content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _entity_namespace_key(entity, key): """Return an entry from an entity_namespace. Raises :class:`_exc.InvalidRequestError` rather than attribute error on not found. """ ns = entity.entity_namespace try: return getattr(ns, key) except AttributeError as err: util.raise_( exc.InvalidRequestError( 'Entity namespace for "%s" has no property "%s"' % (entity, key) ), replace_context=err, )
ffd063523a8011a8ee2dd3700920a0523465d6cc
3,654,508
def get_messages(mtype, read=False, uid=None): """ Returns query for messages. If `read` is True it only queries for unread messages """ query = Message.select().where(Message.mtype << mtype) query = query.where(Message.receivedby == current_user.uid if not uid else uid) if read: query = query.where(Message.read.is_null(True)) return query
7959a0510d8f6794ff40d8467d09b0833279be10
3,654,509
import numpy def coords_to_indices(coords, top, left, csx, csy, shape, preserve_out_of_bounds=False): """ Convert coordinates to array indices using the given specs. Coordinates outside of the shape are not returned. :param coords: Tuple of coordinates in the form ([x...], [y...]) :param top: Top coordinate of array :param left: Left coordinate of array :param csx: Cell size in the x-direction :param csy: Cell size in the y-direction :param shape: Shape of array (for bounds) :return: tuple of indices in the form ([i...], [j...]) """ x, y = numpy.asarray(coords[0]), numpy.asarray(coords[1]) i = numpy.int64((top - y) / csy) j = numpy.int64((x - left) / csx) if preserve_out_of_bounds: return i, j else: m = (i >= 0) & (j >= 0) & (i < shape[0]) & (j < shape[1]) return i[m], j[m]
89b99ffc159c56855792d0daeb8bdb5a5d04ad9f
3,654,510
def sanitize_vcf_file(vcf_file, out_file, snp_log_file, sample_log_file, logging, min_count=1, max_missing=0.25, max_alt_states=4, disruptive_threshold=1,window_size=30,max_snps=2): """ Filter a user provided vcf and write a filtered vcf file Parameters ---------- vcf_file [str] : Path to vcf file out_file [str] : Path to write santized vcf file snp_log_file [str] : Path to write SNP log report sample_log_file [str]: Path to write sample report logging [logging obj] : logging object min_count [int] : Minimum number of variable samples ie. if set to 2, at least two samples must differ from the rest max_missing [float] : Percent of samples which can be missing data for a position for that position to be valid max_alt_states [int] : Maxmimum number of bases which can be in the vcf for that position to be valid disruptive_threshold [int]: Identify sequences which are blunting resolution by looking at which ones are missing where other sequences have it. By default, it looks for sequences which are uniquely missing a position conserved in all of the other samples Returns ------- List of sample_id's in vcf """ logging.info("Reading vcf file {}".format(vcf_file)) pandas_vcf_obj = pandas_vcf(vcf_file) samples = pandas_vcf_obj.get_sample_list() num_samples = len(samples) snp_report = open(snp_log_file, 'w') sample_report = open(sample_log_file, 'w') sample_ambig_counts = {} for sample in samples: sample_ambig_counts[sample] = {'total_ambig': 0, 'uniq_ambig': 0, 'low_freq_variants': 0} logging.info("VCF file contains #{} samples".format(len(samples))) logging.info("VCF file samples: {}".format(samples)) count_postitions = 0 valid_position_count = 0 filtered_positions_count = 0 filtered_positions_ambig = 0 filtered_positions_alt = 0 ambiguous_positions = {} snp_data = {} positions = [] position_base_calls = pandas_vcf_obj.get_baselookup() valid_positions = [] for index,row in pandas_vcf_obj.df.iterrows(): calls = get_vcf_row_calls(row, position_base_calls, samples, logging) count_postitions += 1 position = list(calls.keys())[0] positions.append(position) chromosome = calls[position]['chrom'] bases = calls[position]['bases'] ref_base = calls[position]['ref_base'] if not chromosome in snp_data: snp_data[chromosome] = {} if not position in snp_data[chromosome]: snp_data[chromosome][position] = {} count_ref = 0 count_alt = 0 count_missing = 0 count_alt_bases = 0 alt_samples = [] valid_bases = [] for base in bases: if base == ref_base: count_ref = len(bases[base]) elif base == 'N': count_missing = len(bases[base]) if not position in ambiguous_positions: ambiguous_positions[position] = [] ambiguous_positions[position] = bases[base] for sample_id in ambiguous_positions[position]: sample_ambig_counts[sample_id]['total_ambig'] += 1 else: count_alt_bases += 1 count_alt += len(bases[base]) alt_samples += bases[base] valid_bases.append(base) if (count_ref >= min_count) and \ (count_alt >= min_count) and \ (count_missing / num_samples <= max_missing) and \ count_alt_bases <= max_alt_states: valid_position_count += 1 valid_positions.append(position) for base in valid_bases: snp_data[chromosome][position][base] = {'samples':bases[base],'out_bases':list(set(list(bases.keys())) - set([base]))} else: if count_ref < min_count and count_alt < min_count: filtered_positions_count += 1 snp_report.write( "Filtering due to minimum polymorphic sample count\tchrom: {}\tposition: {}\tcount_ref: {}\tcount_alt: {}\tcount_missing: {}\n".format( chromosome, position, count_ref, count_alt, count_missing)) for sample_id in alt_samples: sample_ambig_counts[sample_id]['low_freq_variants'] += 1 if count_missing / num_samples >= max_missing: filtered_positions_ambig += 1 snp_report.write( "Filtering due to maximum missing sample count\tchrom: {}\tposition: {}\tcount_ref: {}\tcount_alt: {}\tcount_missing: {}\n".format( chromosome, position, count_ref, count_alt, count_missing)) if count_alt_bases > max_alt_states: filtered_positions_alt += 1 snp_report.write( "Filtering due to more than allowed alt base states\tchrom: {}\tposition: {}\tcount_ref: {}\tcount_alt: {}\tcount_missing: {}\n".format( chromosome, position, count_ref, count_alt, count_missing)) filtered_df = pandas_vcf_obj.df[pandas_vcf_obj.df['POS'].isin(valid_positions)] filtered_df.to_csv(out_file,sep="\t",header=True,index=False) #for position in positions: logging.info("Read {} positions in file {}".format(count_postitions, vcf_file)) logging.info("Filtered {} positions due to minimum polymorphic sample requirement".format(filtered_positions_count)) logging.info("Filtered {} positions due to missing in more than {}% of samples".format(filtered_positions_ambig, max_missing)) logging.info("Filtered {} positions due to more than allowed alternative base states".format(filtered_positions_alt, max_alt_states)) logging.info("{} positions are valid after filtering".format(valid_position_count)) # Identify for the user unusual sequences that they might want to remove from their analyses disruptive_sequence_check = identify_disruptive_sequences(ambiguous_positions, disruptive_threshold) for sample_id in disruptive_sequence_check: sample_ambig_counts[sample_id]['unique_ambig'] = disruptive_sequence_check[sample_id] # Get 95 percentile for each attribute percentile_total_ambig = get_percentile(sample_ambig_counts, 'total_ambig', percentile=95) percentile_unique_ambig = get_percentile(sample_ambig_counts, 'uniq_ambig', percentile=95) percentile_low_freq_var = get_percentile(sample_ambig_counts, 'low_freq_variants', percentile=95) logging.info( "95% Percentile: Total Ambig={}\t95% Percentile: Unique Ambig={}\t95% Percentile: low frequency variants={}".format( percentile_total_ambig, percentile_unique_ambig, percentile_low_freq_var)) for sample_id in disruptive_sequence_check: status = 'PASS' if sample_ambig_counts[sample_id]['total_ambig'] / count_postitions > max_missing: status = 'FAIL' elif sample_ambig_counts[sample_id]['unique_ambig'] > percentile_unique_ambig: status = 'WARNING: Sample has unusually high number of unique missing core positions' elif sample_ambig_counts[sample_id]['low_freq_variants'] > percentile_low_freq_var: status = 'WARNING: Sample has unusually high number of low frequency variants' elif sample_ambig_counts[sample_id]['total_ambig'] > percentile_total_ambig: status = 'WARNING: Sample has unusually high number of missing core positions' sample_report.write("{}\tTOTAL_AMBIG={}\tUNIQUE_AMBIG={}\tLOW_FREQ_VARIANTS={}\tSTATUS={}\n".format(sample_id, sample_ambig_counts[ sample_id][ 'total_ambig'], sample_ambig_counts[ sample_id][ 'unique_ambig'], sample_ambig_counts[ sample_id][ 'low_freq_variants'], status)) sample_report.close() snp_report.close() return [samples, snp_data]
b5d96e9224b5eddad1dff8dcf2caf558522376bc
3,654,511
from typing import Optional from typing import Any def geq(column: str, value: Optional[Any]) -> str: """ >>> geq("col", None) '1' >>> geq("col", 1) 'col >= 1' >>> geq("col", "1") "col >= '1'" """ if not value: return "1" if isinstance(value, str): return f"{column} >= '{value}'" return f"{column} >= {value}"
9216b8e2480232840ad37d8fe0e5c0f07b88873f
3,654,512
from keras.layers import Conv2D, Dense from palmnet.layers import Conv2DCustom from palmnet.layers.sparse_facto_sparse_tensor_deprecated import SparseFactorisationDense def count_model_param_and_flops(model, dct_layer_sparse_facto_op=None): """ Return the number of params and the number of flops of 2DConvolutional Layers and Dense Layers for both the base model and the compressed model. :return: """ nb_param_base, nb_param_compressed, nb_flop_base, nb_flop_compressed = 0, 0, 0, 0 param_by_layer = {} flop_by_layer = {} for layer in model.layers: logger.warning("Process layer {}".format(layer.name)) if isinstance(layer, Conv2D) or isinstance(layer, Conv2DCustom): nb_param_layer, nb_param_compressed_layer = Palminizable.count_nb_param_layer(layer, dct_layer_sparse_facto_op) nb_flop_layer, nb_flop_compressed_layer = Palminizable.count_nb_flop_conv_layer(layer, nb_param_layer, dct_layer_sparse_facto_op) elif isinstance(layer, Dense) or isinstance(layer, SparseFactorisationDense): nb_param_layer, nb_param_compressed_layer = Palminizable.count_nb_param_layer(layer, dct_layer_sparse_facto_op) nb_flop_layer, nb_flop_compressed_layer = Palminizable.count_nb_flop_dense_layer(layer, nb_param_layer, dct_layer_sparse_facto_op) else: logger.warning("Layer {}, class {}, hasn't been compressed".format(layer.name, layer.__class__.__name__)) nb_param_compressed_layer, nb_param_layer, nb_flop_layer, nb_flop_compressed_layer = 0, 0, 0, 0 param_by_layer[layer.name] = nb_param_layer flop_by_layer[layer.name] = nb_flop_layer nb_param_base += nb_param_layer nb_param_compressed += nb_param_compressed_layer nb_flop_base += nb_flop_layer nb_flop_compressed += nb_flop_compressed_layer return nb_param_base, nb_param_compressed, nb_flop_base, nb_flop_compressed, param_by_layer, flop_by_layer
142b04ad327f662d315d7c92322df8aef2ae9871
3,654,513
def longest_match(list1, list2): """ Find the length of the longest substring match between list1 and list2. >>> longest_match([], []) 0 >>> longest_match('test', 'test') 4 >>> longest_match('test', 'toast') 2 >>> longest_match('supercalifragilisticexpialidocious', 'mystical californication') 5 """ m = len(list1) n = len(list2) data = [[0 for col in range(n+1)] for row in range(m+1)] for a in range(1, m+1): for b in range(1, n+1): if list1[a-1] == list2[b-1]: data[a][b] = 1 + data[a-1][b-1] else: data[a][b] = 0 maxes = [max(row) for row in data] return max(maxes)
4a84dacbb0d59fc7f9c4b59e87e55c72416b8c80
3,654,514
def deserialize_config(data, **kwargs): """Create instance of a JobConfiguration from a dict. Parameters ---------- data : dict Dictionary loaded from a serialized config file. Returns ------- JobConfiguration """ registry = Registry() config_module = data["configuration_module"] config_class = data["configuration_class"] for ext in registry.iter_extensions(): ext_cfg_class = ext[ExtensionClassType.CONFIGURATION] if ext_cfg_class.__module__ == config_module and ext_cfg_class.__name__ == config_class: return ext_cfg_class.deserialize(data, **kwargs) raise InvalidParameter(f"Cannot deserialize {config_module}.{config_class}")
