content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_default_accept_image_formats(): """With default bentoML config, this returns: ['.jpg', '.png', '.jpeg', '.tiff', '.webp', '.bmp'] """ return [ extension.strip() for extension in config("apiserver") .get("default_image_handler_accept_file_extensions") .split(",") ]
9f2e8514ed1dcc4d533be0e3f2e501a9a9784abb
3,654,860
import copy def cells_handler(results, cl): """ Changes result cell attributes based on object instance and field name """ suit_cell_attributes = getattr(cl.model_admin, 'suit_cell_attributes', None) if not suit_cell_attributes: return results class_pattern = 'class="' td_pattern = '<td' th_pattern = '<th' for row, result in enumerate(results): instance = cl.result_list[row] for col, item in enumerate(result): field_name = cl.list_display[col] attrs = copy(suit_cell_attributes(instance, field_name)) if not attrs: continue # Validate if not isinstance(attrs, dict): raise TypeError('"suit_cell_attributes" method must return dict. ' 'Got: %s: %s' % ( attrs.__class__.__name__, attrs)) # Merge 'class' attribute if class_pattern in item.split('>')[0] and 'class' in attrs: css_class = attrs.pop('class') replacement = '%s%s ' % (class_pattern, css_class) result[col] = mark_safe( item.replace(class_pattern, replacement)) # Add rest of attributes if any left if attrs: cell_pattern = td_pattern if item.startswith( td_pattern) else th_pattern result[col] = mark_safe( result[col].replace(cell_pattern, td_pattern + dict_to_attrs(attrs))) return results
c49bdb89597e191d0c6b65df1b58a80ac6bd5f9e
3,654,862
def dynamic_import(import_string): """ Dynamically import a module or object. """ # Use rfind rather than rsplit for Python 2.3 compatibility. lastdot = import_string.rfind('.') if lastdot == -1: return __import__(import_string, {}, {}, []) module_name, attr = import_string[:lastdot], import_string[lastdot + 1:] parent_module = __import__(module_name, {}, {}, [attr]) return getattr(parent_module, attr)
f6418ff17f3d480b22abac1146d946a5f990cb3c
3,654,863
from typing import Union from typing import List def _split_on_parenthesis(text_in: Union[str, list[str]]) -> List[str]: """Splits text up into a list of strings based on parenthesis locations.""" if isinstance(text_in, list): if None in text_in: return text_in text_list = text_in elif isinstance(text_in, str): text_list = [text_in] else: return text_in for i, text in enumerate(text_list): if isinstance(text, str) and "(" in text: text_inside = text[text.find("(")+1:text.rfind(")")] out_add = _split_list(text, text_inside) out_add[0] = out_add[0][:-1] # remove ( out_add[2] = out_add[2][1:] # remove ) out_add[1] = _get_unit(text_inside) out_add = [text for text in out_add if text != ""] out_add = [text for text in out_add if text != None] text_list[i] = out_add return _flatten_list(text_list)
7c7994590838c0293869786841eb7f97c60b16e8
3,654,864
import requests def getExternalIP(): """ Returns external ip of system """ ip = requests.get("http://ipv4.myexternalip.com/raw").text.strip() if ip == None or ip == "": ip = requests.get("http://ipv4.icanhazip.com").text.strip() return ip
77847063a2da7c6484dd6e569786a012b3a0a62f
3,654,866
def intersection_indices(a, b): """ :param list a, b: two lists of variables from different factors. returns a tuple of (indices in a of the variables that are in both a and b, indices of those same variables within the list b) For example, intersection_indices([1,2,5,4,6],[3,5,1,2]) returns ([0, 1, 2], [2, 3, 1]). """ bind = {} for i, elt in enumerate(b): if elt not in bind: bind[elt] = i mapA = [] mapB = [] for i, itm in enumerate(a): if itm in bind: mapA.append(i) mapB.append(bind.get(itm)) return mapA, mapB
55264faaa4fd5e6dc5365b675ebd3b7f6a1e1280
3,654,867
def test_extract_requested_slot_from_entity_with_intent(): """Test extraction of a slot value from entity with the different name and certain intent """ # noinspection PyAbstractClass class CustomFormAction(FormAction): def slot_mappings(self): return {"some_slot": self.from_entity(entity="some_entity", intent="some_intent")} form = CustomFormAction() tracker = Tracker('default', {'requested_slot': 'some_slot'}, {'intent': {'name': 'some_intent', 'confidence': 1.0}, 'entities': [{'entity': 'some_entity', 'value': 'some_value'}]}, [], False, None, {}, 'action_listen') slot_values = form.extract_requested_slot(CollectingDispatcher(), tracker, {}) # check that the value was extracted for correct intent assert slot_values == {'some_slot': 'some_value'} tracker = Tracker('default', {'requested_slot': 'some_slot'}, {'intent': {'name': 'some_other_intent', 'confidence': 1.0}, 'entities': [{'entity': 'some_entity', 'value': 'some_value'}]}, [], False, None, {}, 'action_listen') slot_values = form.extract_requested_slot(CollectingDispatcher(), tracker, {}) # check that the value was not extracted for incorrect intent assert slot_values == {}
0b457700781183f275a8512e16bac53aa058d762
3,654,868
def graph_cases(selenium, host): """ Factory method that allows to draw preconfigured graphs and manipulate them with a series of helpful methods. :type selenium: selenium.webdriver.remote.webdriver.WebDriver :type host: qmxgraph.server.Host :rtype: GraphCaseFactory :return: Factory able to create cases. """ return GraphCaseFactory(selenium=selenium, host=host)
2df048d35a337e8d335844b7a1bb98db77816e5d
3,654,869
def figure_8(): """ Notes ----- Colors from Bang Wong's color-blind friendly colormap. Available at: https://www.nature.com/articles/nmeth.1618 Wong's map acquired from David Nichols page. Available at: https://davidmathlogic.com/colorblind/. """ # choosing test sample and network. sample = const.SAMPLE_232p3_wet network_folder = const.FOLDER_PRED_UNET # we will return a 10 x 10 matthews matrix; each for a crop matthews_coefs = np.ones((10, 10)) worst_indexes = np.zeros((10, 10)) # a variable to obtain inlay data. inlay_data = [] # reading input data. is_registered = sample['registered_path'] is not None data_pred, data_gs = _pred_and_goldstd(sample, folder_prediction=network_folder, is_registered=is_registered, is_binary=True) data_pred = data_pred[slice(*sample['segmentation_interval'])] # comp_color starts as gray (background). comp_color = np.ones( (*data_pred[0].shape, 3) ) * (np.asarray((238, 238, 238)) / 255) for idx, (img_pred, img_gs) in enumerate(zip(data_pred, data_gs)): # crop images in 100 (256, 256) pieces. crop_pred = util.view_as_blocks(img_pred, block_shape=(256, 256)) crop_gs = util.view_as_blocks(img_gs, block_shape=(256, 256)) for i, _ in enumerate(crop_pred): for j, _ in enumerate(crop_pred[i]): # calculate the Matthews coefficient for each crop. aux_conf = _confusion_matrix(crop_gs[i, j], crop_pred[i, j]) aux_matthews = _measure_matthews(aux_conf) # if smaller than previously, save results. # restricting aux_matthews > 0.1 due to errors in all-TN regions if (0.1 < aux_matthews < matthews_coefs[i, j]): matthews_coefs[i, j] = aux_matthews worst_indexes[i, j] = idx aux_comp = _comparison_color(crop_gs[i, j], crop_pred[i, j]) comp_color[i*256:(i+1)*256, j*256:(j+1)*256] = aux_comp # grab inlay data from crops we want to highlight. for i, j in [(2, 2), (8, 7)]: inlay_data.append(comp_color[i*256:(i+1)*256, j*256:(j+1)*256]) # Figure 8(a). plt.figure(figsize=FIGURE_SIZE) plt.imshow(comp_color) for idx in np.arange(start=0, stop=2560, step=256): # according to image plt.axvline(idx, color='white') plt.axhline(idx, color='white') matthews_coefs = np.round(matthews_coefs * 100, decimals=2) for i, j in product(range(10), repeat=2): facecolor, textcolor = _label_color(matthews_coefs[j, i]) plt.text(x=i*256 + 30, y=j*256 + 50, s=str(matthews_coefs[j, i]), fontsize=8, color=textcolor, bbox=dict(facecolor=facecolor, alpha=0.9)) _check_if_folder_exists(folder='./figures') plt.savefig('figures/Fig_08a' + SAVE_FIG_FORMAT, bbox_inches='tight') plt.close() # Figures 8(b, c). indexes = {0: 'b', 1: 'c'} for idx in indexes.keys(): plt.figure(figsize=FIGURE_SIZE) plt.imshow(inlay_data[idx]) _check_if_folder_exists(folder='./figures') plt.savefig(f'figures/Fig_08{indexes[idx]}' + SAVE_FIG_FORMAT, bbox_inches='tight') plt.close() return None
2a72f24673b96b577fc4f4a23a1869740e90c3ec
3,654,870
import re def check_threats(message): """Return list of threats found in message""" threats = [] for threat_check in get_threat_checks(): for expression in threat_check["expressions"]: if re.search(expression, message, re.I | re.U): del threat_check["expressions"] threats += [threat_check] break return threats
091d370e4a2e6cbdf674d6dde73bf616b994498b
3,654,871
def data_processing_max(data, column): """Compute the max of a column.""" return costly_compute_cached(data, column).max()
299075ea3e1953abe0ffbd71afb42525c6270c49
3,654,872
from typing import Sequence def type_of_target(y): """Determine the type of data indicated by the target. Note that this type is the most specific type that can be inferred. For example: * ``binary`` is more specific but compatible with ``multiclass``. * ``multiclass`` of integers is more specific but compatible with ``continuous``. * ``multilabel-indicator`` is more specific but compatible with ``multiclass-multioutput``. Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multilabel-indicator' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, str)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) sparse_pandas = (y.__class__.__name__ in ['SparseSeries', 'SparseArray']) if sparse_pandas: raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'") if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], str)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead - the MultiLabelBinarizer' ' transformer can convert to this format.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], str)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] _assert_all_finite(y) return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary'
