content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def cross_validation(df, K, hyperparameters): """ Perform cross validation on a dataset. :param df: pandas.DataFrame :param K: int :param hyperparameters: dict """ train_indices = list(df.sample(frac=1).index) k_folds = np.array_split(train_indices, K) if K == 1: K = 2 rmse_list = [] for i in range(len(k_folds)): training_folds = [fold for j, fold in enumerate(k_folds) if j != i] training_indices = np.concatenate(training_folds) x_train, y_train = df.iloc[training_indices, 1:], df.iloc[training_indices, :1] x_validation, y_validation = df.iloc[k_folds[i], 1:], df.iloc[k_folds[i], :1] dtrain = xgb.DMatrix(data=x_train, label=y_train) dvalidation = xgb.DMatrix(data=x_validation, label=y_validation) model = xgb.train( params=hyperparameters, dtrain=dtrain, evals=[(dtrain, "train"), (dvalidation, "validation")], ) eval_results = model.eval(dvalidation) rmse_list.append(float(eval_results.split("eval-rmse:")[1])) return rmse_list, model
72cdf91efa029eb8c029eb84d596057d13a7c515
3,657,218
from typing import List from typing import Dict def solve_cities(cities: List, gdps: List, sick: List, total_capacity: int, value_r=0, weight_r=0, num_reads=1, verbose=False) -> Dict: """ Solves problem: "Which cities should I should I shut down in order to stay within healthcare resources constraints while maximizing overall GDP" parameters: cities - list of city names gdps - corresponding list of GDP per city sick - corresponding number of sick people per city total_capacity - max capacity for sick people summed over all cities num_reads - number of samples to take verbose - whether to print out best result returns: (dict) - list of dictionaries with individual results and selected attributes sorted in order of least energy first """ if sum(sick) < total_capacity: print("Warning in solve_cities: Total number of sick people is less " + "than total capacity. There's no knapsack problem to solve!") bqm = knapsack_bqm(cities, gdps, sick, total_capacity, value_r=value_r, weight_r=weight_r) sampler = LeapHybridSampler() samplesets = [sampler.sample(bqm) for _ in range(num_reads)] df = pd.DataFrame({'city': cities, 'gdp': gdps, 'sick': sick}) df = df.set_index('city') solution_set = [] for sampleset in samplesets: open_cities = [] closed_cities = [] for k, v in sampleset.first.sample.items(): if k in cities: if v == 1: open_cities.append(k) else: closed_cities.append(k) solution_set.append({ 'open_cities': open_cities, 'closed_cities': closed_cities, 'energy': sampleset.first.energy, 'salvaged_gdp': sum(df.loc[open_cities]['gdp']) + sum(df.loc[closed_cities]['gdp']) * value_r, 'used_capacity': int(round(sum(df.loc[open_cities]['sick']))) }) # do sorting from lowest to highest energy if num_reads > 1: energies = [solution['energy'] for solution in solution_set] solution_set = [x for _, x in sorted(zip(energies, solution_set))] if verbose: print('BEST SOLUTION') print('Open cities') print(solution_set[0]['open_cities']) print('\n') print('Closed cities') print(solution_set[0]['closed_cities']) print('\n') total_gdp = sum(df['gdp']) salvaged_gdp = solution_set[0]['salvaged_gdp'] print( f'Salvaged GDP: {salvaged_gdp} ({(100*salvaged_gdp/total_gdp):.1f}%)') used_capacity = solution_set[0]['used_capacity'] print( f'Used up hospital capacity: {used_capacity:d} of {total_capacity} ({(100*used_capacity/total_capacity):.1f}%)') return solution_set
52bef06069ee6975fbc5dea50cbb44349c96b9db
3,657,219
def catalog(): """Render the mapping catalog page.""" if request.args.get(EQUIVALENT_TO): mappings = current_app.manager.get_mappings_by_type(EQUIVALENT_TO) message = Markup("<h4>You are now visualizing the catalog of equivalent mappings</h4>") flash(message) elif request.args.get(IS_PART_OF): mappings = current_app.manager.get_mappings_by_type(IS_PART_OF) message = Markup("<h4>You are now visualizing the catalog of hierarchical mappings</h4>") flash(message) else: mappings = current_app.manager.get_all_mappings() return render_template( 'curation/catalog.html', STYLED_NAMES=STYLED_NAMES, mappings=mappings, all='all' )
b28904fff79b978225eda1bb3ed4f6e04c817737
3,657,220
def apply_inverse_rot_to_vec(rot, vec): """Multiply the inverse of a rotation matrix by a vector.""" # Inverse rotation is just transpose return [rot[0][0] * vec[0] + rot[1][0] * vec[1] + rot[2][0] * vec[2], rot[0][1] * vec[0] + rot[1][1] * vec[1] + rot[2][1] * vec[2], rot[0][2] * vec[0] + rot[1][2] * vec[1] + rot[2][2] * vec[2]]
1108ac6caa30b3562a2af1bcc83e1c1a1bfd8d4d
3,657,222
def gsl_blas_dsdot(*args, **kwargs): """gsl_blas_dsdot(gsl_vector_float const * X, gsl_vector_float const * Y) -> int""" return _gslwrap.gsl_blas_dsdot(*args, **kwargs)
6b8f45a773fca936913b2653df9ab8c96f1e974a
3,657,223
def cost(weights): """Cost function which tends to zero when A |x> tends to |b>.""" p_global_ground = global_ground(weights) p_ancilla_ground = ancilla_ground(weights) p_cond = p_global_ground / p_ancilla_ground return 1 - p_cond
3b33292c63b42d110efe0d7cbe4dae85f095472f
3,657,224
import time def runOptimization( cfg, optimize_cfg, n_iter=20, split_runs=1, model_runs=1, filename="optimize_result", ): """Optimize the model parameter using hyperopt. The model parameters are optimized using the evaluations on validation dataset. Args: cfg(dict): configuration data optimize_cfg(dict): configuration for optimization n_iter(int): the number of iterations for sequential optimization split_runs(int): the number of runs for different dataset-split random seeds. model_runs(int): the number of runs for different model-initialization random seeds. filename(string): a file-name for logging """ def objective(space): print(space) newcfg = {**cfg} for k in space.keys(): if k in newcfg and type(newcfg[k]) == dict: newcfg[k] = {**space[k]} else: newcfg[k] = space[k] print(newcfg, cfg) result = runEvaluation( newcfg, split_runs=split_runs, model_runs=model_runs ) opt_result = { "loss": result["val_rmse"][0], "loss_variance": result["val_rmse"][1] ** 2, "true_loss": result["test_rmse"][0], "true_loss_variance": result["test_rmse"][1] ** 2, "status": STATUS_OK, "eval_time": time.time(), "data": result, "space": space, } return opt_result trials = Trials() best = fmin( objective, optimize_cfg, algo=tpe.suggest, max_evals=n_iter, trials=trials, ) valid_trial = [t for t in trials if t["result"]["status"] == STATUS_OK] losses_argmin = np.argmin( [float(trial["result"]["loss"]) for trial in valid_trial] ) print([float(trial["result"]["loss"]) for trial in valid_trial]) best_trial = valid_trial[losses_argmin] best_result = best_trial["result"]["data"] print(best, best_trial["result"]["space"], space_eval(optimize_cfg, best)) ret = { "best": best, "n_iter": n_iter, "split_runs": split_runs, "model_runs": model_runs, "result": best_result, "optimize_confg": optimize_cfg, "config": cfg, } ret_str = ConfigEncoder.dumps(ret) with open(f"{filename}.json", "w") as fp: fp.write(ret_str) print(ret) return ret
ef2e2c85f5b0b8f6889da49ed1e964d432bb1886
3,657,225
def _capabilities_for_entity(config, entity): """Return an _EntityCapabilities appropriate for given entity. raises _UnknownEntityDomainError if the given domain is unsupported. """ if entity.domain not in _CAPABILITIES_FOR_DOMAIN: raise _UnknownEntityDomainError() return _CAPABILITIES_FOR_DOMAIN[entity.domain](config, entity)
5fe541778ede415020377a0c989fa47ad2ae4d05
3,657,226
def apply_torsion(nodes, suffix=""): """ Torsion energy in nodes. """ if ( "phases%s" % suffix in nodes.data and "periodicity%s" % suffix in nodes.data ): return { "u%s" % suffix: esp.mm.torsion.periodic_torsion( x=nodes.data["x"], k=nodes.data["k%s" % suffix], phases=nodes.data["phases%s" % suffix], periodicity=nodes.data["periodicity%s" % suffix], ) } else: return { "u%s" % suffix: esp.mm.torsion.periodic_torsion( x=nodes.data["x"], k=nodes.data["k%s" % suffix], ) }
37310291ddb769587d9d14a8dedcda3b528a78f3
3,657,228
import decimal def parse_summary_table(doc): """ Parse the etree doc for summarytable, returns:: [{'channel': unicode, 'impressions': int, 'clicks': int, 'ctr': decimal.Decimal, 'ecpm': decimal.Decimal, 'earnings': decimal.Decimal}] """ for t in doc.findall('.//table'): if t.attrib.get('id') == 'summarytable': break else: raise ValueError("summary table not found") res = [] FIELDS = ['channel', 'requests', 'responses', 'impressions', 'clicks', 'ctr', 'ecpm', 'earnings'] for row in t.findall('.//tr'): celltext = [] for c in row.findall('td'): tail = '' # adsense inserts an empty span if a row has a period in it, so # get the children and find the tail element to append to the text if c.find('a') and c.find('a').getchildren(): tail = c.find('a').getchildren()[0].tail or '' celltext.append('%s%s' % ((c.text or c.findtext('a') or '').strip(), tail.strip())) if len(celltext) != 8: continue try: value_cols = map(parse_decimal, celltext[1:]) except decimal.InvalidOperation: continue res.append(dict(zip(FIELDS, [celltext[0]] + value_cols))) return res
7d188478dc5539b4c8020af09cb052140def63c9
3,657,229
import math def tileset_info(hitile_path): """ Get the tileset info for a hitile file. Parameters ---------- hitile_path: string The path to the hitile file Returns ------- tileset_info: {'min_pos': [], 'max_pos': [], 'tile_size': 1024, 'max_zoom': 7 } """ hdf_file = h5py.File(hitile_path, "r") d = hdf_file["meta"] if "min-pos" in d.attrs: min_pos = d.attrs["min-pos"] else: min_pos = 0 if "max-pos" in d.attrs: max_pos = d.attrs["max-pos"] else: max_pos = d.attrs["max-length"] return { "max_pos": [int(max_pos)], "min_pos": [int(min_pos)], "max_width": 2 ** math.ceil(math.log(max_pos - min_pos) / math.log(2)), "max_zoom": int(d.attrs["max-zoom"]), "tile_size": int(d.attrs["tile-size"]), }
3ea467898e15ac6aca21c219398aa1249b795e55
3,657,230
def delete_user(): """ Deletes the current user's account. """ DB.session.delete(current_user) DB.session.commit() flash("Account deleted", 'success') return redirect('/login')
bc22d6287738c676cec3c780a9fb01513ddd5530
3,657,231
def setup_code_gen(no_of_accessories): """ Generate setup code """ try: invalid_setup_codes = ['00000000','11111111','22222222','33333333','44444444','55555555',\ '66666666','77777777','88888888','99999999','12345678','87654321'] setup_code_created = [] for _ in range(no_of_accessories): setup_code = '' # random generate setup_code for _ in range(8): random_num = str(random.randint(0,9)) setup_code += random_num # generate again till valid while setup_code in invalid_setup_codes: setup_code = '' for _ in range(8): random_num = str(randint(0,9)) setup_code += random_num # Check if the setup code has valid format if (len(setup_code) != 8) or (not setup_code.isdigit()): print "\nSetup code generated should be 8 numbers without any '-' in between. Eg. 11122333 \n" raise SystemExit(1) # Add the hyphen (-) in the PIN for salt-verifier generation. So, 11122333 will become 111-22-333 setup_code = setup_code[:3] + '-' + setup_code[3:5] + '-' + setup_code[5:] setup_code_created.append(setup_code) return setup_code_created except StandardError as std_err: print std_err except: raise
