content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def extract_character_pairs(letter_case, reverse_letter_case): """ Extract character pairs. Check that two unicode value are also a mapping value of each other. :param letter_case: case mappings dictionary which contains the conversions. :param reverse_letter_case: Comparable case mapping table which contains the return direction of the conversion. :return: A table with character pairs. """ character_pairs = [] for letter_id in sorted(letter_case.keys()): if is_bidirectional_conversion(letter_id, letter_case, reverse_letter_case): mapped_value = letter_case[letter_id] character_pairs.extend([letter_id, ord(mapped_value)]) # Remove character pairs from case mapping tables del letter_case[letter_id] del reverse_letter_case[ord(mapped_value)] return character_pairs
29e5415afc4e4a3bff5cd74c1fa14f78cf715384
3,653,364
def after_timestep(simulation, is_steady, force_steady=False): """ Move u -> up, up -> upp and prepare for the next time step """ # Stopping criteria for steady state simulations vel_diff = None if is_steady: vel_diff = 0 for d in range(simulation.ndim): u_new = simulation.data['u%d' % d] up = simulation.data['up%d' % d] diff = abs(u_new.vector().get_local() - up.vector().get_local()).max() vel_diff = max(vel_diff, diff) shift_fields(simulation, ['u%d', 'up%d', 'upp%d']) shift_fields(simulation, ['u_conv%d', 'up_conv%d', 'upp_conv%d']) if force_steady: simulation.data['time_coeffs'].assign(dolfin.Constant([0.0, 0.0, 0.0])) else: # Change time coefficient to second order simulation.data['time_coeffs'].assign(dolfin.Constant([3 / 2, -2, 1 / 2])) # Extrapolate the convecting velocity to the next step update_convection(simulation, force_steady=force_steady) return vel_diff
7aa3436ba8bcc4ec395ba6f030b83e6fc3cb4bf3
3,653,365
def get_summary_indices(df, on='NOSC'): """ Get the summary stats for the indices: median, mean, std, weighted mean and weighted std """ samples = get_list_samples(df) samples.append(on) t = df[samples] t = t.melt(id_vars=[on], var_name='SampleID', value_name='NormIntensity') t = t[t['NormIntensity'] > 0].reset_index(drop=True) t_agg = t.groupby(['SampleID']).agg({on: ['median', 'mean', 'std']}) t_agg.columns = t_agg.columns.map('_'.join) t_agg = t_agg.reset_index() t_agg[[on + '_w_mean', on + '_w_std']] = '' for sample in t['SampleID'].unique(): # print(sample) temp = t[t['SampleID'] == sample] wdf = DescrStatsW(temp[on], weights=temp['NormIntensity']) t_agg.loc[t_agg['SampleID'] == sample, on + '_w_mean'] = wdf.mean t_agg.loc[t_agg['SampleID'] == sample, on + '_w_std'] = wdf.std return t_agg
1c430a9ad377e3d550e292b381af072d4adc78f0
3,653,366
def view_evidence(evidence_id: int): """View a single Evidence model.""" evidence = manager.get_evidence_by_id_or_404(evidence_id) return render_template( 'evidence/evidence.html', evidence=evidence, manager=manager, )
8a51a3c6279a1501c26fb2de09c4450660546bf3
3,653,367
def rigidBlades(blds, hub=None, r_O=[0,0,0]): """ return a rigid body for the three blades All bodies should be in a similar frame """ blades = blds[0].toRigidBody() for B in blds[1:]: B_rigid = B.toRigidBody() blades = blades.combine(B_rigid, r_O=r_O) blades.name='blades' return blades
89b48ba43f748fa4b2db7ee768eabe9e79e9a453
3,653,369
def mea_slow(posterior_matrix, shortest_ref_per_event, return_all=False): """Computes the maximum expected accuracy alignment along a reference with given events and probabilities. Computes a very slow but thorough search through the matrix :param posterior_matrix: matrix of posterior probabilities with reference along x axis and events along y :param shortest_ref_per_event: shortest ref position per event :param return_all: return all forward edges """ ref_len = len(posterior_matrix[0]) events_len = len(posterior_matrix) initialize = True forward_edges = list() new_edges = list() # step through all events for event_index in range(events_len): max_prob = 0 if initialize: ref_index = 0 while ref_index < ref_len: # intitialize forward edges with first event alignments # if type(posterior_matrix[ref_index][event_index]) is not int: posterior = posterior_matrix[event_index][ref_index] event_data = [ref_index, event_index, posterior, posterior, None] if 0 < posterior >= max_prob: # print("True", posterior, max_prob) new_edges.append(event_data) max_prob = posterior ref_index += 1 # print("INITIALIZE", new_edges, max_prob) if len(new_edges) != 0: forward_edges = new_edges new_edges = list() initialize = False else: # print(forward_edges) ref_index = 0 top_edge = [] while ref_index < ref_len: posterior = posterior_matrix[event_index][ref_index] if posterior >= max_prob: # no possible connecting edges and is needed for other other events create a new one if ref_index < shortest_ref_per_event[event_index]: top_edge.append([ref_index, event_index, posterior, posterior, None]) max_prob = posterior ref_index += 1 # add top edge if needed if top_edge: new_edges.append(top_edge[-1]) ref_index = 0 while ref_index < ref_len: inxs = [] probs = [] posterior = posterior_matrix[event_index][ref_index] for j, forward_edge in enumerate(forward_edges): if forward_edge[0] < ref_index: # track which probabilities with prev edge inxs.append(j) probs.append(posterior + forward_edge[3]) # if needed, keep edges aligned to ref positions previous than the current ref position elif forward_edge[0] == ref_index: # stay at reference position # add probability of event if we want to promote sideways movement inxs.append(j) probs.append(forward_edge[3]) # add new edge inxs = inxs[::-1] probs = probs[::-1] if len(probs) != 0: if max(probs) > max_prob: connecting_edge = forward_edges[inxs[int(np.argmax(probs))]] new_edges.append([ref_index, event_index, posterior, max(probs), connecting_edge]) max_prob = max(probs) else: if forward_edges[0][0] > ref_index and posterior > max_prob: new_edges.append([ref_index, event_index, posterior, posterior, None]) max_prob = posterior ref_index += 1 # print("END_NEW_EDGES", new_edges) forward_edges = new_edges new_edges = list() # grab and return the highest probability edge if return_all: return forward_edges else: highest_prob = 0 best_forward_edge = 0 for x in forward_edges: if x[3] > highest_prob: highest_prob = x[3] best_forward_edge = x return best_forward_edge
4b7165a0145d2e1ad2d0550910e03de5a775733c
3,653,370
import trace def predict(cart_tree, feature_set, data_set): """Predict the quality.""" feature_dict = {} for index, feature in enumerate(feature_set): feature_dict[feature] = index results = [] for element in data_set: # Append a tuple. results.append((trace(cart_tree, feature_dict, element), element[-1])) return results
c7f50557202c4320194ecc5264059c1701e0de73
3,653,371
def test_incorporate_getitem_through_switch(tag): """ test_incorporate_getitem_through_switch """ fns = FnDict() scalar_gt = Primitive('scalar_gt') @fns def before(x, y): def f1(x, y): return x, y def f2(x, y): return y, x return tuple_getitem( switch(scalar_gt(x, 0), f1, f2)(x, y), 0) @fns def after(x, y): def f1(x, y): return x def f2(x, y): return y return switch(scalar_gt(x, 0), f1, f2)(x, y) return fns[tag]
df128faf55c48ba698340d06b3c232ebc0140511
3,653,372
def response_json(status, message, response): """ Helper method that converts the given data in json format :param success: status of the APIs either true or false :param data: data returned by the APIs :param message: user-friendly message :return: json response """ data = { "status": status, "message": message, "response": response, } return data
9c7e30e81c5412998bc8523b0e45a353c82b5a41
3,653,373
from . import conf def settings(request): """ """ conf = dict(vars(conf)) # conf.update(ThemeSite.objects.get_theme_conf(request=request, fail=False)) data = request.session.get('cms_bs3_theme_conf', {}) conf.update(data) return {'bs3_conf': conf}
1230171ce1263083aabbd0fb79928c9236af31a9
3,653,374
def NDVI(R, NIR): """ Compute the NDVI INPUT : R (np.array) -> the Red band images as a numpy array of float NIR (np.array) -> the Near Infrared images as a numpy array of float OUTPUT : NDVI (np.array) -> the NDVI """ NDVI = (NIR - R) / (NIR + R + 1e-12) return NDVI
aa1789c80720c09aa464b3ae67da7de821e2ba97
3,653,375
from typing import Union from typing import Optional from datetime import datetime def get_nearby_stations_by_number( latitude: float, longitude: float, num_stations_nearby: int, parameter: Union[Parameter, str], time_resolution: Union[TimeResolution, str], period_type: Union[PeriodType, str], minimal_available_date: Optional[Union[datetime, str]] = None, maximal_available_date: Optional[Union[datetime, str]] = None, ) -> pd.DataFrame: """ Provides a list of weather station ids for the requested data :param latitude: Latitude of location to search for nearest weather station :param longitude: Longitude of location to search for nearest weather station :param minimal_available_date: Start date of timespan where measurements should be available :param maximal_available_date: End date of timespan where measurements should be available :param parameter: Observation measure :param time_resolution: Frequency/granularity of measurement interval :param period_type: Recent or historical files :param num_stations_nearby: Number of stations that should be nearby :return: DataFrames with valid stations in radius per requested location """ if num_stations_nearby <= 0: raise ValueError("'num_stations_nearby' has to be at least 1.") parameter = parse_enumeration_from_template(parameter, Parameter) time_resolution = parse_enumeration_from_template(time_resolution, TimeResolution) period_type = parse_enumeration_from_template(period_type, PeriodType) if not check_parameters(parameter, time_resolution, period_type): raise InvalidParameterCombination( f"The combination of {parameter.value}, {time_resolution.value}, " f"{period_type.value} is invalid." ) minimal_available_date = ( minimal_available_date if not minimal_available_date or isinstance(minimal_available_date, datetime) else parse_datetime(minimal_available_date) ) maximal_available_date = ( maximal_available_date if not minimal_available_date or isinstance(maximal_available_date, datetime) else parse_datetime(maximal_available_date) ) if minimal_available_date and maximal_available_date: if minimal_available_date > maximal_available_date: raise ValueError( "'minimal_available_date' has to be before " "'maximal_available_date'" ) coords = Coordinates(np.array(latitude), np.array(longitude)) metadata = metadata_for_climate_observations( parameter, time_resolution, period_type ) # Filter only for stations that have a file metadata = metadata[metadata[DWDMetaColumns.HAS_FILE.value].values] if minimal_available_date: metadata = metadata[ metadata[DWDMetaColumns.FROM_DATE.value] <= minimal_available_date ] if maximal_available_date: metadata = metadata[ metadata[DWDMetaColumns.TO_DATE.value] >= maximal_available_date ] metadata = metadata.reset_index(drop=True) distances, indices_nearest_neighbours = _derive_nearest_neighbours( metadata.LAT.values, metadata.LON.values, coords, num_stations_nearby ) distances = pd.Series(distances) indices_nearest_neighbours = pd.Series(indices_nearest_neighbours) # If num_stations_nearby is higher then the actual amount of stations # further indices and distances are added which have to be filtered out distances = distances[: min(metadata.shape[0], num_stations_nearby)] indices_nearest_neighbours = indices_nearest_neighbours[ : min(metadata.shape[0], num_stations_nearby) ] distances_km = np.array(distances * KM_EARTH_RADIUS) metadata_location = metadata.iloc[indices_nearest_neighbours, :].reset_index( drop=True ) metadata_location[DWDMetaColumns.DISTANCE_TO_LOCATION.value] = distances_km if metadata_location.empty: logger.warning( f"No weather stations were found for coordinate " f"{latitude}°N and {longitude}°E " ) return metadata_location
e53896ea4644bcce6351671ec950fe8165a2cb12
3,653,376
