content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def conv_res_step(x, hparams, padding, mask):
"""One step of convolutions and mid-residual."""
k = (hparams.kernel_height, hparams.kernel_width)
k2 = (hparams.large_kernel_size, 1)
dilations_and_kernels1 = [((1, 1), k), ((1, 1), k)]
dilations_and_kernels2 = [((1, 1), k2), ((4, 4), k2)]
with tf.variable_scope("conv_res_step"):
y = common_layers.subseparable_conv_block(
x, hparams.filter_size, dilations_and_kernels1,
padding=padding, mask=mask, separabilities=0, name="residual1")
y = tf.nn.dropout(y, 1.0 - hparams.dropout)
return common_layers.subseparable_conv_block(
y, hparams.hidden_size, dilations_and_kernels2,
padding=padding, mask=mask, separabilities=0, name="residual2") | e0d2728f4991112a0dbd504121048f8670a4406b | 3,652,889 |
import six
from typing import Any
def _get_kind_name(item):
"""Returns the kind name in CollectionDef.
Args:
item: A data item.
Returns:
The string representation of the kind in CollectionDef.
"""
if isinstance(item, (six.string_types, six.binary_type)):
kind = "bytes_list"
elif isinstance(item, six.integer_types):
kind = "int64_list"
elif isinstance(item, float):
kind = "float_list"
elif isinstance(item, Any):
kind = "any_list"
else:
kind = "node_list"
return kind | 094298763f9bf1e3e7a421c19e08016f2138b7d7 | 3,652,890 |
def Froude_number(v, h, g=9.80665):
"""
Calculate the Froude Number of the river, channel or duct flow,
to check subcritical flow assumption (if Fr <1).
Parameters
------------
v : int/float
Average velocity [m/s].
h : int/float
Mean hydrolic depth float [m].
g : int/float
Gravitational acceleration [m/s2].
Returns
---------
Fr : float
Froude Number of the river [unitless].
"""
assert isinstance(v, (int,float)), 'v must be of type int or float'
assert isinstance(h, (int,float)), 'h must be of type int or float'
assert isinstance(g, (int,float)), 'g must be of type int or float'
Fr = v / np.sqrt( g * h )
return Fr | 754225397baa6a27ae58adc63f09bba5287f18e9 | 3,652,891 |
from typing import Callable
from typing import Any
def handle_error(
func: Callable[[Command | list[Command]], Any]
) -> Callable[[str], Any]:
"""Handle tradfri api call error."""
@wraps(func)
async def wrapper(command: Command | list[Command]) -> None:
"""Decorate api call."""
try:
await func(command)
except RequestError as err:
_LOGGER.error("Unable to execute command %s: %s", command, err)
return wrapper | 1604f8ae224a9fb565f81ae70d74c24e68e60b9e | 3,652,892 |
def write(ser, command, log):
"""Write command to serial port, append what you write to log."""
ser.write(command)
summary = " I wrote: " + repr(command)
log += summary + "\n"
print summary
return log | 769e345d90121d4bf2d8cc23c128c2a588cba37c | 3,652,893 |
def anscombe(x):
"""Compute Anscombe transform."""
return 2 * np.sqrt(x + 3 / 8) | 9a47318733568892c4695db2cf153e59e78bb8d7 | 3,652,894 |
def max_accuracy(c1, c2):
"""
Relabel the predicted labels *in order* to
achieve the best accuracy, and return that
score and the best labelling
Parameters
----------
c1 : np.array
numpy array with label of predicted cluster
c2 : np.array
numpy array with label of true cluster
"""
c1 = c1.astype(str)
c2 = c2.astype(str)
match_satimage = pd.DataFrame({"Guess": c1, "True": c2})
match_satimage['match'] = match_satimage['Guess'] + '_t' + match_satimage['True']
comparison = pd.DataFrame(match_satimage['match'])
A = comparison.value_counts()
sum = 0
clusters = []
c1new = np.copy(c1).astype(int)
j = 0
for i in range(len(A)):
C_str = A[[i]].index.values[0][0]
#print(C_str)
CTL = C_str.split('_')
if CTL[0] in clusters or CTL[1] in clusters or CTL[0] == '-1':
pass
else:
c1new[c1 == CTL[0]] = CTL[1][1:]
clusters.append(CTL[0])
clusters.append(CTL[1])
sum = sum + int(A[[i]])
#print(clusters)
#print(sum)
j = j + 1
accuracy = sum/len(c1)
return accuracy, c1new.astype(int) | 7ec438b500463859c27ea94d315312b88f5954f1 | 3,652,895 |
def create_sphere():
"""Create and return a single sphere of radius 5."""
sphere = rt.sphere()
sphere.radius = 5
return sphere | a8d5e2e8c0ec7d00f75c4007214d21aa0d2b64ad | 3,652,896 |
import time
def get_input(prompt=None):
"""Sets the prompt and waits for input.
:type prompt: None | list[Text] | str
"""
if not isinstance(prompt, type(None)):
if type(prompt) == str:
text_list = [Text(prompt, color=prompt_color,
new_line=True)]
elif type(prompt) == list:
text_list = prompt
else:
raise Exception("Must be None, str, or list[Text]")
update_textbox("events", text_list)
_user_input = check_input()
while isinstance(_user_input, type(None)):
time.sleep(.1)
if not is_running():
return None
_user_input = check_input()
return _user_input | bbcd5bbd7f97bff8d213d13afe22ae9111849e10 | 3,652,898 |
def alpha_liq(Nu, lyambda_feed, d_inner):
"""
Calculates the coefficent of heat transfer(alpha) from liquid to wall of pipe.
Parameters
----------
Nu : float
The Nusselt criterion, [dimensionless]
lyambda_feed : float
The thermal conductivity of feed, [W / (m * degreec celcium)]
d_inner : float
The diametr of inner pipe, [m]
Returns
-------
alpha_liq : float
The coefficent of heat transfer(alpha), [W / (m**2 * degrees celcium)]
References
----------
Романков, формула 4.11, стр.150
"""
return Nu * lyambda_feed / d_inner | 13d0371248c106fb0f12d26335381675d7484000 | 3,652,899 |
def get_dataset(opts):
""" Dataset And Augmentation
"""
if opts.dataset == 'camvids':
mean, std = camvids.get_norm()
train_transform = train_et.ExtCompose([
# et.ExtResize(size=opts.crop_size),
train_et.ExtRandomScale((0.5, 2.0)),
train_et.ExtRandomHorizontalFlip(),
train_et.New_ExtRandomCrop(
size=(481, 481), pad_if_needed=True),
train_et.ExtToTensor(),
train_et.ExtNormalize(mean=mean, std=std),
])
if opts.crop_val:
val_transform = et.ExtCompose([
et.ExtResize(opts.crop_size),
et.ExtCenterCrop(opts.crop_size),
et.ExtToTensor(),
et.ExtNormalize(mean=mean, std=std),
])
else:
val_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=mean, std=std),
])
train_dst = camvids.CamvidSegmentation(opts.data_root, image_set='trainval', transform=train_transform, num_copys=opts.num_copys)
val_dst = camvids.CamvidSegmentation(opts.data_root, image_set='test', transform=val_transform)
if opts.dataset == 'voc':
# train_transform = et.ExtCompose([
# #et.ExtResize(size=opts.crop_size),
# et.ExtRandomScale((0.5, 2.0)),
# et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
# et.ExtRandomHorizontalFlip(),
# et.ExtToTensor(),
# et.ExtNormalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225]),
# ])
train_transform = train_et.ExtCompose([
# et.ExtResize(size=opts.crop_size),
train_et.ExtRandomScale((0.5, 2.0)),
train_et.ExtRandomHorizontalFlip(),
train_et.New_ExtRandomCrop(
size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
train_et.ExtToTensor(),
train_et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.crop_val:
val_transform = et.ExtCompose([
et.ExtResize(opts.crop_size),
et.ExtCenterCrop(opts.crop_size),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
else:
val_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
image_set='train', download=opts.download, transform=train_transform, num_copys=opts.num_copys)
val_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
image_set='val', download=False, transform=val_transform)
if opts.dataset == 'cityscapes':
train_transform = et.ExtCompose([
# et.ExtResize( 512 ),
et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size)),
et.ExtColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
val_transform = et.ExtCompose([
# et.ExtResize( 512 ),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = Cityscapes(root=opts.data_root, split='train', transform=train_transform, num_copys=opts.num_copys)
print("------------------------now copy: {:}----------------------------------".format(opts.num_copys))
val_dst = Cityscapes(root=opts.data_root,
split='val', transform=val_transform)
return train_dst, val_dst | 046d2ebdf9a0b1be37fea052fbf07e14a623ab1e | 3,652,900 |
def gen_sankey_diagram_distribute_query(query_statement, params, final_entites_name):
"""
桑基图数据分布查询
:param query_statement:
:param params:
:param final_entites_name:
:return:
"""
query_statement = dgraph_get_project_count(query_statement)
# 第一层的节点
first_level_sql = """select a.code as tag_code, a.alias as tag_alias, a.id as tag_id, b.code as parent_code
from tag as a, tag as b where a.parent_id in (select id from tag where code in ('techops', 'bissness'))
and a.parent_id = b.id and a.kpath = 1;"""
first_level_list = tagaction.query_direct_sql_to_map_list(connections['bkdata_basic_slave'], first_level_sql)
# 第二层的节点
first_level_id_tuple = tuple([each_tag['tag_id'] for each_tag in first_level_list])
second_level_sql = """select a.code as tag_code, a.alias as tag_alias, a.id as tag_id, b.code as parent_code
from tag as a, tag as b where a.parent_id in {} and a.parent_id = b.id and a.kpath = 1;""".format(
first_level_id_tuple
)
second_level_list = tagaction.query_direct_sql_to_map_list(connections['bkdata_basic_slave'], second_level_sql)
# graphQL
for each_tag in first_level_list:
query_statement += get_single_tag_query(
each_tag.get('tag_code'), '$final_filter_uids_name', need_me_count=False
)
# 其他节点和processing_type之间的对应关系
query_statement += get_other_tag_query(first_level_list, '$final_filter_uids_name')
for each_tag in second_level_list:
query_statement += get_single_tag_query(
each_tag.get('tag_code'), '$final_filter_uids_name', need_me_count=False, need_processing_type=True
)
query_statement = query_statement.replace('$final_filter_uids_name', final_entites_name)
query_statement += '\n}'
dgraph_result = meta_dgraph_complex_search(query_statement, return_original=True)
return {
'first_level_tag_list': first_level_list,
'second_level_tag_list': second_level_list,
'dgraph_result': dgraph_result,
} | 7d87157ca289928bfe8f8bcdfb7cbc6cbee6e521 | 3,652,901 |
def declare(objective:str, displayname:str=None, criteria:str="dummy"):
"""
objective:str -> The id/name given to a scoreboard
displayname:str -> The name that will be displayed on screen
criteria:str -> The criteria of the scoreboard
"""
f = f"scoreboard objectives add {objective} {criteria}"
global SCOREBOARDS
SCOREBOARDS.append(objective)
if displayname == None:
return f"scoreboard objectives add {objective} {criteria}\n"
else:
return f"scoreboard objectives add {objective} {criteria} \"{displayname}\"\n" | 0a574741a51afa27799b917e735657e3cb34b072 | 3,652,902 |
def complement_angle(angle):
""" 90 minus angle, in degrees"""
return 90 - angle; | bca1dfa3158df61e87cbadc47307f68298a237b7 | 3,652,903 |
def parse_custom_commands(command, separator=";"):
"""Parse run custom command string into the commands list
:param str command: run custom [config] command(s)
:param str separator: commands separator in the string
:rtype: list[str]
"""
if not command:
return []
return command.strip(separator).split(separator) | 4d55ef149aa16e224f5894fb0ef506a1bd8285f3 | 3,652,904 |
def lower_volatility_band(c, dev_target, band_target, center_target):
"""
| Calculates the lower volatility band
| Name: lower\_volatility\_band\_\ **c**\ \_times\_\ **band_target.name**\ &\ **dev_target.name**\ \_over\_\ **center_target.name**
:param c: Multiplier constant
:type c: float
:param dev_target: Used for band displacement. Can be a constant or a function
:type dev_target: function or float
:param band_target: Used for band displacement. Can be a constant or a function
:type band_target: function or float
:param center_target: Data column for the band center
:type center_target: str
"""
def return_function(data):
if hasattr(band_target, "name") & hasattr(dev_target, "name"):
column_name = f"lower_volatility_band_{c}_times_{band_target.name}&{dev_target.name}_under_{center_target.name}"
elif hasattr(band_target, "name"):
column_name = f"lower_volatility_band_{c}_times_{band_target.name}&{dev_target}_under_{center_target.name}"
else:
column_name = f"lower_volatility_band_{c}_times_{band_target}&{dev_target}_under_{center_target.name}"
if column_name not in data.columns:
data[column_name] = center_target - c * dev_target * band_target
return data[column_name].copy()
return return_function | d910c1f9e14fa28b171dd16e937fa65c220839d7 | 3,652,905 |
def find_by_attr(node, value, name="name", maxlevel=None):
"""Identical to :any:`search.find_by_attr` but cached."""
return search.find_by_attr(node, value, name=name, maxlevel=maxlevel) | 3d4d5084762fe25572e06eeb56fd4374d91dc4c8 | 3,652,906 |
import time
def remind(phenny, input):
"""Set a reminder"""
m = r_command.match(input.bytes)
if not m:
return phenny.reply("Sorry, didn't understand the input.")
length, scale, message = m.groups()
length = float(length)
factor = scaling.get(scale, 60)
duration = length * factor
if duration % 1:
duration = int(duration) + 1
else: duration = int(duration)
t = int(time.time()) + duration
reminder = (input.sender, input.nick, message)
try: phenny.remind_data[t].append(reminder)
except KeyError: phenny.remind_data[t] = [reminder]
dump_database(phenny)
if duration >= 60:
w = ''
if duration >= 3600 * 12:
w += time.strftime(' on %d %b %Y', time.gmtime(t))
w += time.strftime(' at %H:%MZ', time.gmtime(t))
phenny.reply('Okay, will remind%s' % w)
else: phenny.reply('Okay, will remind in %s secs' % duration) | 21edf68ccb4f914325d4bb44177efb5fa44c14ac | 3,652,908 |
import glob
from pathlib import Path
def get_timestamps_from_sensor_folder(sensor_folder_wildcard: str) -> NDArrayInt:
"""Timestamp always lies at end of filename.
