content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def is_private_bool(script_dict): """ Returns is_private boolean value from user dictionary object """ return script_dict['entry_data']['ProfilePage'][0]['graphql']['user']['is_private']
1e8b30a38dc527dc5e2ea73e75c253d8f1a59550
3,653,122
def manage_greylist(request): """ View for managing greylist. """ message = None if request.method == 'POST': form = GreylistForm(request.POST) if form.is_valid(): # Set details to empty string if blank new_greylisted_guest = form.save(commit=False) new_greylisted_guest.addedBy = request.user new_greylisted_guest.save() message = 'Successfully added entry to greylist' else: message = 'Error adding entry to greylist' else: form = GreylistForm() context = { 'greylist': [ ( greylisting, user_can_delete_greylisting(request.user, greylisting), ) for greylisting in GreylistedGuest.objects.all().order_by('name') ], 'message': message, 'form': form, } return render(request, 'parties/greylist/manage.html', context)
eafbbf10b6150189d25c7d863cb00f6565648925
3,653,123
def get_regions(): """Summary Returns: TYPE: Description """ client = boto3.client('ec2') region_response = client.describe_regions() regions = [region['RegionName'] for region in region_response['Regions']] return regions
700119f1c852ad9475823170388c062f62291637
3,653,124
def _is_ignored_read_event(request): """Return True if this read event was generated by an automated process, as indicated by the user configurable LOG_IGNORE* settings. See settings_site.py for description and rationale for the settings. """ if ( django.conf.settings.LOG_IGNORE_TRUSTED_SUBJECT and d1_gmn.app.auth.is_trusted_subject(request) ): return True if ( django.conf.settings.LOG_IGNORE_NODE_SUBJECT and d1_gmn.app.auth.is_client_side_cert_subject(request) ): return True if _has_regex_match( request.META["REMOTE_ADDR"], django.conf.settings.LOG_IGNORE_IP_ADDRESS ): return True if _has_regex_match( request.META.get("HTTP_USER_AGENT", "<not provided>"), django.conf.settings.LOG_IGNORE_USER_AGENT, ): return True if _has_regex_match( request.primary_subject_str, django.conf.settings.LOG_IGNORE_SUBJECT ): return True return False
f6f7417fe923ef6bd56a6d649ef302ed811185e8
3,653,125
def aten_embedding(mapper, graph, node): """ 构造embedding的PaddleLayer。 TorchScript示例: %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46) 参数含义: %inputs_embeds.1 (Tensor): 输出,embedding后的结果。 %57 (Tensor): weights。 %input_ids.1 (Tensor): 需要进行embedding的特征层。 %45 (int): padding_idx。 %46 (bool): scale_grad_by_freq。 %46 (bool): sparse。 """ scope_name = mapper.normalize_scope_name(node) op_name = name_generator("embedding", mapper.nn_name2id) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [op_name, output_name] layer_inputs = {} layer_attrs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%57 weights = mapper.pytorch_params[inputs_name[0]] mapper.paddle_params[op_name + ".weight"] = weights layer_attrs["num_embeddings"] = weights.shape[0] layer_attrs["embedding_dim"] = weights.shape[1] # 处理输入1,即%input_ids.1 mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name) layer_inputs["input"] = inputs_name[1] # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) # 处理输入2,即%45 if mapper.attrs[inputs_name[2]] == -1: layer_attrs["padding_idx"] = None else: layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]] # 处理输入4,即%46 layer_attrs["sparse"] = mapper.attrs[inputs_name[4]] graph.add_layer( "paddle.nn.Embedding", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs) return current_inputs, current_outputs
d174c7e551bb3db7e7dc5d9014de9edd48ee4032
3,653,126
def _validate_opts(opts): """ Check that all of the types of values passed into the config are of the right types """ def format_multi_opt(valid_type): try: num_types = len(valid_type) except TypeError: # Bare type name won't have a length, return the name of the type # passed. return valid_type.__name__ else: def get_types(types, type_tuple): for item in type_tuple: if isinstance(item, tuple): get_types(types, item) else: try: types.append(item.__name__) except AttributeError: log.warning( "Unable to interpret type %s while validating " "configuration", item, ) types = [] get_types(types, valid_type) ret = ", ".join(types[:-1]) ret += " or " + types[-1] return ret errors = [] err = ( "Config option '{0}' with value {1} has an invalid type of {2}, a " "{3} is required for this option" ) for key, val in opts.items(): if key in VALID_OPTS: if val is None: if VALID_OPTS[key] is None: continue else: try: if None in VALID_OPTS[key]: continue except TypeError: # VALID_OPTS[key] is not iterable and not None pass if isinstance(val, VALID_OPTS[key]): continue if hasattr(VALID_OPTS[key], "__call__"): try: VALID_OPTS[key](val) if isinstance(val, (list, dict)): # We'll only get here if VALID_OPTS[key] is str or # bool, and the passed value is a list/dict. Attempting # to run int() or float() on a list/dict will raise an # exception, but running str() or bool() on it will # pass despite not being the correct type. errors.append( err.format( key, val, type(val).__name__, VALID_OPTS[key].__name__ ) ) except (TypeError, ValueError): errors.append( err.format( key, val, type(val).__name__, VALID_OPTS[key].__name__ ) ) continue errors.append( err.format( key, val, type(val).__name__, format_multi_opt(VALID_OPTS[key]) ) ) # Convert list to comma-delimited string for 'return' config option if isinstance(opts.get("return"), list): opts["return"] = ",".join(opts["return"]) for error in errors: log.warning(error) if errors: return False return True
cafd1048a7496728715a192a4f70c7d50ade3622
3,653,128
async def from_string(input, output_path=None, options=None): """ Convert given string or strings to PDF document :param input: string with a desired text. Could be a raw text or a html file :param output_path: (optional) path to output PDF file. If not provided, PDF will be returned as string :param options: (optional) dict to configure pyppeteer page.pdf action Returns: output_path if provided else PDF Binary """ sources = Source(input, 'string') r = PDFMate(sources, options=options) return await r.to_pdf(output_path)
2b3b6d9523d516fd3d258a3f722655720f49d91b
3,653,129
def parse_tuple(tuple_string): """ strip any whitespace then outter characters. """ return tuple_string.strip().strip("\"[]")
d0052dce0582ca04d70455f1833d98545792c8ac
3,653,130
def create_size(): """Create a new size.""" in_out_schema = SizeSchema() try: new_size = in_out_schema.load(request.json) except ValidationError as err: abort(400, {'message': err.messages}) try: db.session.add(new_size) db.session.commit() except IntegrityError as err: db.session.rollback() log.exception(err) abort(400, {'message': 'Data integrity violated.'}) return in_out_schema.jsonify(new_size)
f85b339c5ec5c38b8778de25456caa6fb0680d76
3,653,131
import click from typing import Optional def inject_snakefmt_config( ctx: click.Context, param: click.Parameter, config_file: Optional[str] = None ) -> Optional[str]: """ If no config file argument provided, parses "pyproject.toml" if one exists. Injects any parsed configuration into the relevant parameters to the click `ctx`. """ if config_file is None: config_file = find_pyproject_toml(ctx.params.get("src", ())) config = read_snakefmt_config(config_file) if ctx.default_map is None: ctx.default_map = {} ctx.default_map.update(config) # type: ignore # bad types in .pyi return config_file
4d1fc2996db4c63070f67ef6b19387b2b30ac5cd
3,653,132
def sort_by_ctime(paths): """Sorts list of file paths by ctime in ascending order. Arg: paths: iterable of filepaths. Returns: list: filepaths sorted by ctime or empty list if ctime is unavailable. """ ctimes = list(map(safe_ctime, paths)) if not all(ctimes) or len(set(ctimes)) <= 1: return [] else: return sorted(paths, key=lambda fp: safe_ctime(fp))
551b7bc1d2cdc416588cbd783c9b1ac3e5914077
3,653,133
def get_ospf_metric(device, destination_address): """Get OSPF metric Args: device (obj): Device object destination_address (str): Destination address """ out = device.parse('show route') # Example dictionary # "route-table": [ # { # "active-route-count": "0", # "destination-count": "0", # "hidden-route-count": "0", # "holddown-route-count": "0", # "rt": [ # { # "metric": "101", # } # }, rt_list = Dq(out).get_values('rt') for rt_dict in rt_list: rt_destination_ = Dq(rt_dict).get_values("rt-destination", 0) if not isinstance(rt_destination_, list): if rt_destination_.startswith(str(destination_address)): metric_ = Dq(rt_dict).get_values('metric', 0) if not metric_: continue return metric_ return None
f5cd44794389a28db647e815baac4e954d59757b
3,653,134
