content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from unittest.mock import Mock async def test_10_request(requests_mock: Mock) -> None: """Test `async request()`.""" result = {"result": "the result"} rpc = RestClient("http://test", "passkey", timeout=0.1) def response(req: PreparedRequest, ctx: object) -> bytes: # pylint: disable=W0613 assert req.body is not None _ = json_decode(req.body) return json_encode(result).encode("utf-8") requests_mock.post("/test", content=response) ret = await rpc.request("POST", "test", {}) assert requests_mock.called auth_parts = requests_mock.last_request.headers['Authorization'].split(' ', 1) assert auth_parts[0].lower() == 'bearer' assert auth_parts[1] == 'passkey' assert ret == result result2 = {"result2": "the result 2"} def response2(req: PreparedRequest, ctx: object) -> bytes: # pylint: disable=W0613 assert req.body is not None _ = json_decode(req.body) return json_encode(result2).encode("utf-8") requests_mock.post("/test2", content=response2) ret = await rpc.request("POST", "/test2") assert requests_mock.called assert ret == result2
fa9e03d5b3f5a4f594db29eae057607f790e158c
3,654,738
def entmax15(X, axis=-1, k=None): """1.5-entmax: normalizing sparse transform (a la softmax). Solves the optimization problem: max_p <x, p> - H_1.5(p) s.t. p >= 0, sum(p) == 1. where H_1.5(p) is the Tsallis alpha-entropy with alpha=1.5. Parameters ---------- X : paddle.Tensor The input tensor. axis : int must The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- P : paddle tensor, same shape as X The projection result, such that P.sum(axis=axis) == 1 elementwise. """ assert axis in [-1, X.ndim - 1] return Entmax15Function.apply(X, axis, k)
08887ec5aff323077ea6ea99bf6bd2b83bb4cc19
3,654,739
def get_dependency_graph(node, targets=None): """Returns the dependent nodes and the edges for the passed in node. :param str node: The node to get dependencies for. :param list targets: A list with the modules that are used as targets. :return: The dependency graph info. :rtype: GraphInfo """ g = _make_graph() edges, direct_dependencies = _all_dependencies(node, g) if targets: targets = set(targets) affected_targets = [] if not edges: return graph_info.GraphInfo( graph=g, nodes=[], edges=[], direct_dependencies=[], affected_targets=[] ) all_nodes = set() for n1, n2 in edges: all_nodes.add(n1) all_nodes.add(n2) node_to_info = {} for index, node_name in enumerate(all_nodes): if node_name not in node_to_info: node_id = index + 1 node_to_info[node_name] = { "id": node_id, "label": "", "title": node_name, "value": 1, "color": "blue" } if targets and node_name in targets: node_to_info[node_name]["color"] = 'orange' node_to_info[node_name]["value"] = 3 affected_targets.append(node_name) node_to_info[node]['color'] = 'red' node_to_info[node]['value'] = 3 edges_representation = [] for n1, n2 in edges: index1 = node_to_info[n1]["id"] index2 = node_to_info[n2]["id"] edge_color = 'gray' value = 1 if n1 == node: node_to_info[n2]['color'] = 'green' node_to_info[n2]['value'] = 2 edge_color = 'green' value = 2 if n2 == node: node_to_info[n1]['color'] = 'green' node_to_info[n1]['value'] = 2 edge_color = 'green' value = 2 edges_representation.append( { "from": index1, "to": index2, "color": edge_color, "value": value }, ) info = graph_info.GraphInfo( graph=g, nodes=list(node_to_info.values()), edges=edges_representation, direct_dependencies=sorted(direct_dependencies), affected_targets=affected_targets ) return info
39667e034379477086062a9032f5007c12aba30e
3,654,740
from pathlib import Path def is_submodule_repo(p: Path) -> bool: """ """ if p.is_file() and '.git/modules' in p.read_text(): return True return False
26675ee25e431778325081ec80d45ff3d72c2046
3,654,741
def shift_contig(df2, remove): """ The function append shifted fragment from sort_cluster_seq function. Parameters ---------- df2 : pandas DataFrame DataFrame NRPS cluster fragment. remove : list List of cluster fragment, which should removed. Returns ------- df2 : pandas DataFrame Corrected DataFrame with NRPS meta information. """ for gen in remove: df2 = df2.append(gen) return df2
7df891785fc58d818af5b423c7fdbc3c4382951f
3,654,742
def _bocs_consistency_mapping(x): """ This is for the comparison with BOCS implementation :param x: :return: """ horizontal_ind = [0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 22, 23] vertical_ind = sorted([elm for elm in range(24) if elm not in horizontal_ind]) return x[horizontal_ind].reshape((ISING_GRID_H, ISING_GRID_W - 1)), x[vertical_ind].reshape((ISING_GRID_H - 1, ISING_GRID_W))
bd8fe5261e024f5d5cdf1a2d77229dd564d947bf
3,654,744
def get_document(name, key): """Get document from Database""" constructor = Constructor() inst_coll = constructor.factory(kind='Collection', name=name) inst_doc = Document(inst_coll) doc = inst_doc.get_document(key) return doc
acd4e8117c0002d323a4fad79704a33437481657
3,654,745
from datetime import datetime import json def predict() -> str: """predict the movie genres based on the request data""" cur = db_connection.cursor() try: input_params = __process_input(request.data) input_vec = vectorizer.transform(input_params) prediction = classifier.predict(input_vec) predictions = binarizer.inverse_transform(prediction) for count, i in enumerate(input_params): pred = ", ".join(predictions[count]) cur.execute( f"INSERT INTO prediction(input, output, time) VALUES('{i}', '{pred}', '{datetime.datetime.now()}' )" ) db_connection.commit() except Exception as e: response = app.response_class( response=json.dumps({"error": f"{e.__class__} occured"}), status=400 ) return response response = app.response_class( response=json.dumps({"predictions:": binarizer.inverse_transform(prediction)}), status=200, ) return response
0ae49a8ab05d1df1c0beb07f322262a7a7ac8ee2
3,654,746
def SignificanceWeights(serializer, decay): """Multiplies a binary mask with a symbol significance mask.""" def significance_weights(mask): # (repr,) -> (batch, length, repr) # significance = [0, 1, 2] significance = serializer.significance_map assert significance.shape[0] == mask.shape[2] # significance = batch_size * [0, 1, 2] significance = jnp.repeat( significance[np.newaxis, ...], repeats=mask.shape[0], axis=0) # significance = batch_size * [0, 1, 2] * mask.shape[1] significance = jnp.repeat( significance[..., jnp.newaxis], repeats=mask.shape[1], axis=2) # significance = batch_size * mask.shape[1] * [0, 1, 2] significance = jnp.swapaxes(significance, 1, 2) assert significance.shape == mask.shape sig_weights = mask * decay ** significance return sig_weights return tl.Fn('SignificanceWeights', significance_weights)
545ac45149b8653f502d2dd864f92a40ee5919cb
3,654,747
def check_fun_inter_allocation(fun_inter, data, **kwargs): """Check allocation rules for fun_inter then returns objects if check""" out = None check_allocation_fun_inter = get_allocation_object(data, kwargs['xml_fun_inter_list']) if check_allocation_fun_inter is None: check_fe = check_fun_elem_data_consumption( data, fun_inter, kwargs['xml_fun_elem_list'], kwargs['xml_function_list'], kwargs['xml_consumer_function_list'], kwargs['xml_producer_function_list']) if all(i for i in check_fe): out = [fun_inter, data] fun_inter.add_allocated_data(data.id) elif True in check_fe: if check_fe[0] is True: print(f"Data {data.name} has only consumer(s) " f"allocated to a functional element exposing " f"{fun_inter.name}, {data.name} not " f"allocated to {fun_inter.name}") elif check_fe[1] is True: print(f"Data {data.name} has only producer(s) " f"allocated to a functional element exposing " f"{fun_inter.name}, {data.name} not " f"allocated to {fun_inter.name}") else: print(f"Data {data.name} has no producer(s) nor " f"consumer(s) allocated to functional elements " f"exposing {fun_inter.name}, {data.name} not " f"allocated to {fun_inter.name}") return out
61f17844953f3260a23aff35a2f090a028dd9212
3,654,748
from typing import Optional def kernel_bw_lookup( compute_device: str, compute_kernel: str, caching_ratio: Optional[float] = None, ) -> Optional[float]: """ Calculates the device bandwidth based on given compute device, compute kernel, and caching ratio. Args: compute_kernel (str): compute kernel. compute_device (str): compute device. caching_ratio (Optional[float]): caching ratio used to determine device bandwidth if UVM caching is enabled. Returns: float: the device bandwidth. """ caching_ratio = caching_ratio if caching_ratio else UVM_CACHING_RATIO lookup = { # CPU ("cpu", EmbeddingComputeKernel.DENSE.value): 0.35 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.SPARSE.value): 0.35 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.BATCHED_DENSE.value): 0.5 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.BATCHED_FUSED.value): 1 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.BATCHED_QUANT.value): 1 * DDR_MEM_BW, # CUDA ("cuda", EmbeddingComputeKernel.DENSE.value): 0.35 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.SPARSE.value): 0.35 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_DENSE.value): 0.5 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_FUSED.value): 1 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_FUSED_UVM.value): DDR_MEM_BW / 10, ("cuda", EmbeddingComputeKernel.BATCHED_FUSED_UVM_CACHING.value): ( caching_ratio * HBM_MEM_BW + (1 - caching_ratio) * DDR_MEM_BW ) / 10, ("cuda", EmbeddingComputeKernel.BATCHED_QUANT.value): 1 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_QUANT_UVM.value): DDR_MEM_BW / 10, ("cuda", EmbeddingComputeKernel.BATCHED_QUANT_UVM_CACHING.value): ( caching_ratio * HBM_MEM_BW + (1 - caching_ratio) * DDR_MEM_BW ) / 10, } return lookup.get((compute_device, compute_kernel))
efd70d5c2e5fc9295bccbfb05113474ac40ff1c9
3,654,749
def create_container( container_image: str, name: str = None, volumes: t.List[str] = None, ) -> str: """Create a new working container from provided container image. Args: container_image (str): The container image to start from. name (str, optional): The container name. volumes (t.List[str], optional): Any volumes to bind into the container. Returns: str: The container name/id used for further manipulation. """ args = [] if name: args.extend(["--name", name]) if volumes: args.extend(_unwind_list("--volume", volumes)) command = ["buildah", "from"] + args + [container_image] result = platform_utils.run_command(command, capture_stdout=True) container = result.stdout.strip() logger.success(f"Created '{container}' from image '{container_image}'") return container
be50e84169e5d3df5dfd9730493d7daa9788049b
3,654,751
def single_data_path(client, node_id): """ In order for a shrink to work, it should be on a single filesystem, as shards cannot span filesystems. Return `True` if the node has a single filesystem, and `False` otherwise. :arg client: An :class:`elasticsearch.Elasticsearch` client object :rtype: bool """ return len(client.nodes.stats()['nodes'][node_id]['fs']['data']) == 1
ae0b34f82acb6d12faf525f0270250cdf471a6f8
3,654,752
def sortorder(obj): """ Trys to smartly determine the sort order for this object ``obj`` """ if hasattr(obj, 'last'): return obj.last.timestamp() if isinstance(obj, str): # First assume pure numeric try: return float(obj) except ValueError: pass # Assume it is of the form # AB [N.M] PPP words' try: return float(obj.split('[')[1].split(']')[0]) except (IndexError, ValueError): return strip_tags(obj).strip() return None
674ee77a87ccd7a0bd89a88b88a2682926a1135e
3,654,753
import json import re def get_more_details_of_post(post_url: str) -> json: """ :param post_url: the url of an imgur post :return: Details like Virality-score, username etc in JSON format """ details = {} try: request = HTMLSession().get(post_url) # some times, request isn't properly made, hence call again. if len(request.html.find('script')) < 18: request = HTMLSession().get(post_url) return details # handle when its not there at all regex = 'item: ({.+} )' # regex to isolate the `item` dict. # 18th script tag has the `item` dict. this is tested on more than 1500 links. matched = re.search(regex, request.html.find( 'script')[18].text).group(0) item = json.loads(matched[5:]) details['username'] = item['account_url'] details['comment_count'] = item['comment_count'] details['downs'] = item['downs'] details['ups'] = item['ups'] details['points'] = item['points'] details['score'] = item['score'] details['timestamp'] = item['timestamp'] details['views'] = item['views'] details['favorite_count'] = item['favorite_count'] details['hot_datetime'] = item['hot_datetime'] details['nsfw'] = item['nsfw'] details['platform'] = 'Not Detected' if item['platform'] == None else item['platform'] details['virality'] = item['virality'] except Exception as e: print(e) return details