eff887d4e676935742b8169c62a9a581b5f239ce
3,654,515
import numpy def pmat06(date1, date2): """ Wrapper for ERFA function ``eraPmat06``. Parameters ---------- date1 : double array date2 : double array Returns ------- rbp : double array Notes ----- The ERFA documentation is below. - - - - - - - - - - e r a P m a t 0 6 - - - - - - - - - - Precession matrix (including frame bias) from GCRS to a specified date, IAU 2006 model. Given: date1,date2 double TT as a 2-part Julian Date (Note 1) Returned: rbp double[3][3] bias-precession matrix (Note 2) Notes: 1) The TT date date1+date2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TT)=2450123.7 could be expressed in any of these ways, among others: date1 date2 2450123.7 0.0 (JD method) 2451545.0 -1421.3 (J2000 method) 2400000.5 50123.2 (MJD method) 2450123.5 0.2 (date & time method) The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. 2) The matrix operates in the sense V(date) = rbp * V(GCRS), where the p-vector V(GCRS) is with respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with respect to the mean equatorial triad of the given date. Called: eraPfw06 bias-precession F-W angles, IAU 2006 eraFw2m F-W angles to r-matrix References: Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ (date1, date2,), rbp = arrayify_inputs_and_create_d3_fix( [date1, date2], core_dims=[0, 0], out_core_shape=(3, 3), out_dtype=numpy.double) rbp = ufunc.pmat06(date1, date2, rbp) return rbp
69b38637701d804ca83733d7f55fca1fd57a5b72
3,654,516
def _splitData(data): """Takes either a cursor or result set and returns result set and list of columns.""" if hasattr(data, 'fetchall'): rows = data.fetchall() cols = data.columns() elif isinstance(data, list): rows = data if hasattr(rows[0], '_fields'): cols = rows[0]._fields elif hasattr(rows[0], 'keys'): cols = list(rows[0].keys()) else: raise TypeError('Can not determine the list of columns from the result set.') return (rows, cols)
9953be08f29fb457782e5401c3dfded8f780924b
3,654,517
import multiprocessing def get_cpu_count(): """ Try and estimate the number of CPU on the host. First using multiprocessing native function, other using content of /proc/cpuinfo. If none of those methods did work, 4 is returned. """ try: cpucount = multiprocessing.cpu_count() except: try: s = open("/proc/cpuinfo").read() cpucount = int(s.split('processor')[-1].split(":")[1].split("\n")[0]) cpucount += 1 except: cpucount = 4 return cpucount
db58112537c4a111ec1ef24eeab70227678d6d1e
3,654,518
def get_relation_data(collection, relation_paths): """Prepare relations for usage inside extend_relations.""" out = [] for path in relation_paths: promote = path.get("promote", False) numpy_path = [] for step in path["steps"]: if isinstance(step, str): step_name, max_usage = step, 1 else: step_name, max_usage = step relation = collection.relation(step_name) numpy_path.append((relation.offsets, relation.values, max_usage)) inv_relation = collection.get_inverted_relation(step_name).edges() > 0 out.append((numpy_path, inv_relation, promote)) return out
8b4cd9145995aee5e3c9b880073dfd10320b24e5
3,654,519
def generate_paddle_quads(): """ This function builds a matrix of paddles, each row in the matrix represents the paddle skin (four colors) and each column represents the size. """ paddle_base_width = 32 paddle_height = 16 x = 0 y = paddle_height * 4 spritesheet = [] for _ in range(4): spritesheet.append([ # The smallest paddle is in (0, y) and its dimensions are 32x16. pygame.Rect(x, y, paddle_base_width, paddle_height), # The next paddle is in (32, y) and its dimensions are 64x16. pygame.Rect( x + paddle_base_width, y, paddle_base_width * 2, paddle_height ), # The next paddle is in (96, y) and its dimensions are 96x16. pygame.Rect( x + paddle_base_width * 3, y, paddle_base_width * 3, paddle_height ), # The largest paddle is in (0, y + 16) # and its dimensions are 128x16. pygame.Rect( x, y + paddle_height, paddle_base_width * 4, paddle_height ) ]) # To go to the next color, increment y by 32. y += paddle_height * 2 return spritesheet
e82259d5e203257574c5ae91ad4a5c3a625e5b5a
3,654,520
def cut(img): """ Applies central horizontal threshold in Fourier spectrum """ # Apply fourier transform and shift img_fft = fftn(img) img_fft_shift = fftshift(img_fft) # Print spectrum before plt.imshow(np.abs(img_fft_shift), cmap='gray', norm=LogNorm(vmin=5)) plt.show() # Filter image: remove upper and lower horizontal thirds (1/3) img_fft_shift_filtered = np.copy(img_fft_shift) for x in range(img.shape[0]): for y in range(img.shape[1]): if((x < img.shape[0]//2 - img.shape[0]//30 or \ x > img.shape[0]//2 + img.shape[0]//30) and\ (y < img.shape[1]//2 - img.shape[1]//30 or \ y > img.shape[1]//2 + img.shape[1]//30)): img_fft_shift_filtered[x,y] = 0 if((x < img.shape[0]//3 or \ x > img.shape[0]*2//3) or \ (y < img.shape[1]//3 or \ y > img.shape[1]*2//3)): img_fft_shift_filtered[x, y] = 0 # Print spectrum after plt.imshow(np.abs(img_fft_shift_filtered), cmap='gray', norm=LogNorm(vmin=5)) plt.show() # Return to space domain result image using inverse return np.abs(ifftn(fftshift(img_fft_shift_filtered)))
74ce6db709aaa91fec2321dc6cc70fc6d5a8c552
3,654,521
def csrmm2(m, n, k, descrA, csrValA, csrRowPtrA, csrColIndA, B, handle=None, C=None, nnz=None, transA=CUSPARSE_OPERATION_NON_TRANSPOSE, transB=CUSPARSE_OPERATION_NON_TRANSPOSE, alpha=1.0, beta=0.0, ldb=None, ldc=None, check_inputs=True): """ multiply two sparse matrices: C = transA(A) * transB(B) higher level wrapper to cusparse<t>csrmm2 routines. """ if check_inputs: for item in [csrValA, csrRowPtrA, csrColIndA, B]: if not isinstance(item, pycuda.gpuarray.GPUArray): raise ValueError("csr*, B, must be pyCUDA gpuarrays") if C is not None: if not isinstance(C, pycuda.gpuarray.GPUArray): raise ValueError("C must be a pyCUDA gpuarray or None") # dense matrices must be in column-major order if not B.flags.f_contiguous: raise ValueError("Dense matrix B must be column-major order") if transB == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE: raise ValueError("Conjugate transpose operation not supported " "for dense matrix B") if (transB == CUSPARSE_OPERATION_TRANSPOSE) and \ (transA != CUSPARSE_OPERATION_NON_TRANSPOSE): raise ValueError("if B is transposed, only A non-transpose is " "supported") if handle is None: handle = misc._global_cusparse_handle dtype = csrValA.dtype if C is None: if transA == CUSPARSE_OPERATION_NON_TRANSPOSE: ldc = m else: ldc = k alloc = misc._global_cusparse_allocator C = gpuarray.zeros((ldc, n), dtype=dtype, order='F', allocator=alloc) elif not C.flags.f_contiguous: raise ValueError("Dense matrix C must be in column-major order") if nnz is None: nnz = csrValA.size if ldb is None: ldb = B.shape[0] if ldc is None: ldc = C.shape[0] # perform some basic sanity checks if check_inputs: if csrValA.size != nnz: raise ValueError("length of csrValA array must match nnz") if (B.dtype != dtype) or (C.dtype != dtype): raise ValueError("A, B, C must share a common dtype") if ldb < B.shape[0]: raise ValueError("ldb invalid for matrix B") if transA == CUSPARSE_OPERATION_NON_TRANSPOSE: ldOpA = m # leading dimension for op(A) tdOpA = k # trailing dimension for op(A) else: ldOpA = k tdOpA = m if transB == CUSPARSE_OPERATION_NON_TRANSPOSE: if B.shape[1] != n: raise ValueError("B, n incompatible") if (ldb < tdOpA): raise ValueError("size of A incompatible with B") else: if ldb < n: raise ValueError("B, n incompatible") if (B.shape[1] != tdOpA): raise ValueError("size of A incompatible with B") if (C.shape[1] != n): raise ValueError("bad shape for C") if (ldc != ldOpA): raise ValueError("size of A incompatible with C") if csrRowPtrA.size != m+1: raise ValueError("length of csrRowPtrA invalid") if dtype == np.float32: fn = cusparseScsrmm2 elif dtype == np.float64: fn = cusparseDcsrmm2 elif dtype == np.complex64: fn = cusparseCcsrmm2 elif dtype == np.complex128: fn = cusparseZcsrmm2 else: raise ValueError("unsupported sparse matrix dtype: %s" % dtype) transa = transA transb = transB try: fn(handle, transa, transb, m, n, k, nnz, alpha, descrA, csrValA, csrRowPtrA, csrColIndA, B, ldb, beta, C, ldc) except CUSPARSE_STATUS_INVALID_VALUE as e: print("m={}, n={}, k={}, nnz={}, ldb={}, ldc={}".format( m, n, k, nnz, ldb, ldc)) raise(e) return C
fffbecab90dfb831a4429aed759c0218b065aa4d
3,654,522
def is_translated(path): """ Checks if all files in the translation has at least one translation. Arguments: path (str): path to po-file Returns: True if all files in translation has at least one translation, otherwise False. """ po = polib.pofile(path) files = [] for e in po: files += [f[0] for f in e.occurrences] all_files = sorted(set(files)) translated_entities = [e for e in po if e.translated()] files = [] for e in translated_entities: files += [f[0] for f in e.occurrences] translated_files = sorted(set(files)) return translated_files == all_files
eeacbbc8ff068684e56d79e1aaa65d564b2e33ec
3,654,523
def pylm_component(name): """Decorator for registering a class to lightmetrica""" def pylm_component_(object): # Get base class base = object.__bases__[0] base.reg(object, name) return object return pylm_component_
531c7e3f224b824b438011d4be348a76154b3444
3,654,524
import torch def dice_score(input_mask, target_mask, eps=1e-5): """ input mask: (B * K, HW) #probabilities [0, 1] target_mask: (B * K, HW) #binary """ dims = tuple(range(1, input_mask.ndimension())) intersections = torch.sum(input_mask * target_mask, dims) #(B, N) cardinalities = torch.sum(input_mask + target_mask, dims) dice = ((2. * intersections + eps) / (cardinalities + eps)) return dice
8fbe4b7aaec4a45d7dec4705e4c3feb348250b64
3,654,525
def append_write(filename="", text=""): """ appends a string at the end of a text file (UTF8) and returns the number of characters added """ with open(filename, "a", encoding="utf-8") as f: f.write(text) return len(text)
6767f61b6624b82d732e7277507d03c3f4daf04a
3,654,526
import torch def psnr(img1, img2): """ compute PSNR between two images """ MSE = torch.mean((img1-img2)**2) return 10*torch.log10(1**2/MSE)
f216733631d224aa27f5c5a395c143c3768f8f28
3,654,527
def is_scalar(dims): """ Returns True if a dims specification is effectively a scalar (has dimension 1). """ return np.prod(flatten(dims)) == 1
d2f2f1a1f2dd66ec01d9e653315d37b4ee4990e1
3,654,528
def applyMinv(obj, inputs, shape_cache): """Simple wrapper around a component's applyMinv where we can reshape the arrays for each input and expand any needed array elements into full arrays. """ inputkeys = sorted(inputs.keys()) for key in inputkeys: pre_process_dicts(obj, key, inputs, shape_cache) pre_inputs = inputs.copy() inputs = obj.applyMinv(pre_inputs, inputs) # Result vector needs to be flattened. for key in reversed(inputkeys): post_process_dicts(key, inputs) # Clean out any leftover keys we added for key in inputs.keys(): if key not in inputkeys: inputs.pop(key) return inputs
9fd805408bea659f26eec93b430e450ea9228145
3,654,529
import json import requests import time def get_county_data(): """Get the raw data from coronavirus-tracker-api.herokuapp.com.""" url = ('https://coronavirus-tracker-api.herokuapp.com/v2/locations?source=csbs') raw_data = None while raw_data is None: try: raw_data = json.loads(requests.request('GET', url, verify=False).text) except: print('API Get for county-data failed.') pass time.sleep(5) # If HTTP Request fails, wait 5s and try again. return raw_data
33404a65e6242b7416304f7194dc2a5c7f073d5d
3,654,531
def r2lm(measured_y, estimated_y): """ r^2 based on the latest measured y-values (r2lm) Calculate r^2 based on the latest measured y-values. Measured_y and estimated_y must be vectors. Parameters ---------- measured_y: numpy.array or pandas.DataFrame estimated_y: numpy.array or pandas.DataFrame Returns ------- r2lm : float r^2 based on the latest measured y-values """ measured_y = np.array(measured_y).flatten() estimated_y = np.array(estimated_y).flatten() return float(1 - sum((measured_y - estimated_y) ** 2) / sum((measured_y[1:] - measured_y[:-1]) ** 2))