Args:
sensor_folder_wildcard: string to glob to find all filepaths for a particular
sensor files within a single log run
Returns:
Numpy array of integers, representing timestamps
"""
path_generator = glob.glob(sensor_folder_wildcard)
path_generator.sort()
timestamps: NDArrayInt = np.array([int(Path(jpg_fpath).stem.split("_")[-1]) for jpg_fpath in path_generator])
return timestamps | 2e1bd2e7b568c83aac0ef1c1f81ce4bcb8f3fe1e | 3,652,909 |
def vehicles_missing(request):
"""
Displays to users their theft reports
"""
reports = TheftReport.objects.all()
return render(request, "vms/theft_reports.html", {
'reports': reports,
}) | 254eb4ead3f058f10de8401263f354ef8690451c | 3,652,911 |
def get_limits(data):
""" Get the x, y ranges of the ST data.
"""
y_min = 1e6
y_max = -1e6
x_min = 1e6
x_max = -1e6
for doc in data:
x = doc["x"]
y = doc["y"]
y_min = y if y < y_min else y_min
y_max = y if y > y_max else y_max
x_min = x if x < x_min else x_min
x_max = x if x > x_max else x_max
return x_min, x_max, y_min, y_max | 9e2894626b9de59e94d65affa0a1d1c6f30e6399 | 3,652,913 |
def get_bool(prompt: str | None = None, default: bool = False) -> bool:
"""Gets a boolean response from the command line.
:param prompt: Input prompt.
:param default: Default value used if no characters are typed.
:return: Input boolean.
"""
input_str = input(_prompt_from_message(prompt, default='y' if default else 'n'))
return input_str.lower().startswith('y') | c9504afe8500a99dcf80f5f95b8a1754dc881cd2 | 3,652,914 |
def proj_helsinki(x, y):
"""Project Helsinki coordinates into ETRS-GK25 (EPSG:3879).
https://www.hel.fi/helsinki/fi/kartat-ja-liikenne/kartat-ja-paikkatieto/paikkatiedot+ja+-aineistot/koordinaatistot_ja+_korkeudet/koordinaatti_ja_korkeusjarjestelmat # pylint: disable=line-too-long
"""
# pylint: disable=invalid-name
output_epsg = "EPSG:3879"
a = 6654650.14636
b = 25447166.49457
c = 0.99998725362
d = -0.00120230340
e = 0.00120230340
f = 0.99998725362
x, y = a + c * x + d * y, b + e * x + f * y
return x, y, output_epsg | d1dc6cc314e767cc971c6b8695d2a4c4043b608a | 3,652,915 |
def _check_start_stop(raw, start, stop):
"""Aux function."""
out = list()
for st in (start, stop):
if st is None:
out.append(st)
else:
try:
out.append(_ensure_int(st))
except TypeError: # not int-like
out.append(raw.time_as_index(st)[0])
return out | 2d7c59fff70c7b43942060b353dcd1c7ae917443 | 3,652,916 |
import json
def main(function, js):
"""Console script for es_reindex."""
args = json.loads(js)
config = args['config']
# e.g. --json='{"config": "./es_index_tool/data/example_config.json"}'
tool = ESIndexTool(config_path=config)
if 'id' not in args:
tool.reindex()
else:
# e.g., --json='{"id": "2kS98AsytSXb8prbH"}'
id_ = args['id']
tool.index_document_by_id(id_)
return 0 | 42cf4b0c33c7a58fb521357089a29195c0f04a91 | 3,652,917 |
def read(
datapath,
qt_app=None,
dataplus_format=True,
gui=False,
start=0,
stop=None,
step=1,
convert_to_gray=True,
series_number=None,
use_economic_dtype=True,
dicom_expected=None,
orientation_axcodes="original",
**kwargs
):
"""Returns 3D data and its metadata.
# NOTE(:param qt_app:) If it is set to None (as default) all dialogs for series selection are performed in
terminal. If qt_app is set to QtGui.QApplication() dialogs are in Qt.
:param datapath: directory with input data, if url is give, the file is downloaded into `~/data/downloads/`
:param qt_app: Dialog destination. If None (default) -> terminal, if 'QtGui.QApplication()' -> Qt
:param dataplus_format: New data format. Metadata and data are returned in one structure.
:param gui: True if 'QtGui.QApplication()' instead of terminal should be used
:param int start: used for DicomReader, defines where 3D data reading should start
:param int stop: used for DicomReader, defines where 3D data reading should stop
:param int step: used for DicomReader, defines step for 3D data reading
:param bool convert_to_gray: if True -> RGB is converted to gray
:param int series_number: used in DicomReader, essential in metadata
:param use_economic_dtype: if True, casts 3D data array to less space consuming dtype
:param dicom_expected: set true if it is known that data is in dicom format. Set False to suppress
dicom warnings.
:param orientation_axcodes: 'SPL' inferior to Superior, anterior to Posetrior, right to Left. Standard is for nifty
is RAS.
:return: tuple (data3d, metadata)
"""
# Simple read function. Internally calls DataReader.Get3DData()
dr = DataReader()
return dr.Get3DData(
datapath=datapath,
qt_app=qt_app,
dataplus_format=dataplus_format,
gui=gui,
start=start,
stop=stop,
step=step,
convert_to_gray=convert_to_gray,
series_number=series_number,
use_economic_dtype=use_economic_dtype,
dicom_expected=dicom_expected,
orientation_axcodes=orientation_axcodes,
**kwargs
) | 8ed8c33a1e7bb61aa9f06b573f2f85fc6a96481b | 3,652,918 |
def sum_squares2(n):
"""
Returns: sum of squares from 1 to n-1
Example: sum_squares(5) is 1+4+9+16 = 30
Parameter n: The number of steps
Precondition: n is an int > 0
"""
# Accumulator
total = 0
print('Before while')
x = 0
while x < n:
print('Start loop '+str(x))
total = total + x*x
x = x+1
print('End loop ')
print('After while')
return total | 1d5dfe160568f032184eea723138b8d6dd3929fc | 3,652,919 |
def read_image(src):
"""Read and resize individual images"""
im = cv2.imread(src, cv2.IMREAD_COLOR)
im = cv2.resize(im, (COLS, ROWS), interpolation=cv2.INTER_CUBIC)
return im | cf3d31691ad0814c15fe635d03f2febee0150723 | 3,652,921 |
def pattern_classifier(data, pattern_threshold):
"""Return an array mask passing our selection."""
return data["key_pattern"] > pattern_threshold | 116a7f84a18b57188fb2ce24fa7ecacd1b61c3da | 3,652,923 |
def is_scalar(a) -> bool:
"""
Tests if a python object is a scalar (instead of an array)
Parameters
----------
a : object
Any object to be checked
Returns
-------
bool
Whether the input object is a scalar
"""
if isinstance(a, (list, tuple)):
return False
if hasattr(a, "__array__") and hasattr(a, "__len__"): # np.array(1) is scalar
return False
return True | 29206a7921da74257e6af66311c0bbfc4b576ac0 | 3,652,924 |
def median(ts: TimeSeries, /, window_length: int = 3) -> TimeSeries:
"""
Calculate a moving median.
On n-dimensional data, filtering occurs on the first axis (time).
Parameters
----------
ts
Input TimeSeries
window_length
Optional. Kernel size, must be odd. The default is 3.
Example
-------
>>> ts = ktk.TimeSeries(time=np.arange(0, 0.5, 0.1))
>>> ts.data['data1'] = np.array([10., 11., 11., 20., 14., 15.])
>>> ts = ktk.filters.median(ts)
>>> ts.data['data1']
array([10., 11., 11., 14., 15., 15.])
"""
out_ts = ts.copy()
for key in ts.data:
window_shape = [1 for i in range(len(ts.data[key].shape))]
window_shape[0] = window_length
out_ts.data[key] = ndi.median_filter(
ts.data[key], size=window_shape)
return out_ts | 93017c2da815687faf386beabd55a6ff4eaa674a | 3,652,925 |
import math
import copy
def convert_polynomial_coefficients(A_in, B_in, C_in, D_in, oss=False, inverse=False,
parent_aperture=None):
"""Emulate some transformation made in nircam_get_polynomial_both.
Written by Johannes Sahlmann 2018-02-18, structure largely based on nircamtrans.py code
by Colin Cox.
Parameters
----------
A_in : numpy array
polynomial coefficients
B_in : numpy array
polynomial coefficients
C_in : numpy array
polynomial coefficients
D_in : numpy array
polynomial coefficients
oss : bool
Whether this is an OSS aperture or not
inverse : bool
Whether this is forward or backward/inverse transformation
parent_aperture : str
Name of parent aperture
Returns
-------
AR, BR, CR, DR, V3SciXAngle, V3SciYAngle, V2Ref, V3Ref : tuple of arrays and floats
Converted polynomial coefficients
"""
if inverse is False:
# forward direction
V2Ref = A_in[0]
V3Ref = B_in[0]
A_in[0] = 0.0
B_in[0] = 0.0
V3SciXAngle = np.rad2deg(np.arctan2(A_in[1], B_in[1])) # V3SciXAngle
V3SciYAngle = np.rad2deg(np.arctan2(A_in[2], B_in[2]))
V3Angle = V3SciYAngle # V3SciYAngle
if abs(V3Angle) > 90.0:
V3Angle = V3Angle - math.copysign(180.0, V3Angle)
# AR, BR = rotate_coefficients(A_in, B_in, V3Angle)
AR, BR = add_rotation(A_in, B_in, -1*V3Angle)
CS = shift_coefficients(C_in, V2Ref, V3Ref)
DS = shift_coefficients(D_in, V2Ref, V3Ref)
CR = prepend_rotation_to_polynomial(CS, V3Angle)
DR = prepend_rotation_to_polynomial(DS, V3Angle)
if oss:
# OSS apertures
V3Angle = copy.deepcopy(V3SciYAngle)
else:
# non-OSS apertures
if abs(V3SciYAngle) > 90.0: # e.g. NRCA2_FULL
# print 'Reverse Y axis direction'
AR = -flip_y(AR)
BR = flip_y(BR)
CR = flip_x(CR)
DR = -flip_x(DR)
else: # e.g NRCA1_FULL
# print 'Reverse X axis direction'
AR = -flip_x(AR)
BR = flip_x(BR)
CR = -flip_x(CR)
DR = flip_x(DR)
V3SciXAngle = V3SciXAngle - math.copysign(180.0, V3SciXAngle)
# V3Angle = betaY # Cox: Changed 4/29 - might affect rotated polynomials
V3SciYAngle = V3Angle
return AR, BR, CR, DR, V3SciXAngle, V3SciYAngle, V2Ref, V3Ref
else:
siaf_detector_layout = read.read_siaf_detector_layout()
master_aperture_names = siaf_detector_layout['AperName'].data
if parent_aperture.AperName not in master_aperture_names:
raise RuntimeError
polynomial_degree = parent_aperture.Sci2IdlDeg
V3SciYAngle = copy.deepcopy(parent_aperture.V3SciYAngle) # betaY
V3SciXAngle = parent_aperture.V3SciXAngle # betaX
betaY = V3SciYAngle + parent_aperture.DetSciYAngle
# master aperture is never OSS
if abs(betaY) > 90.0: # e.g. NRCA2_FULL
# print 'Reverse Y axis direction'
AR = -flip_y(A_in)
BR = flip_y(B_in)
CR = flip_x(C_in)
DR = -flip_x(D_in)
else: # e.g NRCA1_FULL
# print 'Reverse X axis direction'
AR = -flip_x(A_in)
BR = flip_x(B_in)
CR = -flip_x(C_in)
DR = flip_x(D_in)
V3SciXAngle = revert_correct_V3SciXAngle(V3SciXAngle)
# rotate the other way
# A, B = rotate_coefficients(AR, BR, -V3SciYAngle)
A, B = add_rotation(AR, BR, +1*V3SciYAngle)
A[0] = parent_aperture.V2Ref
B[0] = parent_aperture.V3Ref
# now invert the last part of nircam_get_polynomial_forward
AFS = A
BFS = B
# shift by parent aperture reference point
AF = shift_coefficients(AFS, -parent_aperture.XDetRef, -parent_aperture.YDetRef)
BF = shift_coefficients(BFS, -parent_aperture.XDetRef, -parent_aperture.YDetRef)
CS = prepend_rotation_to_polynomial(CR, -V3SciYAngle)
DS = prepend_rotation_to_polynomial(DR, -V3SciYAngle)
C = shift_coefficients(CS, -parent_aperture.V2Ref, -parent_aperture.V3Ref)
D = shift_coefficients(DS, -parent_aperture.V2Ref, -parent_aperture.V3Ref)
C[0] += parent_aperture.XDetRef
D[0] += parent_aperture.YDetRef
return AF, BF, C, D | 3b1e85c0416a9a16c5c648a34704c13570ea9ee3 | 3,652,928 |
def spinner_runner_factory(spec, t_compile, extra_commands):
"""Optimized spinner runner, which receives the spec of an animation, and controls
the flow of cycles and frames already compiled to a certain screen length and with
wide chars fixed, thus avoiding any overhead in runtime within complex spinners,
while allowing their factories to be garbage collected.
Args:
spec (SimpleNamespace): the spec of an animation
t_compile (about_time.Handler): the compile time information
extra_commands (tuple[tuple[cmd, list[Any], dict[Any]]]): requested extra commands
Returns:
a spinner runner
"""
def spinner_runner():
"""Wow, you are really deep! This is the runner of a compiled spinner.
Every time you call this function, a different generator will kick in,
which yields the frames of the current animation cycle. Enjoy!"""
yield from next(cycle_gen) # I love generators!
def runner_check(*args, **kwargs): # pragma: no cover
return check(spec, *args, **kwargs)
spinner_runner.__dict__.update(spec.__dict__, check=fix_signature(runner_check, check, 1))
spec.__dict__.update(t_compile=t_compile, runner=spinner_runner) # set after the update above.
sequential(spec)
apply_extra_commands(spec, extra_commands)
cycle_gen = spec.strategy(spec.data)
return spinner_runner | 887af0abc7f11dcf56edb5cda7de136bb95cf6b8 | 3,652,929 |
def _project_im_rois(im_rois, im_scale_factor, im_crop):
"""Project image RoIs into the rescaled training image."""
im_rois[:, 0] = np.minimum(
np.maximum(im_rois[:, 0], im_crop[0]), im_crop[2])
im_rois[:, 1] = np.minimum(
np.maximum(im_rois[:, 1], im_crop[1]), im_crop[3])
im_rois[:, 2] = np.maximum(
np.minimum(im_rois[:, 2], im_crop[2]), im_crop[0])
im_rois[:, 3] = np.maximum(
np.minimum(im_rois[:, 3], im_crop[3]), im_crop[1])
crop = np.tile(im_crop[:2], [im_rois.shape[0], 2])
rois = (im_rois - crop) * im_scale_factor
# For YAROIPooling Layer
# rois = (im_rois - crop)
# width = im_crop[2] - im_crop[0]
# height = im_crop[3] - im_crop[1]
# rois[:, 0] = rois[:, 0] / width
# rois[:, 1] = rois[:, 1] / height
# rois[:, 2] = rois[:, 2] / width
# rois[:, 3] = rois[:, 3] / height
return rois | 596d9baa12708e1adcc9a034c34d4b751ef7e73a | 3,652,930 |
from typing import List
from typing import Tuple
def evaluate_error_absolute(poses_to_test: List[Tuple[str, kapture.PoseTransform]],
poses_ground_truth: List[Tuple[str, kapture.PoseTransform]]
) -> List[Tuple[str, float, float]]:
"""
Evaluate the absolute error for poses to a ground truth.