253272cc27de1ead05d12f2e1798d91a3c4571dd
3,657,232
def letter_difference(letter_1: str, letter_2: str) -> int: """ Return the difference in value between letter_1 and letter_2 """ assert len(letter_1) == 1 assert len(letter_2) == 1 diff = letter_to_value[letter_2] - letter_to_value[letter_1] if diff > 13: diff -= 27 return diff
66d88efff92acebef06275d244d560ca5071e974
3,657,233
import requests def refresh_access_token(request): """Updates `accessToken` in request cookies (not in browser cookies) using `refreshToken`. """ try: refresh_token = request.COOKIES['refreshToken'] url = urljoin(settings.TIT_API_HOST, '/api/auth/token/refresh/') response = requests.post(url, {'refresh': refresh_token}) result = response.json() request.COOKIES['accessToken'] = result['access'] return True except (KeyError, requests.HTTPError, ): """Refresh token doesn't exist in cookies or response from TIT API returned error status code. """ return False
378f4129fa9cc6af8cc961560e3e4063fcd0495b
3,657,234
def ngrams(string, n=3, punctuation=PUNCTUATION, **kwargs): """ Returns a list of n-grams (tuples of n successive words) from the given string. Punctuation marks are stripped from words. """ s = string s = s.replace(".", " .") s = s.replace("?", " ?") s = s.replace("!", " !") s = [w.strip(punctuation) for w in s.split()] s = [w.strip() for w in s if w.strip()] return [tuple(s[i:i + n]) for i in range(len(s) - n + 1)]
1e0e99f01c8aa46f4c44cca02d9bdb2b1c52d4c5
3,657,235
def binstringToBitList(binstring): """Converts a string of '0's and '1's to a list of 0's and 1's""" bitList = [] for bit in binstring: bitList.append(int(bit)) return bitList
d8ff10651d9fc2d02aba3b4a57a0a768032783b7
3,657,236
def file_revisions(request, repo_id): """List file revisions in file version history page. """ repo = get_repo(repo_id) if not repo: raise Http404 # perm check if check_folder_permission(request, repo_id, '/') is None: raise Http404 return render_file_revisions(request, repo_id)
c9ec0e1c159a4efdd8f4c3287cb9d8339ba9a9d2
3,657,237
def textctrl_info_t_get_tabsize(*args): """ textctrl_info_t_get_tabsize(self) -> unsigned int """ return _ida_kernwin.textctrl_info_t_get_tabsize(*args)
7aff89906aebacb3664a73d26f52dd4317031790
3,657,238
def node_is_hidden(node_name): """ Returns whether or not given node is hidden :param node_name: str :return: bool """ if python.is_string(node_name): return not maya.cmds.getAttr('{}.visibility'.format(node_name)) return not maya.cmds.getAttr('{}.visibility'.format(node.get_name(node_name)))
0927d2424b64b9b81b52ced335823963d7ec9fe2
3,657,239
import torch def generate_patch_grid_from_normalized_LAF(img: torch.Tensor, LAF: torch.Tensor, PS: int = 32) -> torch.Tensor: """Helper function for affine grid generation. Args: img: image tensor of shape :math:`(B, CH, H, W)`. LAF: laf with shape :math:`(B, N, 2, 3)`. PS: patch size to be extracted. Returns: grid """ raise_error_if_laf_is_not_valid(LAF) B, N, _, _ = LAF.size() num, ch, h, w = img.size() # norm, then renorm is needed for allowing detection on one resolution # and extraction at arbitrary other LAF_renorm = denormalize_laf(LAF, img) grid = F.affine_grid(LAF_renorm.view(B * N, 2, 3), [B * N, ch, PS, PS], align_corners=False) # type: ignore grid[..., :, 0] = 2.0 * grid[..., :, 0].clone() / float(w) - 1.0 grid[..., :, 1] = 2.0 * grid[..., :, 1].clone() / float(h) - 1.0 return grid
288572e4ff8577a8bd664732c79408b71ec58c0d
3,657,240
from typing import Union from typing import Tuple def _resolve_condition_operands( left_operand: Union[str, pipeline_channel.PipelineChannel], right_operand: Union[str, pipeline_channel.PipelineChannel], ) -> Tuple[str, str]: """Resolves values and PipelineChannels for condition operands. Args: left_operand: The left operand of a condition expression. right_operand: The right operand of a condition expression. Returns: A tuple of the resolved operands values: (left_operand_value, right_operand_value). """ # Pre-scan the operand to get the type of constant value if there's any. # The value_type can be used to backfill missing PipelineChannel.channel_type. value_type = None for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type in [ pipeline_spec_pb2.ParameterType.STRUCT, pipeline_spec_pb2.ParameterType.LIST, pipeline_spec_pb2.ParameterType .PARAMETER_TYPE_ENUM_UNSPECIFIED, ]: input_name = _additional_input_name_for_pipeline_channel( value_or_reference) raise ValueError('Conditional requires scalar parameter values' ' for comparison. Found input "{}" of type {}' ' in pipeline definition instead.'.format( input_name, value_or_reference.channel_type)) parameter_types = set() for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) else: parameter_type = type_utils.get_parameter_type( type(value_or_reference).__name__) parameter_types.add(parameter_type) if len(parameter_types) == 2: # Two different types being compared. The only possible types are # String, Boolean, Double and Integer. We'll promote the other type # using the following precedence: # String > Boolean > Double > Integer if pipeline_spec_pb2.ParameterType.STRING in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.STRING elif pipeline_spec_pb2.ParameterType.BOOLEAN in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN else: # Must be a double and int, promote to double. assert pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE in parameter_types, \ 'Types: {} [{} {}]'.format( parameter_types, left_operand, right_operand) assert pipeline_spec_pb2.ParameterType.NUMBER_INTEGER in parameter_types, \ 'Types: {} [{} {}]'.format( parameter_types, left_operand, right_operand) canonical_parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE elif len(parameter_types) == 1: # Both operands are the same type. canonical_parameter_type = parameter_types.pop() else: # Probably shouldn't happen. raise ValueError('Unable to determine operand types for' ' "{}" and "{}"'.format(left_operand, right_operand)) operand_values = [] for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): input_name = _additional_input_name_for_pipeline_channel( value_or_reference) operand_value = "inputs.parameter_values['{input_name}']".format( input_name=input_name) parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER: operand_value = 'int({})'.format(operand_value) elif isinstance(value_or_reference, str): operand_value = "'{}'".format(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.STRING elif isinstance(value_or_reference, bool): # Booleans need to be compared as 'true' or 'false' in CEL. operand_value = str(value_or_reference).lower() parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN elif isinstance(value_or_reference, int): operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_INTEGER else: assert isinstance(value_or_reference, float), value_or_reference operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE if parameter_type != canonical_parameter_type: # Type-cast to so CEL does not complain. if canonical_parameter_type == pipeline_spec_pb2.ParameterType.STRING: assert parameter_type in [ pipeline_spec_pb2.ParameterType.BOOLEAN, pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = "'{}'".format(operand_value) elif canonical_parameter_type == pipeline_spec_pb2.ParameterType.BOOLEAN: assert parameter_type in [ pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = 'true' if int(operand_value) == 0 else 'false' else: assert canonical_parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE assert parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER operand_value = 'double({})'.format(operand_value) operand_values.append(operand_value) return tuple(operand_values)
fde07e14af8f9ae610cfcd64e6a3f2219f0ee8e9
3,657,241
def int_to_bitstr(int_value: int) -> str: """ A function which returns its bit representation as a string. Arguments: int_value (int) - The int value we want to get the bit representation for. Return: str - The string representation of the bits required to form the int. """ return bin(int_value)[2:]
cafbf151ce0404081a0a8e1327d85e61ea7ddc52
3,657,243
def target_reached(effect): """target amount has been reached (100% or more)""" if not effect.instance.target: return False return effect.instance.amount_raised >= effect.instance.target
0101cd9c3c51a1e03ba7cfd8844c3821a156e2fe
3,657,244
def resid_mask(ints, wfs_map=read_map(wfs_file), act_map=read_map(act_file), num_aps=236): """ Returns the locations of the valid actuators in the actuator array resids: Nx349 residual wavefront array (microns) ints: Nx304 intensity array (any units) N: Number of timestamps """ # Check inputs N = ints.shape[0] # Num timestamps # Aggregate intensities over all timestamps med_ints = np.median(ints, axis=0) # Fill WFS map with aggregated intensities int_map = wfs_map.copy() int_map[np.where(int_map==1)] = med_ints # Find lenslets with greatest intensity idxs = np.flip(np.argsort(int_map, axis=None))[:num_aps] # flat idxs of sort idxs = np.unravel_index(idxs, wfs_map.shape) # 2D idxs of sort # Mask for good sub-ap values good_aps = np.zeros(wfs_map.shape, dtype=int) good_aps[idxs] = 1 good_aps = good_aps * wfs_map # Just in case # Mask for good actuator values good_acts = np.pad(good_aps, ((1,1),(1,1))) good_acts = (good_acts[1:,1:] | good_acts[1:,:-1] | good_acts[:-1,:-1] | good_acts[:-1,1:]) * act_map return good_acts
98c818db8d2d5040c5a20857693f3f3116ab8e13
3,657,245
import requests def session(): """Sets up a HTTP session with a retry policy.""" s = requests.Session() retries = Retry(total=5, backoff_factor=0.5) s.mount("http://", HTTPAdapter(max_retries=retries)) return s
d5cb89f04017718983834a0b4008972f393f56ae
3,657,246
def handle_index(): """ Kezeli az index oldalat, elokesziti es visszakulti a html-t a kliensnek. :return: """ return render_template("index.html")
eaaa2c3028983c1e5ed29a45fe6ff3db0a8a7482
3,657,248
def get_polynomial_coefficients(degree=5): """ Return a list with coefficient names, [1 x y x^2 xy y^2 x^3 ...] """ names = ["1"] for exp in range(1, degree + 1): # 0, ..., degree for x_exp in range(exp, -1, -1): y_exp = exp - x_exp if x_exp == 0: x_str = "" elif x_exp == 1: x_str = r"$x$" else: x_str = rf"$x^{x_exp}$" if y_exp == 0: y_str = "" elif y_exp == 1: y_str = r"$y$" else: y_str = rf"$y^{y_exp}$" names.append(x_str + y_str) return names
9369841215045e925a3453b83be9dc49c9be7b92
3,657,249