f75c89ca3f99659a3e2e12555a3968745fad1007
3,654,532
def G_to_NX_sparse(X, Y): """convert sparse adj matrix to NetworkX Graph""" Gs = [] N = len(Y) for n in range(N): x = X[n] G = nx.DiGraph() for i,j,w in x: G.add_edge(i,j, weight=w) Gs.append(G) return Gs, Y
8113ede05a0015119cceaa9c817b8bf3d46003c0
3,654,533
def pmf(k, n, a, b, loc=0): """JAX implementation of scipy.stats.betabinom.pmf.""" return lax.exp(logpmf(k, n, a, b, loc))
efba7202231dde7d0dec1e56df7a52dccf7135a0
3,654,534
def discrete_bottleneck(x, hidden_size, z_size, filter_size, name, mode=None, startup_steps=50000, bottleneck_kind='dvq', num_blocks=2, reshape_method='slice', projection_tensors=None, means=None, beta=0.25, noise_dev=1., decay=0.999, discrete_mix=0.5, random_top_k=1, soft_em=False, inv_temp=1.0, epsilon=1e-5, softmax_k=0, kl_warmup_steps=150000, ema=True, ema_count=None, ema_means=None, summary=True, dp_strength=1.0, dp_decay=1.0, dp_alpha=0.5, slo=False, slo_alpha=10, slo_beta=0.5, c_logits=None): """Discretization bottleneck for latent variables. Args: x: Input to the discretization bottleneck. hidden_size: Dimension of the latent state. z_size: Number of bits used to produce discrete code; discrete codes range from 1 to 2**z_size. filter_size: Filter size to be used for the embedding function. name: Name for the bottleneck scope. mode: Mode represents whether we are training or testing for bottlenecks that differ in behavior (Default: None). startup_steps: Number of steps after which latent predictor is trained (Default: 50000). bottleneck_kind: Kind of discretization bottleneck to use; one of dvq, semhash, gumbel-softmax (Default: dvq). num_blocks: Number of blocks to use for decomposed vector quantization. reshape_method: Method to reshape for DVQ (Default: slice). projection_tensors: If the reshape method is project, then these are the tensors used to project (Default: None). means: The embedding table for dvq (Default: None). beta: Beta factor for the DVQ loss (Default: 0.25). noise_dev: Stddev for noise added for semhash (Default: 0). decay: Decay factor for the exponential moving average (Default: 0.999). discrete_mix: Factor for mixing discrete and non-discrete input for semhash (Default: 0.5). random_top_k: Noisy top-k for DVQ (Default: 1). soft_em: If True then use soft EM rather than hard EM (Default: False). inv_temp: Inverse temperature for soft EM (Default: 1.) epsilon: Epsilon parameter for DVQ (Default: 1e-5). softmax_k: If > 1 then do top-k softmax (Default: 0). kl_warmup_steps: Number of steps for kl warmup (Default: 150000). ema: If True update embeddings using exponential moving averages (Default: True). ema_count: Table of counts for each embedding corresponding to how many examples in a batch it was the closest to (Default: None). ema_means: Exponentially averaged version of the embeddings (Default: None). summary: If True, then write summaries (Default: True). dp_strength: Strength of Dirichlet Process loss prior (Default: 1.0). dp_decay: Decay the dp_strength using an exponential decay using this term (Default: 1.0). dp_alpha: Alpha term (pseudo-count) in Dirichlet Process (Default: 0.5). slo: Smoothed L0 slo_alpha: alpha for smoothed L0 slo_beta: beta for smoothed L0 c_logits: a [num_blocks, block_size] tensor of logits for computing cluster probabilities. Returns: Embedding to pass to the decoder, discrete latent, loss, and the embedding function. Raises: ValueError: If projection_tensors is None for reshape_method project, or ema_count or ema_means is None if we are using ema, or unknown args. """ block_v_size = None if bottleneck_kind == 'dvq': # Define the dvq parameters assert means is not None # Check block dimensions add up if hidden_size % num_blocks != 0: raise ValueError('num_blocks does not divide hidden size') if 2**z_size % num_blocks != 0: raise ValueError('num_blocks does not divide embedding table size') block_v_size = 2**(z_size / num_blocks) block_v_size = int(block_v_size) # Set the reshape method corresponding to projections or slices if reshape_method == 'slice': reshape_fn = partial( slice_hidden, hidden_size=hidden_size, num_blocks=num_blocks) elif reshape_method == 'project': if projection_tensors is None: raise ValueError( 'Projection tensors is None for reshape_method project') reshape_fn = partial( project_hidden, projection_tensors=projection_tensors, hidden_size=hidden_size, num_blocks=num_blocks) else: raise ValueError('Unknown reshape_method') # Check if the ema settings make sense if ema: if ema_count is None: raise ValueError('ema_count is None but ema is True') if ema_means is None: raise ValueError('ema_means is None but ema is True') with tf.variable_scope(name, reuse=tf.AUTO_REUSE): l = tf.constant(0.0) if bottleneck_kind == 'dense': c = tf.layers.dense(x, z_size, name='vcc') h1 = tf.layers.dense(c, filter_size, name='vch1') elif bottleneck_kind == 'vae': c, l, _, _ = vae(x, z_size, 'vae') h1 = tf.layers.dense(c, filter_size, name='vch1') elif bottleneck_kind == 'semhash': c = tf.layers.dense(x, z_size, name='vcc') y_clean = common_layers.saturating_sigmoid(c) if summary: tf.summary.histogram('y_clean', tf.reshape(y_clean, [-1])) if noise_dev > 0 and mode == tf.estimator.ModeKeys.TRAIN: noise = tf.truncated_normal( common_layers.shape_list(c), mean=0.0, stddev=noise_dev) y = common_layers.saturating_sigmoid(c + noise) else: y = y_clean d = tf.to_float(tf.less(0.5, y)) y_discrete = tf.stop_gradient(d) + y - tf.stop_gradient(y) pd = common_layers.inverse_exp_decay(startup_steps * 2) pd *= discrete_mix pd = pd if mode == tf.estimator.ModeKeys.TRAIN else 1.0 c = tf.where( tf.less(tf.random_uniform([common_layers.shape_list(y)[0]]), pd), y_discrete, y) h1a = tf.layers.dense(c, filter_size, name='vch1a') h1b = tf.layers.dense(1.0 - c, filter_size, name='vch1b') h1 = h1a + h1b dx = tf.to_int32(tf.stop_gradient(d)) c = bit_to_int(dx, z_size) elif bottleneck_kind == 'gumbel-softmax': _, hot, l = gumbel_softmax(x, name, z_size, mode, softmax_k, kl_warmup_steps, summary) c = tf.argmax(hot, axis=-1) h1 = tf.layers.dense(hot, hidden_size, name='dae_dense') elif bottleneck_kind == 'dvq': c_probs = None if c_logits is not None: c_probs = tf.nn.softmax(c_logits, axis=-1) x_reshaped = reshape_fn(x) x_means_hot, x_means, q_loss, e_loss = embedding_lookup( x_reshaped, means, num_blocks, block_v_size, random_top_k, soft_em, inv_temp, ema_count, c_probs) # Get the discrete latent represenation x_means_idx = tf.argmax(x_means_hot, axis=-1) # Get the binary representation x_means_bits = int_to_bit( x_means_idx, num_bits=int(z_size / num_blocks), base=2) shape = common_layers.shape_list(x_means_bits) new_shape = shape[:-1] new_shape[-1] = z_size x_means_bits = tf.reshape(x_means_bits, shape=new_shape) c = bit_to_int(tf.to_int32(x_means_bits), num_bits=z_size, base=2) # Adjust shape of c shape_x = common_layers.shape_list(x) new_shape = shape_x[:-1] c = tf.reshape(c, new_shape) # Update the ema variables if ema: tf.logging.info('Using EMA with beta = {}'.format(beta)) updated_ema_count = moving_averages.assign_moving_average( ema_count, tf.reduce_sum( tf.reshape(x_means_hot, shape=[-1, num_blocks, block_v_size]), axis=0), decay, zero_debias=False) # Adding a term that puts a Dirichlet prior over cluster probabilities # Hopefully it'll encourage rich get richer behaviors dp_prior_loss = 0. slo_loss = 0. if dp_strength > 0.0: # Decay dp_strength over time to make it less important dp_strength = tf.train.exponential_decay( dp_strength, global_step=tf.to_int32(tf.train.get_global_step()), decay_steps=20000, decay_rate=dp_decay) dp_count = ema_count + dp_alpha p = dp_count / tf.reduce_sum(dp_count, 1, keepdims=True) dp_prior_loss = tf.log(p) dp_prior_loss = -1.0 * tf.reduce_sum(dp_prior_loss) dp_prior_loss /= (num_blocks * block_v_size) # if using smoothed L0 if slo: # expected log likelihood ell = tf.reduce_sum(ema_count * tf.log(c_probs)) # the prior component in the loss for MAP EM. slo_prior = slo_alpha * tf.reduce_sum(tf.exp(-1.*c_probs/slo_beta)) slo_loss = -1. * (ell + slo_prior)/(num_blocks * block_v_size) x_means_hot_flat = tf.reshape( x_means_hot, shape=[-1, num_blocks, block_v_size]) dw = tf.matmul( tf.transpose(x_means_hot_flat, perm=[1, 2, 0]), tf.transpose(x_reshaped, perm=[1, 0, 2])) updated_ema_means = moving_averages.assign_moving_average( ema_means, dw, decay, zero_debias=False) n = tf.reduce_sum(updated_ema_count, axis=-1, keep_dims=True) updated_ema_count = ((updated_ema_count + epsilon) / (n + 2**z_size * epsilon) * n) updated_ema_means /= tf.expand_dims(updated_ema_count, axis=-1) with tf.control_dependencies([e_loss]): update_means = tf.assign(means, updated_ema_means) with tf.control_dependencies([update_means]): l = beta * e_loss + dp_strength * dp_prior_loss + slo_loss else: l = q_loss + beta * e_loss x_means = tf.reshape(x_means, shape_x) x_reshaped = tf.reshape(x_reshaped, shape_x) h1 = x_reshaped + tf.stop_gradient(x_means - x_reshaped) else: raise ValueError('Unknown discretization method.') h2 = tf.layers.dense(tf.nn.relu(h1), filter_size, name='vch2') res = tf.layers.dense(tf.nn.relu(h2), hidden_size, name='vcfin') embed_fn = partial( embed, hidden_size=hidden_size, z_size=z_size, filter_size=filter_size, name=name, bottleneck_kind=bottleneck_kind, num_blocks=num_blocks, block_v_size=block_v_size, means=means) return res, c, l, embed_fn
ec1576b2b6a19a03995ec6dfb9a67592b925a28c
3,654,535
def binarize_categorical(x, ids): """ replace categorical feature with multiple binary ones """ x_ = np.zeros((x.shape[0], 1)) for idx in ids: x_ = np.hstack((x_, binarize_categorical_feature(x[:, idx:idx+1]))) x = np.delete(x, ids, axis=1) x = np.hstack((x, x_[:, 1:])) return x
625b551b437297c6a0c48f5ebfe2796c3be84c89
3,654,536
def import_json_dataset(fileset): """Returns a list of imported raw JSON data for every file in the fileset. """ d = [] for f in fileset: d.append(import_json_data(f)) return d
043720f9400cf2734598f6fe476077e004b8ef69
3,654,537
import math def angle_difference(angle1, angle2): """ Calculates the difference between the given angles in clockwise direction as radians. :param angle1: float :param angle2: float :return: float; between 0 and 2*Pi """ if (angle1 > 0 and angle2 >= 0) and angle1 > angle2: return abs(angle1 - angle2) elif (angle1 >= 0 and angle2 > 0) and angle1 < angle2: return 2 * math.pi + angle1 - angle2 elif (angle1 < 0 and angle2 <= 0) and angle1 < angle2: return 2 * math.pi + angle1 + abs(angle2) elif (angle1 <= 0 and angle2 < 0) and angle1 > angle2: return abs(angle1 - angle2) elif angle1 <= 0 < angle2: return 2 * math.pi + angle1 - angle2 elif angle1 >= 0 >= angle2: return angle1 + abs(angle2) else: return 0
377d1915e58a96b7f1526dceb31febf45c90567b
3,654,538
def merge_nd(nd_cdp, nd_lldp): """ Merge CDP and LLDP data into one structure """ neis = dict() nd = list() for n in nd_lldp: neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])] = n for n in nd_cdp: # Always prefer CDP, but grab description from LLDP if available if (n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int']) in n: if 'description' in neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])]: n['description'] = neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])]['description'] neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])] = n for n in neis: nd.append(neis[n]) return nd
90d55ffdabb6c28198ee4c59bc36fdcb6fa54e62
3,654,539
def combine_divisions(division): """Return the new pattern after the rules have been applied to every division""" size = int(sqrt(len(division))) matrix = [] for r in xrange(size): matrix.append([]) for c in xrange(r * size, (r + 1) * size): matrix[len(matrix) - 1].append(division[c]) return np.array((np.bmat(matrix)))
a112449421603a227e4ee470330aa1a1ece47762
3,654,540
