content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from pathlib import Path def file(base_path, other_path): """ Returns a single file """ return [[Path(base_path), Path(other_path)]]
3482041757b38929a58d7173731e84a915225809
3,655,455
import io def get_md_resource(file_path): """Read the file and parse into an XML tree. Parameters ---------- file_path : str Path of the file to read. Returns ------- etree.ElementTree XML tree of the resource on disk. """ namespaces = Namespaces().get_namespaces(keys=('gmd', 'gmi')) with io.open(file_path, mode='r', encoding='utf-8') as f: data = f.read().encode('utf-8') data = etree.fromstring(data) mdelem = data.find('.//' + util.nspath_eval( 'gmd:MD_Metadata', namespaces)) if mdelem is None: mdelem = data.find( './/' + util.nspath_eval('gmi:MI_Metadata', namespaces)) if mdelem is None and data.tag in ['{http://www.isotc211.org/2005/gmd}MD_Metadata', '{http://www.isotc211.org/2005/gmi}MI_Metadata']: mdelem = data return mdelem
809ea7cef3c9191db9589e0eacbba4016c2e9893
3,655,456
def fmin_style(sfmin): """convert sfmin to style""" return Struct( is_valid=good(sfmin.is_valid, True), has_valid_parameters=good(sfmin.has_valid_parameters, True), has_accurate_covar=good(sfmin.has_accurate_covar, True), has_posdef_covar=good(sfmin.has_posdef_covar, True), has_made_posdef_covar=good(sfmin.has_made_posdef_covar, False), hesse_failed=good(sfmin.hesse_failed, False), has_covariance=good(sfmin.has_covariance, True), is_above_max_edm=good(sfmin.is_above_max_edm, False), has_reached_call_limit=caution(sfmin.has_reached_call_limit, False), )
44ecba0a25c38a5a61cdba7750a6b8ad53d78c3d
3,655,457
def xirr(cashflows,guess=0.1): """ Calculate the Internal Rate of Return of a series of cashflows at irregular intervals. Arguments --------- * cashflows: a list object in which each element is a tuple of the form (date, amount), where date is a python datetime.date object and amount is an integer or floating point number. Cash outflows (investments) are represented with negative amounts, and cash inflows (returns) are positive amounts. * guess (optional, default = 0.1): a guess at the solution to be used as a starting point for the numerical solution. Returns -------- * Returns the IRR as a single value Notes ---------------- * The Internal Rate of Return (IRR) is the discount rate at which the Net Present Value (NPV) of a series of cash flows is equal to zero. The NPV of the series of cash flows is determined using the xnpv function in this module. The discount rate at which NPV equals zero is found using the secant method of numerical solution. * This function is equivalent to the Microsoft Excel function of the same name. * For users that do not have the scipy module installed, there is an alternate version (commented out) that uses the secant_method function defined in the module rather than the scipy.optimize module's numerical solver. Both use the same method of calculation so there should be no difference in performance, but the secant_method function does not fail gracefully in cases where there is no solution, so the scipy.optimize.newton version is preferred. _irr = xirr( [ (date(2010, 12, 29), -10000), (date(2012, 1, 25), 20), (date(2012, 3, 8), 10100)] ) """ val = -666 try: val = optimize.newton(lambda r: xnpv(r,cashflows),guess) except: print("Failed to converge after, returning: -666") return val
a6adbd091fd5a742c7b27f0816021c2e8499c42f
3,655,458
def check_rt_druid_fields(rt_table_columns, druid_columns): """ 对比rt的字段,和druid物理表字段的区别 :param rt_table_columns: rt的字段转换为druid中字段后的字段信息 :param druid_columns: druid物理表字段 :return: (append_fields, bad_fields),需变更增加的字段 和 有类型修改的字段 """ append_fields, bad_fields = [], [] for key, value in rt_table_columns.items(): col_name, col_type = key.lower(), value.lower() if druid_columns[col_name]: # 再对比类型 druid_col_type = druid_columns[col_name] ok = ( (col_type == druid_col_type) or (col_type == STRING and druid_col_type == VARCHAR) or (col_type == LONG and druid_col_type == BIGINT) ) if not ok: bad_fields.append({col_name: f"difference between rt and druid({col_type} != {druid_col_type})"}) else: append_fields.append({FIELD_NAME: col_name, FIELD_TYPE: col_type}) return append_fields, bad_fields
1c60f49e4316cf78f1396689a55d9a1c71123fe8
3,655,459
from operator import ne def is_stuck(a, b, eta): """ Check if the ricci flow is stuck. """ return ne.evaluate("a-b<eta/50").all()
53f4bb934cc48d2890289fda3fdb3574d5f6aa4c
3,655,460
from typing import Sized def stable_seasoal_filter(time_series: Sized, freq: int): """ Стабильный сезонный фильтр для ряда. :param time_series: временной ряд :param freq: частота расчета среднего значения :return: значения сезонной составляющей """ length = len(time_series) if length < freq: raise ValueError(f'Length of time series is less than freq ({length} < {freq}') if not isinstance(freq, int): raise TypeError(f'freq must be an integer') if freq < 1: raise ValueError(f'freq must be greater than zero (actually is {freq})') values = time_series.values if isinstance(time_series, pd.DataFrame) else time_series seasonal = list() for i in range(freq): seasonal_values = [values[i + j * freq] for j in range(length) if i + j * freq < length] seasonal.append(np.mean(seasonal_values)) seasonals = [seasonal for i in range(length)] return pd.DataFrame([i for i in chain(*seasonals)][:length])
fb4997b637d5229ee7f7a645ce19bbd5fcbab0bc
3,655,462
def make_str_lst_unc_val(id, luv): """ make_str_lst_unc_val(id, luv) Make a formatted string from an ID string and a list of uncertain values. Input ----- id A number or a string that will be output as a string. luv A list of DTSA-II UncertainValue2 items. These will be printed as comma-delimited pairs with 6 digits following the decimal. Return ------ A string with comma-delimited values with the ID and mean and uncertainty for each item in the list. This is suitable for writing output to a .csv file. Example: -------- import dtsa2.jmGen as jmg import gov.nist.microanalysis.Utility as epu nmZnO1 = 40.1 uvOKa1 = epu.UncertainValue2(0.269157,0.000126) uvZnLa1 = epu.UncertainValue2(0.259251,9.4e-05) uvSiKa1 = epu.UncertainValue2(0.654561,8.4e-05) l_uvals = [uvOKa1, uvZnLa1, uvSiKa1] out = jmg.make_list_unc_val_string(nmZnO1, l_uvals) print(out) 1> 40.1, 0.269157, 0.000126, 0.259251, 0.000094, 0.654561, 0.000084 """ lv = len(luv) i = 0 rv = "%s, " % (id) for uv in luv: rc = round(uv.doubleValue(), 6) uc = round(uv.uncertainty(), 6) if i == lv-1: rv += "%g, %.6f" % (rc, uc) else: rv += "%g, %.6f, " % (rc, uc) i += 1 return(rv)
c65b9bb0c6539e21746a06f7a864acebc2bade03
3,655,464
def plot_faces(ax, coordinates, meta, st): """plot the faces""" for s in st.faces: # check that this face isnt in the cut region def t_param_difference(v1, v2): return abs(meta["t"][v1] - meta["t"][v2]) if all(all(t_param_difference(v1, v2) < 2 for v2 in s) for v1 in s): pts = np.array([coordinates[v] for v in s]) pts = np.array([nearest(np.max(pts, 0), p) for p in pts]) center = np.mean(pts, 0) pts = (pts - center) / 1.8 + center color = (0, 0, 1, .5) if meta["s_type"][s] == (2, 1): color = (1, 0, 0, .5) p = Polygon(pts, closed=False, color=color) ax.add_patch(p)
a7eef2d209f7c15d8ba232b25d20e4c751075013
3,655,465
import typing def translate_null_strings_to_blanks(d: typing.Dict) -> typing.Dict: """Map over a dict and translate any null string values into ' '. Leave everything else as is. This is needed because you cannot add TableCell objects with only a null string or the client crashes. :param Dict d: dict of item values. :rtype Dict: """ # Beware: locally defined function. def translate_nulls(s): if s == "": return " " return s new_d = {k: translate_nulls(v) for k, v in d.items()} return new_d
1a6cfe2f8449d042eb01774054cddde08ba56f8c
3,655,466
import json def HttpResponseRest(request, data): """ Return an Http response into the correct output format (JSON, XML or HTML), according of the request.format parameters. Format is automatically added when using the :class:`igdectk.rest.restmiddleware.IGdecTkRestMiddleware` and views decorators. """ if request.format == Format.JSON: encoded = json.dumps(data, cls=ComplexEncoder) return HttpResponse(encoded, content_type=Format.JSON.content_type) elif request.format == Format.HTML: return HttpResponse(data) elif request.format == Format.XML: encoded = igdectk.xmlio.dumps(data) return HttpResponse(encoded, content_type=Format.XML.content_type) elif request.format == Format.TEXT: return HttpResponse(data, content_type=Format.TEXT.content_type) else: return None
56682e808dcb9778ea47218d48fb74612ac44b5d
3,655,467
def build_server_update_fn(model_fn, server_optimizer_fn, server_state_type, model_weights_type): """Builds a `tff.tf_computation` that updates `ServerState`. Args: model_fn: A no-arg function that returns a `tff.learning.TrainableModel`. server_optimizer_fn: A no-arg function that returns a `tf.keras.optimizers.Optimizer`. server_state_type: type_signature of server state. model_weights_type: type_signature of model weights. Returns: A `tff.tf_computation` that updates `ServerState`. """ @tff.tf_computation(server_state_type, model_weights_type.trainable) def server_update_tf(server_state, model_delta): """Updates the `server_state`. Args: server_state: The `ServerState`. model_delta: The model difference from clients. Returns: The updated `ServerState`. """ model = model_fn() server_optimizer = server_optimizer_fn() # Create optimizer variables so we have a place to assign the optimizer's # state. server_optimizer_vars = _create_optimizer_vars(model, server_optimizer) return server_update(model, server_optimizer, server_optimizer_vars, server_state, model_delta) return server_update_tf