:param poses_to_test: poses to test
:param poses_ground_truth: reference poses
:return: list of error evaluation
"""
poses_ground_truth_as_dict = {name: pose for name, pose in poses_ground_truth}
result = [(name,) + world_pose_transform_distance(pose, poses_ground_truth_as_dict[name])
for (name, pose) in poses_to_test]
return result | 45ef1335074514837a72be159f8e55f229676779 | 3,652,931 |
def restricted_offset(parent_dimensions, size, offset):
""" Get offset restricted by various factors
"""
limit_x = (parent_dimensions[0] - size[0]) / 2
limit_y = (parent_dimensions[1] - size[1]) / 2
x = clamp(offset[0], -limit_x, limit_x)
y = clamp(offset[1], -limit_y, limit_y)
return x, y | 8e8f16f2267c2ddefda896db9e4905836030f24e | 3,652,932 |
def wt_sgrna(target='none'):
"""
Return the wildtype sgRNA sequence.
The construct is composed of 3 domains: stem, nexus, and hairpins. The
stem domain encompasses the lower stem, the bulge, and the upper stem.
Attachments are allowed pretty much anywhere, although it would be prudent
to restrict this based on the structural biology of Cas9 if you're planning
to make random attachments.
"""
sgrna = Construct('wt')
sgrna += spacer(target)
sgrna += Domain('stem', 'GUUUUAGAGCUAGAAAUAGCAAGUUAAAAU')
sgrna += Domain('nexus', 'AAGGCUAGUCCGU')
sgrna += Domain('hairpins', 'UAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC')
sgrna += Domain('tail', 'UUUUUU')
sgrna['stem'].expected_fold = '((((((..((((....))))....))))))'
sgrna['hairpins'].expected_fold = '.....((((....)))).((((((...))))))'
sgrna['stem'].style = 'green'
sgrna['nexus'].style = 'red'
sgrna['hairpins'].style = 'blue'
sgrna['stem'].attachment_sites = 'anywhere'
sgrna['nexus'].attachment_sites = 'anywhere'
sgrna['hairpins'].attachment_sites = 'anywhere'
return sgrna | 72d07c10defa52529818217c495d44f8fb66062e | 3,652,933 |
import csv
def export_nodes(nodes, csvfilepath):
"""
Writes the standard nodes data in `nodes` to the CSV file at `csvfilepath`.
"""
with open(csvfilepath, "w") as csv_file:
csvwriter = csv.DictWriter(csv_file, STANDARD_NODE_HEADER_V0)
csvwriter.writeheader()
for node in nodes:
noderow = node_to_rowdict(node)
csvwriter.writerow(noderow)
return csvfilepath | d84658904a848993237e8571412ca3a3860be999 | 3,652,934 |
def _var_network(graph,
add_noise=True,
inno_cov=None,
invert_inno=False,
T=100,
initial_values=None):
"""Returns a vector-autoregressive process with correlated innovations.
Useful for testing.
Example:
graph=numpy.array([[[0.2,0.,0.],[0.5,0.,0.]],
[[0.,0.1,0. ],[0.3,0.,0.]]])
represents a process
X_1(t) = 0.2 X_1(t-1) + 0.5 X_2(t-1) + eps_1(t)
X_2(t) = 0.3 X_2(t-1) + 0.1 X_1(t-2) + eps_2(t)
with inv_inno_cov being the negative (except for diagonal) inverse
covariance matrix of (eps_1(t), eps_2(t)) OR inno_cov being
the covariance. Initial values can also be provided.
Parameters
----------
graph : array
Lagged connectivity matrices. Shape is (n_nodes, n_nodes, max_delay+1)
add_noise : bool, optional (default: True)
Flag to add random noise or not
inno_cov : array, optional (default: None)
Covariance matrix of innovations.
invert_inno : bool, optional (defualt : False)
Flag to negate off-diagonal elements of inno_cov and invert it before
using it as the covariance matrix of innovations
T : int, optional (default: 100)
Sample size.
initial_values : array, optional (defult: None)
Initial values for each node. Shape is (n_nodes, max_delay+1), i.e. must
be of shape (graph.shape[1], graph.shape[2]).
Returns
-------
X : array
Array of realization.
"""
n_nodes, _, period = graph.shape
time = T
# Test stability
_check_stability(graph)
# Generate the returned data
data = np.random.randn(n_nodes, time)
# Load the initial values
if initial_values is not None:
# Check the shape of the initial values
_check_initial_values(initial_values, data[:, :period].shape)
# Input the initial values
data[:, :period] = initial_values
# Check if we are adding noise
noise = None
if add_noise:
# Use inno_cov if it was provided
if inno_cov is not None:
noise = _generate_noise(inno_cov,
time=time,
use_inverse=invert_inno)
# Otherwise just use uncorrelated random noise
else:
noise = np.random.randn(time, n_nodes)
for a_time in range(period, time):
data_past = np.repeat(
data[:, a_time-period:a_time][:, ::-1].reshape(1, n_nodes, period),
n_nodes, axis=0)
data[:, a_time] = (data_past*graph).sum(axis=2).sum(axis=1)
if add_noise:
data[:, a_time] += noise[a_time]
return data.transpose() | ca7c327f4052f44cdcfd60e628f8f53f4e411162 | 3,652,935 |
def build_features(component, borders, initial_group):
"""
Integrate peaks within similarity components and build features
:param component: a groupedROI object
:param borders: dict - key is a sample name, value is a (n_borders x 2) matrix;
predicted, corrected and transformed to normal values borders
:param initial_group: a number of mzrt group
:return: None (in-place correction)
"""
rtdiff = (component.rois[0].rt[1] - component.rois[0].rt[0])
scandiff = (component.rois[0].scan[1] - component.rois[0].scan[0])
frequency = scandiff / rtdiff
features = []
labels = np.unique(component.grouping)
for label in labels:
# compute number of peaks
peak_number = None
for i, sample in enumerate(component.samples):
# to do: it would be better to have mapping from group to samples and numbers
if component.grouping[i] == label:
peak_number = len(borders[sample])
for p in range(peak_number):
# build feature
intensities = []
samples = []
rois = []
feature_borders = []
shifts = []
rtmin, rtmax, mz = None, None, None
for i, sample in enumerate(component.samples):
# to do: it would be better to have mapping from group to samples and numbers
if component.grouping[i] == label:
assert len(borders[sample]) == peak_number
begin, end = borders[sample][p]
intensity = np.sum(component.rois[i].i[begin:end])
intensities.append(intensity)
samples.append(sample)
rois.append(component.rois[i])
feature_borders.append(borders[sample][p])
shifts.append(component.shifts[i])
if mz is None:
mz = component.rois[i].mzmean
rtmin = component.rois[i].rt[0] + begin / frequency
rtmax = component.rois[i].rt[0] + end / frequency
else:
mz = (mz * i + component.rois[i].mzmean) / (i + 1)
rtmin = min((rtmin, component.rois[i].rt[0] + begin / frequency))
rtmax = max((rtmax, component.rois[i].rt[0] + end / frequency))
features.append(Feature(samples, rois, feature_borders, shifts,
intensities, mz, rtmin, rtmax,
initial_group, label))
# to do: there are a case, when borders are empty
# assert len(features) != 0
return features | 2070741b58c7c04b3a929747407c9dcd9caa025b | 3,652,936 |
def get_cred_fh(library: str) -> str:
"""
Determines correct SimplyE credential file
"""
if library == "BPL":
return ".simplyE/bpl_simply_e.yaml"
elif library == "NYPL":
return ".simplyE/nyp_simply_e.yaml"
else:
raise ValueError("Invalid library code passsed") | aefea283c171963778bdc34ddf2f2aeb18fd126d | 3,652,937 |
def create_app(enviornment):
"""Construct the core application."""
app = Flask(__name__, static_url_path = "")
app.config.from_object(Config)
if enviornment == 'test':
app.config['TESTING'] = True
return app
db.init_app(app)
with app.app_context():
# Imports
# Create tables for our models
# db.create_all()
return app | 7b4169adfbcca18a8373ca74cc95691438318837 | 3,652,938 |
def weighted_percentiles(a, percentiles, weights=None):
"""Compute weighted percentiles by using interpolation of the weighted ECDF.
Parameters
----------
a : np.ndarray
Vector of data for computing quantiles
percentiles : np.ndarray
Vector of percentiles in [0, 100]
weights : np.ndarray
Vector of non-negative weights. Not required to sum to one.
Returns
-------
percentiles : np.ndarray"""
a = np.array(a)
percentiles = np.array(percentiles)
quantiles = percentiles / 100.
if weights is None:
weights = np.ones(len(a))
else:
weights = np.array(weights)
assert np.all(weights > 0), 'Weights must be > 0'
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), 'Percentiles must be in [0, 100]'
sorti = np.argsort(a)
a = a[sorti]
weights = weights[sorti]
"""Two definitions for the weighted eCDF. See _plotSolutions() below for a comparison.
Note that there are also several options in R for computing a weighted quantile,
but I did not fully understand the motivation for each. The chosen option here was intuitive to me
and agreed well with the empirical solution below.
https://github.com/harrelfe/Hmisc/R/wtd.stats.s"""
# ecdf = np.cumsum(weights) / weights.sum()
ecdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights)
return np.interp(quantiles, ecdf, a) | 1ffda97f48e4223e3c54167e99af1952b357573a | 3,652,939 |
def default_summary_collector():
"""
Get the :class:`SummaryCollector` object at the top of context stack.
Returns:
SummaryCollector: The summary collector.
"""
return _summary_collect_stack.top() | 98a547f73a6c96bc3e33331ad64430da7f19c1e2 | 3,652,940 |
def norm(*args, **kwargs):
""" See https://www.tensorflow.org/versions/master/api_docs/python/tf/norm .
"""
return tensorflow.norm(*args, **kwargs) | 95a03e8267453db6e8c2ece0a2d45131c4fcb9a9 | 3,652,941 |
from typing import Optional
from typing import Sequence
def get_steering_policies(compartment_id: Optional[str] = None,
display_name: Optional[str] = None,
display_name_contains: Optional[str] = None,
filters: Optional[Sequence[pulumi.InputType['GetSteeringPoliciesFilterArgs']]] = None,
health_check_monitor_id: Optional[str] = None,
id: Optional[str] = None,
state: Optional[str] = None,
template: Optional[str] = None,
time_created_greater_than_or_equal_to: Optional[str] = None,
time_created_less_than: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSteeringPoliciesResult:
"""
This data source provides the list of Steering Policies in Oracle Cloud Infrastructure DNS service.
Gets a list of all steering policies in the specified compartment.
## Example Usage
```python
import pulumi
import pulumi_oci as oci
test_steering_policies = oci.dns.get_steering_policies(compartment_id=var["compartment_id"],
display_name=var["steering_policy_display_name"],
display_name_contains=var["steering_policy_display_name_contains"],
health_check_monitor_id=oci_health_checks_http_monitor["test_http_monitor"]["id"],
id=var["steering_policy_id"],
state=var["steering_policy_state"],
template=var["steering_policy_template"],
time_created_greater_than_or_equal_to=var["steering_policy_time_created_greater_than_or_equal_to"],
time_created_less_than=var["steering_policy_time_created_less_than"])
```
:param str compartment_id: The OCID of the compartment the resource belongs to.
:param str display_name: The displayName of a resource.
:param str display_name_contains: The partial displayName of a resource. Will match any resource whose name (case-insensitive) contains the provided value.
:param str health_check_monitor_id: Search by health check monitor OCID. Will match any resource whose health check monitor ID matches the provided value.
:param str id: The OCID of a resource.
:param str state: The state of a resource.
:param str template: Search by steering template type. Will match any resource whose template type matches the provided value.
:param str time_created_greater_than_or_equal_to: An [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) timestamp that states all returned resources were created on or after the indicated time.
:param str time_created_less_than: An [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) timestamp that states all returned resources were created before the indicated time.
"""
__args__ = dict()
__args__['compartmentId'] = compartment_id
__args__['displayName'] = display_name
__args__['displayNameContains'] = display_name_contains
__args__['filters'] = filters
__args__['healthCheckMonitorId'] = health_check_monitor_id
__args__['id'] = id
__args__['state'] = state
__args__['template'] = template
__args__['timeCreatedGreaterThanOrEqualTo'] = time_created_greater_than_or_equal_to
__args__['timeCreatedLessThan'] = time_created_less_than
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('oci:dns/getSteeringPolicies:getSteeringPolicies', __args__, opts=opts, typ=GetSteeringPoliciesResult).value
return AwaitableGetSteeringPoliciesResult(
compartment_id=__ret__.compartment_id,
display_name=__ret__.display_name,
display_name_contains=__ret__.display_name_contains,
filters=__ret__.filters,
health_check_monitor_id=__ret__.health_check_monitor_id,
id=__ret__.id,
state=__ret__.state,
steering_policies=__ret__.steering_policies,
template=__ret__.template,
time_created_greater_than_or_equal_to=__ret__.time_created_greater_than_or_equal_to,
time_created_less_than=__ret__.time_created_less_than) | 6919dc3e155854db5ac0838635cb20f691a423d3 | 3,652,943 |
def res_input_matrix_random_sparse(idim = 1, odim = 1, density=0.1, dist = 'normal'):
"""reservoirs.res_input_matrix_random_sparse
Create a sparse reservoir input matrix. Wrapper for
create_matrix_sparse_random.
Arguments:
idim: input dimension
odim: hidden dimension
density: density
dist: distribution
Returns:
wi: input matrix
"""
# p_wi = density
# wi_ = spa.rand(odim, idim, p_wi)
# # print "sparse wi", wi_
# wi = wi_.todense()
# tmp_idx = wi != 0
# tmp = wi[tmp_idx]
# # tmp_r = np.random.normal(0, 1, size=(tmp.shape[1],))
# tmp_r = np.random.uniform(-1, 1, size=(tmp.shape[1],))
# wi[tmp_idx] = tmp_r
# # return dense repr
# return np.asarray(wi)
return create_matrix_sparse_random(odim, idim, density, dist = dist) | d7d1f986228ea982d01010080dfb7749444c31c2 | 3,652,944 |
import six
def _MakeApiMap(root_package, api_config):
"""Converts a map of api_config into ApiDef.