dd3d622c8a7e8f61daf24c2d0cc6752323d4693e
3,654,754
import struct import hmac import hashlib def subkey_public_pair_chain_code_pair(public_pair, chain_code_bytes, i): """ Yield info for a child node for this node. public_pair: base public pair chain_code: base chain code i: the index for this node. Returns a pair (new_public_pair, new_chain_code) """ i_as_bytes = struct.pack(">l", i) sec = public_pair_to_sec(public_pair, compressed=True) data = sec + i_as_bytes I64 = hmac.HMAC(key=chain_code_bytes, msg=data, digestmod=hashlib.sha512).digest() I_left_as_exponent = from_bytes_32(I64[:32]) x, y = public_pair the_point = I_left_as_exponent * ecdsa.generator_secp256k1 + \ ecdsa.Point(ecdsa.generator_secp256k1.curve(), x, y, ORDER) if the_point == INFINITY: logger.critical(_SUBKEY_VALIDATION_LOG_ERR_FMT) raise DerivationError('K_{} == {}'.format(i, the_point)) I_left_as_exponent = from_bytes_32(I64[:32]) if I_left_as_exponent >= ORDER: logger.critical(_SUBKEY_VALIDATION_LOG_ERR_FMT) raise DerivationError('I_L >= {}'.format(ORDER)) new_public_pair = the_point.pair() new_chain_code = I64[32:] return new_public_pair, new_chain_code
8f31eb0ae3b063964ff46bcf6c78431d39d0e2ba
3,654,755
from typing import Optional def get_registry_description(metaprefix: str) -> Optional[str]: """Get the description for the registry, if available. :param metaprefix: The metaprefix of the registry :return: The description for the registry, if available, otherwise ``None``. >>> get_registry_description('prefixcommons') 'A registry of commonly used prefixes in the life sciences and linked data' >>> get_registry_description('missing') None """ registry = get_registry(metaprefix) if registry is None: return None return registry.description
12b7aac7f880d6699ca85add1065eca49a06d278
3,654,756
import tqdm def evaluate(model, valid_exe, valid_ds, valid_prog, dev_count, metric): """evaluate """ acc_loss = 0 acc_top1 = 0 cc = 0 for feed_dict in tqdm.tqdm( multi_device(valid_ds.generator(), dev_count), desc='evaluating'): if dev_count > 1: loss, top1 = valid_exe.run( feed=feed_dict, fetch_list=[model.metrics[0].name, model.metrics[1].name]) loss = np.mean(loss) top1 = np.mean(top1) else: loss, top1 = valid_exe.run( valid_prog, feed=feed_dict, fetch_list=[model.metrics[0].name, model.metrics[1].name]) acc_loss += loss acc_top1 += top1 cc += 1 ret = {"loss": float(acc_loss / cc), "top1": float(acc_top1 / cc)} return ret
7b228e7cadd71ec1ac31436767b92c4dadb5ec53
3,654,757
def _get_rank(player): """Get the rank of a player""" cursor = _DB.cursor() try: cursor.execute("SELECT score FROM scores WHERE player = ?", (player.lower(),)) rows = cursor.fetchall() if not rows: return 0 ps = rows[0][0] cursor.execute("SELECT count(*) FROM scores WHERE score > ?", (ps,)) rows = cursor.fetchall() return 1+rows[0][0] finally: cursor.close()
e556b9fb75f6b40c8c1be8759255dfc5953a1e9a
3,654,758
import pydoc def spec(func): """return a string with Python function specification""" doc = pydoc.plain(pydoc.render_doc(func)) return doc.splitlines()[2]
00b96364f77141fedd7d50396946fd4e29cc5d02
3,654,760
import posixpath def IsVirus(mi, log): """Test: a virus is any message with an attached executable I've also noticed the viruses come in as wav and midi attachements so I trigger on those as well. This is a very paranoid detector, since someone might send me a binary for valid reasons. I white-list everyone who's sent me email before so it doesn't affect me. """ for part in mi.msg.walk(): if part.get_main_type() == 'multipart': continue filename = part.get_filename() if filename is None: if part.get_type() in ["application/x-msdownload", "audio/x-wav", "audio/x-midi"]: # Only viruses send messages to me with these types log.pass_test(VIRUS) return ("it has a virus-like content-type (%s)" % part.get_type()) else: extensions = "bat com exe pif ref scr vbs wsh".split() base, ext = posixpath.splitext(filename) if ext[1:].lower() in extensions: log.pass_test(VIRUS) return "it has a virus-like attachment (%s)" % ext[1:] return False
e30e91951ad49395d87bef07926cfdff4d15b3e2
3,654,763
def to_curl(request, compressed=False, verify=True): """ Returns string with curl command by provided request object Parameters ---------- compressed : bool If `True` then `--compressed` argument will be added to result """ parts = [ ('curl', None), ('-X', request.method), ] for k, v in sorted(request.headers.items()): parts += [('-H', '{0}: {1}'.format(k, v))] if request.body: body = request.body if isinstance(body, bytes): body = body.decode('utf-8') parts += [('-d', body)] if compressed: parts += [('--compressed', None)] if not verify: parts += [('--insecure', None)] parts += [(None, request.url)] flat_parts = [] for k, v in parts: if k: flat_parts.append(quote(k)) if v: flat_parts.append(quote(v).replace("\n", "\\n")) return ' '.join(flat_parts)
b462f62031f4fe757bb7a45b50ced9bc2ea6a9b5
3,654,764
def prox_trace_indicator(a, lamda): """Time-varying latent variable graphical lasso prox.""" es, Q = np.linalg.eigh(a) xi = np.maximum(es - lamda, 0) return np.linalg.multi_dot((Q, np.diag(xi), Q.T))
85d6cb26c7a35dbab771e0a9f9c8979fba90e680
3,654,765
def get_gamma_non_jitted(esys): """Get log gamma Returns ------- float[:] """ if isinstance(esys.species[0].logc, float): v = np.empty(len(esys.species)) else: v = np.empty(len(esys.species), dtype=object) for i, sp in enumerate(esys.species): v[i] = 10.0 ** (sp.logg) return v # return np.array([10.0**(sp.logg) for sp in self.species]) # v = np.empty(len(self.species)) # for i, sp in enumerate(self.species): # v[i] = 10.0**(sp.logg) # return v
f3d7f4b96676a10b7065196aac247006019da31e
3,654,766
def active_matrices_from_extrinsic_euler_angles( basis1, basis2, basis3, e, out=None): """Compute active rotation matrices from extrinsic Euler angles. Parameters ---------- basis1 : int Basis vector of first rotation. 0 corresponds to x axis, 1 to y axis, and 2 to z axis. basis2 : int Basis vector of second rotation. 0 corresponds to x axis, 1 to y axis, and 2 to z axis. basis3 : int Basis vector of third rotation. 0 corresponds to x axis, 1 to y axis, and 2 to z axis. e : array-like, shape (..., 3) Euler angles out : array, shape (..., 3, 3), optional (default: new array) Output array to which we write the result Returns ------- Rs : array, shape (..., 3, 3) Rotation matrices """ e = np.asarray(e) R_shape = e.shape + (3,) R_alpha = active_matrices_from_angles(basis1, e[..., 0].flat) R_beta = active_matrices_from_angles(basis2, e[..., 1].flat) R_gamma = active_matrices_from_angles(basis3, e[..., 2].flat) if out is None: out = np.empty(R_shape) out[:] = np.einsum( "nij,njk->nik", np.einsum("nij,njk->nik", R_gamma, R_beta), R_alpha).reshape(R_shape) return out
50218d9ce2296e3c4952cc77fe64e30c19e03f77
3,654,767
def runQuery(scenarioID): """ Run a query that aquires the data from the lrs for one specific dialoguetrainer scenario \n :param scenarioID: The id of the scenario to request the data from \t :type scenarioID: int \n :returns: The data for that scenario or error \t :rtype: [Dict<string, mixed>] | {error} \n """ return ( lrs.Query() .where(lrs.Attr.ACTIVITY, lrs.IS, f"https://en.dialoguetrainer.app/scenario/play/{scenarioID}") .where(lrs.Attr.VERB, lrs.IS, "https://adlnet.gov/expapi/verbs/completed") .select(lrs.Attr.ACTOR, lrs.Attr.RESULT) .execute() )
0f57a4468354680b315a65263593979149bdb186
3,654,769
def is_spaceafter_yes(line): """ SpaceAfter="Yes" extracted from line """ if line[-1] == "_": return False for ddd in line[MISC].split("|"): kkk, vvv = ddd.split("=") if kkk == "SpaceAfter": return vvv == "Yes" raise ValueError
5693c8874ec9676bf19d9b1cb7ead5c1772a3f0b
3,654,770
def linear_scheduler(optimizer, warmup_steps, training_steps, last_epoch=-1): """linear_scheduler with warmup from huggingface""" def lr_lambda(current_step): if current_step < warmup_steps: return float(current_step) / float(max(1, warmup_steps)) return max( 0.0, float(training_steps - current_step) / float(max(1, training_steps - warmup_steps)), ) return LambdaLR(optimizer, lr_lambda, last_epoch)
d9446ede5be0ed981ae00b0bccd494017057d834
3,654,771
from functools import reduce import operator from re import X def MajorityVoteN(qubits, nrounds, prep=[], meas_delay=1e-6, add_cals=False, calRepeats=2): """ Majority vote across multiple measurement results (same or different qubits) Parameters ---------- qubits : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits for majority vote nrounds: int Number of consecutive measurements prep : boolean iterable, optional Array of binary values mapping X(q) pulses to the list of qubits proivided. Ex: (q1,q2), prep=(1,0) -> would apply a pi pulse to q1 before the majority vote measurement. Default = [] measDelay : int/float, optional Delay between syndrome check rounds (seconds) add_cals : boolean, optional Whether to append calibration pulses to the end of the sequence calRepeats : int, optional How many times to repeat calibration scalings (default 2) Returns ------- metafile : string Path to a json metafile with details about the sequences and paths to compiled machine files Examples -------- >>> mf = MajorityVoteN((q1, q2, q3), 10); Compiled 1 sequences. o INVALIDATE(channel=None, addr=0x1, mask=0x0) o WRITEADDR(channel=None, addr=0x1, value=0xfffff) MAJORITYMASK(in_addr=1, out_addr=0) o INVALIDATE(channel=None, addr=0xa, mask=0xfffff) o INVALIDATE(channel=None, addr=0xb, mask=0x1) MAJORITY(in_addr=a, out_addr=b) >>> mf '/path/to/exp/exp-meta.json' """ nqubits = len(qubits) seqs = [MajorityMask(1, 0, nrounds*nqubits), Invalidate(10, nrounds*nqubits), Invalidate(11, 1)] if prep: seqs += [reduce(operator.mul, [X(q) for n,q in enumerate(qubits) if prep[n]])] for n in range(nrounds): seqs += [reduce(operator.mul, [MEASA(q, (10, nqubits*n+m)) for m,q in enumerate(qubits)]), Id(qubits[0],meas_delay)] seqs+=MajorityVote(10,11, nrounds*nqubits) seqs+=qwait("RAM", 11) seqs+=[Id(qubits[0],100e-9)] seqs+=qif(1,[X(qubits[0])]) # placeholder for any conditional operation seqs=[seqs] if add_cals: seqs += create_cal_seqs(qubits, calRepeats) metafile = compile_to_hardware(seqs, 'MajorityVote/MajorityVote', tdm_seq=True) return metafile
7bc3b6161d5224ed7adf9248b32b0bd283f50c70
3,654,772
def getRatios(vect1, vect2): """Assumes: vect1 and vect2 are equal length lists of numbers Returns: a list containing the meaningful values of vect1[i]/vect2[i]""" ratios = [] for index in range(len(vect1)): try: ratios.append(vect1[index]/vect2[index]) except ZeroDivisionError: ratios.append(float('nan')) #nan = Not a Number except: raise ValueError('getRatios called with bad arguments') return ratios
e28f871986ab2b1b87cc3671b1c27ad14a0aadf8
3,654,773
def sampleset(): """Return list with 50 positive and 10 negative samples""" pos = [(0, i) for i in range(50)] neg = [(1, i) for i in range(10)] return pos + neg
77e5a0ca3ad8757f0ded2aec9d73312a66ac9044
3,654,774
def recognize_emotion(name, mode, dataset): """ The main program for building the system. And we support following kinds of model: 1. Convolutional Neural Network (CNN) 2. Support Vector Machine (SVM) 3. Adaboost 4. Multilayer Perceptron (MLP) Args: name: path of the photo for recognizing mode: mode used for face detection, 'auto' or 'manual dataset: dataset used for face recognition, 'CK+48' or 'fer2013' Returns: predicted: emotion prediction (numerical) of detected faces using cnn and fisherfaces recognition: emotion recognition (categorical) of detected faces using cnn and fisherfaces Note: result will be printed to standard output, accuracy needs to be improved. """ # Load the dataset into a shuffled list of tuples dataset_tuple_list = dp.load_dataset(dataset) # Split the dataset into train, test, validation and their corresponding labels img_train, img_train_label, img_validation, img_validation_label, img_test, img_test_label, le = \ dp.split_data(dataset_tuple_list) # Fisherfaces: Get the fisherfaces_train and fisherfaces_test feature vectors for further training and predicting fisher_train, fisher_test, fisher_validation, pca, lda = fe.fisherfaces(img_train, img_test, img_validation, img_train_label, le) # Construct and train the selected model with the input train and validation datasets model_trained = mc.train_model('cnn', fisher_train, img_train_label, fisher_validation, img_validation_label, 'fisherfaces') # detect faces in photo and get coordinates of them face_coordinates, resized_list = fd.detect_face(name, mode) # project faces to fisherfaces face_column_matrix = fe.constructRowMatrix(np.array(resized_list)) pca_face = pca.transform(face_column_matrix) fisherfaces_face = lda.transform(pca_face) # use trained cnn to recognize emotions fisherfaces_face = fisherfaces_face.reshape(-1, 1, 6) prediction = model_trained.predict(fisherfaces_face) recognized = np.argmax(prediction, axis=1) print(f'\nprediction:\n{prediction}\nrecognized:\n{recognized}') return prediction, recognized