import scipy def get_state(tau, i=None, h=None, delta=None, state_0=None, a_matrix=None): """ Compute the magnetization state. r(τ) = e^(Aτ)r(0) eq (11) at[1] """ if a_matrix is not None: # get state from a known A matrix # A matrix can be shared and it takes time to build return np.matmul(scipy.linalg.expm(tau*a_matrix), state_0) return np.matmul(scipy.linalg.expm( tau*generate_A(i, h, delta, state_0.size-1)), state_0)
a4ae277d41b64c9caf49758d62767030db0b244b
3,653,377
import aacgmv2._aacgmv2 as c_aacgmv2 import logging def convert_latlon_arr(in_lat, in_lon, height, dtime, code="G2A"): """Converts between geomagnetic coordinates and AACGM coordinates. Parameters ------------ in_lat : (np.ndarray or list or float) Input latitude in degrees N (code specifies type of latitude) in_lon : (np.ndarray or list or float) Input longitude in degrees E (code specifies type of longitude) height : (np.ndarray or list or float) Altitude above the surface of the earth in km dtime : (datetime) Single datetime object for magnetic field code : (int or str) Bit code or string denoting which type(s) of conversion to perform G2A - geographic (geodetic) to AACGM-v2 A2G - AACGM-v2 to geographic (geodetic) TRACE - use field-line tracing, not coefficients ALLOWTRACE - use trace only above 2000 km BADIDEA - use coefficients above 2000 km GEOCENTRIC - assume inputs are geocentric w/ RE=6371.2 (default = "G2A") Returns ------- out_lat : (np.ndarray) Output latitudes in degrees N out_lon : (np.ndarray) Output longitudes in degrees E out_r : (np.ndarray) Geocentric radial distance (R_Earth) or altitude above the surface of the Earth (km) Notes ------- At least one of in_lat, in_lon, and height must be a list or array. """ # If a list was entered instead of a numpy array, recast it here if isinstance(in_lat, list): in_lat = np.array(in_lat) if isinstance(in_lon, list): in_lon = np.array(in_lon) if isinstance(height, list): height = np.array(height) # If one or two of these elements is a float or int, create an array test_array = np.array([hasattr(in_lat, "shape"), hasattr(in_lon, "shape"), hasattr(height, "shape")]) if not test_array.all(): if test_array.any(): arr_shape = in_lat.shape if test_array.argmax() == 0 else \ (in_lon.shape if test_array.argmax() == 1 else height.shape) if not test_array[0]: in_lat = np.ones(shape=arr_shape, dtype=float) * in_lat if not test_array[1]: in_lon = np.ones(shape=arr_shape, dtype=float) * in_lon if not test_array[2]: height = np.ones(shape=arr_shape, dtype=float) * height else: logging.info("for a single location, consider using convert_latlon") in_lat = np.array([in_lat]) in_lon = np.array([in_lon]) height = np.array([height]) # Ensure that lat, lon, and height are the same length or if the lengths # differ that the different ones contain only a single value if not (in_lat.shape == in_lon.shape and in_lat.shape == height.shape): ulen = np.unique([in_lat.shape, in_lon.shape, height.shape]) if ulen.min() != (1,): logging.error("mismatched input arrays") return None, None, None # Test time if isinstance(dtime, dt.date): dtime = dt.datetime.combine(dtime, dt.time(0)) assert isinstance(dtime, dt.datetime), \ logging.error('time must be specified as datetime object') # Test height if np.min(height) < 0: logging.warn('conversion not intended for altitudes < 0 km') # Initialise output lat_out = np.empty(shape=in_lat.shape, dtype=float) * np.nan lon_out = np.empty(shape=in_lon.shape, dtype=float) * np.nan r_out = np.empty(shape=height.shape, dtype=float) * np.nan # Test code try: code = code.upper() if(np.nanmax(height) > 2000 and code.find("TRACE") < 0 and code.find("ALLOWTRACE") < 0 and code.find("BADIDEA") < 0): estr = 'coefficients are not valid for altitudes above 2000 km. You' estr += ' must either use field-line tracing (trace=True ' estr += 'or allowtrace=True) or indicate you know this ' estr += 'is a bad idea' logging.error(estr) return lat_out, lon_out, r_out # make flag bit_code = convert_str_to_bit(code) except AttributeError: bit_code = code assert isinstance(bit_code, int), \ logging.error("unknown code {:}".format(bit_code)) # Test latitude range if np.abs(in_lat).max() > 90.0: assert np.abs(in_lat).max() <= 90.1, \ logging.error('unrealistic latitude') in_lat = np.clip(in_lat, -90.0, 90.0) # Constrain longitudes between -180 and 180 in_lon = ((in_lon + 180.0) % 360.0) - 180.0 # Set current date and time try: c_aacgmv2.set_datetime(dtime.year, dtime.month, dtime.day, dtime.hour, dtime.minute, dtime.second) except: raise RuntimeError("unable to set time for {:}".format(dtime)) # Vectorise the AACGM code convert_vectorised = np.vectorize(c_aacgmv2.convert) # convert try: lat_out, lon_out, r_out = convert_vectorised(in_lat, in_lon, height, bit_code) except: pass return lat_out, lon_out, r_out
d9efc4d58925ef9cd63e7c800258b99c91e14f7a
3,653,379
import re def getPredictedAnchor(title: str) -> str: """Return predicted anchor for given title, usually first letter.""" title = title.lower() if title.startswith('npj '): return 'npj series' title = re.sub(r'^(the|a|an|der|die|das|den|dem|le|la|les|el|il)\s+', '', title) return title[0].upper()
972eaa495078bc3929967a052f031c50d439fbdc
3,653,381
from typing import Optional from typing import Mapping def get_contact_flow(contact_flow_id: Optional[str] = None, instance_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, type: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetContactFlowResult: """ Provides details about a specific Amazon Connect Contact Flow. ## Example Usage By name ```python import pulumi import pulumi_aws as aws test = aws.connect.get_contact_flow(instance_id="aaaaaaaa-bbbb-cccc-dddd-111111111111", name="Test") ``` By contact_flow_id ```python import pulumi import pulumi_aws as aws test = aws.connect.get_contact_flow(contact_flow_id="cccccccc-bbbb-cccc-dddd-111111111111", instance_id="aaaaaaaa-bbbb-cccc-dddd-111111111111") ``` :param str contact_flow_id: Returns information on a specific Contact Flow by contact flow id :param str instance_id: Reference to the hosting Amazon Connect Instance :param str name: Returns information on a specific Contact Flow by name :param Mapping[str, str] tags: A the map of tags to assign to the Contact Flow. :param str type: Specifies the type of Contact Flow. """ __args__ = dict() __args__['contactFlowId'] = contact_flow_id __args__['instanceId'] = instance_id __args__['name'] = name __args__['tags'] = tags __args__['type'] = type if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:connect/getContactFlow:getContactFlow', __args__, opts=opts, typ=GetContactFlowResult).value return AwaitableGetContactFlowResult( arn=__ret__.arn, contact_flow_id=__ret__.contact_flow_id, content=__ret__.content, description=__ret__.description, id=__ret__.id, instance_id=__ret__.instance_id, name=__ret__.name, tags=__ret__.tags, type=__ret__.type)
ed57d1b17c19f66c38e67613e49653b11c13f699
3,653,382
def jensen_alpha_beta(risk_returns ,benchmark_returns,Rebalancement_frequency): """ Compute the Beta and alpha of the investment under the CAPM Parameters ---------- risk_returns : np.ndarray benchmark_returns : np.ndarray Rebalancement_frequency : np.float64 Returns ---------- np.float64,Beta,np.float64,Alpha """ benchmark_returns = sm.add_constant(benchmark_returns) model = sm.OLS(risk_returns,benchmark_returns).fit() alpha,beta = model.params[0] * Rebalancement_frequency , model.params[1] return beta,alpha
ac9d1cf638e2ce67219ed16dbbffc652ff47c541
3,653,383
def cycles_run() -> int: """Number of cycles run so far""" return lib.m68k_cycles_run()
145dc9a154a0ec4c2e46fecdeb7106134307cf10
3,653,384
def loop_and_return_fabric(lines): """ loops lines like: #1196 @ 349,741: 17x17 """ fabric = {} for line in lines: [x, y, x_length, y_length] = parse_line(line) i_x, i_y = 0, 0 while i_y < y_length: i_x = 0 while i_x < x_length: this_coords = (x + i_x, y - i_y) if fabric.get(this_coords, None) != None: fabric[this_coords] += 1 else: fabric[this_coords] = 1 i_x += 1 i_y += 1 return fabric
d5fd18c5b90c0e6576767a77c954b3546cbaef1a
3,653,385
def get_sample(id): """Returns sample possessing id.""" for sample in samples_global: if sample.id == id: return sample raise Exception(f'sample "{id}" could not be found')
524305fe77ef5cc03ba51af3eb61301b697b9c1f
3,653,386
def transcriptIterator(transcriptsBedStream, transcriptDetailsBedStream): """ Iterates over the transcripts detailed in the two streams, producing Transcript objects. Streams are any iterator that returns bedlines or empty strings. """ transcriptsAnnotations = {} for tokens in tokenizeBedStream(transcriptDetailsBedStream): assert (len(tokens) == 4 or len(tokens) == 9) # 9 if it has color data. tA = TranscriptAnnotation( ChromosomeInterval(tokens[0], tokens[1], tokens[2], None), tokens[3].split('/')[-1], tokens[3].split('/')[:-1]) # normalizeAnnotation(tA) # removed this to improve xml key = (tA.name, tA.chromosomeInterval.chromosome) if key not in transcriptsAnnotations: transcriptsAnnotations[key] = [] transcriptsAnnotations[key].append(tA) for tokens in tokenizeBedStream(transcriptsBedStream): assert len(tokens) == 12 # Transcript name = tokens[3] # Get the chromosome interval assert tokens[5] in ['+', '-'] cI = ChromosomeInterval(tokens[0], tokens[1], tokens[2], tokens[5] == '+') # Get the exons def getExons(exonNumber, blockSizes, blockStarts): assert exonNumber == len(blockSizes) assert exonNumber == len(blockStarts) return [ChromosomeInterval( cI.chromosome, cI.start + int(blockStarts[i]), cI.start + int(blockStarts[i]) + int(blockSizes[i]), cI.strand) for i in range(exonNumber)] exons = getExons(int(tokens[9]), tokens[10].split(','), tokens[11].split(',')) # Get the name annotations annotations = [] key = (name, cI.chromosome) if key in transcriptsAnnotations: annotations = transcriptsAnnotations[key] filteredAnnotations = [] for tA in annotations: if cI.contains(tA.chromosomeInterval): tA.chromosomeInterval.strand = cI.strand filteredAnnotations.append(tA) yield Transcript( cI, name, exons, filteredAnnotations, int(tokens[4]), int(tokens[6]), int(tokens[7]), tokens[8])
2be2bbca915667be89220d92c42b8a8dce905cc4
3,653,387
import re def convert_check_filter(tok): """Convert an input string into a filter function. The filter function accepts a qualified python identifier string and returns a bool. The input can be a regexp or a simple string. A simple string must match a component of the qualified name exactly. A regexp is matched against the entire qualified name. Matches are case-insensitive. Examples:: convert_check_filter('foo')('a.foo.b') == True convert_check_filter('foo')('a.foobar') == False convert_check_filter('foo.*')('a.foobar') == False convert_check_filter('foo.*')('foobar') == True """ tok = tok.lower() if '+' in tok or '*' in tok: return re.compile(tok, re.I).match else: toklist = tok.split('.') def func(name): chunks = name.lower().split('.') if len(toklist) > len(chunks): return False for i in range(len(chunks)): if chunks[i:i + len(toklist)] == toklist: return True return False return func
9d1aaa9a5007371e4f33ce3b4fbc86edd15875c6
3,653,388
def region_stats(x, r_start, r_end): """ Generate basic stats on each region. Return a dict for easy insertion into a DataFrame. """ stats = Munch() stats["start"] = r_start stats["end"] = r_end stats["l"] = r_end - r_start stats["min"] = np.min(x[r_start:r_end]) stats["max"] = np.max(x[r_start:r_end]) stats["rng"] = stats["max"] - stats["min"] stats["mean"] = np.mean(x[r_start:r_end]) stats["std"] = np.std(x[r_start:r_end]) stats["var"] = np.var(x[r_start:r_end]) stats["med"] = np.median(x[r_start:r_end]) stats["mad"] = scistat.median_abs_deviation(x[r_start:r_end]) return stats
cb52f6320952be13f9715cb2259b32996bdbb0da
3,653,389
def _sql_type(ptype): """Convert python type to SQL type""" if "Union" in ptype.__class__.__name__: assert len(ptype.__args__) == 2, "Cannot create sql column with more than one type." assert type(None) in ptype.__args__, "Cannot create sql column with more than one type." return f"{ptype.__args__[0].__name__} NULL" elif ptype in SQLTypes.__dict__.values() and hasattr(ptype, "__name__"): return f"{ptype.__name__} NOT NULL" else: raise ValueError(f"Cannot parse type {ptype}.")
