(query): """Returns true of the query contains an 'order by' clause""" return re.search( r'order\s+by\b', query, re.M|re.I) is not None
4f4eebadfd5dc4cb1121378db4ef5f68d27bf787
3,652,170
def detach(l): """\ Set a layer as detached, excluding it from gradient computation. :param l: layer or list of layers to detach :return: detached layer(s) """ # core module has multiple overloads for this: # 1. detach(l) where l is a Layer and the return value is a Layer # 2. detach(l) where l is a [Layer] and the return value is a [Layer] return _eddl.detach(l)
d4ea7c1496bbcc918ad55c32c852332d4f892e31
3,652,171
import re def __shorten_floats(source): """ Use short float notation whenever possible :param source: The source GLSL string :return: The GLSL string with short float notation applied """ # Strip redundant leading digits source = re.sub(re.compile(r'(?<=[^\d.])0(?=\.)'), '', source) # Strip redundant trailing digits return re.sub(re.compile(r'(?<=\d\.)0(?=\D)'), '', source)
538645cde50e6c9a4ed3960cf6bbd177c5583381
3,652,172
def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28, channels=1, nb_filters=64, nb_classes=10): """ Defines a CNN model using Keras sequential model :param logits: If set to False, returns a Keras model, otherwise will also return logits tensor :param input_ph: The TensorFlow tensor for the input (needed if returning logits) ("ph" stands for placeholder but it need not actually be a placeholder) :param img_rows: number of row in the image :param img_cols: number of columns in the image :param channels: number of color channels (e.g., 1 for MNIST) :param nb_filters: number of convolutional filters per layer :param nb_classes: the number of output classes :return: """ model = Sequential() # Define the layers successively (convolution layers are version dependent) if keras.backend.image_dim_ordering() == 'th': input_shape = (channels, img_rows, img_cols) else: input_shape = (img_rows, img_cols, channels) layers = [conv_2d(nb_filters, (5, 5), (1, 1), "same", input_shape=input_shape), Activation('relu'), conv_2d(nb_filters, (5, 5), (1, 1), "valid"), Activation('relu'), Flatten(), Dropout(0.25), Dense(128), Activation('relu'), Dropout(0.5), Dense(nb_classes)] for layer in layers: model.add(layer) if logits: logits_tensor = model(input_ph) model.add(Activation('softmax')) if logits: return model, logits_tensor else: return model
488b307f394f9184d094aeb0a71d75442534d4c7
3,652,173
def _mvnormal_halton(sample_shape, mean, randomized, seed=None, covariance_matrix=None, scale_matrix=None, validate_args=False, dtype=None, **kwargs): """Returns normal draws using Halton low-discrepancy sequences.""" random_type = (RandomType.HALTON_RANDOMIZED if randomized else RandomType.HALTON) return _mvnormal_quasi(sample_shape, mean, random_type, seed=seed, covariance_matrix=covariance_matrix, scale_matrix=scale_matrix, validate_args=validate_args, dtype=dtype, **kwargs)
f3795f4c40e809b461c60b43f118a57b1bb18ba3
3,652,174
def get_meals(bouts_sec: np.ndarray, max_gap_sec: float = 60.0, min_overlap: float = 0.25): """ Computes a sequence of meal intervals from a sequence of chewing-bout intervals. :param bouts_sec: The sequence of chewing-bout intervals (see ``get_bouts`` output) :param max_gap_sec: Maximum gap-duration that is merged between consecutive chewing-bouts :param min_overlap: Minimum allowed overlap of chewing-bout duration with meal duration :return: The 2-column (start & stop, in seconds) matrix of meals """ assert is_numpy_matrix(bouts_sec, cols=2) assert isinstance(max_gap_sec, float) assert isinstance(min_overlap, float) meals_sec, orig_durations_sec = merge_gaps(bouts_sec, max_gap_sec, True) overlap = orig_durations_sec / (meals_sec[:, 1] - meals_sec[:, 0]) return meals_sec[overlap >= min_overlap, :]