eae092866f5190a637bbdb08c4ad7188b9cb88f3
3,654,775
def feedback(request): """ Feedback page. Here one can send feedback to improve the website further. """ return render(request, "groundfloor/common/feedback.html", context = None)
8dd9f8ae57ca49629820c58b54c7d98d705597bb
3,654,776
from typing import Tuple def fill_nodata_image(dataset: xr.Dataset) -> Tuple[np.ndarray, np.ndarray]: """ Interpolate no data values in image. If no mask was given, create all valid masks :param dataset: Dataset image :type dataset: xarray.Dataset containing : - im : 2D (row, col) xarray.DataArray :return: a Tuple that contains the filled image and mask :rtype: Tuple of np.ndarray """ if 'msk' in dataset: img, msk = interpolate_nodata_sgm(dataset['im'].data, dataset['msk'].data) else: msk = np.full((dataset['im'].data.shape[0], dataset['im'].data.shape[1]), int(dataset.attrs['valid_pixels'])) img = dataset['im'].data return img, msk
c245f0cbfbb79737fb85b9b8fb8381aad6373926
3,654,777
def find(value, a_list): """ TestCase for find >>> find(26, [12,14]) True >>> find(40, [14, 15, 16, 4, 6, 5]) False >>> find(1, [1]) False >>> find(1, []) False >>> find(4, [2, 3, 2]) True """ # 现将列表变为<value, index>字典 if a_list is None or len(a_list) < 2: return False d = {} for i in range(len(a_list)): if d.has_key(a_list[i]): d[a_list[i]] = d[a_list[i]] + 1 else: d[a_list[i]] = 1 # 第二次遍历 for i in a_list: if d.has_key(value-i): # 排除自己本身 x = value == i*2 if(not (x and d[i] == 1)): return True return False
dd466a8ffa0c760ed0af9ad109b5f4e3b85a62db
3,654,778
def transform_bbox( bbox, source_epsg_code, target_epsg_code, all_coords=False ): """ Transform bbox from source_epsg_code to target_epsg_code, if necessary :returns np.array of shape 4 which represent the two coordinates: left, bottom and right, top. When `all_coords` is set to `True`, a np.array of shape 8 is given which represents coords of the bbox in the following order: left top, right top, right bottom, left bottom """ if source_epsg_code != target_epsg_code: # XXX: Not entirely sure whether transformations between two projected # coordinate systems always do retain the rectangular shape of a bbox. # Transformations between an unprojected system (e.g. WGS84) and a # projected system (e.g. RDNEW) will experience distortion: the # resulting shape cannot be accurately represented by top left # and bottom right. source_srs = get_spatial_reference(source_epsg_code) target_srs = get_spatial_reference(target_epsg_code) if source_srs.IsProjected() != target_srs.IsProjected(): msg = "Transforming a bbox from %s to %s is inaccurate." logger.warning(msg, source_epsg_code, target_epsg_code) # Transform to [[left, right],[top, bottom]] input_x = [bbox[BBOX_LEFT], bbox[BBOX_RIGHT]] input_y = [bbox[BBOX_TOP], bbox[BBOX_BOTTOM]] if all_coords: input_x += [bbox[BBOX_RIGHT], bbox[BBOX_LEFT]] input_y += [bbox[BBOX_TOP], bbox[BBOX_BOTTOM]] bbox_trans = np.array( transform_xys( np.array(input_x), np.array(input_y), source_epsg_code, target_epsg_code ) ) if all_coords: bbox = np.array([ bbox_trans[0][0], bbox_trans[1][0], # left_top bbox_trans[0][2], bbox_trans[1][2], # right_top bbox_trans[0][1], bbox_trans[1][1], # right_bottom bbox_trans[0][3], bbox_trans[1][3] # left_bottom ]) else: # Transform back to [left,bottom,right,top] bbox = np.array( [min(bbox_trans[0]), min(bbox_trans[1]), # left_bottom max(bbox_trans[0]), max(bbox_trans[1]) # right_top ] ) return bbox
cd6938b2dfcc02fe9c2a323e2b60339de216dd26
3,654,779
def distance_metric(vector1, vector2): """ Returns a score value using Jaccard distance Args: vector1 (np.array): first vector with minHash values vector2 (np.array): second vector with minHash values Returns: float: Jaccard similarity """ return distance.pdist(np.array([vector1,vector2]), 'jaccard').sum()
e1acbc9eff7ee8bc78be0307acacbca9e9d69265
3,654,780
from datetime import datetime def update_calendar(request): """ to update an entry to the academic calendar to be updated. @param: request - contains metadata about the requested page. @variables: from_date - The starting date for the academic calendar event. to_date - The ending date for the academic caldendar event. desc - Description for the academic calendar event. prev_desc - Description for the previous event which is to be updated. get_calendar_details = Get the object of the calendar instance from the database for the previous Description. """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') calendar = Calendar.objects.all() context= { 'academic_calendar' :calendar, 'tab_id' :['4','1'] } if request.method == "POST": try: from_date = request.POST.getlist('from_date') to_date = request.POST.getlist('to_date') desc = request.POST.getlist('description')[0] prev_desc = request.POST.getlist('prev_desc')[0] from_date = from_date[0].split('-') from_date = [int(i) for i in from_date] from_date = datetime.datetime(*from_date).date() to_date = to_date[0].split('-') to_date = [int(i) for i in to_date] to_date = datetime.datetime(*to_date).date() get_calendar_details = Calendar.objects.all().filter(description=prev_desc).first() get_calendar_details.description = desc get_calendar_details.from_date = from_date get_calendar_details.to_date = to_date get_calendar_details.save() except Exception as e: from_date="" to_date="" desc="" return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context)
804f3f0443d192c0c18a501c40808f2406596491
3,654,781
def get_section(entry: LogEntry) -> str: """returns the section of the request (/twiki/bin/edit/Main -> /twiki)""" section = entry.request.split('/')[:2] return '/'.join(section)
dee463b5a662846da01fc2ef8d1c72c5b582e7e5
3,654,782
def reverse_lookup(d, v): """ Reverse lookup all corresponding keys of a given value. Return a lisy containing all the keys. Raise and exception if the list is empty. """ l = [] for k in d: if d[k] == v: l.append(k) if l == []: raise ValueError else: return l
d68f437aec47df964905779f99d58be84515fb72
3,654,783
def compile_channels_table(*, channels_meta, sources, detectors, wavelengths): """Compiles a NIRSChannelsTable given the details about the channels, sources, detectors, and wavelengths. """ table = NIRSChannelsTable() for channel_id, channel in channels_meta.items(): source_label = sources.label[channel["source_idx"]] detector_label = detectors.label[channel["detector_idx"]] source_wavelength = wavelengths[channel["wavelength_idx"]] table.add_row( label=f"{source_label}_{detector_label} {source_wavelength:.0f}", source=channel["source_idx"], detector=channel["detector_idx"], source_wavelength=source_wavelength, ) table.source.table = sources table.detector.table = detectors return table
ac3099ef0440962b3fbfeec36f01ae92061b5693
3,654,784
from pathlib import Path def cpe2pkg_tool(): """Unsupported ecosystem CVE fixture.""" bin = Path(__file__).parent.parent / Path('tools/bin/cpe2pkg.jar') if bin.exists(): return str(bin) else: raise RuntimeError('`cpe2pkg.jar` is not available, please run `make build-cpe2pkg once.`')
7ad5489cd560f2820a5e77c46964514a5a34edc9
3,654,785
import threading def spawn_thread(func, *args, **kwds): """ Utility function for creating and starting a daemonic thread. """ thr = threading.Thread(target=func, args=args, kwargs=kwds) thr.setDaemon(True) thr.start() return thr
afaace7e02870390acb297106ac9d35c9a931a59
3,654,786
import uuid def get_thread_replies(parent_id): """ Get all replies to a thread If the thread does not exist, return an empty list :param parent_id: Thread ID :return: replies to thread """ assert type(parent_id) is uuid.UUID, """parent_id is not correct type""" reply_query = Query() results = db.search(reply_query.parent == str(parent_id)) return results
1b167dcc4ab09d50cda9feb478c8f1a4d0399e96
3,654,788
import torch def compute_acc(pred, labels): """ Compute the accuracy of prediction given the labels. """ return (torch.argmax(pred, dim=1) == labels).float().sum() / len(pred)
1b1ad83b9b4ae06f2bc80209e4e7339a421a39f3
3,654,789
async def read_update_status() -> str: """Read update status.""" return ( await cache.get(Config.update_status_id()) if await cache.exists(Config.update_status_id()) else "ready_to_update" )
0e80f7065665dbe1a41e59fe7c65904e58bb6d8f
3,654,790
def PCopy (inFA, err): """ Make copy an GPUFArray returns copy * inFA = input Python GPUFArray * err = Python Obit Error/message stack """ ################################################################ # Checks if not PIsA(inFA): print("Actually ",inFA.__class__) raise TypeError("inFA MUST be a Python Obit GPUFArray") outFA = GPUFArray("None") outFA.me = Obit.GPUFArrayCopy (inFA.me, outFA.me, err.me); if err.isErr: OErr.printErrMsg(err, "Error copying GPUFArray") return outFA # end PCopy
df1047dc143fb5f8d8f4fd88a2b1ebc0904620a2
3,654,792
def _get_statuses(policy_type_id, policy_instance_id): """ shared helper to get statuses for an instance """ _instance_is_valid(policy_type_id, policy_instance_id) prefixes_for_handler = "{0}{1}.{2}.".format(HANDLER_PREFIX, policy_type_id, policy_instance_id) return list(SDL.find_and_get(A1NS, prefixes_for_handler).values())
fdddc26d3c2b65834d4b047a5565894b0d965f9d
3,654,793
def phase_lines(graph): """ Determines the phase lines of a graph. :param graph: Graph :return: dictionary with node id : phase in cut. """ if has_cycles(graph): raise ValueError("a cyclic graph will not have phaselines.") phases = {n: 0 for n in graph.nodes()} q = graph.nodes(in_degree=0) while q: n = q.pop(0) level = phases[n] children = graph.nodes(from_node=n) for c in children: if phases[c] <= level: phases[c] = level + 1 q.append(c) return phases
9f1aab9e487bd258c88b0f149bcf613341945879
3,654,794
def BCELossConfig(argument_parser): """ Set CLI arguments :param argument_parser: argument parser :type argument_parser: ```ArgumentParser``` :returns: argument_parser :rtype: ```ArgumentParser``` """ argument_parser.description = """Creates a criterion that measures the Binary Cross Entropy between the target and the output: The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: .. math:: \\ell(x, y) = L = \\{l_1,\\dots,l_N\\}^\\top, \\quad l_n = - w_n \\left[ y_n \\cdot \\log x_n + (1 - y_n) \\cdot \\log (1 - x_n) \\right], where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then .. math:: \\ell(x, y) = \\begin{cases} \\operatorname{mean}(L), & \\text{if reduction} = \\text{`mean';}\\\\ \\operatorname{sum}(L), & \\text{if reduction} = \\text{`sum'.} \\end{cases} This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets :math:`y` should be numbers between 0 and 1. Notice that if :math:`x_n` is either 0 or 1, one of the log terms would be mathematically undefined in the above loss equation. PyTorch chooses to set :math:`\\log (0) = -\\infty`, since :math:`\\lim_{x\\to 0} \\log (x) = -\\infty`. However, an infinite term in the loss equation is not desirable for several reasons. For one, if either :math:`y_n = 0` or :math:`(1 - y_n) = 0`, then we would be multiplying 0 with infinity. Secondly, if we have an infinite loss value, then we would also have an infinite term in our gradient, since :math:`\\lim_{x\\to 0} \\frac{d}{dx} \\log (x) = \\infty`. This would make BCELoss's backward method nonlinear with respect to :math:`x_n`, and using it for things like linear regression would not be straight-forward. Our solution is that BCELoss clamps its log function outputs to be greater than or equal to -100. This way, we can always have a finite loss value and a linear backward method. Shape: - Input: :math:`(N, *)` where :math:`*` means, any number of additional dimensions - Target: :math:`(N, *)`, same shape as the input - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same shape as input. Examples:: >>> m = nn.Sigmoid() >>> loss = nn.BCELoss() >>> input = torch.randn(3, requires_grad=True) >>> target = torch.empty(3).random_(2) >>> output = loss(m(input), target) >>> output.backward()""" argument_parser.add_argument( "--weight", help="""a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size `nbatch`.""", required=True, ) argument_parser.add_argument( "--size_average", type=bool, help="""Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when :attr:`reduce` is ``False``.""", default=True, ) argument_parser.add_argument( "--reduce", type=bool, help="""Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`.""", default=True, ) argument_parser.add_argument( "--reduction", help="""Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`.""", required=True, default="mean", ) argument_parser.add_argument( "--__constants__", type=str, action="append", required=True, default="reduction" ) return argument_parser