Args:
root_package: str, root path of where generate api will reside.
api_config: {api_name->api_version->{discovery,default,version,...}},
description of each api.
Returns:
{api_name->api_version->ApiDef()}.
Raises:
NoDefaultApiError: if for some api with multiple versions
default was not specified.
"""
apis_map = {}
apis_with_default = set()
for api_name, api_version_config in six.iteritems(api_config):
api_versions_map = apis_map.setdefault(api_name, {})
has_default = False
for api_version, api_config in six.iteritems(api_version_config):
if api_config.get('gcloud_gapic_library'):
gapic_client = _MakeGapicClientDef(root_package, api_name, api_version)
else:
gapic_client = None
default = api_config.get('default', len(api_version_config) == 1)
if has_default and default:
raise NoDefaultApiError(
'Multiple default client versions found for [{}]!'
.format(api_name))
has_default = has_default or default
enable_mtls = api_config.get('enable_mtls', True)
mtls_endpoint_override = api_config.get('mtls_endpoint_override', '')
api_versions_map[api_version] = api_def.APIDef(
_MakeApitoolsClientDef(root_package, api_name, api_version),
gapic_client,
default, enable_mtls, mtls_endpoint_override)
if has_default:
apis_with_default.add(api_name)
apis_without_default = set(apis_map.keys()).difference(apis_with_default)
if apis_without_default:
raise NoDefaultApiError('No default client versions found for [{0}]!'
.format(', '.join(sorted(apis_without_default))))
return apis_map | 1e44188d1cced2255ca4e30efc36631bda305b57 | 3,652,945 |
def make_election_frame(votes, shares=None, party_names=None, margin_idx=None):
"""
Constructs an election frame from at most two arrays.
If provided,
"""
if votes.ndim == 1:
votes = votes.reshape(-1,1)
if votes.shape[-1] == 1 and shares is not None:
votes, shares = votes, shares
elif votes.shape[-1] > 1 and shares is None:
if margin_idx is None:
totals = votes.sum(axis=1).reshape(-1,1)
else:
totals = votes[:,margin_idx].reshape(-1,1)
votes = np.delete(votes, margin_idx, axis=1)
shares = votes / totals
votes = totals
data = np.hstack((votes, shares))
if party_names is None:
party_names = ['Party_{}'.format(i) for i in range(data.shape[-1] - 1)]
return pd.DataFrame(data, columns=['Votes'] + list(party_names)) | d165e32b61c23522dfadab4ac04e438b2d7710dd | 3,652,946 |
import json
def payload_from_api_post_event(event):
"""Maps an API event to the expected payload"""
# event = {
# 'timeserie1': [(1, 100), (2, 100)],
# 'timeserie2': [(3, 100), (4, 100)],
# }
body = json.loads(event['body'])
return body | 897a3d2e846e7bbf96d0acd288924d96b07acc78 | 3,652,947 |
def format_link_header(link_header_data):
"""Return a string ready to be used in a Link: header."""
links = ['<{0}>; rel="{1}"'.format(data['link'], data['rel'])
for data in link_header_data]
return ', '.join(links) | 9a68ff381d51e6e10fe257d2d2d6766295ffc050 | 3,652,948 |
def parse_collection_members(object_: dict) -> dict:
"""Parse the members of a collection to make it easier
to insert in database.
:param object_: The body of the request having object members
:type object_: dict
:return: Object with parsed members
:rtype: dict
"""
members = list()
for member in object_['members']:
# example member
# {
# "@id": "/serverapi/LogEntry/aab38f9d-516a-4bb2-ae16-068c0c5345bd",
# "@type": "LogEntry"
# }
member_id = member['@id'].split('/')[-1]
member_type = member['@type']
if crud.item_exists(member_type, member_id, get_session()):
members.append({
"id_": member_id,
"@type": member_type,
})
else:
error = HydraError(code=400, title="Data is not valid")
return error_response(error)
object_['members'] = members
return object_ | 6d5a99c9346cd2f8bf3a00c13ab291c7b972abdc | 3,652,949 |
def PoissonWasserstein_S2(tau, rho, function1, function2, numerical=False):
""" Computes the Poisson bracket of two linear functionals on the space P^{OO}(S^2), of measures with a smooth
positive density function on the 2-sphere S^2, at a measure in P^{OO}(S^2).
The Poisson bracket on P^{OO}(S^2) is induced by a Poisson bivector field pi_{tau} on S^2.
Let (theta, phi) be spherical coordinates on S^2 such that
(theta, phi) |-> (sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta)).
Then pi_{tau} has the following representation,
pi_{tau} = (tau / sin(theta)) * d/d{theta} ^ d/d{phi}, ----------> (1)
for some conformal factor tau on S^2. Hence, the Poisson bracket on P^{OO}(S^2) is given by
{F_{f}, F_{h}}(mu_{rho}) = 1/(4*pi) * int_{0}^{2*pi} int_{0}^{pi} (df/d{theta} * dh/d{phi}
- dh/d{theta} * df/d{phi}) * tau * rho * sin(theta) d{theta1}d{theta2},
----------> (2)
where F_{f} and F_{h} are linear functionals on P^{OO}(S^2) induced by scalar functions f and h on S^2, and
mu_{rho} = rho * sin(theta) * |d{theta}^d{phi}| ----------> (3)
is a measure in P^{OO}(S^2).
Parameters
==========
tau: string literal expression
Represents the conformal factor tau in (1)
rho: string literal expression
Represents the density function rho in (1)
function1: string literal expression
Represents the function f in (2)
function2: string literal expression
Represents the function h in (2)
numerical: Boolean expression, optional
Indicates numerical computation. By default, numerical == False.
Returns: a symbolic expression or a tuple
=======
* A symbolic expression of the double integral in (2)
* A tuple (numerical approximation of the double integral in (2), estimated error)
"""
# Define the symbolic variables theta and phi
theta, phi = sym.symbols('theta phi')
# Convert the string literal expressions tau, rho, function1 and function2 into symbolic variables, in that order
tau = sym.sympify(tau)
rho = sym.sympify(rho)
ff = sym.sympify(function1)
hh = sym.sympify(function2)
# Compute the Poisson bracket of function1 and function2 induced by pi_{tau} in (1):
# (df/d{theta} * dh/d{phi} - dh/d{theta} * df/d{phi}) * tau
bracket_ff_hh = (sym.diff(ff, theta) * sym.diff(hh, phi) - sym.diff(hh, theta) * sym.diff(ff, phi)) * tau
# Compute the integrand of the double integral in (2)
integrand = bracket_ff_hh * rho * sym.sin(theta)
if numerical == True: # Indicate numerical computation
# Transform the symbolic variable 'integrand' into a NumPy function that allows a numerical evaluation
integrand = sym.lambdify([theta, phi], 1/(4*sym.pi) * integrand, 'numpy')
# Return a tuple: (numerical approximation of the double integral in (2), estimated error)
return dblquad(integrand, 0, 2*np.pi, lambda phi: 0, lambda phi: np.pi)
# Compute the the double integral in (2)
integrand = sym.integrate(integrand, (theta, 0, sym.pi))
integral = sym.integrate(integrand, (phi, 0, 2*sym.pi))
# Return a symbolic expression of the double integral in (2)
return 1/(4*sym.pi) * integral | 7cb3884ecc665ced43c30dae1dca3c4f4f00af4d | 3,652,950 |
def poly_in_gdf():
""" Fixture for a bounding box polygon. """
return make_poly_in_gdf() | bf57298bc002aababa8df30b90dbbe7b91858afc | 3,652,951 |
from typing import List
def apply_inclusion_exclusion_criteria(
df: pd.DataFrame, col: str, criteria: List[List[str], List[str]]
) -> pd.Series:
"""Filter out files based on `criteria`, a nested list of row values to include or exclude, respectively
:param df: dataframe to filter
:type df: pd.DataFrame
:param col: column to filter
:type col: str
:param criteria: nested list containing row values to include or exclude. May be `None` or `['all']` to indicate that all values are included.
:type criteria: List[List[str]]
:return: filtered column of `df`
:rtype: pd.Series
"""
if criteria is None:
return df.loc[:, col]
# copy dataframe to be filtered
out = df.copy()
# join criteria
masks = ["|".join(c) for c in criteria]
# inclusion
if masks[0] != "all":
out = out.loc[out[col].str.contains(masks[0], na=False)]
# exclusion
out = out.loc[~out[col].str.contains(masks[1], na=False)]
return out | eb8060d8d9d06a798a8617935ff8506698e63a33 | 3,652,952 |
import re
def prune_string(string):
"""Prune a string.
- Replace multiple consecutive spaces with a single space.
- Remove spaces after open brackets.
- Remove spaces before close brackets.
"""
return re.sub(
r" +(?=[\)\]\}])",
"",
re.sub(r"(?<=[\(\[\{]) +", "", re.sub(r" +", " ", string)),
) | 53a2c00f50c16b568a75e59bc32a124a5f152b4a | 3,652,953 |
def detect_face(MaybeImage):
"""
Take an image and return positional information for the largest face in it.
Args:
MaybeImage: An image grabbed from the local camera.
Returns:
Maybe tuple((bool, [int]) or (bool, str)): True and list of positional
coordinates of the largest face found. False and an error string if no
faces are found.
"""
if MaybeImage.success:
image = MaybeImage.result
else:
return MaybeImage
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # Load face classifier
major_ver = (cv2.__version__).split('.')[0]
if int(major_ver) < 3:
flag_for_detect = cv2.cv.CV_HAAR_SCALE_IMAGE
else:
flag_for_detect = cv2.CASCADE_SCALE_IMAGE
# Detect faces in the image
# faces will be an iterable object
faces = faceCascade.detectMultiScale(
image=image,
scaleFactor=1.1,
minNeighbors=5,
minSize=(40, 40),
flags = flag_for_detect
)
try: # Assume largest face is the subject
face = faces[0] # [0] index is largest face.
return Maybe(True, face)
except IndexError:
return Maybe(False, "No faces detected. This may be due to low or uneven \
lighting.") | 3b530f7de671fe3d26f3f50adcead639c45be78c | 3,652,954 |
def compute_TVL1(prev, curr, bound=15):
"""Compute the TV-L1 optical flow."""
TVL1 = cv2.DualTVL1OpticalFlow_create()
flow = TVL1.calc(prev, curr, None)
assert flow.dtype == np.float32
flow = (flow + bound) * (255.0 / (2 * bound))
flow = np.round(flow).astype(int)
flow[flow >= 255] = 255
flow[flow <= 0] = 0
return flow | 9020667c141c9be8034c330c9a4943a32b3f3195 | 3,652,955 |
def _un_partial_ize(func):
"""
Alter functions working on 1st arg being a callable, to descend it if it's a partial.
"""
@wraps(func)
def wrapper(fn, *args, **kw):
if isinstance(fn, (partial, partialmethod)):
fn = fn.func
return func(fn, *args, **kw)
return wrapper | acb9409ed8fa08e8a1f915b504b073b390fa4520 | 3,652,956 |
import json
import requests
def search_full_text(text, ipstreet_api_key):
"""sends input text to /full_text semantic search endpoint. returns json results"""
endpoint = 'https://api.ipstreet.com/v2/full_text'
headers = {'x-api-key': ipstreet_api_key}
payload = json.dumps({'raw_text': str(text),
'q': {
'start_date': '1976-01-01',
'start_date_type': 'application_date',
'end_date': '2017-03-10',
'end_date_type': 'application_date',
'applied': True,
'granted': True,
'expired': True,
'max_expected_results': 500,
'page_size': 500,
}
})
r = requests.post(endpoint, headers=headers, data=payload)
return r.json() | 7112e04698dcfaf3072b30d0085fa2dc18043f76 | 3,652,957 |
def main(filename, plotDir='Plots/'):
"""
"""
# Which pixels and sidebands?
pixelOffsets = Pointing.GetPixelOffsets('COMAP_FEEDS.dat')
# READ IN THE DATA
d = h5py.File(filename)
tod = d['spectrometer/tod']
mjd = d['spectrometer/MJD'][:]
if len(d['pointing/az'].shape) > 1:
az = d['pointing/az'][0,:]
el = d['pointing/el'][0,:]
else:
az = d['pointing/az'][:]
el = d['pointing/el'][:]
mjdpoint = d['pointing/MJD'][:]
slewDist = SlewDistance(az)
ra, dec, pa, az, el, mjd = Pointing.GetPointing(az, el, mjd,
mjdpoint, pixelOffsets,
lon=Pointing.comap_lon,
lat=Pointing.comap_lat)
# Calculate data sizes:
nHorns = tod.shape[0]
nSBs = tod.shape[1]
nFreqs = tod.shape[2]
nSamps = tod.shape[3]
# Calculate the position of Jupiter
clon, clat, diam = EphemNew.rdplan(mjd[0:1], 5,
Pointing.comap_lon*np.pi/180.,
Pointing.comap_lat*np.pi/180.)
EphemNew.precess(clon, clat, mjd[0:1])
# Loop over horns/SBs
P1out = None
prefix = filename.split('/')[-1].split('.')[0]
for iHorn in range(nHorns):
print('Processing Horn {:d}'.format(iHorn+1))
_tod = np.nanmean(np.nanmean(tod[iHorn,:,5:-5,:],axis=0),axis=0)
#Tim: Pass this function whatever chunk of time-ordered data you have in memory
P1, P1e, cross, mweight, weight, model = FitSource.FitTOD(_tod,
ra[0,:], # horn 0 because we want the relative offset from Focal Plane
dec[0,:],
clon*180./np.pi,
clat*180./np.pi,
pa[0,:],
prefix='{}_Horn{}'.format(prefix, iHorn+1),
plotDir=plotDir)
if isinstance(P1out, type(None)):
P1out = np.zeros((nHorns, len(P1)))
Peout = np.zeros((nHorns, len(P1e)))
mout = np.zeros(mweight.shape)
hout = np.zeros(weight.shape)
if not isinstance(P1, type(None)):
P1out[iHorn, :] = P1
Peout[iHorn, :] = P1e
mout += mweight*(model+1)**2
hout += weight*(model+1)**2
pyplot.imshow(mout/hout, extent=[-100/2. * 1.5, 100/2.*1.5,-100/2. * 1.5, 100/2.*1.5] )
pyplot.xlabel('Az offset (arcmin)')
pyplot.ylabel('EL offset (arcmin)')
pyplot.title('{}'.format(prefix))
pyplot.grid(True)
pyplot.savefig('{}/FeedPositions_{}.png'.format(plotDir, prefix), bbox_inches='tight')
pyplot.clf()
meanMJD = np.mean(mjd)
meanEl = np.median(el)
meanAz = np.median(az)
d.close()
print('SLEW DISTANCE', slewDist)
return P1out, Peout, mout/hout, meanMJD, meanEl, meanAz | 9f059f49222ed8983008f32e5e7edbc303dc1328 | 3,652,958 |
def add_rows(df, row_list=[], column_list=[], append=False):
"""
add a list of rows by index number for a wide form dataframe
"""
df = df.filter(items=row_list, axis=0)
df = pd.DataFrame(df.sum()).T
return df | 3620e625716e7570e095efd219b2505f8fb89413 | 3,652,959 |
from typing import OrderedDict
def coerce_data_type_value(context, presentation, data_type, entry_schema, constraints, value, # pylint: disable=unused-argument
aspect):
"""
Handles the ``_coerce_data()`` hook for complex data types.