2c721ab04cdba3209794a21b2b25fe10485be106
3,654,873
from typing import List def extract_data_from_csv_stream(client: Client, alert_id: str, attachment_id: str, delimiter: bytes = b'\r\n') -> List[dict]: """ Call the attachment download API and parse required fields. Args: client (Client): Cyberint API client. alert_id (str): ID of the alert the attachment belongs to. attachment_id (str): ID of the attachment itself. delimiter (bytes): Delimeter for the CSV file. Returns: list(dict): List of all the data found using the wanted fields. """ first_line = True field_indexes = {} # {wanted_field_name: wanted_field_index...} information_found = [] for csv_line in client.get_csv_file(alert_id, attachment_id, delimiter): csv_line_separated = csv_line.split(',') if first_line: for field in CSV_FIELDS_TO_EXTRACT: try: field_indexes[field] = csv_line_separated.index(field) except ValueError: pass first_line = False else: try: extracted_field_data = {field_name.lower(): csv_line_separated[field_index] for field_name, field_index in field_indexes.items()} if extracted_field_data: information_found.append(extracted_field_data) except IndexError: pass return information_found
992679004ae94da2731b04eaf41918a755d8306a
3,654,874
import re def validate_password(password, password_repeat=None): """ Validate user password. :param password: password as string :param password_repeat: repeat password :return: False - valid password """ if password_repeat: if password != password_repeat: return "Passwords did not match." flag = False if len(password) < 8: flag = True elif not re.search("[a-z]", password): flag = True elif not re.search("[A-Z]", password): flag = True elif not re.search("[0-9]", password): flag = True elif re.search("\s", password): flag = True if flag: return ( "Password must contain at least a lower case, an upper case, a number, no spaces " "and be at least 9 characters." ) return False
2987a1bec151e173156ab6a72345864c84dcb61c
3,654,875
def get_large_circuit(backend: IBMBackend) -> QuantumCircuit: """Return a slightly larger circuit that would run a bit longer. Args: backend: Backend on which the circuit will run. Returns: A larger circuit. """ n_qubits = min(backend.configuration().n_qubits, 20) circuit = QuantumCircuit(n_qubits, n_qubits) for qubit in range(n_qubits - 1): circuit.h(qubit) circuit.cx(qubit, qubit + 1) circuit.measure(list(range(n_qubits)), list(range(n_qubits))) return circuit
a35a9ee67d6268911f49936095a703b4fd227a56
3,654,876
import torch def top_k(loc_pred, loc_true, topk): """ count the hit numbers of loc_true in topK of loc_pred, used to calculate Precision, Recall and F1-score, calculate the reciprocal rank, used to calcualte MRR, calculate the sum of DCG@K of the batch, used to calculate NDCG Args: loc_pred: (batch_size * output_dim) loc_true: (batch_size * 1) topk: Returns: tuple: tuple contains: hit (int): the hit numbers \n rank (float): the sum of the reciprocal rank of input batch \n dcg (float): dcg """ assert topk > 0, "top-k ACC评估方法:k值应不小于1" loc_pred = torch.FloatTensor(loc_pred) val, index = torch.topk(loc_pred, topk, 1) index = index.numpy() hit = 0 rank = 0.0 dcg = 0.0 for i, p in enumerate(index): target = loc_true[i] if target in p: hit += 1 rank_list = list(p) rank_index = rank_list.index(target) # rank_index is start from 0, so need plus 1 rank += 1.0 / (rank_index + 1) dcg += 1.0 / np.log2(rank_index + 2) return hit, rank, dcg
8796312e1fa4d43fb992c0dd7903070a9e061e1b
3,654,878
def enviar_contacto(request): """ Enviar email con el formulario de contacto a soporte tecnico """ formulario = ContactoForm() if request.method == 'POST': formulario = ContactoForm(request.POST) if formulario.is_valid(): mail = EmailMessage(subject='HPC Contacto', from_email=formulario.cleaned_data['email'], to=EMAIL_TO) mail.body = 'El usuario %s ha comentado: %s' \ % (formulario.cleaned_data['nombre'], formulario.cleaned_data['mensaje']) mail.send() messages.success(request, "El personal de soporte técnico ha recibido su consulta, " "pronto nos pondremos en contacto.") return HttpResponseRedirect('/') ctx = {'form': formulario} return render_to_response('contacto/enviar_contacto.html', ctx, context_instance=RequestContext(request))
2f17e0cd0fbd5c5df345484c5fe08a420272785a
3,654,879
def dict_depth(d): """ 递归地获取一个dict的深度 d = {'a':1, 'b': {'c':{}}} --> depth(d) == 3 """ if isinstance(d, dict): return 1 + (max(map(dict_depth, d.values())) if d else 0) return 0
16f4164fdea08af9d5846a5866428c81848726b9
3,654,880
def apercorr(psf,image,objects,psfobj,verbose=False): """ Calculate aperture correction. Parameters ---------- psf : PSF object The best-fitting PSF model. image : string or CCDData object The input image to fit. This can be the filename or CCDData object. objects : table The output table of best-fit PSF values for all of the sources. psfobj : table The table of PSF objects. verbose : boolean, optional Verbose output to the screen. Default is False. Returns ------- objects : table The output table with an "apcorr" column inserted and the aperture correction applied to "psfmag". apcor : float The aperture correction in mag. cgrow : numpy array The cumulative aperture correction array. Example ------- apcor = apercorr(psf,image,objects,psfobj) """ # Get model of all stars except the PSF stars ind1,ind2 = dln.match(objects['id'],psfobj['id']) left = np.delete(np.arange(len(objects)),ind1) neiobj = objects[left] neimodel = image.copy() neimodel.data *= 0 neimodel.error[:] = 1 neimodelim = psf.add(neimodel,neiobj) neimodel.data = neimodelim # Subtract everything except the PSF stars from the image resid = image.copy() if image.mask is not None: resid.data[~resid.mask] -= neimodel.data[~resid.mask] else: resid.data -= modelnei.data residim = np.maximum(resid.data-resid.sky,0) resid.data = residim resid.sky[:] = 0.0 # Do aperture photometry with lots of apertures on the PSF # stars # rk = (20/3.)**(1/11.) * rk-1 for k=2,..,12 rseeing = psf.fwhm()*0.5 apers = np.cumprod(np.hstack((3.0,np.ones(11,float)*(20/3.)**(1/11.)))) #apers = np.array([3.0,3.7965,4.8046,6.0803,7.6947,9.7377,12.3232, # 15.5952,19.7360,24.9762,31.6077,40.0000]) apercat = aperphot(resid,psfobj,apers) # Fit curve of growth # use magnitude differences between successive apertures. apars, agrow, derr = fitgrowth(apercat,apers,rseeing=psf.fwhm()*0.5) # Get magnitude difference errors nstars = len(apercat) napers = len(apers) derr = np.zeros((nstars,napers-1),float) for i in range(len(apers)-1): err1 = apercat['magerr_aper'+str(i+1)] err2 = apercat['magerr_aper'+str(i+2)] derr[:,i] = np.sqrt(err1**2+err2**2) wt = 1/derr**2 # THE CURVE TURNS OVER AT LARGE RADIUS!!!!??? # It shouldn't EVER do that. # Calculate empirical growth curve egrow,egrowerr = empgrowth(apercat,apers) # Get "adopted" growth curve by taking the weighted average # of the analytical and empirical growth curves # with the empirical weighted higher at small r and # the analytical weighted higher at large r gwt = np.mean(wt,axis=0) # mean weights over the stars adopgrow = (egrow*gwt + agrow*(1/(0.1*agrow))**2) / (gwt+(1/(0.1*agrow))**2) adopgrowerr = 1 / (gwt+(1/(0.1*agrow))**2) # Adopted cumulative growth curve # sum from the outside in, with an outer tail given by # extrapolation of the analytic model to 2*outer aperture cadopgrow = np.cumsum(adopgrow[::-1])[::-1] # add extrapolation from rlast t=o2*rlast tail = diffprofile([2*apers[-1],apers[-1]],*apars) cadopgrow += tail cadopgrow = np.hstack((cadopgrow,tail)) # add value for outer aperture cadopgrowerr = np.hstack((adopgrowerr,0.0)) # Calculate "total" magnitude for the PSF stars totmag,toterr = totphot(apercat,apers,cadopgrow,cadopgrowerr) # Calculate median offset between total and PSF magnitude # psf - total ind1,ind2 = dln.match(objects['id'],psfobj['id']) diffmag = objects['psfmag'][ind1] - totmag[ind2] apcor = np.median(diffmag) # positive value # Apply aperture correction to the data # add apcorr column and keep initial mags in instmag objects['apcorr'] = apcor objects['inst_psfmag'] = objects['psfmag'] objects['psfmag'] -= apcor # make brighter if verbose: print('Aperture correction = %.3f mag' % apcor) return objects, apcor, cadopgrow
bc4bb936801fe06a55648ed9a11545eacb24fd7d
3,654,881
from typing import Dict from typing import Tuple def product_loading_factor_single_discount(skus: str, product_list: Dict[str, object], product: Dict[str, int], product_name: str, rules: list) -> Tuple[int, str]: """ Single product loading factor for calculating discounts with one rule Parameters ---------- skus: str String containing indiviudal product skus product_list: Dict[str, object] Product discount list used for applying discounts product: Dict[str, int] Product list used for returning the current products price product_name: str The name of the product rules: List List of discount rules names to apply Returns ------- Tuple: price: int Calculated price skus: str Updated skus list """ number_of_products = skus.count(product_name) product_price = product[product_name] product_discount_data_object = product_list[product_name][rules[0]] discount_threshold = product_discount_data_object['discount_threshold'] while number_of_products > 0: if number_of_products > 0 and number_of_products % discount_threshold == 0: product_discount_data_object['count'] += 1 number_of_products -= discount_threshold else: number_of_products -= 1 applied_discount = product_discount_data_object['count'] remainder_product_count = skus.count(product_name) - (applied_discount * discount_threshold) discount_to_apply = product_discount_data_object['discount'] apply_discount = (applied_discount * product_price * discount_threshold) - (applied_discount * discount_to_apply) price = apply_discount + (remainder_product_count * product_price) return price, skus
44e12d02be7c8b54d1ea64ef2dc3cbec29a870bc
3,654,882