d0108459bdad9b2f6fad438bff542624b482ef7d
3,654,797
def gen_cities_avg(climate, multi_cities, years): """ Compute the average annual temperature over multiple cities. Args: climate: instance of Climate multi_cities: the names of cities we want to average over (list of str) years: the range of years of the yearly averaged temperature (list of int) Returns: a pylab 1-d array of floats with length = len(years). Each element in this array corresponds to the average annual temperature over the given cities for a given year. """ # MY_CODE return np.array([np.mean([np.mean(climate.get_yearly_temp(city, year)) for city in multi_cities]) for year in years])
9609add6a1514d09b42e2494e56c84522d3cb364
3,654,798
def tangentVectorsOnSphere( points, northPole = np.array([0.0,0.0,1.0]) ): """ Acquire a basis for the tangent space at given points on the surface of the unit sphere. :param points: N x 3 array of N points at which to acquire basis of tangent space. :param northPole: 3 array of point corresponding to the north pole. :return A N x 3 x 3 array. Each point has three orthogonal tangent vectors of unit length. They are constructed such as the first vector is pointing towards the 'northPole'. The second vector is orthogonal to both the first vector and the vector from the origin to the point of interest. The third vector is equal to the vector between the origin and the point of interest. The last dimension represent the elements of the vectors. The next to last dimension indices the vectors """ vectors = np.zeros( (points.shape[0], 3,3) ) # Get third vector vectors[:, 2, :] = points / np.linalg.norm(points, axis= 1).reshape((-1,1)) # Get second vector vectors[:, 1, :] = np.cross( northPole.reshape( (1,3) ), vectors[:,2,:] ) # Get first vector vectors[:, 0, :] = np.cross( vectors[:,2,:], vectors[:,1,:] ) # Normalize vectors lengths = np.linalg.norm( vectors, axis=2 ).reshape((-1, 3)) inds = np.any( lengths == 0.0, axis=1 ) vectors[inds, :, : ] = np.nan vectors[~inds, :, :] = vectors[~inds, :, :] / lengths[~inds, :].reshape( (-1,3,1) ) return vectors
bfa23a393ac4d1b38c6c2b19207520db1bd83e03
3,654,799
import tkinter def _colorvar_patch_destroy(fn): """Internal function.\n Deletes the traces if any when widget is destroy.""" def _patch(self): """Interanl function.""" if self._tclCommands is not None: # Deletes the widget from the _all_traces_colorvar # and deletes the traces too. for key, value in dict(_all_traces_colorvar).items(): if self == key[0]: var, cbname = value try: var.trace_vdelete('w', cbname) except tkinter.TclError: pass _all_traces_colorvar.pop(key) return fn(self) return _patch
d38380316932d8ff2fee8bed8b931b5567588774
3,654,800
def pres_from_hybrid(psfc, hya, hyb, p0=100000.): """Return pressure field on hybrid-sigma coordinates, assuming formula is p = a(k)*p0 + b(k)*ps. """ return hya*p0 + hyb*psfc
4ebd90fb807ab9ea4c2b45d27da6f8b420c107f7
3,654,802
import urllib def url_exist(file_url): """ Check if an url exist Parameters ---------- file_url : string url of www location Returns ------- verdict : dtype=boolean verdict if present """ try: urllib.request.urlopen(file_url).code == 200 return True except: return False
717ee7073ab56e8611eb46f042ab7c18f2db0f33
3,654,803
from scipy import stats def chi_square(observed, expected): """ Compute the chi square test """ # glen cowan pp61 temp = [] for (n, nu) in zip(observed, expected): if nu != 0: temp += [((n - nu) ** 2) / nu] # compute p value mychi = sum(temp) p = stats.chi2.sf(mychi, len(temp)) return mychi, p
4b0577ec4e4b4dc6b99b00a54e78f1014b9cf93a
3,654,804
def theta_8(p, q, h, phi, a, b): """Lower limit of integration for the case rho > a, rho > b.""" result = np.arctan(r_8(p, q, phi, a, b)/h) return(result)
913ceb462885fba93cbdb6bddaa5523c119821bc
3,654,806
def collect_genewise(fst_file, file_name, gene_names, gene_to_fst): """take in the file name, opens it. populates a dictionary to [gene] = fst file_name = defaultdict(str) FBgn0031208 500000 16 0.002 21.0 1:2=0.05752690 """ file_name = file_name.split("_gene")[0] f_in = open(fst_file, "r") for line in f_in: if test_line(line): data = line.split() if "1:2=" in line: gene = data[0].strip() gene_names.add(gene) fst = data[5].strip() fst = fst.split("=")[1] data = "%s\t%s" % (gene, fst) gene_to_fst[file_name].append(data) return gene_to_fst, gene_names
ea62da67a7084103859244bf7f192c2f4433124c
3,654,807
import torch def bbox_overlaps_batch(anchors, gt_boxes): """ :param anchors: (N, 4) ndarray of float :param gt_boxes: (b, K, 5) ndarray of float :return: (N, K) ndarray of overlap between boxes and query_boxes """ batch_size = gt_boxes.size(0) if anchors.dim() == 2: N = anchors.size(0) K = gt_boxes.size(1) anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) elif anchors.dim() == 3: N = anchors.size(1) K = gt_boxes.size(1) if anchors.size(2) == 4: anchors = anchors[:,:,:4].contiguous() else: anchors = anchors[:,:,1:5].contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) else: raise ValueError('anchors input dimension is not correct.') return overlaps
cc5a88e6a1d5cd42b1827091cbee311e4f33bbb6
3,654,808
from typing import Tuple from typing import Callable from typing import Any import re def extract_curve_and_test(curve_names: str, name: str) -> Tuple[str, Callable[[Any], bool]]: """Return a curve and a test to apply for which of it's components to twist.""" twist_match = re.match(rf"(?P<curve>[{curve_names}])_(?P<n>-?\d+)$", name) twist_index_match = re.match(rf"(?P<curve>[{curve_names}])\[ *(?P<n>-?\d+) *\]$", name) twist_slice_match = re.match(rf"(?P<curve>[{curve_names}])(\[ *(?P<start>-?\d*) *: *(?P<stop>-?\d*) *(: *(?P<step>-?\d*) *)?\])?$", name) twist_expr_match = re.match(rf"(?P<curve>[{curve_names}])\{{(?P<expr>.*)\}}$", name) if twist_match is not None: parameters = twist_match.groupdict() curve = parameters["curve"] n = int(parameters["n"]) test = lambda edge: edge == n elif twist_index_match is not None: parameters = twist_index_match.groupdict() curve = parameters["curve"] n = int(parameters["n"]) test = lambda edge: edge == n elif twist_slice_match is not None: parameters = twist_slice_match.groupdict() curve = parameters["curve"] start = int(parameters["start"]) if parameters["start"] else -inf stop = int(parameters["stop"]) if parameters["stop"] else inf step = int(parameters["step"]) if parameters["step"] else 1 test = lambda edge: start <= edge < stop and (edge % step == (0 if start == -inf else start % step)) elif twist_expr_match is not None: parameters = twist_expr_match.groupdict() curve = parameters["curve"] test = lambda n: eval(parameters["expr"], {"n": n, **globals()}) # pylint: disable=eval-used else: raise ValueError(f"Unknown mapping class {name}") return curve, test
e4849ff7145bae0c2c900d0aa747ec7a14fb96ac
3,654,809
import numpy def psf_gaussian(psf_shape, psf_waist, psf_physical_size=1, psf_nphoton=2): """Return 3D gaussian approximation of PSF.""" def f(index): s = psf_shape[index] // 2 * psf_physical_size c = numpy.linspace(-s, s, psf_shape[index]) c *= c c *= -2.0 / (psf_waist[index] * psf_waist[index]) return c psf = numpy.exp( numpy.sum( numpy.meshgrid(f(0), f(1), f(2), indexing='ij', sparse=False), axis=0, ) ) if psf_nphoton != 1: numpy.power(psf, psf_nphoton, out=psf) return psf
77ccab6aaa141564751a0eafd13398f904673006
3,654,810
def get_employee_record(id_num): """Gets an employee's details if record exists. Arguments: id_num -- ID of employee record to fetch """ if not id_num in names or not id_num in cities: return 'Error viewing record' return f'{id_num} {names[id_num]} {cities[id_num]}'
108b6e3482022e8e65e09bda1dd8a78ca7850cfe
3,654,811
def list_aliases(): """ Gets the list of aliases for the current account. An account has at most one alias. :return: The list of aliases for the account. """ try: response = iam.meta.client.list_account_aliases() aliases = response['AccountAliases'] if len(aliases) > 0: logger.info("Got aliases for your account: %s.", ','.join(aliases)) else: logger.info("Got no aliases for your account.") except ClientError: logger.exception("Couldn't list aliases for your account.") raise else: return response['AccountAliases']
13fa5d4ded6811bbcbd6062cf7f690b08c41354e
3,654,812
def MapToSingleIncrease(val): """ Need 30 minute values to be sequential for some of the tools(i.e. 1,2,3,4) so using a format like 5,10,15,20 won't work. """ return val/5
fe89d7ccb8bef511e2ad90a07ad0346c58ba894d
3,654,813
def get_columns_for_table(instance, db, table): """ Get a list of columns in a table Args: instance - a hostAddr object db - a string which contains a name of a db table - the name of the table to fetch columns Returns A list of columns """ conn = connect_mysql(instance) cursor = conn.cursor() ret = list() param = {'db': db, 'table': table} sql = ("SELECT COLUMN_NAME " "FROM information_schema.columns " "WHERE TABLE_SCHEMA=%(db)s AND" " TABLE_NAME=%(table)s") cursor.execute(sql, param) for column in cursor.fetchall(): ret.append(column['COLUMN_NAME']) return ret
567a7e3e6ebbf33cee3cb088e1725bd2b11edcef
3,654,814
def registra_aluno(nome, ano_entrada, ano_nascimento, **misc): """Cria a entrada do registro de um aluno.""" registro = {'nome': nome, 'ano_entrada': ano_entrada, 'ano_nascimento': ano_nascimento} for key in misc: registro[key] = misc[key] return registro
e56da99ec90de9ebca204ccc3c3f3555b9bbbc64
3,654,815
def create_small_table(small_dict): """ Create a small table using the keys of small_dict as headers. This is only suitable for small dictionaries. Args: small_dict (dict): a result dictionary of only a few items. Returns: str: the table as a string. """ keys, values = tuple(zip(*small_dict.items())) table = tabulate( [values], headers=keys, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center", ) return table
08da78580fbf4cee8c30acb21ce7fa928a9c17b1
3,654,818
def get_normalized_list_for_every_month(variable_r, list_of_ranges_r, tags_r): """ :param variable_r: big list with all the data [sizes][months] :param list_of_ranges_r: sorted list of range (sizes...Enormous, etc.) :return: normalized list for each month (numbers are percentage respect to the total bytes/requests in a given month) """ number_of_months = len(tags_r) temp_list = [[] for lil in range(0, number_of_months)] total_requests_in_each_month = [[] for lil in range(0, number_of_months)] maxima_each_month = [[] for lil in range(0, number_of_months)] new_list_normalized = [[] for lil in range(0, number_of_months)] for month in range(0, number_of_months): for ciao in range(0, len(list_of_ranges_r), 1): temp_list[month].append(variable_r[ciao][month]) # change second index to change the month: 0,1,2,...23 for month in range(0, number_of_months): total_requests_in_each_month[month] = float(sum(temp_list[month])) #print("total bytes requested in month 0: %f" % total_requests_in_each_month[0]) # list of maxima for each month for month in range(0, number_of_months): maxima_each_month[month] = max(temp_list[month]) #print("maxima for the first month: %d", maxima_each_month[0]) for month in range(0, number_of_months): for zeta in temp_list[month]: new_list_normalized[month].append((zeta/total_requests_in_each_month[month])*100) return new_list_normalized
4a3b837e6bf254dbd3255a8ca0a5d103d34bd2a9
3,654,819