aa4d66d71614825a71daddbb169994e8d3c4aac7
3,652,175
def setPerformanceLevel(source, level): """Sets a given performance level for the GPU Core and Memory. Args: source: string containing word "core" or "mem" level: an integer between 0-7 for core and 0-3 memory Returns: True - if action is sucessful. False - not possible to apply configuration. """ if source == "core": assert level in list(range( 0, 8)), "Core Performance Level betwen 0 and 7." result = runDVFSscript("-P " + str(level)) if "ERROR" in result: return False elif source == "mem": assert level in list(range( 0, 4)), "Core Performance Level betwen 0 and 3." result = runDVFSscript("-p " + str(level)) if "ERROR" in result: return False else: print("Not valid source used - core or mem") return False return True
ef13376acf51de0acb3491efcca731cdc3e569b3
3,652,176
from typing import OrderedDict def elem_props_template_init(templates, template_type): """ Init a writing template of given type, for *one* element's properties. """ ret = OrderedDict() tmpl = templates.get(template_type) if tmpl is not None: written = tmpl.written[0] props = tmpl.properties ret = OrderedDict((name, [val, ptype, anim, written]) for name, (val, ptype, anim) in props.items()) return ret
c31d5ca8224763701f44471f23f00454c4365240
3,652,177
def to_density(x, bins=5, bounds=None): """"Turn into density based nb of bins""" p_x = np.histogram(x, bins=bins, density=True, range=bounds)[0] p_x = p_x / np.sum(p_x) return p_x
ce4af24ef57ca466a0f5d4b96ffff13ee45ddddb
3,652,178
from datetime import datetime def pro_bar(ts_code='', api=None, start_date='', end_date='', freq='D', asset='E', exchange='', adj = None, ma = [], factors = None, adjfactor = False, contract_type = '', retry_count = 3): """ BAR数据 Parameters: ------------ ts_code:证券代码,支持股票,ETF/LOF,期货/期权,港股,数字货币 start_date:开始日期 YYYYMMDD end_date:结束日期 YYYYMMDD freq:支持1/5/15/30/60分钟,周/月/季/年 asset:证券类型 E:股票和交易所基金,I:沪深指数,C:数字货币,FT:期货 FD:基金/O期权/H港股/中概美国/中证指数/国际指数 exchange:市场代码,用户数字货币行情 adj:复权类型,None不复权,qfq:前复权,hfq:后复权 ma:均线,支持自定义均线频度,如:ma5/ma10/ma20/ma60/maN factors因子数据,目前支持以下两种: vr:量比,默认不返回,返回需指定:factor=['vr'] tor:换手率,默认不返回,返回需指定:factor=['tor'] 以上两种都需要:factor=['vr', 'tor'] retry_count:网络重试次数 Return ---------- DataFrame code:代码 open:开盘close/high/low/vol成交量/amount成交额/maN均价/vr量比/tor换手率 期货(asset='X') code/open/close/high/low/avg_price:均价 position:持仓量 vol:成交总量 """ today= datetime.datetime.today().date() today = str(today)[0:10] start_date = '' if start_date is None else start_date end_date = today if end_date == '' or end_date is None else end_date ts_code = ts_code.strip().upper() if asset != 'C' else ts_code.strip().lower() start_date = start_date.replace('-', '') end_date = end_date.replace('-', '') if len(freq.strip())>=3: freq = freq.strip().lower() else: freq = freq.strip().upper() if asset != 'C' else freq.strip().lower() asset = asset.strip().upper() api = api if api is not None else pro_api() for _ in range(retry_count): try: if asset == 'E': if freq == 'D': data = api.daily(ts_code=ts_code, start_date=start_date, end_date=end_date) if factors is not None and len(factors) >0 : ds = api.daily_basic(ts_code=ts_code, start_date=start_date, end_date=end_date)[['trade_date', 'turnover_rate', 