c0b8285a5d12c40157172d3b48a49cc5306a567b
3,655,468
def madgraph_tarball_filename(physics): """Returns the basename of a MadGraph tarball for the given physics""" # Madgraph tarball filenames do not have a part number associated with them; overwrite it return svj_filename("step0_GRIDPACK", Physics(physics, part=None)).replace( ".root", ".tar.xz" )
a0a8bacb5aed0317b5c0fd8fb3de5382c98e267d
3,655,469
def _mk_cmd(verb, code, payload, dest_id, **kwargs) -> Command: """A convenience function, to cope with a change to the Command class.""" return Command.from_attrs(verb, dest_id, code, payload, **kwargs)
afd5804937a55d235fef45358ee12088755f9dc9
3,655,470
def getobjname(item): """return obj name or blank """ try: objname = item.Name except BadEPFieldError as e: objname = ' ' return objname
f8875b6e9c9ed2b76affe39db583c091257865d8
3,655,471
def process_fire_data(filename=None, fire=None, and_save=False, timezone='Asia/Bangkok', to_drop=True): """ Add datetime, drop duplicate data and remove uncessary columns. """ if filename: fire = pd.read_csv(filename) # add datetime fire = add_datetime_fire(fire, timezone) # drop duplicate data print('before drop', fire.shape) # sort values by brightness try: # for MODIS file fire = fire.sort_values( ['datetime', 'lat_km', 'long_km', 'brightness'], ascending=False) except BaseException: # for VIIRS fire = fire.sort_values( ['datetime', 'lat_km', 'long_km', 'bright_ti4'], ascending=False) if to_drop: fire = fire.drop_duplicates(['datetime', 'lat_km', 'long_km']) # drop unncessary columns try: columns_to_drop = [ 'acq_date', 'satellite', 'instrument', 'version', 'daynight', 'bright_t31', 'type'] columns_to_drop = [s for s in columns_to_drop if s in fire.columns] fire = fire.drop(columns_to_drop, axis=1) except BaseException: columns_to_drop = [ 'acq_date', 'satellite', 'instrument', 'version', 'daynight', 'bright_ti5', 'type'] columns_to_drop = [s for s in columns_to_drop if s in fire.columns] fire = fire.drop(columns_to_drop, axis=1) fire = fire.sort_values('datetime') fire = fire.set_index('datetime') # remove the data before '2002-07-04' because there is only one satellite fire = fire.loc['2002-07-04':] print('after drop', fire.shape) if and_save: fire.to_csv(filename, index=False) else: return fire
767bb77db2b3815a5646f185b72727aec74ee8d8
3,655,472
def create_controllable_source(source, control, loop, sleep): """Makes an observable controllable to handle backpressure This function takes an observable as input makes it controllable by executing it in a dedicated worker thread. This allows to regulate the emission of the items independently of the asyncio event loop. Args: - source: An observable emitting the source items. - control: [Optional] The control observable emitting delay items in seconds. - sleep: the sleep function to used. Needed only for testing. Returns: An observable similar to the source observable, with emission being controlled by the control observable. """ if control is not None: typed_control = control.pipe( ops.observe_on(NewThreadScheduler()), ops.map(ControlItem), ) scheduled_source = source.pipe( ops.subscribe_on(NewThreadScheduler()), ops.merge(typed_control), ops.map(lambda i: control_sync(i, sleep)), ops.filter(lambda i: i is not ControlItem), ops.observe_on(AsyncIOThreadSafeScheduler(loop)), ) else: scheduled_source = source.pipe( ops.subscribe_on(NewThreadScheduler()), ops.observe_on(AsyncIOThreadSafeScheduler(loop)), ) return scheduled_source
2092de1aaeace275b2fea2945e8d30f529309874
3,655,473
def getE5(): """ Returns the e5 Args: """ return E5.get()
35526332b957628a6aa3fd90f7104731749e10ed
3,655,474
def triangulate(pts_subset): """ This function encapsulates the whole triangulation algorithm into four steps. The function takes as input a list of points. Each point is of the form [x, y], where x and y are the coordinates of the point. Step 1) The list of points is split into groups. Each group has exactly two or three points. Step 2) For each group of two point, a single edge is generated. For each group of three points, three edges forming a triangle are generated. These are the 'primitive' triangulations. Step 3) The primitive triangulations are paired into groups. Step 4) The groups are then recursively merged until there is only a single triangulation of all points remaining. Parameters ---------- pts_subset : list A list of points with the form [ [x1, y1], [x2, y2], ..., [xn, yn] ] The first element of each list represents the x-coordinate, the second entry the y-coordinate. Returns ------- out : list List with a single element. The TriangulationEdges class object with the completed Delauney triangulation of the input points. See TriangulationEdges docstring for further info. """ split_pts = split_list.groups_of_3(pts_subset) primitives = make_primitives(split_pts) groups = [primitives[i:i+2] for i in range(0, len(primitives), 2)] groups = recursive_group_merge(groups) return groups[0][0]
55e145a44303409a4e1ede7f14e4193c06efd769
3,655,475
def get_session(region, default_bucket): """Gets the sagemaker session based on the region. Args: region: the aws region to start the session default_bucket: the bucket to use for storing the artifacts Returns: `sagemaker.session.Session instance """ boto_session = boto3.Session(region_name=region) sagemaker_client = boto_session.client("sagemaker") runtime_client = boto_session.client("sagemaker-runtime") return sagemaker.session.Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_runtime_client=runtime_client, default_bucket=default_bucket, )
1bfbea7aeb30f33772c1b748580f0776463203a4
3,655,476
def intp_sc(x, points): """ SCurve spline based interpolation args: x (list) : t coordinate list points (list) : xyz coordinate input points returns: x (relative coordinate point list) o (xyz coordinate points list, resplined) """ sc = vtk.vtkSCurveSpline() for i in points: sc.AddPoint(i[0], i[1]) o = [] for i in x: o.append(sc.Evaluate(i)) return x, o
13df2e19c91ff0469ce68467e9e4df36c0e4831b
3,655,477
def backend(): """Publicly accessible method for determining the current backend. # Returns String, the name of the backend PyEddl is currently using. # Example ```python >>> eddl.backend.backend() 'eddl' ``` """ return _BACKEND
b811dd6a760006e572aa02fc246fdf72ac7e608c
3,655,478
import json def query_collection_mycollections(): """ Query Content API Collection with access token. """ access_token = request.args.get("access_token", None) if access_token is not None and access_token != '': # Construct an Authorization header with the value of 'Bearer <access token>' headers = { "Accept": "application/json", "Authorization": "Bearer " + access_token } url = APP_CONFIG['CONTENTAPI_COLLECTIONS_URL'] + 'mycollections' r = s.get(url, headers=headers, verify=(app.config['SSLVERIFY'] == 'True')) if r.status_code in (400,500): # Handle known errors result = r.json() return jsonify(result) elif r.status_code == 200: result = r.json() params = { 'access_token': access_token, 'endpoint_path': '/mycollections', 'mycollections_results': json.dumps(result, indent=2), 'mycollections_results_obj': result } return render_template('mycollections.html', **params) else: # Handle unknown error return (r.text, r.status_code, r.headers.items()) else: return "access_token not specified"
98b8a75ea515255fde327d11c959f5e9b6d9ea43
3,655,479
def xmlbuildmanual() -> __xml_etree: """ Returns a empty xml ElementTree obj to build/work with xml data Assign the output to var This is using the native xml library via etree shipped with the python standard library. For more information on the xml.etree api, visit: https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree """ return __xml_etree
e08d83aca4b140c2e289b5173e8877e3c3e5fee1
3,655,480
def graclus_cluster(row, col, weight=None, num_nodes=None): """A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight). Args: row (LongTensor): Source nodes. col (LongTensor): Target nodes. weight (Tensor, optional): Edge weights. (default: :obj:`None`) num_nodes (int, optional): The number of nodes. (default: :obj:`None`) Examples:: >>> row = torch.LongTensor([0, 1, 1, 2]) >>> col = torch.LongTensor([1, 0, 2, 1]) >>> weight = torch.Tensor([1, 1, 1, 1]) >>> cluster = graclus_cluster(row, col, weight) """ num_nodes = row.max().item() + 1 if num_nodes is None else num_nodes if row.is_cuda: # pragma: no cover row, col = sort_row(row, col) else: row, col = randperm(row, col) row, col = randperm_sort_row(row, col, num_nodes) row, col = remove_self_loops(row, col) cluster = row.new_empty((num_nodes, )) graclus(cluster, row, col, weight) return cluster
c586ffd325697302a2413e613a75fe4302741af6
3,655,481
def _get_serve_tf_examples_fn(model, tf_transform_output): """Returns a function that parses a serialized tf.Example.""" model.tft_layer = tf_transform_output.transform_features_layer() @tf.function def serve_tf_examples_fn(serialized_tf_examples): """Returns the output to be used in the serving signature.""" feature_spec = tf_transform_output.raw_feature_spec() feature_spec.pop(_LABEL_KEY) parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec) transformed_features = model.tft_layer(parsed_features) return model(transformed_features) return serve_tf_examples_fn
801bfde2b72823b2ba7b8329f080774ca9aa536f
3,655,482