def mark_as_possible_cluster_member(g, possible_cluster_member, cluster, confidence, system, uri_ref=None): """ Mark an entity or event as a possible member of a cluster. :param rdflib.graph.Graph g: The underlying RDF model :param rdflib.term.URIRef possible_cluster_member: The entity or event to mark as a possible member of the specified cluster :param rdflib.term.URIRef cluster: The cluster to associate with the possible cluster member :param float confidence: The confidence with which to mark the cluster membership :param rdflib.term.URIRef system: The system object for the system which marked the specified cluster :param str uri_ref: A string URI representation of the cluster member (Default is None) :returns: The cluster membership assertion :rtype: rdflib.term.BNode """ cluster_member_assertion = _make_aif_resource(g, uri_ref, AIDA_ANNOTATION.ClusterMembership, system) g.add((cluster_member_assertion, AIDA_ANNOTATION.cluster, cluster)) g.add((cluster_member_assertion, AIDA_ANNOTATION.clusterMember, possible_cluster_member)) mark_confidence(g, cluster_member_assertion, confidence, system) return cluster_member_assertion
851da7d12781723c7c2fb4bc13ac14172c890daf
3,654,820
def twodcontourplot(tadata_nm, tadata_timedelay, tadata_z_corr): """ make contour plot Args: tadata_nm: wavelength array tadata_timedelay: time delay array tadata_z_corr: matrix of z values """ timedelayi, nmi = np.meshgrid(tadata_timedelay, tadata_nm) # find the maximum and minimum # these are used for color bar z_min = np.amin(np.amin(tadata_z_corr, axis=1)) z_max = np.amax(np.amax(tadata_z_corr, axis=1)) return [nmi, timedelayi, z_min, z_max]
2e8850e1c8153c9c307ff785ddd1d1d127163190
3,654,821
def make_example_dags(module_path): """Loads DAGs from a module for test.""" dagbag = DagBag(module_path) return dagbag.dags
ffc2fd47bbee7d2124da199d6b5101103500fbf2
3,654,822
def count_good_deals(df): """ 7. Считает число прибыльных сделок :param df: - датафрейм с колонкой '<DEAL_RESULT>' :return: - число прибыльных сделок """ # http://stackoverflow.com/questions/27140860/count-occurrences-of-number-by-column-in-pandas-data-frame?rq=1 return (df['<DEAL_RESULT>'] > 0).sum()
1f3ef9b9e0f7924d45d5ce84a77938f19386b6bc
3,654,823
import time import itertools import sh def match_lines_by_hausdorff(target_features, match_features, distance_tolerance, azimuth_tolerance=None, length_tolerance=0, match_features_sindex=None, match_fields=False, match_stats=False, field_suffixes=('', '_match'), match_strings=None, constrain_target_features=False, target_features_sindex=None, match_vectors=False, expand_target_features=False, closest_match=False, closest_target=False, verbose=False): """Conflate attributes between line features based on Hausdorff distance. target_features : :class:`geopandas.GeoDataFrame` Features to which ``match_features`` will be matched. Must have LineString geometries. All ``target_features`` will be included in output, with or without a match. match_features : :class:`geopandas.GeoDataFrame` Features to be matched to ``target_features``. Must have LineString geometries. Only successfully matched features will be included in output. Multiple ``match_features`` may be matched to a single target feature. Must have the same spatial reference as ``target_features``. distance_tolerance : :obj:`float` Maximum Hausdorff distance between each target feature and candidate ``match_features`` Because directed Hausdorff distances are calculated from target to match and match to target, ``distance_tolerance`` will be assessed based on the smaller of these two values. If feature segments are matched (e.g., 1:n, m:1, or m:n), Hausdorff distances are calculated for each segment. In spatial unit of ``target_features``. azimuth_tolerance : :obj:`float`, optional, default = ``None`` Maximum azimuth difference (in degrees) between target feature and potential match features. Feature azimuths are calculated as the azimuth of the feature's "major axis" (the longest axis of the feature's minimum bounding rectangle). If feature segments are matched (e.g., 1:n, m:1, or m:n), azimuths are calculated for each segment. length_tolerance : :obj:`float`, optional, default = 0 Proportion of target feature length required for potential match features. For example, 0.25 specifies that a match candidates must be at least 25% as long as target features to be viable matches. Must be between 0 and 1. If target and match features are split, length proportions are calculated between split segments, not original features. match_features_sindex : :class:`rtree.index.Index`, optional, default = ``None`` Spatial index for ``match_features``. If provided, will not have to be constructed for each function call. match_fields : :obj:`bool`, optional, default = ``False`` * ``True``: Fields from match features will be included in output. * ``False``: Only row indices for match features will be included in output. match_stats : :obj:`bool`, optional, default = ``False`` * ``True``: Statistics related to tolerances will be included in output. * ``False``: No match statistics will be included in ouput. field_suffixes : :obj:`tuple`, optional, default = ``('', '_match')`` Suffixes to be appended to output field names for ``target_features`` and ``match_features``, respectively. Only used if ``match_stats=True``. match_strings : :obj:`tuple`, optional, default = ``None`` Fields used to compute fuzzy string comparisions. Typically, these are street name fields for the ``target_features`` and ``match_features``, respectively. String comparisions do not affect matches, but can be post-processed to help assess match quality. constrain_target_features : :obj:`bool`, optional, default = ``False`` * ``True``: Extents of ``match_features``, plus a ``distance_tolerance`` buffer, will be used to select relevent ``target_features`` prior to matching. When the extent or number of ``match_features`` is small relative to ``target_features``, this dramatically improves performance because fewer ``target_features`` are analyzed for potential matches. * ``False``: All ``target_features`` are analyzed for potential matches. target_features_sindex : :class:`rtree.index.Index`, optional, default = ``None`` If ``constrain_target_features=True``, a spatial index for the ``target_features`` will be computed unless one is provided. If the same ``target_features`` are specified in multiple function calls, pre-computing a spatial index will improve performance. If ``constrain_target_features=False``, ``target_features_sindex`` is unnecessary. match_vectors : :obj:`bool`, optional, default = ``False`` * ``True``: Constructs LineStrings between midpoint of ``target_features`` and the closest points along matched ``match_features``. Useful for vizualizing match results. expand_target_features : :obj:`bool`, optional, default = ``False`` * ``True`` : Target features that match to multiple ``match_features`` will be expanded into multiple segments, each corresponding to a single match feature. Each target feature segment will be output as a seperate record with an index field identifying original row-wise indices from ``target_features``. closest_match : :obj:`bool`, optional, default = ``False`` * ``True`` : Only the closest available match feature will be matched to each target feature, based on Hausdorff distance * ``False`` : All available match features will match to each target feature closest_target : :obj:`bool`, optional, default = ``False`` * ``True`` : A target feature will only match with a match feature if it is the closest available target, based on Hausdorff distance * ``False`` : A target feature will match with all available match features, regardless of whether it has also matched with other target features verbose : :obj:`bool`, optional, default = ``False`` * ``True`` : Reports status by printing to standard output """ # Copy input features to the function doesn't modify the originals target_features = target_features.copy() match_features = match_features.copy() original_target_feature_columns = target_features.columns original_crs = target_features.crs if verbose: start = time() length = len(target_features) counter = 0 # Constrain target features to those near available match features if constrain_target_features: if not target_features_sindex: target_features_sindex = target_features.sindex nearby_target_idx = [] for match_feature in match_features.geometry: nearby_target_idx.extend( list(target_features_sindex.intersection( match_feature.buffer(distance_tolerance).bounds))) nearby_target_idx = list(set(nearby_target_idx)) operating_target_features = target_features[['geometry']].iloc[nearby_target_idx].copy() else: operating_target_features = target_features[['geometry']].copy() # Make a spatial index for match features, if one isn't supplied if not match_features_sindex: match_features_sindex = match_features.sindex # Initiate lists to store match results match_indices = [] match_types = [] h_tms_matches = [] t_props_matches = [] t_segs_matches = [] t_linrefs_matches = [] h_mts_matches = [] m_props_matches = [] m_segs_matches = [] m_linrefs_matches = [] if match_vectors: match_vectors = [] # Iterate through target features: for i, target in enumerate(operating_target_features.geometry): # Initiate lists to store matches m_ids = [] m_types = [] h_tms = [] t_props = [] t_segs = [] t_linrefs = [] h_mts = [] m_props = [] m_segs = [] m_linrefs = [] # Only analyze targets with length if target.length > 0: # Roughly filter candidates with a spatial index search_area = target.buffer(distance_tolerance).bounds candidate_IDs = list(match_features_sindex.intersection(search_area)) candidates = match_features[['geometry']].iloc[candidate_IDs].reset_index() # Calculate Hausdorff distances from feature to each candidate (h_fc) h_tm_list = [directed_hausdorff(target, candidate) for candidate in candidates.geometry] candidates['h_tm'] = pd.Series(h_tm_list) # Calculate Hausdorff distances from each candidate to feature (h_cf) h_mt_list = [directed_hausdorff(candidate, target) for candidate in candidates.geometry] candidates['h_mt'] = pd.Series(h_mt_list) # Define function to compare major axis azimuths def azimuth_match(target, candidate, azimuth_tolerance): if azimuth_tolerance: target_azimuth = major_axis_azimuth(target) candidate_azimuth = major_axis_azimuth(candidate) azimuth_difference_ = azimuth_difference(target_azimuth, candidate_azimuth, directional=False) if azimuth_difference_ <= azimuth_tolerance: return True else: return False else: return True # Examine each candidate's relationship to the target feature for candidate in candidates.itertuples(): # Only analyze candidates with length if candidate.geometry.length > 0: # Initialize default match values m_type = None h_tm = None t_prop = None t_seg = None t_linref = None h_mt = None m_prop = None m_seg = None m_linref = None # 1:1 if ( (candidate.h_tm <= distance_tolerance) and (candidate.h_mt <= distance_tolerance) and # Check that azimuth is acceptable azimuth_match(target, candidate.geometry, azimuth_tolerance) and # Check relative length (abs(candidate.geometry.length - target.length) < (1- length_tolerance) * target.length)): # Whole target matches candidate h_tm = candidate.h_tm t_prop = 1 t_seg = target t_linref = (0, target.length) # Whole candidate matches target h_mt = candidate.h_mt m_prop = 1 m_seg = candidate.geometry m_linref = (0, candidate.geometry.length) m_type = '1:1' # m:1 elif ( (candidate.h_tm <= distance_tolerance) and (candidate.h_mt > distance_tolerance)): # Find the candidate segment matching the target candidate_seg = find_parallel_segment(target, candidate.geometry) if (candidate_seg and candidate_seg.length > 0 and azimuth_match(target, candidate_seg, azimuth_tolerance) and # Check relative length (abs(candidate_seg.length - target.length) < (1- length_tolerance) * target.length)): # Whole target matches candidate h_tm = directed_hausdorff(target, candidate_seg) t_prop = 1 t_seg = target t_linref = (0, target.length) # Calculate proportion of candidate included in segment h_mt = directed_hausdorff(candidate_seg, target) m_prop = candidate_seg.length / candidate.geometry.length m_seg = candidate_seg m_linref = segment_linear_reference(candidate.geometry, candidate_seg) m_type = 'm:1' # 1:n elif ( (candidate.h_tm > distance_tolerance) and (candidate.h_mt <= distance_tolerance)): # Find the target segment matching the candidate target_seg = find_parallel_segment( candidate.geometry, target, snap_distance=distance_tolerance) if (target_seg and target_seg.length > 0 and azimuth_match(target_seg, candidate.geometry, azimuth_tolerance) and # Check relative length (abs(candidate.geometry.length - target_seg.length) < (1- length_tolerance) * target_seg.length)): # Calculate proportion of target included in segment h_tm = directed_hausdorff(target_seg, candidate.geometry) t_prop = target_seg.length / target.length t_seg = target_seg t_linref = segment_linear_reference(target, target_seg) # Whole candidate matches target h_mt = directed_hausdorff(candidate.geometry, target_seg) m_prop = 1 m_seg = candidate.geometry m_linref = (0, candidate.geometry.length) m_type = '1:n' # potential m:n elif ( (candidate.h_tm > distance_tolerance) and (candidate.h_mt > distance_tolerance)): # See if parallel segments can be identified target_seg = find_parallel_segment( candidate.geometry, target, snap_distance=distance_tolerance) candidate_seg = find_parallel_segment( target, candidate.geometry) # Measure hausdorff distance (non-directed) between parallel segments if target_seg and candidate_seg: h_tm_seg = directed_hausdorff(target_seg, candidate_seg) h_mt_seg = directed_hausdorff(candidate_seg, target_seg) if ((h_tm_seg <= distance_tolerance) and (h_mt_seg <= distance_tolerance) and target_seg.length > 0 and candidate_seg.length > 0 and azimuth_match(target_seg, candidate_seg, azimuth_tolerance) and # Check relative length (abs(candidate_seg.length - target_seg.length) < (1- length_tolerance) * target_seg.length)): h_tm = h_tm_seg t_prop = target_seg.length / target.length t_seg = target_seg t_linref = segment_linear_reference(target, target_seg) h_mt = h_mt_seg m_prop = candidate_seg.length / candidate.geometry.length m_seg = candidate_seg m_linref = segment_linear_reference(candidate.geometry, candidate_seg) m_type = 'm:n' if t_prop is not None: m_ids.append(candidate.index) m_types.append(m_type) h_tms.append(h_tm) t_props.append(t_prop) t_segs.append(t_seg) t_linrefs.append(t_linref) h_mts.append(h_mt) m_props.append(m_prop) m_segs.append(m_seg) m_linrefs.append(m_linref) # Record match stats match_indices.append(m_ids) match_types.append(m_types) h_tms_matches.append(h_tms) t_props_matches.append(t_props) t_segs_matches.append(t_segs) t_linrefs_matches.append(t_linrefs) h_mts_matches.append(h_mts) m_props_matches.append(m_props) m_segs_matches.append(m_segs) m_linrefs_matches.append(m_linrefs) # Construct match vector if isinstance(match_vectors, list): vectors = [] for t_seg, m_seg in zip(t_segs_matches, m_segs_matches): if t_seg and m_seg: vectors.append(LineString([midpoint(t_seg), midpoint(m_seg)])) match_vectors.append(vectors) # Report status if verbose: if counter % round(length / 10) == 0 and counter > 0: percent_complete = (counter // round(length / 10)) * 10 minutes = (time()-start) / 60 print('{}% ({} segments) complete after {:04.2f} minutes'.format(percent_complete, counter, minutes)) counter += 1 # Merge joined data with target features operating_target_features['match_index'] = pd.Series( match_indices, index=operating_target_features.index) operating_target_features['match_type'] = pd.Series( match_types, index=operating_target_features.index) operating_target_features['h_tm'] = pd.Series( h_tms_matches, index=operating_target_features.index) operating_target_features['t_prop'] = pd.Series( t_props_matches, index=operating_target_features.index) operating_target_features['t_seg'] = pd.Series( t_segs_matches, index=operating_target_features.index) operating_target_features['t_linref'] = pd.Series( t_linrefs_matches, index=operating_target_features.index) operating_target_features['h_mt'] = pd.Series( h_mts_matches, index=operating_target_features.index) operating_target_features['m_prop'] = pd.Series( m_props_matches, index=operating_target_features.index) operating_target_features['m_seg'] = pd.Series( m_segs_matches, index=operating_target_features.index) operating_target_features['m_linref'] = pd.Series( m_linrefs_matches, index=operating_target_features.index) if isinstance(match_vectors, list): operating_target_features['match_vectors'] = pd.Series( match_vectors, index=operating_target_features.index) # Store original target feature IDs operating_target_features = operating_target_features.reset_index().rename(columns={'index': 'target_index'}) # Expand targets with more than one match # Look for lists of match IDs in each row expanded_targets = [] for i, target in enumerate(operating_target_features.itertuples()): if isinstance(target.match_index, list): # Make duplicate rows for each match ID with respective attributes for j, match in enumerate(target.match_index): new_row = target._asdict() new_row.pop('Index', None) for key, value in target._asdict().items(): if isinstance(value, list): new_row[key] = value[j] # Append new row to end of dataframe operating_target_features = operating_target_features.append(new_row, ignore_index=True) # Mark original row for deletion expanded_targets.append(i) # Delete expanded targets operating_target_features = operating_target_features.drop(expanded_targets) # Only analyze matches if there are any if len(operating_target_features) > 0: # Identify and add records for unmatched portions of target features # Get target records that have unmatched portions unmatched_segments = operating_target_features.copy() unmatched_segments = unmatched_segments[ (unmatched_segments['t_prop'].notnull()) & (unmatched_segments['t_prop'] < 1)] new_target_records = [] # Iterate through groups of target records for target_index, target_group in unmatched_segments.groupby('target_index'): # Get the linref intervals associated with each of the matched segments matched_linrefs = target_group['t_linref'].tolist() # Combine the intervals matched_linrefs_merged = merge_intervals(matched_linrefs) # Get the original target geometry orig_target_geometry = target_group.iloc[0]['geometry'] # Construct linref intervals for the unmatched parts geometry_extents = [0, orig_target_geometry.length] matched_linrefs_list = [linref for tup in matched_linrefs_merged for linref in tup] all_linrefs_list = sorted(geometry_extents + matched_linrefs_list) unmatched_linrefs = [ (all_linrefs_list[i], all_linrefs_list[i + 1]) for i in range(0, len(all_linrefs_list), 2)] unmatched_lines = [ split_line_at_dists(orig_target_geometry, pair)[1] for pair in unmatched_linrefs] # For each unmatched line, make a new target record for unmatched_line, unmatched_linref in zip(unmatched_lines, unmatched_linrefs): if unmatched_line.length > 1: # Get all the attributes associated with the original target record new_target_record = target_group.iloc[0].to_dict() # Modify the match attributes new_target_record['match_index'] = np.nan new_target_record['match_type'] = np.nan new_target_record['h_tm'] = np.nan new_target_record['t_prop'] = np.nan new_target_record['t_seg'] = unmatched_line new_target_record['t_linref'] = unmatched_linref new_target_record['h_mt'] = np.nan new_target_record['m_prop'] = np.nan new_target_record['m_seg'] = np.nan new_target_record['m_linref'] = np.nan new_target_record['geometry'] = orig_target_geometry new_target_records.append(new_target_record) # Add new target records to operating features new_target_records = gpd.GeoDataFrame(new_target_records, geometry='geometry') operating_target_features = pd.concat([operating_target_features, new_target_records]) # Replace target geometries with target segments (if not NaN) ##### This appears to be duplicated below; not sure if it needs to happen twice operating_target_features['geometry'] = operating_target_features.apply( lambda row: row['t_seg'] if isinstance(row['t_seg'], LineString) else row['geometry'], axis=1) # For each unique target geometry, delete all matches except the closest one # (expanded targets are deleted if they don't have the closest match) # Required if 'closest_target' if closest_match or closest_target: # Identify sets of records with identical targets equivalent_target_sets = [d for _, d in operating_target_features.groupby( ['target_index','t_linref']) if len(d) > 1] # Identify which of these records has the closest match equivalent_record_ids = [] closest_records = gpd.GeoDataFrame(crs=operating_target_features.crs) for equivalent_target_set in equivalent_target_sets: # Keep track of IDs for equivalent records equivalent_record_ids.extend(equivalent_target_set.index.tolist()) # Identify minimum tc and ct distances and associated indices h_tm_min_idx = equivalent_target_set['h_tm'].astype(float).idxmin() h_tm_min = equivalent_target_set['h_tm'].astype(float).min() h_mt_min_idx = equivalent_target_set['h_mt'].astype(float).idxmin() h_mt_min = equivalent_target_set['h_mt'].astype(float).min() # Identify overall closest match min_idx = h_tm_min_idx if h_tm_min < h_mt_min else h_mt_min_idx closest_records = closest_records.append( operating_target_features.loc[[min_idx]], ignore_index=True) # Drop equivalent records operating_target_features = operating_target_features.drop( equivalent_record_ids) # Add back those with the closest match operating_target_features = operating_target_features.append( closest_records, ignore_index=True) # Ensure that each match feature is only matched to one, closest target feature # (No targets are deleted, but matches are removed if a given target isn't closest) if closest_target: # Identify sets of records with the same match id match_id_sets = [d for _, d in operating_target_features.groupby( 'match_index') if len(d) > 1] # Within these sets, identify sets with overlapping linear references for match_id_set in match_id_sets: # Get ID for match feature match_id = match_id_set.iloc[0]['match_index'] # Get raw geometry for match feature match_geom = match_features.loc[match_id]['geometry'] # Find overlapping linear reference ranges among the original matches lin_ref_ranges = merge_intervals(match_id_set['m_linref'].tolist()) # Identify sets of records within each range lin_ref_sets = [match_id_set[match_id_set['m_linref'].apply( lambda x: True if (x[0] >= lower and x[1] <= upper) else False)] for lower, upper in lin_ref_ranges] # Analyze each set of targets with overlapping matches for lin_ref_set, lin_ref_range in zip(lin_ref_sets, lin_ref_ranges): # Get the portion of the raw match feature within the linear reference range _, range_match_geom, _ = split_line_at_dists(match_geom, lin_ref_range) # Split the linear reference feature into segments parallel to match features t_seg_endpoints = [x for t_seg in lin_ref_set['t_seg'] for x in endpoints(t_seg)] t_seg_endpoint_lin_refs = [range_match_geom.project(x) for x in t_seg_endpoints] range_match_segments = split_line_at_dists(range_match_geom, t_seg_endpoint_lin_refs) # For each segment, see which target feature is closest based on hausdorff distance closest_targets = [ nearest_neighbor( segment, GeoDataFrame(geometry=lin_ref_set['t_seg']), hausdorff_distance=True ).index[0] for segment in range_match_segments] # Group adjacent segments with the same target groups = [list(group) for _, group in itertools.groupby( zip(closest_targets, range_match_segments), key=lambda x: x[0])] closest_targets = [group[0][0] for group in groups] match_segments = [[x[1] for x in group] for group in groups] match_segments = [sh.ops.linemerge(x) for x in match_segments] # Only move forward if there are match LineString match segments to work with if LineString in [type(x) for x in match_segments]: # Remove any non-LineString geometries (e.g., GeometryCollection) try: match_segments, closest_targets = zip( *[(segment, idx) for segment, idx in zip(match_segments, closest_targets) if isinstance(segment, LineString)]) except: match_segment_types = [type(x) for x in match_segments] closest_target_types = [type(x) for x in closest_targets] print('match segments: {}, {}'.format(str(match_segment_types), str(match_segments))) print('closest_targets: {}, {}'.format(str(closest_target_types), str(closest_targets))) # Calculate the match prop and lin_ref bounds for the grouped match segments match_props = [x.length/match_geom.length for x in match_segments] match_lin_refs = [tuple([match_geom.project(point) for point in endpoints(segment)]) for segment in match_segments] # Update match info for the chosen target for idx, match_prop, match_segment, match_lin_ref in zip( closest_targets, match_props, match_segments, match_lin_refs): # lin_ref_set.at[idx, 'match_index'] = match_id lin_ref_set.at[idx, 'm_prop'] = match_prop lin_ref_set.at[idx, 'm_seg'] = match_segment lin_ref_set.at[idx, 'm_linref'] = match_lin_ref lin_ref_set.at[idx, 'h_tm'] = directed_hausdorff( lin_ref_set.at[idx, 