import re def clean_text(page): """Return the clean-ish running text parts of a page.""" return re.sub(_UNWANTED, "", _unescape_entities(page))
8042cc5049b2d8b6646c10655b84c5552e315274
3,654,883
def calculate_recall(tp, n): """ :param tp: int Number of True Positives :param n: int Number of total instances :return: float Recall """ if n == 0: return 0 return tp / n
b8a36488af59e036acdb50821716ae34287e6b8f
3,654,884
def authenticate_user_password(password : 'bytes', encryption_dict : 'dict', id_array : 'list'): """ Authenticate the user password. Parameters ---------- password : bytes The password to be authenticated as user password. encryption_dict : dict The dictionary containing all the information about the encryption procedure. id_array : list The two elements array ID, contained in the trailer dictionary. Returns ------- The encryption key if the user password is valid, None otherwise. """ R = encryption_dict["R"] U = encryption_dict["U"] U = U.value if isinstance(U, PDFLiteralString) else unhexlify(U.value) encryption_key = compute_encryption_key(password, encryption_dict, id_array) if R == 2: cipher = rc4(PASSWORD_PADDING, encryption_key) else: input_to_md5 = bytearray() input_to_md5.extend(PASSWORD_PADDING) input_to_md5.extend(id_array[0]) computed_hash = md5(input_to_md5).digest() cipher = rc4(computed_hash, encryption_key) for counter in range(1, 20): cipher = rc4(cipher, bytes(x ^ counter for x in encryption_key)) correct_password = (U[:16] == cipher[:16]) if R >= 3 else (U == cipher) return encryption_key if correct_password else None
b608a921fb02cedf9da9d8ea8e0d8f8139a6a9bd
3,654,885
def date_to_num(date): """Convert datetime to days since 1901""" num = (date.year - 1901) * 365.25 num += [ 0, 31, 59.25, 90.25, 120.25, 151.25, 181.25, 212.25, 243.25, 273.25, 304.25, 334.25 ][date.month - 1] num += date.day return int(num)
88e342e0fc80a5998df8e5f1ab0002e0f7fe808e
3,654,886
from typing import Tuple def load_world(filename: str, size: Tuple[int, int], resolution: int) -> np.array: """Load a preconstructred track to initialize world. Args: filename: Full path to the track file (png). size: Width and height of the map resolution: Resolution of the grid map (i.e. into how many cells) one meter is divided into. Returns: An initialized gridmap based on the preconstructed track as an n x m dimensional numpy array, where n is the width (num cells) and m the height (num cells) - (after applying resolution). """ width_in_cells, height_in_cells = np.multiply(size, resolution) world = np.array(png_to_ogm( filename, normalized=True, origin='lower')) # If the image is already in our desired shape, no need to rescale it if world.shape == (height_in_cells, width_in_cells): return world # Otherwise, scale the image to our desired size. resized_world = resize(world, (width_in_cells, height_in_cells)) return resized_world
8ccf97efb83b3c365fb95a2732d0737100d5f254
3,654,887
import torch def generate_image(model, img_size, n_flow, n_block, n_sample, temp=0.7, ctx=None, label=None): """Generate a single image from a Glow model.""" # Determine sizes of each layer z_sample = [] z_shapes = calc_z_shapes(3, img_size, n_flow, n_block) for z in z_shapes: z_new = torch.randn(n_sample, *z) * temp z_sample.append(z_new.to(device)) assert ctx is None or label is None # can either insert label or context if label is not None: return model.reverse(z_sample, label=label) else: # handles both cases where only context is provided or no label or context is provided return model.reverse(z_sample, ctx=ctx)
bee9c45cbbd028351e580729da51092604f87288
3,654,888
def quote_spaces(arg): """Generic function for putting double quotes around any string that has white space in it.""" if ' ' in arg or '\t' in arg: return '"%s"' % arg else: return str(arg)
e0171c3b0eee18c7fcc44cbdfe007949feabba9a
3,654,889
from pathlib import Path import requests import shutil def download_file(url) -> Path: """Better download""" name = Path(urlparse(unquote(url)).path).name with mktempdir() as tmpdir: @backoff.on_exception(backoff.expo, requests.exceptions.RequestException, max_time=30) def get(): with requests.get(url, stream=True) as r: save_path = tmpdir.joinpath(name) with open(save_path, "wb") as f: shutil.copyfileobj(r.raw, f, length=16 * 1024 * 1024) return save_path yield get()
5ff6c05e5e1eb3379918c65d945d57af7e8d56be
3,654,891
def creategui(handlerfunctions): """Initializes and returns the gui.""" gui = GUI(handlerfunctions) # root.title('DBF Utility') return gui
17be3bae6eb105aca770327898a01027271e6f9c
3,654,892
import torch def rank_src_trgs(enc_dec_gen, src_list, trg_list): """ """ batch_size = len(trg_list) x, y = enc_dec_gen.encode_inputs(src_list, trg_list, add_bos=True, add_eos=True) y_len = torch.sum(y.ne(enc_dec_gen.model.PAD), -1) with torch.no_grad(): y_target = y[:, 1:] y = y[:, :-1] enc_self_attn_mask = enc_dec_gen.model.get_attn_mask(x, x) enc_outputs = enc_dec_gen.model.encoder(x, enc_self_attn_mask) enc_output = enc_outputs[0] n = y.size(0)//x.size(0) x = x.repeat([1,n]).view(y.size(0), -1) enc_output = enc_output.repeat([1, n, 1]).view(x.size(0), x.size(1), -1) dec_self_attn_mask = enc_dec_gen.model.get_subsequent_mask(y) dec_self_attn_mask = dec_self_attn_mask | enc_dec_gen.model.get_attn_mask(y, y) dec_enc_attn_mask = enc_dec_gen.model.get_attn_mask(y, x) trg_embedding = None if enc_dec_gen.model.share_src_trg_emb == True: trg_embedding = enc_dec_gen.model.encoder.src_embedding dec_outputs = enc_dec_gen.model.decoder(y, enc_output, dec_self_attn_mask, dec_enc_attn_mask, trg_embedding=trg_embedding) logits = dec_outputs[0] logits = logits.view(-1, enc_dec_gen.trg_vocab_size) log_probs = -F.nll_loss(F.log_softmax(logits, -1), y_target.contiguous().view(-1), ignore_index=enc_dec_gen.model.PAD, reduction='none') log_probs = torch.sum(log_probs.view(batch_size, -1), -1) norm = 1 if enc_dec_gen.normalize == "gnmt": norm = torch.pow(5. + y_len, enc_dec_gen.gamma) / np.power(6., enc_dec_gen.gamma) elif enc_dec_gen.normalize == "linear": norm = y_len log_probs = log_probs / norm log_probs = log_probs.cpu().numpy() return log_probs
f5472889489676e21a7bec032e13ef99c850f2da
3,654,893
def plugin_poll(handle): """ Extracts data from the sensor and returns it in a JSON document as a Python dict. Available for poll mode only. Args: handle: handle returned by the plugin initialisation call Returns: returns a sensor reading in a JSON document, as a Python dict, if it is available None - If no reading is available Raises: Exception """ try: time_stamp = utils.local_timestamp() data = {'asset': handle['assetName']['value'], 'timestamp': time_stamp, 'readings': {"random": next(generate_data())}} except (Exception, RuntimeError) as ex: _LOGGER.exception("Exception is {}".format(str(ex))) raise ex else: return data
c3d7b32b6816c81d244f689ce4185d1dcd9a16fe
3,654,894
import torch def ltria2skew(L): """ assume L has already passed the assertion check :param L: lower triangle matrix, shape [N, 3] :return: skew sym A [N, 3, 3] """ if len(L.shape) == 2: N = L.shape[0] # construct the skew-sym matrix A = torch.zeros(N, 3, 3).cuda() # [N, 3, 3] A[:, 1, 0] = L[:, 0] A[:, 2, 0] = L[:, 1] A[:, 2, 1] = L[:, 2] A[:, 0, 1] = -L[:, 0] A[:, 0, 2] = -L[:, 1] A[:, 1, 2] = -L[:, 2] return A elif len(L.shape) == 1: A = torch.zeros(3, 3).cuda() A[1, 0] = L[0] A[2, 0] = L[1] A[2, 1] = L[2] A[0, 1] = -L[0] A[0, 2] = -L[1] A[1, 2] = -L[2] return A else: raise NotImplementedError
6e74c181fc8efcdc28ba35578f31fb6f2a7fa1bb
3,654,896
def gamma_contrast(data_sample, num_patches=324, num_channel=2, shape_data=None, gamma_range=(0.5, 1.7), invert_image=False, per_channel=False, retain_stats=False): """Performs gamma contrast transformation""" epsilon = 1e-7 data_sample_patch = [] gamma_range_tensor = tf.convert_to_tensor(gamma_range) for patch in range(num_patches): if invert_image: data_sample = - data_sample if not per_channel: # if np.random.random() < 0.5 and gamma_range[0] < 1: # gamma = np.random.uniform(gamma_range[0], 1) # else: # gamma = np.random.uniform(max(gamma_range[0], 1), gamma_range[1]) def true_fn(): gamma_fn = tf.random.uniform(shape=(), minval=gamma_range[0], maxval=1, seed=1) return gamma_fn def false_fn(): gamma_fn = tf.random.uniform(shape=(), minval=tf.math.maximum(gamma_range[0], 1), maxval=gamma_range[1], seed=1) return gamma_fn cond = tf.math.logical_and(tf.math.less(tf.random.uniform(shape=(), minval=0, maxval=0.99, seed=1), 0.5), tf.math.less(gamma_range_tensor[0], 1)) gamma = tf.cond(cond, true_fn, false_fn) min_val_ten = tf.math.reduce_min(data_sample[patch, ...]) range_tensor = tf.math.reduce_max(data_sample[patch, ...]) - min_val_ten data_sample_norm = tf.math.divide(tf.math.subtract(data_sample[patch, ...], min_val_ten), tf.math.add(range_tensor, epsilon)) data_img = tf.image.adjust_gamma(image=data_sample_norm, gamma=gamma, gain=tf.math.add(range_tensor, epsilon)) data_img = tf.math.add(data_img, min_val_ten) data_sample_patch.append(data_img) else: data_sample_per_channel = [] for c in range(num_channel): def true_fn(): gamma_fn = tf.random_uniform_initializer(minval=gamma_range[0], maxval=1, seed=1) return gamma_fn def false_fn(): gamma_fn = tf.random_uniform_initializer(minval=tf.math.maximum(gamma_range[0], 1), maxval=gamma_range[1], seed=1) return gamma_fn cond = tf.math.logical_and(tf.math.less(tf.random.uniform(shape=(), minval=0, maxval=0.99, seed=1), 0.5), tf.math.less(gamma_range_tensor[0], 1)) gamma = tf.cond(cond, true_fn, false_fn) min_val_ten = tf.math.reduce_min(data_sample[patch, :, :, :, c]) #rnge_tensor = tf.math.reduce_max(data_sample[patch, :, :, :, c]) - min_val_ten data_sample_norm = tf.math.divide(tf.math.subtract(data_sample[patch, ..., c], min_val_ten), tf.math.add(range_tensor, epsilon)) data_img = tf.image.adjust_gamma(image=data_sample_norm, gamma=gamma, gain=tf.math.add(range_tensor, epsilon)) data_img = tf.math.add(data_img, min_val_ten) data_sample_per_channel.append(data_img) data_sample_channel = tf.stack(data_sample_per_channel) data_sample_channel = tf.transpose(data_sample_channel, perm=[1, 2, 3, 0]) data_sample_patch.append(data_sample_channel) data_sample_return = tf.stack(data_sample_patch) # data_sample_return = tf.transpose(data_sample_return, perm=[1, 2, 3, 4, 0]) return data_sample_return