import string def modified_greedy(sentences, tokenized, model, stopwords, original_indices, sent_representations, objective_function, min_sentence_length): """Implementation of the MMR summarizer as described in Lin & Bilmes (2010).""" # Initialize stuff # Ground set indices: all indices, stays constant throughout the function all_indices = tuple(range(len(original_indices))) # Candidate indices: all candidates (gets smaller every iteration) candidate_indices = list(range(len(original_indices))) # Summary indices: indices of represented sentences added to summary summary_indices = [] # Scaling factor (r) is taken from original paper: r = 0.3 scaling_factor = .3 # Tf-idf clustering, as described in Lin & Bilmes (2011) n_clusters = len(original_indices) // 5 k_means = KMeans(n_clusters=n_clusters, random_state=42) clustering = k_means.fit_predict(sent_representations) clustered_indices = [np.array(all_indices)[np.where(clustering == i)].tolist() for i in range(n_clusters)] # Make document vector (since w2v sentences are now sums, it is this easy): document_vector = np.sum(sent_representations, axis=0) # Pick the right sentences from sentence list (to match representation matrix) sentences = [sentences[i] for i in original_indices] tokenized = [tokenized[i] for i in original_indices] # Construct bag of words from representable sentences preprocessed = (sentence.lower().split(' ') for i, sentence in enumerate(tokenized)) # POS-tag filtering, and punctuation removal preprocessed = [[word.translate(str.maketrans('', '', string.punctuation)) for word in sentence] for sentence in preprocessed] # Remove OOV words sentence_words = [[word for word in sentence if word in model.model.vocab] for sentence in preprocessed] # Deduplicate & flatten bag_of_words = list(set([word for sentence in sentence_words for word in sentence])) # Look up in-vocabulary word vectors vectorized = [(word, model.model[word]) for word in bag_of_words] # Construct word similarity matrix for all words in article object names, vectors = zip(*vectorized) # word_distance_matrix = pairwise_distances(vectors, metric='euclidean') word_distance_matrix = pairwise_distances(vectors, metric='cosine') # Pandas workaround name_index_tuples = list(zip(list(range(len(names))), names)) # Fill diagonal with nan, to make sure it's never the minimum np.fill_diagonal(word_distance_matrix, np.nan) # Compute sentence similarity matrix based on sentence representations distance_matrix = pairwise_distances(sent_representations, metric='cosine') similarity_matrix = np.subtract(1, distance_matrix) np.fill_diagonal(similarity_matrix, np.nan) # Compute sentence lengths sentence_lengths = [len(s.split()) for s in sentences] length_scaler = np.power(sentence_lengths, scaling_factor).tolist() # Remove sentences that do not have similarity with other sentences from candidate set similarity_sum_per_sentence = np.nansum(similarity_matrix, axis=0) irrelevant_indices = np.where(similarity_sum_per_sentence == 0)[0].tolist() candidate_indices = [index for index in candidate_indices if index not in irrelevant_indices] # Already save the best singleton summary, for comparison to iterative result later singleton_scores = [objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, [i]) if sentence_lengths[i] <= 100 else np.nan for i in candidate_indices] best_singleton_score = np.nanmax(singleton_scores) # Note that the singleton index is directly translated to a sentence representation index best_singleton_index = candidate_indices[np.nanargmax(singleton_scores)] # Greedily add sentences to summary summary_length = 0 for iteration in range(len(sentence_lengths)): print("Iteration {}".format(iteration)) # Edge case: value of objective function when summary is empty. if iteration == 0: current_score = 0. else: current_score = objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, summary_indices) # Compute all relevant new scores new_scores = [objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, summary_indices+[i]) if sentence_lengths[i] > min_sentence_length else np.nan for i in candidate_indices] # If there are no candidates left, break the loop if all(np.isnan(score) for score in new_scores): break # Remove non-candidate elements from length scaler to fit arrays current_length_scaler = [v for i, v in enumerate(length_scaler) if i in candidate_indices] added_values = np.divide(np.subtract(new_scores, current_score), current_length_scaler) best_index = np.nanargmax(added_values) # Pass best index if the sentence does not increase MMR-score (+ empty summary edge case) if not new_scores[best_index] - current_score >= 0 and summary_indices: candidate_indices.pop(best_index) else: summary_indices.append(candidate_indices[best_index]) summary_length += sentence_lengths[candidate_indices[best_index]] candidate_indices.pop(best_index) if summary_length >= 100: break # Last step: compare singleton score with summary score, and pick best as summary final_summary_score = objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, summary_indices) if best_singleton_score >= final_summary_score: ranked_sentences = [sentences[i] for i in [best_singleton_index]] ranking = list(zip([best_singleton_index], ranked_sentences)) else: ranked_sentences = [sentences[i] for i in summary_indices] ranking = list(zip(summary_indices, ranked_sentences)) # Replace filtered indices with original ones ranking = [(original_indices[i], s) for i, s in ranking] return ranking
b542c025fe870e1e7d41d33349de10a395a17eb3
3,654,542
def noiseless(rho, unitary): """Returns the noiseless predictions.""" rhotilde = unitary @ rho @ unitary.conj().T elt = rhotilde[0, 0] if elt >= 0.49999999: return 0, elt return 1, elt
bfa265046361b159e7d264aa8312b75cd7a0df3f
3,654,543
def __get_service_info_from_thrift(root_path, idl_service, need_test_methods): """从指定IDL_Service和request_config配置表中,获取测试方法和Request的映射表""" customized_request_config = yaml.load( open(os.path.join(root_path, 'test_red', 'request_config.yaml'))) method_request = collections.OrderedDict() idl_method_request = dict([ (name[:-5], obj) for name, obj in inspect.getmembers(idl_service) if inspect.isclass(obj) and '_args' in name]) for method_name in need_test_methods: if customized_request_config and method_name in customized_request_config: method_request[method_name] = customized_request_config[method_name] elif method_name in idl_method_request: try: request_obj_name = idl_method_request[method_name].thrift_spec[2][3][0].__name__ method_request[method_name] = {__to_underscore(request_obj_name): request_obj_name} except Exception: print 'invalid method name: ' + method_name return method_request
0b736bb6b5411904bc28f887e6596c1242c324c9
3,654,544
def energy_calc(p, t): """ Calculates energy from power and time using the formula: energy = power * time Parameters ---------- p: Int or float The power value of the equation. t: Int or float The time value of the equation (seconds). Returns ------- Int p * t Raises ------ ValueError If p or t is not an integer or float. Examples -------- >>> school_algorithms.energy_calc(5, 2) 10 """ _if_not_int_or_float_raise(p, t) return p * t
7df3180fdb56989e62a69305763455edbfa44ebc
3,654,545
import logging def api_images_list_json(version): """ Return Docker Image listing https://docs.docker.com/engine/api/v1.41/#tag/Image :param version: Docker API version :return: string of fake images associated with honeypot. """ logging.info("images-list - %s, %s, %s, %s, %s" % ( version, request.remote_addr, request.user_agent, request.data, request.url)) req_objs = util.save_request_obj(request) customLog.info(req_objs) return API_RESP_IMAGES_JSON_LIST
083911840c02ddc79af5ed457c42a29a19f1c57f
3,654,547
def _handle_eval_return(self, result, col, as_pyranges, subset): """Handle return from eval. If col is set, add/update cols. If subset is True, use return series to subset PyRanges. Otherwise return PyRanges or dict of data.""" if as_pyranges: if not result: return pr.PyRanges() first_hit = list(result.values())[0] if isinstance(first_hit, pd.Series): if first_hit.dtype == bool and subset: return self[result] elif col: self.__setattr__(col, result) return self else: raise Exception( "Cannot return PyRanges when function returns a Series! Use as_pyranges=False." ) return pr.PyRanges(result) else: return result
84698bcb3b1f1e961ac7f3c4e347d65ce0790066
3,654,548
def compute_sigma0_sparse(V, dX, W_sensors, W_points, W_observations, column_dict): """ Computes the resulting standard deviation of the residuals for the current state of the bundle network. Parameters ---------- V : ndarray An array of residuals of the difference between registered measure and back projected ground points in image space. dX : ndarray The array of parameter updates ordered according to column_dict W_sensors : scipy.sparse.matrix The sensor weight matrix W_points : dict Dictionary that maps point IDs to their weight matrices. W_observations : ndarray The observation weight matrix (i.e.: measure weights) column_dict : dict Dictionary that maps serial numbers and point IDs to index ranges in dX Returns ------- : float64 Standard deviation of the residuals """ num_image_parameters = W_sensors.shape[0] num_observations = W_observations.shape[0] VTPV = V.dot(W_observations).dot(V) VTPV += dX[:num_image_parameters].dot(W_sensors.dot(dX[:num_image_parameters])) for point_id, W_p in W_points.items(): point_update = dX[column_dict[point_id][0]:column_dict[point_id][1]] VTPV += point_update.dot(W_p.dot(point_update)) dof = num_observations - num_image_parameters - 3 * len(W_points) return np.sqrt(VTPV/dof)
05606efe21d61f67539eae627caea976a532f85f
3,654,549
def fill(bitdef, value): """ Fill undefined bits with a value. For example ``1..0100.1`` becomes ``111010011`` when filled with 1s. Args: bitdef (str): The bitdef to fill. value (str): The value to fill with, "0" or "1". Returns: str: The filled bitdef. """ output = "" for bit in bitdef: if bit == ".": output += value else: output += bit return output
eef3ac59a2a7c4d1a25851a2ca14b3ffed6d1463
3,654,551
import requests import json def get_cman_info(state): """ Will take a list of congressmen and return the relevant attributes :param congress_list: list of divs that contain congress data :param state: state you are scraping :return: list of relevant scraped attributes """ cman_attrs = [] abbrev = states[state] r = requests.get(url_base + abbrev) d = json.loads(r.text) for cman in d['tweeters']: _id = cman.get('_id', '') dateOfBirth = cman.get('dateOfBirth', '') email = cman.get('email', '') facebookUserName = cman.get('facebookUserName', '') fullName = cman.get('fullName', '') gender = cman.get('gender', '') address = cman['office'].get('address', '') chamber = cman['office'].get('chamber', '') country = cman['office'].get('country', '') district = cman['office'].get('district', '') leadershipRole = cman['office'].get('leadershipRole', '') party = cman['office'].get('party', '') state = cman['office'].get('state', '') termEnd = cman['office'].get('termEnd', '') termStart = cman['office'].get('termStart', '') title = cman['office'].get('title', '') phone = cman.get('phone', '') profileImageSmall = cman.get('profileImageSmall', '') slug = cman.get('slug', '') followersCount = cman['twitterProfile'].get('followersCount', '') friendsCount = cman['twitterProfile'].get('friendsCount', '') idStr = cman['twitterProfile'].get('idStr', '') name = cman['twitterProfile'].get('name', '') profileImageUrl = cman['twitterProfile'].get('profileImageUrl', '') screenName = cman['twitterProfile'].get('screenName', '') statusesCount = cman['twitterProfile'].get('statusesCount', '') url = cman['twitterProfile'].get('url', '') verified = cman['twitterProfile'].get('verified', '') twitterUserName = cman.get('twitterUserName', '') website = cman.get('website', '') cman_attrs.append( [_id, dateOfBirth, email, facebookUserName, fullName, gender, address, chamber, country, district, leadershipRole, party, state, termEnd, termStart, title, phone, profileImageSmall, slug, followersCount, friendsCount, idStr, name, profileImageUrl, screenName, statusesCount, url, verified, twitterUserName, website]) return cman_attrs