def get_episode_url(): """エピソードの配信URLを追加 Returns: [type]: [description] """ # フォームの値を取得 episode_num = "#"+request.form['episode_num'][0] print(episode_num) # 配信先一覧を取得 podcasts = Podcast.query.all() broadcasts = Broadcast.query.all() # 配信先 url broadcast_urls = {} for br in broadcasts: broadcast_urls[br.broadcast_service] = br.broadcast_url # エピソードのurlを取得 episode_urls = get_episode_url_all(broadcast_urls, episode_num) return render_template( 'podcasts.html', podcasts=podcasts, broadcasts=broadcasts, episode_num=episode_num, episode_urls=episode_urls )
e27f0324fd8332aa0648d35630cbb88b2b36c721
3,653,135
def autofs(): """Fixture data from /proc/mounts.""" data = "flux-support -rw,tcp,hard,intr,noacl,nosuid,vers=3,retrans=5 flux-support.locker.arc-ts.umich.edu:/gpfs/locker0/ces/g/nfs/f/flux-support\numms-remills -rw,tcp,hard,intr,noacl,nosuid,vers=3,retrans=5 umms-remills.locker.arc-ts.umich.edu:/gpfs/locker0/ces/g/nfs/u/umms-remills" return data
ea53c34d863de69c15f1e1247b98599c5f365ab7
3,653,136
def flag_dims(flags): """Return flag names, dims, and initials for flags. Only flag value that correspond to searchable dimensions are returned. Scalars and non-function string values are not included in the result. """ dims = {} initials = {} for name, val in flags.items(): try: flag_dim, initial = _flag_dim(val, name) except ValueError: pass else: dims[name] = flag_dim initials[name] = initial names = sorted(dims) return (names, [dims[name] for name in names], [initials[name] for name in names])
4cafd991e21facacf36423028288e4c5bb10c8d9
3,653,137
def to_stack(df, col, by, transform=None, get_cats=False): """ Convert columns of a dataframe to a list of lists by 'by' Args: df: col: by: transform: Returns: """ g = df.groupby(by) transform = _notransform if transform is None else transform x_data = [] for gr in g.groups: x_data.append(transform(g.get_group(gr)[col].values)) cats = np.array([gg for gg in g.groups]) x_len = np.array([len(x) for x in x_data]) inds = x_len.argsort() # print(cats) # print(inds) if get_cats: return [x_data[i] for i in inds], cats[inds] return [x_data[i] for i in inds]
7bbf0ff609aaf2a6f5b49f80128ad06c04f93b5c
3,653,139
from typing import List def entries_repr(entries: List[Metadata]) -> str: """ Generates a nicely formatted string repr from a list of Dropbox metadata. :param entries: List of Dropbox metadata. :returns: String representation of the list. """ str_reps = [ f"<{e.__class__.__name__}(path_display={e.path_display})>" for e in entries ] return "[" + ",\n ".join(str_reps) + "]"
cc768a662ac6440ef7d5ca0eaddff5205a7c0a8c
3,653,140
def frequency_encode(dftrain, dftest, columnlist, output_type="include"): """ Frequency encode columns in columnlist. Parameters: dftrain: [DataFrame] train set dftest: [DataFrame] test set columnlist: [list] columns to encode. output_type: [str], default="include" will include the columns in the same dataframes. If "separate", returns separate dataframes. Returns: dftrain_freq: [DataFrame] train dftest_freq: [DataFrame] test Author: kmp """ if output_type is "include": for col in columnlist: col_freqs = dftrain.fillna({col:'NA'})[col].value_counts(normalize=True) dftrain[col+'_freq'] = dftrain.fillna({col:'NA'})[col].map(col_freqs) dftest[col+'_freq'] = dftest.fillna({col:'NA'})[col].map(col_freqs).fillna(0) dftrain_freq = dftrain dftest_freq = dftest else: dftrain_freq = pd.DataFrame(index=dftrain.index) dftest_freq = pd.DataFrame(index=dftest.index) for col in columnlist: col_freqs = dftrain.fillna({col:'NA'})[col].value_counts(normalize=True) dftrain_freq[col+'_freq'] = dftrain.fillna({col:'NA'})[col].map(col_freqs) dftest_freq[col+'_freq'] = dftest.fillna({col:'NA'})[col].map(col_freqs).fillna(0) return dftrain_freq, dftest_freq
3380853f0b5f88a6b2392a657424c4fc326876e2
3,653,141
def get_ranked_results(completed_rounds): """ For the rounds given in completed_rounds, calculate the total score for each team. Then all teams are sorted on total score and are given a ranking to allow for ex aequo scores. """ results = [] for team in QTeam.objects.all(): teamtotal = 0 for a in team.qanswer_set.all(): # Only add results for complete rounds if a.rnd in completed_rounds: teamtotal += a.score results.append((team.team_name, teamtotal)) # Sort the results sorted_results = sorted(results, reverse=True, key=lambda tup: tup[1]) rank, count, previous, ranking = 0, 0, None, [] for key, num in sorted_results: count += 1 if num != previous: rank += count previous = num count = 0 ranking.append((rank, key, num)) return ranking
cea2afa2bb8de1db82450f323274af94ad3b633f
3,653,142
def get_subgraphs(): """ Returns a list of lists. Each list is a subgraph (represented as a list of dictionaries). :return: A list of lists of dictionaries. """ subgraph_list = [c.get("color") for c in classes if c.get("color") is not None] subgraphs = [] # Add to subgraphs all the lists of actual subgraphs for c in subgraph_list: sub = [cl for cl in classes if cl.get("color") == c and cl] if sub not in subgraphs: subgraphs.append(sub) # Now add to subgraphs all the items (as lists) that don't belong to a subsystem for c in classes: if c.get("color") is None: sub = [c] subgraphs.append(sub) return subgraphs
5e9b766b2c7f58d71eac62d88be64096272d2511
3,653,143
def score(self, features): """ return score from ML models""" assert len(self._models) > 0, 'No valid prediction model' scores = list() for feature in features: # when feature list extraction fails if not feature: scores.append(-float('inf')) continue item = list() for ins in self._models: item.append(ins.inference(feature)) pred = [i for i in item if i] scores.append(float(sum(pred)/len(pred))) return scores
413eb4a0ecdcf0ac4b8f9cf9643b08a839c78b9a
3,653,144
def fromRGB(rgb): """Convert tuple or list to red, green and blue values that can be accessed as follows: a = fromRGB((255, 255, 255)) a["red"] a["green"] a["blue"] """ return {"red":rgb[0], "green":rgb[1], "blue":rgb[2]}
205a8f189d177e7af5cdc686e7c52fd2053a3c87
3,653,145
import math def computeTelescopeTransmission(pars, offAxis): """ Compute tel. transmission (0 < T < 1) for a given set of parameters as defined by the MC model and for a given off-axis angle. Parameters ---------- pars: list of float Parameters of the telescope transmission. Len(pars) should be 4. offAxis: float Off-axis angle in deg. Returns ------- float Telescope transmission. """ _degToRad = math.pi / 180.0 if pars[1] == 0: return pars[0] else: t = math.sin(offAxis * _degToRad) / (pars[3] * _degToRad) return pars[0] / (1.0 + pars[2] * t ** pars[4])
50b2e2908726b8a77bc83a2821cf760b7475300b
3,653,146
def mean_iou( results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False, ): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category IoU, shape (num_classes, ). """ all_acc, acc, iou = eval_seg_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=["mIoU"], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label, ) return all_acc, acc, iou
a6d90cb4028c831db82b4dddb6a4c52a8fa4e1f0
3,653,147
def as_date_or_none(date_str): """ Casts a date string as a datetime.date, or None if it is blank. >>> as_date_or_none('2020-11-04') datetime.date(2020, 11, 4) >>> as_date_or_none('') None >>> as_date_or_none(None) None """ if not date_str: return None return dateutil_parser.parse(date_str).date()
bf01bd280526e7962e1b08aa0400d6ebadf8053f
3,653,148
def guarantee_trailing_slash(directory_name: str) -> str: """Adds a trailling slash when missing Params: :directory_name: str, required A directory name to add trailling slash if missing Returns: A post processed directory name with trailling slash """ if not directory_name.endswith('/'): return directory_name + '/' return directory_name
38cfdf971262fceb4888277522b22ba7276fa9b7
3,653,149
def bc32encode(data: bytes) -> str: """ bc32 encoding see https://github.com/BlockchainCommons/Research/blob/master/papers/bcr-2020-004-bc32.md """ dd = convertbits(data, 8, 5) polymod = bech32_polymod([0] + dd + [0, 0, 0, 0, 0, 0]) ^ 0x3FFFFFFF chk = [(polymod >> 5 * (5 - i)) & 31 for i in range(6)] return "".join([BECH32_ALPHABET[d] for d in dd + chk])
46feb2b744089f5f4bf84cae6ff9d29623b3bba5
3,653,150
def read_all_reviews(current_user): """Reads all Reviews""" reviews = Review.query.all() if reviews: return jsonify({'Reviews': [ { 'id': review.id, 'title': review.title, 'desc': review.desc, 'reviewer': review.reviewer.username, 'business': review.business.name, 'created_at': review.created_at, 'updated_at': review.updated_at } for review in reviews ]}), 200 return jsonify({'warning': 'No Review, create one first'}), 200
78642f38dab8328c11445e67848b7f6d9583d892
3,653,151