373f3f7e602de69c1cbce328ec3ff1322a44d013
3,654,897
def _converge(helper, rcs, group): """ Function to be passed to :func:`_oob_disable_then` as the ``then`` parameter that triggers convergence. """ return group.trigger_convergence(rcs)
8aab701dc7e29d83d6c8ab8b71c37837feb72847
3,654,898
def HybridClientFactory(jid, password): """ Client factory for XMPP 1.0. This is similar to L{client.XMPPClientFactory} but also tries non-SASL autentication. """ a = HybridAuthenticator(jid, password) return xmlstream.XmlStreamFactory(a)
283d9182c0e7bce254bc9f04cd42c15b9e3aed46
3,654,899
def home(): """Home page.""" form = LoginForm(request.form) # Handle logging in if request.method == 'POST': if form.validate_on_submit(): login_user(form.user) flash('You are logged in.', 'success') redirect_url = request.args.get('next') or url_for('user.members') return redirect(redirect_url) else: flash_errors(form) return dict(form=form)
4bed46f095b31a61746c382460b6f477a4aa215e
3,654,900
def countingsort(A): """ Sort the list A. A has to be a list of integers. Every element of the list A has to be non-negative. @param A: the list that should get sorted @return the sorted list """ if len(A) == 0: return [] C = [0] * (max(A)+1) B = [""] * len(A) # Count the number of elements for el in A: C[el] += 1 # Now C[i] contains how often i is in A for index in xrange(1, len(C)): C[index] += C[index-1] for el in A[::-1]: B[C[el]-1] = el C[el] -= 1 return B
ebdaac4580f910873f77878978b57e193334a4ea
3,654,901
import math def calc_obstacle_map(ox, oy, resolution, vr): """ Build obstacle map according to the distance of a certain grid to obstacles. Treat the area near the obstacle within the turning radius of the vehicle as the obstacle blocking area and mark it as TRUE. """ min_x = round(min(ox)) min_y = round(min(oy)) max_x = round(max(ox)) max_y = round(max(oy)) x_width = round(max_x - min_x) y_width = round(max_y - min_y) # obstacle map generation obstacle_map = [[False for _ in range(y_width)] for _ in range(x_width)] for ix in range(x_width): x = ix + min_x for iy in range(y_width): y = iy + min_y # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x)**2 + (ioy - y)**2) if d * resolution <= vr: obstacle_map[ix][iy] = True break return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
87d44c5eb799bf3b2ea64ac0717b8d7f260a4a37
3,654,902
import itertools def dilate(poly,eps): """ The function dilates a polytope. For a given polytope a polytopic over apoproximation of the $eps$-dilated set is computed. An e-dilated Pe set of P is defined as: Pe = {x+n|x in P ^ n in Ball(e)} where Ball(e) is the epsilon neighborhood with norm |n|<e The current implementation is quite crude, hyper-boxes are placed over the original vertices and the returned polytope is a qhull of these new vertices. :param poly: original polytope :param eps: positive scalar value with which the polytope is dilated :return: polytope """ if isinstance(poly,polytope.Region): dil_reg = [] for pol in poly.list_poly: assert isinstance(pol,polytope.Polytope) dil_reg += [dilate(pol, eps)] return polytope.Region(dil_reg) vertices = extreme(poly) dim = len(vertices[0]) # this is the dimensionality of the space dil_eps = dim * [[-eps,eps]] dil_eps_v = [np.array(n) for n in itertools.product(*dil_eps)] # vectors with (+- eps,+- eps, +- eps,...) new_vertices = [] for v,d in itertools.product(vertices,dil_eps_v): new_vertices += [[np.array(v).flatten() + np.array(d).flatten()]] # make box # print("add vertices part:", np.array(v).flatten() + np.array(d).flatten()) VV = np.concatenate(new_vertices) # print("V", VV) return qhull(VV)
0ae4d8ea9cb6977939e4d3bed6454ed55e8855cf
3,654,903
def read_files_to_vardf(map_df, df_dict, gridclimname, dataset, metadata, file_start_date, file_end_date, file_delimiter, file_time_step, file_colnames, subset_start_date, subset_end_date, min_elev, max_elev, variable_list=None): """ # reads in the files to generate variables dataframes map_df: (dataframe) the mappingfile clipped to the subset that will be read-in df_dict: (dict) an existing dictionary where new computations will be stored gridclimname: (str) the suffix for the dataset to be named; if None provided, default to dataset name dataset: (str) the name of the dataset catalogged into map_df metadata: (str) the dictionary that contains the metadata explanations; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_delimiter: (str) a file parsing character to be used for file reading file_time_step: (str) the timedelta code for the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest min_elev: (float) minimum elevation permitted max_elev: (float) maximum elevation permitted """ # start time starttime = pd.datetime.now() # date range from ogh_meta file met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) met_daily_subdates=pd.date_range(subset_start_date, subset_end_date, freq=file_time_step) # omit null entries or missing data file map_df = map_df.loc[pd.notnull(map_df[dataset]), :] print('Number of data files within elevation range ({0}-{1} m): {2}'.format(min_elev, max_elev, len(map_df))) # establish default list of variables if isinstance(variable_list, type(None)): variable_list = metadata[dataset]['variable_list'] # iterate through each data file for eachvar in metadata[dataset]['variable_list']: # exclude YEAR, MONTH, and DAY if eachvar not in ['YEAR', 'MONTH', 'DAY'] and eachvar in variable_list: # identify the variable column index usecols = [metadata[dataset]['variable_list'].index(eachvar)] # initiate df as a list df_list=[] # loop through each file for ind, row in map_df.iterrows(): # consider rewriting the params to just select one column by index at a time var_series = dask.delayed(pd.read_table)(filepath_or_buffer=row[dataset], delimiter=file_delimiter,header=None,usecols=usecols, names=[tuple(row[['FID', 'LAT', 'LONG_']])]) # append the series into the list of series df_list.append(var_series) # concatenate list of series (axis=1 is column-wise) into a dataframe df1 = dask.delayed(pd.concat)(df_list, axis=1) # set and subset date_range index df2 = df1.set_index(met_daily_dates, inplace=False).loc[met_daily_subdates] # assign dataframe to dictionary object df_dict['_'.join([eachvar, gridclimname])] = dask.compute(df2)[0] print(eachvar+ ' dataframe reading complete:' + str(pd.datetime.now()-starttime)) return(df_dict)
31bc460eb0035d3bbd51f266c96a53f537495a53
3,654,904
import pickle def read_file(pickle_file_name): """Reads composite or non-composite class-activation maps from Pickle file. :param pickle_file_name: Path to input file (created by `write_standard_file` or `write_pmm_file`). :return: gradcam_dict: Has the following keys if not a composite... gradcam_dict['denorm_predictor_matrices']: See doc for `write_standard_file`. gradcam_dict['cam_matrices']: Same. gradcam_dict['guided_cam_matrices']: Same. gradcam_dict['full_storm_id_strings']: Same. gradcam_dict['storm_times_unix_sec']: Same. gradcam_dict['model_file_name']: Same. gradcam_dict['target_class']: Same. gradcam_dict['target_layer_name']: Same. gradcam_dict['sounding_pressure_matrix_pa']: Same. ...or the following keys if composite... gradcam_dict['mean_denorm_predictor_matrices']: See doc for `write_pmm_file`. gradcam_dict['mean_cam_matrices']: Same. gradcam_dict['mean_guided_cam_matrices']: Same. gradcam_dict['model_file_name']: Same. gradcam_dict['non_pmm_file_name']: Same. gradcam_dict['pmm_max_percentile_level']: Same. gradcam_dict['mean_sounding_pressures_pa']: Same. :return: pmm_flag: Boolean flag. True if `gradcam_dict` contains composite, False otherwise. :raises: ValueError: if dictionary does not contain expected keys. """ pickle_file_handle = open(pickle_file_name, 'rb') gradcam_dict = pickle.load(pickle_file_handle) pickle_file_handle.close() pmm_flag = MEAN_PREDICTOR_MATRICES_KEY in gradcam_dict if pmm_flag: missing_keys = list( set(PMM_FILE_KEYS) - set(gradcam_dict.keys()) ) else: missing_keys = list( set(STANDARD_FILE_KEYS) - set(gradcam_dict.keys()) ) if len(missing_keys) == 0: return gradcam_dict, pmm_flag error_string = ( '\n{0:s}\nKeys listed above were expected, but not found, in file ' '"{1:s}".' ).format(str(missing_keys), pickle_file_name) raise ValueError(error_string)
3f2f7fb1a5a904f494e64f840f6a8d6ae207c900
3,654,905
import string def tacodev(val=None): """a valid taco device""" if val in ('', None): return '' val = string(val) if not tacodev_re.match(val): raise ValueError('%r is not a valid Taco device name' % val) return val
4cffd52f9e7673ad45e697aadfbb3515ecd3d209
3,654,906
def decode_layout_example(example, input_range=None): """Given an instance and raw labels, creates <inputs, label> pair. Decoding includes. 1. Converting images from uint8 [0, 255] to [0, 1.] float32. 2. Mean subtraction and standardization using hard-coded mean and std. 3. Convert boxes from yxyx [0-1] to xyxy un-normalized. 4. Add 1 to all labels to account for background/padding object at label 0. 5. Shuffling dictionary keys to be consistent with the rest of the code. Args: example: dict; Input image and raw labels. input_range: tuple; Range of input. By default we use Mean and StdDev normalization. Returns: A dictionary of {'inputs': input image, 'labels': task label}. """ image = tf.image.convert_image_dtype(example['image'], dtype=tf.float32) # Normalize. if input_range: image = image * (input_range[1] - input_range[0]) + input_range[0] else: mean_rgb = tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=tf.float32) std_rgb = tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=tf.float32) image = (image - mean_rgb) / std_rgb boxes = example['objects']['boxes'] target = { 'boxes': boxes, 'labels': example['objects']['label'] + 1, # 0'th class is padding. 'binary_labels': example['objects']['binary_label'] + 1, 'desc_id': example['objects']['desc_id'], 'resource_id': example['objects']['resource_id'], 'name_id': example['objects']['name_id'], 'obj_mask': example['objects']['obj_mask'], } # Filters objects to exclude degenerate boxes. valid_bbx = tf.logical_and(boxes[:, 2] > boxes[:, 0], boxes[:, 3] > boxes[:, 1]) # -1 is ROOT node, remove it for training & eval. valid_node = tf.greater(example['objects']['label'], -1) keep = tf.where(tf.logical_and(valid_bbx, valid_node))[:, 0] target_kept = {k: tf.gather(v, keep) for k, v in target.items()} target_kept['orig_size'] = tf.cast(tf.shape(image)[0:2], dtype=tf.int32) target_kept['size'] = tf.identity(target_kept['orig_size']) return { 'inputs': image, 'label': target_kept, }