afe180c4bbd930cfbfe42e28a769d07f2c4378cd
3,654,552
def concatenate_data(data, field='normalized_data'): """ Concatenate trial data in a list of dictionaries :param data: nested dict, contains all trial infos :param field: str, dict key in info dict in general data structure :return: """ time_series = np.concatenate([info[field] for info in data], axis=1) assert time_series.shape[0] == 306 return time_series
7f3dfb7aed2ffedf2124a9f57df0abf8491d1af6
3,654,553
def _find_weight_ops(op, graph, weights): """ Find the vars come from operators with weight. """ pre_ops = graph.pre_ops(op) for pre_op in pre_ops: ### if depthwise conv is one of elementwise's input, ### add it into this same search space if _is_depthwise(pre_op): for inp in pre_op.all_inputs(): if inp._var.persistable: weights.append(inp._var.name) if pre_op.type() in WEIGHT_OP and not _is_depthwise(pre_op): for inp in pre_op.all_inputs(): if inp._var.persistable: weights.append(inp._var.name) return weights return _find_weight_ops(pre_op, graph, weights) return weights
04e4a21079a3857815e39be3fe00e15aeac2f3b3
3,654,554
def get_GUI_presets_dict(): """Return a dictionary of all of the available potential functions.""" preset_dict = {'cosine_potential': np.array([3.14, -6.28, 12.57, 0.01, 0, 0, 0, 0]).astype(str), 'two_gaussian_potential': np.array([2.67, -4, 4, 0.01, 0, 0, 0, 0]).astype(str), 'pv_2D_potential': np.array([1.5, 0, 3.0, 0.01, 0.6, -2.0, 2.0, 0.01]).astype(str), 'muller_brown_potential': np.array([0, 0, 0, 0, 0, 0, 0, 0]).astype(str), 'C_Cl_potential': np.array([0, 0, 0, 0, 0, 0, 0, 0]).astype(str) } return preset_dict
0034ecdbde2f27e1b8db25a82231fca9bc79485c
3,654,555
def _escapeEnds(original): """Comment, function end. Escape comment end, because non-greedy becomes greedy in context. Example: blockCommentNonGreedy = '(\s*/\*[\s\S]+?\*/\s*){0,1}?' """ original = _escapeWildCard(original) commentEscaped = original \ .replace(commentEndEscape, commentEndEscapeEscape) \ .replace(commentEnd, commentEndEscape) return _escapeFunctionEnd(commentEscaped)
5a0df98f42d2df2b424cd6bfa7c533e0016557fe
3,654,556
def handle_bad_request(error: BadRequest) -> Response: """Render the base 400 error page.""" rendered = render_template("base/400.html", error=error, pagetitle="400 Bad Request") response: Response = make_response(rendered) response.status_code = status.BAD_REQUEST return response
70c6c835ef31839ff7b637443c414abbb549bcb0
3,654,557
import torch def top_k_top_p_filtering( logits: torch.FloatTensor, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ) -> torch.FloatTensor: """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) top_k (`int`, *optional*, defaults to 0): If > 0, only keep the top k tokens with highest probability (top-k filtering) top_p (`float`, *optional*, defaults to 1.0): If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimumber of tokens we keep per batch example in the output. From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)( None, logits ) if 0 <= top_p <= 1.0: logits = TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=min_tokens_to_keep)(None, logits) return logits
0c2f8392dcc6ada2afb1dc33575465e194a52199
3,654,558
def parseFimo(fimoFile, strand): """ parse the fimo.txt file Args: the fimo.txt file strand = single or double Returns: fimoDict: a dict between motif ID and a list of sequences it occurs in """ #dict to store for each motif list of seqs that it occurs in fimoDict = {} #read the fimo.txt file with open(fimoFile, 'rb') as handler: for line in handler: line = line.strip() #if re.search(r'#', line): #continue if re.search(r'stop', line): continue lineSplit = line.split() motifName = lineSplit[0] seqName = lineSplit[1] start = int(lineSplit[2]) stop = int(lineSplit[3]) pval = float(lineSplit[6]) #check of this is on the negative strand hit if strand == 'single' and inStrand == '-': continue if motifName not in fimoDict: fimoDict[motifName] = [] if seqName not in fimoDict[motifName]: fimoDict[motifName].append(seqName) #check the motifs print '\n\nfimo number of motifs:', len(fimoDict) #for motifName, seqList in fimoDict.items(): #print motifName #print '\t', seqList return fimoDict
ea6e0765c474e367653571e9a88e6449fc947ff5
3,654,559
def pad_batch_dimension_for_multiple_chains( observed_time_series, model, chain_batch_shape): """"Expand the observed time series with extra batch dimension(s).""" # Running with multiple chains introduces an extra batch dimension. In # general we also need to pad the observed time series with a matching batch # dimension. # # For example, suppose our model has batch shape [3, 4] and # the observed time series has shape `concat([[5], [3, 4], [100])`, # corresponding to `sample_shape`, `batch_shape`, and `num_timesteps` # respectively. The model will produce distributions with batch shape # `concat([chain_batch_shape, [3, 4]])`, so we pad `observed_time_series` to # have matching shape `[5, 1, 3, 4, 100]`, where the added `1` dimension # between the sample and batch shapes will broadcast to `chain_batch_shape`. [ # Extract mask and guarantee `event_ndims=2`. observed_time_series, is_missing ] = canonicalize_observed_time_series_with_mask(observed_time_series) event_ndims = 2 # event_shape = [num_timesteps, observation_size=1] model_batch_ndims = ( model.batch_shape.ndims if model.batch_shape.ndims is not None else tf.shape(model.batch_shape_tensor())[0]) # Compute ndims from chain_batch_shape. chain_batch_shape = tf.convert_to_tensor( value=chain_batch_shape, name='chain_batch_shape', dtype=tf.int32) if not chain_batch_shape.shape.is_fully_defined(): raise ValueError('Batch shape must have static rank. (given: {})'.format( chain_batch_shape)) if chain_batch_shape.shape.ndims == 0: # expand int `k` to `[k]`. chain_batch_shape = chain_batch_shape[tf.newaxis] chain_batch_ndims = tf.compat.dimension_value(chain_batch_shape.shape[0]) def do_padding(observed_time_series_tensor): current_sample_shape = tf.shape( observed_time_series_tensor)[:-(model_batch_ndims + event_ndims)] current_batch_and_event_shape = tf.shape( observed_time_series_tensor)[-(model_batch_ndims + event_ndims):] return tf.reshape( tensor=observed_time_series_tensor, shape=tf.concat([ current_sample_shape, tf.ones([chain_batch_ndims], dtype=tf.int32), current_batch_and_event_shape], axis=0)) # Padding is only needed if the observed time series has sample shape. observed_time_series = ps.cond(ps.rank(observed_time_series) > model_batch_ndims + event_ndims, lambda: do_padding(observed_time_series), lambda: observed_time_series) if is_missing is not None: is_missing = ps.cond(ps.rank(is_missing) > model_batch_ndims + event_ndims, lambda: do_padding(is_missing), lambda: is_missing) return missing_values_util.MaskedTimeSeries(observed_time_series, is_missing=is_missing)
ec072f3fa5318ee3f4c82dcc0d3697a5160b257f
3,654,560
from typing import Union import re def get_bytes(size: Union[str, int]) -> int: """Converts string representation of bytes to a number of bytes. If an integer is passed, it is returned as is (no conversion). Args: size (Union[str, int]): A string or integer representation of bytes to be converted. (eg. "0.3 Gib", "3mb", "1024", 65536) Returns: int: A number of bytes represented by the input string or integer. Exceptions: ValueError: If the input string cannot be converted to an integer. TypeError: If the input string is not a string or integer. """ if isinstance(size, int): if size < 0: raise ValueError("Negative size not allowed.") return size if not isinstance(size, str): raise TypeError("Size must be a string or integer.") m = re.match(r"^\s*(?P<size>(([1-9]\d+)|\d)(\.\d+)?)\s*(?P<unit>[a-z]{1,3})?\s*$", size, re.IGNORECASE) if not m: raise ValueError(f"Invalid size string ('{size}').") parsed_size = float(m.group("size")) unit_match = m.group("unit") if unit_match: parsed_unit = unit_match.lower() else: parsed_unit = "b" # default to bytes if parsed_unit not in BYTES_UNIT: raise ValueError(f"Invalid unit ('{parsed_unit}').") return int(parsed_size * BYTES_UNIT[parsed_unit])
76cd67a0d581b79105a79bc84d66126d3201b07a
3,654,561
def port_translation_func(req: AdvancedDataTypeRequest) -> AdvancedDataTypeResponse: """ Convert a passed in AdvancedDataTypeRequest to a AdvancedDataTypeResponse """ resp: AdvancedDataTypeResponse = { "values": [], "error_message": "", "display_value": "", "valid_filter_operators": [ FilterStringOperators.EQUALS, FilterStringOperators.GREATER_THAN_OR_EQUAL, FilterStringOperators.GREATER_THAN, FilterStringOperators.IN, FilterStringOperators.LESS_THAN, FilterStringOperators.LESS_THAN_OR_EQUAL, ], } if req["values"] == [""]: resp["values"].append([""]) return resp for val in req["values"]: string_value = str(val) try: if string_value.isnumeric(): if not 1 <= int(string_value) <= 65535: raise ValueError resp["values"].append( [int(string_value)] if string_value.isnumeric() else port_conversion_dict[string_value] ) except (KeyError, ValueError): resp["error_message"] = str( f"'{string_value}' does not appear to be a port name or number" ) break else: resp["display_value"] = ", ".join( map( lambda x: f"{x['start']} - {x['end']}" if isinstance(x, dict) else str(x), resp["values"], ) ) return resp
b8c41d8c3d3c2fa0a9e67b8ef9ff93422921e7e3
3,654,562
import random def get_two_diff_order_index(start=0, stop=1, order=True, diff=True): """ Returns two integers from a range, they can be: put in order (default) or unordered always different(default) or can be repeated start - integer (default = 0) stop - integer (default= 1) order - boolean ( default= True) """ my_range = stop - start first = int(my_range * random())+start second = int(my_range * random())+start #first = randint(start, stop) #second = randint(start, stop) if diff: while first == second: second = int( my_range * random()) + start #second = randint(start, stop) if order: if first > second: second, first = first, second return first, second
7bd0e17efb969ea59e7a30d8fdaae55d901a718e
3,654,564
import math def GriewankRosenbrock(arr: np.ndarray, seed: int = 0) -> float: """Implementation for BBOB GriewankRosenbrock function.""" dim = len(arr) r_x = np.matmul(_R(dim, seed, b"R"), arr) # Slightly off BBOB documentation in order to center optima at origin. # Should be: max(1.0, (dim**0.5) / 8.0) * r_x + 0.5 * np.ones((dim,)). z_arr = max(1.0, (dim**0.5) / 8.0) * r_x + np.ones((dim,)) s_arr = np.zeros(dim) for i in range(dim - 1): s_arr[i] = 100.0 * (z_arr[i]**2 - z_arr[i + 1])**2 + (z_arr[i] - 1)**2 total = 0.0 for i in range(dim - 1): total += (s_arr[i] / 4000.0 - math.cos(s_arr[i])) return (10.0 * total) / (dim - 1) + 10
9a9ca4f043e60fb971c5212de33379c29aaade58
3,654,566
def listCurrentAuctionsByKeyword(username, keyword): """Listar os leilões que estão a decorrer""" try: valid = utils.validateTypes([keyword], [str]) if not valid: return jsonify({'erro': 404}) auctions = db.listAuctions(keyword) if auctions == "noResults": db.connection.commit() return jsonify({'Ups': 'Sem resultados para esta pesquisa!'}) db.connection.commit() return jsonify(auctions) except Exception as e: db.connection.rollback() print(e) return jsonify({'erro': 401})
c02c58a294b3d65821f36872dcf23e4f7abff49b
3,654,567
from typing import Dict def hash_dict(data: Dict) -> int: """ Hashes a Dictionary recursively. List values are converted to Tuples. WARNING: Hashing nested dictionaries is expensive. """ cleaned_dict: Dict = {} def _clean_dict(data: Dict) -> Dict: d: Dict = {} for k, v in data.items(): if isinstance(v, list) or isinstance(v, set): d[k] = tuple(v) elif isinstance(v, dict): d[k] = hash_dict(v) else: d[k] = v return d cleaned_dict = _clean_dict(data) return hash(tuple(sorted(cleaned_dict.items())))
42b579151c90a42fadf2b53751978eec421ea03c
3,654,569