def matches_filters(row, field_to_index, transformed_filters): """ Validate field name in transformed filter_expressions, return TRUE for rows matching all filters Parameters ------------ row : str row in `list` registry table (manager.show()) field_to_index : dict key = column names, val = column index, in registry table (or manager.show()) transformed_filters : list transformed/formatted fields for filtering rows Returns -------- bool return TRUE for rows matching all filters """ field_to_index_lower = dict( (k.lower(), v) for k, v in field_to_index.items() ) # to accept case-insensitive comparison for tfilter in transformed_filters: [field, op, value] = tfilter if field not in field_to_index_lower: raise DSGInvalidParameter( f"field='{field}' is not a valid column name, valid fields: {list(field_to_index.keys())}" ) obj_val = row[field_to_index_lower[field]].lower() # to accept case-insensitive comparison if not matches_filter(val=obj_val, op=op, required_value=value): return False return True
119b5e7d7f7dfb72e1a66525d5bf84665cbbced0
3,653,152
def div(f, other): """Element-wise division applied to the `Functional` objects. # Arguments f: Functional object. other: A python number or a tensor or a functional object. # Returns A Functional. """ validate_functional(f) inputs = f.inputs.copy() if is_functional(other): inputs += to_list(other.inputs) lmbd = [Lambda(lambda x: x[0]/x[1], name=graph_unique_name("div")) for X in f.outputs] else: _warn_for_ndarray(other) lmbd = [Lambda(lambda x: x/other, name=graph_unique_name("div")) for X in f.outputs] Functional = f.get_class() res = Functional( inputs = unique_tensors(inputs), outputs = _apply_operation(lmbd, f, other), layers = lmbd ) return res
abfc7df85946cfcd5196dff58bec22ee237b590b
3,653,153
def _gen_input(storyline, nsims, mode, site, chunks, current_c, nperc, simlen, swg_dir, fix_leap): """ :param storyline: loaded storyline :param SWG_path: path to the directory with contining the files from the SWG :param nsims: number of sims to run :param mode: one of ['irrigated', 'dryland'] :param site: one of ['eyrewell', 'oxford'] :param chunks: the number of chunks :param current_c: the current chunk (from range(chunks) :param nperc: number of simulations that can be run per chunk :return: """ # manage chunks if chunks == 1: num_to_pull = nsims elif chunks > 1: num_to_pull = nperc if current_c + 1 == chunks: # manage last chunk num_to_pull = nsims - (current_c * nperc) else: raise ValueError('shouldnt get here') params, doy_irr = get_params_doy_irr(mode, site) matrix_weathers = [] days_harvests = [] # get restriction data if mode == 'dryland': rest_data = np.repeat([None], num_to_pull) elif mode == 'irrigated': rest_data = get_irr_data(num_to_pull, storyline, simlen) else: raise ValueError('weird arg for mode: {}'.format(mode)) # get weather data weather_data = _get_weather_data(storyline=storyline, nsims=num_to_pull, simlen=simlen, swg_dir=swg_dir, site=site, fix_leap=fix_leap) # make all the other data for rest, weather in zip(rest_data, weather_data): if rest is None: rest_temp = None else: rest_temp = pd.DataFrame(data=rest, index=weather.index, columns=['frest']) matrix_weather = create_matrix_weather(mode, weather_data=weather, restriction_data=rest_temp, rest_key='frest', fix_leap=fix_leap) matrix_weathers.append(matrix_weather) days_harvests.append(create_days_harvest(mode, matrix_weather, site, fix_leap=fix_leap)) return params, doy_irr, matrix_weathers, days_harvests
d0594a3b986c1415202db5f894101537464355a8
3,653,155
def guess_mime_mimedb (filename): """Guess MIME type from given filename. @return: tuple (mime, encoding) """ mime, encoding = None, None if mimedb is not None: mime, encoding = mimedb.guess_type(filename, strict=False) if mime not in ArchiveMimetypes and encoding in ArchiveCompressions: # Files like 't.txt.gz' are recognized with encoding as format, and # an unsupported mime-type like 'text/plain'. Fix this. mime = Encoding2Mime[encoding] encoding = None return mime, encoding
8202551c81b25e9bb104ec82114a750a16556b23
3,653,156
def get_members(): """ Get a list of all members in FreeIPA """ members = [] ldap_conn = ldap.get_con() res = ldap_conn.search_s( "cn=users,cn=accounts,dc=csh,dc=rit,dc=edu", pyldap.SCOPE_SUBTREE, "(uid=*)", ["uid", "displayName"], ) for member in res: members.append( { "value": member[1]["uid"][0].decode("utf-8"), "display": member[1] .get("displayName", member[1]["uid"])[0] .decode("utf-8"), } ) return members
2714bddf7554884fa638066f91aa489b497f6c15
3,653,158
def _unicode_decode_extracted_tb(extracted_tb): """Return a traceback with the string elements translated into Unicode.""" return [(_decode(file), line_number, _decode(function), _decode(text)) for file, line_number, function, text in extracted_tb]
bbe020daecf6dc7021ff38dfac6869646120be5d
3,653,159
def load_table(source, version): """Load synth table from file """ filepath = get_table_filepath(source, version=version) return pd.read_table(filepath, delim_whitespace=True)
b95d35a6f297e0f73fee3652a0c9c6942b792451
3,653,160
def single_spaces(string: str) -> str: """Replaces all instances of whitespace-like chars with single spaces Args: string (str): The string to modify Returns: str: The cleaned string """ return UGLY_SPACES_RE.sub(" ", string)
eb37ae691f7fb54b6a23a5fd6d2cdd3edf8ebf57
3,653,161
def create_group(api_key: str, board_id: str, group_name: str, *args, **kwargs): """Creates a new group in a specific board. __________ Parameters api_key : `str` The monday.com v2 API user key. board_id : `str` The board's unique identifier. group_name : `str` The name of the new group. args : `tuple` The list of group return fields. kwargs : `dict` Optional arguments for querying assets. _______ Returns data : `dict` A monday.com group in item form. _____________ Return Fields archived : `bool` Is the group archived or not. color : `str` The group's color. deleted : `bool` Is the group deleted or not. id : `str` The group's unique identifier. items : `list[moncli.entities.Item]` The items in the group. position : `str` The group's position in the board. title : `str` The group's title. """ args = get_field_list(constants.DEFAULT_GROUP_QUERY_FIELDS, *args) kwargs = get_method_arguments(constants.CREATE_GROUP_OPTIONAL_PARAMS, **kwargs) kwargs['board_id'] = util.IntValue(board_id) kwargs['group_name'] = util.StringValue(group_name) return execute_mutation(api_key, constants.CREATE_GROUP, *args, **kwargs)
b591fe000718615f44954e488d4e3c46b9cf0123
3,653,163
import cvxopt def _solve_qp_ik_vel(vel, jac, joint_pos, joint_lims=None, duration=None, margin=0.2): """ Solves the IK for a given pusher velocity using a QP solver, imposing joint limits. If the solution is optimal, it is guaranteed that the resulting joint velocities will not cause the joints to reach their limits (minus the margin) in the specified duration of time :param vel: desired EE velocity (6 values) :param jac: jacobian :param joint_pos: current joint positions :param joint_lims: matrix of joint limits; if None, limits are not imposed :param duration: how long the specified velocity will be kept (in seconds); if None, 2.0 is used :param margin: maximum absolute distance to be kept from the joint limits :return: tuple with the solution (as a numpy array) and with a boolean indincating if the result is optimal or not :type vel: np.ndarray :type jac: np.ndarray :type joint_pos: np.ndarray :type joint_lims: np.ndarray :type duration: float :type margin: float :rtype: (np.ndarray, bool) """ x_len = len(joint_pos) P = cvxopt.matrix(np.identity(x_len)) A = cvxopt.matrix(jac) b = cvxopt.matrix(vel) q = cvxopt.matrix(np.zeros(x_len)) if duration is None: duration = 2. if joint_lims is None: G, h = None, None else: G = duration * np.identity(x_len) h = np.zeros(x_len) for i in range(x_len): dist_up = abs(joint_lims[i, 1] - joint_pos[i]) dist_lo = abs(joint_lims[i, 0] - joint_pos[i]) if dist_up > dist_lo: # we are closer to the lower limit # => must bound negative angular velocity, i.e. G_ii < 0 h[i] = dist_lo G[i, i] *= -1 else: # we are closer to the upper limit # => must bound positive angular velocity, i.e. G_ii > 0 h[i] = dist_up h = cvxopt.matrix(h - margin) G = cvxopt.matrix(G) # sol = cvxopt.solvers.qp(P, q, A=A, b=b, G=G, h=h, options={'show_progress': False, 'kktreg': 1e-9}, kktsolver='ldl') sol = cvxopt.solvers.qp(P, q, A=A, b=b, G=G, h=h, options={'show_progress': False, 'refinement': 5}) x = np.array(sol['x']).reshape(-1) optimal = sol['status'] == 'optimal' return x, optimal
25bd82403421f936d81d1a5c3090c1fbb1a964c1
3,653,164
def channel_will_be_next(crontab: str): """Checks if the given notification channel will be activated on the next channel, in an hour.""" return pycron.is_now(crontab, now + timedelta(hours=1))
b5505d7e27d70377cfb58acab8a38d9bd12d9351
3,653,165