from typing import Dict import pickle def _get_configured_credentials() -> Dict[str, bytes]: """ Get the encryupted credentials stored in disk """ path = get_credentials_path() credentials: Dict[str, bytes] with open(path, "rb") as file_handle: credentials = pickle.load(file_handle) if len(credentials) == 0: raise ConfigurationError( "You have not setup your credentials yet. " "Please do so by using 'omigami credentials-helper' CLI functionality and try again." ) if not all(key in ["k", "u", "p"] for key in credentials.keys()): raise ConfigurationError( "Something seems wrong with your credentials. " "Please, run 'omigami credentials-helper --unset' to remove them and then set them again." ) return credentials
824aeb18f4e5bed609008c6594d86666502b2339
3,657,250
def kabsch_rotate(P, Q): """ Rotate matrix P unto matrix Q using Kabsch algorithm """ U = kabsch(P, Q) # Rotate P P = np.dot(P, U) return P
2be9c94901b27205ec4720b16ab6e81f34b1c6d6
3,657,252
def matrix( odoo=ODOO_VERSIONS, pg=PG_VERSIONS, odoo_skip=frozenset(), pg_skip=frozenset() ): """All possible combinations. We compute the variable matrix here instead of in ``.travis.yml`` because this generates faster builds, given the scripts found in ``hooks`` directory are already multi-version-build aware. """ return map( dict, product( product(("ODOO_MINOR",), ODOO_VERSIONS & odoo - odoo_skip), product(("DB_VERSION",), PG_VERSIONS & pg - pg_skip), ), )
034e791d2e10e9f691df3e6c458722549c59a89a
3,657,253
import copy def iterate_pagerank(corpus, damping_factor): """ Return PageRank values for each page by iteratively updating PageRank values until convergence. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ # Initialize a dict with {"page": 1/n} for all pages in corpus new_dist = dict([(page, 1 / len(corpus)) for page in corpus]) finished = False while not finished: # Make copy before changing prev_dist = copy.deepcopy(new_dist) for page in corpus: # Run the iterative algorithm on each page new_dist[page] = iter_algorithm(damping_factor, len(corpus), page, corpus, new_dist) # If any page has a difference over .001 from the previous run, the while loop will continue for pg in new_dist: finished = True if abs(prev_dist[pg] - new_dist[pg]) > 0.001: finished = False break return new_dist
bc51bd946d8fc617222303ffe30507695ee5ae33
3,657,254
def user_enabled(inst, opt): """ Check whether the option is enabled. :param inst: instance from content object init :param url: Option to be checked :return: True if enabled, False if disabled or non present """ return opt in inst.settings and inst.settings[opt]
3b2a5a1534ff779178eb4bd6b839b66c0b07864f
3,657,255
async def get_buttons_data(client: Client, message: Message): """ Get callback_data and urls of all the inline buttons of the message you replied to. """ reply_message = message.reply_to_message if reply_message and reply_message.reply_markup: if reply_message.reply_markup.inline_keyboard: row_lines = [] for i, row in enumerate(reply_message.reply_markup.inline_keyboard): row_buttons = [] for button in row: if button.callback_data: data = button.callback_data elif button.url: data = button.url else: continue row_buttons.append(f"<i>{quote_html(button.text)}:</i> <code>{quote_html(data)}</code>") buttons = "\n".join(row_buttons) row_lines.append(f"<b>Row {i + 1}:</b>\n{buttons}") if row_lines: clean_time = 20 await message.edit_text("\n\n".join(row_lines)) else: clean_time = 4 await message.edit_text("There is no any callback_data or url button inside this keyboard.") return await clean_up(client, message.chat.id, message.message_id, clear_after=clean_time) await message.edit_text("Reply to a message containing an inline keyboard to extract callback_data and urls.") await clean_up(client, message.chat.id, message.message_id, clear_after=4)
6567455d95781515fc6236bf867a042ba550736f
3,657,256
def update_document( *, db_session: Session = Depends(get_db), document_id: PrimaryKey, document_in: DocumentUpdate ): """Update a document.""" document = get(db_session=db_session, document_id=document_id) if not document: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=[{"msg": "The document with this id does not exist."}], ) document = update(db_session=db_session, document=document, document_in=document_in) return document
15dc23aeb10950da19a6732c43d7675447f6a45c
3,657,257
def from_jabsorb(request, seems_raw=False): """ Transforms a jabsorb request into a more Python data model (converts maps and lists) :param request: Data coming from Jabsorb :param seems_raw: Set it to True if the given data seems to already have been parsed (no Java class hint). If True, the lists will be kept as lists instead of being converted to tuples. :return: A Python representation of the given data """ if isinstance(request, (tuple, set, frozenset)): # Special case : JSON arrays (Python lists) return type(request)(from_jabsorb(element) for element in request) elif isinstance(request, list): # Check if we were a list or a tuple if seems_raw: return list(from_jabsorb(element) for element in request) else: return tuple(from_jabsorb(element) for element in request) elif isinstance(request, dict): # Dictionary java_class = request.get(JAVA_CLASS) json_class = request.get(JSON_CLASS) seems_raw = not java_class and not json_class if java_class: # Java Map ? if JAVA_MAPS_PATTERN.match(java_class) is not None: return HashableDict((from_jabsorb(key), from_jabsorb(value)) for key, value in request["map"].items()) # Java List ? elif JAVA_LISTS_PATTERN.match(java_class) is not None: return HashableList(from_jabsorb(element) for element in request["list"]) # Java Set ? elif JAVA_SETS_PATTERN.match(java_class) is not None: return HashableSet(from_jabsorb(element) for element in request["set"]) # Any other case result = AttributeMap((from_jabsorb(key), from_jabsorb(value, seems_raw)) for key, value in request.items()) # Keep JSON class information as is if json_class: result[JSON_CLASS] = json_class return result elif not _is_builtin(request): # Bean for attr in dir(request): # Only convert public fields if not attr[0] == '_': # Field conversion setattr(request, attr, from_jabsorb(getattr(request, attr))) return request else: # Any other case return request
78e8eefc0b234a5b6cd09cebff76e5cb716b54c2
3,657,258
def write_board_to_svg_file(board, file_name, hex_edge=50, hex_offset=0, board_padding=None, pointy_top=True, trim_board=True, style=None): """ Writes given board to a svg file of given name. :param board: 2 dimensional list of fields, each represented as a number :param file_name name of the output file :param hex_edge: length of hexagon's side (in pixels) :param hex_offset: distance between side of one hexagon and its neighbour (in pixels) :param board_padding padding of the board (in pixels) :param pointy_top: specifies if hexagons should be pointy topped or flat topped :param trim_board: if True, fields with a value 0 will be removed during transformation :param style css style (as string) """ if board_padding is None: board_padding = hex_edge styles = ['.board { fill: white } .hex-field { fill: white; stroke: black } .hex-field-0 { fill: black }'] if style is not None: styles.append(style) hexagons = transform_board_into_hexagons(board, hex_edge, hex_offset, pointy_top, trim_board) min_x, min_y, max_x, max_y = calculate_bounding_box(hexagons) offset = (board_padding - min_x, board_padding - min_y) hexagons = move_hexagons_by_offset(hexagons, offset) board_size = (2 * board_padding + max_x - min_x, 2 * board_padding + max_y - min_y) svg_image = create_svg_image(styles, board_size, hexagons) svg_image.saveas(file_name) return svg_image
4cbf895a4a91e0434e31fdad459c3354927c5e2b
3,657,259
def ensure_conf(app): """ Ensure for the given app the the redbeat_conf attribute is set to an instance of the RedBeatConfig class. """ name = 'redbeat_conf' app = app_or_default(app) try: config = getattr(app, name) except AttributeError: config = RedBeatConfig(app) setattr(app, name, config) return config
673680aafbc4d76b1ae7f7740e53fd7f54740acf
3,657,260
def check_if_process_present(string_to_find): """Checks if process runs on machine Parameters: string_to_find (string): process we want to find Returns: found (bool): True if found process running """ output = check_output(["ps", "-ax"], universal_newlines=True) if string_to_find in output: return True else: return False
3a153e2160000ec1c9d4c0c28d1631179f9e88c3
3,657,261
def consulta_dicionario(nivel): """ Entrada: Parâmetro do nível selecionado (fácil, médio, difícil) Tarefa: Determinar qual dicionário a ser consultado Saída: Parâmetros do dicionário (texto, lacunas, gabarito) """ nivel_dicionario = nivel if nivel_dicionario == 'facil': texto = dicionario_nivel_facil['texto'] lacunas = dicionario_nivel_facil['lacunas'] gabarito = dicionario_nivel_facil['gabarito'] elif nivel_dicionario == 'medio': texto = dicionario_nivel_medio['texto'] lacunas = dicionario_nivel_medio['lacunas'] gabarito = dicionario_nivel_medio['gabarito'] elif nivel_dicionario == 'dificil': texto = dicionario_nivel_dificil['texto'] lacunas = dicionario_nivel_dificil['lacunas'] gabarito = dicionario_nivel_dificil['gabarito'] return texto, lacunas, gabarito
1453298f791cca010f75abad9d0d37a28c1c8ae5
3,657,262
from typing import List def stats_check( main_table: Table, compare_table: Table, checks: List[OutlierCheck] = [], max_rows_returned: int = 100, ): """ :param main_table: main table :type main_table: table object :param compare_table: table to be compared :type compare_table: table object :param checks: check class object, which represent boolean expression :type checks: Check :param max_rows_returned: number of row returned if the check fails. :type max_rows_returned: int """ return AgnosticStatsCheck( main_table=main_table, compare_table=compare_table, checks=checks, max_rows_returned=max_rows_returned, )
39f0c0b2bad74a7878453a3fe11def36f1971a5f
3,657,263
async def get_collectible_name(collectible_id: int, db: AsyncSession = Depends(get_db_session)): """Gets the collectible name""" result = await destiny_items.get_collectible(db=db, collectible_id=collectible_id) return NameModel(name=result.name) if result else NameModel(name=None)
18fd3856d5145a004cf20343b5e8782a13a35845
3,657,264
def prime_factors(n): """ Return a list of prime factors of n :param n: int :return: list """ # check if 2 is the largest prime all_factors = set() t = n while t % 2 == 0: t /= 2 all_factors.add(2) # check the divisors greater than 2 d = 3 while d < n ** 0.5: while not t % d: t /= d all_factors.add(d) d += 2 return all_factors
09aad44a7b04492c225447eaa15590fa630a43cd
3,657,265