def instrument_packages_ip_template(instrument, ip_version, template_name=None): """ Retrieves the specified instrument package template metadata :param instrument: instrument used to make observation :type instrument: str :param ip_version: ip version description here :type ip_version: float :param template_name: template name description goes here :type template_name: str :rtype: InstrumentPackage """ # if connexion.request.is_json: # instrument = InstrumentEnum.from_dict(connexion.request.get_json()) if template_name: return {template_name: get_template_metadata(template_name, ip_version)} query = {"instrument": instrument.upper(), "version": ip_version} fields = {"template_names": 1, "_id": 0} templates = utils.get_fields_by_query(query, fields, 'ipCollect') metadata = {} for template_name in templates["template_names"]: metadata[template_name] = get_template_metadata(template_name, ip_version) return metadata
46d3cd57e05a64c03411c31d2b18ca47f670036d
3,654,571
from typing import Literal def add_feature_metadata(id, description, type): """Generate RDF metadata for a feature :param id: if used to identify the feature :param description: feature description :param type: feature type :return: rdflib graph after loading the feature """ g = Graph() feature_uri = URIRef(OPENPREDICT_NAMESPACE + 'feature/' + id) g.add((feature_uri, RDF.type, MLS['Feature'])) g.add((feature_uri, DC.identifier, Literal(id))) g.add((feature_uri, DC.description, Literal(description))) g.add((feature_uri, OPENPREDICT['embedding_type'], Literal(type))) insert_graph_in_sparql_endpoint(g) return g
0d4987807b3ed97baa50f8b14c588ef162b5c8ac
3,654,572
import copy def sink(input_flow_direction_raster): """ Creates a raster layer identifying all sinks or areas of internal drainage. The value type for the Sink function output raster layer is floating point. For more information, see https://pro.arcgis.com/en/pro-app/help/data/imagery/sink-function.htm Parameters ---------- :param input_flow_direction_raster: The input raster that shows the direction of flow out of each cell. The flow direction raster can be created by running the Flow Direction function. :return: output raster with function applied """ layer, input_flow_direction_raster, raster_ra = _raster_input(input_flow_direction_raster) template_dict = { "rasterFunction" : "GPAdapter", "rasterFunctionArguments" : { "toolName" : "Sink_sa", "PrimaryInputParameterName" : "in_flow_direction_raster", "OutputRasterParameterName" : "out_raster", "in_flow_direction_raster" : input_flow_direction_raster } } function_chain_ra = copy.deepcopy(template_dict) function_chain_ra["rasterFunctionArguments"]["in_flow_direction_raster"] = raster_ra return _gbl_clone_layer(layer, template_dict, function_chain_ra)
6d1b22dacd48a0939b7822d62a4867b2b7574c42
3,654,573
def bad_multi_examples_per_input_estimator_out_of_range_input_refs( export_path, eval_export_path): """Like the above (good) estimator, but the input_refs is out of range.""" estimator = tf.estimator.Estimator(model_fn=_model_fn) estimator.train(input_fn=_train_input_fn, steps=1) return util.export_model_and_eval_model( estimator=estimator, serving_input_receiver_fn=_serving_input_receiver_fn, eval_input_receiver_fn=( _bad_eval_input_receiver_fn_out_of_range_input_refs), export_path=export_path, eval_export_path=eval_export_path)
539ec039451c53db72cb676881f48fbe45874dfa
3,654,574
def vector_to_diagonal(v): """Converts a vector to a diagonal matrix with vector elements as the diagonal elements of the matrix""" diag_matrix = [[0 for i in range(len(v))] for j in range(len(v))] for i in range(len(v)): diag_matrix[i][i] = v[i] return diag_matrix
6cbaf54a083633a47af92acc7f69421ed68a1c0b
3,654,575
from typing import Union from pathlib import Path from typing import List def _get_filenames(path: Union[str, Path], media_type: MediaType) -> List[str]: """ Get filenames from a directory or a path to a file. :param path: Path to the file or to the location that contains files. :param media_type: Type of the media (image or video) :example: >>> path = "../images" >>> _get_filenames(path, media_type=MediaType.image) ['images/4.jpeg', 'images/1.jpeg', 'images/5.jpeg', 'images/3.jpeg', 'images/2.jpeg'] """ extensions = _get_extensions(media_type) filenames: List[str] = [] if media_type == MediaType.camera: raise ValueError( "Cannot get filenames for camera. Only image and video files are supported." ) if isinstance(path, str): path = Path(path) if path.is_file(): if _is_file_with_supported_extensions(path, extensions): filenames = [path.as_posix()] else: raise ValueError("Extension not supported for media type") if path.is_dir(): for filename in path.rglob("*"): if _is_file_with_supported_extensions(filename, extensions): filenames.append(filename.as_posix()) filenames = natsorted(filenames) # type: ignore[assignment] if len(filenames) == 0: raise FileNotFoundError(f"No {media_type.name} file found in {path}!") return filenames
953bcfce17c6db45772a8eac8890fa161c128322
3,654,576
from venusian import attach def method(method_class): """Decorator to use to mark an API method. When invoking L{Registry.scan} the classes marked with this decorator will be added to the registry. @param method_class: The L{Method} class to register. """ def callback(scanner, name, method_class): if method_class.actions is not None: actions = method_class.actions else: actions = [name] if method_class.versions is not None: versions = method_class.versions else: versions = [None] for action in actions: for version in versions: scanner.registry.add(method_class, action=action, version=version) attach(method_class, callback, category="method") return method_class
4e40d265a4a5767686f0e37b4d1adf681ce36722
3,654,577
def generic_validator(check, error_message): """ Validator factory >>> v = generic_validator(is_int, "invalid int") >>> v(6) 6 >>> v("g") Traceback (most recent call last): ... ValidationError: [u'invalid int'] """ # Validator closure def inner_validator(value, *args, **kwargs): if not check(value): raise ValidationError(error_message) return value return inner_validator
21134ecee1d8c23b10e94181c0c1aa602ce4b76e
3,654,578
def get_molec_shape(mol, conf, confId, vdwScale=1.0, boxMargin=2.0, spacing=0.2): """ Get the shape of a conformer of a molecule as a grid representation. """ box = Chem.ComputeConfBox(conf) sideLen = (box[1].x-box[0].x + 2*boxMargin, box[1].y-box[0].y + 2*boxMargin, box[1].z-box[0].z + 2*boxMargin) shape = rdGeometry.UniformGrid3D(2*sideLen[0], 2*sideLen[1], 2*sideLen[2], spacing=spacing) Chem.EncodeShape( mol, shape, confId=confId, ignoreHs=False, vdwScale=vdwScale ) return box, sideLen, shape
6a7b404224a116a52d70f7ab14d4301215c1700f
3,654,579
import math def autoencoder(dimensions=[784, 512, 256, 64]): """Build a deep denoising autoencoder w/ tied weights. Parameters ---------- dimensions : list, optional The number of neurons for each layer of the autoencoder. Returns ------- x : Tensor Input placeholder to the network z : Tensor Inner-most latent representation y : Tensor Output reconstruction of the input cost : Tensor Overall cost to use for training """ # input to the network x = tf.placeholder(tf.float32, [None, dimensions[0]], name='x') # Probability that we will corrupt input. # This is the essence of the denoising autoencoder, and is pretty # basic. We'll feed forward a noisy input, allowing our network # to generalize better, possibly, to occlusions of what we're # really interested in. But to measure accuracy, we'll still # enforce a training signal which measures the original image's # reconstruction cost. # # We'll change this to 1 during training # but when we're ready for testing/production ready environments, # we'll put it back to 0. corrupt_prob = tf.placeholder(tf.float32, [1]) current_input = corrupt(x) * corrupt_prob + x * (1 - corrupt_prob) # Build the encoder encoder = [] for layer_i, n_output in enumerate(dimensions[1:]): n_input = int(current_input.get_shape()[1]) W = tf.Variable( tf.random_uniform([n_input, n_output], -1.0 / math.sqrt(n_input), 1.0 / math.sqrt(n_input))) b = tf.Variable(tf.zeros([n_output])) encoder.append(W) output = tf.nn.tanh(tf.matmul(current_input, W) + b) current_input = output # latent representation z = current_input encoder.reverse() # Build the decoder using the same weights for layer_i, n_output in enumerate(dimensions[:-1][::-1]): W = tf.transpose(encoder[layer_i]) b = tf.Variable(tf.zeros([n_output])) output = tf.nn.tanh(tf.matmul(current_input, W) + b) current_input = output # now have the reconstruction through the network y = current_input # cost function measures pixel-wise difference cost = tf.sqrt(tf.reduce_mean(tf.square(y - x))) return {'x': x, 'z': z, 'y': y, 'corrupt_prob': corrupt_prob, 'cost': cost}
d9cc8b6f2c8e7df0bc4fb580e1de20dc57f93c7a
3,654,580
def _asymptotic_expansion_of_normalized_black_call(h, t): """ Asymptotic expansion of b = Φ(h+t)·exp(x/2) - Φ(h-t)·exp(-x/2) with h = x/s and t = s/2 which makes b = Φ(h+t)·exp(h·t) - Φ(h-t)·exp(-h·t) exp(-(h²+t²)/2) = --------------- · [ Y(h+t) - Y(h-t) ] √(2π) with Y(z) := Φ(z)/φ(z) for large negative (t-|h|) by the aid of Abramowitz & Stegun (26.2.12) where Φ(z) = φ(z)/|z|·[1-1/z^2+...]. We define r A(h,t) := --- · [ Y(h+t) - Y(h-t) ] t with r := (h+t)·(h-t) and give an expansion for A(h,t) in q:=(h/r)² expressed in terms of e:=(t/h)² . :param h: :type h: float :param t: :type t: float :return: :rtype: float """ e = (t / h) * (t / h) r = ((h + t) * (h - t)) q = (h / r) * (h / r) # 17th order asymptotic expansion of A(h,t) in q, sufficient for Φ(h) [and thus y(h)] to have relative accuracy of 1.64E-16 for h <= η with η:=-10. asymptotic_expansion_sum = (2.0 + q * (-6.0E0 - 2.0 * e + 3.0 * q * (1.0E1 + e * (2.0E1 + 2.0 * e) + 5.0 * q * ( -1.4E1 + e * (-7.0E1 + e * (-4.2E1 - 2.0 * e)) + 7.0 * q * ( 1.8E1 + e * (1.68E2 + e * (2.52E2 + e * (7.2E1 + 2.0 * e))) + 9.0 * q * ( -2.2E1 + e * (-3.3E2 + e * (-9.24E2 + e * (-6.6E2 + e * (-1.1E2 - 2.0 * e)))) + 1.1E1 * q * ( 2.6E1 + e * (5.72E2 + e * ( 2.574E3 + e * (3.432E3 + e * (1.43E3 + e * (1.56E2 + 2.0 * e))))) + 1.3E1 * q * ( -3.0E1 + e * (-9.1E2 + e * (-6.006E3 + e * (-1.287E4 + e * ( -1.001E4 + e * (-2.73E3 + e * (-2.1E2 - 2.0 * e)))))) + 1.5E1 * q * ( 3.4E1 + e * (1.36E3 + e * (1.2376E4 + e * (3.8896E4 + e * ( 4.862E4 + e * (2.4752E4 + e * ( 4.76E3 + e * (2.72E2 + 2.0 * e))))))) + 1.7E1 * q * ( -3.8E1 + e * (-1.938E3 + e * (-2.3256E4 + e * ( -1.00776E5 + e * (-1.84756E5 + e * ( -1.51164E5 + e * (-5.4264E4 + e * ( -7.752E3 + e * ( -3.42E2 - 2.0 * e)))))))) + 1.9E1 * q * ( 4.2E1 + e * (2.66E3 + e * (4.0698E4 + e * ( 2.3256E5 + e * (5.8786E5 + e * ( 7.05432E5 + e * (4.0698E5 + e * ( 1.08528E5 + e * (1.197E4 + e * ( 4.2E2 + 2.0 * e))))))))) + 2.1E1 * q * ( -4.6E1 + e * (-3.542E3 + e * ( -6.7298E4 + e * ( -4.90314E5 + e * ( -1.63438E6 + e * ( -2.704156E6 + e * ( -2.288132E6 + e * ( -9.80628E5 + e * ( -2.01894E5 + e * ( -1.771E4 + e * ( -5.06E2 - 2.0 * e)))))))))) + 2.3E1 * q * ( 5.0E1 + e * ( 4.6E3 + e * ( 1.0626E5 + e * ( 9.614E5 + e * ( 4.08595E6 + e * ( 8.9148E6 + e * ( 1.04006E7 + e * ( 6.53752E6 + e * ( 2.16315E6 + e * ( 3.542E5 + e * ( 2.53E4 + e * ( 6.0E2 + 2.0 * e))))))))))) + 2.5E1 * q * ( -5.4E1 + e * ( -5.85E3 + e * ( -1.6146E5 + e * ( -1.77606E6 + e * ( -9.37365E6 + e * ( -2.607579E7 + e * ( -4.01166E7 + e * ( -3.476772E7 + e * ( -1.687257E7 + e * ( -4.44015E6 + e * ( -5.9202E5 + e * ( -3.51E4 + e * ( -7.02E2 - 2.0 * e)))))))))))) + 2.7E1 * q * ( 5.8E1 + e * ( 7.308E3 + e * ( 2.3751E5 + e * ( 3.12156E6 + e * ( 2.003001E7 + e * ( 6.919458E7 + e * ( 1.3572783E8 + e * ( 1.5511752E8 + e * ( 1.0379187E8 + e * ( 4.006002E7 + e * ( 8.58429E6 + e * ( 9.5004E5 + e * ( 4.7502E4 + e * ( 8.12E2 + 2.0 * e))))))))))))) + 2.9E1 * q * ( -6.2E1 + e * ( -8.99E3 + e * ( -3.39822E5 + e * ( -5.25915E6 + e * ( -4.032015E7 + e * ( -1.6934463E8 + e * ( -4.1250615E8 + e * ( -6.0108039E8 + e * ( -5.3036505E8 + e * ( -2.8224105E8 + e * ( -8.870433E7 + e * ( -1.577745E7 + e * ( -1.472562E6 + e * ( -6.293E4 + e * ( -9.3E2 - 2.0 * e)))))))))))))) + 3.1E1 * q * ( 6.6E1 + e * ( 1.0912E4 + e * ( 4.74672E5 + e * ( 8.544096E6 + e * ( 7.71342E7 + e * ( 3.8707344E8 + e * ( 1.14633288E9 + e * ( 2.07431664E9 + e * ( 2.33360622E9 + e * ( 1.6376184E9 + e * ( 7.0963464E8 + e * ( 1.8512208E8 + e * ( 2.7768312E7 + e * ( 2.215136E6 + e * ( 8.184E4 + e * ( 1.056E3 + 2.0 * e))))))))))))))) + 3.3E1 * ( -7.0E1 + e * ( -1.309E4 + e * ( -6.49264E5 + e * ( -1.344904E7 + e * ( -1.4121492E8 + e * ( -8.344518E8 + e * ( -2.9526756E9 + e * ( -6.49588632E9 + e * ( -9.0751353E9 + e * ( -8.1198579E9 + e * ( -4.6399188E9 + e * ( -1.6689036E9 + e * ( -3.67158792E8 + e * ( -4.707164E7 + e * ( -3.24632E6 + e * ( -1.0472E5 + e * ( -1.19E3 - 2.0 * e))))))))))))))))) * q))))))))))))))))) b = ONE_OVER_SQRT_TWO_PI * np.exp((-0.5 * (h * h + t * t))) * (t / r) * asymptotic_expansion_sum return np.abs(np.maximum(b, 0))