There are two kinds of handling:
1. If we have a primitive type as our great ancestor, then we do primitive type coersion, and
just check for constraints.
2. Otherwise, for normal complex data types we return the assigned property values while making
sure they are defined in our type. The property definition's default value, if available,
will be used if we did not assign it. We also make sure that required definitions indeed end
up with a value.
"""
primitive_type = data_type._get_primitive_ancestor(context)
if primitive_type is not None:
# Must be coercible to primitive ancestor
value = coerce_to_primitive(context, presentation, primitive_type, constraints, value,
aspect)
else:
definitions = data_type._get_properties(context)
if isinstance(value, dict):
temp = OrderedDict()
# Fill in our values, but make sure they are defined
for name, v in value.iteritems():
if name in definitions:
definition = definitions[name]
definition_type = definition._get_type(context)
definition_entry_schema = definition.entry_schema
definition_constraints = definition._get_constraints(context)
temp[name] = coerce_value(context, presentation, definition_type,
definition_entry_schema, definition_constraints, v,
aspect)
else:
context.validation.report(
'assignment to undefined property "%s" in type "%s" in "%s"'
% (name, data_type._fullname, presentation._fullname),
locator=get_locator(v, value, presentation), level=Issue.BETWEEN_TYPES)
# Fill in defaults from the definitions, and check if required definitions have not been
# assigned
for name, definition in definitions.iteritems():
if (temp.get(name) is None) and hasattr(definition, 'default') \
and (definition.default is not None):
definition_type = definition._get_type(context)
definition_entry_schema = definition.entry_schema
definition_constraints = definition._get_constraints(context)
temp[name] = coerce_value(context, presentation, definition_type,
definition_entry_schema, definition_constraints,
definition.default, 'default')
if getattr(definition, 'required', False) and (temp.get(name) is None):
context.validation.report(
'required property "%s" in type "%s" is not assigned a value in "%s"'
% (name, data_type._fullname, presentation._fullname),
locator=presentation._get_child_locator('definitions'),
level=Issue.BETWEEN_TYPES)
value = temp
elif value is not None:
context.validation.report('value of type "%s" is not a dict in "%s"'
% (data_type._fullname, presentation._fullname),
locator=get_locator(value, presentation),
level=Issue.BETWEEN_TYPES)
value = None
return value | 521d022c5aead7f4066b637bbe6a84a07d4e728e | 3,652,960 |
def Inst2Vec(
bytecode: str, vocab: vocabulary.VocabularyZipFile, embedding
) -> np.ndarray:
"""Transform an LLVM bytecode to an array of embeddings.
Args:
bytecode: The input bytecode.
vocab: The vocabulary.
embedding: The embedding.
Returns:
An array of embeddings.
"""
embed = lambda x: EmbedEncoded(x, embedding)
encode = lambda x: EncodeLlvmBytecode(x, vocab)
return embed(encode(PreprocessLlvmBytecode(bytecode))) | 4c56c4b35b51ce4b41f203579ca0c8d552c18b0c | 3,652,961 |
import _ast
def extract_from_code(code, gettext_functions):
"""Extract strings from Python bytecode.
>>> from genshi.template.eval import Expression
>>> expr = Expression('_("Hello")')
>>> list(extract_from_code(expr, GETTEXT_FUNCTIONS))
[('_', u'Hello')]
>>> expr = Expression('ngettext("You have %(num)s item", '
... '"You have %(num)s items", num)')
>>> list(extract_from_code(expr, GETTEXT_FUNCTIONS))
[('ngettext', (u'You have %(num)s item', u'You have %(num)s items', None))]
:param code: the `Code` object
:type code: `genshi.template.eval.Code`
:param gettext_functions: a sequence of function names
:since: version 0.5
"""
def _walk(node):
if isinstance(node, _ast.Call) and isinstance(node.func, _ast.Name) \
and node.func.id in gettext_functions:
strings = []
def _add(arg):
if isinstance(arg, _ast_Str) \
and isinstance(_ast_Str_value(arg), unicode):
strings.append(_ast_Str_value(arg))
elif isinstance(arg, _ast_Str):
strings.append(unicode(_ast_Str_value(arg), 'utf-8'))
elif arg:
strings.append(None)
[_add(arg) for arg in node.args]
if hasattr(node, 'starargs'):
_add(node.starargs)
if hasattr(node, 'kwargs'):
_add(node.kwargs)
if len(strings) == 1:
strings = strings[0]
else:
strings = tuple(strings)
yield node.func.id, strings
elif node._fields:
children = []
for field in node._fields:
child = getattr(node, field, None)
if isinstance(child, list):
for elem in child:
children.append(elem)
elif isinstance(child, _ast.AST):
children.append(child)
for child in children:
for funcname, strings in _walk(child):
yield funcname, strings
return _walk(code.ast) | eb766056ab08d31d20728717570ffb6deb240e03 | 3,652,962 |
import torch
def sample_raw_locations(stacking_program, address_suffix=""):
"""
Samples the (raw) horizontal location of blocks in the stacking program.
p(raw_locations | stacking_program)
Args
stacking_program [num_blocks]
Returns [num_blocks]
"""
device = stacking_program[0].device
dist = pyro.distributions.Independent(
pyro.distributions.Normal(torch.zeros((len(stacking_program),), device=device), 1),
reinterpreted_batch_ndims=1,
)
return pyro.sample(f"raw_locations{address_suffix}", dist) | 8c31f916a36fadf22c86dfe671fa2f7000609f14 | 3,652,963 |
def get_raw_data(params, data_type=1):
"""Method to filter which report user wants."""
# class="table table-bordered"
data = None
raw_data = []
td_zeros = '<td>0</td>' * 12
tblanks = ['M', 'F'] * 6
blanks = ['0'] * 13
csvh = ['0 - 5 yrs', '', '6 - 10 yrs', '', '11 - 15 yrs', '',
'16 - 17 yrs', '', '18+ yrs', '', 'Sub-Total', '', '']
try:
report_type = int(params['report_id'])
if report_type == 6:
data, raw_data = get_ovc_values(params)
elif report_type == 5:
data, raw_data = get_raw_values(params)
elif report_type == 4:
# Other values
otherd, vls_ids = {}, {}
idata, idatas = {}, {}
otherd[1] = 'ALL OTHER DISEASES'
otherd[2] = 'FIRST ATTENDANCES'
otherd[3] = 'RE-ATTENDANCES'
otherd[4] = 'REFERRALS IN'
otherd[5] = 'REFERRALS OUT'
vals = get_dict(field_name=['new_condition_id'])
for vls in vals:
vls_ids[vls] = vls
if 'NCOD' in vals:
del vals['NCOD']
r_title = "{period_name}ly Health Report {unit_type}"
dt = '<table class="table table-bordered"><thead>'
dt += "<tr><th colspan='16'>%s" % (r_title)
dt += '</th></tr>'
dt += "<tr><th colspan='16'>{cci_si_name}</th></tr>"
dt += case_load_header(report_type=3)
dt += "</thead>"
# Fetch raw data
rdatas = get_institution_data(params, report_type)
rdata = get_totals(rdatas['data'], vls_ids)
if rdata:
idata = write_row(rdata)
idatas = write_row(rdata, is_raw=True)
# Get totals
itotals = col_totals(rdata)
itotal = write_row([itotals])
# Show the values
total_h = 0
diss_vals = {}
hel_head = ['', 'Health Report'] + [''] * 13
hel_title = ['', 'List of Diseases'] + tblanks + ['Total']
if rdata:
raw_data.append(hel_head)
raw_data.append(['', ''] + csvh)
raw_data.append(hel_title)
cnt = 1
other_items = {1: 'NCOD'}
for val in vals:
val_name = vals[val]
val_data = diss_vals[val] if val in diss_vals else 0
total_h += val_data
dt += '<tr><td>%s</td><td>%s</td>' % (str(cnt) + '.', val_name)
if val in idata:
dt += '%s' % (idata[val])
else:
dt += '<td></td>%s<td>0</td></tr>' % (td_zeros)
if val in idatas:
rd = idatas[val]
del rd[0:2]
else:
rd = blanks
if rdata:
raw_data.append([str(cnt) + '.', val_name] + rd)
cnt += 1
for oval in otherd:
oval_name = otherd[oval]
sval = other_items[oval] if oval in other_items else oval
dt += '<tr><td>%s</td><td>%s</td>' % (str(cnt) + '.', oval_name)
if sval in idata:
dt += '%s' % (idata[sval])
else:
dt += '<td></td>%s<td>0</td></tr>' % (td_zeros)
if sval in idatas:
rd = idatas[sval]
del rd[0:2]
else:
rd = blanks
if rdata:
raw_data.append([str(cnt) + '.', oval_name] + rd)
cnt += 1
if rdata:
del itotals[1]
raw_data.append([''] + itotals)
dt += '<tr><td></td><td>Total</td>'
dt += '%s' % (itotal['TOTAL'])
dt += '<table>'
data = dt
elif report_type == 1:
# KNBS List
ids = {}
ids['CSAB'] = 'Child offender'
ids['CCIP'] = 'Children on the streets'
ids['CSIC'] = 'Neglect'
ids['CIDC'] = 'Orphaned Child'
ids['CCIP'] = 'Children on the streets'
ids['CDIS'] = 'Abandoned'
ids['CHCP'] = 'Lost and found children'
ids['CSDS'] = 'Drug and Substance Abuse'
ids['CSNG'] = 'Physical abuse/violence'
ids['CDSA'] = 'Abduction'
ids['CCDF'] = 'Defilement'
ids['CTRF'] = 'Child Labour'
# Query just like case load
all_datas = get_data(params)
all_data = all_datas['data']
knb_ids, rdata, rdatas = {}, {}, {}
# Just send ids as ids for easier rendering later
# Have to get all ids else errors
case_categories = get_categories()
for knb_id in ids:
knb_ids[knb_id] = knb_id
data = get_totals(all_data, case_categories)
if data:
rdata = write_row(data)
rdatas = write_row(data, is_raw=True)
rtotals = col_totals(data)
rtotal = write_row([rtotals])
rtitle = 'KNBS REPORT %s %s' % (
params['month'], params['year'])
# Just add title whether there is data or not
knb_head = ['', rtitle.upper()] + [''] * 13
knb_title = ['', 'Case Category'] + tblanks + ['Total']
if data:
raw_data.append(knb_head)
raw_data.append(['', ''] + csvh)
raw_data.append(knb_title)
dt = '<table class="table table-bordered"><thead>'
dt += '<tr><th colspan="16">%s</th></tr>' % (rtitle.upper())
dt += case_load_header(report_type=4)
dt += "</thead>"
knbcnt = 1
if data:
for val in ids:
val_name = ids[val]
dt += '<tr><td>%s</td><td>%s</td>' % (knbcnt, val_name)
if val in rdata:
dt += '%s' % (rdata[val])
else:
dt += '<td></td>%s<td>0</td></tr>' % (td_zeros)
if val in rdatas:
rd = rdatas[val]
del rd[0:2]
else:
rd = blanks
raw_data.append([knbcnt, val_name] + rd)
knbcnt += 1
raw_data.append(rtotals)
dt += '<tr><td colspan="2"><b>Total</b></td>'
dt += '%s' % (rtotal['TOTAL'])
dt += '<table>'
data = dt
elif report_type == 3:
discs = {'AEES': 'AEES'}
dvals = {2: 'TANA', 4: 'TARR', 5: 'TRIN', 6: 'TARE'}
rvals = {4: 'TARR', 5: 'TRIN', 6: 'TARE'}
evals = {8: 'AEES', 9: 'AEAB', 10: 'TDER',
11: 'TDTR', 12: 'TDEX', 13: 'DTSI', 15: 'AEDE'}
svals = {8: 'AEES', 9: 'AEAB', 10: 'TDER',
11: 'TDTR', 12: 'TDEX', 13: 'DTSI', 14: '14'}
death_vals = {15: 'AEDE'}
# Get all types of discharges
discharges = get_dict(field_name=['discharge_type_id'])
for disc in discharges:
discs[disc] = disc
# This is it
pdatas = get_institution_data(params, report_type)
devals = {}
for dval in dvals:
deq = dvals[dval]
devals[deq] = deq
pdata = get_totals(pdatas['data'], devals)
odata = get_totals(pdatas['odata'], devals)
ddata = get_totals(pdatas['ddata'], discs)
edata = get_totals(pdatas['death'], death_vals)
ids = {2: 'New Admissions',
3: 'Returnees',
4: ' - Relapse',
5: ' - Transfer in',
6: ' - Return after escape',
7: 'Exits',
8: ' - Escapee',
9: ' - Abducted',
10: ' - Early Release',
11: ' - Released on License',
12: ' - Released on Expiry of Order',
13: ' - Transfer to another Institution',
14: ' - Other exits',
15: 'Death'}
r_title = "{cci_si_title} {period_name}ly Returns {unit_type}"
dt = '<table class="table table-bordered"><thead>'
dt += "<tr><th colspan='16'>%s" % (r_title)
dt += "</th></tr><tr><th colspan='16'>{cci_si_name}</th></tr>"
dt += case_load_header(report_type=2)
dt += "</thead>"
# This is it
popdata, popdatas = {}, {}
opdata, opdatas = {}, {}
dopdata, dopdatas = {}, {}
depdata, depdatas = {}, {}
osdata = []
if pdata:
all_returnees = get_others(pdata, rvals, 3, True)
pdata.append(all_returnees)
popdata = write_row(pdata)
popdatas = write_row(pdata, is_raw=True)
# Old data
if odata:
p1 = col_totals(odata)
osdata.append(p1)
opdata = write_row(osdata)
opdatas = write_row(osdata, is_raw=True)
# Discharge data
if ddata:
all_other = get_others(ddata, evals, 14)
ddata.append(all_other)
all_exits = get_others(ddata, svals, 7, True)
ddata.append(all_exits)
dopdata = write_row(ddata)
dopdatas = write_row(ddata, is_raw=True)
# Deaths as a type of discharge
if edata:
depdata = write_row(edata)
depdatas = write_row(edata, is_raw=True)
# Just add title whether there is data or not
pop_head = ['Institution Population'] + ['-'] * 14
pop_title = ['Category', 'Sub-category'] + tblanks + ['Total']
all_var = merge_two_dicts(popdata, dopdata)
all_rvar = merge_two_dicts(popdatas, dopdatas)
all_vars = merge_two_dicts(all_var, depdata)
all_rvars = merge_two_dicts(all_rvar, depdatas)
if pdata:
raw_data.append(pop_head)
raw_data.append(['', ''] + csvh)
raw_data.append(pop_title)
si_total = 0
# All totals
final_totals = get_final_totals(osdata, pdata, ddata)
ptotal = write_row([final_totals])
ptotal_raw = write_row([final_totals], is_raw=True)
td_pad = '</td><td>'
s_text = '<b>Total Children by End of Previous {period_name}</b>'
dt += '<tr><td colspan="3">%s' % (s_text)
if opdata:
o_data = opdata['TOTAL'].replace('<td></td>', '')
dt += o_data
raw_ol = opdatas['TOTAL']
del raw_ol[0:2]
raw_data.append(['From previous period', ''] + raw_ol)
else:
dt += '</td>%s<td>0</td></tr>' % (td_zeros)
ftotal = ptotal['TOTAL'].replace('<td></td>', '')
for val in ids:
vname = ids[val]
v_name = vname.replace(' - ', td_pad)
r_name = vname.replace(' - ', '')
val_name = v_name + td_pad if '<td>' not in v_name else v_name
vraw = [r_name, ''] if '<td>' not in v_name else ['', r_name]
val_data = 0
if val in dvals:
vd = dvals[val]
elif val in evals:
vd = evals[val]
else:
vd, val_data = str(val), 0
dt += '<tr><td width="1px"></td><td>%s</td>' % (val_name)
if vd in all_rvars:
rd = all_rvars[vd]
del rd[0:2]
else:
rd = blanks
if all_vars:
raw_data.append(vraw + rd)
if vd in all_vars:
my_val = all_vars[vd].replace('<td></td>', '')
dt += '%s' % (my_val)
else:
dt += '%s<td>0</td></tr>' % (td_zeros)
si_total += val_data
t_text = '<b>Total Children by End of Reporting {period_name}</b>'
dt += '<tr><td colspan="3">%s</td>' % (t_text)
dt += '%s' % (ftotal)
dt += '</table>'
if all_vars:
raw_data.append(ptotal_raw['TOTAL'])
data = dt
except Exception as e:
print('Error with raw data - %s' % (str(e)))
raise e
else:
return data, raw_data | 235a9cfd73e89bc93626fc3ccc49a02976038187 | 3,652,964 |
import re
def get_existing_cert(server, req_id, username, password, encoding='b64'):
"""
Gets a certificate that has already been created.