import decimal def get_profitable_change(day_candle): """ Get the potential daily profitable price change in pips. If prices rise enough, we have: close_bid - open_ask (> 0), buy. If prices fall enough, we have: close_ask - open_bid (< 0), sell. if prices stay relatively still, we don't buy or sell. It's 0. Args: day_candle: candles.Candle object representing a daily candle. Returns: profitable_change: Decimal. The profitable rate change described above, in two decimal places. """ multiplier = day_candle.instrument.multiplier change = 0 if day_candle.close_bid > day_candle.open_ask: change = multiplier * (day_candle.close_bid - day_candle.open_ask) elif day_candle.close_ask < day_candle.open_bid: change = multiplier * (day_candle.close_ask - day_candle.open_bid) return decimal.Decimal(change).quantize(TWO_PLACES)
94adc63d984e7797590a2dd3eb33c8d98b09c76e
3,655,483
def run_epoch(): """Runs one epoch and returns reward averaged over test episodes""" rewards = [] for _ in range(NUM_EPIS_TRAIN): run_episode(for_training=True) for _ in range(NUM_EPIS_TEST): rewards.append(run_episode(for_training=False)) return np.mean(np.array(rewards))
d9f5e33e00eaeedfdff7ebb4d3a7731d679beff1
3,655,485
def _max_pool(heat, kernel=3): """ NCHW do max pooling operation """ # print("heat.shape: ", heat.shape) # default: torch.Size([1, 1, 152, 272]) pad = (kernel - 1) // 2 h_max = nn.functional.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad) # print("h_max.shape: ", h_max.shape) # default: torch.Size([1, 1, 152, 272]) keep = (h_max == heat).float() # 将boolean类型的Tensor转换成Float类型的Tensor # print("keep.shape: ", keep.shape, "keep:\n", keep) return heat * keep
68edc979d78ee2fc11f94efd2dfb5e9140762a0e
3,655,486
def getBool(string): """ Stub function, set PshellServer.py softlink to PshellServer-full.py for full functionality """ return (True)
de7f6a4b124b6a1f6e1b878daf01cc14e5d5eb08
3,655,487
from typing import Counter def multi_dists( continuous, categorical, count_cutoff, summary_type, ax=None, stripplot=False, order="ascending", newline_counts=False, xtick_rotation=45, xtick_ha="right", seaborn_kwargs={}, stripplot_kwargs={}, ): """ Compare the distributions of a continuous variable when grouped by a categorical one. Parameters ---------- continuous : Series continuous values to plot categorical : Series categorical values (groups) to plot count_cutoff : boolean minimum number of samples per groups to include summary_type : string, "box" or "violin" type of summary plot to make ax : MatPlotLib axis axis to plot in (will create new one if not provided) stripplot : boolean whether or not to plot the raw values order : "ascending", "descending", or list of categories how to sort categories in the plot newline_counts : boolean whether to add category counts as a separate line in the axis labels xtick_rotation : float how much to rotate the xtick labels by (in degree) xtick_ha : string horizontal alignment of the xtick labels seaborn_kwargs : dictionary additional arguments to pass to Seaborn boxplot/violinplot stripplot_kwargs : dictionary additional arguments to pass to Seaborn stripplot (if stripplot=True) Returns ------- ax : MatPlotLib axis axis with plot data """ if ax is None: ax = plt.subplot(111) # remove NaNs and convert continuous continuous = pd.Series(continuous).dropna() categorical = pd.Series(categorical).dropna().astype(str) # series names continuous_name = str(continuous.name) categorical_name = str(categorical.name) # handle cases where series names are missing or identical if continuous_name is None: continuous_name = "continuous" if categorical_name is None: categorical_name = "categorical" if continuous_name == categorical_name: continuous_name += "_continuous" categorical_name += "_categorical" merged = pd.concat([continuous, categorical], axis=1, join="inner") merged.columns = [continuous_name, categorical_name] # counts per category, with cutoff categorical_counts = Counter(merged[categorical_name]) merged["count"] = merged[categorical_name].apply(categorical_counts.get) merged = merged[merged["count"] >= count_cutoff] merged_sorted = ( merged.groupby([categorical_name])[continuous_name] .aggregate(np.median) .reset_index() ) # sort categories by mean if order == "ascending": merged_sorted = merged_sorted.sort_values( continuous_name, ascending=True ) order = merged_sorted[continuous_name] elif order == "descending": merged_sorted = merged_sorted.sort_values( continuous_name, ascending=False ) order = merged_sorted[continuous_name] else: merged_sorted["continuous_idx"] = merged_sorted[ categorical_name ].apply(order.index) merged_sorted = merged_sorted.sort_values( "continuous_idx", ascending=True ) # recompute category counts after applying cutoff counts = merged_sorted[categorical_name].apply(categorical_counts.get) counts = counts.astype(str) # x-axis labels with counts if newline_counts: x_labels = merged_sorted[categorical_name] + "\n(" + counts + ")" else: x_labels = merged_sorted[categorical_name] + " (" + counts + ")" if summary_type == "violin": sns.violinplot( x=categorical_name, y=continuous_name, data=merged, order=merged_sorted[categorical_name], inner=None, ax=ax, **seaborn_kwargs, ) elif summary_type == "box": sns.boxplot( x=categorical_name, y=continuous_name, data=merged, order=merged_sorted[categorical_name], notch=True, ax=ax, **seaborn_kwargs, ) if stripplot: sns.stripplot( x=categorical_name, y=continuous_name, data=merged, order=merged_sorted[categorical_name], size=2, alpha=0.5, linewidth=1, jitter=0.1, edgecolor="black", ax=ax, **stripplot_kwargs, ) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.set_xticklabels(x_labels, rotation=xtick_rotation, ha=xtick_ha) return ax
84302dfc359c62c67ef0757ea7c0841e5292b19d
3,655,488
import xdg def expand_xdg(xdg_var: str, path: str) -> PurePath: """Return the value of an XDG variable prepended to path. This function expands an XDG variable, and then concatenates to it the given path. The XDG variable name can be passed both uppercase or lowercase, and either with or without the 'XDG_' prefix. """ xdg_var = xdg_var if xdg_var.startswith('XDG_') else 'XDG_' + xdg_var return getattr(xdg, xdg_var.upper()) / path
13b8885a08c384d29636c5f5070a86e05c30b43a
3,655,489
def follow_index(request): """Просмотр подписок""" users = request.user.follower.all() paginator = Paginator(users, 3) page_number = request.GET.get('page') page = paginator.get_page(page_number) return render(request, 'recipes/follow_index.html', {'page': page, 'paginator': paginator})
00851ccffde0e76544e5732d0f651f6e00bc45d4
3,655,490
def test_drawcounties_cornbelt(): """draw counties on the map""" mp = MapPlot(sector="cornbelt", title="Counties", nocaption=True) mp.drawcounties() return mp.fig
8bba5c33c374bf3f4e892bc984b72de22c97e38d
3,655,491
import torch def atomic_degrees(mol: IndigoObject) -> dict: """Get the number of atoms direct neighbors (except implicit hydrogens) in a molecule. Args: IndigoObject: molecule object Returns: dict: key - feature name, value - torch.tensor of atomic degrees """ degrees = [] for atom in mol.iterateAtoms(): degrees.append(atom.degree()) return {"degrees": torch.tensor(degrees).unsqueeze(1)}
114431622574985bd016276a7a809560c896e1bc
3,655,492
def hotspots(raster, kernel, x='x', y='y'): """Identify statistically significant hot spots and cold spots in an input raster. To be a statistically significant hot spot, a feature will have a high value and be surrounded by other features with high values as well. Neighborhood of a feature defined by the input kernel, which currently support a shape of circle, annulus, or custom kernel. The result should be a raster with the following 7 values: 90 for 90% confidence high value cluster 95 for 95% confidence high value cluster 99 for 99% confidence high value cluster -90 for 90% confidence low value cluster -95 for 95% confidence low value cluster -99 for 99% confidence low value cluster 0 for no significance Parameters ---------- raster: xarray.DataArray Input raster image with shape=(height, width) kernel: Kernel Returns ------- hotspots: xarray.DataArray """ # validate raster if not isinstance(raster, DataArray): raise TypeError("`raster` must be instance of DataArray") if raster.ndim != 2: raise ValueError("`raster` must be 2D") if not (issubclass(raster.values.dtype.type, np.integer) or issubclass(raster.values.dtype.type, np.floating)): raise ValueError( "`raster` must be an array of integers or float") raster_dims = raster.dims if raster_dims != (y, x): raise ValueError("raster.coords should be named as coordinates:" "(%s, %s)".format(y, x)) # apply kernel to raster values mean_array = convolve_2d(raster.values, kernel / kernel.sum(), pad=True) # calculate z-scores global_mean = np.nanmean(raster.values) global_std = np.nanstd(raster.values) if global_std == 0: raise ZeroDivisionError("Standard deviation " "of the input raster values is 0.") z_array = (mean_array - global_mean) / global_std out = _hotspots(z_array) result = DataArray(out, coords=raster.coords, dims=raster.dims, attrs=raster.attrs) return result
ab091924bb36576e338c38d752df3f856de331cb
3,655,493
import configparser import logging def _read_config(filename): """Reads configuration file. Returns DysonLinkCredentials or None on error. """ config = configparser.ConfigParser() logging.info('Reading "%s"', filename) try: config.read(filename) except configparser.Error as ex: logging.critical('Could not read "%s": %s', filename, ex) return None try: username = config['Dyson Link']['username'] password = config['Dyson Link']['password'] country = config['Dyson Link']['country'] return DysonLinkCredentials(username, password, country) except KeyError as ex: logging.critical('Required key missing in "%s": %s', filename, ex) return None
bb1282e94500c026072a0e8d76fdf3dcd68e9062
3,655,495