331734ce050ca261d2d78876ebd78540a088597b
3,653,392
def rescale_data(data: np.ndarray, option: str, args: t.Optional[t.Dict[str, t.Any]] = None) -> np.ndarray: """Rescale numeric fitted data accordingly to user select option. Args: data (:obj:`np.ndarray`): data to rescale. option (:obj:`str`): rescaling strategy. Must be one in ``VALID_RESCA- LE`` attribute. args (:obj:`dict`, optional): additional arguments for the scaler. All scaler used are from ``sklearn`` package, so you should consult their documentation for a complete list of available arguments to user customization. The used scalers for each available ``option`` are: - ``min-max``: ``sklearn.preprocessing.MinMaxScaler`` - ``standard``: ``sklearn.preprocessing.StandardScale`` - ``robust``: ``sklearn.preprocessing.RobustScaler`` Returns: np.ndarray: scaled ``data`` based in ``option`` correspondent strategy. Raises: ValueError: if ``option`` is not in ``VALID_RESCALE``. Any exception caused by arguments from ``args`` into the scaler model is also raised by this function. """ if option not in VALID_RESCALE: raise ValueError("Unknown data rescaling option '{0}'. Please choose " "one value among {1}".format(option, VALID_RESCALE)) if not args: args = {} scaler_model = _RESCALE_SCALERS.get(option, "min-max")(**args) return scaler_model.fit_transform(data.astype(float))
5f885233c262fb2d766417e64f783f807212355e
3,653,393
def extract_labels(text, spacy_model): """Extract entities using libratom. Returns: core.Label list """ try: document = spacy_model(text) except ValueError: logger.exception(f"spaCy error") raise labels = set() for entity in document.ents: label, _ = Label.objects.get_or_create(type=Label.IMPORTER, name=entity.label_) labels.add(label) return list(labels)
782fdcb4bdd817b55a38c5efe03db676f0e00eed
3,653,394
from typing import Callable import click def variant_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for a DC/OS variant. """ function = click.option( '--variant', type=click.Choice(['auto', 'oss', 'enterprise']), default='auto', help=( 'Choose the DC/OS variant. ' 'If the variant does not match the variant of the given ' 'installer, an error will occur. ' 'Using "auto" finds the variant from the installer. ' 'Finding the variant from the installer takes some time and so ' 'using another option is a performance optimization.' ), )(command) # type: Callable[..., None] return function
4c89dc15b46c9d147445ef458b721c7ce835cbe7
3,653,395
def GetSegByName(name): """ @return Address of the first byte in the Segment with the provided name, or BADADDR """ for Segment in ida.Segments(): if ida.SegName(Segment) == name: return Segment return ida.BADADDR
4b0353da187735095805b5a80bb0e23a2ce6491b
3,653,396
def sample_points_from_plateaus(all_plateaus, mode, stack_size=10, n_samples=1): """ Samples points from each plateau in each video :param all_plateaus: dictionary containing all plateaus, keys are plateaus's ids, values are the plateau objects :param mode: either `flow` or `rgb` :param stack_size: optical flow stack size :param n_samples: number of samples you want to draw from each plateau :return: sampled_points, dictionary whose keys are video ids and whose values are dictionary containing the sampled points as values as the plateaus ids as keys """ sampled_points = {} h_stack_c = np.ceil(stack_size / 2) for g_id, g in all_plateaus.items(): if mode == 'flow': x_range = np.arange(h_stack_c+1, g.n - h_stack_c, dtype=np.int32) else: x_range = None # will take the whole x later for sampling if g.video not in sampled_points: sampled_points[g.video] = {} sampled_points[g.video][g_id] = g.sample_points(n_samples, x_range=x_range) return sampled_points
1dd12721acc9b126d244902016e939792b220d1e
3,653,397
def mobile_user_meeting_list(request): """ 返回用户会议列表 :param request: :return: """ dbs = request.dbsession user_id = request.POST.get('user_id', '') start_date = request.POST.get('start_date', '') end_date = request.POST.get('end_date', '') error_msg = '' if not user_id: error_msg = '用户ID不能为空!' elif not start_date: error_msg = '开始时间不能为空!' elif not end_date: error_msg = '结束时间不能为空!' else: meetings = mob_find_user_meetings(dbs, user_id, start_date, end_date) if error_msg: json_str = { 'status': False, 'meeting': '', 'error_msg': error_msg } else: json_str = { 'status': True, 'meeting': meetings, 'error_msg':error_msg } resp = Response() resp.headers['Access-Control-Allow-Origin'] = '*' resp.json = json_str return resp
55e9a61a755ef957f4b6bf504b3efe721b13cfd7
3,653,398
import ctypes def get_current_thread_cpu_time(): """ <Purpose> Gets the total CPU time for the currently executing thread. <Exceptions> An AssertionError will be raised if the underlying system call fails. <Returns> A floating amount of time in seconds. """ # Get the current thread handle current_thread = _mach_thread_self() # Allocate a structure thread_info = thread_basic_info() # Structure size struct_size = ctypes.c_uint(THREAD_BASIC_INFO_SIZE) # Make the system call result = _thread_info(current_thread, THREAD_BASIC_INFO,ctypes.byref(thread_info), ctypes.byref(struct_size)) # Sum up the CPU usage cpu_time = thread_info.user_time.seconds + thread_info.user_time.microseconds / 1000000.0 cpu_time += thread_info.system_time.seconds + thread_info.system_time.microseconds / 1000000.0 # Safety check, result should be 0 # Do the safety check after we free the memory to avoid leaks assert(result == 0) # Return the structure return cpu_time
6d83314e8ceee0336b6c0ed7f71fa49e89b24ca8
3,653,399
def get_data_upload_id(jwt: str) -> str: """Function to get a temporary upload ID from DAFNI data upload API Args: jwt (str): Users JWT Returns: str: Temporary Upload ID """ url = f"{DATA_UPLOAD_API_URL}/nid/upload/" data = {"cancelToken": {"promise": {}}} return dafni_post_request(url, jwt, data, allow_redirect=True)
dcce05a8efda1c90e6a78a19757f57deffd0c247
3,653,400
def StationMagnitudeContribution_TypeInfo(): """StationMagnitudeContribution_TypeInfo() -> RTTI""" return _DataModel.StationMagnitudeContribution_TypeInfo()
d9af45a3bbe993de37c351b5791ba8b87aeeedc9
3,653,401
def _get_operations(rescale=0.003921, normalize_weight=0.48): """Get operations.""" operation_0 = { 'tensor_op_module': 'minddata.transforms.c_transforms', 'tensor_op_name': 'RandomCrop', 'weight': [32, 32, 4, 4, 4, 4], 'padding_mode': "constant", 'pad_if_needed': False, 'fill_value': 0 } operation_1 = { 'tensor_op_module': 'minddata.transforms.c_transforms', 'tensor_op_name': 'Rescale', 'rescale': rescale, 'shift': 0, 'num_classes': 10 } operation_2 = { 'tensor_op_module': 'minddata.transforms.c_transforms', 'tensor_op_name': 'Normalize', 'weights': [normalize_weight] } return [operation_0, operation_1, operation_2]
a3bab4147f1a2020fb87853fc30bede277f0f4bd
3,653,402
def itm_command( ticker: str = None, ): """Options ITM""" # Check for argument if ticker is None: raise Exception("Stock ticker is required") dates = yfinance_model.option_expirations(ticker) if not dates: raise Exception("Stock ticker is invalid") current_price = yfinance_model.get_price(ticker) df_date, df_cotm, df_citm, df_potm, df_pitm = [], [], [], [], [] for date in dates: df_date.append(date) options = yfinance_model.get_option_chain(ticker, date) call_oi = options.calls.set_index("strike")["openInterest"].fillna(0) put_oi = options.puts.set_index("strike")["openInterest"].fillna(0) df_cotm.append(int(call_oi[call_oi.index >= current_price].sum())) df_citm.append(int(call_oi[call_oi.index <= current_price].sum())) df_pitm.append(int(put_oi[put_oi.index >= current_price].sum())) df_potm.append(int(put_oi[put_oi.index <= current_price].sum())) # Calculate the total per column df_date.append("<b>Total</b>") total = [df_citm, df_cotm, df_pitm, df_potm] for x in total: x.append(sum(x)) # Create the DataFrame df = pd.DataFrame( { "Expiry": df_date, "Calls ITM": df_citm, "Calls OTM": df_cotm, "Puts ITM": df_pitm, "Puts OTM": df_potm, } ) formats = { "Calls ITM": "{:,}", "Calls OTM": "{:,}", "Puts ITM": "{:,}", "Puts OTM": "{:,}", } for col, value in formats.items(): df[col] = df[col].map(lambda x: value.format(x)) # pylint: disable=W0640 df.set_index("Expiry", inplace=True) fig = imps.plot_df( df, fig_size=(600, (35 * len(df.index))), col_width=[3, 2.5], tbl_header=imps.PLT_TBL_HEADER, tbl_cells=imps.PLT_TBL_CELLS, font=imps.PLT_TBL_FONT, row_fill_color=imps.PLT_TBL_ROW_COLORS, paper_bgcolor="rgba(0, 0, 0, 0)", ) fig.update_traces( cells=dict( align=["center", "right"], font=dict( color=["white"] + [imps.PLT_TBL_INCREASING] * 2 + [imps.PLT_TBL_DECREASING] * 2 ), ), ) imagefile = imps.save_image("opt-itm.png", fig) return { "title": f"{ticker.upper()} Options: In The Money", "imagefile": imagefile, }
b2230ee5f8c520523f7ce844372a4f26d14fe53d
3,653,403
def create_nx_suite(seed=0, rng=None): """ returns a dict of graphs generated by networkx for testing, designed to be used in a pytest fixture """ if rng is None: rng = np.random.RandomState(seed) out_graphs = {} for N in [1, 2, 4, 8, 16, 32, 64, 128]: for dtype in [np.bool, np.int32, np.float32, np.complex64]: basename = f"{N}_{str(dtype)[8:-2]}" name = f"ladder_{basename}" out_graphs[name] = [gen_ladder(N, dtype)] SAMPLE_N = 5 # smp = [(4,.1),(4,.5),(4,.7),(7,.1),(7,.5),(16,.1),(16,.5),(32,.1),(100,.1)] # for N, prob_edge in smp: for N in [4,7,16,32,100]: for prob_edge in [.1,.5,.7]: dtype = np.bool name = f"random_lobster_{prob_edge:.1f}_{str(dtype)[8:-2]}_{N}" out_graphs[name] = [] for i in range(SAMPLE_N): ng = nx.generators.random_graphs.random_lobster(N,prob_edge,\ prob_edge,rng) if ng.number_of_nodes() == 0: continue t = from_nx(ng,adj_type=dtype) out_graphs[name].append(t) dtype = np.int32 name = f"random_lobster_{prob_edge:.1f}_{str(dtype)[8:-2]}_{N}" out_graphs[name] = [] for i in range(SAMPLE_N): edge_weights = rng.randint(1, rng.randint(2, max(N//2, 3)), size=rng.randint(1, N//2)) ng = nx.generators.random_graphs.random_lobster(N,prob_edge,\ prob_edge,rng) if ng.number_of_nodes() == 0: continue t = from_nx(ng,adj_type=dtype) for e1, e2 in t.edges(): t[e1, e2] = rng.choice(edge_weights) out_graphs[name].append(t) dtype = np.float64 name = f"random_lobster_{prob_edge:.1f}_{str(dtype)[8:-2]}_{N}" out_graphs[name] = [] for i in range(SAMPLE_N): edge_weights = rng.rand(rng.randint(1, N//2)) + 0.5 ng = nx.generators.random_graphs.random_lobster(N,prob_edge,\ prob_edge,rng) if ng.number_of_nodes() == 0: continue t = from_nx(ng,adj_type=dtype) for e1, e2 in t.edges(): t[e1, e2] = rng.choice(edge_weights) out_graphs[name].append(t) return out_graphs