'volume_ratio']] ds = ds.set_index('trade_date') data = data.set_index('trade_date') data = data.merge(ds, left_index=True, right_index=True) data = data.reset_index() if ('tor' in factors) and ('vr' not in factors): data = data.drop('volume_ratio', axis=1) if ('vr' in factors) and ('tor' not in factors): data = data.drop('turnover_rate', axis=1) if freq == 'W': data = api.weekly(ts_code=ts_code, start_date=start_date, end_date=end_date) if freq == 'M': data = api.monthly(ts_code=ts_code, start_date=start_date, end_date=end_date) if 'min' in freq: data = api.mins(ts_code=ts_code, start_time=start_date, end_time=end_date, freq=freq) data['trade_date'] = data['trade_time'].map(lambda x: x.replace('-', '')[0:8]) data['pre_close'] = data['close'].shift(-1) if adj is not None: fcts = api.adj_factor(ts_code=ts_code, start_date=start_date, end_date=end_date)[['trade_date', 'adj_factor']] data = data.set_index('trade_date', drop=False).merge(fcts.set_index('trade_date'), left_index=True, right_index=True, how='left') if 'min' in freq: data = data.sort_values('trade_time', ascending=False) data['adj_factor'] = data['adj_factor'].fillna(method='bfill') for col in PRICE_COLS: if adj == 'hfq': data[col] = data[col] * data['adj_factor'] if adj == 'qfq': data[col] = data[col] * data['adj_factor'] / float(fcts['adj_factor'][0]) data[col] = data[col].map(FORMAT) for col in PRICE_COLS: data[col] = data[col].astype(float) if adjfactor is False: data = data.drop('adj_factor', axis=1) if 'min' not in freq: data['change'] = data['close'] - data['pre_close'] data['pct_chg'] = data['change'] / data['pre_close'] * 100 data['pct_chg'] = data['pct_chg'].map(lambda x: FORMAT(x)).astype(float) else: data = data.drop(['trade_date', 'pre_close'], axis=1) elif asset == 'I': if freq == 'D': data = api.index_daily(ts_code=ts_code, start_date=start_date, end_date=end_date) if freq == 'W': data = api.index_weekly(ts_code=ts_code, start_date=start_date, end_date=end_date) if freq == 'M': data = api.index_monthly(ts_code=ts_code, start_date=start_date, end_date=end_date) if 'min' in freq: data = api.mins(ts_code=ts_code, start_time=start_date, end_time=end_date, freq=freq) elif asset == 'FT': if freq == 'D': data = api.fut_daily(ts_code=ts_code, start_date=start_date, end_date=end_date, exchange=exchange) if 'min' in freq: data = api.mins(ts_code=ts_code, start_time=start_date, end_time=end_date, freq=freq) elif asset == 'O': if freq == 'D': data = api.opt_daily(ts_code=ts_code, start_date=start_date, end_date=end_date, exchange=exchange) if 'min' in freq: data = api.mins(ts_code=ts_code, start_time=start_date, end_time=end_date, freq=freq) elif asset == 'FD': if freq == 'D': data = api.fund_daily(ts_code=ts_code, start_date=start_date, end_date=end_date) if 'min' in freq: data = api.mins(ts_code=ts_code, start_time=start_date, end_time=end_date, freq=freq) if asset == 'C': if freq == 'd': freq = 'daily' elif freq == 'w': freq = 'week' data = api.coinbar(exchange=exchange, symbol=ts_code, freq=freq, start_dae=start_date, end_date=end_date, contract_type=contract_type) if ma is not None and len(ma) > 0: for a in ma: if isinstance(a, int): data['ma%s'%a] = MA(data['close'], a).map(FORMAT).shift(-(a-1)) data['ma%s'%a] = data['ma%s'%a].astype(float) data['ma_v_%s'%a] = MA(data['vol'], a).map(FORMAT).shift(-(a-1)) data['ma_v_%s'%a] = data['ma_v_%s'%a].astype(float) data = data.reset_index(drop=True) except Exception as e: return None else: return data raise IOError('ERROR.')