def calculate_central_age(Ns, Ni, zeta, seZeta, rhod, Nd, sigma=0.15): """Function to calculate central age.""" Ns = np.array(Ns) Ni = np.array(Ni) # We just replace 0 counts with a low value, the age will be rounded to # 2 decimals. That should take care of the zero count issue. Ns = np.where(Ns == 0, 1e-10, Ns) # Do this to account for 0 track counts Ni = np.where(Ni == 0, 1e-10, Ni) # Do this to account for 0 track counts # Calculate mj LAMBDA = 1.55125e-4 G = 0.5 m = Ns + Ni p = Ns / m theta = np.sum(Ns) / np.sum(m) for i in range(0, 30): w = m / (theta * (1 - theta) + (m - 1) * theta**2 * (1 - theta)**2 * sigma**2) sigma = sigma * np.sqrt(np.sum(w**2 * (p - theta)**2) / np.sum(w)) theta = np.sum(w * p) / np.sum(w) t = (1.0 / LAMBDA) * np.log( 1.0 + G * LAMBDA * zeta * rhod * (theta) / (1.0 - theta)) se = np.sqrt(1 / (theta**2 * (1.0 - theta)**2 * np.sum(w)) + 1.0 / Nd + (seZeta / zeta)**2) * t return {"Central": np.round(t, 2), "se": np.round(se, 2), "sigma": np.round(sigma, 2)}
29b360ce1df7cfa376a86b989fb7899137d110cc
3,657,266
import requests def _get_cross_reference_token(auth_cookie: str) -> str: """Gets a new cross reference token affiliated with the Roblox auth cookie. :param auth_cookie: Your Roblox authentication cookie. :return: A fresh cross reference token. """ session: requests.Session = _get_session(auth_cookie) response: requests.Response = session.post("https://auth.roblox.com/v2/logout") try: token = response.headers["x-csrf-token"] except KeyError: raise Exception("Please specify a valid auth cookie") return token
63041ddeb31ccdc0a72a721d000968588580e816
3,657,267
def erase_not_displayed(client): """Erase all non-displayed models from memory. Args: client (obj): creopyson Client. Returns: None """ return client._creoson_post("file", "erase_not_displayed")
c3981fcce00b5d5440fcbdbe8781e9e6229a8fa7
3,657,268
def reset_position_for_friends_image_details_from_voter(voter, twitter_profile_image_url_https, facebook_profile_image_url_https): """ Reset all position image urls in PositionForFriends from we vote image details :param voter: :param twitter_profile_image_url_https: :param facebook_profile_image_url_https: :return: """ position_list_manager = PositionListManager() position_manager = PositionManager() stance_we_are_looking_for = ANY_STANCE friends_vs_public = FRIENDS_ONLY speaker_image_url_https = None reset_all_position_image_urls_results = [] if positive_value_exists(twitter_profile_image_url_https): speaker_image_url_https = twitter_profile_image_url_https elif positive_value_exists(facebook_profile_image_url_https): speaker_image_url_https = facebook_profile_image_url_https positions_for_voter_results = position_list_manager.retrieve_all_positions_for_voter( voter.id, voter.we_vote_id, stance_we_are_looking_for, friends_vs_public) if positions_for_voter_results['position_list_found']: friends_position_list = positions_for_voter_results['position_list'] for position_object in friends_position_list: reset_position_image_urls_results = position_manager.reset_position_image_details( position_object, speaker_image_url_https=speaker_image_url_https) reset_all_position_image_urls_results.append(reset_position_image_urls_results) results = { 'success': True, 'reset_all_position_results': reset_all_position_image_urls_results } return results
e2483bf781029a7481dead0a168775b1a9223978
3,657,269
def get_analysis(panda_data): """ Get Analysis of CSV Data :param panda_data: Panda dataframes :return: panda data frames """ # Create Object for Analysis0 sentiment_object = SentimentConfig.sentiment_object ner_object = SentimentConfig.ner_object # Get list of sentences list = panda_data['text'].to_list() sentiment_result = np.array([sentiment_object.get_sentiment(i) for i in list]) panda_data["Positive Score"] = sentiment_result[:, 2] panda_data["Negative Score"] = sentiment_result[:, 0] panda_data["Neutral Score"] = sentiment_result[:, 1] panda_data["Sentiment Result"] = sentiment_result[:, 3] # NER Data Analysis Added ner_result = np.array([ner_object.get_ner(i) for i in list]) panda_data["Entity Result"] = ner_result # Adjective Analysis Added adjective_result = np.array([ner_object.get_adjectives(i) for i in list]) panda_data["Adjective Result"] = adjective_result return panda_data
014bc1543f67dfe561bce62d9b5e5f974b28db2a
3,657,270
def create_coordinate_string_dict(): """31パターンのヒモ。""" w = 120 h = 120 return { 47: (0, 0), 57: (1*-w, 0), 58: (2*-w, 0), 16: (4*-w, 0), 35: (5*-w, 0), 36: (6*-w, 0), 38: (0, 1*-h), 13: (1*-w, 1*-h), 14: (2*-w, 1*-h), 15: (3*-w, 1*-h), 25: (4*-w, 1*-h), 17: (5*-w, 1*-h), 27: (6*-w, 1*-h), 37: (7*-w, 1*-h), 1357: (0, 2*-h), 1571: (1*-w, 2*-h), 7135: (2*-w, 2*-h), 3583: (4*-w, 2*-h), 274: (5*-w, 2*-h), 1361: (6*-w, 2*-h), 1371: (0, 3*-h), 15037: (1*-w, 3*-h), 3573: (2*-w, 3*-h), 416: (4*-w, 3*-h), 258: (6*-w, 3*-h), 1753: (0, 4*-h), 1351: (1*-w, 4*-h), 3175: (2*-w, 4*-h), 2572: (4*-w, 4*-h), 638: (5*-w, 4*-h), 1471: (6*-w, 4*-h), }
4abc2b246345569780db2dc9f6ef71c56ae86528
3,657,271
def all_but_ast(check): """Only passes AST to check.""" def _check_wrapper(contents, ast, **kwargs): """Wrap check and passes the AST to it.""" del contents del kwargs return check(ast) return _check_wrapper
71f3e3b8649a3a9885ded7eec248894cca8083c4
3,657,272
import readline def get_history_items(): """ Get all history item """ return [ readline.get_history_item(i) for i in xrange(1, readline.get_current_history_length() + 1) ]
b3600ca6581c11a46c2ea92d82b9d5aefcded49b
3,657,273
def normalize(*args): """Scale a sequence of occurrences into probabilities that sum up to 1.""" total = sum(args) return [arg / total for arg in args]
49b0f998fe58b2c85da5a993e542d91bb5dd5382
3,657,275
import requests def _make_request( resource: str, from_currency_code: str, to_currency_code: str, timestamp: int, access_token: str, exchange_code: str, num_records: int, api_version: str ) -> requests.Response: """ API documentation for cryptocompare can be found at https://min-api.cryptocompare.com/documentation """ base_url = f"https://min-api.cryptocompare.com/data/{api_version}/{resource}" params = { "fsym": from_currency_code, "tsym": to_currency_code, "e": exchange_code, "limit": num_records, "toTs": timestamp, "api_key": access_token } return requests.get(base_url, params=params)
4da7c3cab42b742b106fafb4c1585e6ecb250121
3,657,277
def projective_error_function(params, args): """ :param params: :param args: :return: """ # fx fy cx cy k0 k1 project_params = params[0:5] f, cx, cy, k0, k1 = project_params K = eye(3, 3) K[0,0] = f K[1,1] = f K[0, 2] = k0 K[1, 2] = k1 model, image = args tp = params[5:] _, R, t = transform(tp, model) Rt = np.c_[R, t.transpose()] # Reconstruct camera matrix P = K @ Rt # Project X = np.zeros((4, len(model[0]))) X[0:3] = model X[3] = 1 PX = P @ X image_star = PX[0:2] / PX[2] dataShape = image.shape nData = dataShape[0] * dataShape[1] imagevec = image.reshape(1, nData)[0] image_star_vec = image_star.reshape(1, nData)[0] return imagevec - image_star_vec
5b1fe8265478a379d91178474e392797798c9c0f
3,657,279
import warnings def _transform_masks(y, transform, data_format=None, **kwargs): """Based on the transform key, apply a transform function to the masks. Refer to :mod:`deepcell.utils.transform_utils` for more information about available transforms. Caution for unknown transform keys. Args: y (numpy.array): Labels of ``ndim`` 4 or 5 transform (str): Name of the transform, one of ``{"deepcell", "disc", "watershed", None}``. data_format (str): A string, one of ``channels_last`` (default) or ``channels_first``. The ordering of the dimensions in the inputs. ``channels_last`` corresponds to inputs with shape ``(batch, height, width, channels)`` while ``channels_first`` corresponds to inputs with shape ``(batch, channels, height, width)``. kwargs (dict): Optional transform keyword arguments. Returns: numpy.array: the output of the given transform function on ``y``. Raises: ValueError: Rank of ``y`` is not 4 or 5. ValueError: Channel dimension of ``y`` is not 1. ValueError: ``transform`` is invalid value. """ valid_transforms = { 'deepcell', # deprecated for "pixelwise" 'pixelwise', 'disc', 'watershed', # deprecated for "outer-distance" 'watershed-cont', # deprecated for "outer-distance" 'inner-distance', 'outer-distance', 'centroid', # deprecated for "inner-distance" 'fgbg' } if data_format is None: data_format = K.image_data_format() if y.ndim not in {4, 5}: raise ValueError('`labels` data must be of ndim 4 or 5. Got', y.ndim) channel_axis = 1 if data_format == 'channels_first' else -1 if y.shape[channel_axis] != 1: raise ValueError('Expected channel axis to be 1 dimension. Got', y.shape[1 if data_format == 'channels_first' else -1]) if isinstance(transform, str): transform = transform.lower() if transform not in valid_transforms and transform is not None: raise ValueError('`{}` is not a valid transform'.format(transform)) if transform in {'pixelwise', 'deepcell'}: if transform == 'deepcell': warnings.warn('The `{}` transform is deprecated. Please use the ' '`pixelwise` transform instead.'.format(transform), DeprecationWarning) dilation_radius = kwargs.pop('dilation_radius', None) separate_edge_classes = kwargs.pop('separate_edge_classes', False) edge_class_shape = 4 if separate_edge_classes else 3 if data_format == 'channels_first': shape = tuple([y.shape[0]] + [edge_class_shape] + list(y.shape[2:])) else: shape = tuple(list(y.shape[0:-1]) + [edge_class_shape]) # using uint8 since should only be 4 unique values. y_transform = np.zeros(shape, dtype=np.uint8) for batch in range(y_transform.shape[0]): if data_format == 'channels_first': mask = y[batch, 0, ...] else: mask = y[batch, ..., 0] y_transform[batch] = transform_utils.pixelwise_transform( mask, dilation_radius, data_format=data_format, separate_edge_classes=separate_edge_classes) elif transform in {'outer-distance', 'watershed', 'watershed-cont'}: if transform in {'watershed', 'watershed-cont'}: warnings.warn('The `{}` transform is deprecated. Please use the ' '`outer-distance` transform instead.'.format(transform), DeprecationWarning) by_frame = kwargs.pop('by_frame', True) bins = kwargs.pop('distance_bins', None) distance_kwargs = { 'bins': bins, 'erosion_width': kwargs.pop('erosion_width', 0), } # If using 3d transform, pass in scale arg if y.ndim == 5 and not by_frame: distance_kwargs['sampling'] = kwargs.pop('sampling', [0.5, 0.217, 0.217]) if data_format == 'channels_first': shape = tuple([y.shape[0]] + list(y.shape[2:])) else: shape = y.shape[0:-1] y_transform = np.zeros(shape, dtype=K.floatx()) if y.ndim == 5: if by_frame: _distance_transform = transform_utils.outer_distance_transform_movie else: _distance_transform = transform_utils.outer_distance_transform_3d else: _distance_transform = transform_utils.outer_distance_transform_2d for batch in range(y_transform.shape[0]): if data_format == 'channels_first': mask = y[batch, 0, ...] else: mask = y[batch, ..., 0] y_transform[batch] = _distance_transform(mask, **distance_kwargs) y_transform = np.expand_dims(y_transform, axis=-1) if bins is not None: # convert to one hot notation # uint8's max value of255 seems like a generous limit for binning. y_transform = to_categorical(y_transform, num_classes=bins, dtype=np.uint8) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) elif transform in {'inner-distance', 'centroid'}: if transform == 'centroid': warnings.warn('The `{}` transform is deprecated. Please use the ' '`inner-distance` transform instead.'