def hospital_resident(residents, hospitals, optimal="resident"): """Solve an instance of HR using an adapted Gale-Shapley algorithm :cite:`Rot84`. A unique, stable and optimal matching is found for the given set of residents and hospitals. The optimality of the matching is found with respect to one party and is subsequently the worst stable matching for the other. Parameters ---------- residents : list of Player The residents in the game. Each resident must rank a non-empty subset of the elements of ``hospitals``. hospitals : list of Hospital The hospitals in the game. Each hospital must rank all the residents that have ranked them. optimal : str, optional Which party the matching should be optimised for. Must be one of ``"resident"`` and ``"hospital"``. Defaults to the former. Returns ------- matching : Matching A dictionary-like object where the keys are the members of ``hospitals``, and the values are their matches ranked by preference. """ if optimal == "resident": return resident_optimal(residents, hospitals) if optimal == "hospital": return hospital_optimal(hospitals)
e666b502a2e74f5c4628108397a82977b7da5b7f
3,653,166
def log_request(response): """Log request. :param response: :return: """ ip = request.headers.get('X-Forwarded-For', request.remote_addr) host = request.host.split(':', 1)[0] app.logger.info(f"method={request.method}, path={request.path}, " f"status={response.status_code}, " f"ip={ip}, host={host}, params={dict(request.args)}," f"headers={request.headers}, " f"body={request.data}") return response
838df023329b8b49c2349e58d02b44ef51ef7213
3,653,167
def reduce(path, n_procs, column, function): """ Calculate an aggregate value from IMB output. Args: path: str, path to file n_procs: int, number of processes column: str, column name function: callable to apply to specified `column` of table for `n_procs` in `path` """ tables = read_imb_out(path) table = tables[n_procs] # separate lines here for more useful KeyError if missing: col = table[column] result = function(col) return result
e2892b862f02ca11acaa180e24d390804441f0db
3,653,168
from pathlib import Path def output_file_path(status_id, phase): """ """ BASE_DIR = Path(__file__).resolve().parent.parent return f"%s/logs/stage/{status_id}-{phase}.txt" %str(BASE_DIR)
3bcbd80ad95389b9cf37fa66923bacb819ede710
3,653,169
def clean(some_string, uppercase=False): """ helper to clean up an input string """ if uppercase: return some_string.strip().upper() else: return some_string.strip().lower()
cdc4587b762625e00c91189950bd45840861c93f
3,653,170
import re def to_title(value): """Converts a string into titlecase.""" t = re.sub("\s+", ".", value) t = filter(LETTER_SET.__contains__, t) t = re.sub("([a-z])'\W([A-Z])", lambda m: m.group(0).lower(), t.title()) return re.sub("\d([A-Z])", lambda m: m.group(0).lower(), t)
a88c9559abeab7426fa874e66c9e81a75138c0cd
3,653,171
import yaml def parse_config_or_kwargs(config_file, **kwargs): """parse_config_or_kwargs :param config_file: Config file that has parameters, yaml format :param **kwargs: Other alternative parameters or overwrites for config """ with open(config_file) as con_read: yaml_config = yaml.load(con_read, Loader=yaml.FullLoader) # values from config file are all possible params arguments = dict(yaml_config, **kwargs) # In case some arguments were not passed, replace with default ones for key, value in DEFAULT_ARGS.items(): arguments.setdefault(key, value) return arguments
f36946ed3a05f32057786ddf8e4194b935b4c129
3,653,172
def sig_generacion(m): """Devuelve la matriz resultante de aplicar las reglas del juego a cada celda""" FILAS = len(m) COLUMNAS = len(m[0]) if len(m) else 0 new_m = [] # matriz resultado for i in range(FILAS): l = [] # Una lista para ir generando una fila for j in range(COLUMNAS): vec = num_vecinos(m, j, i) if vec < 2 or vec > 3: l.append(0) # muere elif vec == 3: l.append(1) # nace else: l.append(m[i][j]) # sobrevive si estaba viva new_m.append(l) return new_m
09da2baede2eef22179218f267bc2325d72822ee
3,653,173
import hmac import hashlib import base64 def calc_file_signature(data: str, password: str = None) -> str: """ Função que calcula o has da assinatura de um arquivo @param data: string assinada @param password: senha da assinatura @return: hash da assinatura """ if (password): digest = hmac.new(bytes(password), msg=bytes(data), digestmod=hashlib.sha256).digest() res_hash = base64.b64encode(digest).decode() else: hash = hashlib.sha256() hash.update(bytes(data)) res_hash = hash.hexdigest() return res_hash
1422b8058a6eb7995558b3e0a7fa5f33f6cfd134
3,653,174
def get_angle_from_coordinate(lat1, long1, lat2, long2): """https://stackoverflow.com/questions/3932502/calculate-angle-between-two-latitude-longitude-points""" dLon = (long2 - long1) y = np.sin(dLon) * np.cos(lat2) x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(dLon) brng = np.arctan2(y, x) brng = np.degrees(brng) brng = (brng + 360) % 360 brng = 360 - brng return brng
a1ad7ffe1e63197cc5f70b2ce2f343078fd9b5e7
3,653,175
import json def get_predictions(): """Return the list of predications as a json object""" results = [] conn = None columns = ("pid", "name", "location", "latitude", "longitude", "type", "modtime") try: conn = psycopg2.connect(db_conn) # create a cursor cur = conn.cursor() cur.execute( "SELECT pid, name, location, latitude, longitude, type, modtime FROM predictions" ) for row in cur.fetchall(): results.append(dict(zip(columns, row))) cur.close() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() print("Database connection closed.") json_str = json.dumps(results, indent=2, sort_keys=True, default=json_serial) return Response(json_str, mimetype="application/json")
6afb9d703f4dbeff81d4369f9096d577dcafc993
3,653,176
def parse_packageset(packageset): """ Get "input" or "output" packages and their repositories from each PES event. :return: set of Package tuples """ return {parse_package(p) for p in packageset.get('package', packageset.get('packages', []))}
ff8af3423c0fda993cfa88be16142520e29b999e
3,653,177
def pretty_print_large_number(number): """Given a large number, it returns a string of the sort: '10.5 Thousand' or '12.3 Billion'. """ s = str(number).ljust(12) if number > 0 and number < 1e3: pass elif number >= 1e3 and number < 1e6: s = s + " (%3.1f Thousand)" % (number * 1.0 / 1e3) elif number >= 1e6 and number < 1e9: s = s + " (%3.1f Million)" % (number * 1.0 / 1e6) elif number >= 1e9 and number < 1e12: s = s + " (%3.1f Billion)" % (number * 1.0 / 1e9) elif number >= 1e12 and number < 1e15: s = s + " (%3.1f Trillion)" % (number * 1.0 / 1e12) return s
6762f34744da360b36d4a4fc0659fcf7d3fb0465
3,653,179
def find_aligning_transformation(skeleton, euler_frames_a, euler_frames_b): """ performs alignment of the point clouds based on the poses at the end of euler_frames_a and the start of euler_frames_b Returns the rotation around y axis in radians, x offset and z offset """ point_cloud_a = convert_euler_frame_to_cartesian_frame(skeleton, euler_frames_a[-1]) point_cloud_b = convert_euler_frame_to_cartesian_frame(skeleton, euler_frames_b[0]) weights = skeleton.get_joint_weights() theta, offset_x, offset_z = _align_point_clouds_2D(point_cloud_a, point_cloud_b, weights) return theta, offset_x, offset_z
1d323fcb0af73aacbc57e5cf57f0b9875375b98d
3,653,180
def find_all_visit(tx): """ Method that queries the database to find all VISIT relationships :param tx: session :return: nodes of Person , Location """ query = ( """ MATCH (p:Person)-[r:VISIT]->(l:Location) RETURN p , ID(p) , r , r.start_hour , r.end_hour , r.date , l , ID(l) """ ) result = tx.run(query).data() return result
851d790b16f9db285a6d09b5cabc4e12ad364484
3,653,181
def read_vectors(filename): """Reads measurement vectors from a space or comma delimited file. :param filename: path of the file :type filename: str :return: array of vectors :rtype: numpy.ndarray :raises: ValueError """ vectors = [] data = read_csv(filename) expected_size = len(data[0]) if expected_size % 3 != 0: raise ValueError('Column size of vector data must be a multiple of 3') for row in data: if len(row) == expected_size: vectors.append(row) else: raise ValueError('Inconsistent column size of vector data') result = np.array(vectors, np.float32) if not np.isfinite(result).all(): raise ValueError('Non-finite value present in vector data') return result
a772c4185d55543e0c641271a5af699f91e81b95
3,653,182
def get_scoring_algorithm(): """ Base scoring algorithm for index and search """ return scoring.BM25F()
78fe59d02071ce000262208f4c228566e0747857
3,653,183