def view_share_link(request, token): """ Translate a given sharelink to a proposal-detailpage. :param request: :param token: sharelink token, which includes the pk of the proposal :return: proposal detail render """ try: pk = signing.loads(token, max_age=settings.MAXAGESHARELINK) except signing.SignatureExpired: return render(request, "base.html", { "Message": "Share link has expired!" }) except signing.BadSignature: return render(request, "base.html", { "Message": "Invalid token in share link!" }) obj = get_object_or_404(Proposal, pk=pk) return render(request, "proposals/detail_project.html", { "proposal": obj, "project": obj })
9d88375f1f3c9c0b94ad2beab4f47ce74ea2464e
3,655,496
from sklearn.pipeline import Pipeline def create(pdef): """Scikit-learn Pipelines objects creation (deprecated). This function creates a list of sklearn Pipeline objects starting from the list of list of tuples given in input that could be created using the adenine.core.define_pipeline module. Parameters ----------- pdef : list of list of tuples This arguments contains the specification needed by sklearn in order to create a working Pipeline object. Returns ----------- pipes : list of sklearn.pipeline.Pipeline objects The list of Piplines, each of them can be fitted and trasformed with some data. """ return [Pipeline(p) for p in pdef]
552014c652d7de236ba917592108315acfd9c694
3,655,497
def pressure_differentiable(altitude): """ Computes the pressure at a given altitude with a differentiable model. Args: altitude: Geopotential altitude [m] Returns: Pressure [Pa] """ return np.exp(interpolated_log_pressure(altitude))
a6a9e7dcc38ac855f3ba5c9a117506a87a981217
3,655,498
def create_optimizer(hparams, global_step, use_tpu=False): """Creates a TensorFlow Optimizer. Args: hparams: ConfigDict containing the optimizer configuration. global_step: The global step Tensor. use_tpu: If True, the returned optimizer is wrapped in a CrossShardOptimizer. Returns: A TensorFlow optimizer. Raises: ValueError: If hparams.optimizer is unrecognized. """ optimizer_name = hparams.optimizer.lower() optimizer_params = {} if optimizer_name == "momentum": optimizer_class = tf.train.MomentumOptimizer optimizer_params["momentum"] = hparams.get("momentum", 0.9) optimizer_params["use_nesterov"] = hparams.get("use_nesterov", False) elif optimizer_name == "sgd": optimizer_class = tf.train.GradientDescentOptimizer elif optimizer_name == "adagrad": optimizer_class = tf.train.AdagradOptimizer elif optimizer_name == "adam": optimizer_class = tf.train.AdamOptimizer elif optimizer_name == "rmsprop": optimizer_class = tf.RMSPropOptimizer else: raise ValueError("Unknown optimizer: {}".format(hparams.optimizer)) # Apply weight decay wrapper. optimizer_class = ( tf.contrib.opt.extend_with_decoupled_weight_decay(optimizer_class)) # Create optimizer. learning_rate, weight_decay = create_learning_rate_and_weight_decay( hparams, global_step) optimizer = optimizer_class( weight_decay=weight_decay, learning_rate=learning_rate, **optimizer_params) if use_tpu: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) return optimizer
9ff18644fe513e3d01b297e30538c396546746ab
3,655,499
def compare_dirs_ignore_words(dir1, dir2, ignore_words, ignore_files=None): """Same as compare_dirs but ignores lines with words in ignore_words. """ return compare_dirs( dir1, dir2, ignore=ignore_files, function=lambda file1, file2: compare_text_files_ignore_lines(file1, file2, ignore_words) )
2794027a638a7f775ae559b250a500e28a218e4a
3,655,500
def float_to_wazn(value): """Converts a float value to an integer in the WAZN notation. The float format has a maxium of 6 decimal digits. :param value: value to convert from float to WAZN notation :returns: converted value in WAZN notation """ return int(Decimal(value) / MICRO_WAZN)
6bf10dfbefe51b2a785c4d0504e446662487b485
3,655,501
import time def timer(func): """ Decorator to measure execution time """ def wrapper(*args, **kwargs): start_time = time.time() ret = func(*args, **kwargs) elapsed = time.time() - start_time print('{:s}: {:4f} sec'.format(func.__name__, elapsed)) return ret return wrapper
0f6a8a4dc8eff1aa49efaf5d26ac46e0cc483b3e
3,655,502
import uuid def _create_keyword_plan_campaign(client, customer_id, keyword_plan): """Adds a keyword plan campaign to the given keyword plan. Args: client: An initialized instance of GoogleAdsClient customer_id: A str of the customer_id to use in requests. keyword_plan: A str of the keyword plan resource_name this keyword plan campaign should be attributed to.create_keyword_plan. Returns: A str of the resource_name for the newly created keyword plan campaign. Raises: GoogleAdsException: If an error is returned from the API. """ keyword_plan_campaign_service = client.get_service( "KeywordPlanCampaignService" ) operation = client.get_type("KeywordPlanCampaignOperation") keyword_plan_campaign = operation.create keyword_plan_campaign.name = f"Keyword plan campaign {uuid.uuid4()}" keyword_plan_campaign.cpc_bid_micros = 1000000 keyword_plan_campaign.keyword_plan = keyword_plan network = client.enums.KeywordPlanNetworkEnum.GOOGLE_SEARCH keyword_plan_campaign.keyword_plan_network = network geo_target = client.get_type("KeywordPlanGeoTarget") # Constant for U.S. Other geo target constants can be referenced here: # https://developers.google.com/google-ads/api/reference/data/geotargets geo_target.geo_target_constant = "geoTargetConstants/2840" keyword_plan_campaign.geo_targets.append(geo_target) # Constant for English language = "languageConstants/1000" keyword_plan_campaign.language_constants.append(language) response = keyword_plan_campaign_service.mutate_keyword_plan_campaigns( customer_id=customer_id, operations=[operation] ) resource_name = response.results[0].resource_name print(f"Created keyword plan campaign with resource name: {resource_name}") return resource_name
b6ce2ee2ec40e1192461c41941f18fe04f901344
3,655,503
def word2vec(sentences, year): """ Creates a word2vec model. @param sentences: list of list of words in each sentence (title + abstract) @return word2vec model """ print("Creating word2vec model") model = Word2Vec(sentences, size=500, window=5, min_count=1, workers=4) model.save(f"models/decades/word2vec_{str(year)}-{str(year+9)}.model") print("Saved word2vec model") return model
745bd15f4c0cea5b9417fd0562625426bd5cd293
3,655,504
def true_rjust(string, width, fillchar=' '): """ Justify the string to the right, using printable length as the width. """ return fillchar * (width - true_len(string)) + string
53a8cbfd049c21821b64e1a218c9af2a7b4c8b7d
3,655,505
def threshold_generator_with_values(values, duration, num_classes): """ Args: values: A Tensor with shape (-1,) Values = strictly positive, float thresholds. duration: An int. num_classes: An int. Returns: thresh: A Tensor with shape (len(list_values), duration, num_classes, num_classes). In each matrix, diag = 0, and off-diag shares a single value > 0. Matrices are sorted in ascending order of the values w.r.t. axis=0. """ num_thresh = values.shape[0] thresh = tf.reshape(values, [num_thresh, 1, 1, 1]) thresh = tf.tile(thresh, [1, duration, num_classes, num_classes]) # (num thresh, num cls, num cls) mask = tf.linalg.tensor_diag([-1.] * num_classes) + 1 thresh *= mask # Now diag = 0. thresh += mask * 1e-11 # Avoids 0 threholds, which may occur # when logits for different classes have the same value, # e.g., 0, due to loss of significance. # This operation may cause sparsity of SAT curve # if llr_min is << 1e-11, but such a case is ignorable # in practice, according to my own experience. return thresh
58aa50e08beaba8f299af3ec9dfeb3de652e6471
3,655,506
def is_hermitian(mx, tol=1e-9): """ Test whether mx is a hermitian matrix. Parameters ---------- mx : numpy array Matrix to test. tol : float, optional Tolerance on absolute magitude of elements. Returns ------- bool True if mx is hermitian, otherwise False. """ (m, n) = mx.shape for i in range(m): if abs(mx[i, i].imag) > tol: return False for j in range(i + 1, n): if abs(mx[i, j] - mx[j, i].conjugate()) > tol: return False return True
31e9a1faff21707b2fc44c7824bb05fc85967f00
3,655,507
def argmax(a, b, axis=1, init_value=-1, name="argmax"): """ sort in axis with ascending order """ assert axis<len(a.shape) and len(a.shape)<=2, "invalid axis" assert b.shape[axis] == 2, "shape mismatch" size = a.shape[axis] # save max arg index def argmax2d(A, B): init = hcl.compute((2,), lambda x: init_value) r = hcl.reduce_axis(0, size, name="rdx") # Y as reducer tensor def sreduce(x, Y): with hcl.if_(x > Y[1]): Y[0] = r Y[1] = x my_argmax = hcl.reducer(init, sreduce) if axis == 1: return hcl.update(B, lambda x, _y: my_argmax(A[x, r], axis=r), name=name) else: # reduce in y axis return hcl.update(B, lambda _x, y: my_argmax(A[r, y], axis=r), name=name) # return decorated function mod = hcl.def_([a.shape, b.shape], name=name)(argmax2d) mod(a, b)
3626126cae255498cab854f8b898a7d0f730b20d
3,655,508
def morphology(src, operation="open", kernel_shape=(3, 3), kernel_type="ones"): """Dynamic calls different morphological operations ("open", "close", "dilate" and "erode") with the given parameters Arguments: src (numpy.ndarray) : source image of shape (rows, cols) operation (str, optional) : name of a morphological operation: ``("open", "close", "dilate", "erode")`` Defaults to ``"open"``. kernel_shape (tuple, optional) : shape of the kernel (rows, cols). Defaults to (3,3). kernel_type (str, optional) : type of kernel. ``("ones", "upper_triangle", "lower_triangle", "x", "plus", "ellipse")`` Defaults to ``"ones"``. Returns: numpy.ndarray: a copy of the source image after apply the effect. """ kernel = create_2D_kernel(kernel_shape, kernel_type) if operation == "open": return open(src, kernel) elif operation == "close": return close(src, kernel) elif operation == "dilate": return dilate(src, kernel) elif operation == "erode": return erode(src, kernel) else: valid_operations = ["open", "close", "dilate", "erode"] raise ValueError( f"Invalid morphology operation '{operation}'. Valid morphological operations are {valid_operations}" )