't_seg'], match_segment) lin_ref_set.at[idx, 'h_mt'] = directed_hausdorff( match_segment, lin_ref_set.at[idx, 't_seg']) # Remove match info for other targets in set not_closest_targets = [x for x in lin_ref_set.index if x not in closest_targets] for idx in not_closest_targets: lin_ref_set.at[idx, 't_prop'] = np.nan # lin_ref_set.at[lin_ref_set_idx, 't_seg'] = np.nan ########### Maybe don't get rid of the t_seg? lin_ref_set.at[idx, 't_linref'] = np.nan lin_ref_set.at[idx, 'm_prop'] = np.nan lin_ref_set.at[idx, 'm_seg'] = np.nan lin_ref_set.at[idx, 'm_linref'] = np.nan lin_ref_set.at[idx, 'h_tm'] = np.nan lin_ref_set.at[idx, 'h_mt'] = np.nan lin_ref_set.at[idx, 'match_index'] = np.nan # Remove original lin_ref_set rows from the operating_target_features operating_target_features = operating_target_features.drop(lin_ref_set.index) # Append rows from lin_ref_set back onto operating_target_features operating_target_features = operating_target_features.append(lin_ref_set) # Gather values from fields of match features if match_fields and isinstance(match_fields, bool): match_fields = match_features.columns.tolist() match_fields.remove('geometry') elif isinstance(match_fields, list): match_fields = match_fields else: match_fields = [] if match_strings and (match_strings[1] not in match_fields): match_fields.append(match_strings[1]) # Join fields for matches operating_target_features = operating_target_features.merge( match_features[match_fields], how='left', left_on='match_index', right_index=True) # Join operating target features back onto all target features target_features = target_features.merge( operating_target_features.drop(columns=['geometry']), how='outer', left_index=True, right_on='target_index', suffixes=field_suffixes) # Sort by original index target_features = target_features.sort_values(['target_index']) # Convert empty lists to NaN target_features = target_features.applymap( lambda x: np.nan if x == [] else x) # Convert single-element lists to their sole elements target_features = target_features.applymap( lambda x: x[0] if (isinstance(x, list) and len(x) == 1) else x) # Calculate string matches, if specified if match_strings: def fuzzy_score(row, col_a, col_b): a = row[col_a] b = row[col_b] def standardize_and_score(a, b): a = standardize_streetname(str(a)) b = standardize_streetname(str(b)) return (fuzz.token_set_ratio(a, b) / 100) # Inputs could be lists, so make them lists if they aren't a_list = listify(a) b_list = listify(b) # Get fuzzy scores for each string combination scores = [] for a in a_list: for b in b_list: if (pd.notnull(a) and pd.notnull(b)): scores.append(standardize_and_score(a, b)) if len(scores) > 0: return scores else: return np.nan target_string, match_string = match_strings if match_string in original_target_feature_columns: target_string = target_string + field_suffixes[0] match_string = match_string + field_suffixes[1] target_features['match_strings'] = target_features.apply( fuzzy_score, args=(target_string, match_string), axis=1) # Replace geometry with t_seg if there is one available target_features['geometry'] = target_features.apply( lambda row: row['t_seg'] if isinstance(row['t_seg'], LineString) else row['geometry'], axis=1) # Drop stats columns if not specifically requested if not match_stats: target_features = target_features.drop( columns=['h_tm','t_prop','t_seg','t_linref','h_mt','m_prop','m_seg','m_linref']) # Move target index to front target_features = df_first_column(target_features, 'target_index') # Move the geometry column to the end target_features = df_last_column(target_features, 'geometry') # Reset the index target_features = target_features.reset_index(drop=True) # Ensure that crs is the same as original target_features.crs = original_crs # Report done if verbose: print('100% ({} segments) complete after {:04.2f} minutes'.format(counter, (time()-start) / 60)) return target_features
d9c08e8e156a525495a03e5e9d6881c33ecdf0a2
3,654,824
def create_anchors_3d_stride(grid_size, voxel_size=[0.16, 0.16, 0.5], coordinates_offsets=[0, -19.84, -2.5], dtype=np.float32): """ Args: feature_size: list [D, H, W](zyx) sizes: [N, 3] list of list or array, size of anchors, xyz Returns: anchors: [*feature_size, num_sizes, num_rots, 7] tensor. """ # almost 2x faster than v1 x_stride, y_stride, z_stride = voxel_size x_offset, y_offset, z_offset = coordinates_offsets x_centers = np.arange(grid_size[0], dtype=dtype) y_centers = np.arange(grid_size[1], dtype=dtype) z_centers = np.arange(grid_size[2], dtype=dtype) z_centers = z_centers * z_stride + z_offset + 0.25 y_centers = y_centers * y_stride + y_offset + 0.08 x_centers = x_centers * x_stride + x_offset + 0.08 xx, yy, zz = np.meshgrid(x_centers, y_centers, z_centers) sizes = np.stack((xx, yy , zz), axis=-1) sizes = np.reshape(sizes, [-1,3]) return sizes
129e54a855bbacb2026eb08b5741ab70dd0374f4
3,654,828
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method("gt") print('Set proposal method: {:s}'.format("gt")) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = imdb2(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
4660a6ffff11511c449629c9fdb7f5d566a886f9
3,654,829
from re import A def render_locations_profile(list_id, item_id, resource, rfields, record): """ Custom dataList item renderer for Locations on the Profile Page - UNUSED @param list_id: the HTML ID of the list @param item_id: the HTML ID of the item @param resource: the S3Resource to render @param rfields: the S3ResourceFields to render @param record: the record as dict """ record_id = record["gis_location.id"] item_class = "thumbnail" raw = record._row name = record["gis_location.name"] location_url = URL(c="gis", f="location", args=[record_id, "profile"]) # Placeholder to maintain style #logo = DIV(IMG(_class="media-object"), # _class="pull-left") # We don't Edit Locations # Edit Bar # permit = current.auth.s3_has_permission # table = current.db.gis_location # if permit("update", table, record_id=record_id): # vars = {"refresh": list_id, # "record": record_id, # } # f = current.request.function # if f == "organisation" and organisation_id: # vars["(organisation)"] = organisation_id # edit_btn = A(I(" ", _class="icon icon-edit"), # _href=URL(c="gis", f="location", # args=[record_id, "update.popup"], # vars=vars), # _class="s3_modal", # _title=current.response.s3.crud_strings.gis_location.title_update, # ) # else: # edit_btn = "" # if permit("delete", table, record_id=record_id): # delete_btn = A(I(" ", _class="icon icon-trash"), # _class="dl-item-delete", # ) # else: # delete_btn = "" # edit_bar = DIV(edit_btn, # delete_btn, # _class="edit-bar fright", # ) # Render the item item = DIV(DIV(DIV(#SPAN(A(name, # _href=location_url, # ), # _class="location-title"), #" ", #edit_bar, P(A(name, _href=location_url, ), _class="card_comments"), _class="span5"), # card-details _class="row", ), ) return item
dbec0b41b16fa48996a735372bfb001b386c7300
3,654,830
def exception_log_and_respond(exception, logger, message, status_code): """Log an error and send jsonified respond.""" logger.error(message, exc_info=True) return make_response( message, status_code, dict(exception_type=type(exception).__name__, exception_message=str(exception)), )
c784efd4b8adbbc463ff1d2a499ffd598253349d
3,654,832
import re def parse_cdhit_clusters(cluster_file): """ Parses cdhit output into three collections in a named tuple: clusters: list of lists of gene ids. reps: list of representative gene for each cluster lookup: dict mapping from gene names to cluster index In this setup, cluster ids are the position in either of the first two lists. """ # re-call with file-like object if we are give an path if isinstance(cluster_file, str): with open(cluster_file) as cluster_handle: return parse_cdhit_clusters(cluster_handle) # initialize final containers clusters = [] cluster_reps = [] cluster_lookup = {} # expression for parsing cluster line (captures gene name and alignment) gene_expr = re.compile(r"\s>(\S+)\.\.\.\s\s*(.+)\s*$") # loop over lines for line in cluster_file: if line.startswith(">"): # create a new cluster cluster = [] cluster_id = len(clusters) clusters.append(cluster) continue # parse gene name from line gene, alignment = gene_expr.search(line).groups() if alignment.strip() == "*": cluster_reps.append(gene) cluster_lookup[gene] = cluster_id cluster.append(gene) # done return CdhitClusters(clusters, cluster_reps, cluster_lookup)
fe0634c1991f0bd687f8be675ff15cb3290c919c
3,654,833
import torch def evaluate(model: nn.Module, dataloader: DataLoader) -> Scores: """ Evaluate a model without gradient calculation :param model: instance of a model :param dataloader: dataloader to evaluate the model on :return: tuple of (accuracy, loss) values """ score = 0 loss = 0 loss_func = nn.LogSoftmax(dim=1).to("cuda") for i, x in enumerate(dataloader): img = x[0] ans = x[1] ques = x[2] if torch.cuda.is_available(): img = img.cuda() ans = ans.cuda() ques = ques.cuda() y_hat = model((img, ques)) img = None ques = None nll = -loss_func(y_hat) score += train_utils.batch_accuracy(y_hat, ans.data).sum() ans = answer_norm(ans) loss += (nll * ans).sum(dim=1).mean() loss /= len(dataloader.dataset) score /= len(dataloader.dataset) score *= 100 print("val loss = ", loss) return score, loss
f23fbd72a24122b3a665f29918c52bbd5515d204
3,654,834
from operator import and_ def remote_judge_get_problem_info(problem_id: str, contest_id: int = -1, contest_problem_id: int = -1): """ { "code":0, "data":{ "isContest":"是否在比赛中", "problemData":{ "title":"题目名", "content":"题目内容", "background":"题目背景", "inputFormat":"输入格式", "outputFormat":'输出格式', "examples":[{"input":"样例输入","output":"样例输出"}], "createTime":"创建时间", "uploaderProfile":{ "uid":"用户ID", "username":"用户名" }, "remoteProblemID":"远程题目ID", "remoteOJ":{ "id":"远程OJID", "display":"远程OJ显示名", "availableLanguages":[ {"id":"0","display":"C++"} ] }, "public":"是否公开", "hint":"提示", "recentDiscussions":[ { "id":123, "title":"qw" } ], "acceptedCount":"", "submissionCount":"" }, "userData":{ "lastCode":"上次提交的代码", "lastLanguage":"上次选择的语言", "status":"qwq", "id":"", "accounts":{ "id":{ "username":"用户名", "oj":"OJ", "accountID":"ID" } } } } } """ # in_contest = contest_id != -1 contest: Contest = Contest.by_id(contest_id) if contest: # pass if not contest.running() and not permission_manager.has_permission(session.get("uid"), "contest.manage"): return make_response(-1, message="你没有权限查看此题目") print(contest_problem_id,"contest_problem_id") problem: Problem = db.session.query(Problem).filter( Problem.id == contest.problems[contest_problem_id]["id"]).one_or_none() else: problem: Problem = db.session.query(Problem).filter( Problem.id == problem_id).one_or_none() if not permission_manager.has_permission(session.get("uid"), "remote_judge.use") and problem.uploader_id != int(session.get("uid")): return make_response(-1, message="你没有权限查看该题目") if not problem: return make_response(-1, message="未知题目ID") if problem.problem_type != "remote_judge": return make_response(-1, message="此题目非远程评测题目") uploader: User = db.session.query(User.id, User.username).filter( User.id == problem.uploader_id).one() last_submission: Submission = db.session.query(Submission).filter(and_( Submission.problem_id == problem.id, Submission.uid == session.get("uid") )).order_by(Submission.score.desc()).order_by(Submission.id.desc()) last_code, last_language, submission_id, status = "", next(iter( config.REMOTE_JUDGE_OJS[problem.remote_judge_oj]["availableLanguages"].keys())), -1, None if last_submission.count(): last_submission = last_submission.first() last_code = last_submission.code last_language = last_submission.language status = last_submission.status submission_id = last_submission.id discussions = [ ] discussions_query = db.session.query(Discussion.id, Discussion.title).filter( Discussion.path == f"discussion.problem.{problem.id}").order_by(Discussion.id.desc()).limit(5) for item in discussions_query: discussions.append({ "id": item.id, "title": item.title }) accounts = {} for item in db.session.query(RemoteAccount.account_id, RemoteAccount.username, RemoteAccount.oj).filter( and_( RemoteAccount.uid == session.get("uid", -1), RemoteAccount.oj == problem.remote_judge_oj ) ): accounts[item.account_id] = { "username": item.username, "oj": config.REMOTE_JUDGE_OJS[item.oj]["display"], "accountID": item.account_id } return make_response(0, data={ "isContest": contest is not None, "problemData": { "title": problem.title, "content": problem.content, "background": problem.background, "inputFormat": problem.input_format, "outputFormat": problem.output_format, "examples": problem.example, "createTime": problem.create_time, "uploaderProfile": { "uid": uploader.id, "username": uploader.username } if not contest else None, "remoteProblemID": problem.remote_problem_id if not contest else None, "remoteOJ": { "id": problem.remote_judge_oj, **config.REMOTE_JUDGE_OJS[problem.remote_judge_oj] }, "public": problem.public if not contest else None, "hint": problem.hint, "recentDiscussions": discussions if not contest else None, "acceptedCount": db.session.query(Submission).filter(Submission.problem_id == problem.id).filter(Submission.status == "accepted").count() if not contest else None, "submissionCount": db.session.query(Submission).filter(Submission.problem_id == problem.id).count() if not contest else None, "id": problem.id }, "userData": { "lastCode": last_code, "lastLanguage": last_language, "status": status, "id": submission_id, "managable": permission_manager.has_permission( session.get("uid", None), "problem.manage"), "accounts": accounts } })