def _make_augmentation_pipeline(augmentation_list): """Buids an sklearn pipeline of augmentations from a tuple of strings. Parameters ---------- augmentation_list: list of strings, A list of strings that determine the augmentations to apply, and in which order to apply them (the first string will be applied first). Possible augmentation strings are ['leadlag', 'ir', 'addtime', 'cumsum', 'basepoint'] Returns ------- sklearn.Pipeline The transforms, in order, as an sklearn pipeline. Examples -------- augementations = ('leadlag', 'ir', 'addtime') _make_augmentation_pipeline(augmentations) # Will return Pipeline([ ('leadlag', LeadLag()), ('ir', InvisibilityReset()), ('addtime', AddTime()) ]) """ # Dictionary of augmentations AUGMENTATIONS = { "leadlag": _LeadLag(), "ir": _InvisibilityReset(), "addtime": _AddTime(), "cumsum": _CumulativeSum(), "basepoint": _BasePoint(), } # Assertions, check we have a tuple/list if augmentation_list is not None: if isinstance(augmentation_list, str): augmentation_list = (augmentation_list,) assert all( [x in list(AUGMENTATIONS.keys()) for x in augmentation_list] ), "augmentation_list must only contain string elements from {}. Given: {}.".format( list(AUGMENTATIONS.keys()), augmentation_list ) # Setup pipeline if augmentation_list is not None: pipeline = Pipeline( [(tfm_str, AUGMENTATIONS[tfm_str]) for tfm_str in augmentation_list] ) else: pipeline = None return pipeline
e53f4d198e6781c5eaf6ce6c0a453801f4ceb0d7
3,653,184
def ctg_path(event_name,sc_reform,path_cache,var_map,model,prev_events): """ Recursively computes the controllable and contigent events that influence the schedule of a given event. """ if event_name in path_cache:#If solution has been already computed, use it return path_cache[event_name] else: if event_name in sc_reform: #End point of uncontrollable duration if event_name in prev_events: raise RuntimeError('Contigent duration loop detected!') else: prev_events.add(event_name) path_ref = ctg_path(sc_reform[event_name]['ref'],sc_reform,path_cache,var_map,model,prev_events) path = [event_name]+path_ref else: #Controllable event if not event_name in var_map:#1-to-1 mapping between events and variables var_map[event_name]=model.addVar(vtype=GRB.CONTINUOUS,lb=0.0) model.update() path = [event_name] path_cache[event_name]=path #Caches solution for future use return path
5de8eb6fe3be991da3f4af37b6e81990aa8cb34f
3,653,185
def _setup_mock_socket_file(mock_socket_create_conn, resp): """Sets up a mock socket file from the mock connection. Args: mock_socket_create_conn: The mock method for creating a socket connection. resp: iterable, the side effect of the `readline` function of the mock socket file. Returns: The mock socket file that will be injected into the code. """ fake_file = mock.Mock() fake_file.readline.side_effect = resp fake_conn = mock.Mock() fake_conn.makefile.return_value = fake_file mock_socket_create_conn.return_value = fake_conn return fake_file
5b70c73bb948211919065298a01a48d927e64482
3,653,186
def get_defense_type(action: int, game_config) -> int: """ Utility method for getting the defense type of action-id :param action: action-id :param game_config: game configuration :return: action type """ defense_type = action % (game_config.num_attack_types+1) # +1 for detection return defense_type
68a05cf15bd833fb24aa448b8be2d08c1a949d12
3,653,187
def color_box( colors, border="#000000ff", border2=None, height=32, width=32, border_size=1, check_size=4, max_colors=5, alpha=False, border_map=0xF ): """Color box.""" return colorbox.color_box( colors, border, border2, height, width, border_size, check_size, max_colors, alpha, border_map )
6f8a98743c11985529afd5ad0c04a64c1301f85a
3,653,188
def get_performance_of_lstm_classifier(X, y, n_epochs, verbose=1, final_score=False): """ Reshapes feature matrix X, applies LSTM and returns the performance of the neural network :param X: List of non-reshaped/original feature matrices (one per logfile) :param y: labels :param n_epochs: Number of epochs the model should be trained :param verbose: verbose mode of keras_model.fit :param final_score: If final score should be printed, then don't use a validation set :return rocs, recalls, specificities, presicions, f1s """ X_list, y_list = _get_splitted_up_feature_matrix_and_labels(X, y) globals()["_maxlen"] = max(len(fm) for fm in X_list) if final_score: X_train_list, y_train_list, X_test_list, y_test_list, X_val, y_val = \ _split_into_train_test_val_data(X_list, y_list, size_test_set=3, size_val_set=0) X_lstm, y_lstm = _get_reshaped_matrices(X_train_list, y_train_list) model = _generate_lstm_classifier((X_lstm.shape[1], X_lstm.shape[2])) trained_model = _fit_lstm(model, X_lstm, y_lstm, n_epochs, verbose) else: X_train_list, y_train_list, X_test_list, y_test_list, X_val, y_val = \ _split_into_train_test_val_data(X_list, y_list, size_test_set=3, size_val_set=2) X_lstm, y_lstm = _get_reshaped_matrices(X_train_list, y_train_list) X_val, y_val = _get_reshaped_matrices(X_val, y_val) model = _generate_lstm_classifier((X_lstm.shape[1], X_lstm.shape[2])) trained_model = _fit_lstm(model, X_lstm, y_lstm, n_epochs, verbose, val_set=(X_val, y_val)) print('Performance training set: ') _calculate_performance(X_lstm, y_lstm, trained_model) print('Performance test set: ') rocs, recalls, specificities, presicions, f1s = _calculate_performance(X_test_list, y_test_list, trained_model) return rocs, recalls, specificities, presicions, f1s
13a494f9aca643ff23ce6954471ef007df96f9e8
3,653,189
def worker(data): """Thread function.""" width, column = data queen = Queen(width) queen.run(column) return queen.solutions
ef0f3c6410885ac2e20b28f009085d92b6fca22b
3,653,190
def eitem(self, key, value): """Translate included eitems.""" _eitem = self.get("_eitem", {}) urls = [] for v in force_list(value): urls.append( { "description": "E-book by EbookCentral", "value": clean_val("u", v, str), } ) _eitem.update({"urls": urls}) return _eitem
d9a5d3f9dc29baa15d9df6b4fe32c7f20151316c
3,653,191
def annotate_group(groups, ax=None, label=None, labeloffset=30): """Annotates the categories with their parent group and add x-axis label""" def annotate(ax, name, left, right, y, pad): """Draw the group annotation""" arrow = ax.annotate(name, xy=(left, y), xycoords="data", xytext=(right, y - pad), textcoords="data", annotation_clip=False, verticalalignment="top", horizontalalignment="center", linespacing=2.0, arrowprops={'arrowstyle': "-", 'shrinkA': 0, 'shrinkB': 0, 'connectionstyle': "angle,angleB=90,angleA=0,rad=5"} ) return arrow if ax is None: ax = plt.gca() level = 0 for level in range(len(groups)): grp = groups[level] for name, coord in list(grp.items()): ymin = ax.get_ylim()[0] - np.ptp(ax.get_ylim()) * 0.12 - np.ptp(ax.get_ylim()) * 0.05 * (level) ypad = 0.01 * np.ptp(ax.get_ylim()) xcenter = np.mean(coord) annotate(ax, name, coord[0], xcenter, ymin, ypad) annotate(ax, name, coord[1], xcenter, ymin, ypad) if label is not None: # Define xlabel and position it according to the number of group levels ax.annotate(label, xy=(0.5, 0), xycoords="axes fraction", xytext=(0, -labeloffset - (level + 1) * 15), textcoords="offset points", verticalalignment="top", horizontalalignment="center") return
33f57ccf96b4b0907ea8c2ea161e19b0e6e536d2
3,653,192
def background_schwarzfischer(fluor_chan, bin_chan, div_horiz=7, div_vert=5, mem_lim=None, memmap_dir=None): """Perform background correction according to Schwarzfischer et al. Arguments: fluor_chan -- (frames x height x width) numpy array; the fluorescence channel to be corrected bin_chan -- boolean numpy array of same shape as `fluor_chan`; segmentation map (background=False, cell=True) div_horiz -- int; number of (non-overlapping) tiles in horizontal direction div_vert -- int; number of (non-overlapping) tiles in vertical direction mem_lim -- max number of bytes for temporary data before switching to memmap; if in (0,1], max percentage of free memory to be used; if non-positive, always use memory; if None, decide automatically memmap_dir -- str; directory for creating memmap Returns: Background-corrected fluorescence channel as numpy array (dtype single) of same shape as `fluor_chan` """ n_frames, height, width = fluor_chan.shape # Allocate arrays if np.can_cast(fluor_chan, np.float16): dtype_interp = np.float16 elif np.can_cast(fluor_chan, np.float32): dtype_interp = np.float32 else: dtype_interp = np.float64 dtype_interp = np.dtype(dtype_interp) bg_mean = np.empty((n_frames, 1, 1), dtype=dtype_interp) # Create large arrays in memory or as memmap if mem_lim is None or mem_lim > 0: bg_interp, arr_temp, iter_temp = _get_arr(fluor_chan.shape, dtype_interp, mem_lim, memmap_dir) else: bg_interp, arr_temp, iter_temp = np.empty(shape=fluor_chan.shape, dtype=dtype_interp) # Construct tiles for background interpolation # Each pair of neighboring tiles is overlapped by a third tile, resulting in a total tile number # of `2 * div_i - 1` tiles for each direction `i` in {`horiz`, `vert`}. # Due to integer rounding, the sizes may slightly vary between tiles. tiles_vert = _make_tiles(height, div_vert) tiles_horiz = _make_tiles(width, div_horiz) supp = np.empty((tiles_horiz.size, tiles_vert.size)) # Interpolate background as cubic spline with each tile’s median as support point at the tile center for t in range(n_frames): print(f"Interpolating background in frame {t:3d} …") masked_frame = ma.masked_array(fluor_chan[t, ...], mask=bin_chan[t, ...]) for iy, (y, sy) in enumerate(tiles_vert): for ix, (x, sx) in enumerate(tiles_horiz): supp[ix, iy] = ma.median(masked_frame[sy, sx]) bg_spline = scint.RectBivariateSpline(x=tiles_horiz['center'], y=tiles_vert['center'], z=supp) patch = bg_spline(x=range(width), y=range(height)).T bg_interp[t, ...] = patch bg_mean[t, ...] = patch.mean() # Correct for background using Schwarzfischer’s formula: # corrected_image = (raw_image - interpolated_background) / gain # wherein, in opposite to Schwarzfischer, the gain is approximated as # median(interpolated_background / mean_background) # This “simple” calculation may consume more memory than available. # Therefore, a less readable but more memory-efficient command flow is used. for st, sl in iter_temp: np.divide(bg_interp[:, sl, :], bg_mean, out=arr_temp[:, :st, :]) np.subtract(fluor_chan[:, sl, :], bg_interp[:, sl, :], out=bg_interp[:, sl, :]) np.divide(bg_interp[:, sl, :], np.median(arr_temp[:, :st, :], axis=0, keepdims=True), out=bg_interp[:, sl, :]) # `bg_interp` now holds the corrected image return bg_interp
512d1721dc14a4f7a09843603b8700360f97fd37
3,653,193
def get_output_data_path(extension, suffix=None): """Return full path for data file with extension, generated by a test script""" name = get_default_test_name(suffix) return osp.join(TST_PATH[0], f"{name}.{extension}")
ce5437c23061df490a31ac11f26f72e5935f0fd7
3,653,195
def _plot(self, **kwargs) -> tp.BaseFigure: # pragma: no cover """Plot `close` and overlay it with the heatmap of `labels`.""" if self.wrapper.ndim > 1: raise TypeError("Select a column first. Use indexing.") return self.close.rename('close').vbt.overlay_with_heatmap(self.labels.rename('labels'), **kwargs)
eaa6df4f29db8d1ab6dc0ffd1b9ecf8804f6aac9
3,653,196
def _set_global_vars(metadata): """Identify files used multiple times in metadata and replace with global variables """ fnames = collections.defaultdict(list) for sample in metadata.keys(): for k, v in metadata[sample].items(): print k, v if os.path.isfile(v): v = _expand_file(v) metadata[sample][k] = v fnames[v].append(k) loc_counts = collections.defaultdict(int) global_vars = {} global_var_sub = {} for fname, locs in fnames.items(): if len(locs) > 1: loc_counts[locs[0]] += 1 name = "%s%s" % (locs[0], loc_counts[locs[0]]) global_var_sub[fname] = name global_vars[name] = fname for sample in metadata.keys(): for k, v in metadata[sample].items(): if v in global_var_sub: metadata[sample][k] = global_var_sub[v] return metadata, global_vars
23caefdf0f999a9b60649c85278edb8498b771b3
3,653,197
def user_get(context, id): """Get user by id.""" return IMPL.user_get(context, id)
b3108b4627751d5dfef1b42b8ccad0295b33cc99
3,653,198
def unpack_singleton(x): """ >>> unpack_singleton([[[[1]]]]) 1 >>> unpack_singleton(np.array(np.datetime64('2000-01-01'))) array('2000-01-01', dtype='datetime64[D]') """ while isinstance(x, (list, tuple)): try: x = x[0] except (IndexError, TypeError, KeyError): break return x
f6f55ff17ba29aab5946c682b825c72eb70324dd
3,653,199
def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) # print('correct shape:', correct.shape) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) if len(res) == 1: return res[0] else: return (res[0], res[1], correct[0], pred[0])
a5b2c3d97c839e0ae9954ce48889d5b46966b3cb
3,653,202
def yyyydoy2jd(year,doy,hh=0,mm=0,ss=0.0): """ yyyydoy2jd Take a year, day-of-year, etc and convert it into a julian day Usage: jd = yyyydoy2jd(year,doy,hh,mm,ss) Input: year - 4 digit integer doy - 3 digit, or less integer, (1 <= doy <= 366) hh - 2 digit, or less int, (0 <= hh < 24) (not required) mm - 2 digit, or less int,(0 <= ss < 60) (not required) ss - float (not required) Output: 'jd' (float) """ # # need to split seconds into two components # sec => 2 digit, or less int, (0 <= ss < 60) # ms => int 0 <= ms < 1,000,000 # ms,sec = modf(float(ss)) ms = ms * 10e5 dto = dt.datetime(int(year),01,01,int(hh),int(mm),int(sec),int(ms)) dto = dto + dt.timedelta(days=(int(doy) - 1)) mn = dto.month dy = dto.day jd = cal2jd(int(year),int(mn),int(dy)) jd = jd + float(hh)/24. + float(mm)/60./24. + float(sec)/3600./24. return jd - 2400000.5
7e0579197146435d4c3e5031de962b758555846f
3,653,203
def lon2index(lon, coords, corr=True): """convert longitude to index for OpenDAP request""" if corr: if lon < 0: lon += 360 lons = coords.lon.values return np.argmin(np.abs(lons - lon))
3fd3571ab221533708c32c9e28293a90ee9f30cd
3,653,204
def get_dynamic_call_address(ea): """Find all dynamic calls e.g call eax""" dism_addr_list = list(FuncItems(ea)) return [addr for addr in dism_addr_list if print_insn_mnem(addr) == 'call' and get_operand_type(addr, 0)==1]
1f4d0eb3bcfdf0728d12efdfd151246f0497c8dd
3,653,205
def iwbo_nats(model, x, k, kbs=None): """Compute the IWBO in nats.""" if kbs: return - iwbo_batched(model, x, k, kbs).mean() else: return - iwbo(model, x, k).mean()
5620e60710e6c25804d66f4c668f4670e033fdbe
3,653,206
def ko_json(queryset, field_names=None, name=None, safe=False): """ Given a QuerySet, return just the serialized representation based on the knockout_fields. Useful for middleware/APIs. Convenience method around ko_data. """ return ko_data(queryset, field_names, name, safe, return_json=True)
25d3b433ffec6eb4e6bb8c0d39a9080692dee4f2
3,653,207
def delete_demo(guid): """ Delete a demo object and all its children. :param guid: The demo's guid :return: """ web_utils.check_null_input((guid, 'demo to delete')) demo_service.delete_demo_by_guid(guid) return '', 204
eb0a205e4279003a99159b2aeb4b8caefd47c2be
3,653,209
def return_json(): """ Sample function that has been given a different name """ print("Tooler should render out the JSON value returned") return {"one": 1, "deep": {"structure": ["example"]}}
bf28fab61cabfc3a4f30736e58490d5df6702dc2
3,653,210
def get(url) -> str: """Send an http GET request. :param str url: The URL to perform the GET request for. :rtype: str :returns: UTF-8 encoded string of response """ return _execute_request(url).read().decode("utf-8")
2f0b6ed542f75f83478f672ef1f39f192dddbf66
3,653,211
def train_step(model_optimizer, game_board_log, predicted_action_log, action_result_log): """Run one training step.""" def loss_fn(model_params): logits = PolicyGradient().apply({'params': model_params}, game_board_log) loss = compute_loss(logits, predicted_action_log, action_result_log) return loss grad_fn = jax.grad(loss_fn) grads = grad_fn(model_optimizer.target) model_optimizer = model_optimizer.apply_gradient(grads) return model_optimizer
628742cb6d2fe19d25b5e283c7bec6f5189fc7b5
3,653,214
def make_static_rnn_with_control_flow_v2_tests(options): """Make a set of tests to do basic Lstm cell.""" test_parameters = [ { "dtype": [tf.float32], "num_batches": [4], "time_step_size": [4], "input_vec_size": [3], "num_cells": [4], "use_sequence_length": [True, False], }, ] def build_graph(parameters): """Build a simple graph with BasicLSTMCell.""" num_batches = parameters["num_batches"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] num_cells = parameters["num_cells"] inputs_after_split = [] for i in range(time_step_size): one_timestamp_input = tf.placeholder( dtype=parameters["dtype"], name="split_{}".format(i), shape=[num_batches, input_vec_size]) inputs_after_split.append(one_timestamp_input) lstm_cell = tf.nn.rnn_cell.BasicLSTMCell( num_cells, activation=tf.nn.relu, state_is_tuple=True) sequence_length = None if parameters["use_sequence_length"]: # Using different sequence length in each bach, like [1, 2, 3, 3...]. sequence_length = [ min(i + 1, time_step_size) for i in range(num_batches) ] cell_outputs, _ = rnn.static_rnn( lstm_cell, inputs_after_split, dtype=tf.float32, sequence_length=sequence_length) out = cell_outputs[-1] return inputs_after_split, [out] def build_inputs(parameters, sess, inputs, outputs): """Feed inputs, assign variables, and freeze graph.""" with tf.variable_scope("", reuse=True): kernel = tf.get_variable("rnn/basic_lstm_cell/kernel") bias = tf.get_variable("rnn/basic_lstm_cell/bias") kernel_values = create_tensor_data(parameters["dtype"], [kernel.shape[0], kernel.shape[1]], -1, 1) bias_values = create_tensor_data(parameters["dtype"], [bias.shape[0]], 0, 1) sess.run(tf.group(kernel.assign(kernel_values), bias.assign(bias_values))) num_batches = parameters["num_batches"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] input_values = [] for _ in range(time_step_size): tensor_data = create_tensor_data(parameters["dtype"], [num_batches, input_vec_size], 0, 1) input_values.append(tensor_data) out = sess.run(outputs, feed_dict=dict(zip(inputs, input_values))) return input_values, out make_zip_of_tests( options, test_parameters, build_graph, build_inputs, use_frozen_graph=True)