eb64688850d48b755dc526ed3d64876d04ba3914
3,653,404
def _nearest_neighbor_features_per_object_in_chunks( reference_embeddings_flat, query_embeddings_flat, reference_labels_flat, ref_obj_ids, k_nearest_neighbors, n_chunks): """Calculates the nearest neighbor features per object in chunks to save mem. Uses chunking to bound the memory use. Args: reference_embeddings_flat: Tensor of shape [n, embedding_dim], the embedding vectors for the reference frame. query_embeddings_flat: Tensor of shape [m, embedding_dim], the embedding vectors for the query frames. reference_labels_flat: Tensor of shape [n], the class labels of the reference frame. ref_obj_ids: int tensor of unique object ids in the reference labels. k_nearest_neighbors: Integer, the number of nearest neighbors to use. n_chunks: Integer, the number of chunks to use to save memory (set to 1 for no chunking). Returns: nn_features: A float32 tensor of nearest neighbor features of shape [m, n_objects, feature_dim]. """ chunk_size = tf.cast(tf.ceil(tf.cast(tf.shape(query_embeddings_flat)[0], tf.float32) / n_chunks), tf.int32) wrong_label_mask = tf.not_equal(reference_labels_flat, ref_obj_ids[:, tf.newaxis]) all_features = [] for n in range(n_chunks): if n_chunks == 1: query_embeddings_flat_chunk = query_embeddings_flat else: chunk_start = n * chunk_size chunk_end = (n + 1) * chunk_size query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end] # Use control dependencies to make sure that the chunks are not processed # in parallel which would prevent any peak memory savings. with tf.control_dependencies(all_features): features = _nn_features_per_object_for_chunk( reference_embeddings_flat, query_embeddings_flat_chunk, wrong_label_mask, k_nearest_neighbors ) all_features.append(features) if n_chunks == 1: nn_features = all_features[0] else: nn_features = tf.concat(all_features, axis=0) return nn_features
e9b7af295ddfab56f70748e42fb7b06f6192a3ac
3,653,405
import heapq def heap_pop(heap): """ Wrapper around heapq's heappop method to support updating priorities of items in the queue. Main difference here is that we toss out any queue entries that have been updated since insertion. """ while len(heap) > 0: pri_board_tup = heapq.heappop(heap) board = pri_board_tup[1] if not board == None: del ENTRY_FINDER[board] return pri_board_tup raise KeyError('Pop from empty queue :(')
c640fd178a399332fc10ccbb55085cb08d118865
3,653,406
def _variant_po_to_dict(tokens) -> CentralDogma: """Convert a PyParsing data dictionary to a central dogma abundance (i.e., Protein, RNA, miRNA, Gene). :type tokens: ParseResult """ dsl = FUNC_TO_DSL.get(tokens[FUNCTION]) if dsl is None: raise ValueError('invalid tokens: {}'.format(tokens)) concept = tokens[CONCEPT] return dsl( namespace=concept[NAMESPACE], name=concept[NAME], identifier=concept.get(IDENTIFIER), xrefs=tokens.get(XREFS), variants=[ _variant_to_dsl_helper(variant_tokens) for variant_tokens in tokens[VARIANTS] ], )
28e989087a91accf793eaaada2e65a71ee145c32
3,653,407
def project(name, param): """a tilemill project description, including a basic countries-of-the-world layer.""" return { "bounds": [-180, -85.05112877980659, 180, 85.05112877980659], "center": [0, 0, 2], "format": "png", "interactivity": False, "minzoom": 0, "maxzoom": 22, "srs": "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 " "+y_0=0.0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs +over", "Stylesheet": ["style.mss"], "Layer": [ { "id": "countries", "name": "countries", "srs": "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 " "+y_0=0.0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs +over", "geometry": "polygon", "Datasource": { "file": "http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/" "cultural/10m-admin-0-countries.zip", "type": "shape" } }, ], "scale": 1, "metatile": 2, "name": name, "description": param['properties']['name'], }
9609c523cccc99168bbc0e7dbf10fe8624d399c2
3,653,408
def get_deepest(): """Return tokens with largest liquidities. Returns: str: HTML-formatted message. """ url = config.URLS['deepest'] api_params = {'limit': 5, 'orderBy': 'usdLiquidity', 'direction': 'desc', 'key': POOLS_KEY } response = api_call(url, params=api_params) formatted_response = ft.format_deepest(response['results']) return formatted_response
c944f20f65dd68716b4f436b02ec5e373c04848f
3,653,409
def _grompp_str(op_name, gro_name, checkpoint_file=None): """Helper function, returns grompp command string for operation.""" mdp_file = signac.get_project().fn('mdp_files/{op}.mdp'.format(op=op_name)) cmd = '{gmx} grompp -f {mdp_file} -c {gro_file} {checkpoint} -o {op}.tpr -p'.format( gmx=gmx_exec, mdp_file=mdp_file, op=op_name, gro_file=gro_name, checkpoint='' if checkpoint_file is None else ('-t ' + checkpoint_file)) return workspace_command(cmd)
9201bd49fd09ce9faa268d8ea4d33482cea5d7ad
3,653,410
def get_role_with_name(role_name: str) -> Role: """Get role with given name.""" role = Role.query.filter(Role.name == role_name).one() return role
e20858ef1bcbb54d2c1d09ba9d3a54bf15dfa658
3,653,412
def namespace_store_factory( request, cld_mgr, mcg_obj_session, cloud_uls_factory_session, pvc_factory_session ): """ Create a NamespaceStore factory. Calling this fixture lets the user create namespace stores. Args: request (object): Pytest built-in fixture cld_mgr (CloudManager): Cloud Manager object containing all connections to clouds mcg_obj (MCG): MCG object containing data and utils related to MCG cloud_uls_factory: Factory for creation of underlying storage Returns: func: Factory method - allows the user to create namespace stores """ created_nss = [] cmdMap = { "cli": cli_create_namespacestore, "oc": oc_create_namespacestore, } def _create_nss(method, nss_dict): """ Tracks creation and cleanup of all the namespace stores that were created in the current scope Args: method (str): String for selecting method of namespace store creation (CLI/OC) nss_dict (dict): Dictionary containing storage provider as key and a list of tuples as value. Namespace store dictionary examples - 'CloudName': [(amount, region), (amount, region)] i.e. - 'aws': [(3, us-west-1),(2, eu-west-2)] Returns: list: A list of the NamespaceStore objects created by the factory in the current scope """ current_call_created_nss = [] for platform, nss_lst in nss_dict.items(): for nss_tup in nss_lst: if platform.lower() == "nsfs": uls_name = nss_tup[0] or create_unique_resource_name( constants.PVC.lower(), platform ) pvc_factory_session( custom_data=template_pvc(uls_name, size=nss_tup[1]) ) else: # Create the actual target bucket on the request service uls_dict = cloud_uls_factory_session({platform: [(1, nss_tup[1])]}) uls_name = list(uls_dict[platform])[0] nss_name = create_unique_resource_name(constants.MCG_NSS, platform) # Create the actual namespace resource cmdMap[method.lower()]( nss_name, platform, mcg_obj_session, uls_name, cld_mgr, nss_tup ) nss_obj = NamespaceStore( name=nss_name, method=method.lower(), mcg_obj=mcg_obj_session, uls_name=uls_name, ) created_nss.append(nss_obj) current_call_created_nss.append(nss_obj) nss_obj.verify_health() return current_call_created_nss def nss_cleanup(): for nss in created_nss: nss.delete() request.addfinalizer(nss_cleanup) return _create_nss
cc2d090d8dc0f12d89331ada54e4054e117e544d
3,653,413
def get_user(request, username): """ Gets a user's information. return: { status: HTTP status, name: string, gender: string, marital_status: string, first_name: string } """ data = get_user_info(username) if data: return Response({'data': data}, status=200) else: return Response(status=404)
9820b441718629780ff72ab00776fc2d4c95a63f
3,653,414
def find_changes(d_before, d_after): """ Returns a dictionary of changes in the format: { <system id>: { <changed key>: <Change type>, ... }, ... } The changes should describe the differences between d_before and d_after. """ changes = dict() for k in d_after: if k not in d_before: changes[k] = Change.Addition elif type(d_before[k]) is dict and type(d_after[k]) is dict: nested = find_changes(d_before[k], d_after[k]) if len(nested) > 0: changes[k] = nested elif d_before[k] != d_after[k]: changes[k] = Change.Edit # Apply removals for k in d_before: if k not in d_after: changes[k] = Change.Removal return changes
02e5eea5ac1264c593d542a8f745a8d3571d5fac
3,653,415
def check_vector_inbetween(v1, v2, point): """ Checks if point lies inbetween two vectors v1, v2. Returns boolean. """ if (np.dot(np.cross(v1, point), np.cross(v1, v2))) >= 0 and (np.dot(np.cross(v2, point), np.cross(v2, v1))) >= 0: return True else: return False
6eeaa4a9e37ea345c3399c103dadbc45c306887c
3,653,416
def accuracy(y_preds, y_test): """ Function to calculate the accuracy of algorithm :param y_preds: predictions for test data :param y_test: actual labels for test data :return: accuracy in percentage """ return np.sum(np.where(y_preds == y_test, 1, 0)) * 100 / len(y_test)
f41522663ae9a35e976f4d848f14e42ef0993fd9
3,653,417
def get_all(factory='official', **kwargs): """Construct and return an list of Class `Event`. hookを呼び出す. Args: factory: `Event` の取得用マネージャ 今のところ,京大公式HP用のみ. EventFactoryMixin classを継承したクラスか 'official' に対応 date (:obj:`datetime`, optional): 欲しいイベントのdatetime. `month` , `year` とどちらかを選択.両方指定した場合,こちらが優先される. year (int, optional): イベントを取得する年. 両方指定した場合, `date` が優先される. month (int, optional): イベントを取得する月. 両方指定した場合, `date` が優先される. Returns: generator of Events """ return kueventparser(factory=factory, method='get_all', **kwargs)
bc1fabe37fc8065ff5394259607caf32c6345b41
3,653,418
def nudupl(f): """Square(f) following Cohen, Alg. 5.4.8. """ L = int(((abs(f.discriminant))/4)**(1/4)) a, b, c = f[0], f[1], f[2] # Step 1 Euclidean step d1, u, v = extended_euclid_xgcd(b, a) A = a//d1 B = b//d1 C = (-c*u) % A C1 = A-C if C1 < C: C = -C1 # Step 2 Partial reduction d, v, v2, v3, z = parteucl(A, C, L) # Step 3 Special case if z==0: g = (B*v3+c)//d a2 = d**2 c2 = v3**2 b2 = b + (d+v3)**2 - a2 - c2 c2 = c2 + g*d1 else: # Step 4 Final computations e = (c*v + B*d)//A g = (e*v2 - B)//v b2 = e*v2 + v*g if d1>1: b2 = d1*b2 v = d1*v v2 = d1*v2 a2 = d**2 c2 = v3**2 b2 = b2 + (d+v3)**2 - a2 - c2 a2 = a2 + e*v c2 = c2 + g*v2 f2 = type(f)((a2, b2, c2)) return f2