aa7f8100bc7516659cf535e0fa7222b6f7b1a065
3,654,835
def can_write(obj, user): """ Takes article or related to article model. Check if user can write article. """ return obj.can_write(user)
9cb7cc046b63fb82670c4667abe169d6a1a279e4
3,654,836
def create_external_question(url: str, height: int) -> str: """Create XML for an MTurk ExternalQuestion.""" return unparse({ 'ExternalQuestion': { '@xmlns': 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd', 'ExternalURL': url, 'FrameHeight': height } }, full_document=False)
d249e82225ab2c1546bd871c166e9b683622a15d
3,654,837
def credentials_batch_account_key_secret_id(config): # type: (dict) -> str """Get Batch account key KeyVault Secret Id :param dict config: configuration object :rtype: str :return: keyvault secret id """ try: secid = config[ 'credentials']['batch']['account_key_keyvault_secret_id'] if util.is_none_or_empty(secid): raise KeyError() except KeyError: return None return secid
4e7cfb100c2d50ef13d47295ff0b5bb0e3351986
3,654,838
import re def is_C2D(lname): """ """ pattns = ['Conv2D'] return any([bool(re.match(t,lname)) for t in pattns])
a12bfd9857543e568148659f782615b3f2de4b83
3,654,839
def encounter_media(instance, filename): """Return an upload file path for an encounter media attachment.""" if not instance.encounter.id: instance.encounter.save() return 'encounter/{0}/{1}'.format(instance.encounter.source_id, filename)
79e4d8fae1d41edf362e99e6da11442a71565aa0
3,654,840
from datetime import datetime def time_range_cutter_at_time(local,time_range,time_cut=(0,0,0)): """ Given a range, return a list of DateTimes that match the time_cut between start and end. :param local: if False [default] use UTC datetime. If True use localtz :param time_range: the TimeRange object :param time_cut: HH:MM:SS of when to cut. eg: (0,0,0) for midnight """ ( start, end ) = time_range.get(local) index = start.replace( hour=time_cut[0], minute=time_cut[1], second=time_cut[2] ) cuts = [] index += datetime.timedelta(days=1) while index < end: cuts.append(index) index += datetime.timedelta(days=1) if local: index = time_range.normalize(index) return cuts
57e851fb5b6ae8873dde5719dec668c25561f687
3,654,842
def _darknet_conv( x: np.ndarray, filters: int, size: int, strides: int = 1, batch_norm: bool = True ) -> tf.Tensor: """create 1 layer with [padding], conv2d, [bn and relu]""" if strides == 1: padding = "same" else: x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding padding = "valid" x = Conv2D( filters=filters, kernel_size=size, strides=strides, padding=padding, use_bias=not batch_norm, kernel_regularizer=l2(0.0005), )(x) if batch_norm: x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) return x
f58153aa0c8af8df93289b872309f1c907941848
3,654,843
def _build_topic_to_consumer_topic_state_map(watermarks): """Builds a topic_to_consumer_topic_state_map from a kafka get_topics_watermarks response""" return { topic: ConsumerTopicState({ partition: int((marks.highmark + marks.lowmark) / 2) for partition, marks in watermarks_map.items() }, None) for topic, watermarks_map in watermarks.items() }
78ef0710e4823031ad079313484dba0eacc37135
3,654,844
from typing import Optional def elgamal_keypair_from_secret(a: ElementModQ) -> Optional[ElGamalKeyPair]: """ Given an ElGamal secret key (typically, a random number in [2,Q)), returns an ElGamal keypair, consisting of the given secret key a and public key g^a. """ secret_key_int = a if secret_key_int < 2: log_error("ElGamal secret key needs to be in [2,Q).") return None return ElGamalKeyPair(a, g_pow_p(a))
35de350b6bb434e1bb3d2c52d90f9a96be72dc1f
3,654,845
def current_default_thread_limiter(): """Get the default `~trio.CapacityLimiter` used by `trio.to_thread.run_sync`. The most common reason to call this would be if you want to modify its :attr:`~trio.CapacityLimiter.total_tokens` attribute. """ try: limiter = _limiter_local.get() except LookupError: limiter = CapacityLimiter(DEFAULT_LIMIT) _limiter_local.set(limiter) return limiter
7abec5d74b9cfdaa663fd432587ea19440b7132f
3,654,846
import copy def _mask_board(board): """ A function that copies the inputted board replaces all ships with empty coordinates to mask them. :param board: a 2D numpy array containing a string representation of the board. All ships should be visible. :return: a 2D numpy array containing a string representation of the board, with all ships hidden. """ masked = copy.deepcopy(board) # copy operation for (y, x), val in np.ndenumerate(board): if val.isdigit(): masked[y][x] = '' return masked
c6832c90ac96d61563e37482773abf627d92a05a
3,654,847
def remove_head_id(ref, hyp): """Assumes that the ID is the begin token of the string which is common in Kaldi but not in Sphinx.""" ref_id = ref[0] hyp_id = hyp[0] if ref_id != hyp_id: print('Reference and hypothesis IDs do not match! ' 'ref="{}" hyp="{}"\n' 'File lines in hyp file should match those in the ref file.'.format(ref_id, hyp_id)) exit(-1) ref = ref[1:] hyp = hyp[1:] return ref, hyp
210798e8a02f555f70a1d9f2de9ce098dd0669fb
3,654,849
def convert_image_np(inp): """Convert a Tensor to numpy image.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) return inp
446feda40cc6698b5cbc80c3b14fa3212ef2800b
3,654,850
def get_miner_day_list(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") date = request.form.get("date") data = MinerService.get_miner_day_list(miner_no, date) return response_json(data)
4fd523e8855ba498a1d694e532d27c863e7f9407
3,654,851
def get_notebook_logs(experiment_id, operator_id): """ Get logs from a Experiment notebook. Parameters ---------- experiment_id : str operator_id : str Returns ------- dict or None Operator's notebook logs. Or None when the notebook file is not found. """ notebook = get_jupyter_notebook(experiment_id, operator_id) if not notebook: return None notebook = notebook["content"] logs = {} for cell in notebook["cells"]: try: metadata = cell["metadata"]["papermill"] if metadata["exception"] and metadata["status"] == "failed": for output in cell["outputs"]: if output["output_type"] == "error": error_log = output["traceback"] traceback = remove_ansi_escapes(error_log) logs = {"exception": output["ename"], "traceback": traceback} except KeyError: pass return logs
d98865cdbca25839bb6010ab5e726fd35d162ada
3,654,852
from typing import Callable def modify_env2( function: Callable[[_UpdatedType], _SecondType], ) -> Kinded[Callable[ [Kind2[_Reader2Kind, _FirstType, _SecondType]], Kind2[_Reader2Kind, _FirstType, _UpdatedType], ]]: """ Modifies the second type argument of a ``ReaderBased2``. In other words, it modifies the function's signature from: ``a -> b`` to: ``Container[x, a] -> Container[x, b]`` .. code:: python >>> from returns.pointfree import modify_env2 >>> from returns.context import RequiresContext >>> def multiply(arg: int) -> RequiresContext[int, int]: ... return RequiresContext(lambda deps: arg * deps) >>> assert modify_env2(int)(multiply(3))('4') == 12 Note, that this function works with only ``Kind2`` containers with ``.modify_env`` method. See :class:`returns.primitives.interfaces.specific.reader.ReaderBased2` for more info. """ @kinded def factory( container: Kind2[_Reader2Kind, _FirstType, _SecondType], ) -> Kind2[_Reader2Kind, _FirstType, _UpdatedType]: return internal_modify_env2(container, function) return factory
5ed2c5deaaa376e4884f31e3ba08d3b2839cc1a5
3,654,853
def model_trees(z, quantiles, normed=False, dbhfile='c:\\projects\\MLM_Hyde\\Data\\hyde_runkolukusarjat.txt', plot=False, biomass_function='marklund'): """ reads runkolukusarjat from Hyde and creates lad-profiles for pine, spruce and decid. Args: z - grid (m) quantiles - cumulative frequency limits for grouping trees normed - True returns sum(lad*dz) normalized to unity Returns: lad_p, lad_s, lad_d - leaf-area density profiles for model treegroups (m2/m3) n_p, n_s, n_d - trees / ha in model treegroups """ dat = np.loadtxt(dbhfile, skiprows=1) dz = z[1]-z[0] M = len(quantiles) # year 2008 data pine = dat[:, [0, 1]] spruce = dat[:, [0, 2]] decid = dat[:, [0, 3]] # pines h, hb, mleaf, L, a = profiles_hyde(pine, 'pine', z, biomass_function=biomass_function) n = pine[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_p = np.zeros([len(z), M]) n_p = np.zeros(M) lai_p = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_p[:, k] = np.sum(a[:, f], axis=1) n_p[k] = np.sum(n[f]) lai_p[k] = sum(dz*lad_p[:,k]) m = quantiles[k] if normed: lad_p[:, k] = lad_p[:, k] / np.maximum(np.sum(lad_p[:, k] * dz), eps) # spruces h, hb, mleaf, L, a = profiles_hyde(spruce, 'spruce', z, biomass_function=biomass_function) n = spruce[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_s = np.zeros([len(z), M]) n_s = np.zeros(M) lai_s = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_s[:, k] = np.sum(a[:, f], axis=1) n_s[k] = np.sum(n[f]) lai_s[k] = sum(dz*lad_s[:,k]) m = quantiles[k] if normed: lad_s[:, k] = lad_s[:, k] / np.maximum(np.sum(lad_s[:, k] * dz), eps) # decid h, hb, mleaf, L, a = profiles_hyde(decid, 'birch', z, biomass_function=biomass_function) n = decid[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_d = np.zeros([len(z), M]) n_d = np.zeros(M) lai_d = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_d[:, k] = np.sum(a[:, f], axis=1) n_d[k] = np.sum(n[f]) lai_d[k] = sum(dz*lad_d[:,k]) m = quantiles[k] if normed: lad_d[:, k] = lad_d[:, k] / np.maximum(np.sum(lad_d[:, k] * dz), eps) if plot: prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] plt.figure(figsize=(2.5,3.5)) for k in range(M): plt.plot(lad_p[:, k],z,color=colors[0], label='pine, %.2f m$^2$m$^{-2}$' % lai_p[k])#,lad_g,z) plt.plot(lad_s[:, k],z,color=colors[1], label='spruce, %.2f m$^2$m$^{-2}$' % lai_s[k]) plt.plot(lad_d[:, k],z,color=colors[2], label='decid, %.2f m$^2$m$^{-2}$' % lai_d[k]) plt.title(" ")#dbhfile.split("/")[-1]) plt.ylabel('height [m]') if normed: plt.xlabel('normalized lad [-]') else: plt.xlabel('lad [m$^2$m$^{-3}$]') plt.tight_layout() return lad_p, lad_s, lad_d, n_p, n_s, n_d, lai_p, lai_s, lai_d
ba3c1ea345031a8b5434e1dd4f005b1c2c1e74ce
3,654,854
def inject_general_timeline(): """This function injects the function object 'Tweet.get_general_timeline' into the application context so that 'get_general_timeline' can be accessed in Jinja2 templates. """ return dict(get_general_timeline=Tweet.get_general_timeline)
56b395da0facda561061c8f63eb3eb26c07f3605
3,654,855
def get_vaccinated_model(model, area=None): """Get all states that can be vaccinated or recovered (by area). Parameters ---------- model : amici.model Amici model which should be evaluated. areas : list List of area names as strings. Returns ------- states : list List of states that can be vaccinated. """ if area is None: states = [ x for x in model.getStateNames() if not ("vac0" in x) and (("susceptible" in x) or ("infectious" in x)) or ("recovered" in x) ] else: states = [ x for x in model.getStateNames() if ( not ("vac0" in x) and (("susceptible" in x) or ("infectious" in x)) or ("recovered" in x) ) and (area in x) ] return states
c03a9d048abb08561463b1975ffec663f24267b3
3,654,857
from datetime import datetime def MicrosecondsToDatetime(microseconds): """Returns a datetime given the number of microseconds, or None.""" if microseconds: return datetime.utcfromtimestamp(float(microseconds) / 1000000) return None
69fd3dc3b8d1a97e7a64037cabe988365b2c6e63
3,654,858