.format(transform), DeprecationWarning) by_frame = kwargs.pop('by_frame', True) bins = kwargs.pop('distance_bins', None) distance_kwargs = { 'bins': bins, 'erosion_width': kwargs.pop('erosion_width', 0), 'alpha': kwargs.pop('alpha', 0.1), 'beta': kwargs.pop('beta', 1) } # If using 3d transform, pass in scale arg if y.ndim == 5 and not by_frame: distance_kwargs['sampling'] = kwargs.pop('sampling', [0.5, 0.217, 0.217]) if data_format == 'channels_first': shape = tuple([y.shape[0]] + list(y.shape[2:])) else: shape = y.shape[0:-1] y_transform = np.zeros(shape, dtype=K.floatx()) if y.ndim == 5: if by_frame: _distance_transform = transform_utils.inner_distance_transform_movie else: _distance_transform = transform_utils.inner_distance_transform_3d else: _distance_transform = transform_utils.inner_distance_transform_2d for batch in range(y_transform.shape[0]): if data_format == 'channels_first': mask = y[batch, 0, ...] else: mask = y[batch, ..., 0] y_transform[batch] = _distance_transform(mask, **distance_kwargs) y_transform = np.expand_dims(y_transform, axis=-1) if distance_kwargs['bins'] is not None: # convert to one hot notation # uint8's max value of255 seems like a generous limit for binning. y_transform = to_categorical(y_transform, num_classes=bins, dtype=np.uint8) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) elif transform == 'disc' or transform is None: dtype = K.floatx() if transform == 'disc' else np.int32 y_transform = to_categorical(y.squeeze(channel_axis), dtype=dtype) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) elif transform == 'fgbg': y_transform = np.where(y > 1, 1, y) # convert to one hot notation if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, 1, y.ndim) # using uint8 since should only be 2 unique values. y_transform = to_categorical(y_transform, dtype=np.uint8) if data_format == 'channels_first': y_transform = np.rollaxis(y_transform, y.ndim - 1, 1) return y_transform
278615037d78b35cacb641eca89918010cf9b2fd
3,657,280
def get_cur_version(): """ Get current apk version string """ pkg_name = cur_activity.getPackageName() return str( cur_activity.getPackageManager().getPackageInfo( pkg_name, 0).versionName)
015d3368238edc10344c633d9cc491c79569f5f6
3,657,283
def checkpointload(checkpointfile): """Loads an hyperoptimizer checkpoint from file Returns a list of tuples (params, loss) referring to previous hyperoptimization trials """ try: with open(checkpointfile, "rb") as f: return pkl.load(f) except (FileNotFoundError, EOFError): return []
906df00fcb209c979fd57c49a426f4c752b45753
3,657,284
def get_case_color_marker(case): """Get color and marker based on case.""" black_o = ("#000000", "o") teal_D = ("#469990", "D") orange_s = ("#de9f16", "s") purple_v = ("#802f99", "v") bs = case["batch_size"] sub = case["subsampling"] mc = case["mc_samples"] if sub is None and mc == 0: # only bs mapping = {2: purple_v, 8: orange_s, 32: teal_D, 128: black_o} try: return mapping[bs] except KeyError: warn(f"Could not map bs={bs} to color-marker-pair. Returning (black, o)") return black_o if sub is not None and mc == 0: # only bs & sub return teal_D if sub is None and mc != 0: # only bs & mc return orange_s if sub is not None and mc != 0: # bs, sub & mc return purple_v
4a42fc784b9034e3996753bc6da18fbfebc66b16
3,657,287
def clean_integer_score(x): """Converts x from potentially a float or string into a clean integer, and replace NA and NP values with one string character""" try: x = str(int(float(x))) except Exception as exc: if isinstance(x, basestring): pass else: raise x = x.lower().strip() return 'A' if x == 'na (not assesible)' else 'P' if x == 'np (not performed)' else x
9ff2c911653421d51738bdb1bf8f381d3aa59820
3,657,288
def do_stuff2(): """This is not right.""" (first, second) = 1, 2, 3 return first + second
dbb6f503e73cc0365dfa20fca54bebb174fcdadd
3,657,289
def get_extra(item_container): """ liefert die erste passende image_url """ if item_container.item.extra != '': return get_extra_data(item_container) item_container = item_container.get_parent() while item_container.item.app.name == 'dmsEduFolder': if item_container.item.extra != '': return get_extra_data(item_container) item_container = item_container.get_parent() if item_container.item.app.name != 'dmsEduFolder': return None
c9ac2ad65d05d13deaad8a6031f2f9ee8ab8aee4
3,657,291
import torch def pt_accuracy(output, target, topk=(1,)): """Compute the accuracy over the k top predictions for the specified values of k.""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res
5c0ddcd57163987b00e09a6677ddc41928810874
3,657,292
from typing import Counter def compute_phasing_counts(variant_to_read_names_dict): """ Parameters ---------- variants_to_read_names : dict Dictionary mapping varcode.Variant to set of read names Returns ------- Dictionary from variant to Counter(Variant) """ read_names_to_variants = defaultdict(set) for variant, read_names in variant_to_read_names_dict.items(): for read_name in read_names: read_names_to_variants[read_name].add(variant) # now count up how many reads are shared between pairs of variants phasing_counts = defaultdict(Counter) for variant, read_names in variant_to_read_names_dict.items(): for read_name in read_names: for other_variant in read_names_to_variants[read_name]: if variant != other_variant: phasing_counts[variant][other_variant] += 1 return phasing_counts
ba13a6d6c76e018cb1072e9fba635aad5593437b
3,657,293
def _inputs_and_vae(hparams): """Constructs a VAE.""" obs_encoder = codec.MLPObsEncoder(hparams) obs_decoder = codec.MLPObsDecoder( hparams, codec.BernoulliDecoder(squeeze_input=True), param_size=1) inputs = context_mod.EncodeObserved(obs_encoder) vae = vae_mod.make(hparams, obs_encoder, obs_decoder) return inputs, vae
0e6af8a7d17312f99435426907a0dca062981225
3,657,294
def read_grid_hdf5(filepath, name): """Read a grid from HDF5 file. Parameters ---------- filepath : string or pathlib.Path object Path of the HDF5 file. name : string Name of the grid. Returns ------- x : numpy.ndarray The x-coordinates along a gridline in the x-direction. y : numpy.ndarray The y-coordinates along a gridline in the y-direction. z : numpy.ndarray The z-coordinates along a gridline in the z-direction. """ f = h5py.File(str(filepath), 'r') dim = len(f[name]) x, y, z = f[name]['x'][:], f[name]['y'][:], None if dim == 3: z = f[name]['z'][:] f.close() if z is None or len(z) == 1: return x, y return x, y, z
f9ad79da36cfa24028562cdaeefba8ca9b48e572
3,657,295
import xml def cff2provn(filename): """Parse cml xml file and return a prov bundle object""" #filename = "/Users/fariba/Desktop/UCI/freesurfer/scripts/meta-MC-SCA-023_tp1.cml" tree = xml.dom.minidom.parse(filename) collections = tree.documentElement g = prov.ProvBundle() g.add_namespace(xsd) g.add_namespace(dcterms) g.add_namespace(cml) url_entity = g.entity(cml[get_id()]) url_entity.add_extra_attributes({prov.PROV['type']: nidm['nidm:ConnectomeFileFormat'], prov.PROV['location']: prov.Literal(filename, prov.XSD['String'])}) cml_collection = g.collection(cml[get_id()]) cml_collection.add_extra_attributes( {prov.PROV['type']: cml['connectome'], prov.PROV['label']: filename}) g.wasDerivedFrom(cml_collection, url_entity) # get species, subject_name, and subject_timepoint species = tree.getElementsByTagName('cml:species')[0].toxml() species = species.replace('<cml:species>', '').replace('</cml:species>', '') tp = '' sub = '' tags = collections.getElementsByTagName("cml:tag") for t in tags: if t.attributes['key'].value == 'subject_name': sub = t.toxml() if t.attributes['key'].value == 'subject_timepoint': tp = t.toxml() sub = sub.replace('<cml:tag key="subject_name">', '').replace('</cml:tag>', '') tp = tp.replace('<cml:tag key="subject_timepoint">', '').replace('</cml:tag>', '') #print species + " " + sub + " " + tp cml_meta = g.entity(cml[get_id()]) cml_meta.add_extra_attributes( {prov.PROV['type']: cml['connectome-meta'], cml['species']: species, cml['timepoint']: tp, cml['subject_name']: sub}) g.hadMember(cml_collection, cml_meta) volumes = collections.getElementsByTagName("cml:connectome-volume") c = 0 for v in volumes: c = c + 1 #print v.getAttribute("src") + " " + v.getAttribute("dtype") + " " + v.getAttribute("name") + " " + v.getAttribute("fileformat") #print v.attributes['fileformat'].value dtype = v.getAttribute('dtype') src = v.getAttribute('src') name = v.getAttribute('name') fileformat = v.getAttribute('fileformat') cml_volume = g.entity(cml[get_id()]) cml_volume.add_extra_attributes( {prov.PROV['type']: cml['connectome-volume'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_volume) tracks = collections.getElementsByTagName("cml:connectome-track") c = 0 for t in tracks: c = c + 1 #print t.getAttribute("src") + " " + t.getAttribute("dtype") + " " + t.getAttribute("name") + " " + t.getAttribute("fileformat") dtype = t.getAttribute('dtype') src = t.getAttribute('src') name = t.getAttribute('name') fileformat = t.getAttribute('fileformat') cml_track = g.entity(cml[get_id()]) cml_track.add_extra_attributes( {prov.PROV['type']: cml['connectome-track'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_track) networks = collections.getElementsByTagName("cml:connectome-network") c = 0 for n in networks: c = c + 1 #print n.getAttribute("src") + " " + n.getAttribute("dtype") + " " + n.getAttribute("name") + " " + n.getAttribute("fileformat") dtype = n.getAttribute('dtype') src = n.getAttribute('src') name = n.getAttribute('name') fileformat = n.getAttribute('fileformat') cml_network = g.entity(cml[get_id()]) cml_network.add_extra_attributes( {prov.PROV['type']: cml['connectome-network'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_network) surfaces = collections.getElementsByTagName("cml:connectome-surface") c = 0 for s in surfaces: c = c + 1 #print s.getAttribute("src") + " " + s.getAttribute("dtype") + " " + s.getAttribute("name") + " " + s.getAttribute("fileformat") dtype = s.getAttribute('dtype') src = s.getAttribute('src') name = s.getAttribute('name') fileformat = s.getAttribute('fileformat') cml_surface = g.entity(cml[get_id()]) cml_surface.add_extra_attributes( {prov.PROV['type']: cml['connectome-surface'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_surface) data = collections.getElementsByTagName("cml:connectome-data") c = 0 for d in data: c = c + 1 #print d.getAttribute("src") + " " + d.getAttribute("dtype") + " " + d.getAttribute("name") + " " + d.getAttribute("fileformat") dtype = d.getAttribute('dtype') src = d.getAttribute('src') name = d.getAttribute('name') cml_data = g.entity(cml[get_id()]) cml_data.add_extra_attributes( {prov.PROV['type']: cml['connectome-data'], cml['dtype']: dtype, cml['src']: src, cml['name']: name, cml['fileformat']: fileformat}) g.hadMember(cml_collection, cml_data) return g