a54b26a8b4d82a6a9e5bc093f9f59b7a74450916
3,654,908
import plotly.figure_factory as ff def bact_plot(samples, bacteroidetes, healthiest_sample): """ Returns a graph of the distribution of the data in a graph ========== samples : pandas.DataFrame The sample data frame. Must contain column `Bacteroidetes` and `Firmicutes` that contain the percentage of those phyla. Returns ======= plotly graph """ hist_data = [samples["Bacteroidetes"]] group_labels = ["Bacteroidetes"] bact = ff.create_distplot(hist_data, group_labels, show_hist=False) bact["layout"].update(title="Bacteroidetes Sample Distribution ") bact["layout"].update( showlegend=False, annotations=[ dict( x=bacteroidetes, y=0, xref="x", yref="y", text="You are here!", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#0e0f36", ax=70, ay=-30, bordercolor="#06a300", borderwidth=2, borderpad=4, bgcolor="#69f564", opacity=0.8, ), dict( x=healthiest_sample["Bacteroidetes"], y=0, xref="x", yref="y", text="Healthiest Sample", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#0e0f36", ax=70, ay=30, bordercolor="#4c0acf", borderwidth=2, borderpad=4, bgcolor="#b977f2", opacity=0.8, ), ], ) return bact
d21bb3bd534f92cc6eed3bb467fe355abcf1afd2
3,654,909
def xdraw_lines(lines, **kwargs): """Draw lines and optionally set individual name, color, arrow, layer, and width properties. """ guids = [] for l in iter(lines): sp = l['start'] ep = l['end'] name = l.get('name', '') color = l.get('color') arrow = l.get('arrow') layer = l.get('layer') width = l.get('width') guid = add_line(Point3d(*sp), Point3d(*ep)) if not guid: continue obj = find_object(guid) if not obj: continue attr = obj.Attributes if color: attr.ObjectColor = FromArgb(*color) attr.ColorSource = ColorFromObject else: attr.ColorSource = ColorFromLayer if arrow == 'end': attr.ObjectDecoration = EndArrowhead if arrow == 'start': attr.ObjectDecoration = StartArrowhead if layer and find_layer_by_fullpath: index = find_layer_by_fullpath(layer, True) if index >= 0: attr.LayerIndex = index if width: attr.PlotWeight = width attr.PlotWeightSource = PlotWeightFromObject attr.Name = name obj.CommitChanges() guids.append(guid) return guids
bebeb2d400ed8c779281b67f01007e953f15460f
3,654,911
def _emit_params_file_action(ctx, path, mnemonic, cmds): """Helper function that writes a potentially long command list to a file. Args: ctx (struct): The ctx object. path (string): the file path where the params file should be written. mnemonic (string): the action mnemomic. cmds (list<string>): the command list. Returns: (File): an executable file that runs the command set. """ filename = "%s.%sFile.params" % (path, mnemonic) f = ctx.new_file(ctx.configuration.bin_dir, filename) ctx.file_action(output = f, content = "\n".join(["set -e"] + cmds), executable = True) return f
adafb75e24b2023ad2926e4248e8b2e1e6966b8e
3,654,912
import gettext def annotate_validation_results(results, parsed_data): """Annotate validation results with potential add-on restrictions like denied origins.""" if waffle.switch_is_active('record-install-origins'): denied_origins = sorted( DeniedInstallOrigin.find_denied_origins(parsed_data['install_origins']) ) for origin in denied_origins: insert_validation_message( results, message=gettext( 'The install origin {origin} is not permitted.'.format( origin=origin ) ), ) return results
659ec92f98c2678de2ee8f2552da77c5394047c5
3,654,913
import textwrap def ignore_firstline_dedent(text: str) -> str: """Like textwrap.dedent(), but ignore first empty lines Args: text: The text the be dedented Returns: The dedented text """ out = [] started = False for line in text.splitlines(): if not started and not line.strip(): continue if not started: started = True out.append(line) return textwrap.dedent("\n".join(out))
04bde49e72e07552f2f88e9112546d00b85a2879
3,654,915
def read_file(filename): """ Read a file and return its binary content. \n @param filename : filename as string. \n @return data as bytes """ with open(filename, mode='rb') as file: file_content = file.read() return file_content
2417aa5cfa0d43303f9f6103e8b1fee9e8d652e2
3,654,916
def getdictkeys(value): """ Returns the ordered keys of a dict """ if type(value) == dict: keys = list(value.keys()) keys.sort(key=toint) return keys return []
adf49dbfa46f5174aa1435756c6e099b08b7c6c9
3,654,917
def exp_lr_scheduler(optimizer, epoch, init_lr=5e-3, lr_decay_epoch=40): """Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs.""" lr = init_lr * (0.1**(epoch // lr_decay_epoch)) if epoch % lr_decay_epoch == 0: print('LR is set to {}'.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer
520a7960ee589e033920cf182d75ea896cc8b8b7
3,654,918
def random_shadow(image): """ Function to add shadow in images randomly at random places, Random shadows meant to make the Convolution model learn Lanes and lane curvature patterns effectively in dissimilar places. """ if np.random.rand() < 0.5: # (x1, y1) and (x2, y2) forms a line # xm, ym gives all the locations of the image x1, y1 = image.shape[1] * np.random.rand(), 0 x2, y2 = image.shape[1] * np.random.rand(), image.shape[0] xm, ym = np.mgrid[0:image.shape[0], 0:image.shape[1]] mask = np.zeros_like(image[:, :, 1]) mask[(ym - y1) * (x2 - x1) - (y2 - y1) * (xm - x1) > 0] = 1 # choose which side should have shadow and adjust saturation cond = mask == np.random.randint(2) s_ratio = np.random.uniform(low=0.2, high=0.5) # adjust Saturation in HLS(Hue, Light, Saturation) hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) hls[:, :, 1][cond] = hls[:, :, 1][cond] * s_ratio return cv2.cvtColor(hls, cv2.COLOR_HLS2RGB) else: return image
118fbffa04bbd3551eff3f4298ba14235b00b7c3
3,654,920
def build_channel_header(type, tx_id, channel_id, timestamp, epoch=0, extension=None, tls_cert_hash=None): """Build channel header. Args: type (common_pb2.HeaderType): type tx_id (str): transaction id channel_id (str): channel id timestamp (grpc.timestamp): timestamp epoch (int): epoch extension: extension Returns: common_proto.Header instance """ channel_header = common_pb2.ChannelHeader() channel_header.type = type channel_header.version = 1 channel_header.channel_id = proto_str(channel_id) channel_header.tx_id = proto_str(tx_id) channel_header.epoch = epoch channel_header.timestamp.CopyFrom(timestamp) if tls_cert_hash: channel_header.tls_cert_hash = tls_cert_hash if extension: channel_header.extension = extension return channel_header
cfd7524de77a61fe75d3b3be58e2ebde4d743393
3,654,921
def get_character(data, index): """Return one byte from data as a signed char. Args: data (list): raw data from sensor index (int): index entry from which to read data Returns: int: extracted signed char value """ result = data[index] if result > 127: result -= 256 return result
5a08102cb9dc8ae7e2adcab9b5653b77ee2c6ae3
3,654,922
def df_to_embed(df, img_folder): """ Extract image embeddings, sentence embeddings and concatenated embeddings from dataset and image folders :param df: dataset file to use :param img_folder: folder where the corresponding images are stored :return: tuple containing sentence embeddings, image embeddings, concatenated embeddings """ sent_embed = extract_all_sentences(df) img_embed = extract_all_images("xception", img_folder) concat = np.concatenate((sent_embed, img_embed), axis=1) return sent_embed, img_embed, concat
cda55f06a74c1b0475bc6a9e35e657b4f3ce0392
3,654,923
import random def generate_player_attributes(): """ Return a list of 53 dicts with player attributes that map to Player model fields. """ # Get player position distribution position_dist = get_position_distribution() # Get player attribute distribution attr_dist = get_attribute_distribution() # Get player names from CSV player_names = read_player_names_from_csv() player_list = [] # Generate 53 players per team for roster_spot in range(0, 53): player = {} # Set player names from parsed CSV data player['first_name'] = player_names[roster_spot][0] player['last_name'] = player_names[roster_spot][1] # Only assign player a position that isn't filled on the roster for pos, dist in position_dist.items(): if dist[0] < dist[1]: player['position'] = pos # Pick a random prototype based on position player['prototype'] = random.choice(list(attr_dist[pos])) dist[0] += 1 break else: continue # Assign player ages based on normal distribution player['age'] = int(random.gauss(1, 0.1) * random.randint(25, 35)) default_rookie_age = 22 player['experience'] = player['age'] - default_rookie_age if player['age'] < 22: player['experience'] = 0 # Generate ratings based on weights and normal distribution base_rating = int(random.gauss(70, 20)) position, prototype = player['position'], player['prototype'] pos_weights = attr_dist[position][prototype] # Apply position and prototype weights after_pos_weights = [] for pw in range(len(pos_weights)): after_pos_weights.append(pos_weights[pw] + base_rating) # Sigmas for standard deviation sigmas = [20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20] final_ratings = list(map(random.gauss, after_pos_weights, sigmas)) i = 0 calc_overall = [] # Assign final ratings to player key for attribute in ('potential', 'confidence', 'iq', 'speed', 'strength', 'agility', 'awareness', 'stamina', 'injury', 'run_off', 'pass_off', 'special_off', 'run_def', 'pass_def', 'special_def'): rating = int(final_ratings[i]) if rating > 99: rating = 99 elif rating < 0: rating = 0 player[attribute] = rating calc_overall.append(rating) i += 1 # Calculate overall rating and add player to list player['overall_rating'] = int(sum(calc_overall) / len(calc_overall)) player_list.append(player) return player_list