f8258616f07b9dd0089d323d9237483c05b86c2e
3,655,509
def msd(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=None): """Compute the mean displacement and mean squared displacement of one trajectory over a range of time intervals. Parameters ---------- traj : DataFrame with one trajectory, including columns frame, x, and y mpp : microns per pixel fps : frames per second max_lagtime : intervals of frames out to which MSD is computed Default: 100 detail : See below. Default False. Returns ------- DataFrame([<x>, <y>, <x^2>, <y^2>, msd], index=t) If detail is True, the DataFrame also contains a column N, the estimated number of statistically independent measurements that comprise the result at each lagtime. Notes ----- Input units are pixels and frames. Output units are microns and seconds. See also -------- imsd emsd """ if traj['frame'].max() - traj['frame'].min() + 1 == len(traj): # no gaps: use fourier-transform algorithm return _msd_fft(traj, mpp, fps, max_lagtime, detail, pos_columns) else: # there are gaps in the trajectory: use slower algorithm return _msd_gaps(traj, mpp, fps, max_lagtime, detail, pos_columns)
4511eb3e0d69ab5581635ba93db6dedfd387eb84
3,655,510
import random def build_rnd_graph(golden, rel, seed=None): """Build a random graph for testing.""" def add_word(word): if word not in words: words.add(word) def add_edge(rel, word1, word2): data.append((rel, word1, word2)) random.seed(seed) m, _ = golden.shape words = set() for i in range(m): if golden['relation'][i] != rel: continue add_word(golden['word1_id'][i]) add_word(golden['word2_id'][i]) data = [] for word1 in words: for word2 in words: if word1 >= word2: continue if random.randint(0, 1): add_edge(rel, word1, word2) add_edge(rel, word2, word1) df = pd.DataFrame(data, columns=('relation', 'word1_id', 'word2_id'), index=range(len(data))) return df
46eacb5a51cf94ee27ed33757887afca4cc153ff
3,655,511
from typing import Union import pathlib from typing import IO from typing import AnyStr import inspect import pandas def _make_parser_func(sep): """ Create a parser function from the given sep. Parameters ---------- sep: str The separator default to use for the parser. Returns ------- A function object. """ def parser_func( filepath_or_buffer: Union[str, pathlib.Path, IO[AnyStr]], sep=sep, delimiter=None, header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, ): # ISSUE #2408: parse parameter shared with pandas read_csv and read_table and update with provided args _pd_read_csv_signature = { val.name for val in inspect.signature(pandas.read_csv).parameters.values() } _, _, _, f_locals = inspect.getargvalues(inspect.currentframe()) if f_locals.get("sep", sep) is False: f_locals["sep"] = "\t" kwargs = {k: v for k, v in f_locals.items() if k in _pd_read_csv_signature} return _read(**kwargs) return parser_func
318edb7e761e163c828878a1c186edc535d824a1
3,655,512
def dcm_to_pil_image_gray(file_path): """Read a DICOM file and return it as a gray scale PIL image""" ds = dcmread(file_path) # Get the image after apply clahe img_filtered = Image.fromarray(apply_clahe(ds.pixel_array).astype("uint8")) # Normalize original image to the interval [0, 255] img = cv.normalize(ds.pixel_array, None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) img = Image.fromarray(img.astype("uint8")) return [img, img_filtered]
c85b149dd1d02f24e60411ffb6d0dccfb1afd949
3,655,514
from typing import Any def get_object_unique_name(obj: Any) -> str: """Return a unique string associated with the given object. That string is constructed as follows: <object class name>_<object_hex_id> """ return f"{type(obj).__name__}_{hex(id(obj))}"
f817abf636673f7ef6704cbe0ff5a7a2b897a3f6
3,655,515
def create_voting_dict(): """ Input: a list of strings. Each string represents the voting record of a senator. The string consists of - the senator's last name, - a letter indicating the senator's party, - a couple of letters indicating the senator's home state, and - a sequence of numbers (0's, 1's, and negative 1's) indicating the senator's votes on bills all separated by spaces. Output: A dictionary that maps the last name of a senator to a list of numbers representing the senator's voting record. Example: >>> vd = create_voting_dict(['Kennedy D MA -1 -1 1 1', 'Snowe R ME 1 1 1 1']) >>> vd == {'Snowe': [1, 1, 1, 1], 'Kennedy': [-1, -1, 1, 1]} True You can use the .split() method to split each string in the strlist into a list; the first element of the list will be the senator's name, the second will be his/her party affiliation (R or D), the third will be his/her home state, and the remaining elements of the list will be that senator's voting record on a collection of bills. You can use the built-in procedure int() to convert a string representation of an integer (e.g. '1') to the actual integer (e.g. 1). The lists for each senator should preserve the order listed in voting data. In case you're feeling clever, this can be done in one line. """ voting_dic = {} for s in voting_data: s = s.strip() items = s.split(' ') voting_dic[items[0]] = [int(v) for v in items[3:]] return voting_dic
4a662c110b88ae92ea548da6caa15b01b82f1cf2
3,655,516
def areFriends(profile1, profile2): """Checks wether profile1 is connected to profile2 and profile2 is connected to profile1""" def check(p1, p2): if p1.isServiceIdentity: fsic = get_friend_serviceidentity_connection(p2.user, p1.user) return fsic is not None and not fsic.deleted else: friend_map = get_friends_map(p1.user) return friend_map is not None and remove_slash_default(p2.user) in friend_map.friends return check(profile1, profile2) and check(profile2, profile1)
89eb04d0b8cce054e75d26d194d3f88f9b5970db
3,655,517
def filter_dict(regex_dict, request_keys): """ filter regular expression dictionary by request_keys :param regex_dict: a dictionary of regular expressions that follows the following format: { "name": "sigma_aldrich", "regexes": { "manufacturer": { "regex": "[C|c]ompany(?P\u003cdata\u003e.{80})", "flags": "is" }, "product_name": { "regex": "\\s[P|p]roduct\\s(?P\u003cdata\u003e.{80})", "flags": "is" }, ... } returns { 'sigma_aldrich': { "manufacturer": { "regex": "[C|c]ompany(?P\u003cdata\u003e.{80})", "flags": "is" }, } :param request_keys: a list of dictionary keys that correspond to valid regex lookups i.e. ['manufacturer', 'product_name'] """ out_dict = dict() nested_regexes = regex_dict['regexes'] for request_key in request_keys: if request_key in nested_regexes: out_dict[request_key] = nested_regexes[request_key] return {'name': regex_dict['name'], 'regexes': out_dict}
fb503f0d4df0a7965c276907b7a9e43bd14f9cac
3,655,518
import six def calculate_partition_movement(prev_assignment, curr_assignment): """Calculate the partition movements from initial to current assignment. Algorithm: For each partition in initial assignment # If replica set different in current assignment: # Get Difference in sets :rtype: tuple dict((partition, (from_broker_set, to_broker_set)), total_movements """ total_movements = 0 movements = {} for prev_partition, prev_replicas in six.iteritems(prev_assignment): curr_replicas = curr_assignment[prev_partition] diff = len(set(curr_replicas) - set(prev_replicas)) if diff: total_movements += diff movements[prev_partition] = ( (set(prev_replicas) - set(curr_replicas)), (set(curr_replicas) - set(prev_replicas)), ) return movements, total_movements
180a47944523f0c814748d1918935e47d9a7ada4
3,655,519
from typing import List from typing import Union import torch from typing import Sequence def correct_crop_centers( centers: List[Union[int, torch.Tensor]], spatial_size: Union[Sequence[int], int], label_spatial_shape: Sequence[int], ) -> List[int]: """ Utility to correct the crop center if the crop size is bigger than the image size. Args: ceters: pre-computed crop centers, will correct based on the valid region. spatial_size: spatial size of the ROIs to be sampled. label_spatial_shape: spatial shape of the original label data to compare with ROI. """ spatial_size = fall_back_tuple(spatial_size, default=label_spatial_shape) if not (np.subtract(label_spatial_shape, spatial_size) >= 0).all(): raise ValueError("The size of the proposed random crop ROI is larger than the image size.") # Select subregion to assure valid roi valid_start = np.floor_divide(spatial_size, 2) # add 1 for random valid_end = np.subtract(label_spatial_shape + np.array(1), spatial_size / np.array(2)).astype(np.uint16) # int generation to have full range on upper side, but subtract unfloored size/2 to prevent rounded range # from being too high for i, valid_s in enumerate(valid_start): # need this because np.random.randint does not work with same start and end if valid_s == valid_end[i]: valid_end[i] += 1 for i, c in enumerate(centers): center_i = c if c < valid_start[i]: center_i = valid_start[i] if c >= valid_end[i]: center_i = valid_end[i] - 1 centers[i] = center_i corrected_centers: List[int] = [c.item() if isinstance(c, torch.Tensor) else c for c in centers] # type: ignore return corrected_centers
d8a28d464a4d0fcd8c1ad8ed0b790713aaa878e2
3,655,520
def contrast_normalize(data, centered=False): """Normalizes image data to have variance of 1 Parameters ---------- data : array-like data to be normalized centered : boolean When False (the default), centers the data first Returns ------- data : array-like normalized data """ if not centered: data = center(data) data = np.divide(data, np.sqrt(np.var(data))) return data
e85e5488e0c69bcf0233c03f3595a336b3ad7921
3,655,521