c8e44bd627173a17d45eadcc5ab73062c4e27ff6
3,657,297
def optional(idx, *args): """A converter for functions having optional arguments. The index to the last non-optional parameter is specified and a list of types for optional arguments follows. """ return lambda ctx, typespecs: _optional_imp(ctx, typespecs[idx], args)
e5491588090beaf4730f18c1b54193104a8f62be
3,657,298
def calc_plot_ROC(y1, y2): """ Take two distributions and plot the ROC curve if you used the difference in those distributions as a binary classifier. :param y1: :param y2: :return: """ y_score = np.concatenate([y1, y2]) y_true = np.concatenate([np.zeros(len(y1)), np.ones(len(y2))]) return plot_ROC(y_true, y_score)
428aa54ebe92ff1df6df4ebcae800a0b692f09d5
3,657,299
def degrees(x): """Converts angle x from radians to degrees. :type x: numbers.Real :rtype: float """ return 0.0
87fe22113f8286db6c516e711b9cf0d4efe7e11d
3,657,301
def account_credit(account=None, asset=None, date=None, tp=None, order_by=['tp', 'account', 'asset'], hide_empty=False): """ Get credit operations for the account Args: account: filter by account code asset: filter by asset code date: get balance for specified date/time tp: FIlter by account type sort: field or list of sorting fields hide_empty: don't return zero balances Returns: generator object """ return _account_summary('credit', account=account, asset=asset, date=date, tp=tp, order_by=order_by, hide_empty=hide_empty)
a690d1352344c6f8e3d8172848255adc1fa9e331
3,657,302
import torch def verify(model): """ 测试数据模型检验 :param model: 网络模型以及其参数 :return res: 返回对应的列表 """ device = 'cuda' if torch.cuda.is_available() else 'cpu' model = model.to(device) if device == 'cuda': model = torch.nn.DataParallel(model) cudnn.benchmark = True res = [] for idx, data in enumerate(test_loader): img, label = data img, label = img.to(device), label.to(device) label2 = label.numpy()[0] img = img.view(img.size(0), -1) out = model(img) all_output = [] for i in out.data: all_output.append(i.numpy()) all_output = all_output[0] if max(all_output) == all_output[label2]: correct = True else: correct = False all_output = sorted(all_output, reverse=True) bvsb = all_output[0] - all_output[1] obj = { "label": int(label2), "correct": correct, "bvsb": float(bvsb) } res.append(obj) if idx >= test_num - 1: break return res
9ad2fd6280018aacbb2501f6b5eb862924b361a1
3,657,304
import csv def parse_solution_file(solution_file): """Parse a solution file.""" ids = [] classes = [] with open(solution_file) as file_handle: solution_reader = csv.reader(file_handle) header = next(solution_reader, None) if header != HEADER: raise ValueError( 'Incorrect header found: {}, should be: {}'.format( header, HEADER)) solution = sorted(list(solution_reader), key=lambda x: x[0]) for row in solution: if len(row) < 2: raise ValueError( 'Bad row length: {}, ' 'should be at least {} for row {}'.format( len(row), len(HEADER), row)) row_classes = row[1:] if any(class_ not in POSSIBLE_CLASSES for class_ in row_classes): raise ValueError( 'Unknown class found among: {}'.format(row_classes)) ids.append(row[0]) classes.append(row_classes) return ids, classes
19a553bd9979ca1d85d223b3109f3567a3a84100
3,657,305
def fibonacci_modulo(number, modulo): """ Calculating (n-th Fibonacci number) mod m Args: number: fibonacci number modulo: modulo Returns: (n-th Fibonacci number) mod m Examples: >>> fibonacci_modulo(11527523930876953, 26673) 10552 """ period = _pisano_period_len(modulo) answer = _fib(number - number // period * period) % modulo return answer
5a7692597c17263ba86e81104762e4c7c8c95083
3,657,306
from typing import Union def _str_unusual_grades(df: pd.DataFrame) -> Union[str, None]: """Print the number of unusual grades.""" grades = np.arange(0, 10.5, 0.5).astype(float) catch_grades = [] for item in df["grade"]: try: if float(item) not in grades: catch_grades.append(item) except ValueError: catch_grades.append(item) if catch_grades == []: return None else: return ( f"– Over all grades, {len(catch_grades)} of {len(df)} cards do not receive" f" standard grades. These grades are in {set(catch_grades)}" )
0998b112438685523cadc60eb438bee94f3ad8fd
3,657,307
from typing import Any from typing import Dict def _adjust_estimator_options(estimator: Any, est_options: Dict[str, Any], **kwargs) -> Dict[str, Any]: """ Adds specific required classifier options to the `clf_options` dictionary. Parameters ---------- classifier : Any The classifier object for which the options have to be added clf_options : Dict[str, Any] Dictionary, where the additional classifier options should be added to kwargs : Additional classifier options as keyword arguments Returns ------- Dict[str, Any] The input `clf_options` dictionary containing the additional classifier options """ if estimator.__name__ == 'XGBClassifier': est_options['num_class'] = kwargs['n_categories'] elif estimator.__name__ == 'DNNClassifier': est_options['n_classes'] = kwargs['n_categories'] est_options['n_features'] = kwargs['n_features'] est_options['random_state'] = kwargs['random_seed'] return est_options
4ff98d8a3b3e647e129fb0ffbc9bc549caa60440
3,657,308
def _prettify(elem,indent_level=0): """Return a pretty-printed XML string for the Element. """ indent = " " res = indent_level*indent + '<'+elem.tag.encode('utf-8') for k in elem.keys(): res += " "+k.encode('utf-8')+'="'+_escape_nl(elem.get(k)).encode('utf-8')+'"' children = elem.getchildren() if len(children)==0 and not elem.text: res += ' />' return res res += '>' if elem.text: res += _escape_nl(elem.text).encode('utf-8') for c in children: res += '\n'+_prettify(c,indent_level+1) if len(children)>0: res += '\n'+indent_level*indent res += '</'+elem.tag.encode('utf-8')+'>' return res
8f46637cdbb8daf488fd668a197aee5495b8128a
3,657,309
def predict(text): """ Predict the language of a text. Parameters ---------- text : str Returns ------- language_code : str """ if language_models is None: init_language_models(comp_metric, unicode_cutoff=10**6) x_distribution = get_distribution(text, language_models_chars) return predict_param(language_models, comp_metric, x_distribution, best_only=True)
713d8cd8df040703ee7f138314f5c14f5a89ef26
3,657,310
def distance_loop(x1, x2): """ Returns the Euclidean distance between the 1-d numpy arrays x1 and x2""" return -1
abd35a27cbeb5f5c9fe49a2a076d18f16e2849d9
3,657,312
def get_ps_calls_and_summary(filtered_guide_counts_matrix, f_map): """Calculates protospacer calls per cell and summarizes them Args: filtered_guide_counts_matrix: CountMatrix - obtained by selecting features by CRISPR library type on the feature counts matrix f_map: dict - map of feature ID:feature sequence pairs Returns: First 3 outputs as specified in docstring for get_perturbation_calls ps_calls_summary is a Pandas dataframe summarizing descriptive statistics for each perturbation_call (unique combination of protospacers) found in the dataset, along with some overall summary statistics about the mulitplicty of infection """ if feature_utils.check_if_none_or_empty(filtered_guide_counts_matrix): return (None, None, None, None, None) (ps_calls_table, presence_calls, cells_with_ps, umi_thresholds) = get_perturbation_calls(filtered_guide_counts_matrix, f_map,) ps_calls_table.sort_values(by=['feature_call'], inplace=True, kind='mergesort') ps_calls_summary = get_ps_calls_summary(ps_calls_table, filtered_guide_counts_matrix) return (ps_calls_table, presence_calls, cells_with_ps, ps_calls_summary, umi_thresholds)
18aecb335655fb62459350761aeffd4ddbe231ae
3,657,313
def symbol_by_name(name, aliases={}, imp=None, package=None, sep='.', default=None, **kwargs): """Get symbol by qualified name. The name should be the full dot-separated path to the class:: modulename.ClassName Example:: celery.concurrency.processes.TaskPool ^- class name or using ':' to separate module and symbol:: celery.concurrency.processes:TaskPool If `aliases` is provided, a dict containing short name/long name mappings, the name is looked up in the aliases first. Examples: >>> symbol_by_name("celery.concurrency.processes.TaskPool") <class 'celery.concurrency.processes.TaskPool'> >>> symbol_by_name("default", { ... "default": "celery.concurrency.processes.TaskPool"}) <class 'celery.concurrency.processes.TaskPool'> # Does not try to look up non-string names. >>> from celery.concurrency.processes import TaskPool >>> symbol_by_name(TaskPool) is TaskPool True """ if imp is None: imp = importlib.import_module if not isinstance(name, basestring): return name # already a class name = aliases.get(name) or name sep = ':' if ':' in name else sep module_name, _, cls_name = name.rpartition(sep) if not module_name: cls_name, module_name = None, package if package else cls_name try: try: module = imp(module_name, package=package, **kwargs) except ValueError, exc: raise ValueError, ValueError( "Couldn't import %r: %s" % (name, exc)), sys.exc_info()[2] return getattr(module, cls_name) if cls_name else module except (ImportError, AttributeError): if default is None: raise return default
10921d715abc9c83891b26b884f3c88e86c4a900
3,657,314
from typing import Tuple def coefficients_of_line_from_points( point_a: Tuple[float, float], point_b: Tuple[float, float] ) -> Tuple[float, float]: """Computes the m and c coefficients of the equation (y=mx+c) for a straight line from two points. Args: point_a: point 1 coordinates point_b: point 2 coordinates Returns: m coefficient and c coefficient """ points = [point_a, point_b] x_coords, y_coords = zip(*points) coord_array = np.vstack([x_coords, np.ones(len(x_coords))]).T m, c = np.linalg.lstsq(coord_array, y_coords, rcond=None)[0] return m, c
b4d89f2bb3db48723f321e01658e795f431427e1
3,657,315
import tifffile def read_tiff(fname, slc=None): """ Read data from tiff file. Parameters ---------- fname : str String defining the path of file or file name. slc : sequence of tuples, optional Range of values for slicing data in each axis. ((start_1, end_1, step_1), ... , (start_N, end_N, step_N)) defines slicing parameters for each axis of the data matrix. Returns ------- ndarray Output 2D image. """ fname = _check_read(fname) try: arr = tifffile.imread(fname, memmap=True) except IOError: logger.error('No such file or directory: %s', fname) return False arr = _slice_array(arr, slc) _log_imported_data(fname, arr) return arr