57c16d998348b9db1384dc98412bd69e62d0c73d
3,654,925
def colour_from_loadings(loadings, maxLoading=None, baseColor="#FF0000"): """Computes colors given loading values. Given an array of loading values (loadings), returns an array of colors that graphviz can understand that can be used to colour the nodes. The node with the greatest loading uses baseColor, and a node with zero loading uses white (#FFFFFF). This is achieved through clever sneaky use of the alpha channel.""" if maxLoading is None: maxLoading = max(loadings) return [baseColor + hex(int(loading / maxLoading * 255))[2:] for loading in loadings]
8bd65e5b4aa54558d3710a8518bbbe6400559046
3,654,926
def determineDocument(pdf): """ Scans the pdf document for certain text lines and determines the type of investment vehicle traded""" if 'turbop' in pdf or 'turboc' in pdf: return 'certificate' elif 'minil' in pdf: return 'certificate' elif 'call' in pdf or 'put' in pdf: return 'warrant' else: return 'stock'
e6c5adc10168321fd6a534dd8e9fbf2e8ccb1615
3,654,927
from typing import Any import pickle def deserialize_api_types(class_name: str, d: dict) -> Any: """ Deserializes an API type. Allowed classes are defined in: * :mod:`maestral.core` * :mod:`maestral.model` * :mod:`maestral.exceptions` :param class_name: Name of class to deserialize. :param d: Dictionary of serialized class. :returns: Deserialized object. """ bytes_message = serpent.tobytes(d["object"]) check_signature(d["signature"], bytes_message) return pickle.loads(bytes_message)
f9c3962a1c18bd6dfb385af37e90b5062d1e0eef
3,654,929
from click.testing import CliRunner def runner() -> CliRunner: """Fixture for invoking command-line interfaces.""" return testing.CliRunner()
39f241b8192a3c06750e850c8c953822e4db5634
3,654,930
import math def give_color_to_direction_dynamic(dir): """ Assigns a color to the direction (dynamic-defined colors) Parameters -------------- dir Direction Returns -------------- col Color """ dir = 0.5 + 0.5 * dir norm = mpl.colors.Normalize(vmin=0, vmax=1) nodes = [0.0, 0.01, 0.25, 0.4, 0.45, 0.55, 0.75, 0.99, 1.0] colors = ["deepskyblue", "skyblue", "lightcyan", "lightgray", "gray", "lightgray", "mistyrose", "salmon", "tomato"] cmap = mpl.colors.LinearSegmentedColormap.from_list("mycmap2", list(zip(nodes, colors))) #cmap = cm.plasma m = cm.ScalarMappable(norm=norm, cmap=cmap) rgba = m.to_rgba(dir) r = get_string_from_int_below_255(math.ceil(rgba[0] * 255.0)) g = get_string_from_int_below_255(math.ceil(rgba[1] * 255.0)) b = get_string_from_int_below_255(math.ceil(rgba[2] * 255.0)) return "#" + r + g + b
ece62af230cda4870df099eae50a26b72848b2de
3,654,932
def prune_arms(active_arms, sample_arms, verbose=False): """Remove all arms from ``active_arms`` that have an allocation less than two standard deviations below the current best arm. :param active_arms: list of coordinate-tuples corresponding to arms/cohorts currently being sampled :type active_arms: list of tuple :param sample_arms: all arms from prev and current cohorts, keyed by coordinate-tuples Arm refers specifically to a :class:`moe.bandit.data_containers.SampleArm` :type sample_arms: dict :param verbose: whether to print status messages to stdout :type verbose: bool :return: list of coordinate-tuples that are the *well-performing* members of ``active_arms`` length is at least 1 and at most ``len(active_arms)`` :rtype: list of tuple """ # Find all active sample arms active_sample_arms = {} for active_arm in active_arms: active_sample_arms[active_arm] = sample_arms[active_arm] # Find the best arm # Our objective is a relative CTR, so status_quo is 0.0; we # know that the best arm cannot be worse than status_quo best_arm_val = 0.0 for sample_arm_point, sample_arm in active_sample_arms.iteritems(): arm_value, arm_variance = objective_function( sample_arm, sample_arms[tuple(STATUS_QUO_PARAMETER)], ) if arm_value > best_arm_val: best_arm_val = arm_value # Remove all arms that are more than two standard deviations worse than the best arm pruned_arms = copy.copy(active_arms) for sample_arm_point, sample_arm in active_sample_arms.iteritems(): arm_value, arm_variance = objective_function( sample_arm, sample_arms[tuple(STATUS_QUO_PARAMETER)], ) if sample_arm.total > 0 and arm_value + 2.0 * numpy.sqrt(arm_variance) < best_arm_val: if verbose: print "Removing underperforming arm: {0}".format(sample_arm_point) pruned_arms.remove(sample_arm_point) return pruned_arms
bd82f77503a9f0fa6a49b9f24ce9846849544b00
3,654,935
def prepare_string(dist, digits=None, exact=False, tol=1e-9, show_mask=False, str_outcomes=False): """ Prepares a distribution for a string representation. Parameters ---------- dist : distribution The distribution to be stringified. digits : int or None The probabilities will be rounded to the specified number of digits, using NumPy's around function. If `None`, then no rounding is performed. Note, if the number of digits is greater than the precision of the floats, then the resultant number of digits will match that smaller precision. exact : bool If `True`, then linear probabilities will be displayed, even if the underlying pmf contains log probabilities. The closest rational fraction within a tolerance specified by `tol` is used as the display value. tol : float If `exact` is `True`, then the probabilities will be displayed as the closest rational fraction within `tol`. show_mask : bool If `True`, show the mask for marginal distributions. str_outcomes : bool If `True`, then attempt to convert outcomes which are tuples to just strings. This is only a dislplay technique. Returns ------- pmf : sequence The formatted pmf. This could be a NumPy array (possibly rounded) or a list of Fraction instances. outcomes : sequence The formated outcomes. base : str or float The base of the formatted pmf. colsep : str The column separation for printing. max_length : int The length of the largest outcome, as a string. pstr : str A informative string representing the probability of an outcome. This will be 'p(x)' xor 'log p(x)'. """ colsep = ' ' # Create outcomes with wildcards, if desired and possible. if show_mask: if not dist.is_joint(): msg = '`show_mask` can be `True` only for joint distributions' raise ditException(msg) if show_mask not in [True, False]: # The user is specifying what the mask should look like. wc = show_mask else: wc = '*' ctor = dist._outcome_ctor def outcome_wc(outcome): """ Builds the wildcarded outcome. """ i = 0 e = [] for is_masked in dist._mask: if is_masked: symbol = wc else: symbol = outcome[i] i += 1 e.append(symbol) e = ctor(e) return e outcomes = map(outcome_wc, dist.outcomes) else: outcomes = dist.outcomes # Convert outcomes to strings, if desired and possible. if str_outcomes: if not dist.is_joint(): msg = '`str_outcomes` can be `True` only for joint distributions' raise ditException(msg) try: # First, convert the elements of the outcome to strings. outcomes_ = [map(str, outcome) for outcome in outcomes] # Now convert the entire outcome to a string outcomes_ = map(lambda o: ''.join(o), outcomes_) # Force the iterators to expand in case there are exceptions. outcomes = list(outcomes_) except: outcomes = map(str, outcomes) else: outcomes = map(str, outcomes) outcomes = list(outcomes) if len(outcomes): max_length = max(map(len, outcomes)) else: max_length = 0 # 1) Convert to linear probabilities, if necessary. if exact: # Copy to avoid precision loss d = dist.copy(base='linear') else: d = dist # 2) Round, if necessary, possibly after converting to linear probabilities. if digits is not None and digits is not False: pmf = d.pmf.round(digits) else: pmf = d.pmf # 3) Construct fractions, if necessary. if exact: pmf = [approximate_fraction(x, tol) for x in pmf] if d.is_log(): pstr = 'log p(x)' else: pstr = 'p(x)' base = d.get_base() return pmf, outcomes, base, colsep, max_length, pstr
09abba1e5027049b9a43cb83e8de6f95daf5b431
3,654,936
def verifier(func): """ Creates a `Verifier` by given specifier. Parameters ---------- func: callable, [callable], (str, callable), [(str, callable)] The specifier of `Verifier` which can take various forms and determines the attributes and behaviors of `Verifier`. When it is declared as a list having a specifier, the `Verifier` deals with an input as iterable object and tries to apply inner verifying function to each value. If a tuple of string and callable is given, the string is used as the name of the `Verifier`. Otherwise, its name is determined by `__name__` attribute of the callable object. The callable should be a function taking an input and returns boolean value representing the result of the verification. Returns ------- Verifier Created `Verifier`. """ func, is_iter = (func[0], True) if isinstance(func, list) else (func, False) if isinstance(func, Verifier): return func elif isinstance(func, Variable): return func._verifier elif isinstance(func, partial): ff, n, t_in, t_out, args, kwargs = analyze_specifier(func, (), {}) return Verifier(n, func, is_iter, *args, **kwargs) elif callable(func): return Verifier(func.__name__, func, is_iter) elif isinstance(func, tuple): ff, n, t_in, t_out, args, kwargs = analyze_specifier(func[1], (), {}) return Verifier(func[0], func[1], is_iter, *args, **kwargs) else: raise TypeError("Given value is not valid Verifier specifier.")