Args:
server: The FQDN to a server running the Certification Authority
Web Enrollment role (must be listening on https)
req_id: The request ID to retrieve
username: The username for authentication
pasword: The password for authentication
encoding: The desired encoding for the returned certificate.
Possible values are "bin" for binary and "b64" for Base64 (PEM)
Returns:
The issued certificate
Raises:
CouldNotRetrieveCertificateException: If something went wrong while fetching the cert
"""
headers = {
# We need certsrv to think we are a browser, or otherwise the Content-Type will be wrong
'User-Agent': 'Mozilla/5.0 certsrv (https://github.com/magnuswatn/certsrv)',
'Authorization':'Basic %s' % urllib2.base64.b64encode('%s:%s' % (username, password))
}
cert_url = 'https://%s/certsrv/certnew.cer?ReqID=%s&Enc=%s' % (server, req_id, encoding)
cert_req = urllib2.Request(cert_url, headers=headers)
response = urllib2.urlopen(cert_req)
response_content = response.read()
if response.headers.type != 'application/pkix-cert':
# The response was not a cert. Something must have gone wrong
try:
error = re.search('Disposition message:[^\t]+\t\t([^\r\n]+)', response_content).group(1)
except AttributeError:
error = 'An unknown error occured'
raise CouldNotRetrieveCertificateException(error, response_content)
else:
return response_content | b9f4d04a0e30190870880961c100fc71964bf61d | 3,652,965 |
def _get_go2parents(go2parents, goid, goterm):
"""Add the parent GO IDs for one GO term and their parents."""
if goid in go2parents:
return go2parents[goid]
parent_goids = set()
for parent_goterm in goterm.parents:
parent_goid = parent_goterm.id
parent_goids.add(parent_goid)
parent_goids |= _get_go2parents(go2parents, parent_goid, parent_goterm)
go2parents[goid] = parent_goids
return parent_goids | e4585bb84a4ac9532468451036a609a1d561c928 | 3,652,968 |
def compute_conditional_statistics(x_test, x, kernel, ind):
"""
This version uses cho_factor and cho_solve - much more efficient when using JAX
Predicts marginal states at new time points. (new time points should be sorted)
Calculates the conditional density:
p(xₙ|u₋, u₊) = 𝓝(Pₙ @ [u₋, u₊], Tₙ)
:param x_test: time points to generate observations for [N]
:param x: inducing state input locations [M]
:param kernel: prior object providing access to state transition functions
:param ind: an array containing the index of the inducing state to the left of every input [N]
:return: parameters for the conditional mean and covariance
P: [N, D, 2*D]
T: [N, D, D]
"""
dt_fwd = x_test[..., 0] - x[ind, 0]
dt_back = x[ind + 1, 0] - x_test[..., 0]
A_fwd = kernel.state_transition(dt_fwd)
A_back = kernel.state_transition(dt_back)
Pinf = kernel.stationary_covariance()
Q_fwd = Pinf - A_fwd @ Pinf @ A_fwd.T
Q_back = Pinf - A_back @ Pinf @ A_back.T
A_back_Q_fwd = A_back @ Q_fwd
Q_mp = Q_back + A_back @ A_back_Q_fwd.T
jitter = 1e-8 * np.eye(Q_mp.shape[0])
chol_Q_mp = cho_factor(Q_mp + jitter, lower=True)
Q_mp_inv_A_back = cho_solve(chol_Q_mp, A_back) # V = Q₋₊⁻¹ Aₜ₊
# The conditional_covariance T = Q₋ₜ - Q₋ₜAₜ₊ᵀQ₋₊⁻¹Aₜ₊Q₋ₜ == Q₋ₜ - Q₋ₜᵀAₜ₊ᵀL⁻ᵀL⁻¹Aₜ₊Q₋ₜ
T = Q_fwd - A_back_Q_fwd.T @ Q_mp_inv_A_back @ Q_fwd
# W = Q₋ₜAₜ₊ᵀQ₋₊⁻¹
W = Q_fwd @ Q_mp_inv_A_back.T
P = np.concatenate([A_fwd - W @ A_back @ A_fwd, W], axis=-1)
return P, T | 458e1d99a739825de8b72fe125bdb00e4a1d7b9f | 3,652,969 |
def int_to_bytes(value: int) -> bytes:
"""
Encode an integer to an array of bytes.
:param value: any integer
:return: integer value representation as bytes
"""
return value.to_bytes(length=BYTES_LENGTH, byteorder=BYTES_ORDER) | 4f7fc878d8632c1ab250e8821f55e280a6be9b9b | 3,652,970 |
def generate_1d_trajectory_distribution(
n_demos, n_steps, initial_offset_range=3.0, final_offset_range=0.1,
noise_per_step_range=20.0, random_state=np.random.RandomState(0)):
"""Generates toy data for testing and demonstration.
Parameters
----------
n_demos : int
Number of demonstrations
n_steps : int
Number of steps
initial_offset_range : float, optional (default: 3)
Range of initial offset from cosine
final_offset_range : float, optional (default: 0.1)
Range of final offset from cosine
noise_per_step_range : float, optional (default: 20)
Factor for noise in each step
random_state : RandomState, optional (default: seed 0)
Random state
Returns
-------
T : array, shape (n_steps,)
Times
Y : array, shape (n_demos, n_steps, 1)
Demonstrations (positions)
"""
T = np.linspace(0, 1, n_steps)
Y = np.empty((n_demos, n_steps, 1))
A = create_finite_differences_matrix_1d(n_steps, dt=1.0 / (n_steps - 1))
cov = np.linalg.inv(A.T.dot(A))
L = np.linalg.cholesky(cov)
for demo_idx in range(n_demos):
Y[demo_idx, :, 0] = np.cos(2 * np.pi * T)
if initial_offset_range or final_offset_range:
initial_offset = initial_offset_range * (random_state.rand() - 0.5)
final_offset = final_offset_range * (random_state.rand() - 0.5)
Y[demo_idx, :, 0] += np.linspace(
initial_offset, final_offset, n_steps)
if noise_per_step_range:
noise_per_step = (noise_per_step_range
* L.dot(random_state.randn(n_steps)))
Y[demo_idx, :, 0] += noise_per_step
return T, Y | cadc92671b3b89285db9427738dcf2856c97a045 | 3,652,971 |
def encrypt(binary_plaintext, binary_key):
"""Generate binary ciphertext from binary plaintext with AES."""
padded_plaintext = pad_plaintext(binary_plaintext, 128)
subkeys = key_schedule(binary_key)
final_blocks = []
for block in block_split(padded_plaintext, 128):
block_matrix = binary_to_matrix(block)
block_matrix = add_round_key(block_matrix, subkeys[0])
for round in xrange(1, 10):
block_matrix = byte_sub(block_matrix)
block_matrix = shift_rows(block_matrix)
block_matrix = mix_columns(block_matrix, COLUMN_MIX)
block_matrix = add_round_key(block_matrix, subkeys[round])
block_matrix = byte_sub(block_matrix)
block_matrix = shift_rows(block_matrix)
block_matrix = add_round_key(block_matrix, subkeys[-1])
final_blocks.append(matrix_to_binary(block_matrix))
return ''.join(final_blocks) | 9bce8326b7b8ba223edbbac0c7eaa79cfdfb7098 | 3,652,972 |
import json
def emit_event(project_slug, action_slug, payload, sender_name, sender_secret,
event_uuid=None):
"""Emit Event.
:param project_slug: the slug of the project
:param action_slug: the slug of the action
:param payload: the payload that emit with action
:param sender_name: name that identified the sender
:parma sender_secret: secret string
:return: dict with task_id and event_uuid
raise MissingSender if sender does not exist
raise WrongSenderSecret if sender_secret is wrong
raise NotAllowed if sender is not allowed to emit action to project
"""
project_graph = graph.get_project_graph(project_slug)
project_graph.verify_sender(sender_name, sender_secret)
action = project_graph.get_action(action_slug)
project = project_graph.project
# execute event
event_uuid = event_uuid or uuid4()
event = {'uuid': event_uuid, 'project': project['slug'], 'action': action['slug']}
res = exec_event(event, action['webhooks'], payload)
logger.info('EMIT %s "%s" "%s" %s',
event_uuid, project_slug, action_slug, json.dumps(payload))
return dict(
task=dict(
id=res.id,
),
event=dict(
uuid=event_uuid,
),
) | 53df17f6194f2e89c4cf9c4a0face05ecf49a588 | 3,652,973 |
def add_item(cart_id: str, item: CartItem):
"""
Endpoint. Add item to cart.
:param str cart_id: cart id
:param CartItem item: pair of name and price
:return: dict with cart, item and price
:rtype: dict
"""
logger.info(f'Request@/add_item/{cart_id}')
return cart.add_item(cart_id=cart_id, item=item) | 623be20b0bd06ff78b9d88295516b56604b276b2 | 3,652,974 |
import warnings
def _inst2earth(advo, reverse=False, rotate_vars=None, force=False):
"""
Rotate data in an ADV object to the earth from the instrument
frame (or vice-versa).
Parameters
----------
advo : The adv object containing the data.
reverse : bool (default: False)
If True, this function performs the inverse rotation
(earth->inst).
rotate_vars : iterable
The list of variables to rotate. By default this is taken from
advo.props['rotate_vars'].
force : Do not check which frame the data is in prior to
performing this rotation.
"""
if reverse: # earth->inst
# The transpose of the rotation matrix gives the inverse
# rotation, so we simply reverse the order of the einsum:
sumstr = 'jik,j...k->i...k'
cs_now = 'earth'
cs_new = 'inst'
else: # inst->earth
sumstr = 'ijk,j...k->i...k'
cs_now = 'inst'
cs_new = 'earth'
if rotate_vars is None:
if 'rotate_vars' in advo.attrs:
rotate_vars = advo.rotate_vars
else:
rotate_vars = ['vel']
cs = advo.coord_sys.lower()
if not force:
if cs == cs_new:
print("Data is already in the '%s' coordinate system" % cs_new)
return
elif cs != cs_now:
raise ValueError(
"Data must be in the '%s' frame when using this function" %
cs_now)
if hasattr(advo, 'orientmat'):
omat = advo['orientmat'].values
else:
if 'vector' in advo.inst_model.lower():
orientation_down = advo['orientation_down']
omat = _calc_omat(advo['heading'].values, advo['pitch'].values,
advo['roll'].values, orientation_down)
# Take the transpose of the orientation to get the inst->earth rotation
# matrix.
rmat = np.rollaxis(omat, 1)
_dcheck = rotb._check_rotmat_det(rmat)
if not _dcheck.all():
warnings.warn("Invalid orientation matrix (determinant != 1) at indices: {}."