39b48229719dd8210059a3a9ed7972e8398728ab
3,657,317
def sorted_non_max_suppression_padded(scores, boxes, max_output_size, iou_threshold): """A wrapper that handles non-maximum suppression. Assumption: * The boxes are sorted by scores unless the box is a dot (all coordinates are zero). * Boxes with higher scores can be used to suppress boxes with lower scores. The overal design of the algorithm is to handle boxes tile-by-tile: boxes = boxes.pad_to_multiply_of(tile_size) num_tiles = len(boxes) // tile_size output_boxes = [] for i in range(num_tiles): box_tile = boxes[i*tile_size : (i+1)*tile_size] for j in range(i - 1): suppressing_tile = boxes[j*tile_size : (j+1)*tile_size] iou = bbox_overlap(box_tile, suppressing_tile) # if the box is suppressed in iou, clear it to a dot box_tile *= _update_boxes(iou) # Iteratively handle the diagnal tile. iou = _box_overlap(box_tile, box_tile) iou_changed = True while iou_changed: # boxes that are not suppressed by anything else suppressing_boxes = _get_suppressing_boxes(iou) # boxes that are suppressed by suppressing_boxes suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes) # clear iou to 0 for boxes that are suppressed, as they cannot be used # to suppress other boxes any more new_iou = _clear_iou(iou, suppressed_boxes) iou_changed = (new_iou != iou) iou = new_iou # remaining boxes that can still suppress others, are selected boxes. output_boxes.append(_get_suppressing_boxes(iou)) if len(output_boxes) >= max_output_size: break Args: scores: a tensor with a shape of [batch_size, anchors]. boxes: a tensor with a shape of [batch_size, anchors, 4]. max_output_size: a scalar integer `Tensor` representing the maximum number of boxes to be selected by non max suppression. iou_threshold: a float representing the threshold for deciding whether boxes overlap too much with respect to IOU. Returns: nms_scores: a tensor with a shape of [batch_size, anchors]. It has same dtype as input scores. nms_proposals: a tensor with a shape of [batch_size, anchors, 4]. It has same dtype as input boxes. """ batch_size = tf.shape(boxes)[0] num_boxes = tf.shape(boxes)[1] pad = tf.cast( tf.math.ceil(tf.cast(num_boxes, tf.float32) / NMS_TILE_SIZE), tf.int32) * NMS_TILE_SIZE - num_boxes boxes = tf.pad(tf.cast(boxes, tf.float32), [[0, 0], [0, pad], [0, 0]]) scores = tf.pad( tf.cast(scores, tf.float32), [[0, 0], [0, pad]], constant_values=-1) num_boxes += pad def _loop_cond(unused_boxes, unused_threshold, output_size, idx): return tf.logical_and( tf.reduce_min(output_size) < max_output_size, idx < num_boxes // NMS_TILE_SIZE) selected_boxes, _, output_size, _ = tf.while_loop( _loop_cond, _suppression_loop_body, [ boxes, iou_threshold, tf.zeros([batch_size], tf.int32), tf.constant(0) ]) idx = num_boxes - tf.cast( tf.nn.top_k( tf.cast(tf.reduce_any(selected_boxes > 0, [2]), tf.int32) * tf.expand_dims(tf.range(num_boxes, 0, -1), 0), max_output_size)[0], tf.int32) idx = tf.minimum(idx, num_boxes - 1) idx = tf.reshape( idx + tf.reshape(tf.range(batch_size) * num_boxes, [-1, 1]), [-1]) boxes = tf.reshape( tf.gather(tf.reshape(boxes, [-1, 4]), idx), [batch_size, max_output_size, 4]) boxes = boxes * tf.cast( tf.reshape(tf.range(max_output_size), [1, -1, 1]) < tf.reshape( output_size, [-1, 1, 1]), boxes.dtype) scores = tf.reshape( tf.gather(tf.reshape(scores, [-1, 1]), idx), [batch_size, max_output_size]) scores = scores * tf.cast( tf.reshape(tf.range(max_output_size), [1, -1]) < tf.reshape( output_size, [-1, 1]), scores.dtype) return scores, boxes
5d882acb6b9559eb541d49f6784798e5d342c673
3,657,318
def create_session() -> Session: """ Creates a new session using the aforementioned engine :return: session """ return Session(bind=engine)
8b480ee216c30b2c6b8652a6b6239ab6b83df4d9
3,657,319
import torch def fft_to_complex_matrix(x): """ Create matrix with [a -b; b a] entries for complex numbers. """ x_stacked = torch.stack((x, torch.flip(x, (4,))), dim=5).permute(2, 3, 0, 4, 1, 5) x_stacked[:, :, :, 0, :, 1] *= -1 return x_stacked.reshape(-1, 2 * x.shape[0], 2 * x.shape[1])
9fb38004041280da0d6d53830761501aebf7969a
3,657,320
import copy def mcais(A, X, verbose=False): """ Returns the maximal constraint-admissible (positive) invariant set O_inf for the system x(t+1) = A x(t) subject to the constraint x in X. O_inf is also known as maximum output admissible set. It holds that x(0) in O_inf <=> x(t) in X for all t >= 0. (Implementation of Algorithm 3.2 from: Gilbert, Tan - Linear Systems with State and Control Constraints, The Theory and Application of Maximal Output Admissible Sets.) Sufficient conditions for this set to be finitely determined (i.e. defined by a finite number of facets) are: A stable, X bounded and containing the origin. Math ---------- At each time step t, we want to verify if at the next time step t+1 the system will go outside X. Let's consider X := {x | D_i x <= e_i, i = 1,...,n} and t = 0. In order to ensure that x(1) = A x(0) is inside X, we need to consider one by one all the constraints and for each of them, the worst-case x(0). We can do this solvin an LP V(t=0, i) = max_{x in X} D_i A x - e_i for i = 1,...,n if all these LPs has V < 0 there is no x(0) such that x(1) is outside X. The previous implies that all the time-evolution x(t) will lie in X (see Gilbert and Tan). In case one of the LPs gives a V > 0, we iterate and consider V(t=1, i) = max_{x in X, x in A X} D_i A^2 x - e_i for i = 1,...,n where A X := {x | D A x <= e}. If now all V < 0, then O_inf = X U AX, otherwise we iterate until convergence V(t, i) = max_{x in X, x in A X, ..., x in A^t X} D_i A^(t+1) x - e_i for i = 1,...,n Once at convergence O_Inf = X U A X U ... U A^t X. Arguments ---------- A : numpy.ndarray State transition matrix. X : instance of Polyhedron State-space domain of the dynamical system. verbose : bool If True prints at each iteration the convergence parameters. Returns: ---------- O_inf : instance of Polyhedron Maximal constraint-admissible (positive) ivariant. t : int Determinedness index. """ # ensure convergence of the algorithm eig_max = np.max(np.absolute(np.linalg.eig(A)[0])) if eig_max > 1.: raise ValueError('unstable system, cannot derive maximal constraint-admissible set.') [nc, nx] = X.A.shape if not X.contains(np.zeros((nx, 1))): raise ValueError('the origin is not contained in the constraint set, cannot derive maximal constraint-admissible set.') if not X.bounded: raise ValueError('unbounded constraint set, cannot derive maximal constraint-admissible set.') # initialize mcais O_inf = copy(X) # loop over time t = 1 convergence = False while not convergence: # solve one LP per facet J = X.A.dot(np.linalg.matrix_power(A,t)) residuals = [] for i in range(X.A.shape[0]): sol = linear_program(- J[i,:], O_inf.A, O_inf.b) residuals.append(- sol['min'] - X.b[i,0]) # print status of the algorithm if verbose: print('Time horizon: ' + str(t) + '.'), print('Convergence index: ' + str(max(residuals)) + '.'), print('Number of facets: ' + str(O_inf.A.shape[0]) + '. \r'), # convergence check new_facets = [i for i, r in enumerate(residuals) if r > 0.] if len(new_facets) == 0: convergence = True else: # add (only non-redundant!) facets O_inf.add_inequality(J[new_facets,:], X.b[new_facets,:]) t += 1 # remove redundant facets if verbose: print('\nMaximal constraint-admissible invariant set found.') print('Removing redundant facets ...'), O_inf.remove_redundant_inequalities() if verbose: print('minimal facets are ' + str(O_inf.A.shape[0]) + '.') return O_inf
e162a1aed724166f373f8afbd6541622254e8b42
3,657,321
def evaluation_seasonal_srmse(model_name, variable_name='mean', background='all'): """ Evaluate the model in different seasons using the standardized RMSE. :type model_name: str :param model_name: The name of the model. :type variable_name: str :param variable_name: The name of the variable which shell be evaluated\ against the ONI prediction. :returns: The SRMSE for different seasons and the \ 0, 3, 6, 9, 12 and 15-month lead times. The returned arrays have the shape \ (lead time, season). The season corresponding to the the array entry [:,0]\ is DJF and to [:,1] is JFM (and so on). """ reader = data_reader(startdate='1963-01', enddate='2017-12') # seasonal scores seas_srmse = np.zeros((n_lead, 12)) # ONI observation oni = reader.read_csv('oni') if background=="el-nino-like": obs = oni[(oni.index.year>=1982)&(oni.index.year<=2001)] elif background=="la-nina-like": obs = oni[(oni.index.year<1982)|(oni.index.year>2001)] elif background=="all": obs = oni obs_time = obs.index for i in range(n_lead): pred_all = reader.read_forecasts(model_name, lead_times[i]).loc[{'target_season':obs_time}] pred = pred_all[variable_name] seas_srmse[i, :] = seasonal_srmse(obs, pred, obs_time - pd.tseries.offsets.MonthBegin(1)) return seas_srmse
39fb7ae64ab32fc5092e46c77c8593f1aeaf4c92
3,657,322
def _async_device_ha_info( hass: HomeAssistant, lg_device_id: str ) -> dict | None: """Gather information how this ThinQ device is represented in Home Assistant.""" device_registry = dr.async_get(hass) entity_registry = er.async_get(hass) hass_device = device_registry.async_get_device( identifiers={(DOMAIN, lg_device_id)} ) if not hass_device: return None data = { "name": hass_device.name, "name_by_user": hass_device.name_by_user, "model": hass_device.model, "manufacturer": hass_device.manufacturer, "sw_version": hass_device.sw_version, "disabled": hass_device.disabled, "disabled_by": hass_device.disabled_by, "entities": {}, } hass_entities = er.async_entries_for_device( entity_registry, device_id=hass_device.id, include_disabled_entities=True, ) for entity_entry in hass_entities: if entity_entry.platform != DOMAIN: continue state = hass.states.get(entity_entry.entity_id) state_dict = None if state: state_dict = dict(state.as_dict()) # The entity_id is already provided at root level. state_dict.pop("entity_id", None) # The context doesn't provide useful information in this case. state_dict.pop("context", None) data["entities"][entity_entry.entity_id] = { "name": entity_entry.name, "original_name": entity_entry.original_name, "disabled": entity_entry.disabled, "disabled_by": entity_entry.disabled_by, "entity_category": entity_entry.entity_category, "device_class": entity_entry.device_class, "original_device_class": entity_entry.original_device_class, "icon": entity_entry.icon, "original_icon": entity_entry.original_icon, "unit_of_measurement": entity_entry.unit_of_measurement, "state": state_dict, } return data