7f5a16c0fc2611a5f9dc0ebde00e3587c188f944
3,653,420
def remove_schema(name): """Removes a configuration schema from the database""" schema = controller.ConfigurationSchema() schema.remove(name) return 0
e45b415ea6eb57402790b04bbf1fa63749242a77
3,653,421
def get_unassigned_independent_hyperparameters(outputs): """Going backward from the outputs provided, gets all the independent hyperparameters that are not set yet. Setting an hyperparameter may lead to the creation of additional hyperparameters, which will be most likely not set. Such behavior happens when dealing with, for example, hyperparameters associated with substitutition modules such as :func:`deep_architect.modules.siso_optional`, :func:`deep_architect.modules.siso_or`, and :func:`deep_architect.modules.siso_repeat`. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs to start the traversal at. Returns: OrderedSet[deep_architect.core.Hyperparameter]: Ordered set of hyperparameters that are currently present in the graph and not have been assigned a value yet. """ assert not is_specified(outputs) unassigned_indep_hs = OrderedSet() for h in get_all_hyperparameters(outputs): if not isinstance( h, DependentHyperparameter) and not h.has_value_assigned(): unassigned_indep_hs.add(h) return unassigned_indep_hs
6f28f3fcbaf4a875c3a42cdb4fc9ad715c99a093
3,653,422
def get_theta_benchmark_matrix(theta_type, theta_value, benchmarks, morpher=None): """Calculates vector A such that dsigma(theta) = A * dsigma_benchmarks""" if theta_type == "benchmark": n_benchmarks = len(benchmarks) index = list(benchmarks).index(theta_value) theta_matrix = np.zeros(n_benchmarks) theta_matrix[index] = 1.0 elif theta_type == "morphing": theta_matrix = morpher.calculate_morphing_weights(theta_value) else: raise ValueError("Unknown theta {}".format(theta_type)) return theta_matrix
aa84006b7a69faa8803ecea20ffd24e35f178185
3,653,423
def reorder_points(point_list): """ Reorder points of quadrangle. (top-left, top-right, bottom right, bottom left). :param point_list: List of point. Point is (x, y). :return: Reorder points. """ # Find the first point which x is minimum. ordered_point_list = sorted(point_list, key=lambda x: (x[0], x[1])) first_point = ordered_point_list[0] # Find the third point. The slope is middle. slope_list = [[cal_slope(first_point, p), p] for p in ordered_point_list[1:]] ordered_slope_point_list = sorted(slope_list, key=lambda x: x[0]) first_third_slope, third_point = ordered_slope_point_list[1] # Find the second point which is above the line between the first point and the third point. # All that's left is the fourth point. if above_line(ordered_slope_point_list[0][1], third_point, first_third_slope): second_point = ordered_slope_point_list[0][1] fourth_point = ordered_slope_point_list[2][1] reverse_flag = False else: second_point = ordered_slope_point_list[2][1] fourth_point = ordered_slope_point_list[0][1] reverse_flag = True # Find the top left point. second_fourth_slope = cal_slope(second_point, fourth_point) if first_third_slope < second_fourth_slope: if reverse_flag: reorder_point_list = [fourth_point, first_point, second_point, third_point] else: reorder_point_list = [second_point, third_point, fourth_point, first_point] else: reorder_point_list = [first_point, second_point, third_point, fourth_point] return reorder_point_list
8ef3466616ecf003750cce7e1125d913d258cf15
3,653,425
import torch def ppg_acoustics_collate(batch): """Zero-pad the PPG and acoustic sequences in a mini-batch. Also creates the stop token mini-batch. Args: batch: An array with B elements, each is a tuple (PPG, acoustic). Consider this is the return value of [val for val in dataset], where dataset is an instance of PPGSpeechLoader. Returns: ppg_padded: A (batch_size, feature_dim_1, num_frames_1) tensor. input_lengths: A batch_size array, each containing the actual length of the input sequence. acoustic_padded: A (batch_size, feature_dim_2, num_frames_2) tensor. gate_padded: A (batch_size, num_frames_2) tensor. If "1" means reaching stop token. Currently assign "1" at the last frame and the padding. output_lengths: A batch_size array, each containing the actual length of the output sequence. """ # Right zero-pad all PPG sequences to max input length. # x is (PPG, acoustic), x[0] is PPG, which is an (L(varied), D) tensor. input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[0].shape[0] for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] ppg_dim = batch[0][0].shape[1] ppg_padded = torch.FloatTensor(len(batch), max_input_len, ppg_dim) ppg_padded.zero_() for i in range(len(ids_sorted_decreasing)): curr_ppg = batch[ids_sorted_decreasing[i]][0] ppg_padded[i, :curr_ppg.shape[0], :] = curr_ppg # Right zero-pad acoustic features. feat_dim = batch[0][1].shape[1] max_target_len = max([x[1].shape[0] for x in batch]) # Create acoustic padded and gate padded acoustic_padded = torch.FloatTensor(len(batch), max_target_len, feat_dim) acoustic_padded.zero_() gate_padded = torch.FloatTensor(len(batch), max_target_len) gate_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): curr_acoustic = batch[ids_sorted_decreasing[i]][1] acoustic_padded[i, :curr_acoustic.shape[0], :] = curr_acoustic gate_padded[i, curr_acoustic.shape[0] - 1:] = 1 output_lengths[i] = curr_acoustic.shape[0] ppg_padded = ppg_padded.transpose(1, 2) acoustic_padded = acoustic_padded.transpose(1, 2) return ppg_padded, input_lengths, acoustic_padded, gate_padded,\ output_lengths
1357a8a9fa901a9be4f79ea13fd5ae7c3810bbeb
3,653,426
def problem004(): """ Find the largest palindrome made from the product of two 3-digit numbers. """ return largest_palindrome_from_product_of_two_n_digit_numbers(3)
516c98d75ac2b4e286e58ea940d49c1d2bcd2dc7
3,653,427
import torch def residual_l1_max(reconstruction: Tensor, original: Tensor) -> Tensor: """Construct l1 difference between original and reconstruction. Note: Only positive values in the residual are considered, i.e. values below zero are clamped. That means only cases where bright pixels which are brighter in the input (likely lesions) are kept.""" residual = original - reconstruction return torch.where(residual > 0.0, residual, torch.zeros_like(residual))
8649b1947845c0e3f9e57c0ec2e68d7bed94be5d
3,653,428
def build_url(path): """ Construct an absolute url by appending a path to a domain. """ return 'http://%s%s' % (DOMAIN, path)
fa9df465607082993571ca71c576d7b250f6cc76
3,653,429
def get_registration_url(request, event_id): """ Compute the absolute URL to create a booking on a given event @param request: An HttpRequest used to discover the FQDN and path @param event_id: the ID of the event to register to """ registration_url_rel = reverse(booking_create, kwargs={"event_id": event_id}) return request.build_absolute_uri(registration_url_rel)
d8b344c6574a120d365a718934f5dc0e78173a6f
3,653,430
def create_no_args_decorator(decorator_function, function_for_metadata=None, ): """ Utility method to create a decorator that has no arguments at all and is implemented by `decorator_function`, in implementation-first mode or usage-first mode. The created decorator is a function with var-args. When called it checks the length (0=called with parenthesis, 1=called without, 2=error). Note: we prefer to use this var-arg signature rather than a "(_=None)" signature, because it is more readable for the decorator's help. :param decorator_function: :param function_for_metadata: an alternate function to use for the documentation and module metadata of the generated function :return: """ if function_for_metadata is None: function_for_metadata = decorator_function @with_signature(None, func_name=function_for_metadata.__name__, doc=function_for_metadata.__doc__, module_name=function_for_metadata.__module__) def new_decorator(*_): """ Code for your decorator, generated by decopatch to handle the case when it is called without parenthesis """ if len(_) == 0: # called with no args BUT parenthesis: @foo_decorator(). return with_parenthesis_usage(decorator_function, *_) elif len(_) == 1: first_arg_value = _[0] if can_arg_be_a_decorator_target(first_arg_value): # called with no arg NOR parenthesis: @foo_decorator return no_parenthesis_usage(decorator_function, first_arg_value) # more than 1 argument or non-decorable argument: not possible raise TypeError("Decorator function '%s' does not accept any argument." "" % decorator_function.__name__) return new_decorator
7067974d7bd15c238968f78aa0057086458940bf
3,653,431
import torch def compute_batch_jacobian(input, output, retain_graph=False): """ Compute the Jacobian matrix of a batch of outputs with respect to some input (normally, the activations of a hidden layer). Returned Jacobian has dimensions Batch x SizeOutput x SizeInput Args: input (list or torch.Tensor): Tensor or sequence of tensors with the parameters to which the Jacobian should be computed. Important: the requires_grad attribute of input needs to be True while computing output in the forward pass. output (torch.Tensor): Tensor with the values of which the Jacobian is computed Returns (torch.Tensor): 3D tensor containing the Jacobian of output with respect to input: batch_size x output_size x input_size. """ batch_jacobian = torch.Tensor(output.shape[0], output.shape[1], input.shape[1]) assert output.shape[0] == input.shape[0], \ "Batch size needs to be the same for both input and output" for batch_idx in range(output.shape[0]): for i, output_elem in enumerate(output[batch_idx]): if i < output.shape[1]: rg = True else: rg = retain_graph gradients = torch.autograd.grad(output_elem, input, retain_graph=rg)[0][batch_idx].detach() batch_jacobian[batch_idx, i, :] = gradients return batch_jacobian
c18f596a3500f2f82e2b4716e6f9892a01fb31c7
3,653,433
def is_associative(value): """Checks if `value` is an associative object meaning that it can be accessed via an index or key Args: value (mixed): Value to check. Returns: bool: Whether `value` is associative. Example: >>> is_associative([]) True >>> is_associative({}) True >>> is_associative(1) False >>> is_associative(True) False .. versionadded:: 2.0.0 """ return hasattr(value, '__getitem__')