.format(np.nonzero(~_dcheck)[0]), UserWarning)
for nm in rotate_vars:
n = advo[nm].shape[0]
if n != 3:
raise Exception("The entry {} is not a vector, it cannot "
"be rotated.".format(nm))
advo[nm].values = np.einsum(sumstr, rmat, advo[nm])
advo = rotb._set_coords(advo, cs_new)
return advo | 51949445daf34bb09033136e53ea705abfb8ec50 | 3,652,975 |
from typing import Dict
from typing import List
def get_latency_of_one_partition(
partition: Partition, node_to_latency_mapping: Dict[Node, NodeLatency]
) -> PartitionLatency:
"""Given a partiton and its nodes' latency, return a PartitionLatency for this partition"""
def get_top_nodes(partition: Partition) -> List[Node]:
"""Given a partition, return a list of nodes on the top bfs level"""
top_nodes: List[Node] = []
for node in partition.nodes:
# Skip placeholder and get_attr nodes
if node.op in {"placeholder", "get_attr"}:
continue
input_nodes: Dict[Node, None] = {}
map_arg(node.args, lambda n: input_nodes.setdefault(n))
map_arg(node.kwargs, lambda n: input_nodes.setdefault(n))
# If a node has no input nodes in this partition,
# or its input nodes in this partition are placeholders and get_attrs
# this node is on the top bfs level in this partition
if not any(
[
n in partition.nodes and n.op not in {"placeholder", "get_attr"}
for n in input_nodes
]
):
top_nodes.append(node)
return top_nodes
def dfs_helper(node: Node, partition_latency) -> PartitionLatency:
"""Given a top node of a partition, this function returns
the latency of the critical path in the partition
"""
node_latency = node_to_latency_mapping[node]
# Calculate the current overall latency of the partition
overall_latency_sec = partition_latency.overall_latency_sec + max(
node_latency.computer_latency_sec, node_latency.mem_latency_sec
)
# Update the mem latency of this path
mem_latency_sec = (
partition_latency.mem_latency_sec + node_latency.mem_latency_sec
)
# Update the compute latency of this path
computer_latency_sec = (
partition_latency.computer_latency_sec + node_latency.computer_latency_sec
)
# Get all users of this node that are in this partition
users = set(node.users).intersection(partition.nodes)
if users:
max_latency = PartitionLatency(
mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
)
for n in users:
# Get new partition latency recursively
new_partition_latency = dfs_helper(
n,
PartitionLatency(
mem_latency_sec, computer_latency_sec, overall_latency_sec
),
)
if (
new_partition_latency.overall_latency_sec
> max_latency.overall_latency_sec
):
max_latency = new_partition_latency
return max_latency
# If there is no user, the node is at bottom of the partition
return PartitionLatency(
mem_latency_sec, computer_latency_sec, overall_latency_sec
)
# Main part starts
# Get all top level nodes of this partition
top_nodes = get_top_nodes(partition)
critical_path_latency = PartitionLatency(
mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
)
# Go through all top nodes and find the largest latency (critical pass latency)
for node in top_nodes:
partition_latency = dfs_helper(
node,
PartitionLatency(
mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
),
)
if (
partition_latency.overall_latency_sec
> critical_path_latency.overall_latency_sec
):
critical_path_latency = partition_latency
return critical_path_latency | c4d61b5bd49800f7daae54df1226d9798007c4c5 | 3,652,979 |
def nearest_dy(lon,lat,t,gs,dy,tr = [0,0],box = [0,0],time_vec = False,space_array = False):
"""
give this a dy object and a gs object,
the nearest point to the supplied lon lat will be returned
tr is a time range option [time points previous, after]
if tr > 0 time_vec=True will return a rs/H/WAVES/SWH/swh_arrays/SWH_10vector of the time point, False is nanmean
box is a spatial range option [range in x, range in y]
if there is a box, space_array=True returns the whole box, False is nanmean
"""
y,x = nearest_xy(lon,lat,gs)
out_array = dy[t-tr[0]:t+tr[1]+1,x-box[0]:x+box[0]+1,y-box[1]:y+box[1]+1]
if time_vec and space_array:
return out_array
elif time_vec:
return np.nanmean(out_array,axis = (1,2))
elif space_array:
return np.nanmean(out_array,axis = 0)
else:
return np.nanmean(out_array) | 553547a958706cc30fa35248450cf499dc875051 | 3,652,980 |
def get_return_type() -> None:
"""Prompt the user for the return datatype of the function.
:return return_type: {str}
"""
return_type = None # function or method
while return_type is None or return_type == "":
return_type = prompt(
"return type? [bool|dict|float|int|list|str|tuple]: ",
completer=datatype_completer,
)
return_type = return_type.strip()
if return_type is None or return_type == "":
return_type = "None"
break
else:
if return_type.lower().startswith("b"):
return_type = "bool"
elif return_type.lower().startswith("d"):
return_type = "dict"
elif return_type.lower().startswith("f"):
return_type = "float"
elif return_type.lower().startswith("i"):
return_type = "int"
elif return_type.lower().startswith("l"):
return_type = "list"
elif return_type.lower().startswith("s"):
return_type = "str"
elif return_type.lower().startswith("t"):
return_type = "tuple"
else:
continue
break
return return_type | 2f90b037bf1344cb11d8b00e1e3ee210728bbd03 | 3,652,981 |
def solve_capcha(capcha_str):
"""Function which calculates the solution to part 1
Arguments
---------
capcha_str : str, a string of numbers
Returns
-------
total : int, the sum of adjacent matches
"""
capcha = [int(cc) for cc in list(capcha_str)]
total = 0
for ii in range(len(capcha)):
if capcha[ii] == capcha[ii - 1]:
total += capcha[ii]
return total | 85a74f9b708f8134500d9c7add6e2df8617ec305 | 3,652,982 |
from typing import Union
from typing import Sequence
from typing import Callable
from functools import reduce
def compose(fs: Union[ModuleList, Sequence[Callable]]) -> F:
"""
Compose functions as a pipeline function.
Args:
fs (``Sequence[Callable]`` | :class:`~torch.nn.ModuleList`): The functions input for composition.
Returns:
:class:`~fn.func.F`: The composed output function.
Examples::
>>> f = lambda x: x + 1
>>> g = lambda x: x * 2
>>> h = lambda x: x ** 2
>>> x = 1
>>> h(g(f(x))) == compose([f, g, h])(x)
True
"""
return reduce(_ >> _, fs, F()) | f4d566db95107fdba89a334c2022e68ba0b42f82 | 3,652,983 |
def nanargmin(a, axis=None):
"""
Return the indices of the minimum values in the specified axis ignoring
NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results
cannot be trusted if a slice contains only NaNs and Infs.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which to operate. By default flattened input is used.
Returns
-------
index_array : ndarray
An array of indices or a single index value.
See Also
--------
argmin, nanargmax
Examples
--------
>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])
"""
a, mask = _replace_nan(a, np.inf)
res = np.argmin(a, axis=axis)
if mask is not None:
mask = np.all(mask, axis=axis)
if np.any(mask):
raise ValueError("All-NaN slice encountered")
return res | 6d2320bd38a96b364b752e2b50a204daf1f673e8 | 3,652,984 |
import re
def check_right_flank(seq_right, list_rep, verbose=False):
"""
Check if start of right flank sequence contains last repetitive sequence.
:param seq_right: str - right flank sequence
:param list_rep: list(Repetition) - list of Repetitions(seq, num)
:param verbose: bool - be verbose
:return: seq_right - str - updated right flank sequence
rep_list - list(Repetition) - updated list of Repetitions(seq, num)
"""
rep_list = deepcopy(list_rep)
last = rep_list[-1]
last_seq = re.sub('N', '.', last.seq)
if re.match(last_seq, seq_right):
if verbose:
print('Repetitive sequence find in right flank region. Adding this sequence into repetitions.')
while re.match(last_seq, seq_right):
# cut repetitive sequence from flank sequence and add it to the list of repetitive sequences
seq_right = seq_right[len(last_seq):]
last.num += 1
return seq_right, rep_list | c4f5675756e5acd88e71ed713bcdcb5a6c2763a2 | 3,652,985 |
def readout_gg(_X, X, O):
"""
Graph Gathering implementation. (The none shown in the equation)
_X: final node embeddings.
X: initial node features.
O: desired output dimension.
"""
val1 = dense(tf.concat([_X, X], axis=2), O, use_bias=True)
val1 = tf.nn.sigmoid(val1)
val2 = dense(_X, O, use_bias=True)
out = tf.multiply(val1, val2)
out = tf.reduce_sum(out, axis=1)
out = tf.nn.relu(out)
return out | f8f8bc2ed52bf72ba14325d6d55c3bc46e100f82 | 3,652,987 |
def plot_taylor_axes(axes, cax, option):
"""
Plot axes for Taylor diagram.
Plots the x & y axes for a Taylor diagram using the information
provided in the AXES dictionary returned by the
GET_TAYLOR_DIAGRAM_AXES function.
INPUTS:
axes : data structure containing axes information for target diagram
cax : handle for plot axes
option : data structure containing option values. (Refer to
GET_TAYLOR_DIAGRAM_OPTIONS function for more information.)
option['colcor'] : CORs grid and tick labels color (Default: blue)
option['colrms'] : RMS grid and tick labels color (Default: green)
option['colstd'] : STD grid and tick labels color (Default: black)
option['numberpanels'] : number of panels (quadrants) to use for Taylor
diagram
option['tickrms'] : RMS values to plot gridding circles from
observation point
option['titlecor'] : title for CORRELATION axis
option['titlerms'] : title for RMS axis
option['titlestd'] : title fot STD axis
OUTPUTS:
ax: returns a list of handles of axis labels
Author: Peter A. Rochford
Acorn Science & Innovation
[email protected]
Created on Dec 3, 2016
Author: Peter A. Rochford
Symplectic, LLC
www.thesymplectic.com
[email protected]
"""
ax = []
axlabweight = "bold"
if option["numberpanels"] == 1:
# Single panel
if option["titlestd"] == "on":
ttt = plt.ylabel("test", fontsize=14)
x = -0.15 * axes["rmax"]
y = 0.8 * axes["rmax"]
handle = plt.text(
x,
y,
"Standard Deviation",
rotation=90,
color=option["colstd"],
fontweight=axlabweight,
fontsize=plt.get(ttt, "fontsize"),
horizontalalignment="center",
)
ax.append(handle)
if option["titlecor"] == "on":
pos1 = 45
DA = 15
lab = "Correlation Coefficient"
c = np.fliplr([np.linspace(pos1 - DA, pos1 + DA, len(lab))])[0]
dd = 1.1 * axes["rmax"]
for ii, ith in enumerate(c):
handle = plt.text(
dd * np.cos(ith * np.pi / 180),
dd * np.sin(ith * np.pi / 180),
lab[ii],
)
handle.set(
rotation=ith - 90,
color=option["colcor"],
horizontalalignment="center",
verticalalignment="bottom",
fontsize=plt.get(ax[0], "fontsize"),
fontweight=axlabweight,
)
ax.append(handle)
if option["titlerms"] == "on":
pos1 = option["tickrmsangle"] + (180 - option["tickrmsangle"]) / 2
DA = 15
pos1 = 160
lab = "RMSD"
c = np.fliplr([np.linspace(pos1 - DA, pos1 + DA, len(lab))])[0]
# Find optimal placement of label
itick = -1
ratio = 1.0
while ratio > 0.7:
itick += 1
ratio = (option["axismax"] - option["tickrms"][itick]) / option[
"axismax"
]
dd = 0.7 * option["tickrms"][itick] + 0.3 * option["tickrms"][itick + 1]
# Write label in a circular arc
for ii, ith in enumerate(c):
xtextpos = axes["dx"] + dd * np.cos(ith * np.pi / 180)
ytextpos = dd * np.sin(ith * np.pi / 180)
handle = plt.text(xtextpos, ytextpos, lab[ii])
handle.set(
rotation=ith - 90,
color=option["colrms"],
horizontalalignment="center",
verticalalignment="top",
fontsize=plt.get(ax[0], "fontsize"),
fontweight=axlabweight,
)
ax.append(handle)
else:
# Double panel
if option["titlestd"] == "on":
ttt = plt.ylabel("test", fontsize=14)
x = 0
y = -0.15 * axes["rmax"]
handle = plt.text(
x,
y,
"Standard Deviation",
rotation=0,
color=option["colstd"],
fontweight=axlabweight,
fontsize=plt.get(ttt, "fontsize"),
horizontalalignment="center",
)
ax.append(handle)
if option["titlecor"] == "on":
pos1 = 90
DA = 25
lab = "Correlation Coefficient"
c = np.fliplr([np.linspace(pos1 - DA, pos1 + DA, len(lab))])[0]
dd = 1.1 * axes["rmax"]
for ii, ith in enumerate(c):
handle = plt.text(
dd * np.cos(ith * np.pi / 180),
dd * np.sin(ith * np.pi / 180),
lab[ii],
)
handle.set(
rotation=ith - 90,
color=option["colcor"],
horizontalalignment="center",
verticalalignment="bottom",
fontsize=plt.get(ax[0], "fontsize"),
fontweight=axlabweight,
)
ax.append(handle)
if option["titlerms"] == "on":
pos1 = 160
DA = 10
lab = "RMSD"
c = np.fliplr([np.linspace(pos1 - DA, pos1 + DA, len(lab))])[0]
dd = 1.05 * option["tickrms"][0]
for ii, ith in enumerate(c):
xtextpos = axes["dx"] + dd * np.cos(ith * np.pi / 180)
ytextpos = dd * np.sin(ith * np.pi / 180)
handle = plt.text(xtextpos, ytextpos, lab[ii])
handle.set(
rotation=ith - 90,
color=option["colrms"],
horizontalalignment="center",
verticalalignment="bottom",
fontsize=plt.get(ax[0], "fontsize"),
fontweight=axlabweight,
)
ax.append(handle)
# VARIOUS ADJUSTMENTS TO THE PLOT:
cax.set_aspect("equal")
plt.axis("off")
plt.gcf().patch.set_facecolor("w")
# set axis limits
if option["numberpanels"] == 2:
axislim = [axes["rmax"] * x for x in [-1.15, 1.15, 0, 1.15]]
plt.axis(axislim)
plt.plot([-axes["rmax"], axes["rmax"]], [0, 0], color=axes["tc"], linewidth=2)
plt.plot([0, 0], [0, axes["rmax"]], color=axes["tc"])
else:
axislim = [axes["rmax"] * x for x in [0, 1.15, 0, 1.15]]
plt.axis(axislim)
plt.plot([0, axes["rmax"]], [0, 0], color=axes["tc"], linewidth=2)
plt.plot([0, 0], [0, axes["rmax"]], color=axes["tc"], linewidth=2)
return ax | 69193482a954f1afbcac7b7934f4ce507050ce55 | 3,652,988 |
def list_timezones():
"""Return a list of all time zones known to the system."""
l=[]
for i in xrange(parentsize):
l.append(_winreg.EnumKey(tzparent, i))
return l | c9fea053f6f86043065e0e3efc04a30dc5585b5d | 3,652,989 |
import functools
def keyword_decorator(deco):
"""Wrap a decorator to optionally takes keyword arguments."""
@functools.wraps(deco)
def new_deco(fn=None, **kwargs):
if fn is None:
@functools.wraps(deco)
def newer_deco(fn):
return deco(fn, **kwargs)
return newer_deco
else:
return deco(fn, **kwargs)
return new_deco | 5ffc100c4fbbf7657c974685ab70dfc903a4abe1 | 3,652,990 |
import numpy
import math
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
"""Return spherical linear interpolation between two quaternions.