def create_gdrive_folders(website_short_id: str) -> bool: """Create gdrive folder for website if it doesn't already exist""" folder_created = False service = get_drive_service() base_query = "mimeType = 'application/vnd.google-apps.folder' and not trashed and " query = f"{base_query}name = '{website_short_id}'" fields = "nextPageToken, files(id, name, parents)" folders = list(query_files(query=query, fields=fields)) if settings.DRIVE_UPLOADS_PARENT_FOLDER_ID: filtered_folders = [] for folder in folders: ancestors = get_parent_tree(folder["parents"]) if settings.DRIVE_UPLOADS_PARENT_FOLDER_ID in [ ancestor["id"] for ancestor in ancestors ]: filtered_folders.append(folder) else: filtered_folders = folders if len(filtered_folders) == 0: folder_metadata = { "name": website_short_id, "mimeType": DRIVE_MIMETYPE_FOLDER, } if settings.DRIVE_UPLOADS_PARENT_FOLDER_ID: folder_metadata["parents"] = [settings.DRIVE_UPLOADS_PARENT_FOLDER_ID] else: folder_metadata["parents"] = [settings.DRIVE_SHARED_ID] folder = ( service.files() .create(supportsAllDrives=True, body=folder_metadata, fields="id") .execute() ) folder_created = True else: folder = filtered_folders[0] Website.objects.filter(short_id=website_short_id).update(gdrive_folder=folder["id"]) for subfolder in [ DRIVE_FOLDER_FILES, DRIVE_FOLDER_FILES_FINAL, DRIVE_FOLDER_VIDEOS_FINAL, ]: query = f"{base_query}name = '{subfolder}' and parents = '{folder['id']}'" folders = list(query_files(query=query, fields=fields)) if len(folders) == 0: folder_metadata = { "name": subfolder, "mimeType": DRIVE_MIMETYPE_FOLDER, "parents": [folder["id"]], } service.files().create( supportsAllDrives=True, body=folder_metadata, fields="id" ).execute() folder_created = True return folder_created
21928843c47bbc3b175b65a7268eb63e0bec1275
3,655,522
def filter_for_recognized_pumas(df): """Written for income restricted indicator but can be used for many other indicators that have rows by puma but include some non-PUMA rows. Sometimes we set nrows in read csv/excel but this approach is more flexible""" return df[df["puma"].isin(get_all_NYC_PUMAs())]
fe3c608495603f74300dc79a4e50d185d87ca799
3,655,523
def school_booking_cancel(request, pk_booking): """Render the school booking cancel page for a school representative. :param request: httprequest received :type request: HttpRequest :param pk_booking: Primary Key of a Booking :type pk_booking: int :return: Return a HttpResponse whose content is filled with the result of the passed arguments. :rtype: HttpResponse """ booking = Booking.objects.get(id=pk_booking) if request.method == "POST": booking.status = "Cancelled" booking.reason_cancellation = request.POST["reason_cancellation"] booking.save() admin_email = ADMIN_EMAIL send_email_booking_cancellation(admin_email, booking) return redirect("school-dashboard") data = {"booking": booking} return render(request, "schoolApp/school-booking-cancel.html", data)
1b0e09119ba453efdf486e11a57d92c508a497ff
3,655,525
def bandpass_filter(df, spiky_var): """Detect outliers according to a passband filter specific to each variable. Parameters ---------- df: pandas DataFrame that contains the spiky variable spiky_var: string that designate the spiky variable Returns ------- id_outlier: index of outliers""" if spiky_var == 'LE': id_bandpass = ( df[spiky_var] < -35 ) | ( df[spiky_var] > 300 ) # in [W+1m-2] elif spiky_var == 'H': id_bandpass = ( df[spiky_var] < -100 ) | ( df[spiky_var] > 400 ) # in [W+1m-2] elif spiky_var == 'CO2_flux': id_bandpass = ( df[spiky_var] < -10 ) | ( df[spiky_var] > 20 ) # in [µmol+1s-1m-2] elif spiky_var == 'CH4_flux': id_bandpass = ( df[spiky_var] < -0.1 ) | ( df[spiky_var] > 0.25 ) # in [µmol+1s-1m-2] return id_bandpass
a20e3861f04212fe8b3e44d278da9ed58d545d1c
3,655,526
def load_energy(): """Loads the energy file, skipping all useluss information and returns it as a dataframe""" energy = pd.read_excel("Energy Indicators.xls", skiprows=17, header=0, skip_footer=53-15, na_values="...", usecols=[2,3,4,5]) # Rename columns energy.columns = ["Country", "Energy Supply [Petajoules]", "Energy Supply per Capita [Gigajoules]", "% Renewable"] # Exclude numbers from country names energy["Country"] = energy["Country"].str.replace("\d+", "") # Delete the parentheses energy["Country"] = energy["Country"].str.replace("\(.*\)", "") return energy
10c9e638398d74eed57ccab414cac5577623c6cf
3,655,527
import re def list_list_to_string(list_lists,data_delimiter=None,row_formatter_string=None,line_begin=None,line_end=None): """Repeatedly calls list to string on each element of a list and string adds the result . ie coverts a list of lists to a string. If line end is None the value defaults to "\n", for no seperator use '' """ if line_end is None: line_end="\n" check_arg_type(list_lists,ListType) string_out="" for index,row in enumerate(list_lists): if index==len(list_lists)-1: if line_end is "\n": last_end="" else: last_end=re.sub("\n","",line_end,count=1) string_out=string_out+list_to_string(row,data_delimiter=data_delimiter, row_formatter_string=row_formatter_string, begin=line_begin,end=last_end) else: string_out=string_out+list_to_string(row,data_delimiter=data_delimiter, row_formatter_string=row_formatter_string, begin=line_begin,end=line_end) return string_out
d1e69d21205fcc21e186a8dd160c1817fb1f0f68
3,655,528
def sampen(L, m): """ """ N = len(L) r = (np.std(L) * .2) B = 0.0 A = 0.0 # Split time series and save all templates of length m xmi = np.array([L[i: i + m] for i in range(N - m)]) xmj = np.array([L[i: i + m] for i in range(N - m + 1)]) # Save all matches minus the self-match, compute B B = np.sum([np.sum(np.abs(xmii - xmj).max(axis=1) <= r) - 1 for xmii in xmi]) # Similar for computing A m += 1 xm = np.array([L[i: i + m] for i in range(N - m + 1)]) A = np.sum([np.sum(np.abs(xmi - xm).max(axis=1) <= r) - 1 for xmi in xm]) # Return SampEn return -np.log(A / B)
0a97e8dd8c4edbf2ec4cbbdff3241af7de3f2a66
3,655,530
from typing import Union def total(score: Union[int, RevisedResult]) -> int: """ Return the total number of successes (negative for a botch). If `score` is an integer (from a 1st/2nd ed. die from :func:`standard` or :func:`special`) then it is returned unmodified. If `score` is a :class:`RevisedResult` (from :func:`revised_standard` or :func:`revised_special`) then the value returned is the net successes, except in the special case where there were successes but they were all cancelled out by botches. In that case return 0 even if the net successes is negative. """ return int(score)
849b757875ea461b0ea6bf4a63270e6f5fbac28c
3,655,531
def rbbox_overlaps_v3(bboxes1, bboxes2, mode='iou', is_aligned=False): """Calculate overlap between two set of bboxes. Args: bboxes1 (torch.Tensor): shape (B, m, 5) in <cx, cy, w, h, a> format or empty. bboxes2 (torch.Tensor): shape (B, n, 5) in <cx, cy, w, h, a> format or empty. mode (str): "iou" (intersection over union), "iof" (intersection over foreground) or "giou" (generalized intersection over union). Default "iou". is_aligned (bool, optional): If True, then m and n must be equal. Default False. Returns: Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) """ assert mode in ['iou', 'iof'] # Either the boxes are empty or the length of boxes's last dimension is 5 assert (bboxes1.size(-1) == 5 or bboxes1.size(0) == 0) assert (bboxes2.size(-1) == 5 or bboxes2.size(0) == 0) rows = bboxes1.size(0) cols = bboxes2.size(0) if is_aligned: assert rows == cols if rows * cols == 0: return bboxes1.new(rows, 1) if is_aligned else bboxes1.new(rows, cols) return obb_overlaps(bboxes1, bboxes2, mode, is_aligned)
cdd414b02ac08c5a8bc494ed7319942e26bc5f02
3,655,533
import warnings def get_target_compute_version(target=None): """Utility function to get compute capability of compilation target. Looks for the arch in three different places, first in the target attributes, then the global scope, and finally the GPU device (if it exists). Parameters ---------- target : tvm.target.Target, optional The compilation target Returns ------- compute_version : str compute capability of a GPU (e.g. "8.0") """ # 1. Target if target: if "arch" in target.attrs: compute_version = target.attrs["arch"] major, minor = compute_version.split("_")[1] return major + "." + minor # 2. Global scope from tvm.autotvm.env import AutotvmGlobalScope # pylint: disable=import-outside-toplevel if AutotvmGlobalScope.current.cuda_target_arch: major, minor = AutotvmGlobalScope.current.cuda_target_arch.split("_")[1] return major + "." + minor # 3. GPU if tvm.gpu(0).exist: return tvm.gpu(0).compute_version warnings.warn( "No CUDA architecture was specified or GPU detected." "Try specifying it by adding '-arch=sm_xx' to your target." ) return None
ad55cbb81fb74521175ea6fbdcba54cc14a409cb
3,655,534
def get_poet_intro_by_id(uid): """ get poet intro by id :param uid: :return: """ return Poet.get_poet_by_id(uid)
d6fd84bd150ee8ce72becdb6b27b67d1c21c7a9b
3,655,535
from datetime import datetime def create_post(): """Создать пост""" user = get_user_from_request() post = Post( created_date=datetime.datetime.now(), updated_date=datetime.datetime.now(), creator=user, ) json = request.get_json() url = json["url"] if Post.get_or_none(Post.url == url) is not None: return errors.post_url_already_taken() error = set_blog(post, json, user) if error is not None: error_response = { BlogError.NoBlog: errors.blog_not_found(), BlogError.NoAccess: errors.blog_no_access(), }[error] return error_response fill_post_from_json(post, json) post.save() set_tags_for_post(post, json) manage_jam_entries(post, json) return jsonify({"success": 1, "post": post.to_json()})
7b8eaf74cda78198d08ca6eac66f1f13a12c4341
3,655,536