5d2a9e0e69ad793a98657dc13b26f79900f29294
3,653,434
def join_audio(audio1, audio2): """ >>> join_audio(([1], [4]), ([2, 3], [5, 6])) ([1, 2, 3], [4, 5, 6]) """ (left1, right1) = audio1 (left2, right2) = audio2 left = left1 + left2 right = right1 + right2 audio = (left, right) return audio
23348b746469d362fd66371d61142b4227814ff3
3,653,435
def csi_from_sr_and_pod(success_ratio_array, pod_array): """Computes CSI (critical success index) from success ratio and POD. POD = probability of detection :param success_ratio_array: np array (any shape) of success ratios. :param pod_array: np array (same shape) of POD values. :return: csi_array: np array (same shape) of CSI values. """ return (success_ratio_array ** -1 + pod_array ** -1 - 1.) ** -1
84952fe6f7c8bd780c64c53183342ab0d8f3f90f
3,653,436
def compute_secondary_observables(data): """Computes secondary observables and extends matrix of observables. Argument -------- data -- structured array must contains following fields: length, width, fluo, area, time Returns ------- out -- structured array new fields are added (check `out.dtype.names`) """ ell, w, fluo, area, time = map(np.array, zip(*data[['length', 'width', 'fluo', 'area', 'time']]) ) if len(time) > 1: delta_t = time[1]-time[0] age = (time - time[0] + delta_t/2.)/(time[-1] - time[0] + delta_t) else: age = np.nan volume = spherocylinder_volume(ell, w) concentration = fluo/volume density = fluo/area ALratio = area/ell out = append_fields(data, ['volume', 'concentration', 'density', 'ALratio', 'age'], [volume, concentration, density, ALratio, age], usemask=False, fill_value=np.nan) return out
7141d16a579e4b629e25fee3a33c9a844a08e48f
3,653,438
def get_account_number(arn): """ Extract the account number from an arn. :param arn: IAM SSL arn :return: account number associated with ARN """ return arn.split(":")[4]
3d0fe552691ae98cf0dc70bc2055297f01a5d800
3,653,439
def get_hashtags(tweet): """return hashtags from a given tweet Args: tweet (object): an object representing a tweet Returns: list: list of hastags in a tweet """ entities = tweet.get('entities', {}) hashtags = entities.get('hashtags', []) return [get_text(tag) for tag in hashtags if get_text( tag) not in ['rdc', 'drc', 'rdcongo', 'drcongo']]
ef222d64294c62d27e86a4c8520bb197701ed1af
3,653,440
def get_appliance_ospf_neighbors_state( self, ne_id: str, ) -> dict: """Get appliance OSPF neighbors state .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - ospf - GET - /ospf/state/neighbors/{neId} :param ne_id: Appliance id in the format of integer.NE e.g. ``3.NE`` :type ne_id: str :return: Returns dictionary of OSPF neighbors state :rtype: dict """ return self._get("/ospf/state/interfaces/{}".format(ne_id))
25a985ccf8b00ee3f27ea43d2a8371eef2443963
3,653,442
def info(obj): """Return info on shape and dtype of a numpy array or TensorFlow tensor.""" if obj is None: return 'None.' elif isinstance(obj, list): if obj: return 'List of %d... %s' % (len(obj), info(obj[0])) else: return 'Empty list.' elif isinstance(obj, tuple): if obj: return 'Tuple of %d... %s' % (len(obj), info(obj[0])) else: return 'Empty tuple.' else: if is_a_numpy_array(obj): return 'Array with shape: %s, dtype: %s' % (obj.shape, obj.dtype) else: return str(obj)
64ffab112b0f0397541f8661a861a958c8ccf26e
3,653,444
def first_index_k_zeros_left(qstr, k, P): """ For a binary string qstr, return the first index of q with k (mod P) zeros to the left. Return: index in [0, qstr.length] """ num_zeros_left = 0 for j in range(qstr.length+1): if (num_zeros_left - k) % P == 0: return j if j == qstr.length: raise Exception("No valid position found") if qstr[j] == 0: num_zeros_left += 1
62e505290fb32b43860deae3477dec718028e7af
3,653,445
def transform_points(points, transf_matrix): """ Transform (3,N) or (4,N) points using transformation matrix. """ if points.shape[0] not in [3, 4]: raise Exception("Points input should be (3,N) or (4,N) shape, received {}".format(points.shape)) return transf_matrix.dot(np.vstack((points[:3, :], np.ones(points.shape[1]))))[:3, :]
f478dfdfe41c694ada251deca33820336001d61e
3,653,446
def get_lat_long(zip): """ This function takes a zip code and looks up the latitude and longitude using the uszipcode package. Documentation: https://pypi.python.org/pypi/uszipcode """ search = ZipcodeSearchEngine() zip_data = search.by_zipcode(zip) lat = zip_data['Latitude'] long = zip_data['Longitude'] return lat, long
4fa8dc583bba9a6068db58ab86c2cab5f310edc4
3,653,447
def propose_perturbation_requests(current_input, task_idx, perturbations): """Wraps requests for perturbations of one task in a EvaluationRequest PB. Generates one request for each perturbation, given by adding the perturbation to current_input. Args: current_input: the current policy weights task_idx: The index of the task to evaluate. perturbations: A list of perturbations. Returns: A list of requests, one for each perturbation. """ requests = [] for p_idx, p in enumerate(perturbations): perturbed_input = current_input + p requests.append( first_order_pb2.TaskEvaluationRequest( request_task_idx=task_idx, input_idx=p_idx, eval_order=TASK_VALUE_EVAL_ORDER, current_input=perturbed_input.tolist())) return requests
279da36eb633005c8f8ee79e66b71b3bdf8783f3
3,653,448
import google def id_token_call_credentials(credentials): """Constructs `grpc.CallCredentials` using `google.auth.Credentials.id_token`. Args: credentials (google.auth.credentials.Credentials): The credentials to use. Returns: grpc.CallCredentials: The call credentials. """ request = google.auth.transport.requests.Request() return grpc.metadata_call_credentials( IdTokenAuthMetadataPlugin(credentials, request) )
433bb494d9f8de529a891f529a42f89af0b5ef77
3,653,449
import time def test_analyze(request,hash,db_name): """ Get features of a sequence, using the sequence's sha-1 hash as the identifier. """ db = blat.models.Feature_Database.objects.get(name=db_name) sequence = blat.models.Sequence.objects.get(db=db,hash=hash) ts = int(time.mktime(sequence.modified.timetuple())) return render_to_response( 'test/analyze.html', { "hash" : hash, "mtime" : ts }, context_instance=RequestContext(request) )
173ebb356167558cb64a35265caa39e828a43bae
3,653,450
from typing import List def _collect_scaling_groups(owner: str) -> List: """Collect autoscaling groups that contain key `ES_role` and belong to the specified owner""" client = boto3.client("autoscaling") print("Collecting scaling groups") resp = client.describe_auto_scaling_groups() assert "NextToken" not in resp, "did not program to handle pagination" groups = resp['AutoScalingGroups'] result = [] for group in groups: if _get_tag_val(group['Tags'], 'Owner') == owner and \ any([tag['Key'] == ES_ROLE_KEY for tag in group['Tags']]): result.append(group) return result
f1f75e6158450aaef834a910f8c36bb8812b1ede
3,653,451
def cross_entropy_loss(logits, labels, label_smoothing=0., dtype=jnp.float32): """Compute cross entropy for logits and labels w/ label smoothing Args: logits: [batch, length, num_classes] float array. labels: categorical labels [batch, length] int array. label_smoothing: label smoothing constant, used to determine the on and off values. dtype: dtype to perform loss calcs in, including log_softmax """ num_classes = logits.shape[-1] labels = jax.nn.one_hot(labels, num_classes, dtype=dtype) if label_smoothing > 0: labels = labels * (1 - label_smoothing) + label_smoothing / num_classes logp = jax.nn.log_softmax(logits.astype(dtype)) return -jnp.mean(jnp.sum(logp * labels, axis=-1))
7b6ce3145bc85433e54cef0ac85570eeb0fe7230
3,653,452
import torch def set_optimizer(name, model, learning_rate): """ Specify which optimizer to use during training. Initialize a torch.optim optimizer for the given model based on the specified name and learning rate. Parameters ---------- name : string or None, default = 'adam' The name of the torch.optim optimizer to be used. The following strings are accepted as arguments: 'adagrad', 'adam', 'adamax', 'adamw', 'rmsprop', or 'sgd' model : utils.models.EncoderDecoder The model which is to be optimized learning_rate : float or None The learning rate to be used by the optimizer. If set to None, the default value as defined in torch.optim is used Returns ------- torch.optim optimizer class A torch.optim optimizer that implements one of the following algorithms: Adagrad, Adam, Adamax, AdamW, RMSprop, or SGD (stochastic gradient descent) SGD is set to use a momentum of 0.5. """ if name == "adam": optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if name == "sgd": optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.5) if name == "adamw": optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) if name == "adagrad": optimizer = torch.optim.Adagrad(model.parameters(), lr=learning_rate) if name == "adamax": optimizer = torch.optim.Adamax(model.parameters(), lr=learning_rate) if name == "rmsprop": optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate) return optimizer
5c1a5e836176b90506ca6344c01ce6828b43d917
3,653,453
import httplib import urllib def get_http_url(server_path, get_path): """ Вариант с использованием httplib напрямую; ничем не лучше urllib2 server_path = "example.com" get_path = "/some_path" """ # urllib - более высокого уровня библиотека, которая в случае http использует # httplib; # используем httplib ради лучшего детектирования ошибок direct_http = 1 if direct_http: conn = httplib.HTTPConnection(server_path) try: conn.request("GET", get_path) except: raise RuntimeError("Cant connect to: " + server_path) response = conn.getresponse() if response.reason != 'OK': raise RuntimeError("Error getting data from: " + get_path) #print response.status, response.reason, response.msg return response else: f = urllib.urlopen("http://" + server_path + get_path) #print f.info() return f
d759609b1c48af28e678fa75bd9ff102f7eaafae
3,653,454
def not_found_view(request): """Not Found view. """ model = request.context return render_main_template(model, request, contenttile='not_found')
0fe250d09f8fc007ffb07f848e59e779da9aefb0