8df29ce9ac89acabfb5109954f2deee515d707ca
3,652,179
def ticket_qr_code(request, ticket_id): """ Generates a qr code data url to validate a ticket with the id passed """ return segno.make( validate_ticket_url(request, ticket_id), micro=False ).svg_data_uri(scale=2)
249b25d5d96651175e881284d31938fe56fe06dc
3,652,181
def _iou(box_a, box_b): """ :param box_a: [c, A, 4] :param box_b: [c, B, 4] :return: [c, A, B] 两两之间的iou """ # 变成左上角坐标、右下角坐标 boxes1 = tf.concat([box_a[..., :2] - box_a[..., 2:] * 0.5, box_a[..., :2] + box_a[..., 2:] * 0.5], axis=-1) boxes2 = tf.concat([box_b[..., :2] - box_b[..., 2:] * 0.5, box_b[..., :2] + box_b[..., 2:] * 0.5], axis=-1) c = tf.shape(boxes1)[0] A = tf.shape(boxes1)[1] B = tf.shape(boxes2)[1] box_a = tf.reshape(boxes1, (c, A, 1, 4)) box_b = tf.reshape(boxes2, (c, 1, B, 4)) expand_box_a = tf.tile(box_a, [1, 1, B, 1]) expand_box_b = tf.tile(box_b, [1, A, 1, 1]) # 两个矩形的面积 boxes1_area = (expand_box_a[..., 2] - expand_box_a[..., 0]) * ( expand_box_a[..., 3] - expand_box_a[..., 1]) boxes2_area = (expand_box_b[..., 2] - expand_box_b[..., 0]) * ( expand_box_b[..., 3] - expand_box_b[..., 1]) # 相交矩形的左上角坐标、右下角坐标 left_up = tf.maximum(expand_box_a[:, :, :, :2], expand_box_b[:, :, :, :2]) right_down = tf.minimum(expand_box_a[:, :, :, 2:], expand_box_b[:, :, :, 2:]) # 相交矩形的面积inter_area。iou inter_section = tf.maximum(right_down - left_up, 0.0) inter_area = inter_section[..., 0] * inter_section[..., 1] union_area = boxes1_area + boxes2_area - inter_area iou = inter_area / (union_area + 1e-9) return iou
f385b2a4ddfd6dfcae7b6cc3067e229c3dff768b
3,652,182
import torch def subsequent_mask(size, device=device): """ Mask out subsequent positions. upper diagonal elements should be zero :param size: :return: mask where positions are filled with zero for subsequent positions """ # upper diagonal elements are 1s, lower diagonal and the main diagonal are zeroed triu = torch.triu(torch.ones(size, size, dtype=torch.int8, device=device), diagonal=1) # invert it mask = triu == 0 mask = mask.unsqueeze(0) return mask
5c642e8f73ee33307b54193db2a15ec80518e673
3,652,183
from typing import Optional import google def read_gcs_file_if_exists(gcs_client: storage.Client, gsurl: str) -> Optional[str]: """return string of gcs object contents or None if the object does not exist """ try: return read_gcs_file(gcs_client, gsurl) except google.cloud.exceptions.NotFound: return None
1354d319dd20193fa097e4f2c6e7cce8edbda98b
3,652,184
from typing import Union from typing import List from typing import Tuple from typing import Dict def collapse_multigraph_to_nx( graph: Union[gr.MultiDiGraph, gr.OrderedMultiDiGraph]) -> nx.DiGraph: """ Collapses a directed multigraph into a networkx directed graph. In the output directed graph, each node is a number, which contains itself as node_data['node'], while each edge contains a list of the data from the original edges as its attribute (edge_data[0...N]). :param graph: Directed multigraph object to be collapsed. :return: Collapsed directed graph object. """ # Create the digraph nodes. digraph_nodes: List[Tuple[int, Dict[str, nd.Node]]] = ([None] * graph.number_of_nodes()) node_id = {} for i, node in enumerate(graph.nodes()): digraph_nodes[i] = (i, {'node': node}) node_id[node] = i # Create the digraph edges. digraph_edges = {} for edge in graph.edges(): src = node_id[edge.src] dest = node_id[edge.dst] if (src, dest) in digraph_edges: edge_num = len(digraph_edges[src, dest]) digraph_edges[src, dest].update({edge_num: edge.data}) else: digraph_edges[src, dest] = {0: edge.data} # Create the digraph result = nx.DiGraph() result.add_nodes_from(digraph_nodes) result.add_edges_from(digraph_edges) return result
1239393366071371116c5ebbb28209fa753b3db8
3,652,185
def get_encoder_type(encoder_name): """ gets the class of the encoer of the given name """ if encoder_name == 'Dense': return DenseEncoder elif encoder_name == 'CNN': return CNNEncoder else: raise ValueError(encoder_name)
31fbce2fb26ebdaf2d3701d36d0d977039b03e42
3,652,186