aa29c5eddab46624c36be29ee9ce1e6a83efbd7a
3,653,215
def jaccard(structured_phrases, phrases_to_score, partial=False, status_callback=None, status_increment=None, pmd_class=PartialMatchDict): """ calculate jaccard similarity between phrases_to_score, using structured_phrases to determine cooccurrences. For phrases `a' and `b', let A be the set of documents `a' appeared in, and B be the set of documents `b' appeared in. Then the Jaccard similarity of `a' and `b' is Similarity value of two phrases is |A intersect B| / |A union B|. Setting partial to true allows partial phrase matching: two phrases are the same if they have any common subsequence of words. Very slow. """ # indicies will index into our union and intersection arrays phrases = {} if partial: indices = pmd_class() else: indices = {} for i, phrase in enumerate(phrases_to_score): indices[phrase] = i phrases[i] = phrase N = len(phrases_to_score) phrase_count = np.zeros(N) if partial: intersection = np.zeros((N, N), dtype=np.uint32) else: intersection = dok_matrix((N, N), dtype=np.uint32) count = 0 if status_callback and not status_increment: length = len(structured_phrases) status_increment = length / 100 # take each document for doc_phrases in structured_phrases: if status_callback and status_increment > 0 and count % status_increment == 0: try: status_callback(status_format(float(count) / length)) except: status_callback("%d processed" % count) count += 1 # take all phrases within this document for i in range(len(doc_phrases)): np1 = tuple(doc_phrases[i]) if np1 in indices: # this phrase is important enough to count if partial: matches1 = indices[np1] else: matches1 = set() matches1.add(indices[np1]) for index1 in matches1: phrase_count[index1] += 1 for k in range(i + 1, len(doc_phrases)): np2 = tuple(doc_phrases[k]) if np2 in indices: # this np is important enough to count if partial: matches2 = indices[np2] else: matches2 = set() matches2.add(indices[np2]) for index1 in matches1: for index2 in matches2: if index2 != index1: intersection[index1,index2] += 1 intersection[index2,index1] += 1 # use inclusion exclusion if partial: tiled_phrase_count = np.lib.stride_tricks.as_strided(phrase_count, (N, phrase_count.size), (0, phrase_count.itemsize)) union = tiled_phrase_count + tiled_phrase_count.T - intersection jaccard = intersection / union else: jaccard = dok_matrix((N, N)) for coords, intersection_count in intersection.iteritems(): jaccard[coords] = intersection_count / (phrase_count[coords[0]] + phrase_count[coords[1]] - intersection_count) jaccard = np.asarray(jaccard.todense()) return jaccard, phrases
c7af246028f59b2375974390f337063d740d2f53
3,653,216
import ast def print_python(node: AST) -> str: """Takes an AST and produces a string containing a human-readable Python expression that builds the AST node.""" return black.format_str(ast.dump(node), mode=black.FileMode())
06281c4622d2b13008c17763bb59f93dfc44527c
3,653,217
def reg2deg(reg): """ Converts phase register values into degrees. :param cycles: Re-formatted number of degrees :type cycles: int :return: Number of degrees :rtype: float """ return reg*360/2**32
c7dbd6119ad3bce9261fb3d78a369251ade2d8af
3,653,218
import pathlib def load_config_at_path(path: Pathy) -> Dynaconf: """Load config at exact path Args: path: path to config file Returns: dict: config dict """ path = pathlib.Path(path) if path.exists() and path.is_file(): options = DYNACONF_OPTIONS.copy() options.update({ 'root_path': str(path.parent), 'settings_file': str(path.name), }) return Dynaconf(**options) else: raise ConfigurationError( f'Couldn\'t find ballet.yml config file at {path!s}')
da5cc4b830ad3a50ec6713bb509d3db0862963bf
3,653,221
def _build_target(action, original_target, plugin, context): """Augment dictionary of target attributes for policy engine. This routine adds to the dictionary attributes belonging to the "parent" resource of the targeted one. """ target = original_target.copy() resource, _w = _get_resource_and_action(action) hierarchy_info = attributes.RESOURCE_HIERARCHY_MAP.get(resource, None) if hierarchy_info and plugin: # use the 'singular' version of the resource name parent_resource = hierarchy_info['parent'][:-1] parent_id = hierarchy_info['identified_by'] f = getattr(plugin, 'get_%s' % parent_resource) # f *must* exist, if not found it is better to let quantum explode # Note: we do not use admin context data = f(context, target[parent_id], fields=['tenant_id']) target['%s_tenant_id' % parent_resource] = data['tenant_id'] return target
e3c62944d7083ee96ad510fff0807db50aed9602
3,653,222
async def async_setup_entry(opp: OpenPeerPower, entry: ConfigEntry): """Configure Gammu state machine.""" device = entry.data[CONF_DEVICE] config = {"Device": device, "Connection": "at"} gateway = await create_sms_gateway(config, opp) if not gateway: return False opp.data[DOMAIN][SMS_GATEWAY] = gateway opp.config_entries.async_setup_platforms(entry, PLATFORMS) return True
c0a14f2a92d06e814728ff0ceed05bff17acb66a
3,653,223
def grep_response_body(regex_name, regex, owtf_transaction): """Grep response body :param regex_name: Regex name :type regex_name: `str` :param regex: Regex :type regex: :param owtf_transaction: OWTF transaction :type owtf_transaction: :return: Output :rtype: `dict` """ return grep(regex_name, regex, owtf_transaction.get_raw_response_body)
b5e9899675a63fe9ede9a9cf612b2004d52bb364
3,653,224
def link(f, search_range, pos_columns=None, t_column='frame', verbose=True, **kwargs): """ link(f, search_range, pos_columns=None, t_column='frame', memory=0, predictor=None, adaptive_stop=None, adaptive_step=0.95, neighbor_strategy=None, link_strategy=None, dist_func=None, to_eucl=None) Link a DataFrame of coordinates into trajectories. Parameters ---------- f : DataFrame The DataFrame must include any number of column(s) for position and a column of frame numbers. By default, 'x' and 'y' are expected for position, and 'frame' is expected for frame number. See below for options to use custom column names. search_range : float or tuple the maximum distance features can move between frames, optionally per dimension pos_columns : list of str, optional Default is ['y', 'x'], or ['z', 'y', 'x'] when 'z' is present in f t_column : str, optional Default is 'frame' memory : integer, optional the maximum number of frames during which a feature can vanish, then reappear nearby, and be considered the same particle. 0 by default. predictor : function, optional Improve performance by guessing where a particle will be in the next frame. For examples of how this works, see the "predict" module. adaptive_stop : float, optional If not None, when encountering an oversize subnet, retry by progressively reducing search_range until the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a SubnetOversizeException. adaptive_step : float, optional Reduce search_range by multiplying it by this factor. neighbor_strategy : {'KDTree', 'BTree'} algorithm used to identify nearby features. Default 'KDTree'. link_strategy : {'recursive', 'nonrecursive', 'numba', 'hybrid', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses hybrid (numba+recursive) if available 'drop' causes particles in subnetworks to go unlinked dist_func : function, optional a custom distance function that takes two 1D arrays of coordinates and returns a float. Must be used with the 'BTree' neighbor_strategy. to_eucl : function, optional function that transforms a N x ndim array of positions into coordinates in Euclidean space. Useful for instance to link by Euclidean distance starting from radial coordinates. If search_range is anisotropic, this parameter cannot be used. Returns ------- DataFrame with added column 'particle' containing trajectory labels. The t_column (by default: 'frame') will be coerced to integer. See also -------- link_iter Notes ----- This is an implementation of the Crocker-Grier linking algorithm. [1]_ References ---------- .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217 """ if pos_columns is None: pos_columns = guess_pos_columns(f) # copy the dataframe f = f.copy() # coerce t_column to integer type if not np.issubdtype(f[t_column].dtype, np.integer): f[t_column] = f[t_column].astype(np.integer) # sort on the t_column pandas_sort(f, t_column, inplace=True) coords_iter = coords_from_df(f, pos_columns, t_column) ids = [] for i, _ids in link_iter(coords_iter, search_range, verbose=verbose, **kwargs): ids.extend(_ids) f['particle'] = ids return f