665bc9cf5039e568fb2325a1cf0a25f72311eab8
3,654,937
def get_add_diff_file_list(git_folder): """List of new files. """ repo = Repo(str(git_folder)) repo.git.add("sdk") output = repo.git.diff("HEAD", "--name-only") return output.splitlines()
af6ff7ffb076fb382aaa946e11e473f2f45bad0e
3,654,939
def has_read_perm(user, group, is_member, is_private): """ Return True if the user has permission to *read* Articles, False otherwise. """ if (group is None) or (is_member is None) or is_member(user, group): return True if (is_private is not None) and is_private(group): return False return True
6c1bc51abd50a5af76e16e7723957c758822c988
3,654,941
def normalize_df(dataframe, columns): """ normalized all columns passed to zero mean and unit variance, returns a full data set :param dataframe: the dataframe to normalize :param columns: all columns in the df that should be normalized :return: the data, centered around 0 and divided by it's standard deviation """ for column in columns: data = dataframe.loc[:, column].values sd = np.std(data) mean = np.mean(data) dataframe.loc[:, column] = (data - mean) / sd return dataframe
39b23a6f11794323f1d732396021d669410c7de1
3,654,943
import json def PeekTrybotImage(chromeos_root, buildbucket_id): """Get the artifact URL of a given tryjob. Args: buildbucket_id: buildbucket-id chromeos_root: root dir of chrome os checkout Returns: (status, url) where status can be 'pass', 'fail', 'running', and url looks like: gs://chromeos-image-archive/trybot-elm-release-tryjob/R67-10468.0.0-b20789 """ command = ( 'cros buildresult --report json --buildbucket-id %s' % buildbucket_id) rc, out, _ = RunCommandInPath(chromeos_root, command) # Current implementation of cros buildresult returns fail when a job is still # running. if rc != 0: return ('running', None) results = json.loads(out)[buildbucket_id] return (results['status'], results['artifacts_url'].rstrip('/'))
c74b7c5a120d3d489e6990bd03e74bb0d22fea27
3,654,944
def frozenset_code_repr(value: frozenset) -> CodeRepresentation: """ Gets the code representation for a frozenset. :param value: The frozenset. :return: It's code representation. """ return container_code_repr("frozenset({", "})", ((el,) for el in value), lambda el: el)
b4a3b283c7d21d0ae888c588471f9dea650215fb
3,654,945
def SRMI(df, n): """ MI修正指标 Args: df (pandas.DataFrame): Dataframe格式的K线序列 n (int): 参数n Returns: pandas.DataFrame: 返回的DataFrame包含2列, 是"a", "mi", 分别代表A值和MI值 Example:: # 获取 CFFEX.IF1903 合约的MI修正指标 from tqsdk import TqApi, TqSim from tqsdk.ta import SRMI api = TqApi(TqSim()) klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60) srmi = SRMI(klines, 9) print(list(srmi["a"])) print(list(srmi["mi"])) # 预计的输出是这样的: [..., 0.10362397961836425, 0.07062591892459567, -0.03341929372138309, ...] [..., 0.07583104758041452, 0.0752526999519902, 0.06317803398828206, ...] """ new_df = pd.DataFrame() new_df["a"] = np.where(df["close"] < df["close"].shift(n), (df["close"] - df["close"].shift(n)) / df["close"].shift(n), np.where(df["close"] == df["close"].shift(n), 0, (df["close"] - df["close"].shift(n)) / df["close"])) new_df["mi"] = tafunc.sma(new_df["a"], n, 1) return new_df
29726385da068446cd3dd3ee13f8d95b88c36245
3,654,946
def get_purchase_rows(*args, **kwargs): """ 获取列表 :param args: :param kwargs: :return: """ return db_instance.get_rows(Purchase, *args, **kwargs)
505ace358b619a736bc7a71139e307110cd7c27d
3,654,947
def depart_delete(request): """ 删除部门 """ nid = request.GET.get('nid') models.Department.objects.filter(id=nid).delete() return redirect("/depart/list/")
753c01771ad59b789f324a0cb95e94dcf9e48e9d
3,654,948
def create_condor_scheduler(name, host, username=None, password=None, private_key_path=None, private_key_pass=None): """ Creates a new condor scheduler Args: name (str): The name of the scheduler host (str): The hostname or IP address of the scheduler username (str, optional): The username to use when connecting to the scheduler password (str, optional): The password for the username private_key_path (str, optional): The path to the location of the SSH private key file private_key_pass (str, optional): The passphrase for the private key Returns: The newly created condor scheduler Note: The newly created condor scheduler object is not committed to the database. """ condor_scheduler = CondorScheduler(name, host, username=username, password=password, private_key_path=private_key_path, private_key_pass=private_key_pass) return condor_scheduler
d47c8c69fea249139698564b52520d95fbb1a75f
3,654,949
def dot_to_underscore(instring): """Replace dots with underscores""" return instring.replace(".", "_")
cf9441702ffb128678a031eabb4fa48be881cae5
3,654,951
def get_birthday_weekday(current_weekday: int, current_day: int, birthday_day: int) -> int: """Return the day of the week it will be on birthday_day, given that the day of the week is current_weekday and the day of the year is current_day. current_weekday is the current day of the week and is in the range 1-7, indicating whether today is Sunday (1), Monday (2), ..., Saturday (7). current_day and birthday_day are both in the range 1-365. >>> get_birthday_weekday(5, 3, 4) 6 >>> get_birthday_weekday(5, 3, 116) 6 >>> get_birthday_weekday(6, 116, 3) 5 """ days_diff = days_difference(current_day, birthday_day) return get_weekday(current_weekday, days_diff)
5b4ba9f2a0efcdb9f150b421c21bb689604fbb11
3,654,952
def _check(err, msg=""): """Raise error for non-zero error codes.""" if err < 0: msg += ': ' if msg else '' if err == _lib.paUnanticipatedHostError: info = _lib.Pa_GetLastHostErrorInfo() hostapi = _lib.Pa_HostApiTypeIdToHostApiIndex(info.hostApiType) msg += 'Unanticipated host API {0} error {1}: {2!r}'.format( hostapi, info.errorCode, _ffi.string(info.errorText).decode()) else: msg += _ffi.string(_lib.Pa_GetErrorText(err)).decode() raise PortAudioError(msg) return err
2f0b2ccd055bbad814e48b451eb72c60e62f9273
3,654,954
def make_flood_fill_unet(input_fov_shape, output_fov_shape, network_config): """Construct a U-net flood filling network. """ image_input = Input(shape=tuple(input_fov_shape) + (1,), dtype='float32', name='image_input') if network_config.rescale_image: ffn = Lambda(lambda x: (x - 0.5) * 2.0)(image_input) else: ffn = image_input mask_input = Input(shape=tuple(input_fov_shape) + (1,), dtype='float32', name='mask_input') ffn = concatenate([ffn, mask_input]) # Note that since the Keras 2 upgrade strangely models with depth > 3 are # rejected by TF. ffn = add_unet_layer(ffn, network_config, network_config.unet_depth - 1, output_fov_shape, n_channels=network_config.convolution_filters) mask_output = Conv3D( 1, (1, 1, 1), kernel_initializer=network_config.initialization, padding=network_config.convolution_padding, name='mask_output', activation=network_config.output_activation)(ffn) ffn = Model(inputs=[image_input, mask_input], outputs=[mask_output]) return ffn
ff8c90b3eecc26384b33fd64afa0a2c4dd44b82d
3,654,956
def FRAC(total): """Returns a function that shows the average percentage of the values from the total given.""" def realFrac(values, unit): r = toString(sum(values) / len(values) / total * 100) r += '%' if max(values) > min(values): r += ' avg' return [r] return realFrac
41946163d5c185d1188f71d615a67d72e6eaee4f
3,654,957
def get_min_max(ints): """ Return a tuple(min, max) out of list of unsorted integers. Args: ints(list): list of integers containing one or more integers """ if len(ints) == 0: return (None, None) low = ints[0] high = ints[0] for i in ints: if i < low: low = i elif i > high: high = i return (low, high)
14c7d4cc73947c8de38bb598e295d9a1b4b7e5f6
3,654,958
def gen_sweep_pts(start: float=None, stop: float=None, center: float=0, span: float=None, num: int=None, step: float=None, endpoint=True): """ Generates an array of sweep points based on different types of input arguments. Boundaries of the array can be specified using either start/stop or using center/span. The points can be specified using either num or step. Args: start (float) : start of the array stop (float) : end of the array center (float) : center of the array N.B. 0 is chosen as a sensible default for the span. it is argued that no such sensible default exists for the other types of input. span (float) : span the total range of values to span num (int) : number of points in the array step (float) : the stepsize between points in the array endpoint (bool): whether to include the endpoint """ if (start is not None) and (stop is not None): if num is not None: return np.linspace(start, stop, num, endpoint=endpoint) elif step is not None: # numpy arange does not natively support endpoint return np.arange(start, stop + endpoint*step/100, step) else: raise ValueError('Either "num" or "step" must be specified') elif (center is not None) and (span is not None): if num is not None: return span_num(center, span, num, endpoint=endpoint) elif step is not None: return span_step(center, span, step, endpoint=endpoint) else: raise ValueError('Either "num" or "step" must be specified') else: raise ValueError('Either ("start" and "stop") or ' '("center" and "span") must be specified')
fb67623acfea433331babf7b7e1217cfa4e9e7ae
3,654,959
def set_lang_owner(cursor, lang, owner): """Set language owner. Args: cursor (cursor): psycopg2 cursor object. lang (str): language name. owner (str): name of new owner. """ query = "ALTER LANGUAGE \"%s\" OWNER TO \"%s\"" % (lang, owner) executed_queries.append(query) cursor.execute(query) return True
07cf4a33ca766a8ccf468f59d33318bab88c4529
3,654,960
def rstrip_tuple(t: tuple): """Remove trailing zeroes in `t`.""" if not t or t[-1]: return t right = len(t) - 1 while right > 0 and t[right - 1] == 0: right -= 1 return t[:right]
a10e74ea4a305d588fbd1555f32dda1d4b95266e
3,654,961
def _calc_active_face_flux_divergence_at_node(grid, unit_flux_at_faces, out=None): """Calculate divergence of face-based fluxes at nodes (active faces only). Given a flux per unit width across each face in the grid, calculate the net outflux (or influx, if negative) divided by cell area, at each node that lies within a cell. Construction:: _calc_active_face_flux_divergence_at_node(grid, unit_flux_at_faces, out=None) Parameters ---------- grid : ModelGrid A ModelGrid. unit_flux_at_faces : ndarray or field name (x number of faces) Flux per unit width associated with faces. out : ndarray (x number of nodes), optional Buffer to hold the result. Returns ------- ndarray (x number of nodes) Flux divergence at nodes. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> rg = RasterModelGrid(3, 4, 10.0) >>> z = rg.add_zeros('node', 'topographic__elevation') >>> z[5] = 50.0 >>> z[6] = 36.0 >>> fg = rg.calc_grad_at_link(z)[rg.link_at_face] # there are 7 faces >>> fg array([ 5. , 3.6, 5. , -1.4, -3.6, -5. , -3.6]) >>> _calc_active_face_flux_divergence_at_node(rg, -fg) array([ 0. , 0. , 0. , 0. , 0. , 1.64, 0.94, 0. , 0. , 0. , 0. , 0. ]) >>> rg.set_status_at_node_on_edges(right=CLOSED_BOUNDARY) >>> rg.set_status_at_node_on_edges(top=CLOSED_BOUNDARY) >>> _calc_active_face_flux_divergence_at_node(rg, -fg) array([ 0. , 0. , 0. , 0. , 0. , 1.14, 0.22, 0. , 0. , 0. , 0. , 0. ]) Notes ----- Performs a numerical flux divergence operation on cells, and returns the result in an array of length equal to the number of nodes. Nodes without cells (those on the grid perimeter) are not affected (i.e., their value is either zero, or if `out` is given, whatever the prior value in `out` was). """ if out is None: out = grid.zeros(at='node') out[grid.node_at_cell] = \ _calc_net_active_face_flux_at_cell(grid, unit_flux_at_faces) \ / grid.area_of_cell return out