3,653,455
import torch def top_filtering( logits, top_k=0, top_p=0.0, threshold=-float("Inf"), filter_value=-float("Inf") ): """ Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering Args: logits: logits distribution shape (vocabulary size) top_k: <=0: no filtering, >0: keep only top k tokens with highest probability. top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset whose total probability mass is greater than or equal to the threshold top_p. In practice, we select the highest probability tokens whose cumulative probability mass exceeds the threshold top_p. threshold: a minimal threshold to keep logits Taken from `interact.py` """ assert ( logits.dim() == 1 ) # Only work for batch size 1 for now - could update but it would obfuscate a bit the code top_k = min(top_k, logits.size(-1)) if top_k > 0: # Remove all tokens with a probability less than the last token in the top-k tokens indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: # Compute cumulative probabilities of sorted tokens sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probabilities = torch.cumsum( F.softmax(sorted_logits, dim=-1), dim=-1 ) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probabilities > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # Back to unsorted indices and set them to -infinity indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value indices_to_remove = logits < threshold logits[indices_to_remove] = filter_value return logits
7b230fc959e0078f1cfc5b2f2f991c79e0f4fd86
3,653,456
def get_physical_type(obj): """ Return the physical type that corresponds to a unit (or another physical type representation). Parameters ---------- obj : quantity-like or `~astropy.units.PhysicalType`-like An object that (implicitly or explicitly) has a corresponding physical type. This object may be a unit, a `~astropy.units.Quantity`, an object that can be converted to a `~astropy.units.Quantity` (such as a number or array), a string that contains a name of a physical type, or a `~astropy.units.PhysicalType` instance. Returns ------- `~astropy.units.PhysicalType` A representation of the physical type(s) of the unit. Examples -------- The physical type may be retrieved from a unit or a `~astropy.units.Quantity`. >>> import astropy.units as u >>> u.get_physical_type(u.meter ** -2) PhysicalType('column density') >>> u.get_physical_type(0.62 * u.barn * u.Mpc) PhysicalType('volume') The physical type may also be retrieved by providing a `str` that contains the name of a physical type. >>> u.get_physical_type("energy") PhysicalType({'energy', 'torque', 'work'}) Numbers and arrays of numbers correspond to a dimensionless physical type. >>> u.get_physical_type(1) PhysicalType('dimensionless') """ if isinstance(obj, PhysicalType): return obj if isinstance(obj, str): return _physical_type_from_str(obj) try: unit = obj if isinstance(obj, core.UnitBase) else quantity.Quantity(obj, copy=False).unit except TypeError as exc: raise TypeError(f"{obj} does not correspond to a physical type.") from exc unit = _replace_temperatures_with_kelvin(unit) physical_type_id = unit._get_physical_type_id() unit_has_known_physical_type = physical_type_id in _physical_unit_mapping if unit_has_known_physical_type: return _physical_unit_mapping[physical_type_id] else: return PhysicalType(unit, "unknown")
03d28bdb9a507939e52bc0021dae3c539b4954a5
3,653,457
def reverse(list): """Returns a new list or string with the elements or characters in reverse order""" if isinstance(list, str): return "".join(reversed(list)) return _list(reversed(list))
ba74d9e4e54782114f534fb4c888c681ab708b67
3,653,458
from typing import Dict def PubMedDiabetes( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/linqs", version: str = "latest", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the PubMedDiabetes graph. The graph is automatically retrieved from the LINQS repository. The Pubmed Diabetes dataset consists of 19717 scientific publications from PubMed database pertaining to diabetes classified into one of three classes. The citation network consists of 44338 links. Each publication in the dataset is described by a TF/IDF weighted word vector from a dictionary which consists of 500 unique words. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "latest" The version of the graph to retrieve. additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of PubMedDiabetes graph. References --------------------- Please cite the following if you use the data: ```bib @inproceedings{namata2012query, title={Query-driven active surveying for collective classification}, author={Namata, Galileo and London, Ben and Getoor, Lise and Huang, Bert and EDU, UMD}, booktitle={10th International Workshop on Mining and Learning with Graphs}, volume={8}, year={2012} } ``` """ return AutomaticallyRetrievedGraph( graph_name="PubMedDiabetes", repository="linqs", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs, callbacks=[ parse_linqs_pubmed_incidence_matrix ], callbacks_arguments=[ { "cites_path": "Pubmed-Diabetes/Pubmed-Diabetes/data/Pubmed-Diabetes.DIRECTED.cites.tab", "content_path": "Pubmed-Diabetes/Pubmed-Diabetes/data/Pubmed-Diabetes.NODE.paper.tab", "node_path": "nodes.tsv", "edge_path": "edges.tsv" } ] )()
ddac0cfb8a525c42fe5a8d6c1a70677ab57451e0
3,653,459
def find_neighbor_indices(atoms, probe, k): """ Returns list of indices of atoms within probe distance to atom k. """ neighbor_indices = [] atom_k = atoms[k] radius = atom_k.radius + probe + probe indices = list(range(k)) indices = indices + list(range(k+1, len(atoms))) for i in indices: atom_i = atoms[i] dist = pos_distance(atom_k.pos, atom_i.pos) if dist < radius + atom_i.radius: neighbor_indices.append(i) return neighbor_indices
05c3218357d660d6b66c3d614bfcb0d78431d32e
3,653,460
def genDir(EAs): """ Generate the projection direction given the euler angles. Since the image is in the x-y plane, the projection direction is given by R(EA)*z where z = (0,0,1) """ dir_vec = np.array([rotmat3D_EA(*EA)[:, 2] for EA in EAs]) return dir_vec
0753fad9638ca8b0ac4e899ad103dc08266a208b
3,653,461
def plainica(x, reducedim=0.99, backend=None, random_state=None): """ Source decomposition with ICA. Apply ICA to the data x, with optional PCA dimensionality reduction. Parameters ---------- x : array, shape (n_trials, n_channels, n_samples) or (n_channels, n_samples) data set reducedim : {int, float, 'no_pca'}, optional A number of less than 1 in interpreted as the fraction of variance that should remain in the data. All components that describe in total less than `1-reducedim` of the variance are removed by the PCA step. An integer numer of 1 or greater is interpreted as the number of components to keep after applying the PCA. If set to 'no_pca' the PCA step is skipped. backend : dict-like, optional Specify backend to use. When set to None the backend configured in config.backend is used. Returns ------- result : ResultICA Source decomposition """ x = atleast_3d(x) t, m, l = np.shape(x) if backend is None: backend = scotbackend # pre-transform the data with PCA if reducedim == 'no pca': c = np.eye(m) d = np.eye(m) xpca = x else: c, d, xpca = backend['pca'](x, reducedim) # run on residuals ICA to estimate volume conduction mx, ux = backend['ica'](cat_trials(xpca), random_state=random_state) # correct (un)mixing matrix estimatees mx = mx.dot(d) ux = c.dot(ux) class Result: unmixing = ux mixing = mx return Result
7ffe9ebc78220898c84459fed61fc0f32fe05e69
3,653,462
def all_equal(values: list): """Check that all values in given list are equal""" return all(values[0] == v for v in values)
8ed08f63959367f3327554adc11b1286291963d8
3,653,464
def _tester(func, *args): """ Tests function ``func`` on arguments and returns first positive. >>> _tester(lambda x: x%3 == 0, 1, 2, 3, 4, 5, 6) 3 >>> _tester(lambda x: x%3 == 0, 1, 2) None :param func: function(arg)->boolean :param args: other arguments :return: something or none """ for arg in args: if arg is not None and func(arg): return arg return None
035c8bf68b4ff7e4fbdb7ed1b2601f04110287d8
3,653,465
from datetime import datetime def new_revision(partno): """ Presents the form to add a new revision, and creates it upon POST submit """ _load_if_released(partno) # ensures the component exists and is released form = RevisionForm(request.form) if request.method == 'POST' and form.validate_on_submit(): now = datetime.now() result = current_app.mongo.db.components.update_one( filter={'_id': partno}, update={ '$set': { 'released': False # a new revision is not already released }, '$push': { 'revisions': { 'date': now, 'comment': form.comment.data }, 'history': { 'date': now, 'user': current_user.id, 'message': 'new revision created' } } } ) if result.modified_count == 1: flash('new revision created', 'success') else: # should not happen. flash('no data modified, please contact the administrator', 'error') return redirect(url_for('components.details', partno=partno)) extract_errors(form) return render_template('components/revision_form.html', form=form, partno=partno)
722a3860e9daeb4bd5d9339f7dcaf5245c51b5de
3,653,466
def fresnel_parameter(rays, diffraction_points): """ returns the fresnel diffraction parameter (always as a positive) Parameters ---------- rays : [n] list of shapely LineString (3d) diffraction_points: [n] list of Points (3d) diffraction point which the ray is rounding Returns ------- fresnel diffraction parameters: [n,] float array """ wavelength = 0.1903 # GPS L1 signal frequency of 1575.42 MHz distances = np.array([r.project(d) for r, d in zip(rays, diffraction_points)]) nearest_points = (r.interpolate(d) for r, d in zip(rays, distances)) diffraction_distances = np.array( [d.z-p.z for p, d in zip(nearest_points, diffraction_points)]) v = np.where(distances == 0, -np.inf, diffraction_distances * (2 / (wavelength * distances))**0.5) return v
cd398797161f1e9e66805cd09162359ed6e89330
3,653,467