47af173daba91aa70ea167baf58c05e9f6f595f6
3,657,324
from typing import Optional def get_travis_pr_num() -> Optional[int]: """Return the PR number if the job is a pull request, None otherwise Returns: int See also: - <https://docs.travis-ci.com/user/environment-variables/#default-environment-variables> """ # noqa E501 try: travis_pull_request = get_travis_env_or_fail('TRAVIS_PULL_REQUEST') if falsy(travis_pull_request): return None else: try: return int(travis_pull_request) except ValueError: return None except UnexpectedTravisEnvironmentError: return None
86ef6ce3f9bf3c3e056b11e575b1b13381e490fe
3,657,325
from typing import List import json def get_updated_records(table_name: str, existing_items: List) -> List: """ Determine the list of record updates, to be sent to a DDB stream after a PartiQL update operation. Note: This is currently a fairly expensive operation, as we need to retrieve the list of all items from the table, and compare the items to the previously available. This is a limitation as we're currently using the DynamoDB Local backend as a blackbox. In future, we should consider hooking into the PartiQL query execution inside DynamoDB Local and directly extract the list of updated items. """ result = [] stream_spec = dynamodb_get_table_stream_specification(table_name=table_name) key_schema = SchemaExtractor.get_key_schema(table_name) before = ItemSet(existing_items, key_schema=key_schema) after = ItemSet(ItemFinder.get_all_table_items(table_name), key_schema=key_schema) def _add_record(item, comparison_set: ItemSet): matching_item = comparison_set.find_item(item) if matching_item == item: return # determine event type if comparison_set == after: if matching_item: return event_name = "REMOVE" else: event_name = "INSERT" if not matching_item else "MODIFY" old_image = item if event_name == "REMOVE" else matching_item new_image = matching_item if event_name == "REMOVE" else item # prepare record keys = SchemaExtractor.extract_keys_for_schema(item=item, key_schema=key_schema) record = { "eventName": event_name, "eventID": short_uid(), "dynamodb": { "Keys": keys, "NewImage": new_image, "SizeBytes": len(json.dumps(item)), }, } if stream_spec: record["dynamodb"]["StreamViewType"] = stream_spec["StreamViewType"] if old_image: record["dynamodb"]["OldImage"] = old_image result.append(record) # loop over items in new item list (find INSERT/MODIFY events) for item in after.items_list: _add_record(item, before) # loop over items in old item list (find REMOVE events) for item in before.items_list: _add_record(item, after) return result
631c21836614731e5b53ed752036f1216d555196
3,657,326
def normalize_record(input_object, parent_name="root_entity"): """ This function orchestrates the main normalization. It will go through the json document and recursively work with the data to: - unnest (flatten/normalize) keys in objects with the standard <parentkey>_<itemkey> convention - identify arrays, which will be pulled out and normalized - create an array of entities, ready for streaming or export for each item in the object: if the item is a non object or non list item: append to this flattened_dict object if the item is a dictionary: trigger the flatten dict function the flatten dict function will iterate through the items and append them to a dictionary. it will return a dictionary with {"dictionary": <dict_data>, "array": <arrays>} join flattened_dict and the returned[dictionary] data append returned[array] to arrays layer arrays will be dealt with a little differently. Because we're expecting multiple entries we'll be workign with a loop which will always belong to an array create new dict object dict_object = {"name": <dict name>, "data": [dict array entries data]} for each in the array loop - trigger normalize_layer with parent name of array name dict_object.append the `dicts_array`["data"] to the dict_object["data"] array """ arrays = [] dicts = [] output_dictionary = {} parent_keys = extract_parent_keys(dictionary_name=parent_name, dictionary_object=input_object) if isinstance(input_object, (dict)): for key, value in input_object.items(): if not isinstance(value, (dict,list) ): # if the item is a non object or non list item: output_dictionary[key] = value elif isinstance(value, dict): # if the item is a dictionary: # trigger the flatten dict function dict_contents = flatten_object(key,value) # will return {"dictionary": <dict_data>, "array": <arrays>} instance_dictionary = dict_contents["dictionary"] instance_array = dict_contents["array"] if len(instance_array) >0: arrays.extend(instance_array) output_dictionary = merge_two_dicts(output_dictionary,instance_dictionary) #join the dict elif isinstance(value, list): arrays.append({"name":key, "data":value, "parent_keys": parent_keys}) elif isinstance(input_object, (list)): arrays.append({"name":parent_name,"data":input_object }) ############################## ### Now process the arrays ### ############################## for each_array in arrays: for each_entry in each_array["data"]: each_entry = each_entry try: if each_array["parent_keys"]: each_entry = merge_two_dicts(each_entry, each_array["parent_keys"]) except: pass normalized_array = (normalize_record(input_object = each_entry, parent_name = each_array["name"]) ) #expect list here #let the normalizer recursively work through and pull the data out. Once it's out, we can append the data to the dicts array :) #may return 1 or more dictionaries for each_normalized_array_entry in normalized_array: # iterate through each output in the normalized array #check if there is an instance of this data already matches = False for each_dictionary_entity in dicts: if each_normalized_array_entry["name"] == each_dictionary_entity["name"]: #check if there is data in place already for this. If so, we add an entry to it each_dictionary_entity["data"].extend(each_normalized_array_entry["data"]) matches = True if matches == False: dicts.append({"name": each_normalized_array_entry["name"] , "data": each_normalized_array_entry["data"] }) dicts.append({"name":parent_name, "data": [output_dictionary]}) return(dicts)
73647b04ba943e18a38ebf2f1d03cca46b533935
3,657,327
def rmse(f, p, xdata, ydata): """Root-mean-square error.""" results = np.asarray([f(p, x) for x in xdata]) sqerr = (results - ydata)**2 return np.sqrt(sqerr.mean())
2b8afdb1742aad5e5c48fbe4407ab0989dbaf762
3,657,328
import logging def get_logger(name=None, propagate=True): """Get logger object""" logger = logging.getLogger(name) logger.propagate = propagate loggers.append(logger) return logger
3ad4dbc39f9bf934b02e2dc6e713a4793a28298b
3,657,329
import requests from typing import Match def getMatches(tournamentName=None, matchDate=None, matchPatch=None, matchTeam=None): """ Params: tournamentName: str/List[str]/Tuple(str) : filter by tournament names (e.g. LCK 2020 Spring) matchDate: str/List[str]/Tuple(str) : date in the format of yyyy-mm-dd matchPatch: str/List[str]/Tuple(str) : game patch the match is played on (e.g. 10.15) matchTeam: str/List[str]/Tuple(str) Returns: List[Match] """ argsString = " AND ".join(filter(None, [ _formatArgs(tournamentName, "SG.Tournament"), _formatDateTimeArgs(matchDate, "SG.DateTime_UTC"), _formatArgs(matchPatch, "SG.Patch") ])) url = MATCHES_URL.format(argsString) matchesJson = requests.get(url).json()["cargoquery"] matches = [] uniqueMatchMap = {} for i in range(len(matchesJson)): matchJson = matchesJson[i]["title"] # apply team filter if isinstance(matchTeam, str): matchTeam = [matchTeam] if isinstance(matchTeam, list): if matchJson["Team1"] not in matchTeam and matchJson["Team2"] not in matchTeam: continue elif isinstance(matchTeam, tuple): if not set(matchTeam).issubset(set([matchJson["Team1"], matchJson["Team2"]])): continue uniqueMatch = matchJson["UniqueGame"][:-2] if uniqueMatch not in uniqueMatchMap: match = Match(uniqueMatch) match._uniqueGames.append(matchJson["UniqueGame"]) match.dateTime = matchJson["DateTime UTC"] match.patch = matchJson["Patch"] match.teams = (matchJson["Team1"], matchJson["Team2"]) match.scores = (int(matchJson["Team1Score"]), int(matchJson["Team2Score"])) matches.append(match) uniqueMatchMap[uniqueMatch] = match else: match = uniqueMatchMap[uniqueMatch] match._uniqueGames.append(matchJson["UniqueGame"]) match.dateTime = matchJson["DateTime UTC"] return matches
89525caa9da0a3b546e0b8982e96469f32f8c5bc
3,657,333
def get_fields(fields): """ From the last column of a GTF, return a dictionary mapping each value. Parameters: fields (str): The last column of a GTF Returns: attributes (dict): Dictionary created from fields. """ attributes = {} description = fields.strip() description = [x.strip() for x in description.split(";")] for pair in description: if pair == "": continue pair = pair.replace('"', '') key, val = pair.split() attributes[key] = val # put in placeholders for important attributes (such as gene_id) if they # are absent if 'gene_id' not in attributes: attributes['gene_id'] = 'NULL' return attributes
30777838934b18a0046017f3da6b3a111a911a9c
3,657,336
def add_log_group_name_params(log_group_name, configs): """Add a "log_group_name": log_group_name to every config.""" for config in configs: config.update({"log_group_name": log_group_name}) return configs
a5fce8143c3404257789c1720bbfefc49c8ea3f5
3,657,337
from typing import Union def on_update_user_info(data: dict, activity: Activity) -> (int, Union[str, None]): """ broadcast a user info update to a room, or all rooms the user is in if no target.id specified :param data: activity streams format, must include object.attachments (user info) :param activity: the parsed activity, supplied by @pre_process decorator, NOT by calling endpoint :return: {'status_code': ECodes.OK, 'data': '<same AS as client sent, plus timestamp>'} """ activity.actor.display_name = utils.b64e(environ.env.session.get(SessionKeys.user_name.value)) data['actor']['displayName'] = activity.actor.display_name environ.env.observer.emit('on_update_user_info', (data, activity)) return ECodes.OK, data
735486cad96545885a76a5a18418db549869304d
3,657,338
def discover(isamAppliance, check_mode=False, force=False): """ Discover available updates """ return isamAppliance.invoke_get("Discover available updates", "/updates/available/discover")
04c68b0ce57d27bc4032cf9b1607f2f1f371e384
3,657,339
from re import A def ltistep(U, A=A, B=B, C=C): """ LTI( A B C ): U -> y linear straight up """ U, A, B, C = map(np.asarray, (U, A, B, C)) xk = np.zeros(A.shape[1]) x = [xk] for u in U[:-1]: xk = A.dot(xk) + B.dot(u) x.append(xk.copy()) return np.dot(x, C)
5d7c7550a9a6407a8f1a68ee32e158f25a7d50bf
3,657,340
def _registry(): """Registry to download images from.""" return _registry_config()["host"]
ee7c724f3b9381c4106a4e19d0434b9b4f0125fc
3,657,341