>>> q0 = random_quaternion()
>>> q1 = random_quaternion()
>>> q = quaternion_slerp(q0, q1, 0.0)
>>> numpy.allclose(q, q0)
True
>>> q = quaternion_slerp(q0, q1, 1.0, 1)
>>> numpy.allclose(q, q1)
True
>>> q = quaternion_slerp(q0, q1, 0.5)
>>> angle = math.acos(numpy.dot(q0, q))
>>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
True
"""
q0 = unit_vector(quat0[:4])
q1 = unit_vector(quat1[:4])
if fraction == 0.0:
return q0
elif fraction == 1.0:
return q1
d = numpy.dot(q0, q1)
if abs(abs(d) - 1.0) < _EPS:
return q0
if shortestpath and d < 0.0:
# invert rotation
d = -d
q1 *= -1.0
angle = math.acos(d) + spin * math.pi
if abs(angle) < _EPS:
return q0
isin = 1.0 / math.sin(angle)
q0 *= math.sin((1.0 - fraction) * angle) * isin
q1 *= math.sin(fraction * angle) * isin
q0 += q1
return q0 | 1895bdb60e6bce11a0cd3f659ceca2a83a0c4810 | 3,652,992 |
def doctest2md(lines):
"""
Convert the given doctest to a syntax highlighted markdown segment.
"""
is_only_code = True
lines = unindent(lines)
for line in lines:
if not line.startswith('>>> ') and not line.startswith('... ') and line not in ['>>>', '...']:
is_only_code = False
break
if is_only_code:
orig = lines
lines = []
for line in orig:
lines.append(line[4:])
return lines | 33ffaa31e7d7b578e1664707476b214bdc705346 | 3,652,993 |
def get_return_value(total, cash_given):
"""show how much money you owe to customer after they give you a bill."""
return Decimal(Decimal(total) - Decimal(cash_given)).quantize(Decimal('.01')) | 3c4bc4819bc7c133b56881ea59cbd3d7a108b3dd | 3,652,994 |
def show_predictions(scores, target='y', threshold=0.5, path_out=False, verbose=True, figsize=(7, 200)):
"""This function will plot which have been correctly classified. The input is
single dict containing labels as keys and information on each model as values
in the order [auc_score, ids_test, y_true, y_pred].
all_ids: List, IDs of all samples as strings.
model_dict: Dict, containing model name as key and [auc_score, ids_test, y_true, y_pred] as value.
path_out: String, path where to save plot.
show: If True, show plot.
"""
all_ids = scores.index.tolist()
N, M = scores.shape
y_true = scores[target]
# Set up figure to hold IDs vs model type
f, id_fig = plt.subplots(figsize=figsize)
id_fig.margins(0.01, 0.01)
plt.ylabel('Samples (IDs)', fontsize=14)
plt.xlabel('Models', fontsize=14)
plt.title('Correctly classified samples', fontsize=20)
plt.yticks(range(len(all_ids)), all_ids, fontsize=12)
plt.grid(which='major', linestyle='dashed', linewidth=0.1)
plt.rc('axes', axisbelow=True)
cmap = plt.get_cmap('tab20', M)
# Coordinates and legend
counts = [0 for item in all_ids]
how_many_correct = dict(zip(all_ids, counts))
all_ids = dict(zip(all_ids, list(range(len(all_ids)))))
xticks = []
height = 0
legend = []
# Run through each model
missing_counts = {}
for col in scores.columns:
if col != target:
y_pred = scores[col].dropna(how='any')
# Find correct IDs
ids_test = []
pred_labels = [1 if v >= threshold else 0 for v in y_pred]
for ID, true, pred in zip(y_pred.index, y_true, pred_labels):
if true == round(pred):
ids_test.append(ID)
# Count item
how_many_correct[ID] += 1
# Get correct classifications
xticks.append(col)
y = [all_ids[i] for i in ids_test]
x = [height]*len(y)
# Plot correct IDs
plot_ids = id_fig.scatter(x=x, y=y, s=15, label=col)
# Plot x for missing IDs
missing = []
for ID in all_ids:
if ID not in missing_counts.keys():
missing_counts[ID] = 0
if ID not in y_pred.index:
missing.append(ID)
missing_counts[ID] += 1
if len(missing) > 0:
y = [all_ids[i] for i in missing]
x = [height]*len(y)
id_fig.scatter(x=x, y=y, marker='x', color='black')
legend.append(height)
height += 1
plt.xticks(legend, xticks, fontsize=12, rotation=90)
plt.tight_layout()
plt.show()
if path_out:
plt.savefig(path_out, dpi=1000, transparent=True)
return how_many_correct, missing_counts | f113b485832623048c01c798c6ca059403b3fb75 | 3,652,996 |
def det(a, **kwargs):
"""
Compute the determinant of arrays, with broadcasting.
Parameters
----------
a : (NDIMS, M, M) array
Input array. Its inner dimensions must be those of a square 2-D array.
Returns
-------
det : (NDIMS) array
Determinants of `a`
See Also
--------
slogdet : Another representation for the determinant, more suitable
for large matrices where underflow/overflow may occur
Notes
-----
Numpy broadcasting rules apply.
The determinants are computed via LU factorization using the LAPACK
routine _getrf.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
Examples
--------
The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
>>> a = np.array([[1, 2], [3, 4]])
>>> np.allclose(-2.0, det(a))
True
>>> a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]] ])
>>> np.allclose(-2.0, det(a))
True
"""
return _impl.det(a, **kwargs) | 8d7ccb0756375db749c5a21c8f54c301b37bfc28 | 3,652,997 |
def SegStart(ea):
"""
Get start address of a segment
@param ea: any address in the segment
@return: start of segment
BADADDR - the specified address doesn't belong to any segment
"""
seg = idaapi.getseg(ea)
if not seg:
return BADADDR
else:
return seg.startEA | 0ced19a5b868a605e61c28b97cf1de8b8a6c0d54 | 3,652,998 |
import json
import inspect
def update_school_term(request):
"""
修改周期的开始时间和结束时间
:param request:
:return:
"""
operation_object = None
try:
if request.method == 'POST':
object_form = SchoolTermUpdateForm(request.POST)
if object_form.is_valid():
update_id = object_form.cleaned_data.get('update_id', None)
if update_id:
school_terms = SchoolTerm.objects.filter(id=update_id)
if len(school_terms) == 1:
form_object_school_term = form_to_obj(object_form.cleaned_data, school_terms[0])
form_object_school_term.save()
operation_object = form_object_school_term
result['status'] = True
result['message'] = '修改成功!'
result['data'] = json.dumps({}, ensure_ascii=False)
else:
result['status'] = False
result['message'] = '系统异常,请稍后尝试或联系管理员!'
result['data'] = ''
else:
print(type(object_form.errors), object_form.errors) # errors类型是ErrorDict,里面是ul,li标签
result['status'] = False
result['message'] = '系统异常,请稍后尝试或联系管理员!错误提示:' + type(object_form.errors) + "," + object_form.errors
result['data'] = ''
else:
result['status'] = False
result['message'] = '系统异常,请稍后尝试或联系管理员!'
result['data'] = ''
except Exception as e:
result['status'] = False
result['message'] = "系统异常:" + str(e)
result['data'] = ''
result["level"] = log_level_edit
save_operation_log(request, inspect.stack()[0][3], operation_object.__str__(True), result)
return JsonResponse(result, safe=False) | 850bcaa39a1a0668f017dc90224e766b2b336a37 | 3,652,999 |
def chown(
path: Pathable, owner: str, flags: t.Optional[str] = None, sudo: bool = False
) -> ChangeList:
"""Change a path's owner."""
path = _to_path(path)
needs_sudo_w = need_sudo_to_write(path)
needs_sudo_r = need_sudo_to_read(path)
if needs_sudo_r and not sudo:
raise NeedsSudoException(f"chown {path}")
curr_owner = _run(
f"stat -c '%U:%G' {path}", check=True, sudo=needs_sudo_r
).stdout.decode.strip()
if ":" not in curr_owner:
curr_owner = curr_owner.split(":", 1)[0]
if curr_owner != owner:
if needs_sudo_w and not sudo:
raise NeedsSudoException(f"chown {owner} {path}")
_run(f"chown {flags} {owner}", sudo=needs_sudo_w, check=True)
return [cl(ChownModify, path, owner, curr_owner, flags)]
return [] | 124ba2877dc2ff4396d84c3b8825846c9d057cf5 | 3,653,000 |
def metric_dist(endclasses, metrics='all', cols=2, comp_groups={}, bins=10, metric_bins={}, legend_loc=-1,
xlabels={}, ylabel='count', title='', indiv_kwargs={}, figsize='default',
v_padding=0.4, h_padding=0.05, title_padding=0.1, **kwargs):
"""
Plots the histogram of given metric(s) separated by comparison groups over a set of scenarios
Parameters
----------
endclasses : dict
Dictionary of metrics with structure {'scen':{'metric':value}}
metrics : list, optional
list of metrics in the dictionary to plot
cols : int, optional
columns to use in the figure. The default is 2.
comp_groups : dict, optional
Dictionary for comparison groups (if more than one) with structure:
{'group1':('scen1', 'scen2'), 'group2':('scen3', 'scen4')} Default is {}
If a legend is shown, group names are used as labels.
bins : int
Number of bins to use (for all plots). Default is None
metric_bins : dict,
Dictionary of number of bins to use for each metric with structure {'metric':num}
Default is {}
legend_loc : int, optional
Specifies the plot to place the legend on, if runs are being compared. Default is -1 (the last plot)
To remove the legend, give a value of False
xlabels : dict, optional
Label for the x-axes with structure {'metric':'label'}
ylabel : str, optional
Label for the y-axes. Default is 'time'
title : str, optional
overall title for the plot. Default is ''
indiv_kwargs : dict, optional
dict of kwargs with structure {comp1:kwargs1, comp2:kwargs2}, where
where kwargs is an individual dict of keyword arguments for the
comparison group comp (or scenario, if not aggregated) which overrides
the global kwargs (or default behavior).
figsize : tuple (float,float)
x-y size for the figure. The default is 'default', which dymanically gives 3 for each column and 2 for each row
v_padding : float
vertical padding between subplots as a fraction of axis height
h_padding : float
horizontal padding between subplots as a fraction of axis width
title_padding : float
padding for title as a fraction of figure height
**kwargs : kwargs
keyword arguments to mpl.hist e.g. bins, etc
"""
#Sort into comparison groups
if not comp_groups: groupmetrics = {'default':endclasses}
else: groupmetrics = {group:{ec:cl for ec,cl in endclasses.items() if ec in groupscens} for group, groupscens in comp_groups.items()}
template = [*endclasses.values()][0]
if metrics=='all': plot_values = [i for i in template.keys()]
else: plot_values = [i for i in template.keys() if i in metrics]
num_plots = len(plot_values)
if num_plots==1: cols=1
rows = int(np.ceil(num_plots/cols))
if figsize=='default': figsize=(cols*3, 2*rows)
fig, axs = plt.subplots(rows,cols, sharey=True, sharex=False, figsize=figsize)
if type(axs)==np.ndarray: axs = axs.flatten()
else: axs=[axs]
num_bins = bins
for i, plot_value in enumerate(plot_values):
ax = axs[i]
xlabel = xlabels.get(plot_value, plot_value)
if type(xlabel)==str: ax.set_xlabel(xlabel)
else: ax.set_xlabel(' '.join(xlabel))
ax.grid(axis='y')
fulldata = [ec[plot_value] for endc in groupmetrics.values() for ec in endc.values()]
bins = np.histogram(fulldata, metric_bins.get(plot_value, num_bins))[1]
if not i%cols: ax.set_ylabel(ylabel)
for group, endclasses in groupmetrics.items():
local_kwargs = {**kwargs, **indiv_kwargs.get(group,{})}
x = [ec[plot_value] for ec in endclasses.values()]
ax.hist(x, bins, label=group, **local_kwargs)
multiplot_legend_title(groupmetrics, axs, ax, legend_loc, title,v_padding, h_padding, title_padding)
return fig, axs | 95bbc645abad812585de58d4724787e310424f4a | 3,653,001 |
def get_colors(df, colormap=None, vmin=None, vmax=None, axis=1):
"""
Function to automatically gets a colormap for all the values passed in,
Have the option to normalise the colormap.
:params:
values list(): list of int() or str() that have all the values that need a color to be map
to. In case of a list() of str(), the try/except use the range(len()) to map a colour
colormap cm(): type of colormap that need to be used. All can be found here:
https://matplotlib.org/examples/color/colormaps_reference.html
vmin, vmax int(): Number to normalise the return of the colourmap if needed a Normalised colourmap
:return:
colormap cm.colormap(): An array of RGBA values
Original version found on stackerOverflow (w/o the try/except) but cannot find it back
"""
if colormap is None:
colormap = plt.cm.RdBu
if axis == 0:
values = df.index
elif axis == 1:
values = df.columns
norm = plt.Normalize(vmin, vmax)
try:
return colormap(norm(values))
except (AttributeError, TypeError): # May happen when gives a list of categorical values
return colormap(norm(range(len(values)))) | 7da0c0a8f8542c9a8137121c4664da91485d8cca | 3,653,002 |
def proxy_channels(subreddits):
"""
Helper function to proxy submissions and posts.
Args:
subreddits (list of praw.models.Subreddit):
A list of subreddits
Returns:
list of ChannelProxy: list of proxied channels
"""
channels = {
channel.name: channel
for channel in Channel.objects.filter(
name__in=[subreddit.display_name for subreddit in subreddits]
)
}
return [
ChannelProxy(subreddit, channels[subreddit.display_name])
for subreddit in subreddits
if subreddit.display_name in channels
] | caab3ecfa5a85b06d94192fe77308724f67b0e96 | 3,653,003 |
def anno2map(anno):
"""
anno: {
'file' ==> file index
'instances': [
{ 'class_name':
'class_idx':
'silhouette':
'part': [(name, mask), ...]
},
...
]
}
"""
height, width = anno.instances[0].silhouette.shape
cls_mask = np.zeros((height, width), dtype=np.uint8)
inst_mask = np.zeros((height, width), dtype=np.uint8)
part_mask = np.zeros((height, width), dtype=np.uint8)
for i, inst in enumerate(anno.instances):
assert height == inst.silhouette.shape[0] and width == inst.silhouette.shape[1]
cls_mask[inst.silhouette.astype(np.bool)] = inst.class_idx
inst_mask[inst.silhouette.astype(np.bool)] = i
for pname, pmask in inst.part:
assert pname in PASCAL_PART2ID_[inst.class_idx-1], f'The part {pname} is undefined in {inst.class_name}'
assert inst.silhouette[pmask.astype(np.bool)].all(), 'The part region is not a complete subregion of the object'
# if not inst.silhouette[pmask].all():
# print(f'Warning: [{anno.file}: {pname}] The part region is not a complete subregion of the object')
pid = PASCAL_PART2ID_[inst.class_idx-1][pname]
part_mask[pmask.astype(np.bool)] = pid
return cls_mask, inst_mask, part_mask | 18841b323d4368c5f1681dd34586e82aa8a9d97c | 3,653,004 |
def string_to_bool(val: str):
"""Convert a homie string bool to a python bool"""
return val == STATE_ON | f7fc9768762256fc5c2cf818949793f72948db98 | 3,653,005 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.