425f7ffe9bcda4700bc77e74c2e956f27f22d521
3,653,225
def get_classifier(opt, input_dim): """ Return a tuple with the ML classifier to be used and its hyperparameter options (in dict format).""" if opt == 'RF': ml_algo = RandomForestClassifier hyperparams = { 'n_estimators': [100], 'max_depth': [None, 10, 30, 50, 100], 'min_samples_split': [2, 10, 50, 100], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'GBDT': ml_algo = LGBMClassifier hyperparams = { 'boosting_type': ['gbdt'], 'n_estimators': [100], 'max_depth': [-1, 10, 30, 50, 100], 'num_leaves': [2, 3, 5, 10, 50], 'learning_rate': [0.001, 0.01, 0.1], 'class_weight': [None, 'balanced'], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'LR': ml_algo = LogisticRegression hyperparams = { 'solver': ['newton-cg', 'lbfgs', 'saga'], 'C': [0.0001, 0.001, 0.01], 'class_weight': [None, 'balanced'], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'GNB': ml_algo = GaussianNB hyperparams = { 'var_smoothing': [10**-i for i in range(2, 15)], } elif opt == 'SVM': ml_algo = SVC hyperparams = { 'probability': [True], 'C': [0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1], } elif opt == 'NN': ml_algo = KerasClassifier(get_nn_model(input_dim), epochs=30, verbose=0) hyperparams = {} else: raise ValueError(f'{opt} is an invalid classifier name.') return ml_algo, hyperparams
a522cab05958023dd4239e4ec2b136d2510aec1b
3,653,226
def list_spiders_endpoint(): """It returns a list of spiders available in the SPIDER_SETTINGS dict .. version 0.4.0: endpoint returns the spidername and endpoint to run the spider from """ spiders = {} for item in app.config['SPIDER_SETTINGS']: spiders[item['endpoint']] = 'URL: ' + request.url_root + 'run-spider/' + item['endpoint'] return jsonify(endpoints=spiders)
71e7448a621565b540c8ade1dae04d8ef88d5fd2
3,653,227
def plot3dOnFigure(ax, pixels, colors_rgb,axis_labels=list("RGB"), axis_limits=((0, 255), (0, 255), (0, 255))): """Plot pixels in 3D.""" # Set axis limits ax.set_xlim(*axis_limits[0]) ax.set_ylim(*axis_limits[1]) ax.set_zlim(*axis_limits[2]) # Set axis labels and sizes ax.tick_params(axis='both', which='major', labelsize=14, pad=8) ax.set_xlabel(axis_labels[0], fontsize=16, labelpad=16) ax.set_ylabel(axis_labels[1], fontsize=16, labelpad=16) ax.set_zlabel(axis_labels[2], fontsize=16, labelpad=16) # Plot pixel values with colors given in colors_rgb ax.scatter( pixels[:, :, 0].ravel(), pixels[:, :, 1].ravel(), pixels[:, :, 2].ravel(), c=colors_rgb.reshape((-1, 3)), edgecolors='none') return ax
067219abba7f77f7c4fbb4404ff16a3f5192f7cd
3,653,228
import numpy def ellipse(a, b, center=(0.0, 0.0), num=50): """Return the coordinates of an ellipse. Parameters ---------- a : float The semi-major axis of the ellipse. b : float The semi-minor axis of the ellipse. center : 2-tuple of floats, optional The position of the center of the ellipse; default: (0.0, 0.0) num : integer, optional The number of points on the upper side of the ellipse. The number includes the leading and trailing edges. Thus, the total number of points will be 2 * (num - 1); default: 50. Returns ------- x : numpy.ndarray The x-coordinates of the ellipse as a 1D array of floats. y: numpy.ndarray The y-coordinates of the ellipse as a 1D array of floats. """ xc, yc = center x_upper = numpy.linspace(xc + a, xc - a, num=num) y_upper = b / a * numpy.sqrt(a**2 - x_upper**2) x_lower = numpy.linspace(xc - a, xc + a, num=num)[1:-1] y_lower = -b / a * numpy.sqrt(a**2 - x_lower**2) x = numpy.concatenate((x_upper, x_lower)) y = numpy.concatenate((y_upper, y_lower)) return x, y
bd4d4663981a0431e40b20d38cc48a7f2476c13b
3,653,230
from typing import List def get_trade_factors(name: str, mp: float, allow_zero: bool, long_open_values: List, long_close_values: List, short_open_values: List = None, short_close_values: List = None) -> dict: """获取指定 name 下的交易因子 :param allow_zero: 是否使用基础型 :param name: 因子系统的名称 :param mp: 单个标的最大允许持仓,小于0表示仓位百分比,大于0表示手数 :param long_open_values: 开多因子值 :param long_close_values: 平多因子值 :param short_open_values: 开空因子值 :param short_close_values: 平空因子值 :return: 因子交易系统 example: =================== >>> factors = get_trade_factors(name="日线笔结束", long_open_values=['BDE'], long_close_values=['BUE']) """ if not short_close_values: short_close_values = [] if not short_open_values: short_open_values = [] def __is_match(v, x): if allow_zero: if v in x.name: return 1 else: return 0 else: if v in x.name and "0" not in x.name: return 1 else: return 0 long_open_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in long_open_values]) > 0] long_close_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in long_close_values]) > 0] short_open_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in short_open_values]) > 0] short_close_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in short_close_values]) > 0] factors_ = { "name": name, "version": factors_all[name].__name__, "mp": mp, "long_open_factors": long_open_factors, "long_close_factors": long_close_factors, "short_open_factors": short_open_factors, "short_close_factors": short_close_factors, } return factors_
14a7a8c0968e85f996e9c1e8f473be142c66759b
3,653,233
def mbstrlen(src): """Return the 'src' string (Multibytes ASCII string) length. :param src: the source string """ try: return len(src.decode("utf8", errors = "replace")) except Exception, err: LOG.error("String convert issue %s", err) return len(src)
8b2f64b2791eebf898d3bf8104d93d86dcdd53a3
3,653,234
def adapted_border_postprocessing(border_prediction, cell_prediction): """ :param border_prediction: :param cell_prediction: :return: """ prediction_border_bin = np.argmax(border_prediction, axis=-1) cell_prediction = cell_prediction > 0.5 seeds = border_prediction[:, :, 1] * (1 - border_prediction[:, :, 2]) > 0.5 # Substract borders from cell seed seeds = measure.label(seeds, background=0) prediction_instance = watershed(image=cell_prediction, markers=seeds, mask=cell_prediction, watershed_line=False, ) prediction_instance = measure.label(prediction_instance, background=0) colors = get_colors() prediction_instance_rgb = label2rgb(prediction_instance, colors=colors, kind='overlay', bg_label=0) prediction_instance = np.expand_dims(prediction_instance, axis=-1) prediction_border_bin = np.expand_dims(prediction_border_bin, axis=-1) return prediction_instance.astype(np.uint16), prediction_instance_rgb.astype(np.uint8), prediction_border_bin.astype(np.uint8)
4e74c1a71fb5c5f90d54735fa3af241461b48ebb
3,653,235
def calc_bonding_volume(rc_klab, dij_bar, rd_klab=None, reduction_ratio=0.25): """ Calculate the association site bonding volume matrix Dimensions of (ncomp, ncomp, nbeads, nbeads, nsite, nsite) Parameters ---------- rc_klab : numpy.ndarray This matrix of cutoff distances for association sites for each site type in each group type dij_bar : numpy.ndarray Component averaged hard sphere diameter rd_klab : numpy.ndarray, Optional, default=None Position of association site in each group (nbead, nbead, nsite, nsite) reduction_ratio : float, Optional, default=0.25 Reduced distance of the sites from the center of the sphere of interaction. This value is used when site position, rd_klab is None Returns ------- Kijklab : numpy.ndarray Matrix of binding volumes """ ncomp = len(dij_bar) nbead, _, nsite, _ = np.shape(rc_klab) Kijklab = np.zeros((ncomp, ncomp, nbead, nbead, nsite, nsite)) for i in range(ncomp): for j in range(ncomp): for k in range(nbead): for l in range(nbead): for a in range(nsite): for b in range(nsite): if rc_klab[k, l, a, b] != 0: if rd_klab == None: rd = reduction_ratio * dij_bar[i, j] else: rd = rd_klab[k, l, a, b] tmp0 = np.pi * dij_bar[i, j] ** 2 / (18 * rd ** 2) tmp11 = np.log( (rc_klab[k, l, a, b] + 2 * rd) / dij_bar[i, j] ) tmp12 = ( 6 * rc_klab[k, l, a, b] ** 3 + 18 * rc_klab[k, l, a, b] ** 2 * rd - 24 * rd ** 3 ) tmp21 = rc_klab[k, l, a, b] + 2 * rd - dij_bar[i, j] tmp22 = ( 22 * rd ** 2 - 5 * rd * rc_klab[k, l, a, b] - 7 * rd * dij_bar[i, j] - 8 * rc_klab[k, l, a, b] ** 2 + rc_klab[k, l, a, b] * dij_bar[i, j] + dij_bar[i, j] ** 2 ) Kijklab[i, j, k, l, a, b] = tmp0 * ( tmp11 * tmp12 + tmp21 * tmp22 ) return Kijklab
cf154af6287286c19d606a2324c548f70f90121b
3,653,236
def scale_enum(anchor, scales): """Enumerate a set of anchors for each scale wrt an anchor. """ w_w, h_h, x_ctr, y_ctr = genwhctrs(anchor) w_s = w_w * scales h_s = h_h * scales anchors = makeanchors(w_s, h_s, x_ctr, y_ctr) return anchors
8de95fc6966133a74f10318f23e97babcb36d5cd
3,653,237
def L1(): """ Graph for computing 'L1'. """ graph = beamline(scatter=True) for node in ['scattered_beam', 'two_theta', 'L2', 'Ltotal']: del graph[node] return graph
1bd17365107740a41d88ac3825ef2aca412bb616
3,653,238