import async_timeout async def fetch(session, url): """Method to fetch data from a url asynchronously """ async with async_timeout.timeout(30): async with session.get(url) as response: return await response.json()
d8ff22df047fece338dcfe4c6286766a563ff9aa
3,655,537
def recurse_while(predicate, f, *args): """ Accumulate value by executing recursively function `f`. The function `f` is executed with starting arguments. While the predicate for the result is true, the result is fed into function `f`. If predicate is never true then starting arguments are returned. :param predicate: Predicate function guarding execution. :param f: Function to execute. :param *args: Starting arguments. """ result = f(*args) result = result if type(result) == tuple else (result, ) while predicate(*result): args = result # predicate(args) is always true result = f(*args) result = result if type(result) == tuple else (result, ) return args if len(args) > 1 else args[0]
fd3313760c246336519a2e89281cc94a2bee6833
3,655,538
import timeit import logging def construct_lookup_variables(train_pos_users, train_pos_items, num_users): """Lookup variables""" index_bounds = None sorted_train_pos_items = None def index_segment(user): lower, upper = index_bounds[user:user + 2] items = sorted_train_pos_items[lower:upper] negatives_since_last_positive = np.concatenate( [items[0][np.newaxis], items[1:] - items[:-1] - 1]) return np.cumsum(negatives_since_last_positive) start_time = timeit.default_timer() inner_bounds = np.argwhere(train_pos_users[1:] - train_pos_users[:-1])[:, 0] + 1 (upper_bound,) = train_pos_users.shape index_bounds = np.array([0] + inner_bounds.tolist() + [upper_bound]) # Later logic will assume that the users are in sequential ascending order. assert np.array_equal(train_pos_users[index_bounds[:-1]], np.arange(num_users)) sorted_train_pos_items = train_pos_items.copy() for i in range(num_users): lower, upper = index_bounds[i:i + 2] sorted_train_pos_items[lower:upper].sort() total_negatives = np.concatenate([ index_segment(i) for i in range(num_users)]) logging.info("Negative total vector built. Time: {:.1f} seconds".format( timeit.default_timer() - start_time)) return total_negatives, index_bounds, sorted_train_pos_items
c3e1087cce5a38d681379f30d7c6dee8d1544e60
3,655,540
def total_allocation_constraint(weight, allocation: float, upper_bound: bool = True): """ Used for inequality constraint for the total allocation. :param weight: np.array :param allocation: float :param upper_bound: bool if true the constraint is from above (sum of weights <= allocation) else from below (sum of weights <= allocation) :return: np.array """ if upper_bound: return allocation - weight.sum() else: return weight.sum() - allocation
b92c4bd18d1c6246ff202987c957a5098fd66ba1
3,655,541
def sigmoid(x): """ computes sigmoid of x """ return 1.0/(1.0 + np.exp(-x))
cd34b4ed9fe08607ea3fec1dce89bee7c34efeb0
3,655,542
def handle_error(err): """Catches errors with processing client requests and returns message""" code = 500 error = 'Error processing the request' if isinstance(err, HTTPError): code = err.code error = str(err.message) return jsonify(error=error, code=code), code
d6f9051bab504852720f657d04bc6afa72794047
3,655,543
from pyunitwizard.kernel import default_form, default_parser from pyunitwizard import convert as _convert, get_dimensionality as _get_dimensionality from typing import Dict def dimensionality(quantity_or_unit: str) -> Dict[str, int]: """ Returns the dimensionality of the quantity or unit. Parameters ----------- quantity_or_unit : str A quanitity or a unit Returns ------- dimensionality_dict : dict Dictionary which keys are fundamental units and values are the exponent of each unit in the quantity. """ tmp_quantity_or_unit = _convert(quantity_or_unit, to_form=default_form, parser=default_parser) return _get_dimensionality(tmp_quantity_or_unit)
4c334c6283a57704036c414cfd52f79b875a93fc
3,655,544
import re def split_prec_rows(df): """Split precincts into two rows. NOTE: Because this creates a copy of the row values, don't rely on total vote counts, just look at percentage. """ for idx in df.index: # look for rows with precincts that need to be split if re.search('\d{4}/\d{4}',idx): row_values = df.loc[idx] split = idx.split('/') for p in split: df.loc[p] = row_values # delete original row df = df.drop(idx, axis=0) return(df)
72ba424080b0ff3e04ecc5d248bc85b4f409167c
3,655,545
def socfaker_elasticecsfields_host(): """ Returns an ECS host dictionary Returns: dict: Returns a dictionary of ECS host fields/properties """ if validate_request(request): return jsonify(str(socfaker.products.elastic.document.fields.host))
41a2624eda28eae736398ece87aee2ee2028987c
3,655,546
from textwrap import dedent def _moog_writer(photosphere, filename, **kwargs): """ Writes an :class:`photospheres.photosphere` to file in a MOOG-friendly format. :param photosphere: The photosphere. :path filename: The filename to write the photosphere to. """ def _get_xi(): xi = photosphere.meta["stellar_parameters"].get("microturbulence", 0.0) if 0 >= xi: logger.warn("Invalid microturbulence value: {:.3f} km/s".format(xi)) return xi if photosphere.meta["kind"] == "marcs": xi = _get_xi() output = dedent(""" WEBMARCS MARCS (2011) TEFF/LOGG/[M/H]/XI {1:.0f}/{2:.3f}/{3:.3f}/{4:.3f} NTAU {0:.0f} 5000.0 """.format(len(photosphere), photosphere.meta["stellar_parameters"]["effective_temperature"], photosphere.meta["stellar_parameters"]["surface_gravity"], photosphere.meta["stellar_parameters"]["metallicity"], xi)).lstrip() for i, line in enumerate(photosphere): output += " {0:>3.0f} {0:>3.0f} {1:10.3e} {0:>3.0f} {2:10.3e} "\ "{3:10.3e} {4:10.3e}\n".format(i + 1, line["lgTau5"], line["T"], line["Pe"], line["Pg"]) output += " {0:.3f}\n".format(xi) output += "NATOMS 0 {0:.3f}\n".format( photosphere.meta["stellar_parameters"]["metallicity"]) output += "NMOL 0\n" elif photosphere.meta["kind"] == "castelli/kurucz": xi = _get_xi() output = dedent(""" KURUCZ CASTELLI/KURUCZ (2004) {1:.0f}/{2:.3f}/{3:.3f}/{4:.3f}/{5:.3f} NTAU {0:.0f} """.format(len(photosphere), photosphere.meta["stellar_parameters"]["effective_temperature"], photosphere.meta["stellar_parameters"]["surface_gravity"], photosphere.meta["stellar_parameters"]["metallicity"], photosphere.meta["stellar_parameters"]["alpha_enhancement"], xi)).lstrip() for line in photosphere: output += " {0:.8e} {1:10.3e}{2:10.3e}{3:10.3e}{4:10.3e}\n".format( line["RHOX"], line["T"], line["P"], line["XNE"], line["ABROSS"]) output += " {0:.3f}\n".format(xi) output += "NATOMS 0 {0:.3f}\n".format( photosphere.meta["stellar_parameters"]["metallicity"]) output += "NMOL 0\n" # MOOG11 fails to read if you don't add an extra line output += "\n" else: raise ValueError("photosphere kind '{}' cannot be written to a MOOG-"\ "compatible format".format(photosphere.meta["kind"])) with open(filename, "w") as fp: fp.write(output) return None
da5a952e15984aecd914ebcf9381900924fdeff1
3,655,547
def upcomingSplits( symbol="", exactDate="", token="", version="stable", filter="", format="json", ): """This will return all upcoming estimates, dividends, splits for a given symbol or the market. If market is passed for the symbol, IPOs will also be included. https://iexcloud.io/docs/api/#upcoming-events Args: symbol (str): Symbol to look up exactDate (str): exactDate Optional. Exact date for which to get data token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Returns: dict or DataFrame: result """ return _baseEvent( "splits", symbol=symbol, exactDate=exactDate, token=token, version=version, filter=filter, format=format, )
ae21f8c04bf7bf2eacd8b16aa62c9fae7750e042
3,655,548
def mu_model(u, X, U, k): """ Returns the utility of the kth player Parameters ---------- u X U k Returns ------- """ M = X.T @ X rewards = M @ u penalties = u.T @ M @ U[:, :k] * U[:, :k] return rewards - penalties.sum(axis=1)
59bce1ce8617f0e11340d1c1ab18315fd81e6925
3,655,549
def tokenizer_init(model_name): """simple wrapper for auto tokenizer""" tokenizer = AutoTokenizer.from_pretrained(model_name) return tokenizer
c54accf802fcbcf1479ccb0745266a5182edb73b
3,655,550
def insert_message(nick, message, textDirection): """ Insert record """ ins = STATE['messages_table'].insert().values( nick=nick, message=message, textDirection=textDirection) res = STATE['conn'].execute(ins) ltr = 1 if textDirection == 'ltr' else 0 rtl = 1 if textDirection == 'rtl' else 0 STATE['conn'].execute( 'update message_stats set ltr = ltr + ?, rtl = rtl + ?', ltr, rtl) return { 'id': res.lastrowid }
1163fab2342aa5e41b321055bbf75f4c23fbb031
3,655,551
from typing import Tuple from typing import Dict def process_metadata(metadata) -> Tuple[Dict[str, str], Dict[str, str]]: """ Returns a tuple of valid and invalid metadata values. """ if not metadata: return {}, {} valid_values = {} invalid_values = {} for m in metadata: key, value = m.split("=", 1) if key in supported_metadata_keys: valid_values[key] = value else: invalid_values[key] = value return valid_values, invalid_values
fbd7affaa8743d6c45bb2a02067d737dac990eb4
3,655,552
def rightOfDeciSeperatorToDeci(a): """This function only convert value at the right side of decimal seperator to decimal""" deciNum = 0 for i in range(len(a)): deciNum += (int(a[i]))*2**-(i+1) return deciNum
14cfd187758836d329ac4778a30167ddece0f2a0
3,655,553
import torch def conv(input, weight): """ Returns the convolution of input and weight tensors, where input contains sequential data. The convolution is along the sequence axis. input is of size [batchSize, inputDim, seqLength] """ output = torch.nn.functional.conv1d(input=input, weight=weight) return output
e213be11c423ff63a1ebffda55331298fcf53443
3,655,554