def stateless_truncated_normal(shape, seed, mean=0.0, stddev=1.0, dtype=dtypes.float32, name=None): """Outputs deterministic pseudorandom values, truncated normally distributed. This is a stateless version of `tf.random.truncated_normal`: if run twice with the same seeds, it will produce the same pseudorandom numbers. The output is consistent across multiple runs on the same hardware (and between CPU and GPU), but may change between versions of TensorFlow or on non-CPU/GPU hardware. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. seed: A shape [2] Tensor, the seed to the random number generator. Must have dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.) mean: A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation. dtype: The type of the output. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random truncated normal values. """ with ops.name_scope(name, "stateless_truncated_normal", [shape, seed, mean, stddev]) as name: shape = tensor_util.shape_tensor(shape) mean = ops.convert_to_tensor(mean, dtype=dtype, name="mean") stddev = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev") rnd = gen_stateless_random_ops.stateless_truncated_normal( shape, seed, dtype) result = math_ops.add(rnd * stddev, mean, name=name) tensor_util.maybe_set_static_shape(result, shape) return result
b0b967cc6d8e489cb4f914f7306ef5d5376977b0
3,652,187
def mean(l): """ Returns the mean value of the given list """ sum = 0 for x in l: sum = sum + x return sum / float(len(l))
74926c9aaafd2362ce8821d7040afcba1f569400
3,652,188
from bettermoments.quadratic import quadratic def collapse_quadratic(velax, data, rms): """ Collapse the cube using the quadratic method presented in `Teague & Foreman-Mackey (2018)`_. Will return the line center, ``v0``, and the uncertainty on this, ``dv0``, as well as the line peak, ``Fnu``, and the uncertainty on that, ``dFnu``. This provides the sub-channel precision of :func:`bettermoments.collapse_cube.collapse_first` with the robustness to noise from :func:`bettermoments.collapse_cube.collapse_ninth`. .. _Teague & Foreman-Mackey (2018): https://iopscience.iop.org/article/10.3847/2515-5172/aae265 Args: velax (ndarray): Velocity axis of the cube. data (ndarray): Flux density or brightness temperature array. Assumes that the zeroth axis is the velocity axis. rms (float): Noise per pixel in same units as ``data``. Returns: ``v0`` (`ndarray`), ``dv0`` (`ndarray`), ``Fnu`` (`ndarray`), ``dFnu`` (`ndarray`): ``v0``, the line center in the same units as ``velax`` with ``dv0`` as the uncertainty on ``v0`` in the same units as ``velax``. ``Fnu`` is the line peak in the same units as the ``data`` with associated uncertainties, ``dFnu``. """ chan = np.diff(velax).mean() return np.squeeze(quadratic(data, x0=velax[0], dx=chan, uncertainty=rms))
b19b6ee4b75c246e505fc5a4a47eac736c40599a
3,652,190
def get_module_version(module_name: str) -> str: """Check module version. Raise exception when not found.""" version = None if module_name == "onnxrt": module_name = "onnxruntime" command = [ "python", "-c", f"import {module_name} as module; print(module.__version__)", ] proc = Proc() proc.run(args=command) if proc.is_ok: for line in proc.output: version = line.strip() proc.remove_logs() if version is None: raise ClientErrorException(f"Could not found version of {module_name} module.") return version
32c608491e012bd0b77d0e52aa206332877d889b
3,652,191
import requests def _post(url, data): """RESTful API post (insert to database) Parameters ---------- url: str Address for the conftrak server data: dict Entries to be inserted to database """ r = requests.post(url, data=ujson.dumps(data)) r.raise_for_status() return r.json()
6cbf8700360e6eff868eef91125a692dfef5af47
3,652,192
import inspect import functools def curry(arity_or_fn=None, ignore_kwargs=False, evaluator=None, *args, **kw): """ Creates a function that accepts one or more arguments of a function and either invokes func returning its result if at least arity number of arguments have been provided, or returns a function that accepts the remaining function arguments until the function arity is satisfied. This function is overloaded: you can pass a function or coroutine function as first argument or an `int` indicating the explicit function arity. Function arity can be inferred via function signature or explicitly passed via `arity_or_fn` param. You can optionally ignore keyword based arguments as well passsing the `ignore_kwargs` param with `True` value. This function can be used as decorator. Arguments: arity_or_fn (int|function|coroutinefunction): function arity to curry or function to curry. ignore_kwargs (bool): ignore keyword arguments as arity to satisfy during curry. evaluator (function): use a custom arity evaluator function. *args (mixed): mixed variadic arguments for partial function application. *kwargs (mixed): keyword variadic arguments for partial