9985b36e7f0dec1877d275a23ae747d9a57c1163
3,654,581
def date_read(date_string, *, convert_to_current_timezone: bool = False): """Read the given date (if possible).""" return date_parse(date_string, convert_to_current_timezone=convert_to_current_timezone)
96f21f7fcae995a9a17f6008c8e5a4161ed971f2
3,654,582
import urllib def encode_name(name): """ Encode a unicode as utf-8 and then url encode that string. Use for entity titles in URLs. """ return urllib.quote(name.encode('utf-8'), safe='')
6e9d34516613ecdf0ce94fb9cfc594de7e76b72f
3,654,583
def cmp_str(element1, element2): """ compare number in str format correctley """ try: return cmp(int(element1), int(element2)) except ValueError: return cmp(element1, element2)
7c8df75bc1b1ad3997db4a4d6f1b58a37c4e1dd7
3,654,584
def post(text, appid=2, touser=None, toparty=None): """ party """ #print '=========',type(text) if type(text) is unicode: text = text.encode('utf8') if not touser: touser = [] if not toparty: toparty = ['2'] url = 'https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token={access_token}' url = url.format(access_token=get_access_token()) data = {"touser": "|".join(touser), "toparty": "|".join(toparty), "msgtype": "text", "agentid": str(appid), "text": {"content": text}, "safe": "0", } result = requests.post(url, data=json.dumps(data, ensure_ascii=False)) print result.text return result
b2a92a274007b0502431a856457a244c12b925a9
3,654,587
import six import codecs def hex_encrypt(msg): """Hex encrypts a message. :param bytes msg: string message to be encrypted. :return: string for encrypted version of msg in hex. :rtype: bytes """ if not cipher: return msg if not isinstance(msg, six.binary_type): raise ValueError('only bytes can be encrypted') msg = cipher.encrypt(_pad(msg)) msg = codecs.encode(msg, 'hex') return msg
c2d913d181b8ceb33b3e7d99fc5f21b025da58ea
3,654,588
import regex async def filter_by_game_stats(opsdroid, string, room, action): """Match incoming messages against the current games stats.""" if room not in STAT_REGEXES.keys(): gamestats = await get_stat_names(opsdroid, room) if not gamestats: return [] STAT_REGEXES[room] = {"set": regex.compile(f"(?:(?:{'|'.join(['!'+s for s in gamestats])}) {MODIFIER_REGEX})", flags=regex.IGNORECASE), "roll": regex.compile("|".join(gamestats), flags=regex.IGNORECASE)} stats = STAT_REGEXES[room][action].findall(string) return stats
4971e5567c8a1b89aa47fdaab2e42e51620f475b
3,654,590
def password_provider(): """ Provides the full password check """ return [(n,) for n in range(5)]
afdb188844e4b0979528b290477130313679e4df
3,654,591
def make_combiparameter(*args, **kwargs): """ Make a combined qcodes parameter. Args: *args : list of gates or parameters (e.g. make_combiparameter("A1", "A3", station.gates.B1 )) """ station = qc.Station.default parameters = [] for i in args: if type(i) == str: parameters.append(getattr(station.gates, i)) else: parameters.append(i) label = "" for i in parameters: label += i.label + " " try: name = kwargs['name'] except: name = 'combi_par' return combi_par(parameters, label, name)
6482187dc463c67e322a281181ba827eb39eb28d
3,654,592
def get_delta_fmt(delta): """arbitrary colour formatting of rank delta more red for bigger losses, more green for bigger gains """ col = (0, 0, 0, 255) n = abs(delta) s = delta if delta < 0: sat = min(n/200 + 0.2, 1) r, g, b = hsv_to_rgb(0, sat, 1) col = (r, g, b, 1) else: s = "+"+str(n) sat = min(n/100 + 0.2, 1) r, g, b = hsv_to_rgb(1/3, sat, 1) col = (r, g, b, 1) return "(" + str(s) + ")", col
a7860df4f19632c9623c39c38ac70a76f405ae56
3,654,593
def fit_pk_parms_1d(p0, x, f, pktype='pvoigt'): """ Performs least squares fit to find parameters for 1d analytic functions fit to diffraction data Required Arguments: p0 -- (m) ndarray containing initial guesses for parameters for the input peaktype x -- (n) ndarray of coordinate positions f -- (n) ndarray of intensity measurements at coordinate positions x pktype -- string, type of analytic function that will be used to fit the data, current options are "gaussian","lorentzian","pvoigt" (psuedo voigt), and "split_pvoigt" (split psuedo voigt) Outputs: p -- (m) ndarray containing fit parameters for the input peaktype (see peak function help for what each parameters corresponds to) Notes: 1. Currently no checks are in place to make sure that the guess of parameters has a consistent number of parameters with the requested peak type """ weight = np.max(f)*10. # hard coded should be changed fitArgs = (x, f, pktype) if pktype == 'gaussian': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, Dfun=eval_pk_deriv_1d, ftol=ftol, xtol=xtol ) elif pktype == 'lorentzian': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, Dfun=eval_pk_deriv_1d, ftol=ftol, xtol=xtol ) elif pktype == 'pvoigt': lb = [p0[0]*0.5, np.min(x), 0., 0., 0., None] ub = [p0[0]*2.0, np.max(x), 4.*p0[2], 1., 2.*p0[4], None] fitArgs = (x, f, pktype, weight, lb, ub) p, outflag = optimize.leastsq( fit_pk_obj_1d_bnded, p0, args=fitArgs, ftol=ftol, xtol=xtol ) elif pktype == 'split_pvoigt': lb = [p0[0]*0.5, np.min(x), 0., 0., 0., 0., 0., None] ub = [p0[0]*2.0, np.max(x), 4.*p0[2], 4.*p0[2], 1., 1., 2.*p0[4], None] fitArgs = (x, f, pktype, weight, lb, ub) p, outflag = optimize.leastsq( fit_pk_obj_1d_bnded, p0, args=fitArgs, ftol=ftol, xtol=xtol ) elif pktype == 'tanh_stepdown': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, ftol=ftol, xtol=xtol) elif pktype == 'dcs_pinkbeam': lb = np.array([0.0, x.min(), -100., -100., -100., -100., 0., 0., -np.inf, -np.inf, -np.inf]) ub = np.array([np.inf, x.max(), 100., 100., 100., 100., 10., 10., np.inf, np.inf, np.inf]) res = optimize.least_squares( fit_pk_obj_1d, p0, jac='2-point', bounds=(lb, ub), method='trf', args=fitArgs, ftol=ftol, xtol=xtol) p = res['x'] outflag = res['success'] else: p = p0 print('non-valid option, returning guess') if np.any(np.isnan(p)): p = p0 print('failed fitting, returning guess') return p
52dbff47fd8ad6f7727b0241bba48d2b10393a18
3,654,596
def tract_segmentation_single_example_lap (kdt_T_A, prototypes_T_A,sid, num_NN,T_A ): """ step 1: tract segmentation from a single example using Jonker-Volgenant algorithm (LAPJV) """ E_t_filename= 'data/example/'+ str(sid) +'_'+str(tract_name)+'.trk' print("Loading Example tract: %s" % E_t_filename) E_t, hdr= load(E_t_filename, threshold_short_streamlines=threshold_short_streamlines) dm_E_t= dissimilarity(E_t, prototypes_T_A,bundles_distances_mam) #compute the NN of the example tract in order to construcse the cost matrix NN_E_t_NN_Idx= NN (kdt_T_A, dm_E_t,num_NN) print("Computing the cost matrix with mam distance (%s x %s) for RLAP " % (len(E_t), len( NN_E_t_NN_Idx))) cost_matrix = bundles_distances_mam_smarter_faster(E_t, T_A[NN_E_t_NN_Idx]) print("Computing optimal assignmnet with LAPJV") assignment = LinearAssignment(cost_matrix).solution min_cost_values= cost_matrix[np.arange(len(cost_matrix)), assignment] return NN_E_t_NN_Idx[assignment], min_cost_values, len(E_t)
cc14e598f359fc9b92995bdc3a6a98192333b800
3,654,599
def url(method): """对于每一个URL的请求访问装饰器,在出错时返回对应的信息""" @wraps(method) def error_handler(*args, **kwargs): try: return success(method(*args, **kwargs)) except RequestError as r: current_app.logger.exception(r) # 返回对应异常类的字符串文档 return failed(reason=r.err_num(), message=r.err_msg()) except Exception as e: current_app.logger.exception(e) return failed() return error_handler
cb2c36981372738b6b708d4e28566d4bb8ffcd90
3,654,600
def is_abbreviation(sentence): """ Evaluate a word to be an abbreviation if the immediate word before the period contains a capital letter and not a single word sentence. """ sentence_split = sentence.split(" ") if len(sentence_split) == 1: return False elif len(sentence_split[-1]) <= 3 and \ any(x.isupper() for x in sentence_split[-1]): return True else: return False
a6f6ceae5b3b9adb7817a913e80a6af86b6d27d5
3,654,601
def compose_redis_key(vim_name, identifier, identifier_type="vdu"): """Compose the key for redis given vim name and vdu uuid Args: vim_name (str): The VIM name identifier (str): The VDU or VNF uuid (NFVI based) identifier_type (str): the identifier type. Default type is vdu. Also vnf is supported. Returns: str: the key for redis """ if identifier_type == "vnf": return "{}:vnf#{}".format(vim_name.lower(), identifier) else: return "{}:{}".format(vim_name.lower(), identifier)
e9a03cf9ff704fea8b9cdf75c59695568e366649
3,654,602
def calGridID(locs, id, SPLIT = 0.0005): """ 根据城市网格编号还原经纬度信息 :param locs: :param id: :param SPLIT=0.05: """ centerincrement = SPLIT/2.0 LNGNUM = int((locs['east'] - locs['west']) / SPLIT + 1) latind = int(id / LNGNUM) lngind = id - latind * LNGNUM lat = (locs['south'] + latind * SPLIT) lng = (locs['west'] + lngind * SPLIT) lngcen = (lng + centerincrement) latcen = (lat + centerincrement) return "%.3f,%.3f" % (latcen, lngcen) # { # 'lat': latcen, # 'lng': lngcen # }
8df119ff82bc1d3c14dbdfe358af6d956d6a52a2
3,654,603
def linear(x, *p): """[summary] Arguments: x {[type]} -- [description] Returns: [type] -- [description] """ return p[0] * x + p[1]
07ef5fc7c5e78148528cccd09fe14c37cad22ead
3,654,604
def convert_price_text(t): """ convert "$175/month' to 175 :param t: :return: price, unit (i.e. 175, 'month') """ tok = t.split('$')[1] if '/' in tok: price, unit = tok.split('/') else: price = tok unit = None return float(price.strip().strip('$').replace(',', '')), unit
b42d26dcd4eb1b2c2f8c5a63ddc9d48469e30a52
3,654,605
async def async_setup(hass, config): """Set up the WWLLN component.""" if DOMAIN not in config: return True conf = config[DOMAIN] latitude = conf.get(CONF_LATITUDE, hass.config.latitude) longitude = conf.get(CONF_LONGITUDE, hass.config.longitude) identifier = '{0}, {1}'.format(latitude, longitude) if identifier in configured_instances(hass): return True if hass.config.units.name == CONF_UNIT_SYSTEM_IMPERIAL: unit_system = CONF_UNIT_SYSTEM_IMPERIAL else: unit_system = CONF_UNIT_SYSTEM_METRIC hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={'source': SOURCE_IMPORT}, data={ CONF_LATITUDE: latitude, CONF_LONGITUDE: longitude, CONF_RADIUS: conf[CONF_RADIUS], CONF_WINDOW: conf[CONF_WINDOW], CONF_UNIT_SYSTEM: unit_system, })) return True
3f0a4f5a017340780c8c1122425804e7862c3d0f
3,654,606
from typing import Any def __are_nearly_overlapped( plane_predicted: NDArray[Any, np.int32], plane_gt: NDArray[Any, np.int32], required_overlap: np.float64, ) -> (bool, bool): """ Calculate if planes are overlapped enough (required_overlap %) to be used for PP-PR metric :param required_overlap: overlap threshold which will b checked to say that planes overlaps :param plane_predicted: predicted segmentation :param plane_gt: ground truth segmentation :return: true if planes are overlapping by required_overlap % or more, false otherwise """ intersection = np.intersect1d(plane_predicted, plane_gt) return ( intersection.size / plane_predicted.size >= required_overlap and intersection.size / plane_gt.size >= required_overlap, intersection.size > 0, )
7b686e7bb4b18e4e2e116cdfd14878acbcc4c92d
3,654,607