import torch def irr_repr(order, alpha, beta, gamma, dtype = None): """ irreducible representation of SO3 - compatible with compose and spherical_harmonics """ cast_ = cast_torch_tensor(lambda t: t) dtype = default(dtype, torch.get_default_dtype()) alpha, beta, gamma = map(cast_, (alpha, beta, gamma)) return wigner_d_matrix(order, alpha, beta, gamma, dtype = dtype)
ff054a05c2d79a4dcfc903116cefdfce4fa56c8f
3,655,555
from typing import List from typing import Optional def label_to_span(labels: List[str], scheme: Optional[str] = 'BIO') -> dict: """ convert labels to spans :param labels: a list of labels :param scheme: labeling scheme, in ['BIO', 'BILOU']. :return: labeled spans, a list of tuples (start_idx, end_idx, label) """ assert scheme in ['BIO', 'BILOU'], ValueError("unknown labeling scheme") labeled_spans = dict() i = 0 while i < len(labels): if labels[i] == 'O' or labels[i] == 'ABS': i += 1 continue else: if scheme == 'BIO': if labels[i][0] == 'B': start = i lb = labels[i][2:] i += 1 try: while labels[i][0] == 'I': i += 1 end = i labeled_spans[(start, end)] = lb except IndexError: end = i labeled_spans[(start, end)] = lb i += 1 # this should not happen elif labels[i][0] == 'I': i += 1 elif scheme == 'BILOU': if labels[i][0] == 'U': start = i end = i + 1 lb = labels[i][2:] labeled_spans[(start, end)] = lb i += 1 elif labels[i][0] == 'B': start = i lb = labels[i][2:] i += 1 try: while labels[i][0] != 'L': i += 1 end = i labeled_spans[(start, end)] = lb except IndexError: end = i labeled_spans[(start, end)] = lb break i += 1 else: i += 1 return labeled_spans
01e3a1f3d72f8ec0b1cfa2c982fc8095c06c09f8
3,655,556
from typing import Optional def get_storage_account(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetStorageAccountResult: """ The storage account. :param str account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param str resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:storage/v20160501:getStorageAccount', __args__, opts=opts, typ=GetStorageAccountResult).value return AwaitableGetStorageAccountResult( access_tier=__ret__.access_tier, creation_time=__ret__.creation_time, custom_domain=__ret__.custom_domain, encryption=__ret__.encryption, id=__ret__.id, kind=__ret__.kind, last_geo_failover_time=__ret__.last_geo_failover_time, location=__ret__.location, name=__ret__.name, primary_endpoints=__ret__.primary_endpoints, primary_location=__ret__.primary_location, provisioning_state=__ret__.provisioning_state, secondary_endpoints=__ret__.secondary_endpoints, secondary_location=__ret__.secondary_location, sku=__ret__.sku, status_of_primary=__ret__.status_of_primary, status_of_secondary=__ret__.status_of_secondary, tags=__ret__.tags, type=__ret__.type)
c818e801d152f2b11bedac42bcefe322b94ab16e
3,655,557
def format_and_add(graph, info, relation, name): """ input: graph and three stirngs function formats the strings and adds to the graph """ info = info.replace(" ", "_") name = name.replace(" ", "_") inf = rdflib.URIRef(project_prefix + info) rel = rdflib.URIRef(project_prefix + relation) nm = rdflib.URIRef(project_prefix + name) graph.add((inf, rel, nm)) return None
abbe87b923d4ac37262e391a7d9a878b65e4ff41
3,655,558
def to_log_space(p:float, bounds: BOUNDS_TYPE): """ Interprets p as a point in a rectangle in R^2 or R^3 using Morton space-filling curve :param bounds [ (low,high), (low,high), (low,high) ] defaults to unit cube :param dim Dimension. Only used if bounds are not supplied. Very similar to "to_space" but assumes speed varies with logarithm """ assert 0 <= p <= 1 dim = len(bounds) us = list(reversed(ZCurveConventions().to_cube(zpercentile=p, dim=dim))) # 0 < us[i] < 1 return [to_log_space_1d(u, low=b[0], high=b[1]) for u, b in zip(us, bounds)]
2ab53687481100bda229456b8aa5fad4d8ef817d
3,655,560
def rsi_tradingview(ohlc: pd.DataFrame, period: int = 14, round_rsi: bool = True): """ Implements the RSI indicator as defined by TradingView on March 15, 2021. The TradingView code is as follows: //@version=4 study(title="Relative Strength Index", shorttitle="RSI", format=format.price, precision=2, resolution="") len = input(14, minval=1, title="Length") src = input(close, "Source", type = input.source) up = rma(max(change(src), 0), len) down = rma(-min(change(src), 0), len) rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down)) plot(rsi, "RSI", color=#8E1599) band1 = hline(70, "Upper Band", color=#C0C0C0) band0 = hline(30, "Lower Band", color=#C0C0C0) fill(band1, band0, color=#9915FF, transp=90, title="Background") :param ohlc: :param period: :param round_rsi: :return: an array with the RSI indicator values """ delta = ohlc["close"].diff() up = delta.copy() up[up < 0] = 0 up = pd.Series.ewm(up, alpha=1/period).mean() down = delta.copy() down[down > 0] = 0 down *= -1 down = pd.Series.ewm(down, alpha=1/period).mean() rsi = np.where(up == 0, 0, np.where(down == 0, 100, 100 - (100 / (1 + up / down)))) return np.round(rsi, 2) if round_rsi else rsi
5b9d96d5e174d6534c2d32a3ece83a5fb09b28ba
3,655,561
def bin_by(x, y, nbins=30): """Bin x by y, given paired observations of x & y. Returns the binned "x" values and the left edges of the bins.""" bins = np.linspace(y.min(), y.max(), nbins+1) # To avoid extra bin for the max value bins[-1] += 1 indicies = np.digitize(y, bins) output = [] for i in xrange(1, len(bins)): output.append(x[indicies==i]) # Just return the left edges of the bins bins = bins[:-1] return output, bins
ff0f9e79f3561cabf2a6498e31a78836be38bfb3
3,655,562
def calc_stats_with_cumsum(df_tgt, list_tgt_status, dict_diff, calc_type=0): """ Calculate statistics with cumulative sum of target status types. \n "dict_diff" is dictionaly of name key and difference value. ex) {"perweek": 7, "per2week": 14} \n calc_type=0: calculate for each simulation result. \n calc_type=1: calculate for each daycount result. """ # Prepare front side of dataframe. if calc_type == 0: sim_num = len(df_tgt[list_tgt_status[0]].columns) output_df = pd.DataFrame([i for i in range(sim_num)], columns=["sim_num"]) else: output_df = df_tgt.iloc[:, :2].copy() # Calculate statistics with cumulative sum. for one_status in list_tgt_status: # Extract target status data. one_tgt_df = df_tgt[one_status] # Calculate the days difference in dict_diff. dict_df_diff = {} for one_key, one_diff in dict_diff.items(): temp_df_diff = one_tgt_df.cumsum().diff(one_diff) temp_df_diff.iloc[one_diff-1, :] = one_tgt_df.cumsum().iloc[one_diff-1, :] dict_df_diff[one_key] = temp_df_diff if calc_type == 0: # Each simulation. output_df.loc[:, "{}_perday_mean".format(one_status)] = one_tgt_df.T.mean(axis=1).values output_df.loc[:, "{}_perday_std".format(one_status)] = one_tgt_df.T.std(axis=1).values output_df.loc[:, "{}_perday_min".format(one_status)] = one_tgt_df.T.min(axis=1).values output_df.loc[:, "{}_perday_quartile1".format(one_status)] = one_tgt_df.T.quantile(q=0.25, axis=1).values output_df.loc[:, "{}_perday_median".format(one_status)] = one_tgt_df.T.median(axis=1).values output_df.loc[:, "{}_perday_quartile3".format(one_status)] = one_tgt_df.T.quantile(q=0.75, axis=1).values output_df.loc[:, "{}_perday_max".format(one_status)] = one_tgt_df.T.max(axis=1).values for one_key, one_diff in dict_diff.items(): output_df.loc[:, "{}_{}_mean".format(one_status, one_key)] = dict_df_diff[one_key].T.mean(axis=1).values output_df.loc[:, "{}_{}_std".format(one_status, one_key)] = dict_df_diff[one_key].T.std(axis=1).values output_df.loc[:, "{}_{}_min".format(one_status, one_key)] = dict_df_diff[one_key].T.min(axis=1).values output_df.loc[:, "{}_{}_quartile1".format(one_status, one_key)] = dict_df_diff[one_key].T.quantile(q=0.25, axis=1).values output_df.loc[:, "{}_{}_median".format(one_status, one_key)] = dict_df_diff[one_key].T.median(axis=1).values output_df.loc[:, "{}_{}_quartile3".format(one_status, one_key)] = dict_df_diff[one_key].T.quantile(q=0.75, axis=1).values output_df.loc[:, "{}_{}_max".format(one_status, one_key)] = dict_df_diff[one_key].T.max(axis=1).values else: # Each day. output_df.loc[:, "{}_perday_mean".format(one_status)] = one_tgt_df.mean(axis=1) output_df.loc[:, "{}_perday_std".format(one_status)] = one_tgt_df.std(axis=1) output_df.loc[:, "{}_perday_min".format(one_status)] = one_tgt_df.min(axis=1) output_df.loc[:, "{}_perday_quartile1".format(one_status)] = one_tgt_df.quantile(q=0.25, axis=1) output_df.loc[:, "{}_perday_median".format(one_status)] = one_tgt_df.median(axis=1) output_df.loc[:, "{}_perday_quartile3".format(one_status)] = one_tgt_df.quantile(q=0.75, axis=1) output_df.loc[:, "{}_perday_max".format(one_status)] = one_tgt_df.max(axis=1) for one_key, one_diff in dict_diff.items(): # Note: Processing is well done, but numpy warning occurs. # Note: Because all the data of first few days in "perweek" and "per2week" become np.NaN. output_df.loc[:, "{}_{}_mean".format(one_status, one_key)] = dict_df_diff[one_key].mean(axis=1) output_df.loc[:, "{}_{}_std".format(one_status, one_key)] = dict_df_diff[one_key].std(axis=1) output_df.loc[:, "{}_{}_min".format(one_status, one_key)] = dict_df_diff[one_key].min(axis=1) output_df.loc[:, "{}_{}_quartile1".format(one_status, one_key)] = dict_df_diff[one_key].quantile(q=0.25, axis=1) output_df.loc[:, "{}_{}_median".format(one_status, one_key)] = dict_df_diff[one_key].median(axis=1) output_df.loc[:, "{}_{}_quartile3".format(one_status, one_key)] = dict_df_diff[one_key].quantile(q=0.75, axis=1) output_df.loc[:, "{}_{}_max".format(one_status, one_key)] = dict_df_diff[one_key].max(axis=1) return output_df
2dcdd95b8723f250a24afae548b8fd4ce9b5f51c
3,655,563
def _normalize_handler_method(method): """Transforms an HTTP method into a valid Python identifier.""" return method.lower().replace("-", "_")
aad23dba304ba39708e4415de40019479ccf0195
3,655,564