def validate(net, val_data, ctx, eval_metric): """Test on validation dataset.""" eval_metric.reset() # set nms threshold and topk constraint net.set_nms(nms_thresh=0.45, nms_topk=400) net.hybridize() for batch in val_data: data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False) label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False) det_bboxes = [] det_ids = [] det_scores = [] gt_bboxes = [] gt_ids = [] gt_difficults = [] for x, y in zip(data, label): # get prediction results ids, scores, bboxes = net(x) det_ids.append(ids) det_scores.append(scores) # clip to image size det_bboxes.append(bboxes.clip(0, batch[0].shape[2])) # split ground truths gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5)) gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4)) gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None) # update metric eval_metric.update(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults) return eval_metric.get()
79dcd9b0d1920952b5badd4aa9f3f234776f6e06
3,653,468
from re import S def add_unique_geom_id(point_gdf: gpd.GeoDataFrame, log: Logger=None) -> gpd.GeoDataFrame: """Adds an unique identifier (string) to GeoDataFrame of points based on point locations (x/y). """ point_gdf[S.xy_id] = [f'{str(round(geom.x, 1))}_{str(round(geom.y, 1))}' for geom in point_gdf[S.geometry]] unique_count = point_gdf[S.xy_id].nunique() unique_share = round(100 * unique_count/len(point_gdf.index), 2) log.info(f'found {unique_count} unique sampling points ({unique_share} %)') return point_gdf
0663e24b217c2911083d68146a5d8ff25c4fd8bd
3,653,469
def get_data_parallel_rank(): """Return my rank for the data parallel group.""" return _TOPOLOGY.get_data_parallel_rank()
a1da062793f6798e2e56809b3076c811f786a82b
3,653,470
import math def entropy(data): """ Compute the Shannon entropy, a measure of uncertainty. """ if len(data) == 0: return None n = sum(data) _op = lambda f: f * math.log(f) return - sum(_op(float(i) / n) for i in data)
ebfd9a84885a95ec6e4e7b2d88a0fb69fbbfaea1
3,653,471
import torch def alexnet(pretrained=False): """AlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = AlexNet() if pretrained: model_path = './model/alexnet.pth.tar' pretrained_model = torch.load(model_path) model.load_state_dict(pretrained_model['state_dict']) return model
a42df7c926472b88501001eefd691959e6acb3ac
3,653,473
import torch def generate_random_targets(labels: Tensor, num_classes: int) -> Tensor: """ Generates one random target in (num_classes - 1) possibilities for each label that is different from the original label. Parameters ---------- labels: Tensor Original labels. Generated targets will be different from labels. num_classes: int Number of classes to generate the random targets from. Returns ------- targets: Tensor Random target for each label. Has the same shape as labels. """ random = torch.rand(len(labels), num_classes, device=labels.device, dtype=torch.float) random.scatter_(1, labels.unsqueeze(-1), 0) return random.argmax(1)
c0740c5ddc7c1f866b4c3cb2986f45a672d22e49
3,653,474
def recall_k(sent_im_dist, im_labels, ks=(1, 5, 10)): """ Compute recall at given ks. """ im_labels = tf.cast(im_labels, tf.bool) def retrieval_recall(dist, labels, k): # Use negative distance to find the index of # the smallest k elements in each row. pred = tf.nn.top_k(-dist, k=k)[1] # Create a boolean mask for each column (k value) in pred, # s.t. mask[i][j] is 1 iff pred[i][k] = j. pred_k_mask = lambda topk_idx: tf.one_hot(topk_idx, tf.shape(labels)[1], on_value=True, off_value=False, dtype=tf.bool) # Create a boolean mask for the predicted indices # by taking logical or of boolean masks for each column, # s.t. mask[i][j] is 1 iff j is in pred[i]. pred_mask = tf.reduce_any(tf.map_fn( pred_k_mask, tf.transpose(pred), dtype=tf.bool), axis=0) # pred_mask = tf.map_fn(create_pred_mask, pred) # Entry (i, j) is matched iff pred_mask[i][j] and labels[i][j] are 1. matched = tf.cast(tf.logical_and(pred_mask, labels), dtype=tf.float32) return tf.reduce_mean(tf.reduce_max(matched, axis=1)) img_sent_recall = [retrieval_recall(tf.transpose(sent_im_dist), tf.transpose(im_labels), k) for k in ks] sent_img_recall = [retrieval_recall(sent_im_dist, im_labels, k) for k in ks] return img_sent_recall + sent_img_recall
188f2cb4c3581f9c565253fbb17797a408ce3d74
3,653,475
def get_suggestion(project_slug, lang_slug, version_slug, pagename, user): """ | # | project | version | language | What to show | | 1 | 0 | 0 | 0 | Error message | | 2 | 0 | 0 | 1 | Error message (Can't happen) | | 3 | 0 | 1 | 0 | Error message (Can't happen) | | 4 | 0 | 1 | 1 | Error message (Can't happen) | | 5 | 1 | 0 | 0 | A link to top-level page of default version | | 6 | 1 | 0 | 1 | Available versions on the translation project | | 7 | 1 | 1 | 0 | Available translations of requested version | | 8 | 1 | 1 | 1 | A link to top-level page of requested version | """ suggestion = {} if project_slug: try: proj = Project.objects.get(slug=project_slug) if not lang_slug: lang_slug = proj.language try: ver = Version.objects.get( project__slug=project_slug, slug=version_slug) except Version.DoesNotExist: ver = None if ver: # if requested version is available on main project if lang_slug != proj.language: try: translations = proj.translations.filter( language=lang_slug) if translations: ver = Version.objects.get( project__slug=translations[0].slug, slug=version_slug) else: ver = None except Version.DoesNotExist: ver = None # if requested version is available on translation project too if ver: # Case #8: Show a link to top-level page of the version suggestion['type'] = 'top' suggestion['message'] = "What are you looking for?" suggestion['href'] = proj.get_docs_url(ver.slug, lang_slug) # requested version is available but not in requested language else: # Case #7: Show available translations of the version suggestion['type'] = 'list' suggestion['message'] = ( "Requested page seems not to be translated in " "requested language. But it's available in these " "languages.") suggestion['list'] = [] suggestion['list'].append({ 'label': proj.language, 'project': proj, 'version_slug': version_slug, 'pagename': pagename }) for t in proj.translations.all(): try: Version.objects.get( project__slug=t.slug, slug=version_slug) suggestion['list'].append({ 'label': t.language, 'project': t, 'version_slug': version_slug, 'pagename': pagename }) except Version.DoesNotExist: pass else: # requested version does not exist on main project if lang_slug == proj.language: trans = proj else: translations = proj.translations.filter(language=lang_slug) trans = translations[0] if translations else None if trans: # requested language is available # Case #6: Show available versions of the translation suggestion['type'] = 'list' suggestion['message'] = ( "Requested version seems not to have been built yet. " "But these versions are available.") suggestion['list'] = [] for v in Version.objects.public(user, trans, True): suggestion['list'].append({ 'label': v.slug, 'project': trans, 'version_slug': v.slug, 'pagename': pagename }) # requested project exists but requested version and language # are not available. else: # Case #5: Show a link to top-level page of default version # of main project suggestion['type'] = 'top' suggestion['message'] = 'What are you looking for??' suggestion['href'] = proj.get_docs_url() except Project.DoesNotExist: # Case #1-4: Show error mssage suggestion['type'] = 'none' suggestion[ 'message'] = "We're sorry, we don't know what you're looking for" else: suggestion['type'] = 'none' suggestion[ 'message'] = "We're sorry, we don't know what you're looking for" return suggestion
66ddf3e44f006fcd1339b0483c3219c429643353
3,653,476
def resample_data_or_seg(data, new_shape, is_seg, axis=None, order=3, do_separate_z=False, cval=0, order_z=0): """ separate_z=True will resample with order 0 along z :param data: :param new_shape: :param is_seg: :param axis: :param order: :param do_separate_z: :param cval: :param order_z: only applies if do_separate_z is True :return: """ assert len(data.shape) == 4, "data must be (c, x, y, z)" assert not is_seg, "do not use this patch for resampling segmentations" print("running patched resample_data_or_seg function") dtype_data = data.dtype shape = np.array(data[0].shape) new_shape = np.array(new_shape) if np.all(shape == new_shape): print("no resampling necessary") return data data = data.astype(float) resize_fn = resize kwargs = {'mode': 'edge', 'anti_aliasing': False} if do_separate_z: print("separate z, order in z is", order_z, "order inplane is", order) assert len(axis) == 1, "only one anisotropic axis supported" axis = axis[0] if axis == 0: new_shape_2d = new_shape[1:] elif axis == 1: new_shape_2d = new_shape[[0, 2]] else: new_shape_2d = new_shape[:-1] reshaped_final_data = np.empty(shape=(data.shape[0], new_shape[0], new_shape[1], new_shape[2]), dtype=dtype_data) do_z = shape[axis] != new_shape[axis] if do_z: if axis == 0: buffer = np.empty(shape=(shape[axis], new_shape_2d[0], new_shape_2d[1]), dtype=float) elif axis == 1: buffer = np.empty(shape=(new_shape_2d[0], shape[axis], new_shape_2d[1]), dtype=float) else: buffer = np.empty(shape=(new_shape_2d[0], new_shape_2d[1], shape[axis]), dtype=float) else: buffer = None for c in range(data.shape[0]): if do_z: reshaped_data = buffer else: reshaped_data = reshaped_final_data[c] for slice_id in range(shape[axis]): if axis == 0: reshaped_data[slice_id, :, :] = resize_fn(data[c, slice_id], new_shape_2d, order, cval=cval, **kwargs) elif axis == 1: reshaped_data[:, slice_id, :] = resize_fn(data[c, :, slice_id], new_shape_2d, order, cval=cval, **kwargs) else: reshaped_data[:, :, slice_id] = resize_fn(data[c, :, :, slice_id], new_shape_2d, order, cval=cval, **kwargs) if do_z: # The following few lines are blatantly copied and modified from sklearn's resize() rows, cols, dim = new_shape[0], new_shape[1], new_shape[2] orig_rows, orig_cols, orig_dim = reshaped_data.shape row_scale = float(orig_rows) / rows col_scale = float(orig_cols) / cols dim_scale = float(orig_dim) / dim reshaped_final_data[c] = zoom(reshaped_data, (1 / row_scale, 1 / col_scale, 1 / dim_scale), order=order_z, cval=cval, mode='nearest') else: print("no separate z, order", order) reshaped_final_data = np.empty(shape=(data.shape[0], new_shape[0], new_shape[1], new_shape[2]), dtype=dtype_data) for c in range(data.shape[0]): reshaped_final_data[c] = resize_fn(data[c], new_shape, order, cval=cval, **kwargs) return reshaped_final_data
ab7aa7ab1db40ec605d7069ccf3b1bc8751c3855
3,653,477