def _get_prob_k_given_L(B, N=None): """ Helper function. """ if N is None: N = int(B[0, 1]) return B / N
be1d0848b148b3413aaee2c5549bd6063e1f2d33
3,654,608
def base64_encode(s): """unicode-safe base64 base64 API only talks bytes """ if not isinstance(s, bytes): s = s.encode('ascii', 'replace') encoded = encodebytes(s) return encoded.decode('ascii')
6ef0722014aa56e22de102aa0ce8286416640f86
3,654,609
def _unpack_tableswitch(bc, offset): """ function for unpacking the tableswitch op arguments """ jump = (offset % 4) if jump: offset += (4 - jump) (default, low, high), offset = _unpack(_struct_iii, bc, offset) joffs = list() for _index in xrange((high - low) + 1): j, offset = _unpack(_struct_i, bc, offset) joffs.append(j) return (default, low, high, joffs), offset
af08ab85def5bf132227f20da8cb6032e2a9dff1
3,654,610
def force_orders(self, **kwargs): """User's Force Orders (USER_DATA) GET /fapi/v1/forceOrders https://binance-docs.github.io/apidocs/futures/en/#user-39-s-force-orders-user_data Keyword Args: symbol (str, optional) autoCloseType (str, optional): "LIQUIDATION" for liquidation orders, "ADL" for ADL orders. startTime (int, optional) endTime (int, optional) limit (int, optional): Default 50; max 100. recvWindow (int, optional) Notes: If "autoCloseType" is not sent, orders with both of the types will be returned If "startTime" is not sent, data within 7 days before "endTime" can be queried """ payload = {**kwargs} url_path = "/fapi/v1/forceOrders" return self.sign_request("GET", url_path, payload)
6e848820e17e54df0f275ec4087d9c609d4e08fa
3,654,611
def prosp_power_analysis_norm(d, sigma, pow_lev, alpha, direction): """ This function conducts pre-testing power analysis and calculates the minimally required sample size for a normal sample. @param d: difference between the mean differences under H1 and H0 @param sigma: standard deviation @param pow_lev: power level @param alpha: significance level @param direction: direction of the test, two-sided or one-sided @return: required minimal sample size """ # first calculates for a z test n_z = np.ceil(z_test_sample_size(d, sigma, alpha, pow_lev, direction)) # first iteration for t test n_t_1 = np.ceil(t_test_sample_size(d, sigma, n_z-1, alpha, pow_lev, direction)) # second iteration for t test n_t_2 = np.ceil(t_test_sample_size(d, sigma, n_t_1-1, alpha, pow_lev, direction)) return(np.ceil(n_t_2 ))
319daf6434b774dcf3bf3f6f936a566e1640c175
3,654,612
def decision_tree_construction(examples, target_attribute, attributes, depth): """ :param examples: The data we will use to train the tree(x) :param target_attribute: The label we want to classify(y) :param attributes: The number(index) of the labels/attributes of the data-set :return: The tree corresponding to the given data """ # This is the first base condition of the algorithm. It is used if the attributes variable is empty, then we return # the single-node tree Root, with label = most common value of target_attribute in examples # The base condition for the recursion when we check if all the variables are same or not in the node and if they # are same then we return that value as the node if len(attributes) == 0 or len(np.unique(target_attribute)) == 1: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion part of the algorithm in which we try to find the sub-tree's by using recursion and # information gain else: Information_Gain = Information_Gain_Heuristic(examples, attributes, target_attribute) best_attribute_number = attributes[np.argmax(Information_Gain)] # Since we now have the best_attribute(A in algorithm) we will create the root node of the tree/sub-tree with # that and name the root as the best attribute among all Here we make the tree as a dictionary for testing # purposes tree = dict([(best_attribute_number, dict())]) if isinstance(tree, int): # If the given value is a int value then it's definitely a leaf node and if it's a dictionary then its a # node tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number attributes.remove(best_attribute_number) # Now we do the recursive algorithm which will be used to create the tree after the root node. depth_of_node = [] for each_unique_value in np.unique(examples[best_attribute_number]): # We use those values for which the examples[best_attribute_number] == each_unique_value class1 = each_unique_value new_target_attribute = pd.DataFrame(target_attribute) total_data = pd.concat([examples, new_target_attribute], axis=1, sort=False) # WE do this step so that we can pick the values which belong to the best_attribute = [0,1], i.e. We now # want to divide our data so that the values for the best_attribute is divided among the branches. And # thus we will have 4 arrays now, two for the data and two for target attribute. new_data_after_partition = total_data.loc[total_data[best_attribute_number] == class1] new_target_attribute, new_examples_after_partition = get_attributes_and_labels(new_data_after_partition) # This is also a condition for our algorithm in which we check if the number of examples after the # partition are positive or not. If the values are less than 1 then we return the most frequent value in # the node if len(new_examples_after_partition) == 0: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion step, in which we make new decision trees till the case when any of the base # cases are true new_sub_tree_after_partition, deptha = decision_tree_construction(new_examples_after_partition, new_target_attribute, attributes, depth + 1) depth_of_node.append(deptha) # Here we are adding the depth of the node so that we can do the depth based pruning tree[best_attribute_number][each_unique_value] = new_sub_tree_after_partition if isinstance(new_sub_tree_after_partition, int): tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number return tree, max(depth_of_node)
c9529deb71d3c0a89bbae053aae07e587d277255
3,654,613
import numpy def mass_centered(geo): """ mass-centered geometry """ geo = translate(geo, numpy.negative(center_of_mass(geo))) return geo
1081141d77383f857f986031fa03510fd2608741
3,654,614
def binaryMatrix(l, value=PAD_token): """ :param l: :param value: :return: seq: [3,4,5,0,0] m: [[1],[1],[1],[0],[0]] """ m = [] for i, seq in enumerate(l): m.append([]) for token in seq: if token == PAD_token: m[i].append(0) else: m[i].append(1) return m
3c123b1ce8531bcde7c6673f8ca8a91f1300f0bb
3,654,615
def load_map(mappath): """ Attempt to load map with known loaders """ data = None shirtloader = lambda path: fio.load_map(path)[0][0:3] maploaders = [load_pfire_map, shirtloader] for loader in maploaders: try: data = loader(mappath) except (ValueError, OSError): pass if data is not None: break if data is None: raise RuntimeError("Failed to load map \"{}\"".format(mappath)) return data
2ab5c46e0b1ec0ed2e613b42c0553a1d6bcede36
3,654,616
def ifttt_account_options_topup_source(): """ Option values for topup source account selection""" return ifttt_account_options(False, "Internal")
83a0082ccc829c06c12fca2bb588db31468f51ef
3,654,617
from bs4 import BeautifulSoup def strip_classes(soup:BeautifulSoup, *args:str): """ Strip class from given tags in a BeautifulSoup object. Args: soup (BeautifulSoup): soup to clean args ([str]): A list of tags to be unclassed Returns: soup (BeautifulSoup) Modules: bs4 (BeautifulSoup) """ if not args: args = ['em', 'strong', 'sup'] # delete classes associated with selected tags: for arg in args: for tag in soup.find_all(arg): if tag.has_attr('class'): del tag.attrs['class'] return(soup)
c2195cd0eaf2cb3f741247b75411d252c7a85e8c
3,654,618
import trace def take_measurement(n_grid: np.int, n_rays: np.int, r_theta: np.float64) -> ( np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ Take a measurement with the tomograph from direction r_theta. Arguments: n_grid: number of cells of grid in each direction n_rays: number of parallel rays r_theta: direction of rays (in radians) Return: intensities: measured intensities for all <n_rays> rays of the measurement. intensities[n] contains the intensity for the n-th ray ray_indices: indices of rays that intersect a cell isect_indices: indices of intersected cells lengths: lengths of segments in intersected cells The tuple (ray_indices[n], isect_indices[n], lengths[n]) stores which ray has intersected which cell with which length. n runs from 0 to the amount of ray/cell intersections (-1) of this measurement. Raised Exceptions: - Side Effects: - """ # compute ray direction in Cartesian coordinates cs = np.cos(r_theta) sn = np.sin(r_theta) r_dir = np.array([-cs, -sn]) # compute start positions for rays r_pos = np.zeros((n_rays, 2)) for i, g in enumerate(np.linspace(-0.99, 0.99, n_rays)): r_pos[i] = np.array([cs - sn * g, sn + cs * g]) else: r_pos[0] = np.array([cs, sn]) # compute measures intensities for each ray intensities = np.zeros(n_rays) for i, rs in enumerate(r_pos): intensities[i] = trace(rs, r_dir) # take exponential fall off into account intensities = np.log(1.0 / intensities) # compute traversal distance in each grid cell ray_indices, isect_indices, lengths = grid_intersect(n_grid, r_pos, r_dir) return intensities, ray_indices, isect_indices, lengths
f0ffac9da088402cff126bab9ee880ff33c460f1
3,654,619
def chrom_karyo_sort(chroms): """ :param chroms: :return: """ ordered = [] unordered = [] for cname, size in chroms: try: ord = int(cname.lower().strip('chr')) ordered.append((cname, size, ord * 10)) except ValueError: ord = check_special_chroms(cname) if ord > 0: ordered.append((cname, size, ord)) else: unordered.append((cname, size, -1)) unordered = sorted(unordered, key=lambda x: x[1], reverse=True) ordered = sorted(ordered, key=lambda x: x[2]) ordered.extend(unordered) return [(t[0], t[1]) for t in ordered]
4531be10ad0c51e0257089aabda778357b2d7950
3,654,620
from typing import List def calibrate_stereo(observations_left: List, observations_right: List, detector: FiducialCalibrationDetector, num_radial: int = 4, tangential: bool = False, zero_skew: bool = True) -> (StereoParameters, List): """ Calibrates a stereo camera using a Brown camera model :param observations: List of {"points":(boofcv detections),"width":(image width),"height":(image height)} :param detector: :param num_radial: :param tangential: :param zero_skew: :return: """ jlayout = detector.java_obj.getLayout(0) # Hard coded for a single target jcalib_planar = gateway.jvm.boofcv.abst.geo.calibration.CalibrateStereoPlanar(jlayout) jcalib_planar.configure(zero_skew, int(num_radial), tangential) for idx in range(len(observations_left)): jobs_left = convert_into_boof_calibration_observations(observations_left[idx]) jobs_right = convert_into_boof_calibration_observations(observations_right[idx]) jcalib_planar.addPair(jobs_left, jobs_right) stereo_parameters = StereoParameters(jcalib_planar.process()) errors = [] for jerror in jcalib_planar.computeErrors(): errors.append({"mean": jerror.getMeanError(), "max_error": jerror.getMaxError(), "bias_x": jerror.getBiasX(), "bias_y": jerror.getBiasY()}) return (stereo_parameters, errors)
bf9ee5b369f8614728db0023674c85a958a2559f
3,654,621
from typing import Type def register_producer_class(cls: Type[C]) -> Type[C]: """Registers the producer class and returns it unmodified.""" if not cls.TYPES: raise ProducerInterfaceError( f"Invalid producer. When defining producer, make sure to specify at least 1 type in the TYPES class variable." ) for artifact_type in cls.ARTIFACT_TYPES: if not ( isclass(artifact_type) and issubclass(artifact_type, BaseArtifact) ): raise ProducerInterfaceError( f"Associated artifact type {artifact_type} for producer is not a class or is not a subclass of BaseArtifact." ) artifact_types = cls.ARTIFACT_TYPES or (BaseArtifact,) for t in cls.TYPES: if not isclass(t): raise ProducerInterfaceError( f"Associated type {t} for producer is not a class." ) producer_registry.register_producer( t, cls, ) type_registry.register_artifact_type( t, artifact_types, ) return cls
7155ddb85077e2774fcc20c2d80345bd52ee86b1
3,654,622