function application. Raises: TypeError: if function is not a function or a coroutine function. Returns: function or coroutinefunction: function will be returned until all the function arity is satisfied, where a coroutine function will be returned instead. Usage:: # Function signature inferred function arity @paco.curry async def task(x, y, z=0): return x * y + z await task(4)(4)(z=8) # => 24 # User defined function arity @paco.curry(4) async def task(x, y, *args, **kw): return x * y + args[0] * args[1] await task(4)(4)(8)(8) # => 80 # Ignore keyword arguments from arity @paco.curry(ignore_kwargs=True) async def task(x, y, z=0): return x * y await task(4)(4) # => 16 """ def isvalidarg(x): return all([ x.kind != x.VAR_KEYWORD, x.kind != x.VAR_POSITIONAL, any([ not ignore_kwargs, ignore_kwargs and x.default == x.empty ]) ]) def params(fn): return inspect.signature(fn).parameters.values() def infer_arity(fn): return len([x for x in params(fn) if isvalidarg(x)]) def merge_args(acc, args, kw): _args, _kw = acc _args = _args + args _kw = _kw or {} _kw.update(kw) return _args, _kw def currier(arity, acc, fn, *args, **kw): """ Function either continues curring of the arguments or executes function if desired arguments have being collected. If function curried is variadic then execution without arguments will finish curring and trigger the function """ # Merge call arguments with accumulated ones _args, _kw = merge_args(acc, args, kw) # Get current function call accumulated arity current_arity = len(args) # Count keyword params as arity to satisfy, if required if not ignore_kwargs: current_arity += len(kw) # Decrease function arity to satisfy arity -= current_arity # Use user-defined custom arity evaluator strategy, if present currify = evaluator and evaluator(acc, fn) # If arity is not satisfied, return recursive partial function if currify is not False and arity > 0: return functools.partial(currier, arity, (_args, _kw), fn) # If arity is satisfied, instanciate coroutine and return it return fn(*_args, **_kw) def wrapper(fn, *args, **kw): if not iscallable(fn): raise TypeError('paco: first argument must a coroutine function, ' 'a function or a method.') # Infer function arity, if required arity = (arity_or_fn if isinstance(arity_or_fn, int) else infer_arity(fn)) # Wraps function as coroutine function, if needed. fn = wraps(fn) if isfunc(fn) else fn # Otherwise return recursive currier function return currier(arity, (args, kw), fn, *args, **kw) if arity > 0 else fn # Return currier function or decorator wrapper return (wrapper(arity_or_fn, *args, **kw) if iscallable(arity_or_fn) else wrapper)
225f9295894538046f3dc5390964416c2ef6a7d1
3,652,193
def fin_forecast(ratio1, ratio2, sp_df): """used to forecast 3 years of financial forecast/projection """ print("print test line 6") forecast = MCSimulation( portfolio_data = sp_df, weights = [ratio1, ratio2], num_simulation = 500, num_trading_days = 252*3 ) print("test line 3") print(forecast.portfolio_data.head()) simulation = forecast.portfolio_data #return ratio1, ratio2, sp_df return simulation
7d081d58bf9ec779fe6a68818e0f245c9c634db8
3,652,195
def implied_volatility(price, S, K, t, r, q, flag): """Calculate the Black-Scholes-Merton implied volatility. :param S: underlying asset price :type S: float :param K: strike price :type K: float :param sigma: annualized standard deviation, or volatility :type sigma: float :param t: time to expiration in years :type t: float :param r: risk-free interest rate :type r: float :param q: annualized continuous dividend rate :type q: float :param flag: 'c' or 'p' for call or put. :type flag: str >>> S = 100 >>> K = 100 >>> sigma = .2 >>> r = .01 >>> flag = 'c' >>> t = .5 >>> q = .02 >>> price = black_scholes_merton(flag, S, K, t, r, sigma, q) >>> implied_volatility(price, S, K, t, r, q, flag) 0.20000000000000018 >>> flac = 'p' >>> sigma = 0.3 >>> price = black_scholes_merton(flag, S, K, t, r, sigma, q) >>> price 8.138101080183894 >>> implied_volatility(price, S, K, t, r, q, flag) 0.30000000000000027 """ f = lambda sigma: price - black_scholes_merton(flag, S, K, t, r, sigma, q) return brentq( f, a=1e-12, b=100, xtol=1e-15, rtol=1e-15, maxiter=1000, full_output=False )
d3db13c24cf491df519d286e25da2e0a33448615
3,652,197
import re def clean_hotel_maxpersons(string): """ """ if string is not None: r = int(re.findall('\d+', string)[0]) else: r = 0 return r
d20d9db1da49eea1a4057e43b9f43f2960dbd27a
3,652,198