82c485935a3190c07ab12f7c838d52f5fecb78d0
3,654,962
from typing import NoReturn def get_line(prompt: str = '') -> Effect[HasConsole, NoReturn, str]: """ Get an `Effect` that reads a `str` from stdin Example: >>> class Env: ... console = Console() >>> greeting = lambda name: f'Hello {name}!' >>> get_line('What is your name? ').map(greeting).run(Env()) name? # input e.g 'John Doe' 'Hello John Doe!' Args: prompt: prompt to display in console Return: an `Effect` that produces a `str` read from stdin """ return depend(HasConsole).and_then(lambda env: env.console.input(prompt))
47c58bb6ab794fdf789f0812dc1dc6d977106b60
3,654,964
def reconstruct_wave(*args: ndarray, kwargs_istft, n_sample=-1) -> ndarray: """ construct time-domain wave from complex spectrogram Args: *args: the complex spectrogram. kwargs_istft: arguments of Inverse STFT. n_sample: expected audio length. Returns: audio (numpy) """ if len(args) == 1: spec = args[0].squeeze() mag = None phase = None assert np.iscomplexobj(spec) elif len(args) == 2: spec = None mag = args[0].squeeze() phase = args[1].squeeze() assert np.isrealobj(mag) and np.isrealobj(phase) else: raise ValueError kwarg_len = dict(length=n_sample) if n_sample != -1 else dict() if spec is None: spec = mag * np.exp(1j * phase) wave = librosa.istft(spec, **kwargs_istft, **kwarg_len) return wave
8624602efe1ab90304da05c602fb46ac52ec86e0
3,654,965
def perfect_score(student_info): """ :param student_info: list of [<student name>, <score>] lists :return: first `[<student name>, 100]` or `[]` if no student score of 100 is found. """ # first = [] student_names = [] score = [] print (student_info) for name in student_info: print('1', 'name', name[0]) print ('2','score',name[1]) print(type(name[1])) score = int(name[1]) print(type(score)) if (score == 100 ): print('3', score) print(name) return name return first
ac7580cce134627e08764031ef2812e1b70ba00f
3,654,966
def get_composite_component(current_example_row, cache, model_config): """ maps component_id to dict of {cpu_id: False, ...} :param current_example_row: :param cache: :param model_config: :return: nested mapping_dict = { #there can be multiple components component_id = { #components can be deployed on multiple servers cpu_id: False, ... }, ... } """ mapping_dict = defaultdict(lambda: {}) # for context in for column_name in model_config["components"]: allocation_name = column_name.replace("AllocationDegreeImpl:", "") context = get_element_by_identifier(element_tree=cache.get_xml_tree("allocation"), search_string=allocation_name, attribute="entityName") system_id = get_linkage_id(identifier="assemblyContext_AllocationContext", element_tree=context) assembly_context = get_by_id(element=cache.get_xml_tree("system"), element_id=system_id) component = assembly_context.find("./encapsulatedComponent__AssemblyContext") if component.get(get_xml_schema_type()) == "repository:CompositeComponent": repo_id = get_linkage_id(element_tree=assembly_context, identifier="encapsulatedComponent__AssemblyContext") composite_component = get_by_id(element=cache.get_xml_tree("repository"), element_id=repo_id) for composed_structure in composite_component.findall("./assemblyContexts__ComposedStructure"): component_id = composed_structure.get("encapsulatedComponent__AssemblyContext") # check if column (with name of component) of current test data is allocated to existing server if current_example_row[column_name] in model_config["server"].keys(): # if component is allocated to existing server append allocation to list for server_id in model_config["server"]: # if component is part of composite if current_example_row[column_name] == server_id: temp_server_id = model_config["server"][current_example_row[column_name]] mapping_dict[component_id].update({temp_server_id: False}) return mapping_dict
201db2016ea59cbf4a20ce081813bfd60d58bf67
3,654,968
def presigned_url_both(filename, email): """ Return presigned urls both original image url and thumbnail image url :param filename: :param email: :return: """ prefix = "photos/{0}/".format(email_normalize(email)) prefix_thumb = "photos/{0}/thumbnails/".format(email_normalize(email)) key_thumb = "{0}{1}".format(prefix_thumb, filename) key_origin = "{0}{1}".format(prefix, filename) try: s3_client = boto3.client('s3') thumb_url = s3_client.generate_presigned_url( 'get_object', Params={'Bucket': conf['S3_PHOTO_BUCKET'], 'Key': key_thumb}, ExpiresIn=conf['S3_PRESIGNED_EXP']) origin_url = s3_client.generate_presigned_url( 'get_object', Params={'Bucket': conf['S3_PHOTO_BUCKET'], 'Key': key_origin}, ExpiresIn=conf['S3_PRESIGNED_EXP']) except Exception as e: raise ChaliceViewError(e) return thumb_url, origin_url
7f37cf388ef944d740f2db49c5125435b819e0e8
3,654,969
def check_if_event_exists(service, new_summary): """ Description: checks if the event summary exists using a naive approach """ event_exists = False page_token = None calendarId = gcalendarId while True: events = ( service.events().list(calendarId=calendarId, pageToken=page_token).execute() ) for event in events["items"]: # purge location from summary string if new_summary in event["summary"]: event_exists = True break page_token = events.get("nextPageToken") if not page_token: break return event_exists
c6cc8bd3e4548cda11f9eaad6fd2d3da7a5c7e20
3,654,970
def retry(func, *args, **kwargs): """ You can use the kwargs to override the 'retries' (default: 5) and 'use_account' (default: 1). """ global url, token, parsed, conn retries = kwargs.get('retries', 5) use_account = 1 if 'use_account' in kwargs: use_account = kwargs['use_account'] del kwargs['use_account'] use_account -= 1 attempts = 0 backoff = 1 while attempts <= retries: attempts += 1 try: if not url[use_account] or not token[use_account]: url[use_account], token[use_account] = \ get_auth(swift_test_auth, swift_test_user[use_account], swift_test_key[use_account]) parsed[use_account] = conn[use_account] = None if not parsed[use_account] or not conn[use_account]: parsed[use_account], conn[use_account] = \ http_connection(url[use_account]) return func(url[use_account], token[use_account], parsed[use_account], conn[use_account], *args, **kwargs) except (socket.error, HTTPException): if attempts > retries: raise parsed[use_account] = conn[use_account] = None except AuthError, err: url[use_account] = token[use_account] = None continue except InternalServerError, err: pass if attempts <= retries: sleep(backoff) backoff *= 2 raise Exception('No result after %s retries.' % retries)
7749fcd63f8d795692097b0257adde4147ecb569
3,654,971
def eval_f(angles, data=None): """ function to minimize """ x1, x2, d, zt, z, alpha, beta, mask, b1, b2 = data thetaxm, thetaym, thetazm, thetaxp, thetayp, thetazp = angles rm = rotation(thetaxm, thetaym, thetazm) rp = rotation(thetaxp, thetayp, thetazp) x1r = rm.dot(x1.T).T x2r = rp.dot(x2.T).T + d obj = poisson_complete_ll(x1r, x2r, zt, z, alpha, beta, mask, b1, b2) return obj
622c18d21224ab40d597a165bff3e0493db4cdcc
3,654,972
def clamp(min_v, max_v, value): """ Clamps a value between a min and max value Args: min_v: Minimum value max_v: Maximum value value: Value to be clamped Returns: Returns the clamped value """ return min_v if value < min_v else max_v if value > max_v else value
1a9aaf3790b233f535fb864215444b0426c17ad8
3,654,973
def collatz(n): """Sequence generation.""" l = [] while n > 1: l.append(n) if n % 2 == 0: n = n / 2 else: n = (3 * n) + 1 l.append(n) return l
69d993147604889fe6b03770efbfa6fb7f034258
3,654,974
def generate_anchors(base_size=16, ratios=[0.5, 1, 2], scales=2 ** np.arange(3, 6), stride=16): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ base_anchor = np.array([1, 1, base_size, base_size]) - 1 ratio_anchors = _ratio_enum(base_anchor, ratios) anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) return anchors
083bfad62fac67e0f7fb02251bc3db7904629bd5
3,654,976
import re def number_format(number_string, fill=2): """ add padding zeros to make alinged numbers ex. >>> number_format('2') '02' >>> number_format('1-2') '01-02' """ output = [] digits_spliter = r'(?P<digit>\d+)|(?P<nondigit>.)' for token in [m.groups() for m in re.finditer(digits_spliter, number_string)]: if token[0] is None: output.append(token[1]) else: output.append(token[0].zfill(2)) return ''.join(output)
ee44167b4597fbe7c9f01fa5b26e02d7608c3677
3,654,977
def box_postp2use(pred_boxes, nms_iou_thr=0.7, conf_thr=0.5): """Postprocess prediction boxes to use * Non-Maximum Suppression * Filter boxes with Confidence Score Args: pred_boxes (np.ndarray dtype=np.float32): pred boxes postprocessed by yolo_output2boxes. shape: [cfg.cell_size * cfg.cell_size *cfg.boxes_per_cell, 6] nms_iou_thr (float): Non-Maximum Suppression IoU Threshold conf_thr (float): Confidence Score Threshold Returns: np.ndarray (dtype=np.float32) """ boxes_nms = nms(pred_boxes=pred_boxes, iou_thr=nms_iou_thr) boxes_conf_filtered = boxes_nms[boxes_nms[:, 4] >= conf_thr] return boxes_conf_filtered
07be8b953b82dbbcc27daab0afa71713db96efc1
3,654,978
from functools import reduce def many_hsvs_to_rgb(hsvs): """Combine list of hsvs otf [[(h, s, v), ...], ...] and return RGB list.""" num_strips = len(hsvs[0]) num_leds = len(hsvs[0][0]) res = [[[0, 0, 0] for ll in range(num_leds)] for ss in range(num_strips)] for strip in range(num_strips): for led in range(num_leds): # for some reason the conversion screws this up? # # import bibliopixel as bp # c1 = bp.colors.conversions.hsv2rgb((0, 0, 0)) # c2 = bp.colors.conversions.hsv2rgb((0, 0, 0)) # c3 = bp.colors.conversions.hsv2rgb((0, 0, 0)) # bp.colors.arithmetic.color_blend( # bp.colors.arithmetic.color_blend(c1, c2), # c3) # # = (2, 2, 2) if all(hsv[strip][led][2] == 0 for hsv in hsvs): rgb = (0, 0, 0) else: rgbs = [bp.colors.conversions.hsv2rgb(hsv[strip][led]) for hsv in hsvs] rgb = reduce(bp.colors.arithmetic.color_blend, rgbs) res[strip][led] = rgb return res
0842ecb4a42560fb6dae32a91ae12588152db621
3,654,979
def _convert_paths_to_flask(transmute_paths): """flask has it's own route syntax, so we convert it.""" paths = [] for p in transmute_paths: paths.append(p.replace("{", "<").replace("}", ">")) return paths
f8ea95e66c68481f0eb5a6d83cf61d098806f6be
3,654,980
def check_isup(k, return_client=None): """ Checks ping and returns status Used with concurrent decorator for parallel checks :param k: name to ping :param return_client: to change return format as '{k: {'comments': comments}}' :return(str): ping ok / - """ if is_up(k): comments = 'ping ok' else: comments = ' - ' if return_client: comments = {k: {'comments': comments}} return comments
8ebb346eb74cb54aa978b4fff7cd310b344ece50
3,654,981
def percent_uppercase(text): """Calculates percentage of alphabetical characters that are uppercase, out of total alphabetical characters. Based on findings from spam.csv that spam texts have higher uppercase alphabetical characters (see: avg_uppercase_letters())""" alpha_count = 0 uppercase_count = 0 for char in text: if char.isalpha(): alpha_count += 1 if char.isupper(): uppercase_count += 1 # calculate percentage - make sure not to divide by 0 try: perc_uppercase = float(uppercase_count) / float(alpha_count) return str(perc_uppercase) except ZeroDivisionError: return "0"
61ccf42d06ffbae846e98d1d68a48de21f52c299
3,654,982